WorldWideScience

Sample records for asphalt roofing shingles

  1. Asphalt Roofing Shingles Into Energy Project Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Rex, PE

    2008-04-28

    Based on a widely cited September, 1999 report by the Vermont Agency of Natural Resources, nearly 11 million tons of asphalt roofing shingle wastes are produced in the United States each year. Recent data suggests that the total is made up of about 9.4 million tons from roofing tear-offs and about 1.6 million tons from manufacturing scrap. Developing beneficial uses for these materials would conserve natural resources, promote protection of the environment and strengthen the economy. This project explored the feasibility of using chipped asphalt shingle materials in cement manufacturing kilns and circulating fluidized bed (CFB) boilers. A method of enhancing the value of chipped shingle materials for use as fuel by removing certain fractions for use as substitute raw materials for the manufacture of new shingles was also explored. Procedures were developed to prevent asbestos containing materials from being processed at the chipping facilities, and the frequency of the occurrence of asbestos in residential roofing tear-off materials was evaluated. The economic feasibility of each potential use was evaluated based on experience gained during the project and on a review of the well established use of shingle materials in hot mix asphalt. This project demonstrated that chipped asphalt shingle materials can be suitable for use as fuel in circulating fluidized boilers and cement kilns. More experience would be necessary to determine the full benefits that could be derived and to discover long term effects, but no technical barriers to full scale commercial use of chipped asphalt shingle materials in these applications were discovered. While the technical feasibility of various options was demonstrated, only the use of asphalt shingle materials in hot mix asphalt applications is currently viable economically.

  2. Asphalt and Wood Shingling. Roofing Workbook and Tests.

    Science.gov (United States)

    Brown, Arthur

    This combination workbook and set of tests contains materials on asphalt and wood shingling that have been designed to be used by those studying to enter the roofing and waterproofing trade. It consists of seven instructional units and seven accompanying objective tests. Covered in the individual units are the following topics: shingling…

  3. Integrating Recycled Glass Cullet in Asphalt Roof Shingles to Mitigate Heat Island Effect

    Science.gov (United States)

    2014-05-01

    The roof covering provides water shedding and ultraviolet protection, and there are six generic classifications roof coverings: asphalt shingles, clay ...M. N. Assimakopou, and G. Mihalakakou. 2011. "Solar cooling with aluminium pillared clays ." Elsevier, Solar Energy Materials & Solar Cells 95 2363...Fallon, where he completed a deployment onboard the USS BOXER (LHD 4) to Guatemala, El Salvador, and Peru in support of the humanitarian and civic

  4. The Spontaneous Combustion of Railway Ties and Asphalt Shingles

    Science.gov (United States)

    Leslie, Geoffrey

    Many Low Carbon Fuels (LCFs) present unknown spontaneous combustion risks, which must be quantified before their use as fossil fuel replacements. Wood and coal spontaneous combustion is well understood; however, LCFs weather, and subsequent chemical changes could affect their spontaneous combustion properties. LCF spontaneous combustion could lead to accidental fires with possible loss of life, limb and property. The spontaneous combustion risks of two LCFs, discarded creosote-treated wooden railway ties and roofing asphalt shingles, were investigated with calorimetry and heat transfer experiments. Chemical changes due to weathering were studied with pyrolysis-Gas Chromatography/Mass Spectrometry (py-GC/MS). Creosote-treated wooden railway tie dust, roofing asphalt shingle particles, poplar wood pellets, and petroleum coke self-heating were studied with isothermal calorimetry. Railway tie dust and asphalt shingle heat transfer were characterized with a guarded hot plate. Petroleum coke self-heating was consistent with coal, while both poplar pellets and railway tie dust were found to be more reactive compared to oven test results of similar materials. The observed increase in reactivity was probably a result of significant moisture contenint in the pellet and railway tie dust. Critical conditions for spontaneous combustion were evaluated with the Frank-Kamenetskii parameter, assuming an ambient temperature of 40°C and constant moisture content. Kamenetskii calculations indicate that a 1.6 m cube of railway tie dust, or a 58 m cube of asphalt particles, would be unstable and combust. LCF chemistry may have been affected by weathering, which would cause chemical changes that affect their spontaneous combustion properties. Therefore, railway tie wood and roofing asphalt shingle chemistry were investigated by identifying products of 250° and 550°C pyrolysis with py-GC/MS. Railway tie wood pyrolyzates did not show signs of weathering; in contrast, asphalt pyrolysis

  5. A novel technique for the production of cool colored concrete tile and asphalt shingle roofing products

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Wood, Kurt; Skilton, Wayne; Petersheim, Jerry [Arkema, Inc., Philadelphia, PA (United States)

    2010-06-15

    The widespread use of solar-reflective roofing materials can save energy, mitigate urban heat islands and slow global warming by cooling the roughly 20% of the urban surface that is roofed. In this study we created prototype solar-reflective nonwhite concrete tile and asphalt shingle roofing materials using a two-layer spray coating process intended to maximize both solar reflectance and factory-line throughput. Each layer is a thin, quick-drying, pigmented latex paint based on either acrylic or a poly(vinylidene fluoride)/acrylic blend. The first layer is a titanium dioxide rutile white basecoat that increases the solar reflectance of a gray-cement concrete tile from 0.18 to 0.79, and that of a shingle surfaced with bare granules from 0.06 to 0.62. The second layer is a ''cool'' color topcoat with weak near-infrared (NIR) absorption and/or strong NIR backscattering. Each layer dries within seconds, potentially allowing a factory line to pass first under the white spray, then under the color spray. We combined a white basecoat with monocolor topcoats in various shades of red, brown, green and blue to prepare 24 cool colored prototype tiles and 24 cool colored prototypes shingles. The solar reflectances of the tiles ranged from 0.26 (dark brown; CIELAB lightness value L{sup *}=29) to 0.57 (light green; L{sup *}=76); those of the shingles ranged from 0.18 (dark brown; L{sup *}=26) to 0.34 (light green; L{sup *}=68). Over half of the tiles had a solar reflectance of at least 0.40, and over half of the shingles had a solar reflectance of at least 0.25. (author)

  6. Installation, care, and maintenance of wood shake and shingle roofs

    Science.gov (United States)

    Tony Bonura; Jack Dwyer; Arnie Nebelsick; Brent Stuart; R. Sam Williams; Christopher Hunt

    2011-01-01

    This article gives general guidelines for selection, installation, finishing, and maintenance of wood shake and shingle roofs. The authors have gathered information from a variety of sources: research publications on wood finishing, technical data sheets from paint manufacturers, installation instructions for shake and shingle roofs, and interviews with experts having...

  7. Next-Generation Factory-Produced Cool Asphalt Shingles: Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen M.; Chen, Sharon S.; Ban-Weiss, George A.; Gilbert, Haley E.; Berdahl, Paul H.; Rosado, Pablo J.; Destaillats, Hugo; Sleiman, Mohamad; Kirchstetter, Thomas W.

    2016-11-01

    As the least expensive category of high-slope roofing in the U.S., shingles are found on the roofs of about 80% of U.S. homes, and constitute about 80% (by product area) of this market. Shingles are also among the least reflective high-slope roofing products, with few cool options on the market. The widespread use of cool roofs in the two warmest U.S. climate zones could reduce annual residential cooling energy use in these zones by over 7%. This project targets the development of high-performance cool shingles with initial solar reflectance at least 0.40 and a cost premium not exceeding US$0.50/ft². Phase 1 of the current study explored three approaches to increasing shingle reflectance. Method A replaces dark bare granules by white bare granules to enhance the near-infrared reflectance attained with cool pigments. Method B applies a white basecoat and a cool-color topcoat to a shingle surfaced with dark bare granules. Method C applies a visually clear, NIR-reflecting surface treatment to a conventionally colored shingle. Method A was the most successful, but our investigation of Method B identified roller coating as a promising top-coating technique, and our study of Method C developed a novel approach based on a nanowire mesh. Method A yielded red, green, brown, and black faux shingles with solar reflectance up to 0.39 with volumetric coloration. Since the base material is white, these reflectances can readily be increased by using less pigment. The expected cost premium for Method A shingles is less than our target limit of $0.50/ft², and would represent less than a 10% increase in the installed cost of a shingle roof. Using inexpensive but cool (spectrally selective) iron oxide pigments to volumetrically color white limestone synthesized from sequestered carbon and seawater appears to offer high albedo at low cost. In Phase 2, we plan to refine the cool shingle prototypes, manufacture cool granules, and manufacture and market high-performance cool shingles.

  8. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  9. Thermal load histories for North American roof assembles using various cladding materials including wood-thermoplastic composite shingles

    Science.gov (United States)

    J. E. Winandy

    2006-01-01

    Since 1991, thermal load histories for various roof cladding types have been monitored in outdoor attic structures that simulate classic North American light-framed construction. In this paper, the 2005 thermal loads for wood-based composite roof sheathing, wood rafters, and attics under wood-plastic composite shingles are compared to common North American roof...

  10. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    Science.gov (United States)

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  11. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL

    2014-05-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.

  12. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lstiburek, Joseph W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  13. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kohta [Building Science Corporation, Westford, MA (United States); Lstiburek, Joseph W. [Building Science Corporation, Westford, MA (United States)

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  14. 40 CFR Table 2 of Subpart Aaaaaaa... - Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations 2 Table 2 of Subpart AAAAAAA of Part 63 Protection of Environment... AAAAAAA of Part 63—Emission Limits for Asphalt Roofing Manufacturing (Coating) Operations For * * * 1...

  15. The effect of roofing material on the quality of harvested rainwater.

    Science.gov (United States)

    Mendez, Carolina B; Klenzendorf, J Brandon; Afshar, Brigit R; Simmons, Mark T; Barrett, Michael E; Kinney, Kerry A; Kirisits, Mary Jo

    2011-02-01

    Due to decreases in the availability and quality of traditional water resources, harvested rainwater is increasingly used for potable and non-potable purposes. In this study, we examined the effect of conventional roofing materials (i.e., asphalt fiberglass shingle, Galvalume(®) metal, and concrete tile) and alternative roofing materials (i.e., cool and green) on the quality of harvested rainwater. Results from pilot-scale and full-scale roofs demonstrated that rainwater harvested from any of these roofing materials would require treatment if the consumer wanted to meet United States Environmental Protection Agency primary and secondary drinking water standards or non-potable water reuse guidelines; at a minimum, first-flush diversion, filtration, and disinfection are recommended. Metal roofs are commonly recommended for rainwater harvesting applications, and this study showed that rainwater harvested from metal roofs tends to have lower concentrations of fecal indicator bacteria as compared to other roofing materials. However, concrete tile and cool roofs produced harvested rainwater quality similar to that from the metal roofs, indicating that these roofing materials also are suitable for rainwater harvesting applications. Although the shingle and green roofs produced water quality comparable in many respects to that from the other roofing materials, their dissolved organic carbon concentrations were very high (approximately one order of magnitude higher than what is typical for a finished drinking water in the United States), which might lead to high concentrations of disinfection byproducts after chlorination. Furthermore the concentrations of some metals (e.g., arsenic) in rainwater harvested from the green roof suggest that the quality of commercial growing media should be carefully examined if the harvested rainwater is being considered for domestic use. Hence, roofing material is an important consideration when designing a rainwater catchment. Copyright

  16. A Review of Methods for the Manufacture of Residential Roofing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Levinson, Ronnen; Berdahl, Paul

    2003-06-01

    Shingles, tiles, and metal products comprise over 80% (by roof area) of the California roofing market (54-58% fiberglass shingle, 8-10% concrete tile, 8-10% clay tile, 7% metal, 3% wood shake, and 3% slate). In climates with significant demand for cooling energy, increasing roof solar reflectance reduces energy consumption in mechanically cooled buildings, and improves occupant comfort in non-conditioned buildings. This report examines methods for manufacturing fiberglass shingles, concrete tiles, clay tiles, and metal roofing. The report also discusses innovative methods for increasing the solar reflectance of these roofing materials. We have focused on these four roofing products because they are typically colored with pigmented coatings or additives. A better understanding of the current practices for manufacturing colored roofing materials would allow us to develop cool colored materials creatively and more effectively.

  17. Low temperature rheological properties of asphalt mixtures containing different recycled asphalt materials

    Directory of Open Access Journals (Sweden)

    Ki Hoon Moon

    2017-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP and Recycled Asphalt Shingles (RAS are valuable materials commonly reused in asphalt mixtures due to their economic and environmental benefits. However, the aged binder contained in these materials may negatively affect the low temperature performance of asphalt mixtures. In this paper, the effect of RAP and RAS on low temperature properties of asphalt mixtures is investigated through Bending Beam Rheometer (BBR tests and rheological modeling. First, a set of fourteen asphalt mixtures containing RAP and RAS is prepared and creep stiffness and m-value are experimentally measured. Then, thermal stress is calculated and graphically and statistically compared. The Huet model and the Shift-Homothety-Shift in time-Shift (SHStS transformation, developed at the École Nationale des Travaux Publics de l'État (ENTPE, are used to back calculate the asphalt binder creep stiffness from mixture experimental data. Finally, the model predictions are compared to the creep stiffness of the asphalt binders extracted from each mixture, and the results are analyzed and discussed. It is found that an addition of RAP and RAS beyond 15% and 3%, respectively, significantly change the low temperature properties of asphalt mixture. Differences between back-calculated results and experimental data suggest that blending between new and old binder occurs only partially. Based on the recent finding on diffusion studies, this effect may be associated to mixing and blending processes, to the effective contact between virgin and recycled materials and to the variation of the total virgin-recycled thickness of the binder film which may significantly influence the diffusion process. Keywords: Reclaimed Asphalt Pavement (RAP, Recycled Asphalt Shingles (RAS, Thermal stress, Statistical comparison, Back-calculation, Binder blending

  18. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  19. Fundamental evaluation of the interaction between RAS/RAP and virgin asphalt binders.

    Science.gov (United States)

    2017-08-01

    A comprehensive laboratory testing program was conducted in this research project to examine the blending between reclaimed asphalt pavement (RAP)/recycled asphalt shingles (RAS) and virgin asphalt binders and to evaluate the factors that may affect ...

  20. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  1. Quality and seasonal variation of rainwater harvested from concrete, asphalt, ceramic tile and green roofs in Chongqing, China.

    Science.gov (United States)

    Zhang, Qianqian; Wang, Xiaoke; Hou, Peiqiang; Wan, Wuxing; Li, Ruida; Ren, Yufen; Ouyang, Zhiyun

    2014-01-01

    There is an urgent requirement to examine the quality of harvested rainwater for potable and non-potable purposes, based on the type of roofing material. In this study, we examined the effect on the quality of harvested rainwater of conventional roofing materials (concrete, asphalt and ceramic tile roofs) compared with alternative roofing materials (green roof). The results showed that the ceramic tile roof was the most suitable for rainwater-harvesting applications because of the lower concentrations of leachable pollutants. However, in this study, the green roof was not suitable for rainwater harvesting applications. In addition, seasonal trends in water quality parameters showed that pollutants in roof runoff in summer and autumn were lower than those in winter and spring. This study revealed that the quality of harvested rainwater was significantly affected by the roofing material; therefore, local government and urban planners should develop stricter testing programs and produce more weathering resistant roofing materials to allow the harvesting of rainwater for domestic and public uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  3. Rooftop PV system. Final technical progress report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  4. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  5. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 5, 0.05 Roofing

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; and system work breakdown structure. Deficiency standards and inspection methods are presented for built-up membrane; single- ply membrane; metal roofing systems; coated foam membrane; shingles; tiles; parapets; roof drainage system; roof specialties; and skylights.

  6. Development and testing of shingle-type solar cell modules. Quarterly report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, N.F.

    1978-01-05

    The details of a shingle module design which produces in excess of 97 watts/m/sup 2/ of module area at 1 kW/m/sup 2/ insolation and at 60/sup 0/C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The use of the B.F. Goodrich FLEXSEAL roofing system as the outer skin of the shingle substrate provides a high confidence of achieving the 15 year service life goal. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract. Attempts to fabricate a preproduction module of an alternative design, which embeds the solar cell assembly within a methyl methacrylate casting, proved unsuccessful.

  7. TASK 2.5.7 FIELD EXPERIMENTS TO EVALUATE COOL-COLORED ROOFING

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Cherry, Nigel J [ORNL; Allen, Richard Lowell [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Ronnen, Levinson [Lawrence Berkeley National Laboratory (LBNL); Akbari, Hashem [Lawrence Berkeley National Laboratory (LBNL); Berhahl, Paul [Lawrence Berkeley National Laboratory (LBNL)

    2010-03-01

    Aesthetically pleasing dark roofs can be formulated to reflect like a highly reflective white roof in the near infrared portion of the solar spectrum. New paint pigments increase the near infrared reflectance of exterior finishes by minimizing the absorption of near-infrared radiation (NIR). The boost in the NIR reflectance drops the surface temperatures of roofs and walls, which in turn reduces cooling-energy use and provides savings for the homeowner and relief for the utilities. In moderate and hot climates, a roof surface with high solar reflectance and high thermal emittance was shown by Akbari et al. (2004) and by Parker and Sherwin (1998) to reduce the exterior temperature and produce savings in comfort cooling. The new cool color pigments can potentially reduce emissions of carbon dioxide, which in turn reduces metropolitan heat buildup and urban smog. The pigments can also help conserve water resources otherwise used to clean and process fuel consumed by fossil-fuel driven power plants. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning, retards smog formation, and improves thermal comfort. Parker, Sonne and Sherwin (2002) demonstrated that white barrel and white flat tiles reduced cooling energy consumption by 22% of the base load used by an adjacent and identical home having direct nailed dark shingles. Part of the savings was due to the reflectance of the white tiles; however, another part was due to the mass of the tile and to the venting occurring within the double batten installation. With, Cherry and Haig (2009) have studied the influence of the thermal mass and batten space ventilation and have found that, referenced to an asphalt shingle system, it can be equivalent to an additional 28 points of solar reflectivity. The double batten arrangement has wooden counter battens laid vertically (soffit-to-ridge) against the roof deck, and then the conventional battens are laid horizontally across the

  8. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  9. Shingles

    Science.gov (United States)

    ... need to stay away from newborn babies, pregnant women, anyone with a weakened immune system, or anyone who is not vaccinated against chickenpox. So teens who get shingles may need to stay home from school for a while. It all depends ...

  10. Weathering of Roofing Materials-An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, Paul; Akbari, Hashem; Levinson, Ronnen; Miller, William A.

    2006-03-30

    An overview of several aspects of the weathering of roofing materials is presented. Degradation of materials initiated by ultraviolet radiation is discussed for plastics used in roofing, as well as wood and asphalt. Elevated temperatures accelerate many deleterious chemical reactions and hasten diffusion of material components. Effects of moisture include decay of wood, acceleration of corrosion of metals, staining of clay, and freeze-thaw damage. Soiling of roofing materials causes objectionable stains and reduces the solar reflectance of reflective materials. (Soiling of non-reflective materials can also increase solar reflectance.) Soiling can be attributed to biological growth (e.g., cyanobacteria, fungi, algae), deposits of organic and mineral particles, and to the accumulation of flyash, hydrocarbons and soot from combustion.

  11. The road that's taken : Alberta's bitumen and the world of asphalt

    International Nuclear Information System (INIS)

    Bentein, J.

    2009-01-01

    Approximately one third of the bitumen produced by the oil sands industry in Canada is used as asphalt in roads and roofing materials. Crude oils used for asphalt production require very little refining. The asphalt market has become a key profit centre for some Cold Lake operators. Imperial Oil has established a research centre devoted to asphalt production at its Sarnia-based refinery. A decline in heavy oil supplies from Mexico and Venezuela has left Canada with a larger margin of the asphalt market. Industry leaders predict that demand for asphalt products will grow by 2.6 per cent per year. A sharp increase in asphalt prices led to many construction delays in 2007. Trials are now being conducted on a new warm mix paving technology that allows users to lower the temperature of asphalt by 20 to 30 degrees C when paving. 2 figs

  12. Green roofs : a watertight perspective

    Energy Technology Data Exchange (ETDEWEB)

    Honza, D. [Honza Group Inc., Columbia, MD (United States)]|[Barrett Co., Millington, NJ (United States)

    2005-07-01

    While there is a growing acceptance of the ecological benefits of green roofs, many roofing contractors view green roofs with suspicion. The roofing industry is a high-volume, low-margin cost-driven industry which promotes a minimum standard commodity mentality. Roofing and waterproofing is the largest source of claims against architects and engineers. This paper suggested that architectural firms and engineering firms can reduce many issues associated with roofing problems by investigating and understanding materials, demands of projects, and preparing thorough specifications. Long-term exposure to the sun's rays will impact the chemical make-up of the roofing material, and water can break down the surface molecular structure of the membrane. Daily, yearly and event-related temperature variations can subject membranes to thermal induced stresses. Many roofs leak as a result of abuse during construction. Understanding and anticipating the performance problems of membranes can give green roof designers the ability to address limitations through good design. The membrane for a green roof should have superior abuse resistance; elastic properties, and resistance to long-term wet or saturated environments. Flashings for green roofs must exceed minimum standards. Membranes should be tested for watertightness before components are installed using electronic field vector mapping. Overburden should be installed after the membrane installation is proven to be watertight. It was concluded that higher design standards are required for green roofs, as many traditional roof membranes fail prematurely. A review of widely used membranes in the roofing and waterproofing industry included modified bitumen; built-up roofing; cured synthetic rubber sheets; thermalplastic membranes; self-adhering modified bitumen; and rubberized asphalt. 6 refs., 2 tabs., 6 figs.

  13. Recombinant zoster (shingles) vaccine, RZV - what you need to know

    Science.gov (United States)

    ... year in the United States get shingles. Shingles vaccine (recombinant) Recombinant shingles vaccine was approved by FDA in 2017 for the ... life-threatening allergic reaction after a dose of recombinant shingles vaccine, or has a severe allergy to any component ...

  14. Immunizations Part II: Shingles Vaccine

    Centers for Disease Control (CDC) Podcasts

    2008-09-24

    This podcast discusses older adults and shingles, as well as the importance of getting the shingles vaccine. It is primarily targeted to public health and aging services professionals.  Created: 9/24/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP) and National Center for Immunization and Respiratory Diseases (NCIRD).   Date Released: 9/24/2008.

  15. "My Experience with Shingles." | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... in its entirety, visit http://nihseniorhealth.gov/shingles/toc.html . Maryland resident Sue Spicer knows firsthand about ... other shingles information at http://nihseniorhealth.gov/shingles/toc.html Could you first describe your early symptoms? ...

  16. Ecological Impacts of Replacing Traditional Roofs with Green Roofs in Two Urban Areas

    Directory of Open Access Journals (Sweden)

    Timothy Carter

    2008-01-01

    Full Text Available Urban land cover is dominated by impervious surface that degrades both terrestrial and aquatic ecosystems relative to predevelopment conditions. There are significant opportunities for designers of urban landscapes to use alternative land covers that have multiple functions, benefiting both human and nonhuman components of the urban ecosystem. Vegetated (green roofs are one form of alternative land cover that has shown the potential to provide a variety of ecological benefits in urban areas. We evaluated how stormwater retention, building energy and temperature, and rooftop habitat are influenced by the use of green roofs using test plots in Georgia and Massachusetts. Green roofs were shown to recreate part of the predevelopment hydrology through increasing interception, stormwater storage, evaporation, and transpiration on the rooftop and worked extremely well for small storm events. Temperature reductions were found on the green rooftop as compared to an asphalt surface, although other roof technologies that minimize temperatures, such as lighter colored membranes, provide similar benefits. Novel habitat was created on the rooftop, although the extent of this habitat was limited in part by plant survivability and the need for additional water inputs for diverse plant communities to survive. Despite the challenges, the green roof benefits reported here suggest that green roofs can be used effectively as a multifunctional land cover in urban areas.

  17. Implementation of solar-reflective surfaces: Materials and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, S.; Akbari, H.; Rosenfeld, A.; Taha, H.

    1992-06-01

    This report focuses on implementation issues for using solar-reflective surfaces to cool urban heat islands, with specific examples for Sacramento, California. Advantages of solar-reflective surfaces for reducing energy use are: (1) they are cost-effective if albedo is increased during routine maintenance; (2) the energy savings coincide with peak demand for power; (3) there are positive effects on environmental quality; and (4) the white materials have a long service life. Important considerations when choosing materials for mitigating heat islands are identified as albedo, emissivity, durability, cost, pollution and appearance. There is a potential for increasing urban albedo in Sacramento by an additional 18%. Of residential roofs, we estimate that asphalt shingle and modified bitumen cover the largest area, and that built-up roofing and modified bitumen cover the largest area of commercial buildings. For all of these roof types, albedo may be increased at the time of re-roofing without any additional cost. When a roof is repaired, a solar-reflective roof coating may be applied to significantly increase albedo and extend the life of the root Although a coating may be cost-effective if applied to a new roof following installation or to an older roof following repair, it is not cost-effective if the coating is applied only to save energy. Solar-reflective pavement may be cost-effective if the albedo change is included in the routine resurfacing schedule. Cost-effective options for producing light-colored pavement may include: (1) asphalt concrete, if white aggregate is locally available; (2) concrete overlays; and (3) newly developed white binders and aggregate. Another option may be hot-rolled asphalt, with white chippings. Utilities could promote solar-reflective surfaces through advertisement, educational programs and cost-sharing of road resurfacing.

  18. Immune Reconstitution Inflammatory Syndrome and Shingles ...

    African Journals Online (AJOL)

    Immune Reconstitution Inflammatory Syndrome and Shingles Associated with a Combined Paralysis of Three Oculomotor Nerves: A Case Report. ... CASE DETAILS: A 40 years old patient was seen for a pain of the right side of the face and a complete immobility of the eyeball. The diagnosis of V1 shingles with a pan uveitis ...

  19. Stopping Shingles (A Minute of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2018-01-25

    Shingles, also known as herpes zoster, is a disease characterized by a painful skin rash with blisters. This podcast discusses a new vaccine to prevent shingles.  Created: 1/25/2018 by MMWR.   Date Released: 1/25/2018.

  20. Stopping Shingles (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    Shingles, also known as herpes zoster, is a disease characterized by a painful skin rash, with blisters usually occurring on one side of the body. Each year, approximately one million people in the U.S. get the disease. In this podcast, Dr. Mark Pallansch discusses a newly approved vaccine to prevent shingles.

  1. Garden roof in the southwest for environmental benefits : the School of Public Health

    Energy Technology Data Exchange (ETDEWEB)

    Schaack, K.A. [Roof Consultants Inst., Raleigh, NC (United States). Green Roof Research Committee]|[Roofing Contractors Assoc. of Texas, Pflugerville, TX (United States)]|[Gulf Coast Roof Management Inst., Houston, TX (United States)

    2004-07-01

    A recent roof renovation at the University of Texas Health Science Center in Houston (UTHSC) was based on the principles of sustainable development in order to create a place of health and well-being and to pursue integrated design solutions. The project addressed issues associated with the urban heat island condition, and problematic air quality in Houston. The first roofing option that was considered was Cool Roofing that would use either a white reflective surfacing or a garden roof. One of the buildings planned for roof replacement was the School of Public Health, a 10-storey structure composed of structural concrete framing. The existing roof system consisted of a spray-applied polyurethane foam roof covering applied over a gravel surfaced built-up roof membrane that was installed over a thermosetting asphaltic fill installed over a structural concrete deck. It was determined that this roof would be a good potential candidate for the installation of an extensive garden roof system. Four different mock-up samples of various extensive garden roof assemblies were constructed to test representative material types and assemblies. The subject area was divided into the following 4 quadrants in which the following systems were installed: (1) American Hydrotech system with Monolithic Membrane 6125-FR consisting of a hot-applied rubberized liquid asphalt reinforced with a polyester fabric, (2) Sarnafil G 476 system consisting of a prefabricated, fiberglass reinforced PVC thermoplastic single-ply membrane that is 80 mils thick, (3) Grace system with Procor Deck System 3R consisting of a cold-vulcanized, fluid-applied synthetic rubber membrane with a polyester reinforcing fabric, and (4) Siplast with Teranap System consisting of a two-ply SBS modified bitumen membrane composed of a smooth-surfaced modified bitumen fiberglass-reinforced base. After the installation of the growing medium, UTHSC personnel planted a variety of vegetation species and seeds in the quadrants

  2. Durable Recycled Superpave Mixes in Kansas

    Science.gov (United States)

    2018-04-01

    The use of economical and environment-friendly recycled asphalt materials has become increasingly popular for asphalt pavement construction. In general, reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) are used in hot-mix asphalt ...

  3. Shingles: Hope through Research

    Science.gov (United States)

    ... pain, or itch, generally in a band-like distribution on one side of the body, i.e., ... section entitled “Can shingles during pregnancy or at birth harm the ... a high rate of side effects. Desipramine and nortriptyline have fewer ...

  4. Stopping Shingles (A Cup of Health with CDC)

    Centers for Disease Control (CDC) Podcasts

    2018-01-25

    Shingles, also known as herpes zoster, is a disease characterized by a painful skin rash, with blisters usually occurring on one side of the body. Each year, approximately one million people in the U.S. get the disease. In this podcast, Dr. Mark Pallansch discusses a newly approved vaccine to prevent shingles.  Created: 1/25/2018 by MMWR.   Date Released: 1/25/2018.

  5. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  6. Herpes zoster (shingles) disseminated (image)

    Science.gov (United States)

    Herpes zoster (shingles) normally occurs in a limited area that follows a dermatome (see the "dermatome" picture). In individuals with damaged immune systems, herpes zoster may be widespread (disseminated), causing serious illness. ...

  7. Introductory asphalt technology; Nyumon asphalt gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Muroga, G. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    The type and applications, manufacturing method, characteristics, road pavement etc. of asphalt were introduced. Among the petroleum asphalts, straight asphalt is used for road pavement,industry, and combustion, while blown asphalt is mainly used for the waterproofness of a building. Also, the demand for modified asphalt where rubber or thermoplastic elastomer was mixed is increasing. Straight asphalt is obtained by allowing atmospheric distillation tower bottom oil to be subjected to reduced pressure distillation and drawing reduced pressure gas oil and lubrication oil cut. Blown asphalt is produced by the oxidation dehydrogeneration and condensation polymerization reaction of soft straight asphalt. Rheology characteristics of asphalt are expressed by stiffness, relaxation elastic modulus, complex elastic modulus, etc. Also, asphalt has high electrical dielectric properties. Asphalt pavement has functions for dispersing traffic load and then transferring it to a lower layer, for resisting wear and cracking, and for preventing penetration of rainwater. 30 refs., 5 figs., 4 tabs.

  8. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that in more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof

  9. Installation, care, and maintenance of wood shake and shingle siding

    Science.gov (United States)

    Jack Dwyer; Tony Bonura; Arnie Nebelsick; Sam Williams; Christopher G. Hunt

    2011-01-01

    This article gives general guidelines for selection, installation, finishing, and maintenance of wood shakes and shingles. The authors gathered information from a variety of sources: research publications on wood finishing, technical data sheets from paint manufacturers, installation instructions for shake and shingle siding, and interviews with experts having...

  10. Characteristics of reverse overwrite process in shingled recording scheme at ultra-high track density

    Energy Technology Data Exchange (ETDEWEB)

    Li Shaoping, E-mail: shaoping_li_2000@yahoo.com [Western Digital Inc. 1250 Reliance Way, Fremont, CA 94539 (United States); Mendez, Hector; Terrill, Dave; Liu Feng; Bai, Daniel; Mao Sining [Western Digital Inc. 1250 Reliance Way, Fremont, CA 94539 (United States)

    2012-02-15

    A systematic experimental study of the reverse overwrite (ReOVW) process in the shingled recording scheme has been conducted in conjunction with characterization of corresponding recording performances from recording heads with different geometries. It was found that there is no ReOVW reduction as the track density increases in a strict shingled recording fashion. Nonetheless, ReOVW is indeed slightly decreased from 300 to 700 kpi in a so-called one write shingled recording process. Overall our obtained data suggest that conventional magnetic recording technology might be able to extend all the way beyond an areal density of one Tbit/in{sup 2} by using the shingled recording scheme. - Research Highlights: > This paper discusses the most advanced recording scheme, e.g., shingled recording process, for next generation magnetic data storage devices. > The paper shows that the write-ability of magnetic recording is sufficient in the shingled recording scheme even when the areal density is beyond 1.0 Tb/in{sup 2}. > Our results also shows that the writer's edge write-ability is essential for reducing noise during the write process in shingled recording scheme. > The paper also demonstrates that a multiple and sequential write process ensures the normal erasure-ability in shingled recording scheme. > Our results also indicate that the noise nature in the write process still could be attributed to the hard-easy transition and imprint effect.

  11. Characteristics of reverse overwrite process in shingled recording scheme at ultra-high track density

    International Nuclear Information System (INIS)

    Li Shaoping; Mendez, Hector; Terrill, Dave; Liu Feng; Bai, Daniel; Mao Sining

    2012-01-01

    A systematic experimental study of the reverse overwrite (ReOVW) process in the shingled recording scheme has been conducted in conjunction with characterization of corresponding recording performances from recording heads with different geometries. It was found that there is no ReOVW reduction as the track density increases in a strict shingled recording fashion. Nonetheless, ReOVW is indeed slightly decreased from 300 to 700 kpi in a so-called one write shingled recording process. Overall our obtained data suggest that conventional magnetic recording technology might be able to extend all the way beyond an areal density of one Tbit/in 2 by using the shingled recording scheme. - Research highlights: → This paper discusses the most advanced recording scheme, e.g., shingled recording process, for next generation magnetic data storage devices. → The paper shows that the write-ability of magnetic recording is sufficient in the shingled recording scheme even when the areal density is beyond 1.0 Tb/in 2 . → Our results also shows that the writer's edge write-ability is essential for reducing noise during the write process in shingled recording scheme. → The paper also demonstrates that a multiple and sequential write process ensures the normal erasure-ability in shingled recording scheme. → Our results also indicate that the noise nature in the write process still could be attributed to the hard-easy transition and imprint effect.

  12. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  13. Literature review : performance of RAP/RAS mixes and new direction.

    Science.gov (United States)

    2014-04-01

    In the last several years reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) have been : widely used in asphalt mixes in Texas. The use of RAP/RAS can significantly reduce the initial cost of : asphalt mixtures, conserve energy, and...

  14. Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T., E-mail: t-tanaka@ed.kyushu-u.ac.jp [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan); Kashiwagi, S. [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan); Kanai, Y. [Department of Information and Electronics Engineering, Niigata Institute of Technology, Fujihashi 1719, Kashiwazaki, Niigata 945-1195 (Japan); Matsuyama, K. [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-10-15

    The potential of microwave-assisted magnetic recording combined with the shingled recording scheme has been studied by simulating read/write processes on exchange-coupled composite media focusing on recording characteristics in the cross-track direction. Microwave fields enhance writability, especially at the track edge, resulting in lower noise and higher signal-to-noise ratio (SNR), which enables higher track density in the shingled recording scheme. Read/write simulations of microwave-assisted shingled recording achieve 1.4 Mtracks/in. while retaining high SNR. Further increases in SNR and track density will require either a narrower reader or track edge noise reduction. - Highlights: • Signal recording of shingled magnetic recording using an asymmetric single pole type head combined with a microwave assistance was numerically demonstrated. • Writability is improved by microwave fields with a moderate frequency at the track edge of the shielded side, resulting in higher signal-to-noise ratio. • 1.41 Mtpi of track density is feasible for the recording scheme of shingled magnetic recording with microwave assistance.

  15. Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium

    International Nuclear Information System (INIS)

    Tanaka, T.; Kashiwagi, S.; Kanai, Y.; Matsuyama, K.

    2016-01-01

    The potential of microwave-assisted magnetic recording combined with the shingled recording scheme has been studied by simulating read/write processes on exchange-coupled composite media focusing on recording characteristics in the cross-track direction. Microwave fields enhance writability, especially at the track edge, resulting in lower noise and higher signal-to-noise ratio (SNR), which enables higher track density in the shingled recording scheme. Read/write simulations of microwave-assisted shingled recording achieve 1.4 Mtracks/in. while retaining high SNR. Further increases in SNR and track density will require either a narrower reader or track edge noise reduction. - Highlights: • Signal recording of shingled magnetic recording using an asymmetric single pole type head combined with a microwave assistance was numerically demonstrated. • Writability is improved by microwave fields with a moderate frequency at the track edge of the shielded side, resulting in higher signal-to-noise ratio. • 1.41 Mtpi of track density is feasible for the recording scheme of shingled magnetic recording with microwave assistance.

  16. Product (P1) from project 0-6738 : performance studies and future directions for mixes containing RAP and RAS.

    Science.gov (United States)

    2013-01-01

    In recent years both reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) have been widely used in asphalt mixes by the asphalt paving industry in Texas. The use of RAP and RAS can save tax payers money, and it is also good for the...

  17. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate

    Directory of Open Access Journals (Sweden)

    A.A. Ragab

    2016-09-01

    Full Text Available Various polymer-modified asphalt compositions for paving and roofing applications are known since several years ago. The degree to which a polymer improves the asphalt’s properties depends on the compatibility of the polymer and the asphalt. Highly compatible polymers are more effective in providing property improvements. In this research, the influence of in situ polymerization of methylmethacrylate monomer with asphalt in presence of ethylene glycol dimethacrylate (EGDM as a crosslinker on the rheological and thermal properties of asphalt binder of type penetration grade 60/70 was studied. To achieve this aim, MMA/EGDM(MC in different ratios as 5, 10 and 15% (w/w were used to modify the thermo-mechanical properties of asphalt via forming chemical bond, and the changing in mechanical and thermal properties, of the mixes as well as the storage stability were studied. Also, the morphology (SEM, thermal characterization (TGA, dynamic mechanical analysis (DMA, bending and rheological tests were detected. The obtained experimental results revealed that the addition of MC causes both the rheological and thermal properties of the binder to improve and the prepared PMAs has high temperature susceptibility and low curing time. The improvement in the properties of the virgin asphalt will be effective in using this soft type in coating applications instead of highly expensive oxidized one.

  18. Releasability of asbestos fibers from weathered roof cement.

    Science.gov (United States)

    Oberta, Andrew F; Poye, Lee; Compton, Steven P

    2018-03-26

    Chrysotile asbestos fibers were added to roofing products, including roof cement, for several decades. The fibers were described as "encapsulated" and therefore incapable of being released, an assertion that is disproved by the study reported herein. Three test panels of roof cement from the original container were exposed to ambient weathering in 2015 and 2016. Two panels were then sampled using the ASTM D5755 microvacuum method. Sampling revealed a light brown sub-layer under the dark brown surface layer, both of which crumbled and became friable during sampling. Analysis of the microvacuum samples with transmission electron microscopy showed that the material on the two panels contained 4,432,000 and 3,320,000 asbestos structures per cm² with nearly all of the structures consisting of fibers less than 5 µm long. Energy dispersive spectrometry determined that none of the fibers reported were coated with asphalt. The presence of free fibers were confirmed by direct examination of the surfaces of the panels and of dust released from handling the panels via scanning electron microscopy. This study confirmed the releasability of uncoated asbestos fibers from dried roof cement that was indicated in two previous studies published in 2007 and 2010. These results suggest that the finding of the 5th Circuit Court in 1997 that uncoated airborne asbestos fibers cannot be released from roof cement, and therefore do not present a potential exposure by inhalation, was erroneous in retrospect. Theexemption of roof cement from regulation under the Occupational Safety and Health Administration Construction Industry Standard for asbestos by the Court should not be relied on by employers of workers who remove weathered asbestos-containing roof cement, and precautions should be taken against exposure to airborne asbestos fibers during this work.

  19. Asphalt emulsion; Asphalt nyuzai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Toa Doro Kogyo Co. Ltd., Tokyo (Japan)

    1994-12-28

    The emulsification, manufacture, type, applications, etc. of asphalt emulsion were introduced. The emulsification of asphalt is obtained by mixing heated asphalt into an emulsification liquid where emulsifier is added to water and then agitating it. The emulsifier has both hydrophilic and lipophilic parts in the same molecule, prevents collision between asphalt particles after being arranged properly on the surface of asphalt particles, and prevent separation into water and asphalt. The emulsion is available for penetration and for mixing depending on applications and can be classified into cation emulsion, anion emulsion, and nonionic emulsion according to the property. The emulsion is mainly applied to road pavement, reaching approximately 90 % of the total manufactured emulsion. It is also used for other areas such as the filler of a slab race of each bullet train of Sanyo, Tohoku, and Jyoetsu and is also applied to the formation of a water-proof layer by spraying a high-concentration emulsion with rubber, agricultural water channels using asphalt emulsion and nonwoven cloth, etc. in civil engineering and agricultural fields. 2 refs., 13 figs., 8 tabs.

  20. Oil-Sludge Extended Asphalt Mastic Filled with Heavy Oil Fly Ash and Cement Waste for Waterproofing

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2014-12-01

    Full Text Available Recycling as an economic disposal process for many hazardous waste materials has become a popular means of conserving our planet’s scarce and diminishing natural resources. This paper is a study of the influence of oil sludge (OS on the physical behavior and performance of asphalt filled with heavy oil fly ash (HOFA, cement kiln dust (CKD and limestone dust (LMD. Conventional asphalt consistency tests in addition to a new bond strength (BS test were conducted on the modified asphalt mastics. The results were statistically analyzed and assessed in accordance with American Society for Testing and Materials (ASTM D 332 and ASTM D 449 specifications. Too much OS resulted in strength deterioration of the asphalt mastic, which can be compensated for by filling the mastic with HOFA. OS interacts constructively with the fillers to improve their effectiveness in raising the softening point (SP and viscosity of the asphalt, and also in reducing its penetration and ductility. Even though sludge mastics hold promise as suitable composites for damp proofing and waterproofing, the resulting low flash point (FP and SP of some of these mastics make their suitability for roofing applications questionable.

  1. Evaluating Cool Impervious Surfaces: Application to an Energy-Efficient Residential Roof and to City Pavements

    Science.gov (United States)

    Rosado, Pablo Javier

    Summer urban heat island (UHI) refers to the phenomenon of having higher urban temperatures compared to the those in surrounding suburban and rural areas. Higher urban air temperatures lead to increased cooling demand, accelerates the formation of smog, and contributes to the generation of greenhouse gas emissions. Dark-colored impervious surfaces cover a significant fraction of an urban fabric, and as hot and dry surfaces, are a major contributor to the UHI effect. Adopting solar-reflective ("cool") roofs and cool pavements, and increasing the urban vegetation, are strategies proven to mitigate urban heat islands. These strategies often have an "indirect" effect (ambient cooling) and "direct" effect (change in solar energy flux entering the conditioned space) on the energy use of buildings. This work investigates some elements of the UHI mitigation strategies, specifically the annual direct effect of a cool roof, and the direct and indirect effects of cool pavements. The first topic researched in this paper consists in an experimental assessment of the direct effects from replacing a conventional dark roof with a highly energy-efficient cool roof. The study measures and calculates the annual benefits of the cool roof on the cooling and heating energy uses, and the associated emission reductions. The energy savings attributed to the cool roof are validated by measuring the difference between the homes in the heat loads that entered the conditioned space through the ceiling and HVAC ducts. Fractional annual cooling energy savings (26%) were 2.6 times the 10% daily cooling energy savings measured in a previous study that used a white coating to increase the albedo of an asphalt shingle roof by the same amount (0.44). The improved cooling energy savings (26% vs. 10%) may be attributed to the cool tile's above-sheathing ventilation, rather than to its high thermal mass. The roof also provided energy savings during the heating season, yielding fractional annual gas

  2. Modified asphalt; Kairyo asphalt ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Takarabe, A. [Mitsubishi Oil Co. Ltd., Tokyo (Japan)

    1994-12-28

    Modified asphalt in the area of road pavement in the relation of measures against flow on a road surface was introduced. The condition of road damage includes the print of a wheel, crack, and wear and semi-blown asphalt whose deformation is difficult even if temperature is increased to approximately 60 {degree}C and asphalt with rubber and resin are used to prevent these. The semi-blown asphalt is obtained by adding cut-back material to the normal asphalt, heating it, blowing air into it, and then oxidizing and polymerizing it, is harder and is more elastic than the normal asphalt, and has smaller viscosity change due to temperature change. The viscosity at 60 {degree}C was determined to be 10000{plus_minus}2000 poise according to the relationship between viscosity and crack using a large-scale execution experiment. The asphalt with rubber and resin is formed by adding modified material of styrene - butadiene copolymer and by adding thermoplastic elastomer and the former is used for preventing slide and the latter is used for preventing flow and wear. 10 refs., 6 figs., 2 tabs.

  3. A review of asphalt and asphalt mixture aging

    Directory of Open Access Journals (Sweden)

    Wilmar Darío Fernández-Gómez

    2013-01-01

    Full Text Available This paper presents an extensive review of the pertinent literature regarding asphalt and asphalt mixture Aging. Aging affects flexible pavement performance and is produced by intrinsic and extrinsic variables as well as exposure time. Intrinsic variables include asphalt and aggregate properties, a mixture’s asphalt content, binder film thickness and air void content; extrinsic variables are associated with production (short-term aging and exposure to environmental field conditions (long-term aging. Taken together, both variables demonstrate that aging results from three distinct mechanisms: volatilisation, oxidation and steric hardening. Temperature, pressure and photo degradation treatments are used to simulate aging in the laboratory and empirical and semi-empirical models are created to represent and study aging. Aging increases asphalt complex modulus and decreases the phase angle. Mixtures become stiffer while fatigue life becomes reduced. Carbonyl and sulfoxide group formation in asphalt are often studied as such chemical changes show oxidation in aged asphalts. The prevailing models used to predict asphalt aging are discussed, though more comprehensive research into asphalt aging is still needed.

  4. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  5. Facts about Chickenpox and Shingles for Adults

    Science.gov (United States)

    ... in institutional settings. ♦ Inmates and staff of correctional institutions ♦ Military personnel. ♦ Nonpregnant women of childbearing age. ♦ Teachers ... failure, heart attack, type II diabetes and major depression. Antiviral medications can be used to treat shingles ...

  6. Latent Virus Reactivation in Astronauts and Shingles Patients

    Science.gov (United States)

    Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Castro, Victoria A.; Ott, C. Mark; Pierson, Duane L.

    2010-01-01

    Spaceflight is a uniquely stressful environment with astronauts experiencing a variety of stressors including: isolation and confinement, psychosocial, noise, sleep deprivation, anxiety, variable gravitational forces, and increased radiation. These stressors are manifested through the HPA and SAM axes resulting in increased stress hormones. Diminished T-lymphocyte functions lead to reactivation of latent herpesviruses in astronauts during spaceflight. Herpes simplex virus reactivated with symptoms during spaceflight whereas Epstein-Barr virus (EBV), cytomegalovirus (CMV), and varicella zoster virus (VZV) reactivate and are shed without symptoms. EBV and VZV are shed in saliva and CMV in the urine. The levels of EBV shed in astronauts increased 10-fold during the flight; CMV and VZV are not typically shed in low stressed individuals, but both were shed in astronauts during spaceflight. All herpes viruses were detected by polymerase chain reaction (PCR) assay. Culturing revealed that VZV shed in saliva was infectious virus. The PCR technology was extended to test saliva of 54 shingles patients. All shingles patients shed VZV in their saliva, and the levels followed the course of the disease. Viremia was also found to be common during shingles. The technology may be used before zoster lesions appear allowing for prevention of disease. The technology may be used for rapid detection of VZV in doctors offices. These studies demonstrated the value of applying technologies designed for astronauts to people on Earth.

  7. What Everyone Should Know about Shingles Vaccine (Shingrix)

    Science.gov (United States)

    ... containing mercury). Top of Page How Can I Pay For Shingrix? There are several ways shingles vaccine ... Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text file Zip Archive ...

  8. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  9. Asphalt Mixture for the First Asphalt Concrete Directly Fastened Track in Korea

    Directory of Open Access Journals (Sweden)

    Seong-Hyeok Lee

    2015-01-01

    Full Text Available The research has been initiated to develop the asphalt mixtures which are suitable for the surface of asphalt concrete directly fastened track (ADFT system and evaluate the performance of the asphalt mixture. Three aggregate gradations which are upper (finer, medium, and below (coarser. The nominal maximum aggregate size of asphalt mixture was 10 mm. Asphalt mixture design was conducted at 3 percent air voids using Marshall mix design method. To make impermeable asphalt mixture surface, the laboratory permeability test was conducted for asphalt mixtures of three different aggregate gradations using asphalt mixture permeability tester. Moisture susceptibility test was conducted based on AASHTO T 283. The stripping percentage of asphalt mixtures was measured using a digital camera and analyzed based on image analysis techniques. Based on the limited research results, the finer aggregate gradation is the most suitable for asphalt mixture for ADFT system with the high TSR value and the low stripping percentage and permeable coefficient. Flow number and beam fatigue tests for finer aggregate asphalt mixture were conducted to characterize the performance of asphalt mixtures containing two modified asphalt binders: STE-10 which is styrene-butadiene-styrene (SBS polymer and ARMA which is Crum rubber modified asphalt. The performance tests indicate that the STE-10 shows the higher rutting life and fatigue life.

  10. The effects of dynamic friction in oblique motorcycle helmet impacts

    Science.gov (United States)

    Bonugli, Enrique

    The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and 'typical' roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface. Roofing shingle was determined to be a more suitable material to simulate 'typical' roadway surfaces however, this may not be ideal for use in a controlled laboratory setting. In a laboratory setting, the author recommends cement as a best-fit material to simulate roadway surface for use in oblique motorcycle helmet impacts since this material displayed characteristics that closely resemble asphalt and is currently used as a roadway construction material.

  11. Arrangement for the measurement of the quantity of asphalt in an asphaltic compound

    International Nuclear Information System (INIS)

    Noma, I.; Taniguchi, K.

    1978-01-01

    The arrangement for the measurement of the quantity of asphalt in an asphaltic compound in an apparatus for the mixture of asphalt components and an aggregate for the formation of an asphaltic compound characterized by the inclusion of a member for the transmission of a neutron beam which reacts with the hydrogen atoms in the asphaltic compound in such a way that the energy of a neutron beam is adsorbed; a continuous transport device feeds a continuous supply of the asphalt compound past the neutron beam; a member responds to an automatic detector for the quantity of asphaltic components in the asphaltic compound and provides an adjustment so that the quantity [of asphaltic components in asphaltic compound] may be held at a constant value. (G.C.)

  12. Development of test method for evaluating root resistance of pavement used for roof garden caused by thickening growth of root

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Saori; Tanaka, Kyoji [Tokyo Institute of Technology, Tokyo, (Japan)

    2010-07-01

    The growth of roots of plants can damage roof garden components, such as pavements. This paper developed a test method for evaluating the resistance of pavement used in roof gardens to damage from a thickening growth of roots. The study assessed the behaviour of plant roots and evaluated the force of root growth subjected to hypertrophy. A system to measure the enlargement force of roots was designed and used for measurements over a period of 8 months on a cherry blossom of 21 years growth. The enlargement force was approximately 440 N/cm. A mechanical simulated root was designed and used to carry out experimental tests on asphalt pavements. The tests results demonstrated the viability of simulated root for evaluation of root resistances in pavements and various components of roof gardens.

  13. Analysis of the dispersion of air pollutants from a factory Asphalt in Nuevo Vallarta, Nay., Mex

    Science.gov (United States)

    Carrillo-Gonzalez, F. M.; Gaitán-Rodríguez, M.; Cornejo-López, V. M.; Morales-Hernández, J. C.

    2013-12-01

    An asphalt factory has operated intermittently near the urban area of Nuevo Vallarta on Banderas Bay, Nayarit, Mex. This factory has emissions that can affect the health of people living in the colonies nearest are Valle Dorado and San Vicente. The dispersion of emissions depends on the wind (sea breeze-land breeze) and the roof of the inversion, these phenomena determined by the density and temperature of the lower layers of the atmosphere. Asphalts are dark colored binder materials, formed by a complex non-volatile hydrocarbon chains and high molecular weight. Asphalts are produced from petroleum, but by a process of evaporation of the volatiles, leaving the asphalt alone. Therefore, the material emitted by the fireplace are mainly low molecular weight hydrocarbons known as polycyclic aromatic hydrocarbons (PAHs). The Emergency Response Guide 2008 developed by various agencies in Canada, U.S. and Mexico mentions that the hydrocarbon gas can have health effects. Animal studies have shown that PAHs can cause harmful effects to the skin, body fluids and some PAHs are carcinogenic. An analysis of the wind field, monthly and seasonal averages for the years 2010 and 2011, recorded in AWS administered by the CEMCO and other stations located near the study area.

  14. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    Science.gov (United States)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  15. Prolong Your Roof's Performance: Roof Asset Management.

    Science.gov (United States)

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  16. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders

    Science.gov (United States)

    2011-03-01

    Warm mix asphalt (WMA) is a name given to a group of technologies that have the common purpose of reducing the viscosity : of the asphalt binders. This reduction in viscosity offers the advantage of producing asphalt-aggregate mixtures at lower mixin...

  17. Drive-based recording analyses at >800 Gfc/in2 using shingled recording

    International Nuclear Information System (INIS)

    William Cross, R.; Montemorra, Michael

    2012-01-01

    Since the introduction of perpendicular recording, conventional perpendicular scaling has enabled the hard disk drive industry to deliver products ranging from ∼130 to well over 500 Gb/in 2 in a little over 4 years. The incredible areal density growth spurt enabled by perpendicular recording is now endangered by an inability to effectively balance writeability with erasure effects at the system level. Shingled magnetic recording (SMR) offers an effective means to continue perpendicular areal density growth using conventional heads and tuned media designs. The use of specially designed edge-write head structures (also known as 'corner writers') should further increase the AD gain potential for shingled recording. In this paper, we will demonstrate the drive-based recording performance characteristics of a shingled recording system at areal densities in excess of 800 Gb/in 2 using a conventional head. Using a production drive base, developmental heads/media and a number of sophisticated analytical routines, we have studied the recording performance of a shingled magnetic recording subsystem. Our observations confirm excellent writeability in excess of 400 ktpi and a perpendicular system with acceptable noise balance, especially at extreme ID and OD skews where the benefits of SMR are quite pronounced. We believe that this demonstration illustrates that SMR is not only capable of productization, but is likely the path of least resistance toward production drive areal density closer to 1 Tb/in 2 and beyond. - Research highlights: → Drive-based recording demonstrations at 805 Gf/in 2 has been demonstrated using both 95 and 65 mm drive platforms at roughly 430 ktpi and 1.87 Mfci. → Limiting factors for shingled recording include side reading, which is dominated by the reader crosstrack skirt profile, MT10 being a representative metric. → Media jitter and associated DC media SNR further limit areal density, dominated by crosstrack transition curvature, downtrack

  18. Production of lumber, lath, and shingles in 1917

    Science.gov (United States)

    Franklin H. Smith; Albert H. Pierson

    1919-01-01

    In this bulletin, which is one of an annual series covering the period 1904 to 1917, inclusive, with the exception of 1914, are detailed statistics of the 1917 production of lumber, lath, and shingles in the continental United States, with comparative figures from previous annual reports. The collection and compilation of the statistics for the Western States was done...

  19. [A review of green roof performance towards management of roof runoff].

    Science.gov (United States)

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  20. Application of waste tires to asphalt pavement. Improvement of adhesion of asphalt with rubber particles; Haitaiya no asphalt hoso eno tekiyo. Asphalt to gomu ryushi no fuchakusei no kairyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakaoka, I. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1994-10-10

    With an objective to apply waste tires to asphalt pavement, an experiment was carried out to improve adhesion of asphalt with rubber particles by using polymers. The state of interface on rubber particle and asphalt mixture was observed by a scanning electron microscope. As a result, it was found that the surface of untreated rubber particles is not bonded with the asphalt, but polymer treated mixture was found to have the affinity of rubber particles with asphalt improved. Tensile bonding strength was tested on rubber plates and asphalt. The result revealed that the polymer-reformed mixture has two times as large tensile bonding strength as that of the untreated mixture. With regard to the characters of asphalt mixture mixed with rubber particles, the stability shows a decreasing trend as compared with the standard asphalt concrete, but presents an excellent performance in wear. The fluidity resistance value is inferior to the standard, but not as great as presenting a problem under normal using environment, where its applicability as a road paving material was verified. 4 figs., 2 tabs.

  1. Sustainable asphalt pavement: Application of slaughterhouse waste oil and fly ash in asphalt binder

    Science.gov (United States)

    Sanchez Ramos, Jorge Luis

    Increasing energy costs, lack of sufficient natural resources and the overwhelming demand for petroleum has stimulated the development of alternative binders to modify or replace petroleum-based asphalt binders. In the United States, the petroleum-based asphalt binder is mainly used to produce the Hot Mix Asphalt (HMA). There are approximately 4000 asphalt plants that make 500 million tons of asphalt binder valued at roughly 3 billion/year. The instability of the world's oil market has pushed oil prices to more than 80 per barrel in 2012, which increased the cost of asphalt binder up to $570 per ton. Therefore, there is a timely need to find alternative sustainable resources to the asphalt binder. This paper investigates the possibility of the partial replacement of the asphalt binder with slaughterhouse waste and/or fly ash. In order to achieve this objective, the asphalt binder is mixed with different percentages of waste oil and/or fly ash. In order to investigate the effect of these additives to the performance of the asphalt binder, a complete performance grade test performed on multiple samples. The results of the performance grade tests are compared with a control sample to observe how the addition of the waste oil and/or fly ash affects the sample. Considering the increasing cost and demand of asphalt, the use of slaughterhouse waste oil and/or fly ash as a partial replacement may result in environmental and monetary improvements in the transportation sector.

  2. Analysis of the usage of rubberized asphalt in hot mix asphalt using Reclaimed Asphalt Pavement (RAP)

    Science.gov (United States)

    Dwidarma Nataadmadja, Adelia; Prahara, Eduardi; Sumbung, Pierre Christian

    2017-12-01

    There has been an increasing demand in using more environmentally friendly materials in pavement construction. One of the alternative materials that have been widely used is the Reclaimed Asphalt Pavement (RAP) aggregates. The RAP aggregates are derived from the crushed and screened pavement materials that contain asphalt and aggregates. This material is usually combined with natural aggregates and virgin asphalt binder to construct a new pavement. There have been numerous positive feedbacks in using this material although RAP aggregates also have certain weaknesses, such as questionable interaction between virgin and recycled materials and increased stiffness of RAP binder. Moreover, there has been a push on using rubber as an additive to asphalt binder to improve the welfare of rubber farmers. This research combines the usage of both latex and RAP as the ingredients to design hot mix asphalt (HMA) as latex could help in improving the flexibility of HMA and the interaction between the virgin and recycled materials. The main objective of this research is to find a suitable percentage of RAP aggregates to be used in HMA with certain percentage of latex as the binder additive.

  3. Dismantling of asphalt and recycling road materials in asphalt layers

    OpenAIRE

    Antunes, M. L.; Batista, F. A.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of asphalt and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 15 years. After some occasional demonstration projects dealing with hot and cold in situ recycling of asphalt layers, the first significant experiences with cold in situ recycling and hot mix plant recycling of asphalt applied in full scale rehabilitation projects, ...

  4. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    Science.gov (United States)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  5. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  6. Mechanical Properties of Warm Mix Asphalt Prepared Using Foamed Asphalt Binders : Executive Summary Report

    Science.gov (United States)

    2011-03-01

    Hot mix asphalt (HMA) is a mixture containing aggregates and asphalt binders prepared at specified : proportions. The aggregates and asphalt binder proportions are determined through a mix design : procedure such as the Marshall Mix Design or the Sup...

  7. Assessment of The Asphalt Produced in Some Factories of Asphalt in Al-Hilla City

    Directory of Open Access Journals (Sweden)

    Mohammed Karem Abd

    2018-02-01

    Full Text Available The purpose of this study is to present an evaluation of  the properties and characteristics of asphalt concrete of several hot mix asphalt (HMA from five factories in Al-Hilla city. The research is divided into two parts. The first part included the laboratory analysis of samples. The second part is evaluation of results according to standard specifications.      The test results included (Asphalt content percent, stability, creep compliance, voids ratio, density, flow, crushed aggregate percent, Loss Angless abrasion and SO3 percent.The results of laboratorial tests indicated that all properties of asphalt mixes were susceptible and possible to be used in the asphaltic roads. The mixes types prepared and tested according to Marshall method. The values of Marshall stability, creep and density are (9.4, 5.4, 9.8, 9, 8.6, (2.5, 2.7, 2.7, 2.6, 2.3 and (2.334, 2.336, 2.337, 2.333, 2.338 with asphalt content between (4.2 to 4.6 % for all asphalt mixes of different factories.

  8. Constructing better roads with asphalt rubber

    Directory of Open Access Journals (Sweden)

    Pais Jorge C.

    2015-12-01

    Full Text Available Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

  9. Investigation of Warm Mix Asphalt (WMA) Technologies and Increased Percentages of Reclaimed Asphalt Pavement (RAP) in Asphalt Mixtures

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  10. Effect of using of reclaimed asphalt and/or lower temperature asphalt on the availability of the road network

    NARCIS (Netherlands)

    Nicholls, C.; Wayman, M.; Mollenhauer, K.; McNally, C.; Tabakovic, A.; Varveri, A.; Cassidy, S.; Shahmohammadi, R.; Taylor, R.

    2015-01-01

    The use of reclaimed asphalt, secondary component materials and/or additives and lower temperature asphalt are being increasingly used in order to improve the sustainability of asphalt production. The use of reclaimed asphalt reduces the need for virgin materials whilst lower temperature asphalts

  11. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  12. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  13. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available , beetles and spiders); and the number of birds that nest in vegetated roofs (including kestrels, swallows, and wagtails). Objective The primary objective of a green roof is to create a living habitat in an otherwise barren environment, hence the use... the negative environmental impacts including plant and insect specie loss. Thus at a philosophical level green roofs support the notion “replace what you displace”. Key ecological issues that can be addressed through green roofs include: Negative effects...

  14. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  15. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  16. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    Science.gov (United States)

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  17. Present status and future of various rubber materials. ; Asphalt. Kakushu gomu zairyo no genjo to kongo. ; Asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Wakisaka, S. (Toa Doro Kogyo Co. Ltd., Tokyo (Japan))

    1991-12-15

    Asphalt is obtained at a rate of about 25 Kg per 1 Kl of oil and is produced at about 5 million tons per annum in Japan, 80 % of which is now used for the pavement of road. The purpose of this study is to examine the possibilities of developing new applications of asphalt to the anti-vibration, vibration-control and anti-noise materials, though its uses have already been diversified in fields other than for road paving, due to excellent performance regardless of cheap cost. In the paper, firstly, under a title of what is asphalt, the history, the composition and internal structure of asphalt were considered. Secondly, the dynamic characteristics of asphalt were considered. And lastly, under a title of the application of asphalt, examples of the application of asphalt to anti-noise materials were examined in the field of architecture, automobile and civil engineering respectively. Especially, in the field of civil engineering, improvements of flexibility and vibration-control by using the cement asphalt mortar (CAM) in the anti-vibration A-type slab track for railway, and also anti-noise and anti-vibration technologies applied to the road pavement body by using the ferrite asphalt were reviewed. 11 refs., 10 figs., 8 tabs.

  18. Recovery of asphalt from bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Jossinet, J

    1881-12-31

    A process is disclosed for the recovery of asphalt from bituminous minerals, consisting in that the mineral is extracted with mineral oil, which is recovered by distilling the raw asphalt and distilling the solution to obtain on the one hand the liquid oil contained in the raw asphalt for use in the extraction and on the other hand distilled asphalt.

  19. Characteristics Buton Natural Asphalt-Rubber (BNA-R) on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Science.gov (United States)

    Wahjuningsih, Nurul; Pranowo Hadiwardoyo, Sigit; Jachrizal Sumabrata, R.

    2018-03-01

    The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  20. Characteristics Buton Natural Asphalt-Rubber (BNA-R on the Performance Improvement of Warm Mix Asphalt Using Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Wahjuningsih Nurul

    2018-01-01

    Full Text Available The decrease in the ability of service of pavement can be caused by the durability factor in the pavement layer in receiving heavy traffic load and the temperature of the pavement. Permanent deformation is one of the criteria of failure of asphalt mixture. Performance assessment of the asphalt mixture can be observed from the rheological properties of asphalt binder. The use of BNA-R in this study is intended to modify the characteristics of bitumen penetration grade 60 / 70 used in warm mix asphalt. Warm mix asphalt with lower temperatures of mixing and compaction than conventional asphalt mixtures was chosen because it is more environmentally friendly. To reduce the temperature in this warm asphalt technology is achieved by using natural zeolite. Both of these materials are local materials that are widely available in Indonesia. The rheology of asphalt 60/70 modified with BNA-R indicates that the addition of BNA-R in the base asphalt increase the complex modulus value and decrease the phase angle value. These values were related to the performance of mixture in the permanent deformation criteria. Reducing the temperature of mixing and compaction should be balanced with modifying the asphalt binder used. Rutting due to permanent deformation can resulted in inconvenience to the passengers and can lead to high costs of road maintenance. To determine the permanent deformation of asphalt mix with material combinations was performed through the wheel tracking test machine with 3,780 cycles for 3 hours. The results shows that after test track over 7 thousand passes have seen permanent deformation characteristics of asphalt concrete mixture with a variation of the characteristics of bitumen.

  1. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  2. Durability of European Asphalt Mixtures Containing Reclaimed Asphalt and Warm-Mix Additives

    NARCIS (Netherlands)

    Varveri, A.; Avgerinopoulos, S.; Scarpas, Athanasios

    2016-01-01

    This paper investigates the moisture susceptibility of European asphalt mixtures (SMA) containing reclaimed asphalt (RA) and warm mix (WMA) additives. Test sections of a typical SMA mixture have been laid, from which cylindrical samples were cored and utilized for laboratory testing. Four variants

  3. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  4. Performance Analysis of Cool Roof, Green Roof and Thermal Insulation on a Concrete Flat Roof in Tropical Climate

    OpenAIRE

    Zingre, Kishor T.; Yang, Xingguo; Wan, Man Pun

    2015-01-01

    In the tropics, the earth surface receives abundant solar radiation throughout the year contributing significantly to building heat gain and, thus, cooling demand. An effective method that can curb the heat gains through opaque roof surfaces could provide significant energy savings. This study investigates and compares the effectiveness of various passive cooling techniques including cool roof, green roof and thermal insulation for reducing the heat gain through a flat concrete roof in tropic...

  5. Induction Healing of Porous Asphalt Concrete

    NARCIS (Netherlands)

    Liu, Q.

    2012-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  6. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  7. Influence of reclaimed asphalt with polymer modified bitumen on properties of different asphalts for a wearing course

    NARCIS (Netherlands)

    Komačka, J.; Remišová, E.; Liu, G.; Leegwater, G.; Nielsen, E.

    2014-01-01

    A laboratory investigation was performed to study the effect of reclaimed asphalt with polymer modified bitumen on the properties describing asphalt performance. Three types of asphalts used for wearing courses in Europe (SMA 11, AC 11 and PA 8) were investigated. Five combinations of reclaimed

  8. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  9. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  10. Alabama warm mix asphalt field study : final report.

    Science.gov (United States)

    2010-05-01

    The Alabama Department of Transportation hosted a warm mix asphalt field demonstration in August 2007. The warm mix asphalt technology demonstrated was Evotherm Dispersed Asphalt Technology. The WMA and hot mix asphalt produced for the demonstration ...

  11. State of the art: Asphalt for airport pavement surfacing

    Directory of Open Access Journals (Sweden)

    Greg White

    2018-01-01

    Full Text Available Airport runways and taxiways are commonly comprised of a flexible pavement with an asphalt surface. Marshall-designed asphalt with sawn grooves is the most frequent airport asphalt surface material. However, some airports have adopted alternate asphalt mixtures for improved resistance to shear stress and for increased surface texture, allowing grooving to be avoided. Of the alternate asphalt mixtures, stone mastic asphalt is the most commonly reported. Resistance to shear stress is a critical performance requirement for airport surface asphalt. Shear stress resistance minimises the risk of rutting, shoving and groove closure. However, fracture resistance must not be ignored when developing even more shear resistance asphalt mixtures. Significant distress in airport asphalt surfaces, compliant with the traditional prescriptive specification, has increased interest in a performance-based airport asphalt specification. Commonly reported distresses include groove closure in slow moving aircraft areas and shearing in heavy aircraft braking zones. Development of reliable performance-indicative test methods is expected in the future and will enable warranted performance-based asphalt mixture design for airport surfaces. Keywords: Airport, Pavement, Asphalt, Surface

  12. Selection of powered roof support for weak coal roof

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, M.S.V.; Sudhakar, L. [Singareni Collieries Co. Ltd., Kothagudem (India)

    2002-04-01

    Singareni Collieries Company Ltd (SCCL) introduced mechanised longwall mining in 1983. The first few faces were worked with conventional and immediate forward supports (IFS), with capacities in the range of 360 to 450 t. These under capacity supports increased from abutment loads and there was breakage of roof in front of the supports which resulted in closure of powered roof supports, followed by face cavities. The cavities were more frequent and were difficult to negotiate especially in case of IFS supports. Subsequently, support capacity was increased at Padmavati Khani (PVK) mine and at GDK.10a and GKD.9LFP Inclines where the roof is composed of weak, coal, shale and clay. Problems related to failure of hydraulics/legs etc., which are repairable have occurred; though the problems are not totally eliminated, there was definite improvement in strata control with these higher capacity supports. Monitoring of supports was conducted all through the working of longwall panels. The data generated while working these longwall faces were analysed to study the suitability of other types of powered roof supports, namely 2 legged shield supports/4 legged supports for improved strata control. The analysis and practical experiences suggest that in weak, coaly, shale and clay roofs 2 legged shield supports offer better roof control. 4 refs., 4 figs.

  13. Modified asphalt for pavements; Hosoyo kaishitsu asufuaruto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, T. [Nippon Oil Co. Ltd., Yokohama (Japan)

    1997-10-01

    Modified asphalt has been used widely in such applications as countermeasure against rutting, countermeasure against wear caused by tire chains in snowy and cold areas, or bridge deck pavement. Features of various kinds of modified asphalt, standards, and standard properties are introduced. Modified asphalt containing natural asphalt is used for steel plate deck pavement. Semi-blown asphalt is used when emphasis must be given to the countermeasure for flowing resistance of asphalt pavement. Features and standards of asphalt containing rubber, thermoplastic elastomer, and thermoplastic resin are described. Asphalt containing heat-setting resin shows excellent characteristics, which other types of modified asphalt do not possess, in the laboratory resistance test for fatigue, flowing, and wear. Change in the history of modified asphalt in Japan from the initial stage to the present are explained and shown in a table together with time and phenomena, and the change in the production of modified asphalt is shown. 15 refs., 5 figs., 5 tabs.

  14. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  15. 30 CFR 75.205 - Installation of roof support using mining machines with integral roof bolters.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Installation of roof support using mining... Roof Support § 75.205 Installation of roof support using mining machines with integral roof bolters. When roof bolts are installed by a continuous mining machine with intregal roof bolting equipment: (a...

  16. Preparation and rheological behavior of polymer-modified asphalts

    Science.gov (United States)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  17. Green roofs; Les toitures vegetalisees

    Energy Technology Data Exchange (ETDEWEB)

    Seghier, C.

    2006-03-15

    Impervious surface coverage keeps spreading in cities. Streets, sidewalks, parking lots and roofs are waterproof, meaning greater amounts of water to channel and treat and higher flood risks during heavy rainfalls. Green roofing can play a key part in addressing this alarming issue. There are three types of green roofs: extensive, semi-intensive and intensive. The extensive green roof technique uses a thin soil covering with a variety of species providing year-round plant coverage. The plants are not necessarily horticultural in which case routine maintenance is minimal. No watering is needed. Usually extensive green roofs create an ecosystem. The semi-intensive green roof technique uses a soil covering of average thickness and serves to create decorative roofing. Although maintenance is moderate, watering is essential. The intensive green roof technique produces a terrace roof garden. Another advantage of green roofs is they increase the life cycle of the sealing. Roof sealing protection may see the span of its life cycle, now at about fifteen years, doubled if the building has a green roof. planning professionals still know very little about green roofing solutions. Yet, green roofing provides unquestionable ecological qualities and thermal and acoustic performance that have proven to be environmentally friendly. Yet France lags behind northern European countries in green roofing. The Germans, Swiss, Austrians, Scandinavians and Dutch have been using the technique for more than twenty years. (A.L.B.)

  18. Building integration photovoltaic module with reference to Ghana: using triple junction amorphous silicon

    OpenAIRE

    Essah, Emmanuel Adu

    2010-01-01

    This paper assesses the potential for using building integrated photovoltaic (BIPV) \\ud roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification \\ud and as a roofing material in tropical countries, such as Accra, Ghana. A model roof \\ud was constructed using triple-junction amorphous (3a-Si) PV on one section and \\ud conventional roofing tiles on the other. The performance of the PV module and tiles \\ud were measured, over a range of ambient temperatures and solar...

  19. 40 CFR 65.45 - External floating roof converted into an internal floating roof.

    Science.gov (United States)

    2010-07-01

    ... External floating roof converted into an internal floating roof. The owner or operator who elects to... 40 Protection of Environment 15 2010-07-01 2010-07-01 false External floating roof converted into an internal floating roof. 65.45 Section 65.45 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    Directory of Open Access Journals (Sweden)

    A. M. Rodríguez-Alloza

    2017-04-01

    Full Text Available Warm Mix Asphalt (WMA refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability.

  1. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives

    International Nuclear Information System (INIS)

    Rodríguez-Alloza, A.M.; Gallego, J.

    2017-01-01

    Warm Mix Asphalt (WMA) refers to technologies that reduce manufacturing and compaction temperatures of asphalt mixtures allowing lower energy consumption and reducing greenhouse gas emissions from asphalt plants. These benefits, combined with the effective reuse of a solid waste product, make asphalt rubber (AR) mixtures with WMA additives an excellent environmentally-friendly material for road construction. The effect of WMA additives on rubberized mixtures has not yet been established in detail and the lower mixing/compaction temperatures of these mixtures may result in insufficient compaction. In this sense, the present study uses a series of laboratory tests to evaluate the volumetric characteristics and compactability of AR mixtures with organic additives when production/compaction temperatures are decreased. The results of this study indicate that the additives selected can decrease the mixing/compaction temperatures without compromising the volumetric characteristics and compactability. [es

  2. Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction

    Science.gov (United States)

    Robati, Masoud

    This Doctorate program focuses on the evaluation and improving the rutting resistance of micro-surfacing mixtures. There are many research problems related to the rutting resistance of micro-surfacing mixtures that still require further research to be solved. The main objective of this Ph.D. program is to experimentally and analytically study and improve rutting resistance of micro-surfacing mixtures. During this Ph.D. program major aspects related to the rutting resistance of micro-surfacing mixtures are investigated and presented as follow: 1) evaluation of a modification of current micro-surfacing mix design procedures: On the basis of this effort, a new mix design procedure is proposed for type III micro-surfacing mixtures as rut-fill materials on the road surface. Unlike the current mix design guidelines and specification, the new mix design is capable of selecting the optimum mix proportions for micro-surfacing mixtures; 2) evaluation of test methods and selection of aggregate grading for type III application of micro-surfacing: Within the term of this study, a new specification for selection of aggregate grading for type III application of micro-surfacing is proposed; 3) evaluation of repeatability and reproducibility of micro-surfacing mixture design tests: In this study, limits for repeatability and reproducibility of micro-surfacing mix design tests are presented; 4) a new conceptual model for filler stiffening effect on asphalt mastic of micro-surfacing: A new model is proposed, which is able to establish limits for minimum and maximum filler concentrations in the micro-surfacing mixture base on only the filler important physical and chemical properties; 5) incorporation of reclaimed asphalt pavement and post-fabrication asphalt shingles in micro-surfacing mixture: The effectiveness of newly developed mix design procedure for micro-surfacing mixtures is further validated using recycled materials. The results present the limits for the use of RAP and RAS

  3. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  4. Warm mix asphalt : final report.

    Science.gov (United States)

    2014-11-01

    The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...

  5. Evaluation of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1977-01-01

    This report describes a project in which approximately 6,200 tons (5,630 Mg) of asphaltic concrete were recycled through a conventional asphalt batch plant. During the construction of the project, a buildup of asphalt-coated fines occurred in the dry...

  6. Characterization of asphalt treated base course material

    Science.gov (United States)

    2010-06-01

    Asphalt-treated bases are often used in new pavements; the materials are available and low-cost, but there is little data on how these materials perform in cold regions. : This study investigated four ATB types (hot asphalt, emulsion, foamed asphalt,...

  7. Green roof Malta

    OpenAIRE

    Gatt, Antoine

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  8. Asphalt in Pavement Maintenance.

    Science.gov (United States)

    Asphalt Inst., College Park, MD.

    Maintenance methods that can be used equally well in all regions of the country have been developed for the use of asphalt in pavement maintenance. Specific information covering methods, equipment and terminology that applies to the use of asphalt in the maintenance of all types of pavement structures, including shoulders, is provided. In many…

  9. RELATIONSHIP BETWEEN FOAMING BEHAVIOR AND SURFACE ENERGY OF ASPHALT BINDER

    Directory of Open Access Journals (Sweden)

    Jian-ping Xu

    2017-12-01

    Full Text Available To solve the problem of insufficiency in microscopic performance of foamed asphalt binder, surface energy theory was utilized to analyze the foaming behavior and wettability of asphalt binder. Based on the surface energy theory, the Wilhelmy plate method and universal sorption device method were employed to measure the surface energy components of asphalt binders and aggregates, respectively. Combined with the traditional evaluation indictor for foamed asphalt, the relationship between the foaming property and surface energy of asphalt binder was analyzed. According to the surface energy components, the wettability of asphalt binder to aggregate was calculated to verify the performance of foamed asphalt mixture. Results indicate that the foaming behavior of asphalt will be influenced by surface energy, which will increase with the decline of surface energy. In addition, the surface energy of asphalt binder significantly influences the wettability of asphalt binder to aggregates. Meanwhile, there is an inversely proportional relationship between surface energy of asphalt binder and wettability. Therefore, it can be demonstrated that surface energy is a good indictor which can be used to evaluate the foaming behavior of the asphalt binder. And it is suggested to choose the asphalt binder with lower surface energy in the process of design of foamed asphalt mixture.

  10. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt's potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions

  11. Effects of roof and rainwater characteristics on copper concentrations in roof runoff.

    Science.gov (United States)

    Bielmyer, Gretchen K; Arnold, W Ray; Tomasso, Joseph R; Isely, Jeff J; Klaine, Stephen J

    2012-05-01

    Copper sheeting is a common roofing material used in many parts of the world. However, copper dissolved from roof sheeting represents a source of copper ions to watersheds. Researchers have studied and recently developed a simple and efficient model to predict copper runoff rates. Important input parameters include precipitation amount, rain pH, and roof angle. We hypothesized that the length of a roof also positively correlates with copper concentration (thus, runoff rates) on the basis that runoff concentrations should positively correlate with contact time between acidic rain and the copper sheet. In this study, a novel system was designed to test and model the effects of roof length (length of roof from crown to the drip edge) on runoff copper concentrations relative to rain pH and roof angle. The system consisted of a flat-bottom copper trough mounted on an apparatus that allowed run length and slope to be varied. Water of known chemistry was trickled down the trough at a constant rate and sampled at the bottom. Consistent with other studies, as pH of the synthetic rainwater decreased, runoff copper concentrations increased. At all pH values tested, these results indicated that run length was more important in explaining variability in copper concentrations than was the roof slope. The regression equation with log-transformed data (R(2) = 0.873) accounted for slightly more variability than the equation with untransformed data (R(2) = 0.834). In log-transformed data, roof angle was not significant in predicting copper concentrations.

  12. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  13. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D and D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner

  14. Solar radiation on domed roofs

    Energy Technology Data Exchange (ETDEWEB)

    Faghih, Ahmadreza K.; Bahadori, Mehdi N. [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-11-15

    Solar radiation received and absorbed by four domed roofs was estimated and compared with that of a flat roof. The domed roofs all had the same base areas, and equal to that of the flat roof. One of the roofs considered was the dome of the St. Peter's Church in Rome. Compared with the other roofs considered, this dome had a higher aspect ratio. It was found that all domed roofs received more solar radiation than the flat roof. Considering glazed tiles to cover a selected dome in Iran and the dome of the St. Peter's Church, it was found that the solar radiation absorbed by these roofs is reduced appreciably. In the case of the dome of St. Peter's Church, the amount of radiation absorbed was roughly equal to that absorbed by the comparable flat roof in the warm months. In the case of the glazed reference dome located in Yazd, Iran (a city with very high solar radiation), the radiation absorbed was less than that of flat roof at all times. In addition to aesthetics, this may be a reason for employing glazed tiles to cover the domes of all mosques, shrines, and other large buildings in Iran. (author)

  15. Latex improvement of recycled asphalt pavement

    Science.gov (United States)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  16. Renovation of Roof Structure

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    1997-01-01

    A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed.......A 30 year old not-watertight roof based on wooden boards with roofing felt have been changed to a pitched structure with cementos plates. At the same time more thermal insulation has been placed....

  17. Process of preparing asphalt bodies, etc

    Energy Technology Data Exchange (ETDEWEB)

    Klever, H W

    1924-05-03

    A process for the preparation of asphaltic bodies is characterized in that bituminous minerals such as oil-shale, coal, etc. are submitted to a heating process, with or without pressure, which is so mild that asphaltic bodies result and petroleum and tar oils are formed only in small amounts, and that the asphaltic bodies are used either together with the mineral constituents or after filtration from the latter.

  18. Rheo-mechanical model for self-healing asphalt pavement

    International Nuclear Information System (INIS)

    Gömze, A L; Gömze, L N

    2017-01-01

    Examining the rheological properties of different asphalt mixtures at different temperatures, pressures and deformation conditions on the combined rheo-tribometers the authors have found that the generally used Burgers-model doesn’t explain the deformation properties of asphalt mixtures and pavements under loading forces and loading pressures. To understand better the rheological and deformation properties of such complex materials like asphalt mixtures and pavements the authors used Malvern Mastersizer X laser granulometer, Bruker D8 Advance X-ray diffractometer, Hitachi TM 1000 Scanning Elektronmicroscope, Tristar 3000 specific surface tester and the combined rheo-tribometer developed and patented by the authors. After the complex investigation of different asphalt mixtures the authors have found a new, more complex rheological model for the asphalts including self-healing asphalt pavements. (paper)

  19. Asbestos Standard for the Construction Industry

    National Research Council Canada - National Science Library

    1995-01-01

    .... In the construction industry, asbestos is found in installed products such as shingles, floor tiles, cement pipe and sheet, roofing felts, insulation, ceiling tiles, fire-resistant drywall, and acoustical products...

  20. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  1. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  2. Green Roofs for Stormwater Management

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  3. Advanced evaluation of asphalt mortar for induction healing purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; Kasbergen, C.; van de Ven, M.F.C.

    2016-01-01

    Induction heating technique is an innovative asphalt pavement maintenance method that is applied to inductive asphalt concrete mixes in order to prevent the formation of macro-cracks by increasing locally the temperature of asphalt. The development of asphalt mixes with improved electrical and

  4. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  5. Comparative Assessment of Thermal Performance of Existing Roof System and Retrofitted Green Roof System in Istanbul, Turkey

    Directory of Open Access Journals (Sweden)

    Nil TÜRKERİ

    2011-01-01

    Full Text Available Urban heat islands, temperature increase due to climate change and energy consumption due to high summer cooling load are significant issues in Turkey. International studies indicate that the green roof system serves as an energy efficient building technology. However, the thermal performance of green roofs when exposed to local climate conditions is still unknown in Turkey. A research project is being conducted at Istanbul Technical University, in which part of a low-slope existing roof system was retrofitted as an extensive green roof system and the thermal performances of both the existing roof and green roof were monitored in order to make a comparative assessment. Both the green roof and the existing roof were instrumented to measure the temperature profile within the roof systems and the solar reflectance of the roof surfaces. Local meteorological variables were also measured. Results obtained from the field monitoring revealed the following data. Reflected solar radiation from the green roof surface was slightly higher than from the existing roof surface. This was likely to be due to the fact that the plants had not yet covered the entire soil surface area of the green roof. Plants reduced the amount of heat absorbed by the growing medium during daytime through shading and reduced the surface temperature of the green roof. Ceiling temperatures of rooms under the existing roof and green roof indicated that heat transfer to the room beneath the green roof was reduced as well. The green roof reduced the heat gain due to the thermal mass of the soil. This created a buffer against daily fluctuations in temperature and minimized temperature extremes.

  6. Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement

    International Nuclear Information System (INIS)

    Perez-Martinez, M.; Marsac, P.; Gabet, T.; Pouget, S.; Hammoum, F.

    2017-01-01

    The combination of high rates of reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies is still ambiguous in terms of durability. With the aim of clarifying this issue, a study comparing a hot mix asphalt with a WMA prepared using the foaming process technology. Both mixes contain 50% of RAP and are submitted to a laboratory ageing procedure. The long term related performance of the mixtures is compared by means of complex modulus and fatigue testing. Penetration and ring and ball tests are undertaken on the recovered bitumens, as well as the ageing evolution, characterised by the Fourier Transform Infrared analysis. Finally, the Apparent Molecular Weight Distribution (AMWD) of the binders is calculated from rheological measurements using the δ-method. Results show a relation between ageing evolution and mechanical performance. After ageing, the overall tendencies are similar for both processes. [es

  7. Design and evaluation of foamed asphalt base materials.

    Science.gov (United States)

    2013-05-01

    Foamed asphalt stabilized base (FASB) combines reclaimed asphalt pavement (RAP), recycled : concrete (RC), and/or graded aggregate base (GAB) with a foamed asphalt binder to produce a : partially stabilized base material. The objectives of this study...

  8. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  9. Fatigue Behavior of Modified Asphalt Concrete Pavement

    Directory of Open Access Journals (Sweden)

    saad I. Sarsam

    2016-02-01

    Full Text Available Fatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content, and (changing in the percentage of asphalt content by (0.5% ± from the optimum. The results show that when Silica fumes content was 1%, the fatigue life increases by 17%, and it increases by 46% when Silica fumes content increases to 2%, and that fatigue life increases to 34 % when Silica fumes content increases to 3% as compared with control mixture at (250 μƐ, 20°C and optimum asphalt content. From the results above, we can conclude the optimum Silica fumes content was 2%. When the asphalt content was 4.4%, the fatigue life has increased with the use of silica fumes by (50%, when asphalt content was 5.4%, the additives had led to increasing the fatigue life by (69%, as compared with the conventional asphalt concrete pavement.

  10. Nanoscale study on water damage for different warm mix asphalt binders

    Directory of Open Access Journals (Sweden)

    Kefei Liu

    2016-11-01

    Full Text Available In order to analyze the water damage to different warm mix asphalt binders from the micro scale, five kinds of asphalt binders, 70#A base asphalt, sasobit warm mix asphalt, energy champion 120 °C (EC120 warm mix asphalt, aspha-min warm mix asphalt, sulfur-extended asphalt modifier (SEAM warm mix asphalt, under different conditions (dry/wet, original/aging are prepared for laboratory tests. The atomic force microscope (AFM is used to observe the surface properties and measure the adhesion force between the asphalt and the mineral aggregate. The obtained results show that under the dry condition aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger adhesive ability with the mineral aggregate compared with other asphalt binders, but also have relatively large dispersion and fluctuation in the tested results; under the wet condition, aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger water damage resistance ability. The EC120 warm mix asphalt and aspha-min warm mix asphalt are less sensitive to moist, and their corresponding adhesion force is less susceptible to the change of external moisture conditions, leading to a better ability to resist water erosion. The aging process significantly lowers the moisture erosion resistance ability, which further impairs the water damage resistance ability. The base asphalt is more sensitive to moisture and more vulnerable to water damage, no matter whether it is under original or aging conditions. The aging aspha-min warm mix asphalt has the least loss of adhesion force, the smallest dispersion of the tested adhesion force, the strongest water damage resistance ability, no matter it is dry or wet. Keywords: Road engineering, Warm mix asphalt, Moisture damage, Atomic force microscope, Microcosmic

  11. Physical and rheological properties of Titanium Dioxide modified asphalt

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Chong, Ai Ling; Haini, Rosli; Khatijah Abu Bakar, Siti

    2018-03-01

    Titanium Dioxide (TiO2) has been known as a useful photocatalytic material that is attributed to the several characteristics includes high photocatalytic activity compared with other metal oxide photocatalysts, compatible with traditional construction materials without changing any original performance. This study investigates the physical and rheological properties of modified asphalt with TiO2. Five samples of asphalt with different concentration of TiO2 were studied, namely asphalt 2%, 4%, 6% 8% and 10% TiO2. The tests includes are penetration, softening point, ductility, rotational viscosity and dynamic shear rheometer (DSR) test. From the results of this study, it is noted that addition of TiO2 has significant effect on the physical properties of asphalt. The viscosity tests revealed that asphalt 10% TiO2 has good workability among with reducing approximately 15°C compared to base asphalt. Based on the results from DSR measurements, asphalt 10% TiO2 has reduced temperature susceptibility and increase stiffness and elastic behaviour in comparison to base asphalt. As a result, TiO2 can be considered to be an additive to modify the properties of asphalt.

  12. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  13. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  14. Performance of Asphalt Concrete Wearing Course (AC-WC) Utilizing Reclaimed Asphalt Pavement from Cold Milling Bound with 80/100 Pen Asphalt

    Science.gov (United States)

    Thanya, I. N. A.; Suweda, I. W.; Putra, G. K.

    2018-03-01

    Demands on natural aggregate materials for road pavement can be reduced by utilizing reclaimed asphalt pavement (RAP). This research was aimed at evaluating the performance of AC-WC mixture using RAP materials from cold milling, bound with 80/100 pen asphalt. The RAP aggregate gradation was adjusted by adding the required amount of natural aggregates to meet the specification in Indonesia. The RAP and added aggregates were hotmixed and compacted with Marshall hummer at 2×75 blows. The asphalt content were varied. It was found that the optimum asphalt content was 6.05 % with the following Marshall characteristics: stability 1237.08 kg; flow 3.36 mm; Marshall quotient 324,73kg/mm; void in mix (VIM) 3,360%; void in mineral aggregate (VMA) 15.103; and void filled with bitumen (VFB) 77.759% and residual stability 91.04; all met the Indonesian specification. The cantabro abration loss (CAL) at 30°C was 9,02%. The indirect tensile stiffness modulus (ITSM) at 20 °C was 7961.4 MPa; dynamic creep with 100 kPa pressure at 40°C gave slope 0.0112 microsstrain/pulse which is suitable for heavy load traffic. The fatigue test results was obtained at increased stress level, i.e. at 900, 1100, and 1300 kPa. Based on the equation derived from the fatigue strain and repeated loading relationship, at 100 microstrain (με) the repeated load was 434,661.58 times, and at one million (106) repeated loading, the samples could withstand strain of 92,38 microstrain. The performance of the samples were overall better than AC-WC mixture using virgin aggregates bound with 60/70 pen asphalt.

  15. Study of Antiultraviolet Asphalt Modifiers and Their Antiageing Effects

    Directory of Open Access Journals (Sweden)

    Jinxuan Hu

    2017-01-01

    Full Text Available Ultraviolet (UV radiation causes serious ageing problems on pavement surface. In recent years, different UV blocking materials have been used as modifiers to prevent asphalt ageing during the service life of the pavement. In this study, three different materials have been used as modifiers in base asphalt to test their UV blocking effects: layered double hydroxides (LDHs, organomontmorillonite (OMMT, and carbon black (CB. UV ageing was applied to simulate the ageing process and softening point, penetration, ductility, DSR (Dynamic Shear Rheometer test, and Fourier Transform Infrared Spectroscopy (FTIR test were conducted to evaluate the anti-UV ageing effects of the three UV blocking modifiers. Physical property tests show that base asphalt was influenced more seriously by UV radiation compared to the modified asphalt. DSR test results indicate that the complex modulus of asphalt before UV ageing is increased because of modifiers, while the complex modulus of base asphalt after UV ageing is higher than that of the modified asphalt, which shows that the UV blocking modifiers promote the antiageing effects of asphalt. FTIR test reveals that the increment of carbonyl groups and sulfoxide groups of modified asphalt is less than that in base asphalt. Tests indicate the best UV blocking effect results for samples with LDHs and the worst UV blocking effect results for samples with CB.

  16. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Claudy, P.M.; Letoffe, J.M.; Martin, D.; Planche, J.P.

    1998-01-01

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin C n H 2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20 g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Rheological characterization of asphalt binders used in strain relief asphalt mixtures (SRAM)

    OpenAIRE

    Vasconcelos, Kamilla L.; Bariani Bernucci, Liedi Legi; Midori Takahashi, Marcia; Castelo-Branco, Verônica T. F.

    2017-01-01

    Abstract The use of ´interlayers´ that tolerate high tensile and shear strain that exists above cracks in deteriorated pavements is becoming an interesting solution to prevent reflective cracking. Recent advances in polymer technology have led to binders that can be used to produce interlayer mixtures with good mechanical properties. In this study, two polymer-modified asphalt binders were evaluated, both from the production of strain relief asphalt mixtures used as interlayers in the field. ...

  18. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    International Nuclear Information System (INIS)

    Katman, Herda Yati; Norhisham, Shuhairy; Ismail, Norlela; Ibrahim, Mohd Rasdan; Matori, Mohd Yazip

    2013-01-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  19. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  20. Initiative assessment of asphalt works

    International Nuclear Information System (INIS)

    Rikheim, Bente; Kjerschow, Einar

    2003-01-01

    Several asphalt works are utilizing heat from combustion of used oil for drying and heating of rock material in the production of asphalt. According to new regulations on combustion of waste, used oil is to be regarded as waste and subject to emission requirements according to the combustion regulations. Measurements show that emissions of CO, dust, dioxins, TOC and SO 2 exceed the limits set by the regulations. To conform to the regulations these asphalt works must improve their combustion technique. However, such measures may lead to increased formation of NOx. It is recommended that a combustion chamber for drying of rock material should be used in order to reduce the emissions of CO and TOC concentrations. The concentration of SO 2 may be reduced by dry cleaning by means of injection of lime. In the same way, active carbon is injected to remove dioxins. The asphalt works must be outfitted with measuring equipment that monitors and records certain operation and control parameters and some emission to air parameters. Periodic measurements are to be done of heavy metals and dioxins. It is estimated that the measures necessary to make the asphalt works comply with the regulations will cost about NOK 4 530 000 in investment per plant and that the operation expenses will increase by NOK 700 000 per year per plant. This includes maintenance, control etc

  1. A Century of Physics—The Future of Renewable Energy

    Science.gov (United States)

    two decades. Solar panels will provide clean and reliable power in many parts of the world in the industry and consumers? PV-roofing shingles; solar cells and panels with record-setting efficiencies; solar

  2. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  3. Toronto green roof construction standard

    International Nuclear Information System (INIS)

    Aster, D.

    2007-01-01

    Toronto City Council adopted a green roof strategy in February 2006. This paper reviewed the by-law governing the strategy as well as the work in progress to develop minimum standards for the design and construction of green roofs in Toronto. The strategy included a series of recommendations regarding the installation of green roofs on city buildings; a pilot grant program; using the development process to encourage green roofs; and, public education and promotion. It was noted that compared to Europe, the development of standards for green roofs in North America is in its early stages. As an emerging sustainable technology, there currently are no standards incorporated into Ontario's Building Code against which Toronto can measure the design and construction of green roofs. Therefore this paper included an analysis detailing how the recommended design requirements were able to support the City's green roof policy objectives and integrate the performance criteria for green roofs previously established and supported by Toronto City Council. The key policy objectives of the City's green roof strategy were to reduce the urban heat island effect; to address stormwater management implications in terms of quality and quantity; to improve the energy budgets of individual buildings; and, to improve air quality

  4. Rubber modification of asphalt binders and mixes

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.; Hesp, S.A.M. [Queen`s Univ., Kingston, ON (Canada). Dept. of Chemistry

    1995-12-31

    The physical properties of asphalt binders and concrete, modified with waste rubber tire, were examined. In an experiment designed to address the concern of waste disposal of scrap rubber, a control asphalt, devulcanized rubber modified asphalt and a crumb rubber modified asphalt were used to make asphalt concrete mixes. The three mixes were subjected to a thermal stress test to determine their low temperature fracture temperatures and strengths. Results were discussed in terms of the binder material used. At high service temperatures, the addition of 10% devulcanized rubber was found to have no beneficial effect, whereas the addition of 10% 80 mesh crumb rubber produced a modest improvement in performance. At low temperatures, the addition of devulcanized rubber produced increased resistance to cracking up to 90%. The addition of 10% 80 mesh crumb rubber increased fracture toughness by a factor of 3.3 times. 12 refs., 3 tabs.

  5. Performance evaluation of stone matrix asphalt using indonesian natural rock asphalt as stabilizer

    Directory of Open Access Journals (Sweden)

    Nyoman Suaryana

    2016-09-01

    Full Text Available One type of road pavement material which is developed to be more resistant to permanent deformation is the SMA (Stone Matrix Asphalt. Utilization of the SMA mix in Indonesia has constraints in gain stabilizer and also difficulty to comply the gradations, mainly because it needs a relatively large amount of filler. Alternative of local materials that can be used is asbuton (natural rock asphalt from Buton Island. Asbuton is expected to act as a stabilizer and simultaneously provides an additional filler. The objective of this research is to evaluate the performance of the SMA that uses the asbuton. The methodology used in this research is the experimental method, its starts from material testing, design mix and performance testing that includes dynamic modulus, permanent deformation and fatigue resistance. The results obtained showed asbuton can prevent asphalt draindown as well as increase the proportion of filler. Draindown asphalt can be prevented by using binder absorbers with fiber cellulose and viscosity boosters with asbuton. Asbuton (LGA 50/25 can behave as a stabilizer as well as cellulose fiber. Addition of asbuton also improves the performance of the SMA mix, as shown with increase in the value of dynamic stability. In terms of resistance to fatigue, SMA with cellulosa as stabilizer and SMA with asbuton as stabilizer, relatively have the same performance. Master curve of dynamic modulus indicates SMA with asbuton as stabilizer is relatively stiffer at high temperatures (more than 4.4 °C, but relatively less stiff (less brittle at low temperatures. Keywords: Stone matrix asphalt, Asbuton, Draindown, Dynamic modulus, Permanent deformation

  6. Asphalt Concrete for Cold Regions, A Comparative Laboratory Study and Analysis of Mixtures Containing Soft and Hard Grades of Asphalt Cement,

    Science.gov (United States)

    1980-01-01

    Justification January 1980 BY Distribution Availabilit CodesIAvail an~d/or Dist special Prepa red for DIRECTORATE OF MILITARY PROGRAMS OFFICE, CHIEF OF...of water on the resilient modulus of asphalt treated mixes. Proecedinfp 4. Asphalt concrete mixes using the Tilton aggregates Association of Asphalt

  7. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  8. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Directory of Open Access Journals (Sweden)

    Julide Oner

    Full Text Available The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  9. Utilization of recycled asphalt concrete with warm mix asphalt and cost-benefit analysis.

    Science.gov (United States)

    Oner, Julide; Sengoz, Burak

    2015-01-01

    The asphalt paving industries are faced with two major problems. These two important challenges are generated with an increase in demand for environmentally friendly paving mixtures and the problem of rapidly rising raw materials. Recycling of reclaimed asphalt pavement (RAP) is a critical necessity to save precious aggregates and reduce the use of costly bitumen. Warm Mix Asphalt (WMA) technology provides not only the option of recycling asphalt pavement at a lower temperature than the temperature maintained in hot mixtures but also encourages the utilization of RAP and therefore saves energy and money. This paper describes the feasibility of utilizing three different WMA additives (organic, chemical and water containing) at recommended contents with different percentages of RAP. The mechanical properties and cost-benefit analysis of WMA containing RAP have been performed and compared with WMA without RAP. The results indicated that, 30%, 10% and 20% can be accepted as an optimum RAP addition related to organic, chemical and water containing additives respectively and organic additive with 30% RAP content has an appreciable increase in tensile strength over the control mix. It was also concluded that the RAP with WMA technology is the ability to reduce final cost compared to HMA and WMA mixtures.

  10. A review of warm mix asphalt.

    Science.gov (United States)

    2008-12-01

    Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...

  11. Regional implementation of warm mix asphalt.

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and emissions : while improving its performance has benefits that could potentially change the direction the asphalt industry moves toward i...

  12. The properties degradation of exposed GFRP roof

    Science.gov (United States)

    Zainudin, Mohammad; Diharjo, Kuncoro; Kaavessina, Mujtahid; Setyanto, Djoko

    2018-02-01

    There is much consideration of roof selection as a protector of a building against the outside weather, such as lightweight, strong stiff, corrosion resistant and guarantee for the availability of products. Based on these considerations, glass fiber reinforced polymer (GFRP) roof is a roof which can fulfill the requirement. The objective of this research is to investigate the degradation of physical and mechanical properties of GFRP roof exposed in outside weather. This GFRP roof composite was produced using a sheet molding compound (SMC) supplied by PT Intec Persada, Tangerang, Indonesia. There are two kinds GFRP roofs evaluated in this research that are GFRP roof exposed within 7 years and new GFRP roof that has not been exposed. The GFRP roofs were cut manually for preparing the specimens for hardness test, tensile test, SEM and FTIR test. The results show that the GFRP roof exposed within 7 years had the degradation of properties compared to the new GFRP roof. The exposed GFRP roof had lower strength and hardness compared to the new GFRP roof. The SEM observation indicates that exposed GFRP roof had the debonding of fiber on the surface, and in contrast, there are no debonding of fiber in the new GFRP roof surface. It can be recommended that the exposed GFRP roof may be repaired to enhance its performance and can re-increase its properties using the coating.

  13. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  14. Method of reprocessing radioactive asphalt solidification products

    International Nuclear Information System (INIS)

    Nakaya, Iwao; Murakami, Tadashi; Miyake, Takafumi; Inagaki, Yuzo.

    1986-01-01

    Purpose: To obtain heat-stable solidification products and decrease the total volume thereof by modifying the solidified form by the reprocessing of existent radioactive asphalt solidification products. Method: Radioactive asphalt solidification products are heated into a fluidized state. Then, incombustible solvents such as perchloroethylene or trichloroethylene are added to a dissolving tank to gradually dissolve the radioactive asphalt solidification products. Thus, organic materials such as asphalts are transferred into the solvent layer, while inorganic materials containing radioactive materials remain as they are in the separation tank. Then, the inorganic materials containing the radioactive materials are taken out and then solidified, for example, by converting them into a rock or glass form. (Kawakami, Y.)

  15. PREDICTING THERMAL PERFORMANCE OF ROOFING SYSTEMS IN SURABAYA

    Directory of Open Access Journals (Sweden)

    MINTOROGO Danny Santoso

    2015-07-01

    Full Text Available Traditional roofing systems in the developing country likes Indonesia are still be dominated by the 30o, 45o, and more pitched angle roofs; the roofing cover materials are widely used to traditional clay roof tiles, then modern concrete roof tiles, and ceramic roof tiles. In the 90’s decay, shop houses are prosperous built with flat concrete roofs dominant. Green roofs and roof ponds are almost rarely built to meet the sustainable environmental issues. Some tested various roof systems in Surabaya were carried out to observe the roof thermal performances. Mathematical equation model from three references are also performed in order to compare with the real project tested. Calculated with equation (Kabre et al., the 30o pitched concrete-roof-tile, 30o clay-roof-tile, 45o pitched concrete-roof-tile are the worst thermal heat flux coming to room respectively. In contrast, the bare soil concrete roof and roof pond system are the least heat flux streamed onto room. Based on predicted calculation without insulation and cross-ventilation attic space, the roof pond and bare soil concrete roof (greenery roof are the appropriate roof systems for the Surabaya’s climate; meanwhile the most un-recommended roof is pitched 30o or 45o angle with concrete-roof tiles roofing systems.

  16. Observation of asphalt binder microstructure with ESEM.

    Science.gov (United States)

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. Use of Adhesion Promoters in Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Cihlářová Denisa

    2018-03-01

    Full Text Available The purpose of asphalt binder as a significant binder in road constructions is to permanently bind aggregates of different compositions and grain sizes. The asphalt binder itself does not have suitable adhesiveness, so after a period of time, bare grains can appear. This results in a gradual separation of the grains from an asphalt layer and the presence of potholes in a pavement. Adhesion promoters or adhesive agents are important and proven promoters in practice. They are substances mainly based on the fatty acids of polyamides which should increase the reliability of the asphalt’s binder adhesion to the aggregates, thus increasing the lifetime period of the asphalt mixture as well as its resistance to mechanical strain. The amount of a promoter or agent added to the asphalt mixture is negligible and constitutes about 0.3% of the asphalt’s binder weight. Nevertheless, even this quantity significantly increases the adhesive qualities of an asphalt binder. The article was created in cooperatation with the Slovak University of Technology, in Bratislava, Slovakia, and focuses on proving the new AD2 adhesive additive and comparing it with the Addibit and Wetfix BE promoters used on aggregates from the Skuteč - Litická and Bystřec quarries.

  18. Roof instability characteristics and pre-grouting of the roof caving zone in residual coal mining

    Science.gov (United States)

    Zhao, Tong; Liu, Changyou

    2017-12-01

    Abandoned roadways and roof caving zones are commonly found in residual coal, and can destroy the integrity of the coal seam and roof. Resulting from mining-induced stress, continuous collapse and fracture instability in roof caving zones (RCZs) jeopardize the safety and efficiency of residual coal mining. Based on the engineering geology conditions of remining face 3101 in Shenghua Mine, the roof fracture and instability features of the RCZ were analyzed through physical simulation, theoretical analysis, and field measurements. In this case, influenced by the RCZ, the main roof across the RCZ fractured and rotated towards the goaf, greatly increasing the working resistance, and crushing the supports. The sudden instability of the coal pillars weakened its support of the main roof, thus resulting in long-key blocks across the RCZ and hinged roof structures, which significantly decreased the stability of the underlying immediate roof. This study establishes a mechanical model for the interactions between the surrounding rock and the supports in the RCZ, determines the reasonable working resistance, and examines the use of pre-grouting solidification restoration technology (PSRT) to solidify the RCZ and reinforce the coal pillars—thus increasing their bearing capacity. Field measurements revealed no roof flaking, inhomogeneous loading or support crushing, indicating that the PSRT effectively controlled the surrounding rock of the RCZ.

  19. Laboratory evaluation of warm mix asphalt.

    Science.gov (United States)

    2011-09-14

    "Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...

  20. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-02-01

    Full Text Available The influence of organic additives (Sasobit and RH and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90, and two aggregate types (limestone and basalt were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed.

  1. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen

    Science.gov (United States)

    Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna

    2017-10-01

    During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.

  2. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2013-11-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces isolated from the boundary of P or even local minima, which are undesirable for several practical reasons. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs and show that the straight skeleton induces a realistic roof with maximum height and volume. We also show that the maximum possible number of distinct realistic roofs over P is ((n-4)(n-4)/4 /2⌋) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n4) preprocessing time. We also present an O(n5)-time algorithm for computing a realistic roof with minimum height or volume. © 2013 Elsevier B.V.

  3. Production and performance of desulfurized rubber asphalt binder

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-05-01

    Full Text Available Asphalt rubber binder typically exhibits disadvantages like segregation and high viscosity; however, this can be improved by the incorporation of desulfurized rubber powder. This study examined the swelling principle of desulfurized rubber asphalt (DRA. In addition, it evaluated the performance of DRA fabricated with various rubber powder contents under different shear conditions and development time. Superpave binders tests, including Brookfield viscosity, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests, were applied on three control binders (i.e., neat, 20 mesh asphalt rubber binder, 40 mesh asphalt rubber binder and a DRA binder. Binder testing results indicated that rubber powder swelled into the base binder and resulted in enhanced stability. Optimum performance of the DRA binder was achieved by adding 20% (by weight of rubber powder into the base binder at shear rate, shear temperature, shear time and development time of 7000 r/min, 170 °C, 60 min and 45 min, respectively. Modified ranges of production conditions were also provided to widen the application of DRA in field construction. It appeared that DRA binder benefited from the recovered plasticity and viscosity of the rubber and consequently, exhibited superior performance over the neat and conventional asphalt rubber binders. Preliminary mixture evaluation was also conducted and the DRA binder was found to significantly improve the mixture resistance to permanent deformation and water damage. Overall, the DAR binder is encouraged to be used as a modified binder for flexible pavements. Keywords: Desulfurized rubber asphalt, Swelling model, Production process, Asphalt performance, Rubber asphalt

  4. Practical experiences with new types of highly modified asphalt binders

    Science.gov (United States)

    Špaček, Petr; Hegr, Zdeněk; Beneš, Jan

    2017-09-01

    As a result of steadily increasing traffic load on the roads in the Czech Republic, we should be focused on the innovative technical solutions, which will lead to extending the life time of asphalt pavements. One of these ways could be the future use of bitumen with a higher degree of polymer modification. This paper discusses experience with comparison of new highly polymer modified asphalt binder type with conventional polymer modified asphalt binder and unmodified binder with penetration grade 50/70. There are compared the results of various types laboratory tests of asphalt binders, as well as the results of asphalt mixtures laboratory tests. The paper also mentions the experience with workability and compactability of asphalt mixture with highly polymer modified asphalt binder during the realization of the experimental reference road section by the Skanska company in the Czech Republic.

  5. Field testing of asphalt-emulsion radon-barrier system

    International Nuclear Information System (INIS)

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10 -6 cm 2 /s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables

  6. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  7. Field Control and Performance of Asphalt Mixtures Containing Greater than 25 Percent Reclaimed Asphalt Pavement : Draft Final Report

    Science.gov (United States)

    2018-02-02

    The Alabama Department of Transportation (ALDOT) and other highway agencies are interested in utilization of higher percentages of reclaimed asphalt pavement (RAP) in asphalt mixtures. There are a number of research studies at both state and national...

  8. Engineering characterisation of epoxidized natural rubber-modified hot-mix asphalt.

    Directory of Open Access Journals (Sweden)

    Ramez A Al-Mansob

    Full Text Available Road distress results in high maintenance costs. However, increased understandings of asphalt behaviour and properties coupled with technological developments have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, polymers have become extremely popular as modifiers to improve the performance of the asphalt mix. This study investigates the performance characteristics of epoxidized natural rubber (ENR-modified hot-mix asphalt. Tests were conducted using ENR-asphalt mixes prepared using the wet process. Mechanical testing on the ENR-asphalt mixes showed that the resilient modulus of the mixes was greatly affected by testing temperature and frequency. On the other hand, although rutting performance decreased at high temperatures because of the increased elasticity of the ENR-asphalt mixes, fatigue performance improved at intermediate temperatures as compared to the base mix. However, durability tests indicated that the ENR-asphalt mixes were slightly susceptible to the presence of moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorporating ENR as a modifier to counter major road distress.

  9. Effects of conductive fillers on temperature distribution of asphalt pavements

    International Nuclear Information System (INIS)

    Chen Mingyu; Wu Shaopeng; Zhang Yuan; Wang Hong

    2010-01-01

    The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25-50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

  10. Performance Modification of Asphalt Binders using Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    H. I. Al-Abdul Wahhab

    2004-12-01

    Full Text Available There is a need to improve the performance of asphalt binders to minimize stress cracking that occurs at low temperatures and plastic deformation at high temperatures. Importation of used asphalt-polymers from abroad, leads to an increase in the total construction cost as compared to the cost if the used polymers were of local origin. The main objective of this research was to modify locally produced asphalt. Ten polymers were identified as potential asphalt modifiers based on their physical properties and chemical composition. After preliminary laboratory evaluation for the melting point of these polymers, five polymers were selected for local asphalt modification. In the initial stage, required mixing time was decided based on the relation between shear loss modulus and mixing time .The optimum polymer content was selected based on Superpave binder performance grade specifications.The suitability of improvement was verified through the evaluation of permanent deformation and fatigue behavior of laboratory prepared asphalt concrete mixes. The results indicated that the rheological properties of the modified binders improved significantly with sufficient polymer content (3%. The aging properties of the modified binders were found to be dependent on the type of polymer.The fatigue life and resistance to permanent deformation were significantly improved due to enhanced binder rheological properties.  Thus, local asphalts can be modified using thermoplastic polymers.

  11. Immune Reconstitution Inflammatory Syndrome and Shingles Associated with a Combined Paralysis of Three Oculomotor Nerves: A Case Report.

    Science.gov (United States)

    Atipo-Tsiba, P W; Kombo Bayonne, E S

    2016-05-01

    In countries with high prevalence of HIV/AIDS infection, particularly in black Africa, shingles is one of the main opportunistic infections during immunosuppression due to AIDS in young patients. If immunological weakness is important, usually when the CD4 cell count is less than 100 cells/mm(3), the risk of inflammatory reactions in the first three months after initiating of antiretroviral treatment (ART) is very high. This inflammatory reaction is called immune reconstitution inflammatory syndrome (IRIS). This observation reports the first documented case of IRIS with V1 shingles in a young HIV patient at University Hospital of Brazzaville. A 40 years old patient was seen for a pain of the right side of the face and a complete immobility of the eyeball. The diagnosis of V1 shingles with a pan uveitis, and a paralysis of III, IV and VI nerves was made. The patiants HIV status was positive and CD4 cell count was 150 cells/mm(3). After two months of evolution under ART with a CD4 count of 850 cells /mm(3), the symptomatology was quickly complicated by significant inflammation causing a phtisis bulbi. CD4 cells count is an important indicator in the HIV/AIDS therapy. In some major forms of IRIS, momentary pause of anti retroviral treatment is sometimes necessary.

  12. Run-off from roofing materials

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to find the runn-off from roof material, a roof has been constructed with two different slopes (30 deg. and 45 deg.). 7 Be and 137 Cs have been used as tracers. Considering new roof material, the pollution removed by run-off processes has been shown to be very different for various roof materials. The pollution is much more easily removed from silicon-treated material than from porous red-tile roof material. Cesium is removed more easily than beryllium. The content of cesium in old roof materials is greater in red-tile than in other less porous roof materials. However, the measured removal from new material does not correspond to the amount accumulated in the old. This could be explained by weathering and by saturation effects. The last effect is probably the more important. The measurements on old material indicate a removal of 44-86% of cesium pollution by run-off, whereas the measurement on new material showed a removal of only 31-50%. It has been demonstrated that the pollution concentration in run-off water could be very different from that in rainwater

  13. Operational properties of nanomodified stone mastic asphalt

    OpenAIRE

    Inozemtsev Sergey Sergeevich; Korolev Evgeniy Valer’evich

    2015-01-01

    In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III) and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physica...

  14. Plastic Bottles Waste Utilization as Modifier for Asphalt Mixture Production

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available Plastic Bottles was used as the polymeric waste to investigate performance of asphalt mixture Aggregates obtained from Margalla, Burhan and Karak quarries. 12 samples were prepared for conventional asphalt mixtures and 48 samples were prepared for PB modified asphalt mixture of each quarries at various proportions of PB waste. The PB used for modification according to wet process are 15%, 20%, 25% and 30% by weight of Optimum Bitumen Content (OBC. OBC of 4.2 % was concluded for conventional asphalt mixtures. The stability and flow values of the conventional and modified Asphalt Mixture were compared. The average Stability of the modified Margalla asphalt mixtures when 15% PB was used was much higher as compared to conventional asphalt mixtures. But when PB was used beyond 15%, the Marshall stability showed a decreasing trend for Margalla aggregates, increasing trend for Karak aggregates and decreasing trend for Burhan aggregates. This decline in stability is attributed to a decline in interlocking of aggregates due to lubricating effect. The corresponding flow for the Modified asphalt mixtures first showed a decreasing trend for Margalla aggregates at 15% PB modification but beyond 15%, an increasing trend in flow as compared to conventional asphalt mixtures The decrease in flow or increase in Marshall Stability is attributed to improvement in interlocking and decline in flow or stability is attributed to a decline in interlocking offered by binder and PB coated aggregate particles in modified asphalt.

  15. Controlling conductivity of asphalt concrete with graphite.

    Science.gov (United States)

    2014-08-01

    Electrically conductive asphalt concrete has a huge potential for various multifunctional applications such as : self-healing, self-sensing, and deicing. In order to utilize the full spectrum of applications of electrically conductive : asphalt compo...

  16. Improved roof stabilization technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users' Manual for the Program of Deterministic and Reliability Analysis of Roof Structures

  17. The Effect of Aging on the Cracking Resistance of Recycled Asphalt

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.

  18. New materials for fireplace logs

    Science.gov (United States)

    Kieselback, D. J.; Smock, A. W.

    1971-01-01

    Fibrous insulation and refractory concrete are used for logs as well as fireproof walls, incinerator bricks, planters, and roof shingles. Insulation is lighter and more shock resistant than fireclay. Lightweight slag bonded with refractory concrete serves as aggregrate.

  19. 30 CFR 75.204 - Roof bolting.

    Science.gov (United States)

    2010-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  20. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  1. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  2. Run-off from roofs

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to find the run-off from roof material a roof has been constructed with two different slopes (30 deg C and 45 deg C). Beryllium-7 and caesium-137 has been used as tracers. Considering new roof material the pollution removed by runoff processes has been shown to be very different for various roof materials. The pollution is much more easily removed from silicon-treated material than from porous red-tile roof material. Caesium is removed more easily than beryllium. The content of caesium in old roof materials is greater in red-tile than in other less-porous materials. However, the measured removal from new material does not correspond to the amount accumulated in the old. This could be explained by weathering and by saturation effects. This last effect is probably the more important. The measurements on old material indicates a removal of 44-86% of the caesium pollution by run-off, whereas the measurement on new showed a removal of only 31-50%. It has been demonstrated that the pollution concentration in the run-off water could be very different from that in rainwater. The work was part of the EEC Radiation Protection Programme and done under a subcontract with Association Euratom-C.E.A. No. SC-014-BIO-F-423-DK(SD) under contract No. BIO-F-423-81-F. (author)

  3. Operational properties of nanomodified stone mastic asphalt

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2015-03-01

    Full Text Available In order to prolong the lifetime and to improve the quality of pavements made of asphalt concrete it is necessary to apply innovative solutions in the process of design of such building materials. In order to solve the problem of low durability of asphalt concrete a modifier was proposed, which consists of diatomite, iron hydroxide sol (III and silica sol. Application of the diatomite with nanoscale layer of nanomodifier allows getting a stone mastic asphalt, which has high values of physical and mechanical properties and allows refusing from expensive stabilizing additive. Mineral filler was replaced by diatomite, which has been modified by iron hydroxide sol (III and silica sol. Modified diatomite allows sorption of bitumen and increase the cohesive strength and resistance to shear at positive temperatures. The modified asphalt has higher resistance to rutting at high temperature, abrasion resistance at low temperature and impact of climatic factors: alternate freezing and thawing, wetting-drying, UV and IR radiations. It is achieved by formation of solid and dense bitumen film at the phase interface and controlling the content of light fractions of the bitumen. The modifier consists of sol of iron hydroxide, which blocks the oxidation and polymerization of bitumen during operation. The proposed material allows controlling the initial structure formation of stone mastic asphalt. It was shown that modern test methods allow assessing the durability of asphalt in the design phase compositions.

  4. Laboratorium Study of Asphalt Starbit E-55 Polymer Modified Application on Asphalt Concrete Wearing Course (Ac-Wc

    Directory of Open Access Journals (Sweden)

    Damianus Kans Pangaraya

    2015-09-01

    Full Text Available The conventional asphalt road has almost been considered fail to serve the transportation needs. It is indicated by the occurrence of premature damage which is caused by vehicle load and climate. Starbit E-55, the polymer modified bitumen, is formulated to meet the requirement of transport development. Considering those needs, it is important to investigate the feasibility level of that modified bitumen as alternate asphalt instead of the conventional one. This research began with the measurement of the properties of hard layered AC-WC Starbit E-55, then comparing the result to 60/70 penetration of Pertamina asphalt. The next step is then, to determine the converted value so as to be close to that of Pertamina (60/70 penetration. This step is conducted by applying durability and ITS tests on the mixture. Result of the tests showed that hard layered AC-WC Starbit E-55 has better characteristic at 5.7% optimum level asphalt and 6.4% of Pertamina asphalt (60/70 penetration. Starbit E-55 converted level within hard-layered ACWC is 5.6%. The performance test result on immersion with variance of 1, 3, 5, 7 and 14 days shows that durability value of Starbit E-55 AC-WC has better performance. During the process, Starbit E-55 required 15.38% higher energy consumption.

  5. Synthesis and Characterization of New ‎Copolymers as Asphalt Additives

    Directory of Open Access Journals (Sweden)

    Firyal M. ‎ A

    2017-12-01

    Full Text Available Rheological properties of asphalt S50  were improved by adding different prepared copolymers as additives with high homogeneity of asphalts  samples.  Three types of copolymers were prepared  Poly  (Indene –Co- maleic anhydride(A1 Poly (Acrylonitrile –Co- Maleic anhydride (A2 and Poly (Dipentine –Co-Maleic anhydride (A3, the cross linking of (A3 to (A3d. by using sulfur.              These copolymers  were designed by inserting Maleic anhydride as  rings  containing through backbone of polymer chains to be high potentially to react with water to protect the crack of pavement .And moisture with inhibit bonding of crack of pavement, Many factors should be considered when prepared the additives to enhanced performance to be convenience cost, beneficial thermal safety ,   extended life of the asphalt, preparing conditions which gave high thermal resistance with more stabilities, all these prepared copolymer have been characterized by FTIR and H-NMR spectroscopies .Intrinsic viscosities were calculated. softening point and penetration were observed for all asphalts blends which were  compared with the  asphalt samples, which gave high thermal resistance with more stabilities.                                          The results  showed high properties of these blends when  compared with the original asphalt. The physical properties of a specific polymers are determined by the sequence and chemical structure , When polymers are added to asphalt , the properties of the modified asphalt cement depend on polymer characteristic of asphalt and compatibility of polymer with asphalt. All these prepared copolymers were tested by softening points and penetration for all  asphalt blends which were compared with the asphalt sample. All the Improvements made by adding polymers to asphalt included the Increasing the viscosity of the binder service, the thermal susceptibility of the binder

  6. Interfacial debonding of ice-asphalt concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tazawa, E.; Mizoue, Y. (Hiroshima Univ., Hiroshima (Japan)); Kojima, T. (Hitachi Chemical Co. Ltd., Tokyo (Japan))

    1992-09-20

    Series of experimental investigations were carried out to clarify the bonding mechanism between ice and asphalt and to develop a new technique to reduce bonding resistance. The surface bonding resistance was measured by three methods and the main variables taken into consideration have been surface energy, surface roughness and stiffness of asphalt. Surface energy was varied by using various water repellents and the stiffness of the concrete was varied by mixing rubber particles. Correlations of the three variables were studied and the following results have been obtained. Decreasing of surface energy and increasing of deformability of asphalt concrete has been the effective method to decrease the bonding between ice and asphalt. For the case of water repellent coated surface, shear debonding strength has been linearly related to the energy required for debonding by dynamic tension and the shear debonding strength has decreased with the decrease in roughness of pavement. In the case of surface without using repellent, shear debonding strength has not been influenced by surface energy and roughness of pavement. 6 refs., 16 figs., 7 tabs.

  7. Investigation on performances of asphalt mixtures made with Reclaimed Asphalt Pavement: Effects of interaction between virgin and RAP bitumen

    Directory of Open Access Journals (Sweden)

    Luca Noferini

    2017-07-01

    Full Text Available According to most recent surveys, the European area produced 265 mil tonnes of asphalt for road applications in 2014. In the same year, the amount of available RAP was more than 50 mil tonnes. The use of RAP in new blended mixes reduces the need of neat bitumen, making RAP recycling economically attractive. Despite the economic and environmental benefits, road authorities tend to limit the use of RAP in asphalt mixes due to uncertainty about field performances. The present study focuses on the interaction between neat and RAP bitumen in asphalt mixes made with different RAP content. The effects of RAP on physical and rheological properties of the final bituminous blend were investigated. This study is part of a wider research, where a specific type of asphalt mixture was produced with different RAP contents being 10%, 20% and 30% by mass of the mix. Bitumen was extracted and recovered from asphalt mixes, then it was subjected to the following laboratory tests: standard characterization, dynamic viscosity and rheological analysis with DSR. Findings showed that the effects of RAP bitumen on the final blend varied in proportion to RAP content. A threshold value of RAP content was found, below which bitumen was not subjected to significant changes in physical and rheological properties. Practical implications on production methods and paving of RAP mixes are also proposed. Keywords: Reclaimed Asphalt Pavement (RAP, Recycling, Bitumen blending, Bitumen rheology

  8. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  9. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani* Hasan.H.Al-Baid

    2014-04-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.  

  10. Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Shakir.A.Al-Mishhadani

    2014-02-01

    Full Text Available Cold emulsified asphalt mixture is generally a mix made of emulsified asphalt withaggregate. Emulsified asphalt is manufactured from base asphalt, emulsifier agent and waterwith approximate percentage of 40% to 75% asphalt, 0.1% to 2.5% emulsifier and 25% to60% water plus some minor components. This study aims to use the cold emulsified asphaltmixtures for road construction and maintenance in Iraq as an alternative to the hot asphaltmixtures, due to its economical, practical and environmental advantages. This studyfocusedto test and evaluates the emulsified asphalt material properties to be used as paving mixture.The tested properties of emulsified asphalt mixture were bulk density, air voids, dry Marshallstability, wet Marshall stability, retained Marshall stability, flow tests and compared with thecommon used specification.The results indicate that the emulsified asphalt type cationic slowsetting low viscosity (CSS-1 is very suitable with quartz type of aggregate from Al-Nibaayquarry. From many trial mixes it is found that the best percentages of initial residual bitumencontent to produced adequateresults for coating test ,mixing ,compaction ,curing and Marshallstability were ranged from (2.5%, 3%,3.5%,4% and 4.5%, andthe optimum percentage is(3.5%.Finally it can be conducted that the emulsified asphalt mixture is a suitable alternativemixture to the hot asphalt mixture for road construction and maintenance in Iraq.

  11. Contributory Factors Related to Permanent Deformation of Hot Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Alaa Husein Abd

    2017-03-01

    Full Text Available Permanent deformation (Rutting of asphalt pavements which appears in many roads in Iraq, have caused a major impact on pavement performance by reducing the useful service life of pavement and creating services hazards for highway users. The main objective of this research is investigating the effect of some contributory factors related to permanent deformation of asphalt concrete mixture. To meet the objectives of this research, available local materials are used including asphalt binder, aggregates, mineral filler and modified asphalt binder. The Superpave mix design system was adopted with varying volumetric compositions. The Superpave Gyratory Compactor was used to compact 24 asphalt concrete cylindrical specimens. To collect the required data and investigate the development of permanent deformation in asphalt concrete under repeated loadings, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples; with dimensions of 400×300×50 mm; were tested to simulate . actual pavement. Based on wheel-tracking test results, it has been concluded that increasing the compaction temperature from 110 to 150ºC caused a decreasing in permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures respectively. While the permanent deformation decreased about 21.3 percent when the compaction temperature is increased from 110 to 150ºC for coarse gradation asphalt mixtures modified with styrene butadiene styrene SBS with 3 percent by asphalt binder weight.

  12. Analysis of the impact of thermal resistance of the roof on the performance of photovoltaic roof tiles

    Directory of Open Access Journals (Sweden)

    Kurz Dariusz

    2017-01-01

    Full Text Available The paper explores the issues related to the impact of thermal resistance of the roof on the electrical parameters of photovoltaic roof tiles. The methodology of determination of the thermal resistance and thermal transmittance factor was presented in accordance with the applicable legal regulations and standards. A test station was presented for the purpose of measurement of the parameters of photovoltaic roof tiles depending on the structure of the roof substrate. Detailed analysis of selected building components as well as their impact on the design thermal resistance factor and thermal transmittance factor was carried out. Results of our own studies, which indicated a relation between the type of the roof structure and the values of the electricity generated by photovoltaic tiles, were presented. Based on the calculations, it was concluded that the generated outputs in the respective constructions differ by maximum 6%. For cells with the highest temperature, the performance of the PV roof tiles on the respective roof constructions fell within the range between 0.4% and 1.2% (depending on the conducted measurement and amounted to 8.76% (in reference to 9.97% for roof tiles with the lowest temperature.

  13. Mechanical characterization of porous asphalt mixes modified with fatty acid amides -FAA-

    Directory of Open Access Journals (Sweden)

    Vanessa Senior Arrieta

    2017-01-01

    Full Text Available Porous asphalt mixes (PAM, form a special road surface for asphalt pavement structures, have a special particle size distribution that lets infiltrate to the runoff storm water through of it because of its voids content about 20 %. Many researchers conducted studies and have concluded that the use of modified asphalts is completely necessary to design PAM. Organic and chemical additives and special procedures as foamed asphalt have enhanced the performance of PAM, during their service life. This paper is focused on the mechanical characterization of PAM and how the asphalt modified with fatty acid amides, influenced on their behavior and performance. Based on an experimental methodology with laboratory tests aimed at establishing a comparison between porous asphalt mixes, using for its design and production a penetration 60-70 pure asphalt and another one asphalt modified with fatty acid amides.

  14. Characteristics and applications of high-performance fiber reinforced asphalt concrete

    Science.gov (United States)

    Park, Philip

    Steel fiber reinforced asphalt concrete (SFRAC) is suggested in this research as a multifunctional high performance material that can potentially lead to a breakthrough in developing a sustainable transportation system. The innovative use of steel fibers in asphalt concrete is expected to improve mechanical performance and electrical conductivity of asphalt concrete that is used for paving 94% of U. S. roadways. In an effort to understand the fiber reinforcing mechanisms in SFRAC, the interaction between a single straight steel fiber and the surrounding asphalt matrix is investigated through single fiber pull-out tests and detailed numerical simulations. It is shown that pull-out failure modes can be classified into three types: matrix, interface, and mixed failure modes and that there is a critical shear stress, independent of temperature and loading rate, beyond which interfacial debonding will occur. The reinforcing effects of SFRAC with various fiber sizes and shapes are investigated through indirect tension tests at low temperature. Compared to unreinforced specimens, fiber reinforced specimens exhibit up to 62.5% increase in indirect tensile strength and 895% improvements in toughness. The documented improvements are the highest attributed to fiber reinforcement in asphalt concrete to date. The use of steel fibers and other conductive additives provides an opportunity to make asphalt pavement electrically conductive, which opens up the possibility for multifunctional applications. Various asphalt mixtures and mastics are tested and the results indicate that the electrical resistivity of asphaltic materials can be manipulated over a wide range by replacing a part of traditional fillers with a specific type of graphite powder. Another important achievement of this study is development and validation of a three dimensional nonlinear viscoelastic constitutive model that is capable of simulating both linear and nonlinear viscoelasticity of asphaltic materials. The

  15. IDENTIFYING ROOF FALL PREDICTORS USING FUZZY CLASSIFICATION

    International Nuclear Information System (INIS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-01-01

    Microseismic monitoring involves placing geophones on the rock surfaces of a mine to record seismic activity. Classification of microseismic mine data can be used to predict seismic events in a mine to mitigate mining hazards, such as roof falls, where properly bolting and bracing the roof is often an insufficient method of preventing weak roofs from destabilizing. In this study, six months of recorded acoustic waveforms from microseismic monitoring in a Pennsylvania limestone mine were analyzed using classification techniques to predict roof falls. Fuzzy classification using features selected for computational ease was applied on the mine data. Both large roof fall events could be predicted using a Roof Fall Index (RFI) metric calculated from the results of the fuzzy classification. RFI was successfully used to resolve the two significant roof fall events and predicted both events by at least 15 hours before visual signs of the roof falls were evident.

  16. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers

    NARCIS (Netherlands)

    Wang, H.; Yang, Jun; Liao, Hui; Chen, Xianhua

    2016-01-01

    Electrically conductive asphalt concrete has the potential to satisfy multifunctional applications. Designing such asphalt concrete needs to balance the electrical and mechanical performance of asphalt concrete. The objective of this study is to design electrically conductive asphalt concrete

  17. Effects of preparation process on performance of rubber modified asphalt

    Science.gov (United States)

    Liu, Hanbing; Luo, Guobao; Wang, Xianqiang; Jiao, Yubo

    2015-06-01

    The rational utilization of waste rubber tire is essential for the environmental protection. Utilizing rubber particles to modify asphalt can not only improve asphalt performance, but also help the recycling of waste materials. Considering the effect of different preparation process parameters on the performance of rubber modified asphalt, this paper analyzes the effects of the shear temperature, shear time and shear rate on the performance of rubber modified asphalt, and provided a reference for its preparation.

  18. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Wu Shaopeng; Chen Mingyu; Zhang Yuan, E-mail: wusp@whut.edu.c [Key Laboratory of Silicate Materials Science and Engineering, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2010-05-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  19. Numerical simulation on the thermal response of heat-conducting asphalt pavements

    International Nuclear Information System (INIS)

    Wang Hong; Wu Shaopeng; Chen Mingyu; Zhang Yuan

    2010-01-01

    Using asphalt pavements as a solar collector is a subject of current interest all over the world because the sun provides a cheap and abundant source of clean and renewable energy, which can be captured by black asphalt pavements. A heat-conducting device is designed to absorb energy from the sun. In order to validate what parameters are critical in the asphalt collector, a finite element model is developed to predict the thermal response of the heat-conducting device compared to the conventional asphalt mixture. Some factors that may affect the asphalt pavement collector are considered, including the coefficient of heat conductivity of the asphalt pavement, the distance between pipes with the medium, water, and the pipe's diameter. Ultimately, the finite element model can provide pavement engineers with an efficient computational tool that can be a guide to the conductive asphalt solar collector's experiment in the laboratory.

  20. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    Science.gov (United States)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  1. Effect of the weather in the aging of asphalts by XRD

    International Nuclear Information System (INIS)

    Cardoso, Edson da R.; Braz, Delson; Lopes, Ricardo T.; Motta, Laura M.G. da; Barroso, Regina C.

    2009-01-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. As is well known, asphalt has been the preferential choice in pavement construction since excellent utility of pavement, however, as other organic substances, it is also subjected to aging phenomena evolving with time. Asphalt aging is one of the principal factors causing deterioration of asphalt pavements. The photodegradation of asphalts must be considered in the study of the performance of asphalt pavement, especially in geographical regions where high solar radiation intensity occurs. It has an important influence in asphalt aging in tropical places as Brazil. Many methods have been applied to simulate aging of bitumen. It was just a simulation but not real aging asphalt. In this study we submitted the asphalt to the weather as sun and rain. Periodically, during 430 days, the XRD profiles were done and the results analyzed. The scattering measurements were carried out in 0-20 reflection geometry using a powder diffractometer Shimadzu XRD-6000. Scans were typically done from 8 deg to 28 deg every 0.05 deg. The parameters FWHM and peak centroid were analyzed. From 0 until 180 days the aging was faster. The peaks were marked and analyzed with the pass of time. The crystallinity of asphalt increase with weather exposition. Some angles of profiles changed the position indicating change of atomics plans. (author)

  2. Effect of the weather in the aging of asphalts by XRD

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Edson da R.; Braz, Delson; Lopes, Ricardo T., E-mail: ecardoso@lin.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Motta, Laura M.G. da, E-mail: Laura@coc.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Construcao Civil/Geotecnia; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. As is well known, asphalt has been the preferential choice in pavement construction since excellent utility of pavement, however, as other organic substances, it is also subjected to aging phenomena evolving with time. Asphalt aging is one of the principal factors causing deterioration of asphalt pavements. The photodegradation of asphalts must be considered in the study of the performance of asphalt pavement, especially in geographical regions where high solar radiation intensity occurs. It has an important influence in asphalt aging in tropical places as Brazil. Many methods have been applied to simulate aging of bitumen. It was just a simulation but not real aging asphalt. In this study we submitted the asphalt to the weather as sun and rain. Periodically, during 430 days, the XRD profiles were done and the results analyzed. The scattering measurements were carried out in 0-20 reflection geometry using a powder diffractometer Shimadzu XRD-6000. Scans were typically done from 8 deg to 28 deg every 0.05 deg. The parameters FWHM and peak centroid were analyzed. From 0 until 180 days the aging was faster. The peaks were marked and analyzed with the pass of time. The crystallinity of asphalt increase with weather exposition. Some angles of profiles changed the position indicating change of atomics plans. (author)

  3. The mechanical behavior of two warm-mix asphalts

    Directory of Open Access Journals (Sweden)

    H. A. Rondón-Quintana

    2016-09-01

    Full Text Available This paper presents results stemming from a comparative experimental analysis of two warm-mix asphalts (WMA and a dense-graded hot-mix asphalt (HMA. In order to evaluate asphalt mixture behavior, physical and rheological tests were conducted, including tests on resilient modulus, resistance to moisture-induced damage, resistance to fatigue and resistance to permanent deformation. Samples studied were subjected to short (STOA and long-term (LTOA aging. As far as asphalt mixture composition is concerned, the same particle size distribution and coarse aggregate were employed for both mixture types. The control HMA mixture was produced with AC 60-70, and the WMAs used the same asphalt cement modified with two chemical additives (Rediset WMX® and Cecabase RT®. The modified mixtures exhibited better resistance to permanent deformation, aging and moisture-induced damage (versus the control mixture. Likewise, WMAs generally saw increased fatigue resistance under controlled-stress loading, which rheological characterization showed is mainly attributable to binder additives and their concomitant modifications.

  4. Aging test results of an asphalt membrane liner

    International Nuclear Information System (INIS)

    Buelt, J.L.; Barnes, S.M.

    1983-07-01

    The objective of the asphalt aging study described in this report was to determine the expected performance lifetime of a catalytically airblown asphalt membrane as a seepage barrier for inactive uranium mill tailings. The study, conducted by Pacific Northwest Laboratory for the Department of Energy's Uranium Mill Tailings Remedial Action Program, showed through chemical compatibility tests that the asphalt membrane is well suited for this purpose. The chemical compatibility tests were designed to accelerate the aging reactions in the asphalt and to determine the accelerated aging effect. Higher temperatures and oxygen concentrations proved to be effective acceleration parameters. By infrared spectral analysis, the asphalt was determined to have undergone 7 years of equivalent aging in a 3-month period when exposed to 40 0 C and 1.7 atm oxygen pressure. However, the extent of aging was limited to a maximum penetration of 0.5% of the total liner thickness. It was concluded that the liner could be expected to be effective as a seepage barrier for at least 1000 years before the entire thickness of the liner would be degraded

  5. Experimental investigation of asphalt mixture containing Linz-Donawitz steel slag

    Directory of Open Access Journals (Sweden)

    Jens Groenniger

    2017-08-01

    Full Text Available Standard asphalt mixtures for road infrastructures consist of natural aggregate and bitumen. A number of research efforts have successfully investigated the possibility of replacing the conventional aggregate skeleton with industrial by-products such as slag originating from steel production process. However, little is known on the effect of steel slag on the mixtures performance properties such as resistance to low-temperature cracking and to permanent deformation, stiffness and fatigue. This paper presents a comprehensive investigation on the fundamental performance properties of different types of asphalt mixtures prepared with 100% LD slag aggregate and a conventional asphalt mixture containing natural Gabbro aggregate. Sophisticated testing methods were used to evaluate the key performance parameters for the set of asphalt mixtures investigated. In this study, low temperature cracking was addressed through thermal stress restrained specimen tests. Penetration tests and cyclic compression tests were used to evaluate the response of asphalt binder and asphalt mixture to permanent deformation due repeated loading, respectively. The cyclic indirect tensile test was selected for investigating both stiffness properties and fatigue resistance. For this purpose the complex stiffness modulus was measured to quantify material stiffness under different temperature and loading conditions providing information on the visco-elasto-plastic material behavior. Fatigue tests were used to determine the progressive and localized material damage caused by cyclic loading. The experimental results indicate that asphalt mixtures prepared with LD slag are suitable for asphalt pavement construction and that in most cases they perform better than conventional asphalt mixtures prepared with Gabbro aggregate.

  6. Preparation and Performance of Asphalt Compound Modified with Waste Crumb Rubber and Waste Polyethylene

    Directory of Open Access Journals (Sweden)

    Yuqiao Yang

    2016-01-01

    Full Text Available Three kinds of modified asphalt were prepared by adding waste crumb rubber (WCR, waste polyethylene (WPE, and WCR/WPE to base asphalt, respectively. The influence of different doses on the performance of modified asphalt, such as 25°C penetration, softening point, 5°C ductility, and 135°C, 165°C viscosity, was studied, and the modification mechanism of modified asphalt was discussed through the fluorescence microscope. As the waterproofing materials, the waterproofness of WCR/WPE compound modified asphalt was tested. The results show that the WPE modified asphalt has excellent resistance to high temperature and WCR modified asphalt has good low temperature resistance. The resistance to deformation ability of WPE modified asphalt is better than that of the WCR modified asphalt. The 135°C viscosity of compound modified asphalt is better than that of WPE and WCR modified asphalt. In addition, the waterproofness of compound modified asphalt using waterproofing materials is better than that of common waterproofing materials.

  7. Demonstration of energy savings of cool roofs

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Gartland, L.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.; Rainer, L. [Davis Energy Group, Davis, CA (United States)

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  8. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Buhari Rosnawati

    2018-01-01

    Full Text Available This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2 powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  9. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    Science.gov (United States)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  10. 30 CFR 75.206 - Conventional roof support.

    Science.gov (United States)

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.206 Conventional roof support. (a) Except in anthracite mines using non-mechanized mining systems, when conventional roof support... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conventional roof support. 75.206 Section 75...

  11. Asphalt chemical fractionation

    International Nuclear Information System (INIS)

    Obando P, Klever N.

    1998-01-01

    Asphalt fractionation were carried out in the Esmeraldas Oil Refinery using n-pentane, SiO 2 and different mixture of benzene- methane. The fractions obtained were analyzed by Fourier's Transformed Infrared Spectrophotometry (FTIR)

  12. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  13. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  14. Qualitative criteria and thresholds for low noise asphalt mixture design

    Science.gov (United States)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  15. Orbital roof encephalocele mimicking a destructive neoplasm.

    Science.gov (United States)

    Alsuhaibani, Adel H; Hitchon, Patrick W; Smoker, Wendy R K; Lee, Andrew G; Nerad, Jeffrey A

    2011-01-01

    The purpose of this case report is to report an orbital roof encephalocele mimicking a destructive orbital neoplasm. Orbital roof encephalocele is uncommon but can mimic neoplasm. One potential mechanism for the orbital roof destruction is a post-traumatic "growing orbital roof fracture." The growing fracture has been reported mostly in children but can occur in adults. Alternative potential etiologies for the encephalocele are discussed, including Gorham syndrome. Orbital roof encephalocele is uncommon in adults, and the findings can superficially resemble an orbital neoplasm. Radiographic and clinical features that might suggest the correct diagnosis include a prior history of trauma, overlying frontal lobe encephalomalacia without significant mass effect or edema, and an orbital roof defect. The "growing fracture" mechanism may be a potential explanation for the orbital roof destruction in some cases.

  16. Key factors in successful green roof training

    International Nuclear Information System (INIS)

    Seeger, H.; Ansel, W.

    2004-01-01

    The green roof market in Germany has increased significantly in the past 3 decades, reaching a market share of 11 to 14 per cent. Three factors were responsible for the success of the green roof movement in Germany, namely the early introduction of quality standards and guidelines; the scientific investigation of ecological and economic benefits and the development of innovative and reliable technologies. In addition, seminars and workshops targeted at relevant groups encouraged green roof construction. Training courses and seminars proved to be efficient communication tools with the advantage of direct feedback from the participants to address sophisticated green roof problems and to integrate current ecological and economic frameworks. The content of the courses were tailored to the specific needs of the participants. In addition, organizers had considerable knowledge of green roof technology and related disciplines. The green roof guidelines in Germany are based on a range of scientific studies from universities, technical colleges and regional research institutions. These studies explored the technical performance of different green roof constructions and the ecological benefits for people and the environment. The market development in Germany is backed by the development of a wide range of innovative technologies which offer solutions for nearly all green roof issues, such as landscaping of sloped, barrel shaped roofs with low load bearing capacities. The German company ZinCo offers the international market a range of well tested and proven green roof systems for intensive and extensive roofs. Their flexible modular products can be adapted to the needs of different roof constructions and to locally specific climatic conditions. 6 refs., 1 fig

  17. 76 FR 46798 - FIFRA Scientific Advisory Panel; Notice of Public Meeting

    Science.gov (United States)

    2011-08-03

    ... fate science including hydrology, soil science and chemistry, Geographic Information Systems, and urban... estimate aqueous exposures from wood preservative and roofing shingle uses and the ``Marine Antifoulant... proposed by the American Chemistry Council as a refined model for estimating environmental exposure from...

  18. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture.

    Science.gov (United States)

    Yang, Chao; Xie, Jun; Zhou, Xiaojun; Liu, Quantao; Pang, Ling

    2018-04-27

    Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO₂ content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  19. Performance Evaluation and Improving Mechanisms of Diatomite-Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2018-04-01

    Full Text Available Diatomite is an inorganic natural resource in large reserve. This study consists of two phases to evaluate the effects of diatomite on asphalt mixtures. In the first phase, we characterized the diatomite in terms of mineralogical properties, chemical compositions, particle size distribution, mesoporous distribution, morphology, and IR spectra. In the second phase, road performances, referring to the permanent deformation, crack, fatigue, and moisture resistance, of asphalt mixtures with diatomite were investigated. The characterization of diatomite exhibits that it is a porous material with high SiO2 content and large specific surface area. It contributes to asphalt absorption and therefore leads to bonding enhancement between asphalt and aggregate. However, physical absorption instead of chemical reaction occurs according to the results of FTIR. The resistance of asphalt mixtures with diatomite to permanent deformation and moisture are superior to those of the control mixtures. But, the addition of diatomite does not help to improve the crack and fatigue resistance of asphalt mixture.

  20. Performance of Recycled Porous Hot Mix Asphalt with Gilsonite Additive

    Directory of Open Access Journals (Sweden)

    Ludfi Djakfar

    2015-01-01

    Full Text Available The objective of the study is to evaluate the performance of porous asphalt using waste recycled concrete material and explore the effect of adding Gilsonite to the mixture. As many as 90 Marshall specimens were prepared with varied asphalt content, percentage of Gilsonite as an additive, and proportioned recycled and virgin coarse aggregate. The test includes permeability capability and Marshall characteristics. The results showed that recycled concrete materials seem to have a potential use as aggregate in the hot mix asphalt, particularly on porous hot mix asphalt. Adding Gilsonite at ranges 8–10% improves the Marshall characteristic of the mix, particularly its stability, without decreasing significantly the permeability capability of the mix. The use of recycled materials tends to increase the asphalt content of the mix at about 1 to 2% higher. With stability reaching 750 kg, the hot mix recycled porous asphalt may be suitable for use in the local roads with medium vehicle load.

  1. Collaborative active roof design

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2008-01-01

    Roofs play an essential role in buildings. Their value and impact often significantly surpass the cost ratio they represent in the total investment cost of the building. Traditionally, roofs have a protecting function and their basic design has changed little over hundreds of years. Nowadays

  2. The Effect of SBS Polymer on the Dynamic Properties of Asphalt

    Directory of Open Access Journals (Sweden)

    H. Ziari

    2008-12-01

    Full Text Available Polymer application for the improvement and modification of the bitumen used in roads surfaces has expanded in recent decades. The roads engineers and constructors, therefore, have used the modified bitumen in asphalts helping in this way to increase roads and pavements service life and improving the durability of the roads and asphalts. The bitumen used in asphalt mixture constitutes only a low percentage of the weight of this mixture (between 4% and 6%, but even this small amount has a significant effect on asphalt performance. The polymers that are mostly used in promoting the bitumen specifications are polymer modifiers including: styrenebutadiene- styrene (SBS, as well as similar polymers such as styrene-butadiene-rubber (SBR, ethylene-vinylacetate (EVA and polyethylene (PE. Polymers as the most important family of bitumen modifiers are added to bitumen to improve bitumen performance and to increase its effectiveness. Among the existing polymers, SBS is considered as the best bitumen modifier. In this research, SBS as one of the elastomer-thermoplast modifiers was added in different weights (2%-5% to bitumen 60/70 in Isfahan Refinery and its effect on asphalt properties were investigated. Adding this polymer to bitumen improves the Marshall stability of sample asphalt, flow, module of rupture and asphalt content voids. However, it has a minor effect on asphalt special weight. Adding SBS would also lead to asphalt fatigue life.

  3. 30 CFR 75.213 - Roof support removal.

    Science.gov (United States)

    2010-07-01

    ... mining experience shall perform permanent roof support removal work. (b) Prior to the removal of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Roof support removal. 75.213 Section 75.213... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Roof Support § 75.213 Roof support removal. (a)(1) All...

  4. Performance assessment of warm mix asphalt (WMA) pavements.

    Science.gov (United States)

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology that was introduced in Europe in 1995. WMA offers several advantages over : conventional asphalt concrete mixtures, including: reduced energy consumption, reduced emissions, improved or more uniform : binder...

  5. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  6. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  7. Green Roof Potential in Arab Cities

    OpenAIRE

    Attia, Shady

    2014-01-01

    Urban green roofs have long been promoted as an easy and effective strategy for beautifying the built environment and increasing investment opportunity. The building roof is very important because it has a direct impact on thermal comfort and energy conservation in and around buildings. Urban green roofs can help to address the lack of green space in many urban areas. Urban green roofs provides the city with open spaces that helps reduce urban heat island effect and provides the human populat...

  8. GREEN ROOFS — A GROWING TREND

    Science.gov (United States)

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  9. Sustainability Life Cycle Cost Analysis of Roof Waterproofing Methods Considering LCCO2

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2013-12-01

    Full Text Available In a construction project, selection of an appropriate method in the planning/design stage is very important for ensuring effective project implementation and success. Many companies have adopted the life cycle cost (LCC method, one of the methods for analyzing economic efficiency, for appropriate decision-making in the basic/detailed design stage by estimating overall costs and expenses generated over the entire project. This paper presents an LCC method for calculating the LCC of CO2 (LCCO2, based on materials committed during the lifecycle of a structure for each roof waterproofing method and adding this cost to the LCC for comparative analysis. Thus, this technique presents the LCC that includes the cost of CO2 emission. The results show that in terms of initial construction cost, asphalt waterproofing had the highest CO2 emission cost, followed by sheet waterproofing. LCCO2 did not greatly influence the initial construction cost and maintenance cost, as it is relatively smaller than the LCC. However, when the number of durable years was changed, the LCC showed some changes.

  10. Impact of Modificated Asphalt Mixtures on Paving Functioning and Environment

    Directory of Open Access Journals (Sweden)

    Gediminas Gribulis

    2016-10-01

    Full Text Available Atmospheric pollution began to increase in the beginning of 19th century, when the global economy and industrial development started the signal grow. The current problem of global warming is partly related with emission of carbon dioxide (CO2 to environment, which one of the sources are industrial production companies. Warm asphalt mix is usually used in the practice of Lithuania and the world for equipment of road paving. These mixes are produced in specialized asphalt mixers where stone dosing, drying and its mixing with bituminous binders are performed. The temperature of produced hot asphalt mix in mixer reach 150–180 °C and 120–160 °C of mixture laying on the road. Various pollutants, carbon dioxide, formaldehydes, and other are spread to the environment. The carried out researches in Lithuania and the world have showed that while using special additives it is possible to reduce the temperatures of warm asphalt production and laying on the road. Such reduction of temperature helps not to worsen the quality of asphalt layer, to lower the emission of pollutants to environment, to improve the conditions of road workers and to economically use the gas for production of asphalt mixes. Production technologies of different asphalt mixes, their advantages and disadvantages, and results of laboratory tests are analyzed in this article. Equipment samples of experimental road sections, using the warm mixing asphalt mixtures are given.

  11. Investigating the creep properties of asphaltic concrete containing ...

    Indian Academy of Sciences (India)

    Hasan Taherkhani

    2018-03-10

    Mar 10, 2018 ... A three-stage model, developed was fitted to the dynamic ... This indicates that the rutting resistance of such asphalt ... drug delivery [23]. .... Different mathematical ... viour of asphaltic materials and prediction of flow number. A.

  12. Determination of usable residual asphalt binder in RAP.

    Science.gov (United States)

    2009-01-01

    For current recycled mix designs, the Illinois Department of Transportation (IDOT) assumes 100% contribution of : working binder from Recycled Asphalt Pavement (RAP) materials when added to Hot Mix Asphalt (HMA). However, it is : unclear if this assu...

  13. Investigation of warm-mix asphalt using Iowa aggregates.

    Science.gov (United States)

    2011-04-01

    The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...

  14. Progresses in irradiating SBS for road asphalt applications

    International Nuclear Information System (INIS)

    Li Linfan; Xie Leidong; Fu Haiying; Li Yintao; Yu Min; Sheng Kanglong; Yao Side

    2006-01-01

    Technical developments at SINAP to improve properties of SBS, a styrene-butadiene- styrene copolymer, for road asphalt applications are reviewed. In an attempt to better solve problems related to undesirable compatibility of SBS to asphalt components, we proposed a new method to modify the SBS molecular chains with ionizing radiations through radiation graft copolymerization and radiation crosslinking. Grafting a monomer with polar functional groups onto SBS molecules improves compatibility of SBS to polar components of asphalt, hence enhanced storage stability of the polymer modified asphalt (PMA), while crosslinks of SBS molecular chains endues increased physical properties to the PMA. Mechanisms of the radiation effects were studied with a series of SBS samples irradiated by 60 Co γ-rays or electron beams. The PMA and macadam-blended PMA samples showed higher performance than the control, i.e. SBS-modified asphalt by conventional approaches. The results can be summarized as follows. 1. The grafted SBS enhances thermostability of saturates and aromatics, the two asphalt components that exhibit the biggest SBS-swelling effect. The resins of asphalt, however, can hardly be absorbed by SBS, and the SBS is in a phase-separation status with the resins. Therefore, it is crucial to strengthen reactions between SBS and the resins to obtain stable and high quality PMA. 2. SBS molecular chains can be crosslinked with irradiation of a few tens of kGy. The crosslinking effect was evidenced by increased molecular weight of SBS and wider distribution of the molecular weight in GPC measurement of the irradiated SBS samples, and by decreased activation energy of viscosity in rheological measurement, in which the storage modulus G' increased and the loss modulus G' declined with increasing doses, indicating a larger elastic component and smaller viscous component in the irradiated SBS. Correspondingly, temperature sensitivity of the irradiated SBS reduced. Blended with SBS

  15. Shingles Immunity and Health Functioning in the Elderly: Tai Chi Chih as a Behavioral Treatment

    Directory of Open Access Journals (Sweden)

    Michael Irwin

    2004-01-01

    Full Text Available Both the incidence and severity of herpes zoster (HZ or shingles increase markedly with increasing age in association with a decline in varicella zoster virus (VZV-specific immunity. Considerable evidence shows that behavioral stressors, prevalent in older adults, correlate with impairments of cellular immunity. Moreover, the presence of depressive symptoms in older adults is associated with declines in VZV-responder cell frequency (VZV-RCF, an immunological marker of shingles risk. In this review, we discuss recent findings that administration of a relaxation response-based intervention, tai chi chih (TCC, results in improvements in health functioning and immunity to VZV in older adults as compared with a control group. TCC is a slow moving meditation consisting of 20 separate standardized movements which can be readily used in elderly and medically compromised individuals. TCC offers standardized training and practice schedules, lending an important advantage over prior relaxation response-based therapies. Focus on older adults at increased risk for HZ and assay of VZV-specific immunity have implications for understanding the impact of behavioral factors and a behavioral intervention on a clinically relevant end-point and on the response of the immune system to infectious pathogens.

  16. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  17. Recycling of Reclaimed Asphalt Pavement in Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    Salim Al-Oraimi

    2009-06-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is the result of removing old asphalt pavement material. RAP consists of high quality well-graded aggregate coated with asphalt cement. The removal of asphalt concrete is done for reconstruction purposes, resurfacing, or to obtain access to buried utilities. The disposal of RAP represents a large loss of valuable source of high quality aggregate. This research investigates the properties of concrete utilizing recycled reclaimed asphalt pavement (RAP. Two control mixes with normal aggregate were designed with water cement ratios of 0.45 and 0.5. The control mixes resulted in compressive strengths of 50 and 33 MPa after 28 days of curing. The coarse fraction of RAP was used to replace the coarse aggregate with 25, 50, 75, and 100% for both mixtures. In addition to the control mix (0%, the mixes containing RAP were evaluated for slump, compressive strength, flexural strength, and modulus of elasticity. Durability was evaluated using surface absorption test.

  18. Evaluation of warm mix technologies for use in asphalt rubber - asphaltic concrete friction courses (AR\\0x2010ACFC) : final report.

    Science.gov (United States)

    2016-07-01

    The objective of this research project was to determine whether warm mix asphalt (WMA) technologies can be : used by the Arizona Department of Transportation (ADOT) for the production of an asphalt rubberasphaltic : concrete friction course (AR...

  19. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing a few additional constraints. We investigate the geometric and combinatorial properties of realistic roofs, and show a connection with the straight skeleton of P. We show that the maximum possible number of distinct realistic roofs over P is ( ⌊(n-4)/4⌋ (n-4)/2) when P has n vertices. We present an algorithm that enumerates a combinatorial representation of each such roof in O(1) time per roof without repetition, after O(n 4) preprocessing time. We also present an O(n 5)-time algorithm for computing a realistic roof with minimum height or volume. © 2011 Springer-Verlag.

  20. Use of rubber asphalt binder with graded aggregate for seal coats

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    It has been known that incorporating rubber particles into asphalt can improve highway pavement performance. This paper describes a test program on pavement construction using asphalts containing recycled rubber. During the summer 1978, eight test sections were constructed in parts of the Saskatchewan road system to evaluate seal coats using rubber-asphalt as a binder membrane and a graded aggregate as protective cover. Test sections were chosen to represent typical road surface types and different states of repair for each type. These types included prime subgrade, cold-mix on subgrade, primed granular base course, asphaltic concrete on granular base, and full depth asphaltic concrete. Problems with construction materials, techniques, and equipment are discussed. Performance and economics were evaluated to determine whether low cost cold mix and current seal coat surfaces could be replaced successfully and economically by this method of construction. It was shown that use of reclaimed rubber for rubberized asphalt seal coats on Saskatechewan highways is a practical construction application. The economic justification for rubber asphalt seals will be determined after a full assessment of performance. Initial indications are that Saskatchewan graded aggregates are a suitable cover material for the rubberized asphalt membranes used in the trials. 8 refs., 16 figs., 7 tabs.

  1. Design Method for Proportion of Cement-Foamed Asphalt Cold Recycled Mixture

    Directory of Open Access Journals (Sweden)

    Li Junxiao

    2018-01-01

    Full Text Available Through foaming experiment of Zhongtai AH-70 asphalt, the best foaming temperature water consumption and influence factors of foamed asphalt’s foaming features are determined; By designing the proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, for this mixture the best foamed asphalt addition is 3%, and proportion of the mixture is RAP: fine aggregate: cement=75:23:2. Using SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by the addition of cement was analysed. This research provides reference for cement admixture’s formulation in the designing of foamed asphalt cold in-place recycled mixture.

  2. Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix

    Science.gov (United States)

    Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed

    2017-09-01

    The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.

  3. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  4. Laboratory Evaluation of Ground Tire Rubber in Stone Mastic Asphalt

    Directory of Open Access Journals (Sweden)

    R. Muniandy

    2004-12-01

    Full Text Available Stone mastic asphalt (SMA is a gap-graded mix whereby stiffer asphalt cement is required to bind the stone matrix or arrangement of stones together. Although various asphalt additives are traditionally available, the use of rubber crumbs in SMA is still a new rresearch endeavor. Many countries around the world are facing serious problems on what to do with reject or discarded tires. In the present study, commercial truck tires, containing 70% natural rubber, were ground and pre-blended in 80-100 penetration asphalt for use in SMA mixtures. An assessment was made of the laboratory performance of rubberized SMA in terms of stability, resilent modulus, dynamic creep and tensile strength ratio. It was observed that the performance of SMA with ground tire rubber was for superior as compared to SMA mix with unmodified asphalt. Sulfur and Styrene Butadeline Rubber (SBR were used in rubberized SMA mixes as additives to test the sensitivity of SMA mixtures. As standard practice a 0.3% newly developed cellulose oil palm fiber was used in SMA to minimize the asphalt drain-down effects.

  5. Application of Conductive Materials to Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Hai Viet Vo

    2017-01-01

    Full Text Available Snow-melting pavement technique is an advanced preservation method, which can prevent the forming of snow or ice on the pavement surface by increasing the temperature using an embedded heating system. The main scope of this study is to evaluate the impact of conductive additives on the heating efficiency. The electrical resistivity and thermal conductivity were considered to investigate effects of conductive additives, graphite, and carbon fibers on the snow-melting ability of asphalt mixtures. Also, the distribution of the conductive additives within the asphalt concrete body was investigated by microstructural imaging. An actual test was applied to simulate realistic heating for an asphalt concrete mixture. Thermal testing indicated that graphite and carbon fibers improve the snow-melting ability of asphalt mixes and their combination is more effective than when used alone. As observed in the microstructural image, carbon fibers show a long-range connecting effect among graphite conductive clusters and gather in bundles when added excessively. According to the actual test, adding the conductive additives helps improve snow-melting efficiency by shortening processing time and raising the surface temperature.

  6. PV ready roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The integration of PV technology into roofs of houses has become very popular in the United States, Japan, Germany and The Netherlands. There could be a considerable market in the UK for these systems, given the large number of houses that are projected to be built in the next 10 years, and taking account of increased awareness of energy issues. A significant proportion of the market share of annual installed PV is for solar PV systems installed into homes (currently 15%), this is expected to rise to 23% (900MW) by 2010. The grid connected roof and building mounted facade systems represent the fastest growing market for PV systems in Europe. In conclusion, therefore, innovative approached for fixing PV technology onto roofs have been identified for both domestic roofs and for the commercial sector. With reference to production methodologies within the roofing industry, both approaches should be capable of being designed with PV-ready connections suitable for fixing PV modules at a later date. This will help overcome the key barriers of cost of installation, skills required and the lack of retrofit potential. Based on the results of this project, Sustainable Energy together with PV Systems are keen to take forward the full research and development of PV-ready systems for both the domestic and commercial sectors.

  7. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  8. USE OF CRUMB RUBBER FROM USED CAR TIRES IN MINERAL ASPHALT MIXES

    Directory of Open Access Journals (Sweden)

    Andrzej Plewa

    2014-11-01

    Full Text Available With the development of the automotive industry the disposal of used tires is constantly growing problem. Storage of waste rubber is associated with a very long period of decomposition of rubber in the natural conditions. Simultaneously new technologies are developed every year, which in the future may significantly promote recycling of this type of materials. The crumb rubbery modification of the road bitumen is the one of the environmentally safe solutions of rubbery decomposition. Improvement of resistance of the crumb rubbery modification of the road asphalt mixtures is the very important ecological aspect of the future. The article presents the results of research on the fatigue life resistance of asphalt concretes AC16P and AC22P with asphalt-rubber binders. The above analyses have been based on the results of tests of fatigue life of mineral-rubber-asphalt mixes determined by the method of prismatic four-point bending (4PB-PR. Mineral-rubber -asphalt mixes have been diversified according to the amount of the additive of rubber fines in asphalt-rubber binder. On the basis of the test results have been proven improvements functional properties mineral-rubber-asphalt mixes compared with mineral-asphalt mixes with unmodified asphalt.

  9. Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre

    Science.gov (United States)

    Hainin, M. R.; Idham, M. K.; Yaro, N. S. A.; Hussein, S. O. A. E.; Warid, M. N. M.; Mohamed, A.; Naqibah, S. N.; Ramadhansyah, P. J.

    2018-04-01

    Kenaf fibre has been recognised to increase the strength of concrete, but its application in asphalt concrete is still unanswered. This research investigated the performance of Hot Mix Asphalt (HMA) incorporated with different percentages of kenaf fibre (0.1 %, 0.2% and 0.3% by weight of dry aggregate) in term of resilient modulus, rutting performance using Asphalt Pavement analyser (APA) and moisture damage using the Modified Lottman test (AASHTO-T283). The fibre was interweaved to a diameter of about 5-10 mm and length of 30 mm which is three times the nominal maximum aggregate size used in the mix. Asphaltic mixtures of asphalt concrete (AC) 10 were prepared and compacted using Marshall compactor which were subsequently tested to evaluate the resilient modulus and moisture susceptibility. Twelve cylindrical specimens (150mm diameter) from AC10, two control samples with two modified ones for each percentage of kenaf fibres compacted using Gyratory compactor were used for rutting test using APA. The laboratory results reveal that the addition of kenaf fibres slightly reduce the resilient modulus of the mixes and that asphaltic mix with 0.3% kenaf fibre can mitigate both rutting and moisture damage which makes the pavement more sustain to the loads applied even in the presence of water. 0.3% kenaf fibre content is considered to be the optimal content which had the least rut depth and the highest TSR of 81.07%. Based on grid analysis, addition of 0.3% kenaf fibre in asphaltic concrete was recommended in modifying the samples.

  10. Establishing green roof infrastructure through environmental policy instruments.

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  11. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  12. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  13. Perspectives of roof bolt use in the Kuzbass

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, A P

    1983-10-01

    Use of roof bolting for strata control in mine roadways and underground chambers in Kuzbass mines is discussed. Use of roof bolting in the Kuzbass is increasing. In 1982 roof bolting was used in 50% of workings driven in the basin; in 15 coal mines roof bolting was the predominant method for strata control. Use of roof bolting rather than timber props permitted advance rate of mine drivage in the Kuzbass to be increased by 1.5-2.0 times. Interaction between roof bolts and rock strata is analyzed. The following bolt types are considered: timber roof bolts, steel expansion shell bolts and thread bar bolts. Bolt design is shown, along with methods for roof bolt installation in roadways and chambers. Roof bolting during level, inclined or steep seam mining, for strata control at junctions of working faces with gate roads, at junctions of 2 roadways, in coal chutes, in hydraulic mines, during thick seam slicing with hardening stowing and longwall mining with hydraulic stowing is analyzed. Effects of roof bolting on strata control efficiency in steep coal mines employing AShchM systems are evaluated.

  14. Regional implementation of warm mix asphalt : [tech summary].

    Science.gov (United States)

    2014-09-01

    Asphalt is used in over 94 percent of all paved roadways in the United States. The ability to reduce its cost and : emissions while improving its performance has bene ts that could potentially change the direction the asphalt : industry moves in t...

  15. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sustainability of thermoplastic vinyl roofing membrane systems

    Energy Technology Data Exchange (ETDEWEB)

    Graveline, S. P. [Sika Sanarfil, Canton, (United States)

    2010-07-01

    The International Council for Research and Innovation in Building and Construction (CIB-RILEM) has developed a framework for sustainable roofing based on a series of tenets divided into three key areas: preservation of the environment, conservation of energy, and extended roof life. This paper investigated the sustainability of thermoplastic vinyl roof membranes using these guidelines and the relevant tenets for roof system selection. Several tenets provided alternatives for minimizing the burden on the environment using non-renewable raw materials, conserving energy with thermal insulation, and extending the lifespan of all roof components by using long lasting membranes. A life cycle assessment was carried out to provide a quantitative framework for assessing the sustainability of roofing materials. It was found that the PVC membrane systems had a lesser impact on the environment than other competing systems.

  17. Aging of Rejuvenated Asphalt Binders

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadafzali

    2017-01-01

    Full Text Available An important concern that limits the RAP content in asphalt mixtures is the fact that the aged binder that is present in the RAP can cause premature cracking. Rejuvenators are frequently added to high RAP mixtures to enhance the properties of the binder. There is no existing method to predict the longevity of a rejuvenated asphalt. This study investigated the aging of rejuvenated binders and compared their durability with that of virgin asphalt. Various samples with different types and proportions of RAP, virgin binder, and rejuvenator were aged by RTFO and three cycles of PAV. DSR and BBR tests were conducted to examine the high-temperature and low-temperature rheological properties of binders. Results indicated that the type and dosage of the rejuvenator have a great influence on the aging rate and durability of the binder. Some rejuvenators make the binder age slower, while others accelerate aging. These observations confirm the importance of evaluating the long-term aging of recycled binders. For this purpose, critical PAV time was proposed as a measure of binder’s longevity.

  18. Effect of moisture and freeze-thaw on mechanical properties of CRM asphalt mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Seok; Cho, Kee-Ju [Kyonggi University, Suwon(Korea)

    2000-06-30

    This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw. (author). 9 refs., 4 tabs., 8 figs.

  19. The first engineered self-healing asphalt road : How is it performing?

    NARCIS (Netherlands)

    Liu, Q.; Schlangen, H.E.J.G.; Van Bochove, G.

    2013-01-01

    Porous asphalt shows excellent performance in both noise reduction and water drainage. Although porous asphalt has these great qualities, its service life is much shorter (sometimes only half) compared to dense graded asphalt roads. Ravelling, which is the loss of aggregate particles from the

  20. Influence of superplasticizer on the rheology of fresh cement asphalt paste

    Directory of Open Access Journals (Sweden)

    Jianwei Peng

    2015-12-01

    Full Text Available Cement asphalt (CA paste is an organic–inorganic composite material of cement and asphalt emulsion. Its complicated rheological behavior affects its site application in high speed railway. Superplasticizers (SPs are usually used to improve the construction properties of fresh CA mortar. However, the principle of SPs acting on the rheology of CA paste is seldom studied. In this paper, the effects of polycarboxylate (PCA and naphthalenesulfonate (PNS on the rheological properties of CA pastes, asphalt emulsions (both anionic and cationic and cement pastes were studied, respectively from the viewpoint of adsorption and zeta potential. Centrifugation method was used to determine the adsorption of asphalt onto cement particle, electroacoustic method was employed to study the zeta potential of cement particles of concentrated paste, and optical microscopy was used to observe the dispersion of particles. The results suggest that both PCA and PNS can decrease the yield stress and apparent viscosity of CA pastes. The effect of SPs on the rheology of CA paste can be explained by two reasons. First, PNS can adsorb on both asphalt and cement surface, change the zeta potential and then decrease their yield stress and viscosity, while PCA only adsorb on cement surface. Second, the competitive adsorption of SPs and asphalt prevents asphalt from adsorbing on cement surface and then more asphalt droplets are released into aqueous solution, thereby enhancing the particle dispersion.

  1. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2017-02-01

    Full Text Available Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC. This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  2. Induction healing of asphalt mixes with steel slag

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Wang, H.; van de Ven, M.F.C.; Scarpas, Athanasios

    2018-01-01

    Asphaltic mixes are self-healing materials since they have the capacity to close internal microcracks at higher temperatures or under external force. To trigger their self-healing, asphalt mixes modified with inductive agents can be heated and in that way healed through applying alternating magnetic

  3. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  4. Laboratory Evaluation of Aging Behaviour of SBS Modified Asphalt

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-01-01

    Full Text Available To study the effect of aging SBS modified asphalt on the performance of asphalt pavement, aging at various times and temperatures was conducted with thin film oven, and then tests were made about the penetration, softening point, ductility, viscosity, toughness, and fluorescence microscopy of modified asphalt with different aging levels. The results show that, with the increasing of aging time, the penetration and ductility of modified asphalt decrease while its softening point and viscosity increase, and the variation trend of the toughness and tenacity is related to the aging temperature; the aging dynamic model with viscosity as parameter can well characterize the aging process of modified asphalt; at microlevel, with the decreasing of SBS particle size, the uniformity of particle size is better. Analysis of macroscopic properties, microscopic characteristics, and significance shows that the SBS particle area ratio has a significant correlation with tenacity as the aging temperature changes. When the aging temperature is 163°C, the SBS particle area ratio still has a significant correlation with tenacity as the aging time changes.

  5. A Review of the Application of Zeolite Materials in Warm Mix Asphalt Technologies

    Directory of Open Access Journals (Sweden)

    Agnieszka Woszuk

    2017-03-01

    Full Text Available Among warm mix asphalt (WMA technologies, asphalt foaming techniques offer high potential in terms of decreasing production temperature. Reluctance of manufacturers to introduce this technology is connected with the concerns of a large investment costs. However, there are known additives which, through asphalt foaming, allow a decrease in temperatures by approximately 30 °C; the use of these additives do not involve expensive investment in order to change the asphalt mix production method. These additives are zeolites, that is, minerals of the aluminosilicate group, the crystalline structure of which contains water bound in a specific way. Its release, at mix asphalt production temperatures, causes asphalt foaming. It is currently known that zeolites can be used in WMA, including natural and synthetic zeolites obtained using chemical reagents and waste. This review presents the results of studies of WMA technology, including the effects of zeolite addition on asphalt properties and mix asphalt, as well as related environmental, economic, and technological benefits.

  6. Investigation on the temperature of the asphalt-concrete facing of embankment dams

    Directory of Open Access Journals (Sweden)

    Karel Adam

    2016-01-01

    Full Text Available Asphalt concrete is a traditional material used for the constructions of upstream sealing of reservoir dams, particularly in upper reservoirs of pumped storage hydroelectric plants. The asphalt layer is often exposed to significant fluctuations of temperature caused, for example, by heating the facing from the sun and by its subsequent rapid cooling by water during reservoir periodical filling. To better understand the physical phenomena and behaviour of the facing in terms of vapour diffusion, the state of stress, etc., it is necessary to know temperature phenomena in the asphalt facing. This paper describes the measurement of temperature in the asphalt facing of the Dlouhe Strane pumped storage hydroelectric plant and its evaluation using 1D numerical model of heat flow in the asphalt concrete facing. Numerical simulation for selected load scenarios enabled the temperature phenomena that take place in the construction of the asphalt-concrete facing to be quantified. The analysis shows that during insolation, the asphalt facing is exposed to the significant temperature rise on its surface and also over its whole thickness. Similarly during frost weather the facing becomes frozen in its entire thickness. During the day cycle the temperature in the asphalt layers changes significantly. However, the temperature in the underlying rockfill dam body becomes steady approximately at the depth of 1.0 m. Keywords: Asphalt concrete facing, Temperature distribution analysis, Embankment dam

  7. The use of waste materials in asphalt concrete mixtures.

    Science.gov (United States)

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  8. Fatigue Evaluation of Recycled Asphalt Mixture Based on Energy-Controlled Mode

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-01-01

    Full Text Available The fatigue properties of asphalt mixtures are important inputs for mechanistic-empirical pavement design. To understand the fatigue properties of asphalt mixtures better and to predict the fatigue life of asphalt mixtures more precisely, the energy-controlled test mode was introduced. Based on the implementation theory, the laboratory practice for the energy-controlled mode was realized using a four-point-bending fatigue test with multiple-step loading. In this mode, the fatigue performance of typical AC-20 asphalt specimens with various reclaimed asphalt pavement (RAP contents was tested and evaluated. Results show that the variation regulation of the dissipated energy and accumulative energy is compatible with the loading control principle, which proves the feasibility of the method. In addition, the fatigue life of the asphalt mixture in the energy-controlled mode was between that for the stress-controlled and strain-controlled modes. The specimen with a higher RAP content has a longer fatigue life and better fatigue performance.

  9. Improving Asphalt Mixtures Performance by Mitigating Oxidation Using Anti-Oxidants Additives

    Science.gov (United States)

    Dessouky, Samer; Diaz, Manuel

    Polymer modified additives are typically used to improve rheological properties of asphalt binder as well as mechanical properties of asphalt concrete mix. In this study, polymer-modified binder PG70-22 is mixing with two co-polymers enhanced with anti-oxidant agents namely; Solution Styrene-Butadiene Rubber (SSBR) and Solution Ethylene-Butylene/Styrene (SEBS). The objective of this study is to characterize the effect of those additives into the rheological properties of the asphalt binder using temperature sweep test and mechanical properties of asphalt mixes. The aging index is determined to evaluate the role of additives to reduce brittleness after aging of the binder. The performance of asphalt mixes were characterized by Hamburg Wheel Tracking Test for moisture damage, Beam Fatigue Test for fatigue properties and Flow Number Test for rutting performance. It is found that the asphalt mixes with enhanced binders are improving its rutting and moisture resistance but decreased its fatigue life compared to the control mix.

  10. Feasibility Assessment of the Use of Recycled Aggregates for Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    F. C. G. Martinho

    2018-05-01

    Full Text Available The use of recycled aggregates, manufactured from several by-products, to replace virgin aggregates in the production of pavement asphalt mixtures needs to be encouraged. Nevertheless, there are some concerns and uncertainties about the actual environmental, economic and mechanical performance resulting from the incorporation of recycled aggregates in asphalt mixtures. Therefore, this paper has the goal of discussing important features to help decision makers to select recycled aggregates as raw materials for asphalt mixtures. Based on the literature review carried out and the own previous experience of the authors, the article’s main findings reveal that incorporating some of the most common recycled aggregates into asphalt mixtures is feasible, even in a life-cycle analysis perspective. Although some specific technical operations are sometimes necessary when using recycled aggregates in asphalt mixtures, some benefits in terms of environmental impacts, energy use and costs are likely to be achieved, as well as in what concerns the mechanical performance of the asphalt mixtures.

  11. Green roofs : a resource manual for municipal policy makers

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, G.; Currie, B.A.; Doshi, H.; Wieditz, I. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2006-05-15

    As knowledge of the environmental benefits of green roofs and technology improves, green roofs are quickly gaining acceptance in North America. European jurisdictions have been using green roof technology for stormwater management, to reduce energy use in buildings and to increase amenity space. By reviewing the reasons that municipalities throughout the world have set green roof policies and programs, policy makers can more easily determine which policies suit their needs. This manual provided an overview of international and Canadian green roof policies and programs. It presented information on 12 jurisdictions that demonstrated leadership in green roof policy development. The manual also presented information on an additional 13 jurisdictions with less-developed green roof policies. Activities that were discussed for each of these jurisdictions included: description of jurisdiction; key motivators; green roof policy; process to establish policy; effectiveness; lessons learned; future predictions; and applicability to Canada of international jurisdictions. The manual also provided general information on green roofs such as a definition of green roofs and green roof terminology. Key motivators for green roofs include stormwater runoff control; reduction in urban heat-island effect; reduction in building energy consumption; and air pollution control. refs., tabs., figs.

  12. Green roofs provide habitat for urban bats

    Directory of Open Access Journals (Sweden)

    K.L. Parkins

    2015-07-01

    Full Text Available Understanding bat use of human-altered habitat is critical for developing effective conservation plans for this ecologically important taxon. Green roofs, building rooftops covered in growing medium and vegetation, are increasingly important conservation tools that make use of underutilized space to provide breeding and foraging grounds for urban wildlife. Green roofs are especially important in highly urbanized areas such as New York City (NYC, which has more rooftops (34% than green space (13%. To date, no studies have examined the extent to which North American bats utilize urban green roofs. To investigate the role of green roofs in supporting urban bats, we monitored bat activity using ultrasonic recorders on four green and four conventional roofs located in highly developed areas of NYC, which were paired to control for location, height, and local variability in surrounding habitat and species diversity. We then identified bat vocalizations on these recordings to the species level. We documented the presence of five of nine possible bat species over both roof types: Lasiurus borealis, L. cinereus, L. noctivagans, P. subflavus,andE. fuscus. Of the bat calls that could be identified to the species level, 66% were from L. borealis. Overall levels of bat activity were higher over green roofs than over conventional roofs. This study provides evidence that, in addition to well documented ecosystem benefits, urban green roofs contribute to urban habitat availability for several North American bat species.

  13. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Science.gov (United States)

    Kamil Arshad, Ahmad; Awang, Haryati; Shaffie, Ekarizan; Hashim, Wardati; Rahman, Zanariah Abd

    2018-03-01

    Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  14. Performance Evaluation of Hot Mix Asphalt with Different Proportions of RAP Content

    Directory of Open Access Journals (Sweden)

    Kamil Arshad Ahmad

    2018-01-01

    Full Text Available Reclaimed Asphalt Pavement (RAP is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.

  15. The use of aluminum dome tank roofs

    International Nuclear Information System (INIS)

    Morovich, G.L.

    1992-01-01

    Since the late 1970's the aluminum dome tank roof has gained wide usage for both new and retrofit applications. The increased application for the structure results from a need for maintenance reduction, environmental considerations, concern for product quality and economics. The American Petroleum Institute (API) has approved Standard API 650, Appendix G - Structurally Supported Aluminum Dome Roofs for publication. The aluminum dome was originally used as weather cover for retrofiting external floating roof tanks. The roof was considered for the reduction of maintenance related to draining water from the external floating roofs and problems resulting from freezing of drain lines and snow accumulation. This paper reports that environmental concerns have expanded the value of aluminum dome roofs. Rainwater bypassing the seals of an external floating roof became classified as a hazardous material requiring special and expensive disposal procedures. The marketing terminal facilities typically do not have the capacity for proper treatment of contaminated bottom water. With new fuel additives being water soluble, water contamination not only created a hazardous waste disposal problem, but resulted in reduced product quality

  16. Creating a marketplace for green roofs in Chicago

    International Nuclear Information System (INIS)

    Vitt Sale, L.; Berkshire, M.

    2004-01-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs

  17. Creating a marketplace for green roofs in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Vitt Sale, L. [Wright and Co. Chicago, IL (United States); Berkshire, M. [City of Chicago, IL (United States)

    2004-07-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs.

  18. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  19. Green roofs as a means of pollution abatement

    International Nuclear Information System (INIS)

    Rowe, D. Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues. - Green roofs can help mitigate air pollution, carbon dioxide emissions, sequester carbon, conserve energy, reduce the urban heat island, and improve water quality.

  20. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Utilizing Lab Tests to Predict Asphalt Concrete Overlay Performance

    Science.gov (United States)

    2017-12-01

    A series of five experimental projects and three demonstration projects were constructed to better understand the performance of pavement overlays using various levels of asphalt binder replacement (ABR) from reclaimed asphalt pavement (RAP), recycle...

  2. An environmental cost-benefit analysis of alternative green roofing strategies

    Science.gov (United States)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  3. Crack repair of asphalt concrete with induction energy

    NARCIS (Netherlands)

    García, A.; Schlangen, E.; Ven, M. van de; Vliet, D. van

    2011-01-01

    It is well known that the healing rates of asphalt courses increase with the temperature. A new method, induction heating, is used in this paper to increase the lifetime of asphalt concrete pavements. Mastic will be first made electrically conductive by the addition of conductive fibers. Then it

  4. Parametric study of roof diaphragm stiffness requirements

    International Nuclear Information System (INIS)

    Jones, W.D.; Tenbus, M.A.

    1991-01-01

    A common assumption made in performing a dynamic seismic analysis for a building is that the roof/floor system is open-quotes rigidclose quotes. This assumption would appear to be reasonable for many of the structures found in nuclear power plants, since many of these structures are constructed of heavily reinforced concrete having floor/roof slabs at least two feet in thickness, and meet the code requirements for structural detailing for seismic design. The roofs of many Department of Energy (DOE) buildings at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, have roofs constructed of either metal, precast concrete or gypsum plank deck overlaid with rigid insulation, tar and gravel. In performing natural phenomena hazard assessments for one such facility, it was assumed that the existing roof performed first as a flexible diaphragm (zero stiffness) and then, rigid (infinitely stiff). For the flexible diaphragm model it was determined that the building began to experience significant damage around 0.09 g's. For the rigid diaphragm model it was determined that no significant damage was observed below 0.20 g's. A Conceptual Design Report has been prepared for upgrading/replacing the roof of this building. The question that needed to be answered here was, open-quotes How stiff should the new roof diaphragm be in order to satisfy the rigid diaphragm assumption and, yet, be cost effective?close quotes. This paper presents a parametric study of a very simple structural system to show that the design of roof diaphragms needs to consider both strength and stiffness (frequency) requirements. This paper shows how the stiffness of a roof system affects the seismically induced loads in the lateral, vertical load resisting elements of a building and provides guidance in determining how open-quotes rigidclose quotes a roof system should be in order to accomplish a cost effective design

  5. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  6. Performance characterizations of asphalt binders and mixtures incorporating silane additive ZycoTherm

    Science.gov (United States)

    Hasan, Mohd Rosli Mohd; Hamzah, Meor Othman; Yee, Teh Sek

    2017-10-01

    Experimental works were conducted to evaluate the properties of asphalt binders and mixtures produced using a relatively new silane additive, named ZycoTherm. In this study, 0.1wt% ZycoTherm was blended with asphalt binder to enable production of asphalt mixture at lower than normal temperatures, as well as improve mix workability and compactability. Asphalt mixture performances towards pavement distresses in tropical climate region were also investigated. The properties of control asphalt binders (60/70 and 80/10 penetration grade) and asphalt binders incorporating 0.1% ZycoTherm were reported based on the penetration, softening point, rotational viscosity, complex modulus and phase angle. Subsequently, to compare the performance of asphalt mixture incorporating ZycoTherm with the control asphalt mixture, cylindrical samples were prepared at recommended temperatures and air voids depending on the binder types and test requirements. The samples were tested for indirect tensile strength (ITS), resilient modulus, dynamic creep, Hamburg wheel tracking and moisture induced damage. From compaction data using the Servopak gyratory compactor, specimen prepared using ZycoTherm exhibit higher workability and compactability compared to the conventional mixture. From the mixture performance test results, mixtures prepared with ZycoTherm showed comparable if not better performance than the control sample in terms of the resistance to moisture damage, permanent deformation and cracking.

  7. Mechanical Property and Analysis of Asphalt Components Based on Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-01-01

    Full Text Available The asphalt-aggregate interface interaction plays a significant role in the overall performances of asphalt mixture. In order to analyze the chemical constitution of asphalt effects on the asphalt-aggregate interaction, the average structure C64H52S2 is selected to represent the asphalt, and the colloid, saturated phenol, and asphaltene are selected to represent the major constitutions in asphalt. The molecular models are established for the three compositions, respectively, and the Molecular Dynamics (MD simulation was conducted for the three kinds of asphaltene-aggregate system at different presses. Comparing the E value of Young modulus of these three polymers, the maximum modulus value of asphaltene was 2.80 GPa, the modulus value of colloid was secondary, and the minimum modulus of saturated phenol was 0.52 GPa. This result corresponds to conventional understanding.

  8. Effects of crumb rubber content and curing time on the properties of asphalt concrete and stone mastic asphalt using dry process

    Directory of Open Access Journals (Sweden)

    H.T. Tai Nguyen

    2018-05-01

    Full Text Available Along with the rapid increase in the number of road vehicles, a large amount of waste tires have been created, causing negative effects to the environment. Many attempts have been made to effectively reduce this type of solid waste including the reuse of recycled rubber powder from waste tires as an additive for improving the performance of asphalt mixtures. In this work, the authors aim to study the effects of crumb rubber (CR on the mechanical properties, especially the rutting resistance, of CR modified asphalt concrete (AC and stone mastic asphalt (SMA by varying two factors-namely, the content of additive and the curing time. The dimension of used CR ranges from 0 to 2.36 mm, which is not too coarse for promoting the CR–bitumen interaction and not too fine for facilitating the production of CR. The content of CR was increased gradually from 0 to 3% to examine the effects of CR content on the engineering properties and determine the optimal content in the mixture. It was observed that the optimal content is 1.5–2%, while the optimal curing time that contributes to the maximal increase in the mechanical characteristics of both mixtures could not be determined. In the range of 0–5 h of curing time, the longer the asphalt mixture is maintained at a high temperature, the better the performance of mixture will be. Ageing was found to have influence on the performance of asphalt mixtures; however, its effects are not as important as those of CR modification. Keywords: Crumb rubber, Dry process, Asphalt concrete, SMA, Curing time

  9. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    Directory of Open Access Journals (Sweden)

    Li Junxiao

    2018-01-01

    Full Text Available Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products contained in the foamed asphalt mixture hydrolyzed into space mesh structure and wrapped up the aggregate particle, this is the main reason that the cement can enhance the mixture’s intensity as well as the water stability. This research provides reference for cement admixture’s formulation in the designing of foamed asphalt cold in-place recycled mixture.

  10. Partial substitution of asphalt pavement with modified sulfur

    Directory of Open Access Journals (Sweden)

    E.R. Souaya

    2015-12-01

    Full Text Available The use of sulfur in pavement laying was developed in 1980 but it was restricted in the late 19th century due to its environmental problems and its high reactivity toward oxidation processes which give sulfuric acid products that are capable of destroying the asphalt mixture. The study involved the conversion of elemental sulfur to a more stable modified one using a combination of byproducts of olefin hydrocarbons that were obtained from petroleum fractional distillates and cyclic hydrocarbon bituminous residue at 145 °C. The changes in the structural characteristics and morphology of prepared modified sulfur were studied using XRD and SEM respectively. Also DSC curves help us to elucidate the changes in sulfur phases from α-orthorhombic to β-mono clinic structure. The technique of nanoindentation helps us to compare the mechanical properties of modified and pure sulfur including modulus of elasticity and hardness. The hot mixture asphalt designs were prepared according to the Marshall Method in which the asphalt binder content was partially substituted with 20%, 30%, 40%, and 50% modified sulfur. The mechanical properties were measured including Marshall Stability, flow, air voids, and Marshall Stiffness. From the overall study, the results indicated that asphalt could partially be substituted with modified sulfur with no significant deleterious effect on performance and durability of hot mixed asphalt.

  11. Impact of the Superpave hot mix asphalt properties on its permanent deformation behavior

    Directory of Open Access Journals (Sweden)

    Qasim Zahra

    2018-01-01

    Full Text Available In Iraq, the severity of rutting has increased in asphalt pavements possibly due to the increase in truck axle loads, tyre pressure, and high pavement temperature in summer. As of late, Superpave has been accounted as an enhanced system for performance based design, analysis of asphalt pavement performance prediction for asphalt concrete mixes. In this research the development of permanent deformation in asphalt concrete under repeated loadings was investigated, Wheel-Tracking apparatus has been used in a factorial testing program during which 44 slab samples were tested to simulate actual pavement. The objectives of the present research include; investigating the main factors affecting rutting in asphalt concrete mixture, quantifying the effect of SBS polymer and steel reinforcement on asphalt concrete mixtures in addition to studying the effect of variables on the asphalt concrete mixes against moisture sensitivity. It has been determined that that increasing of compaction temperature from 110 to 150°C will decrease the permanent deformation by 20.5 and 15.6 percent for coarse and fine gradation control asphalt mixtures, respectively. While the permanent deformation decreases by 21.3 percent when the compaction temperature is increased from 110 to 150°C for coarse gradation SBS modified asphalt mixtures.

  12. How to transform an asphalt concrete pavement into a solar turbine

    International Nuclear Information System (INIS)

    García, Alvaro; Partl, Manfred N.

    2014-01-01

    Highlights: • We create a system for harvesting energy from asphalt concrete. • We create an artificial porosity in the asphalt concrete. • We connect a chimney to this porosity. • Differences in temperature produce an air flow. • This air flow serves also for cooling down the pavement. - Abstract: Asphalt concrete can absorb a considerable amount of the incident solar radiation. For this reason asphalt roads could be used as solar collectors. There have been different attempts to achieve this goal. All of them have been done by integrating pipes conducting liquid, through the structure of the asphalt concrete. The problem of this system is that all pipes need to be interconnected: if one is broken, the liquid will come out and damage the asphalt concrete. To overcome these limitations, in this article, an alternative concept is proposed:parallel air conduits, where air can circulate will be integrated in the pavement structure. The idea is to connect these artificial pore volumes in the pavement to an updraft or to a downdraft chimney. Differences of temperature between the pavement and the environment can be used to create an air flow, which would allow wind turbines to produce an amount of energy and that would cool the pavement down in summer or even warm it up in winter. To demonstrate that this is possible, an asphalt concrete prototype has been created and basics calculations on the parameters affecting the system have been done. It has been found that different temperatures, volumes of air inside the asphalt and the difference of temperature between the asphalt concrete and the environment are critical to maximize the air flow through the pavement. Moreover, it has been found that this system can be also used to reduce the heat island effect

  13. Impact of Sustainable Cool Roof Technology on Building Energy Consumption

    Science.gov (United States)

    Vuppuluri, Prem Kiran

    Highly reflective roofing systems have been analyzed over several decades to evaluate their ability to meet sustainability goals, including reducing building energy consumption and mitigating the urban heat island. Studies have isolated and evaluated the effects of climate, surface reflectivity, and roof insulation on energy savings, thermal load mitigation and also ameliorating the urban heat island. Other sustainable roofing systems, like green-roofs and solar panels have been similarly evaluated. The motivation for the present study is twofold: the first goal is to present a method for simultaneous evaluation and inter-comparison of multiple roofing systems, and the second goal is to quantitatively evaluate the realized heating and cooling energy savings associated with a white roof system compared to the reduction in roof-top heat flux. To address the first research goal a field experiment was conducted at the International Harvester Building located in Portland, OR. Thermal data was collected for a white roof, vegetated roof, and a solar panel shaded vegetated roof, and the heat flux through these roofing systems was compared against a control patch of conventional dark roof membrane. The second research goal was accomplished using a building energy simulation program to determine the impact of roof area and roof insulation on the savings from a white roof, in both Portland and Phoenix. The ratio of cooling energy savings to roof heat flux reduction from replacing a dark roof with a white roof was 1:4 for the month of July, and 1:5 annually in Portland. The COP of the associated chillers ranges from 2.8-4.2, indicating that the ratio of cooling energy savings to heat flux reduction is not accounted for solely by the COP of the chillers. The results of the building simulation indicate that based on energy savings alone, white roofs are not an optimal choice for Portland. The benefits associated with cooling energy savings relative to a black roof are offset by

  14. Six aspects to inspirational green roof design

    Energy Technology Data Exchange (ETDEWEB)

    Kiers, H. [SWA Group, Sausalito, CA (United States)

    2004-07-01

    Green roofs have been categorized as a technology that is not initially faster, better or cheaper, and may even under perform established products. However, green roofs have features and values that early adopters are ready to experiment with in small markets, thereby creating awareness of the technology. Termed as disruptive technologies, green roofs can become competitive within the mainstream market against established products. The challenge in green roof construction is to find the correct balance between idealistic principles and leading edge design. This paper presented case studies to examine the following 6 aspects of design fundamentals to the creation of inspirational green roofs: the use of colour; experimentation with materials and technology; incorporation of texture, form, and pattern; definition of space; engagement of vistas; and, principles of bio-regionalism. It was concluded that good design is not enough to lead to widespread green roof implementation. It was emphasized that change will occur primarily because of the benefits acquired through implementation. 11 refs., 7 figs.

  15. Performance evaluation on cool roofs for green remodeling

    Science.gov (United States)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  16. Performance of Hot Asphalt Mixtures Containing Plastic Bottles as Additive

    Directory of Open Access Journals (Sweden)

    Jan Hakeem

    2017-01-01

    Full Text Available This study focuses on evaluating the resistance of polymer modified asphalt mixes and the role played by asphalt in the realm of construction is undeniably important. Addition of polymers(PB as additives to asphalt helps to improve the strength and water repellent property of the mix and as well as helps environment in various ways and at the same time, analyzing its lower maintenance activities and service life is most important. The use of inexpensive polymers, in this case, waste polymers has without any doubt proven to be the most convenient way of reducing the cost of construction and at the same time maintaining quality. The main resolve for this research was to establish the effects of the use of plastic bottles on hot asphalt and its mixtures. In order to put this into perspective, varying percentages of asphalt mixtures were calculated and subjected to laboratory tests. The two-factor variance analysis (ANOVA was conducted to determine the significance at various confidence limits. The results indicate that the inclusion of Polyethylene Terephthalate (PET had a particularly substantial effect on the properties of asphalt. Consequently, it can encourage the re-utilization of waste in the manufacturing industry in an ecologically friendly and cost-effective way.

  17. Green Roofs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-08-01

    A New Technology Demonstration Publication Green roofs can improve the energy performance of federal buildings, help manage stormwater, reduce airborne emissions, and mitigate the effects of urban heat islands.

  18. Effect of tack coat on bonding characteristics at interface between asphalt concrete layers; Asphalt concrete no sokan fuchaku ni okeru tack concrete no koka

    Energy Technology Data Exchange (ETDEWEB)

    Hachiya, Y. [Port and Harbour Research Inst., Kanagawa (Japan); Umeno, S. [Ministry of Transport, Tokyo (Japan); Sato, K. [Nagaoka National College of Technology, Niigata (Japan)

    1997-08-20

    The effect of tack coat on bonding characteristics at the interface between surface and base layers was studied for airport asphalt pavement. In a fracture behavior, shear stress is first caused by horizontal loading at the interface between surface and base layers, resulting in peeling of the layers in the case of poor bonding. Further loading under the above condition results in fracture of asphalt concrete layers by bending or tensile actions. The bonding strength between layers decreases with an increase in interval of construction between surface and base layers, while the bonding strength between layers increases with sufficient curing of tack coat. Curing for 1 hour in the daytime and 6 hours or more in the nighttime is sufficient for evaporation of water content in asphalt emulsion. The use of conventional asphalt emulsion for the sandy interface as tack coat deduces the bonding strength in the case of poor curing. Asphalt emulsion containing high-penetration rubber can improve the bonding strength. 12 refs., 27 figs., 2 tabs.

  19. Evaluation of factors that affect rutting resistance of asphalt mixes by orthogonal experiment design

    Directory of Open Access Journals (Sweden)

    Guilian Zou

    2017-05-01

    Full Text Available Rutting has been one of the major distresses observed on asphalt pavement in China, due to increasing traffic volume, heavy axle load, continuous hot weather, etc., especially in long-steep-slope section, bus stops, etc. Many factors would affect rutting resistance of asphalt pavement, including material properties, climatic condition, traffic volumes, speed, and axle types, and construction quality.The orthogonal experimental design method was used in this study to reduce the number of tests required, without comprising the validity of the test results. The testing variables and their levels were selected according to investigations and field test results. Effects of various factors on asphalt pavement rutting performance were evaluated, including the asphalt binders, mixture type (aggregate gradation, axle load, vehicle speed and temperature.In this study, the wheel tracking test was used to evaluate rutting performance, as represented by the parameter Dynamic Stability (DS, of the various asphalt mixes. Test results were analyzed using range analysis and analysis of variance (ANOVA. All four factors evaluated in this study had significant effects on pavement rutting performance. The ranking of the significance was asphalt mixture type, temperature, loading frequency, and tire-pavement contact pressure. Asphalt mixture type was the most important factor that affects rutting resistance. Within the asphalt mixtures, asphalt binder had significant effects on rutting performance of mixes more than aggregate gradation. Rutting resistance of SBS modified asphalt mixes was significantly better than neat asphalt mixes, and skeleton dense structure mixes were better than suspended dense structure mixes. Keywords: Asphalt mixes, Rutting resistance, Effect factor, Orthogonal experiment design

  20. State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives

    Directory of Open Access Journals (Sweden)

    Okan Sirin

    2018-01-01

    Full Text Available The detrimental effects of hardening in asphalt pavements were first recognized by pioneering pavement engineers in the 1900s and have been studied extensively during the last 70 years. This hardening process, referred to as asphalt aging, is generally defined as change in the rheological properties of asphalt binders/mixtures due to changes in chemical composition during construction and its service life period. Aging causes the asphalt material to stiffen and embrittle, which affects the durability and leads to a high potential for cracking. This paper presents the state of the art on asphalt and asphalt mixture aging and use of antioxidant additives to retard the aging. A picture of complex molecular structure of asphalt and its changes due to atmospheric condition and various protocols used to simulate aging in laboratory environment are also discussed. Emphasis is given on recent studies on simulation of aging of asphalt mixtures as there has been limited research on mixtures compared to the asphalt binder. Finally, this paper presents the application of antiaging techniques and its mechanism, use of various types of antioxidant additives to retard aging of asphalt and, hence, improve the performance of asphalt pavements.

  1. On the representative volume element of asphalt concrete at low temperature

    Science.gov (United States)

    Marasteanu, Mihai; Cannone Falchetto, Augusto; Velasquez, Raul; Le, Jia-Liang

    2016-08-01

    The feasibility of characterizing asphalt mixtures' rheological and failure properties at low temperatures by means of the Bending Beam Rheometer (BBR) is investigated in this paper. The main issue is the use of thin beams of asphalt mixture in experimental procedures that may not capture the true behavior of the material used to construct an asphalt pavement.

  2. Visualizing asphalt roller trajectories in context: acquiring, processing, and representing sensor readings

    NARCIS (Netherlands)

    Vasenev, Alexandr

    2015-01-01

    The asphalt compaction process relies heavily on the skills and knowledge of roller operators who act alongside other stakeholders involved in asphalt paving. It is essential that these construction specialists: (1) are adequately informed about the initial temperature distribution of the asphalt

  3. Assessment of low temperature cracking in asphalt pavement mixes and rheological performance of asphalt binders

    Science.gov (United States)

    Sowah-Kuma, David

    Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE(TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave(TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the

  4. Variations of PV Panel Performance Installed over a Vegetated Roof and a Conventional Black Roof

    Directory of Open Access Journals (Sweden)

    Mohammed J. Alshayeb

    2018-05-01

    Full Text Available The total worldwide photovoltaic (PV capacity has been growing from about 1 GW at the beginning of the twenty-first century to over 300 GW in 2016 and is expected to reach 740 GW by 2022. PV panel efficiency is reported by PV manufacturers based on laboratory testing under Standard Testing Condition with a specific temperature of 25 °C and solar irradiation of 1000 W/m2. This research investigated the thermal interactions between the building roof surface and PV panels by examining the differences in PV panel temperature and energy output for those installed over a green roof (PV-Green and those installed over a black roof (PV-Black. A year-long experimental study was conducted over the roof of an educational building with roof mounted PV panels with a system capacity of 4.3 kW to measure PV underside surface temperature (PV-UST, ambient air temperature between PV panel and building roof (PV-AT, and PV energy production (PV-EP. The results show that during the summer the PV-Green consistently recorded lower PV-UST and PV-AT temperatures and more PV-EP than PV-Black. The average hourly PV-EP difference was about 0.045 kWh while the maximum PV-EP difference was about 0.075 kWh, which represents roughly a 3.3% and 5.3% increase in PV-EP. For the entire study period, EP-Green produced 19.4 kWh more energy, which represents 1.4% more than EP-Black.

  5. Volumetric Analysis and Performance of Hot Mix Asphalt with Variable Rap Content

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2017-01-01

    Full Text Available Incorporating Reclaimed Asphalt Pavement (RAP to the asphalt concrete mixture for highway construction offer many benefits including energy consumption, conservation of natural resources and preservation of the environment to associated emissions. This paper presents a study on performance of Hot Mix Asphalt with variable RAP content. The study is carried out to evaluate the Marshall Properties and Performance of RAP-Asphalt mixes using conventional asphaltic concrete mix AC14. Marshall Mix Design Method was used to produce control mix (0% RAP and RAP-Asphalt mixes samples which consist of 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia. The Marshall Properties analysis was performed to ensure compliance with Marshall Requirements, The resilient modulus test was performed to measure the stiffness of the mixes while Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility and indirect tensile strength between RAP-Asphalt mixes with the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% of RAP material.

  6. Characterization of Brazilian asphalt using X-ray diffraction

    International Nuclear Information System (INIS)

    Cardoso, Edson R.; Pinto, Nivia G.V.; Almeida, Ana P.G.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Motta, Laura M.G.

    2007-01-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. The X ray diffraction can give valuable information over the characteristics of a material. Thus, the X-ray diffraction (XRD) method was employed to investigate parameters that characterize and differentiate asphalt groups (Boscan, CAP20, CAP40, CAP50/60, CAP50/70 and CAP85/100). The scattering measurements were carried out in θ-2θ reflection geometry using a powder diffractometer Shimadzu XRD-6000 at the Nuclear Instrumentation Laboratory, Brazil. Scans were typically done from 8 deg to 28 deg every 0.05. The parameters analyzed were: FWHM, peak area, peak center, peak height, left half width and right half width. Thus, in this study, scattering profiles from different asphalt groups were carefully measured in order to establish characteristic signatures of these materials. The results indicate that by using three parameters (peak centroid, peak area and peak intensity) it is possible to characterize and differentiate the asphalt. (author)

  7. Research on the compressive strength of a passenger vehicle roof

    Science.gov (United States)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  8. Final environmental and regulatory assessment of using asphalt as a sealant in mine shafts

    International Nuclear Information System (INIS)

    1987-01-01

    This report discusses the properties of asphalt, the current regulatory status governing asphalt and future regulatory implications which may be pertinent in using asphalt as a waterproof shaft sealant. An understanding of the inherent organic composition of asphalt, an increase in the number of health and environmental research publications conducted on asphalt and an examination of the apparent trend of regulatory agencies toward more stringent environmental regulation governing the use of organic materials suggests asphalt could become regulated at a future time. This would only occur, however, if asphalt was found to conform to the present regulatory definitions of pollutants, contaminants or hazardous substances or if asphalt was included on a regulated substance list. In this regard, the study points out that asphalt contains very low levels of hazardous poly-nuclear aromatics (PNA's). These levels are significantly lower than the levels present in coal tars, a substance known to contain high levels of hazardous PNA's. Asphalt, however, has the inherent potential of producing higher concentrations of PNA's if the adverse condition of cracking should occur during the refinery production stage or on-site preparation of the asphalt. Also, unless existing control technology is applied, emission levels of sulfur dioxide, carbon monoxide, particulates and volatile organic carbons from the on-site preparation facilities could approach the permissible health standard levels of EPA. The study indicates, however, that available literature is limited on these issues

  9. Roof Moisture Surveys: Current State Of The Technology

    Science.gov (United States)

    Tobiasson, Wayne

    1983-03-01

    Moisture is the big enemy of compact roofing systems. Non-destructive nuclear, capacitance and infrared methods can all find wet insulation in such roofs but a few core samples are needed for verification. Nuclear and capacitance surveys generate quantitative results at grid points but examine only a small portion of the roof. Quantitative results are not usually provided by infrared scanners but they can rapidly examine every square inch of the roof. Being able to find wet areas when they are small is an important advantage. Prices vary with the scope of the investigation. For a particular scope, the three techniques are often cost-competitive. The limitations of each technique are related to the people involved as well as the equipment. When the right people are involved, non-destructive surveys are a very effective method for improving the long-term performance and reducing the life-cycle costs of roofing systems. Plans for the maintenance, repair or replacement of a roof should include a roof moisture survey.

  10. The Variation Test and Extraction Equipment to Optimum Asphalt by Using Gasoline Solvent

    Science.gov (United States)

    Soehardi, Fitridawati

    2017-12-01

    Based on the Binamarga Specification 2010 at third revision, the extraction test should be carried out using the specimen from the loose asphalt mixture extracted from the back of the finisher bitumen machine. The purpose of this research is to find out the result of pretest and posttest extraction asphalt content. The Extraction test using two equipment, they are Soklet and Centrifuge. The specimens was used AMP, Asphalt Finisher and Core, which involved gasoline solvent. Based on the asphalt level extraction test results, the appropriate equipment was used centrifuge with the level accuracy as requirement of Binamarga Specification 2010 at third revision and the level of ease used as equipment in the field study. The asphalt content obtained for AMP 5,51%, Asphalt Finisher5,46% and Core 5.34%. As for the socket asphalt content obtained is AMP 5.55%, Asphalt Finisher 5.50% and Core core 5. 41%. The extract test value of asphalt content decreased, so it can be formulated KA JMF value of Job mix used was 5.56% with the tolerance given according to Binamarga Specification 2010 at third revision is ± 0.30%. In accordance with the results obtained then the results of a centrifuge tool that matches and meets the requirements of time, accuracy of results and economic value.

  11. THE FATIGUE DURABILITY OF THE MODIFIED ASPHALT CONCRETE UNDER THE EFFECT OF INTENSIVE TRAFFIC LOADS

    Directory of Open Access Journals (Sweden)

    Yuri KALGIN

    2016-06-01

    Full Text Available The problem of prediction of the service life of asphalt concrete surface constructed with modified asphalt concrete application onto a traffic lane is examined. Asphalt concrete behaviour in road surface under the traffic loads was analysed. There were shown The results of experiments and their mathematical analysis of the assessment of standard and modified cold asphalt concrete fatigue life on road surface were shown. The service life of an asphalt concrete surface covered with standard and modified cold asphalt concrete is examined. The prediction has been received with an account of stress relaxation processes in asphalt concrete pavement and unevenness of traffic load application.

  12. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    PMA where it is formulated to melt and blend with asphalt quickly during a batch mixing process. The main objectives of this study are to (1) build asphalt pavement using asphalt mixtures with SBS-based compound added using a “dry” process at the batch plant and (2) evaluate its performance under......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...

  13. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  14. Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.

    Science.gov (United States)

    2004-06-30

    This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...

  15. Significance of Fines in Hot Mix Asphalt Synthesis

    Directory of Open Access Journals (Sweden)

    Kalaitzaki Elvira

    2017-07-01

    Full Text Available According to their size, aggregates are classified in coarse grained, fine grained, and fines. The determination of fines content in aggregate materials is very simple and is performed through the aggregate washing during the sieving procedure to define the gradation curve. The very fine material consists of grains having a size lower than 63 μm. The presence of fines directly influences the composition and performance of concrete and asphalt mixtures (e.g. asphalt content, elasticity, fracture. The strength and load carrying capacity of hot mix asphalt (HMA results from the aggregate framework created through particle-particle contact and interlock. Fines or mineral filler have a role in HMA. The coarse aggregate framework is filled by the sand-sized material and finally by the mineral filler. At some point, the smallest particles lose contact becoming suspended in the binder not having the particle-particle contact that is created by the larger particles. The overall effect of mineral filler in hot mix asphalt specimens has been investigated through a series of laboratory tests. It is clear that a behaviour influenced by the adherence of fines to asphalt film has been developed. The optimum bitumen content requirement in case of stone filler is almost the same as that for fly ash. It has been found that the percentage of fly ash filler is crucial if it exceeds approximately a value of 4%.

  16. Effect of new type of synthetic waxes on reduced production and compaction temperature of asphalt mixture with reclaimed asphalt

    Science.gov (United States)

    Valentová, Tereza; Benešová, Lucie; Mastný, Jan; Valentin, Jan

    2017-09-01

    Lower mixing and paving temperatures of asphalt mixtures, which are an important issue in recent years, with respect to increased energy demand of civil engineering structures during their processing, allow reduction of this demand and result in minimized greenhouse gas production. In present time, there are many possibilities how to achieve reduction of production temperature during the mixing and paving of an asphalt mixture. The existing solutions distinguish in target operating temperature behaviour which has to be achieved in terms of good workability. This paper is focused on technical solutions based on use of new types of selected synthetic and bio-based waxes. In case of bio-based additive sugar cane wax was used, which is free of paraffins and is reclaimed as waste product during processing of sugar cane. The used waxes are added to bituminous binder in form of free-flowing granules or fine-grained powder. Synthetic waxes are represented by new series of Fischer-Tropsch wax in form of fine granules as well as by polyethylene waxes in form of fine-grained powder or granules. Those waxes were used to modify a standard paving grade bitumen dosed into asphalt mixture of ACsurf type containing up to 30 % of reclaimed asphalt (RA).

  17. Influence of the Microwave Heating Time on the Self-Healing Properties of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Jose Norambuena-Contreras

    2017-10-01

    Full Text Available This paper aims to evaluate the influence of the microwave heating time on the self-healing properties of fibre-reinforced asphalt mixtures. To this purpose, self-healing properties of dense asphalt mixtures with four different percentages of steel wool fibres were evaluated as the three-point bending strength before and after healing via microwave heating at four different heating times. Furthermore, the thermal behaviour of asphalt mixtures during microwave heating was also evaluated. With the aim of quantifying the efficiency of the repair process, ten damage-healing cycles were done in the test samples. In addition, self-healing results were compared with the fibre spatial distribution inside asphalt samples evaluated by CT-scans. Crack-size change on asphalt samples during healing cycles was also evaluated through optical microscopy. It was found that the heating time is the most influential variable on the healing level reached by the asphalt mixtures tested by microwave radiation. CT-Scans results proved that fibre spatial distribution into the asphalt mixtures play an important role in the asphalt healing level. Finally, it was concluded that 40 s was the optimum heating time to reach the highest healing levels with the lowest damage on the asphalt samples, and that heating times over 30 s can seal the cracks, thus achieving the self-healing of asphalt mixtures via microwave heating.

  18. Terrestrial radiation level in selected asphalt plants in Port Harcourt ...

    African Journals Online (AJOL)

    Terrestrial radiation level in selected asphalt plants in Port Harcourt, Nigeria. ... An environmental radiation survey in asphalt processing plants in Rivers State was been carried out ... Therefore the results show significant radiological risk.

  19. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    Science.gov (United States)

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  20. Rutting Performance of Cold-Applied Asphalt Repair Materials for Airfield Pavements

    Science.gov (United States)

    2017-06-23

    this study. Cold mix asphalt materials, further denoted cold mixes , were selected to reasonably represent available products on the market and were...pavement repair, primarily because of the small quantities involved and/or the unavailability of hot- mixed asphalt. These cold-applied mixtures have...poorer rutting resistance than hot mix asphalt because additives, often solvent, are required to provide adequate workability for them to be placed

  1. Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes

    Directory of Open Access Journals (Sweden)

    Amjad Hamad Albayati

    2017-07-01

    Full Text Available The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (permanent strain (p, intercept (a, slope (b, Alpha and Mu as well as resilient strain (r and resilient modulus (Mr. To achieve this objective, one aggregate gradation with 12.5mm nominal maximum size, two grades of asphalt cements (40-50 and 60-70 brought form Al- Daurah refinery, limestone dust filler has been used to prepare the asphalt concrete mixtures. 30 Marshall specimens were prepared to determine the optimum asphalt cement content. Thereafter, 30 cylindrical asphalt concrete specimens (102mm in diameter and 203 mm in height are prepared in optimum asphalt cement and optimum ±0.5 percent. The prepared specimens were used in uniaxial repeated load test to evaluate the permanent deformation parameters of asphalt concrete mixes under the following testing temperature (5, 15, 25, 40 and 60c. The test result analyses appeared that Mr is decrease 51 percent when temperature increased from 5 c to 25 c and then decrease 22 percent with further increase in temperature from 25 c to 60 c. Also, the Alpha value decreases by a factor of 1.25 and 1.13 when temperature increases from 5 c to 25 c and 25 c to 60 c, espectively. Finally, statistical models were developed to predict the Alpha and Mu parameters of permanent deformation.

  2. Process of coagulating asphalts, etc

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, J A; Pfersch, G

    1931-03-28

    The present invention has for its object a process of deasphaltizing and deparaffining applicable to mixtures of hydrocarbons such as crude mineral oils and tars obtained under the influence of heat from shales, lignites, peats, and similar products, to natural bitumens and those obtained by extraction with organic solvents and also all those derived from the substances, the process in question having the following characteristics: the coagulation or the precipitation of the asphaltic material, the resinous material, and the asphaltic and resinous material, which is found in the colloidal state or any other state in the substances given above, is obtained by the addition of a small amount of solvent and of acids or mixtures of acids.

  3. Thermal performance of an innovative roof component

    Energy Technology Data Exchange (ETDEWEB)

    Dimoudi, A. [Department of Environmental Engineering, Democritus University of Thrace, Vassilisis Sofias 12, 67 100 Xanthi (Greece); Lykoudis, S. [Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and B. Pavlou, 152 36 Penteli (Greece); Androutsopoulos, A. [Buildings Department, Division of Energy Efficiency, Centre for Renewable Energy Sources (CRES), 19th km Marathonos Aven., 190 09 Pikermi (Greece)

    2006-11-15

    In this paper, the thermal performance of a ventilated roof component is investigated during the winter period. The ventilated roof component consists of a conventional roof structure - reinforced concrete with a layer of thermal insulation - an air gap that allows the movement of the ambient air and an external layer made of a prefabricated concrete slab. The experimental results of the ventilated roof component during the winter period are presented and its thermal performance is analysed. The effect of key construction parameters like the height of the air gap and the use of a radiant barrier in the air gap is also investigated. Analysis of the results showed that the performance of a ventilated roof component is comparable to a conventional structure during winter. The ventilated component is shown to be in compliance with Greek regulatory requirements in terms of U-value. (author)

  4. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  5. Green roof hydrologic performance and modeling: a review.

    Science.gov (United States)

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  6. Metal and nutrient dynamics on an aged intensive green roof.

    Science.gov (United States)

    Speak, A F; Rothwell, J J; Lindley, S J; Smith, C L

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO3(-) retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input-output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Metal and nutrient dynamics on an aged intensive green roof

    International Nuclear Information System (INIS)

    Speak, A.F.; Rothwell, J.J.; Lindley, S.J.; Smith, C.L.

    2014-01-01

    Runoff and rainfall quality was compared between an aged intensive green roof and an adjacent conventional roof surface. Nutrient concentrations in the runoff were generally below Environmental Quality Standard (EQS) values and the green roof exhibited NO 3 − retention. Cu, Pb and Zn concentrations were in excess of EQS values for the protection of surface water. Green roof runoff was also significantly higher in Fe and Pb than on the bare roof and in rainfall. Input–output fluxes revealed the green roof to be a potential source of Pb. High concentrations of Pb within the green roof soil and bare roof dusts provide a potential source of Pb in runoff. The origin of the Pb is likely from historic urban atmospheric deposition. Aged green roofs may therefore act as a source of legacy metal pollution. This needs to be considered when constructing green roofs with the aim of improving pollution remediation. -- Highlights: • Runoff from an aged intensive green roof was characterised. • Nutrient levels were not problematic for runoff quality. • High concentrations of Cu, Pb and Zn were found in the runoff. • Soil contamination was a likely source of metals in roof runoff. • Historic Pb atmospheric deposition may be the source of contamination. -- Aged green roofs may act as a store of legacy lead pollution

  8. Influence of Diatomite and Mineral Powder on Thermal Oxidative Ageing Properties of Asphalt

    Directory of Open Access Journals (Sweden)

    Yongchun Cheng

    2015-01-01

    Full Text Available Ageing of asphalt affects the performances of asphalt pavement significantly. Therefore, effects of diatomite and mineral powder on ageing properties of asphalt were investigated systematically in order to improve the antiageing property of mixture. Thin film oven test (TFOT was used to conduct the short term ageing in laboratory. Softening points, penetrations, force ductility, low temperature creep properties, and viscosities of asphalt mastics were tested before and after TFOT, respectively. Results indicated that percent retained penetration (PRP increased with the increasing of fillers. Increment of softening point (ΔT, ductility retention rate (DRR, deformation energy ageing index (JAI, and viscosity ageing index (VAI of asphalt mastics nonlinearly decreased with the increasing of fillers. Ageing of asphalt was reduced by diatomite and mineral powder. And the antiageing effect of diatomite was better than that of mineral powder as a result of its porous structure. It is suggested that the mineral powder could be reasonably replaced by diatomite in order to reduce thermal oxidative ageing of asphalt mixture. The optimal content of diatomite 12.8% is also suggested for engineering.

  9. Probabilistic economic analysis of green roof benefits for policy design

    International Nuclear Information System (INIS)

    Clark, C.; Adriaens, P.; Talbot, B.

    2006-01-01

    The installation costs of green roofs continue to deter widespread use of green roof technology. Analyses of the boundary conditions for the cost differential between a green roof and a conventional roof are usually compared to environmental benefits such as storm water reduction and building energy savings. However, evidence is emerging that green roofs may play a role in urban air quality improvement. This paper discussed a methodology for developing probabilistic ranges of benefits and cost analyses. A probabilistic analysis was conducted to prepare a generalized cost-benefit analysis for application to a range of green roof projects. Environmental benefits of roof greening were quantified on a per unit surface area to assess environmental impact at the building scale. Parameters included conventional and green roof installation costs; storm water fees and fee reductions for green roofs; energy costs due to heat flux and the resultant savings through the installation of a green roof and the additional economic valuation of the public health benefits due to air pollution mitigation. Results were then integrated into an economic model to determine the length of time required for a return on investment in a green roof, assuming that a traditional roof would require replacement after 20 years. A net present value analysis was performed for an average-sized university roof. Results of the study showed that a valuation of environmental benefits can reduce the time required for a return on investment in a moderately priced green roof. While reduced installation costs reduced the time required for a return on investment, optimizing the green roof system for maximum environmental benefit had a greater potential to provide a higher return. It was concluded that the benefit of improved air quality should not be ignored by green roof policy-makers as a valuation tool. 10 refs., 3 tabs., 1 fig

  10. Modification of local asphalt with epoxy resin to be used in pavement

    Directory of Open Access Journals (Sweden)

    A.M.M. Abd El Rahman

    2012-12-01

    Full Text Available The durability of asphalt pavement is greatly influenced by the environmental changes during the year. In this paper, we prepared asphalt modified by mixing asphalt 60/70 with epoxidized natural rubber (ENR in different percentages (5, 10 and 15%, which was achieved using preformed peracetic acid (aqueous solution 59% at 60–80 °C, then molten cross-linker maleic anhydride (MA was added to modified asphalt until homogenous blends are achieved. Marshall test was used to evaluate the asphalt pavement performance depending on the curing time and hardener concentration. To measure marshall test, the pervious mixture was stirred with aggregate jop formula mix (JMF and 40% MA at 150–170 °C for 20 h and 1600 rpm. From the obtained data, it was found that asphalt mixed with 15% of ENR + 40% MA achieves a high stability (16,632 Newton, air voids of 2.5%, flow of 2.9 mm and mineral voids of 14.6%. While, the stability of the unmodified asphalt was (11,500 Newton, the flow 3.2 mm, the suitable air void value was 3.7% at 5.5% with the same conditions.

  11. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    Science.gov (United States)

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  12. Sheffield's Green Roof Forum: a multi-stranded programme of green roof infrastructure development for the UK's greenest city

    International Nuclear Information System (INIS)

    Dunnett, N.

    2006-01-01

    Sheffield, United Kingdom (UK) was the world centre for the steel and cutlery industries. However, those industries have been in decline and the city has been in the process of re-inventing itself over the past 20 years. Sheffield is now known as the UK's greenest city in terms of the amount of woodland, parkland and open spaces within its city limits. The city of Sheffield has also developed a unique partnership approach to promote green roof infrastructure as the most visible and high-profile signal of intent and symbol of low environmental impact building design and construction. This partnership involves Sheffield's Green Roof Forum, comprising the University of Sheffield's multi-disciplinary centre of excellence in green roof research; Sheffield City Council; Groundwork Sheffield, an urban economic and environmental regeneration agency; and city Architects and developers. This partnership meets six times a year to raise the profile of green roofs within the city and region, and to develop strategies to increase the uptake and implementation of green roof infrastructure in the region. This paper discussed the partnership, the Green Room Forum, accomplishments to date in promoting green roofs in the city, and the strategy for the Sheffield region to become a leader in green roof implementation and associated green technologies. The strategy is presented in two parts: consultation and research to identify the nature of market failure and devising methods to overcome that failure. The green roof strategy is being implemented through a program entitled Building Greener, Building Smarter and consists of four inter-linked strands. These strands were discussed in detail and included getting buy-in, demonstrating benefit, establishing the business case, and changing plans and practices. 3 tabs., 1 ref

  13. Influence of roof motion in LMFBR containment loading studies

    International Nuclear Information System (INIS)

    Potter, R.; Lancefield, M.J.; Sidoli, J.E.A.; Broadhouse, B.J.; Green, R.S.

    1982-01-01

    Following an HCDA the reactor roof may be threatened by coolant impact. Recent trends in CDFR roof design suggest that roof movement during the impact process may reduce the roof loading as a result of the fluid-structure interaction. The paper describes analytic studies of the phenomena, extensions to the SEURBNUK containment code to the roof flexibility and fluid-structure coupling, and results of experiments which confirm the reduced impulse and provide validation of the mathematical modelling

  14. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or...

  15. Mechanistic and Economical Characteristics of Asphalt Rubber Mixtures

    Directory of Open Access Journals (Sweden)

    Mena I. Souliman

    2016-01-01

    Full Text Available Load associated fatigue cracking is one of the major distress types occurring in flexible pavement systems. Flexural bending beam fatigue laboratory test has been used for several decades and is considered to be an integral part of the new superpave advanced characterization procedure. One of the most significant solutions to prolong the fatigue life for an asphaltic mixture is to utilize flexible materials as rubber. A laboratory testing program was performed on a conventional and Asphalt Rubber- (AR- gap-graded mixtures to investigate the impact of added rubber on the mechanical, mechanistic, and economical attributes of asphaltic mixtures. Strain controlled fatigue tests were conducted according to American Association of State Highway and Transportation Officials (AASHTO procedures. The results from the beam fatigue tests indicated that the AR-gap-graded mixtures would have much longer fatigue life compared with the reference (conventional mixtures. In addition, a mechanistic analysis using 3D-Move software coupled with a cost analysis study based on the fatigue performance on the two mixtures was performed. Overall, analysis showed that AR modified asphalt mixtures exhibited significantly lower cost of pavement per 1000 cycles of fatigue life per mile compared to conventional HMA mixture.

  16. Improvement of the asphalt-waste products in leachability

    International Nuclear Information System (INIS)

    Matsuzuru, Hideo; Fojiri, Shigeru; Moriyama, Noboru

    1980-05-01

    To improve in leachability of the asphalt products containing evaporator residue from BWR, a method of reducing the swelling of asphalt products, which is a major cause for increasing the leachability, has been developed. Leachability of the resultant asphalt products was examined by IAEA's method. The reduction of swelling is achieved successfully by addition of an equivalent quantity of calcium chloride to the sodium sulfate contained in the residue; the sodium sulfate is converted to calcium sulfate and sodium chloride. The specimen (Asphalt/Na 2 SO 4 : 0.5) prepared by this improved method shows little swelling when immersed in water. The specimen without addition of calcium chloride gives a cumulative leaching fraction of about 0.65 for 137 Cs and 0.20 for 60 Co in 30 days. On the contrary, the corresponding values in about 100 days of the specimen with calcium chloride added are 5 x 10 -4 and 1 x 10 -4 for 137 Cs and 60 Co, respectively. These results indicate that the method is promising for reducing the leachability. Coating of the specimen surface with a fresh bitumen further reduces the leachability to a negligibly small value. (author)

  17. Comparison of winter temperature profiles in asphalt and concrete pavements.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...

  18. A green roof grant program for Washington DC

    International Nuclear Information System (INIS)

    Johnson, P.A.

    2007-01-01

    The Chesapeake Bay Foundation (CBF) began its green roof demonstration project with $300,000 in funding provided by the DC Water and Sewer Authority. This paper reviewed the history of the project, its goals and early findings. The main objective was to demonstrate the technical, policy and economic feasibility of installing green roofs on commercial buildings in Washington DC and to promote green roofs as a means to manage storm water and improve water quality through the reduction of excessive runoff. The CBF has issued grants for the installation of 7 green roofs varying in size, design, location, and use. The projects included both new and existing structures designed to improve storm-water management in an urban area with significant pollution stress on the adjacent rivers. This paper provided technical, cost, and performance evaluations of each roof. A public outreach segment provided information to decision-makers to encourage more widespread replication of green roof technology throughout the metropolitan area. Much of the District of Columbia is served by a combined sewer system that becomes overloaded and discharges raw sewage into adjacent rivers during even moderately heavy rains. An average of 75 overflow events each year result in 1.5 billion gallons discharged into the Anacostia River. The installation of green roofs on buildings in the combined sewer area would retain storm water during these heavy rains and reduce the amount of overflow discharges. Apartments, as well as commercial and government buildings with mostly flat roofs are the most likely candidates for green roofs. The demonstration roofs are intended to become models, which all building owners could use as a guide for future plans for construction or re-construction to expand green roof coverage in Washington DC. It was emphasized that although such large-scale replication will take time and financial investments, it is achievable given enough political will and commercial awareness of

  19. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  20. Roof assembly

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The objective of this chapter is to provide sustainability criteria for roof system design that can be used by planners, designers and developers as a planning, design and development guide for sustainable building projects....

  1. Decision of National and Provincial Highway Asphalt Pavement Structure Based on Value Engineering

    Directory of Open Access Journals (Sweden)

    Yingwei Ren

    2014-01-01

    Full Text Available It is important that decision of asphalt pavement structure requires overall considerations of the performance and financial investment. To have asphalt pavement structure fulfilling good reliability, the asphalt pavement structure decision was researched based on value engineering theory. According to the national and provincial highway investigation data in Shandong Province during the last decade, the asphalt pavement performance attenuation rules of traffic levels and asphalt layer thicknesses were developed, and then the road performance evaluation method was presented. In addition, the initial investments, the costs of road maintenance, and middle-scale repair in a period were analyzed. For the light traffic and medium traffic example, using the value engineering method, the pavement performance and costs of which thickness varies from 6 cm to 10 cm were calculated and compared. It was concluded that value engineering was an effective method in deciding the asphalt pavement structure.

  2. UTILIZATION OF WASTE PLASTIC BOTTLES IN ASPHALT MIXTURE

    Directory of Open Access Journals (Sweden)

    TAHER BAGHAEE MOGHADDAM

    2013-06-01

    Full Text Available Nowadays, large amounts of waste materials are being produced in the world. One of the waste materials is plastic bottle. Generating disposable plastic bottles is becoming a major problem in many countries. Using waste plastic as a secondary material in construction projects would be a solution to overcome the crisis of producing large amount of waste plastics in one hand and improving the structure’s characteristics such as resistance against cracking on the other hand. This study aimed to investigate the effects of adding plastic bottles in road pavement. Marshall properties as well as specific gravity of asphalt mixture containing different percentages of plastic bottles were evaluated. Besides, Optimum Asphalt Content (OAC was calculated for each percentages of plastic bottles used in the mix. The stiffness and fatigue characteristics of mixture were assessed at OAC value. Results showed that the stability and flow values of asphalt mixture increased by adding waste crushed plastic bottle into the asphalt mixture. Further, it was shown that the bulk specific gravity and stiffness of mixtures increased by adding lower amount of plastic bottles; however, adding higher amounts of plastic resulted in lower specific gravity and mix stiffness. In addition, it was concluded that the mixtures containing waste plastic bottles have lower OAC values compared to the conventional mixture, and this may reduce the amount of asphalt binder can be used in road construction projects. Besides, the mixtures containing waste plastic showed significantly greater fatigue resistance than the conventional mixture.

  3. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 {times} 10{sup -7} cm/s. In-place measurements using a new field falling head technique show an average of 3.66 {times} 10{sup -8} cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 {times} 10{sup -9} cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 {times} 10{sup -11} cm/s.

  4. Hanford Permanent Isolation Barrier Program: Asphalt technology data and status report - FY 1994

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.; Zacher, A.H.

    1994-09-01

    The asphalt layer within the Hanford Permanent Isolation Barrier (HPIB) is an important component of the overall design. This layer provides a RCRA equivalent backup to the overlying earthen layers in the unlikely event that these layers are not able to reduce the infiltration rate to less than 0.05 cm/yr. There is only limited amount of information on using asphalt for a moisture infiltration barrier over the long times required by the HPIB. Therefore, a number of activities are under way, as part of the Barrier Development Program, to obtain data on the performance of asphalt as a moisture barrier in a buried environment over a 1000-year period. These activities include (1) determining RCRA equivalency, (2) measurement of physical properties, (3) measurement of aging characteristics, and (4) relationship to ancient asphalt analogs. During FY 1994 progress was made on all of these activities. Studies were conducted both in the laboratory and on the prototype barrier constructed over the 216-B-57 crib in the 200 East Area on the Hanford Site. This report presents results obtained from the asphalt technology tasks during FY 1994. Also included are updates to planned activities for asphalt analogs and monitoring the asphalt test pad near the prototype barrier. Measurements of hydraulic conductivity on the HMAC portion of the prototype barrier show that the asphalt layers easily meet the RCRA standard of 1 x 10 -7 cm/s. In-place measurements using a new field falling head technique show an average of 3.66 x 10 -8 cm/s, while cores taken from the north end of the prototype and measured in a laboratory setup averaged 1.29 x 10 -9 cm/s. Measurements made on the fluid applied asphalt membrane (polymer-modified asphalt) show an extremely low permeability of less than 1 x 10 -11 cm/s

  5. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt

    Directory of Open Access Journals (Sweden)

    Wenbo Zeng

    2017-01-01

    Full Text Available In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration were tested for the samples which were introduced at different mass ratios of GO (1% and 3% to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants of GO in asphalt pavement construction were explained.

  6. The Utilization of Graphene Oxide in Traditional Construction Materials: Asphalt.

    Science.gov (United States)

    Zeng, Wenbo; Wu, Shaopeng; Pang, Ling; Sun, Yihan; Chen, Zongwu

    2017-01-07

    In the advanced research fields of solar cell and energy storing materials, graphene and graphene oxide (GO) are two of the most promising materials due to their high specific surface area, and excellent electrical and physical properties. However, they was seldom studied in the traditional materials because of their high cost. Nowadays, graphene and GO are much cheaper than before with the development of production technologies, which provides the possibility of using these extraordinary materials in the traditional construction industry. In this paper, GO was selected as a nano-material to modify two different asphalts. Then a thin film oven test and a pressure aging vessel test were applied to simulate the aging of GO-modified asphalts. After thermal aging, basic physical properties (softening point and penetration) were tested for the samples which were introduced at different mass ratios of GO (1% and 3%) to asphalt. In addition, rheological properties were tested to investigate how GO could influence the asphalts by dynamic shearing rheometer tests. Finally, some interesting findings and potential utilization (warm mixing and flame retardants) of GO in asphalt pavement construction were explained.

  7. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index.

    Science.gov (United States)

    Li, Chao; Wu, Shaopeng; Tao, Guanyu; Xiao, Yue

    2018-05-29

    Increasing temperature is a simple and convenient method to accelerate the self-healing process of bitumen. However, bitumen may not achieve the healing capability at lower temperature, and may be aged if temperature is too high. In addition, the bitumen is mixed with mineral filler and formed as asphalt mastic in asphalt concrete, so it is more accurate to study the initial self-healing from the perspective of asphalt mastic. The primary purpose of this research was to examine the initial self-healing temperature of asphalt mastic, which was determined by the flow behavior index obtained from the flow characteristics. Firstly, the texture and geometry characteristics of two fillers were analyzed, and then the initial self-healing temperature of nine types of asphalt mastic, pure bitumen (PB) and styrene-butadiene-styrene (SBS) modified bitumen were determined by the flow behavior index. Results demonstrate that the average standard deviation of gray-scale texture value of limestone filler (LF) is 21.24% lower than that of steel slag filler (SSF), showing that the steel slag filler has a better particle distribution and geometry characteristics. Also the initial self-healing temperatures of asphalt mastics with 0.2, 0.4 and 0.6 LF-PB volume ratio are 46.5 °C, 47.2 °C and 49.4 °C, which are 1.4 °C, 0.8 °C and 0.4 °C higher than that of asphalt mastics with SSF-PB, but not suitable for the evaluation of asphalt mastic contained SBS modified bitumen because of unique structure and performance of SBS.

  8. Impact- and earthquake- proof roof structure

    International Nuclear Information System (INIS)

    Shohara, Ryoichi.

    1990-01-01

    Building roofs are constituted with roof slabs, an earthquake proof layer at the upper surface thereof and an impact proof layer made of iron-reinforced concrete disposed further thereover. Since the roofs constitute an earthquake proof structure loading building dampers on the upper surface of the slabs by the concrete layer, seismic inputs of earthquakes to the buildings can be moderated and the impact-proof layer is formed, to ensure the safety to external conditions such as earthquakes or falling accidents of airplane in important facilities such as reactor buildings. (T.M.)

  9. Performance on Water Stability of Cement-Foamed Asphalt Cold Recycled Mixture

    OpenAIRE

    Li Junxiao; Fu Wei; Zang Hechao

    2018-01-01

    Through designing the mixture proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, it shows that the addition of cement can obviously improve foamed asphalt mixture’s water stability and the best cement admixture is between 1% ~ 2%; Using digital imaging microscope and SEM technology, the mechanism of increasing on the intensity of foamed asphalt mixture resulted by adding cement was analyzed. It revealed that the cement hydration products ...

  10. Road safety effects of porous asphalt: a systematic review of evaluation studies

    DEFF Research Database (Denmark)

    Elvik, R.; Greibe, Poul

    2005-01-01

    of eighteen estimates of the effect of porous asphalt on accident rates. No clear effect on road safety of porous asphalt was found. All summary estimates of effect indicated very small changes in accident rates and very few were statistically significant at conventional levels. Studies that have evaluated...... of these changes in risk factors on accident occurrence cannot be predicted. On the whole, the research that has been reported so far regarding road safety effects of porous asphalt is inconclusive. The studies are not of high quality and the findings are inconsistent.......This paper presents a systematic review of studies that have evaluated the effects on road safety of porous asphalt. Porous asphalt is widely used on motorways in Europe, mainly in order to reduce traffic noise and increase road capacity. A meta-analysis was made of six studies, containing a total...

  11. Eco-Environmental Factors in Green Roof Application in Indian Cities

    Science.gov (United States)

    Mukherjee, M.

    2014-09-01

    Green-roof is the cost-effective environmental mitigation strategy for urban areas [1]. Its application is limited in India primarily due to inadequate understanding about its cost-benefit analysis and technicalities of its maintenance. Increasing awareness about green roof can alter conservative attitude towards its application. So, this work presents a quantified study on green-roof types, cost and environmental benefits while considering different geo-urban climate scenarios for cities of Kolkata, Mumbai, Chennai and New Delhi. Cost estimation for extensive and intensive green-roof with reference to commonly used roof in urban India is also worked out. Attributes considered for environmental discussion are energy savings related to thermal heat gain through roof, roof-top storm-water drainage and sound attenuation. The comparative study confirms that further focused study on individual cities would identify city-specific objectives for green-roof application; strategies like awareness, capacity building programmes, incentives, demonstration projects etc. can be worked out accordingly for wider application of green-roof in Indian cities.

  12. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  13. Grade determination of crumb rubber-modified performance graded asphalt binder.

    Science.gov (United States)

    2013-08-01

    Due to particulates common in crumb rubber-modified asphalt binders, conventional PG grading using the Dynamic : Shear Rheometer (DSR) with a gap height of 1.0 mm may not be valid and in accordance with current specifications. : Asphalt binder testin...

  14. Characterization of Failure and Permanent Deformation Behaviour of Asphalt Concrete

    NARCIS (Netherlands)

    Wang, J.G.

    2015-01-01

    Asphalt concrete is a viscoelastic material consisting of aggregates, filler and bitumen. The response of asphalt concrete is highly dependent on temperature, loading rate and confining pressure. Permanent deformation is one of the most important distresses developing during the flexible pavement

  15. Appropriate models for estimating stresses and strains in asphalt layers

    CSIR Research Space (South Africa)

    Jooste, FJ

    1998-09-01

    Full Text Available The broad objective is to make recommendations for appropriate modelling procedures to be used in the structural design of asphalt layers. Findings of this investigation are intended to be used in refining and validating existing asphalt pavement...

  16. Evaluation of the performance of aggregate in hot-mix asphalt

    CSIR Research Space (South Africa)

    Komba, Julius J

    2014-07-01

    Full Text Available The overall performance of an asphalt mix is dependent on, amongst others, the properties of the constituent materials, which include aggregate, binder and filler. The aggregate for production of asphalt mixes is usually sourced from a quarry, which...

  17. A Case Study of Effective Support Working Resistance and Roof Support Technology in Thick Seam Fully-Mechanized Face Mining with Hard Roof Conditions

    Directory of Open Access Journals (Sweden)

    Wei-bin Guo

    2017-06-01

    Full Text Available This paper presents the engineering geological properties and roof control tecnology for a thick coal seam fully-mechanized face mining with hard roof conditions (THC at the Jinhuagong Coal Mine (JCM, northwest China. The effective support working resistance and appropriate roof control technology are two critical factors for safe and productive mining in the THC. The load-estimate-method (LOEM is the effective method to determine the support working resistance for normal working conditions (the mining height less than 3.5 m. In order to prevent support crushing accidents from happening and to ensure the safety and high-efficiency in the THC, the LOEM was modified based on the structure of the overlying strata in the THC. The strata which can form the voussoir beam structure in normal working conditions and will break in the form of cantilever beam in the THC is defined as the key strata in the immediate roof. Therefore, the hanging length of the key strata in the immediate roof was considered in the LOEM. Furthermore, a method for calculating the hanging length of the key strata in the immediate roof and its influencing factors were proposed using cantilever beam theory analysis of the structure of the overlying strata. Moreover, in order to fully fill the goaf area with caving roof to reduce the energy accumulation of main roof movement, it was decided to apply destress blasting technique (DEBT at the JCM to control the large hanging length of the hard roof, so as to reduce the impact of the hard main roof movement on the working face. The key technique parameters of the roof caving borehole were also proposed. The obtained results demonstrated that the theoretical analysis is reasonable, and the chosen support type and the DEBT could meet the roof control requirements. The THC has achieved safety and high-efficiency mining.

  18. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Haiping Zhou

    2014-02-01

    Full Text Available The California Department of Transportation (Caltrans has been using scrap tire rubber in asphalt pavements since the 1970s in chip seals and the 1980s in rubberized hot mix asphalt(RHMA. Both the wet (field blend and dry processes were used in early trials. Caltrans has also used rubber modified binders containing both crumb rubber modifier and polymer modifier that could be manufactured at a refinery facility, a terminal blend wet process. Since the beginning of this century, Caltrans increased the use of scrap tire rubber in paving projects and invested considerable resources in developing technically sound, cost effective, and environmentally friendly strategies for using scrap tire rubber in roadway applications. By the end of year 2010, approximately 31%of all hot mix asphalt (HMA placed by Caltrans was rubberized HMA, roughly 1.2 million tons. Caltrans efforts in using asphalt rubber products were also demonstrated in its research and technology development. These included the construction of two full-scale field experiments, five warranty projects, and an accelerated pavement study using a heavy vehicle simulator. Additionally, terminal blend asphalt rubber and rubberized warm mix asphalts began to be experimented on trial basis. This paper provides a comprehensive review of Caltrans experience over four decades with asphalt rubber products. Current practices and future outlook are also discussed.

  19. Evolution of Flat Roofs

    Directory of Open Access Journals (Sweden)

    Şt. Vasiliu

    2009-01-01

    Full Text Available Roofs are constructive subassembles that are located at the top of buildings, which toghether with perimetral walls and some elements of the infrastructure belongs to the subsystem elements that close the building. Roofs must meet resistance requirements to mechanical action, thermal insulating, waterproofing and acoustic, fire resistance, durability, economy and aesthetics. The man saw the need to build roofs from the oldest ancient times. Even if the design of buildings has an empirical character, are known and are preserved until today constructions that are made in antiquity, by the Egyptians, Greeks and Romans with architectural achievements, worthy of admiration and in present time. General composition of civil construction has been influenced throughout the evolution of construction history by the level of production forces and properties of building materials available in every historical epoch. For over five millennia, building materials were stone, wood and ceramic products (concrete was used by theRomans only as filling material.

  20. New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch

    Energy Technology Data Exchange (ETDEWEB)

    Nciri, Nader, E-mail: nader.nciri@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Kim, Namho [Department of Architectural Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Cho, Namjun, E-mail: njuncho@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of)

    2017-06-01

    This paper deals with the poorly understood effects of styrene-butadiene-styrene (SBS) copolymer on the bitumen performance. It focuses on determining the impact of various concentrations (e.g., 0, 4, 8, and 12 wt. %) of SBS on the attributes of two types of asphalt namely AP-5 asphalt and solvent deasphalting (SDA) pitch. The unmodified and modified binders were investigated in terms of their chemical compositions, microstructures, thermo-analytical behaviors, and physical properties. The intricate chemical compositions were evaluated by elemental analysis and thin layer chromatography-ionization detection (TLC-FID). Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to examine the microstructures. Whereas, thermal characteristics were evaluated by thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The physical behaviors were monitored through the softening point, penetration, viscosity, and ductility tests. The findings showed that the blending of asphalt with different amounts of SBS resulted into different rheological behaviors. This was reflected from the difference in the SARA (i.e., saturates, aromatics, resins, and asphaltenes) compositions and colloidal instability indexes of the modified asphalts. SEM exhibited a continuous asphalt phase with distributed SBS particles, a continuous polymer phase with distributed asphalt globules, or two interconnected continuous phases. FT-IR, {sup 1}H {sup 13}C NMR, and XRD data revealed that the AP-5 asphalt and SDA pitch experienced a number of distinct structural changes. TGA/DSC studies determined the occurrence of diverse events during thermal treatment. It is concluded that the degree of SBS modification depends strongly on SARA composition and polymer content. If the polymers are molded at higher concentrations along with aromatics-rich SDA pitches, then the mixtures

  1. Extensive Green Roof Ecological Benefits in Latvia

    OpenAIRE

    Rušenieks, Rihards; Kamenders, Agris

    2013-01-01

    Extensive green roof ecological benefits are studiedin this paper. The research contains a brief explanation aboutgreen roof technology and green roof ecological benefits. Greenroof capability to retain rainwater runoff by accumulating it instorage layers and conducting it back into the atmospherethrough evapotranspiration is studied and modeled. Modeling isdone in Stormwater Management Model 5.0 software. The modelis based on an existing warehouse-type building located in Rigaand hourly Riga...

  2. The impact of roofing material on building energy performance

    Science.gov (United States)

    Badiee, Ali

    The last decade has seen an increase in the efficient use of energy sources such as water, electricity, and natural gas as well as a variety of roofing materials, in the heating and cooling of both residential and commercial infrastructure. Oil costs, coal and natural gas prices remain high and unstable. All of these instabilities and increased costs have resulted in higher heating and cooling costs, and engineers are making an effort to keep them under control by using energy efficient building materials. The building envelope (that which separates the indoor and outdoor environments of a building) plays a significant role in the rate of building energy consumption. An appropriate architectural design of a building envelope can considerably lower the energy consumption during hot summers and cold winters, resulting in reduced HVAC loads. Several building components (walls, roofs, fenestration, foundations, thermal insulation, external shading devices, thermal mass, etc.) make up this essential part of a building. However, thermal insulation of a building's rooftop is the most essential part of a building envelope in that it reduces the incoming "heat flux" (defined as the amount of heat transferred per unit area per unit time from or to a surface) (Sadineni et al., 2011). Moreover, more than 60% of heat transfer occurs through the roof regardless of weather, since a roof is often the building surface that receives the largest amount of solar radiation per square annually (Suman, and Srivastava, 2009). Hence, an argument can be made that the emphasis on building energy efficiency has influenced roofing manufacturing more than any other building envelope component. This research project will address roofing energy performance as the source of nearly 60% of the building heat transfer (Suman, and Srivastava, 2009). We will also rank different roofing materials in terms of their energy performance. Other parts of the building envelope such as walls, foundation

  3. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  4. SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Qun Chen

    2013-01-01

    Full Text Available Compaction characteristic of the surface layer asphalt mixture (13-type gradation mixture was studied using Superpave gyratory compactor (SGC simulative compaction tests. Based on analysis of densification curve of gyratory compaction, influence rules of the contents of mineral aggregates of all sizes and asphalt on compaction characteristic of asphalt mixtures were obtained. SGC Tests show that, for the mixture with a bigger content of asphalt, its density increases faster, that there is an optimal amount of fine aggregates for optimal compaction and that an appropriate amount of mineral powder will improve workability of mixtures, but overmuch mineral powder will make mixtures dry and hard. Conclusions based on SGC tests can provide basis for how to adjust material composition for improving compaction performance of asphalt mixtures, and for the designed asphalt mixture, its compaction performance can be predicted through these conclusions, which also contributes to the choice of compaction schemes.

  5. Using ESEM to analyze the microscopic property of basalt fiber reinforced asphalt concrete

    Directory of Open Access Journals (Sweden)

    Chunmei Gao

    2018-07-01

    Full Text Available The basalt fiber staggered distribution in the asphalt concrete matrix and the bonding situation between asphalt are analyzed by images collected using field emission environmental scanning electron microscope (ESEM test equipment. The results show that bonding of the fiber and the asphalt binder is very good and there is a strong binding force of chemical bonding connections between the two; the lipophilicity of basalt fiber is very good, the wrapped cover ability of asphalt for fiber is very strong; basalt fiber forms the local space network structure in the asphalt concrete matrix, effectively overcome the relative slip between the particles, connect the damaged parts into a whole; basalt fiber across internal micropores, and the internal defects in material can be remedied. At the same time, crack resistance mechanism of the fiber to internal micro cracks is qualitatively explained according to the magnitude of the stress intensity factor Kf. Keywords: Road engineering, Asphalt concrete, Basalt fiber, Microscopic analysis

  6. The effect of long-term oxidation on the rheological properties of polymer modified asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong Ruan; Richard R. Davison; Charles J. Glover [Texas A & M University, College Station, TX (United States). Department of Chemical Engineering

    2003-10-01

    The effect of long-term aging on rheological properties of polymer modified asphalt binders was studied. Modifiers included diblock poly(styrene-b-butadiene) rubber, triblock poly(styrene-b-butadiene-b-styrene), and tire rubber. Asphalt aging was carried out either at 60{sup o}C in a controlled environmental room or at 100{sup o}C in a pressure aging vessel (AASHTO Provisional Standards, 1993). Both dynamic shear properties and extensional properties were investigated. Polymer modification resulted in increased asphalt complex modulus at high temperatures, decreased asphalt complex modulus at low temperatures, broadened relaxation spectra, and improved ductility. Oxidative aging decreased asphalt temperature susceptibility, damaged the polymer network in binders, further broadened the relaxation spectrum, and diminished polymer effectiveness in improving asphalt ductility. 27 refs., 8 figs., 3 tabs.

  7. Software for roof defects recognition on aerial photographs

    Science.gov (United States)

    Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.

    2018-05-01

    The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.

  8. Rutting Prediction in Asphalt Pavement Based on Viscoelastic Theory

    Directory of Open Access Journals (Sweden)

    Nahi Mohammed Hadi

    2016-01-01

    Full Text Available Rutting is one of the most disturbing failures on the asphalt roads due to the interrupting it is caused to the drivers. Predicting of asphalt pavement rutting is essential tool leads to better asphalt mixture design. This work describes a method of predicting the behaviour of various asphalt pavement mixes and linking these to an accelerated performance testing. The objective of this study is to develop a finite element model based on viscoplastic theory for simulating the laboratory testing of asphalt mixes in Hamburg Wheel Rut Tester (HWRT for rutting. The creep parameters C1, C2 and C3 are developed from the triaxial repeated load creep test at 50°C and at a frequency of 1 Hz and the modulus of elasticity and Poisson’ s ratio determined at the same temperature. Viscoelastic model (creep model is adopted using a FE simulator (ANSYS in order to calculate the rutting for various mixes under a uniform loading pressure of 500 kPa. An eight-node with a three Degrees of Freedom (UX, UY, and UZ Element is used for the simulation. The creep model developed for HWRT tester was verified by comparing the predicted rut depths with the measured one and by comparing the rut depth with ABAQUS result from literature. Reasonable agreement can be obtained between the predicted rut depths and the measured one. Moreover, it is found that creep model parameter C1 and C3 have a strong relationship with rutting. It was clear that the parameter C1 strongly influences rutting than the parameter C3. Finally, it can be concluded that creep model based on finite element method can be used as an effective tool to analyse rutting of asphalt pavements.

  9. POROUS-MASTIC ASPHALT-CONCRETE MIXTURES AND THEIR UTILIZATION HISTORY

    Directory of Open Access Journals (Sweden)

    Khudokonenko Anton Aleksandrovich

    2017-11-01

    Full Text Available Subject: a rapid increase in the traffic intensity and freight traffic on motor roads leads to premature destruction of road surfaces. At the same time, the actual service life of asphalt-concrete pavements rarely exceeds 4-5 years and in most cases is only 2-3 years. Most intensively defects and fractures appear on asphalt-concrete pavements in the early spring. Nowadays the overhaul intervals for the road surface coverings are significantly lower than those given by the regulatory requirements. One of the main reasons for this phenomenon is the use of obsolete technologies based on traditional materials whose properties are inadequate to resist stresses and deformations arising in the coating. This is especially evident in the climatic conditions of the south of the European part of Russia, where the upper layers of the roadway experience a much wider range of temperatures. Tighter requirements for the initial road-building materials and timely repair of the coatings allow us to increase the service life of motor roads. Research objectives: the aim of the study is to develop a new type of asphalt-concrete, such as porous-mastic one. Materials and methods: the work was carried out based on observations and published sources, a method of theoretical study and analysis. Results: the domestic and foreign experience of using the given asphalt concrete for the top layer of the coating was considered. The technology of preparation and laying of a porous-mastic asphalt-concrete mixture is presented and its advantages and disadvantages are shown. Conclusions: increasing the longevity of highways is an important and urgent task and it can be solved, in particular, due to the wide use of new technologies and non-traditional building materials that allow us to improve the quality of asphalt-concrete pavement and prolong its overhaul intervals.

  10. Case studies of green roof policy from Canada

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, S. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2006-07-01

    In order to overcome environmental, economic, and social challenges, such as stormwater management, heat island effects, reducing energy use in buildings and increasing amenity space, green roof technology has been a key approach used in many European countries and is gaining acceptance throughout North America as knowledge of the environmental benefits and green roof technology grows. While the conditions, benefits and market forces that have driven green roof development in Europe are not identical to Canada's, lessons can be learned from their experiences. Canadian municipalities that are looking to develop and implement green roof policies and programs will need information on how to tailor policies and programs for specific climate conditions, environmental concerns and regulatory realities. In order to provide Canadian municipal decision-makers with an overview of international and local green roof policies and programs, a green roof policy infrastructure manual was recently completed for the Canada Mortgage and Housing Corporation. Decision-makers can be better informed about which policies may be best suited to meet their specific policy needs by reviewing the motivators and other factors behind existing programs around the world. The manual describes green roof policies in each of 12 different jurisdictions from Canada, the United States, Germany, Switzerland, Singapore, and Japan in terms of local green roof motivators and the steps taken along the continuum of establishing policy. This paper described the progress of some Canadian cities that are moving through six phases of establishing appropriate green roof policies and programs. The six phases were introductory and awareness; community engagement; action plan development and implementation; technical research; program and policy development and continuous improvement.

  11. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  12. Design Method for Proportion of Cement-Foamed Asphalt Cold Recycled Mixture

    OpenAIRE

    Li Junxiao; Fu Wei; Zang Hechao

    2018-01-01

    Through foaming experiment of Zhongtai AH-70 asphalt, the best foaming temperature water consumption and influence factors of foamed asphalt’s foaming features are determined; By designing the proportion of foamed asphalt cold in-place recycled mixture combined with the water stability experiment, for this mixture the best foamed asphalt addition is 3%, and proportion of the mixture is RAP: fine aggregate: cement=75:23:2. Using SEM technology, the mechanism of increasing on the intensity of f...

  13. Estimation of fatigue characteristics of asphaltic mixes using simple tests

    NARCIS (Netherlands)

    Medani, T.O.; Molenaar, A.A.A.

    2000-01-01

    A simplified procedure for estimation of fatigue characteristics of asphaltic mixes is presented. The procedure requires the determination of the so-called master curve (Le. the relationship between the mix stiffness, the loading time and the temperature), the asphalt properties and the mix

  14. Including asphalt cooling and rolling regimes in laboratory compaction procedures

    NARCIS (Netherlands)

    Bijleveld, Frank; Doree, Andries G.; Kim,

    2014-01-01

    Given the various changes occurring in the asphalt construction industry, improved process and quality control is becoming essential. The significance of appropriate rolling and compaction for the quality of asphalt is widely acknowledged and vital for improved process control. But what constitutes

  15. Comparative life cycle assessment of standard and green roofs.

    Science.gov (United States)

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  16. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index

    Directory of Open Access Journals (Sweden)

    Chao Li

    2018-05-01

    Full Text Available Increasing temperature is a simple and convenient method to accelerate the self-healing process of bitumen. However, bitumen may not achieve the healing capability at lower temperature, and may be aged if temperature is too high. In addition, the bitumen is mixed with mineral filler and formed as asphalt mastic in asphalt concrete, so it is more accurate to study the initial self-healing from the perspective of asphalt mastic. The primary purpose of this research was to examine the initial self-healing temperature of asphalt mastic, which was determined by the flow behavior index obtained from the flow characteristics. Firstly, the texture and geometry characteristics of two fillers were analyzed, and then the initial self-healing temperature of nine types of asphalt mastic, pure bitumen (PB and styrene-butadiene-styrene (SBS modified bitumen were determined by the flow behavior index. Results demonstrate that the average standard deviation of gray-scale texture value of limestone filler (LF is 21.24% lower than that of steel slag filler (SSF, showing that the steel slag filler has a better particle distribution and geometry characteristics. Also the initial self-healing temperatures of asphalt mastics with 0.2, 0.4 and 0.6 LF-PB volume ratio are 46.5 °C, 47.2 °C and 49.4 °C, which are 1.4 °C, 0.8 °C and 0.4 °C higher than that of asphalt mastics with SSF-PB, but not suitable for the evaluation of asphalt mastic contained SBS modified bitumen because of unique structure and performance of SBS.

  17. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  18. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers

  19. [The impact of population growth on Tamba Kosi, a Himalayan valley in Nepal].

    Science.gov (United States)

    Verliat, S

    1994-01-01

    Two several-month-long stays in the isolated Tamba Kosi valley in Nepal in 1983 and 1986 allowed an assessment of the importance of changes in rural societies. In about 50 years, the oldest inhabitants of some villages have seen the number of houses quadruple. In the absence of reliable statistical data, the inhabitants say that the Tamba Kosi valley population has doubled in the last 25 years. This population growth exacerbates the multiethnic fight for good land (i.e., ground of modest slope, hot, and humid). Many people have emigrated, which has somewhat eased problems relative to population growth. Soil degradation, which is becoming more and more acute, drives the inhabitants to cut down trees and clear the land for cultivation of new plots. These new plots are running up against steep slopes and high altitude. Most families have barely two hectares, which must suffice to feed 5-6 people on average. This fuels intensification of agricultural production, resulting in low efficacy. Livestock mutilate forests with their hooves and teeth. The marked increase in the variety of livestock accelerates this destruction. Three types of building materials are used in this high valley: thatch, shingles (fir tree), and bamboo matting. The disappearance of wild grasses used to make thatch roofs and people moving to higher and higher altitudes resulted in use of shingles to make roofs. Buildings made of shingles, which demanded changes in construction techniques, changed the conception of homes. They became the preferred building type, which increased the demand for fir trees and deforestation. This lead to a demand for roofing material made of bamboo matting and another change in construction techniques. The retreat of the forest and disappearance of the most wanted plant species are the most spectacular impacts of population growth. This environmental degradation exacerbates erosion at all bioclimatic altitudes.

  20. Integral design of active energy roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2006-01-01

    A wide variety of new products, such as photovoltaic (PV) systems and solar collectors, roof lights, ventilation devices, insulation and safety devices, is finding its way into the roofing industry. As a result many problems occurred, resulting in poor quality, unsafe working conditions and high

  1. Theoretical evaluation of thermal and energy performance of tropical green roofs

    International Nuclear Information System (INIS)

    Tsang, S.W.; Jim, C.Y.

    2011-01-01

    The thermal and energy efficiency of tropical green roofs is assessed by a theoretical model to clarify the contribution of underlying factors. The suitability of 1400 high-rise public housing blocks in Hong Kong for rooftop greening was assessed by remote sensing images. Weather and microclimatic-soil monitoring data of an experimental green roof provided the basis for computations. Roof greening prevented a huge amount of solar energy at 43.9 TJ in one summer from penetrating the buildings to bring significant energy saving. Thermal performance of humid-tropical green roofs, with greater latent heat dissipation, is twice more effective than the temperate ones. The energy balance model shows that solar energy absorption by bare and green roofs depends on shortwave rather than longwave radiation. Heat flux into a building indicates a one-day time lag after a sunshine day. With restricted evapotranspiration, bare roofs have more sensible heat and heat storage than green roofs. The bare roof albedo of 0.15, comparing with 0.30 of green roof, renders 75% higher heat storage. Small increase in convection coefficient from 12 to 16 could amplify 24% and 45% of latent heat dissipation respectively for bare and green roofs. Doubling the soil water availability could halve the heat storage of green roofs. -- Highlights: → We developed a theoretical model to calculate the thermal performance of tropical green roofs. → Bare roofs have more sensible heat and heat storage than green roofs. → Latent heat dissipation of tropical green roofs is twice that of temperate counterparts. → Heat flux through the roof into a building demonstrates a one-day time lag after a long sunshine day. → Green roofs can block 43.9 TJ of solar energy penetration into public housing buildings in one summer.

  2. Assessment of asphalt concrete reinforcement grid in flexible pavements : final report.

    Science.gov (United States)

    2016-05-01

    This report investigated the application of accepted methods of pavement structural evaluation to independently assess the potential structural benefit of asphalt geogrid reinforcement of an operational flexible highway pavement. The asphalt interlay...

  3. Fuel consumption impacts of auto roof racks

    International Nuclear Information System (INIS)

    Chen, Yuche; Meier, Alan

    2016-01-01

    The after-market roof rack is one of the most common components attached to a vehicle for carrying over-sized items, such as bicycles and skis. It is important to understand these racks’ fuel consumption impacts on both individual vehicles and the national fleet because they are widely used. We estimate the national fuel consumption impacts of roof racks using a bottom-up approach. Our model incorporates real-world data and vehicle stock information to enable assessing fuel consumption impacts for several categories of vehicles, rack configurations, and usage conditions. In addition, the model draws on two new data-gathering techniques, on-line forums and crowd-sourcing. The results show that nationwide, roof racks are responsible for 0.8‰ of light duty vehicle fuel consumption in 2015, corresponding to 100 million gallons of gasoline per year. Sensitivity analyses show that results are most sensitive to the fraction of vehicles with installed roof racks but carrying no equipment. The aerodynamic efficiency of typical roof racks can be greatly improved and reduce individual vehicle fuel consumption; however, government policies to minimize extensive driving with empty racks—if successful—could save more fuel nationally. - Highlights: •First estimate of national energy impacts of auto roof racks—about 1‰. •A bottom-up approach reveals details of the fuel consumption penalty caused by racks. •Two novel data collection techniques, on-line forums and crowd-sourcing, improve estimate. •Technical and behavioral policies could significantly cut fuel penalties from roof racks.

  4. Evaluation of rheological and thermic properties of neat and modified asphalt with a waste of LDPE

    Directory of Open Access Journals (Sweden)

    William Andrés Castro López

    2016-01-01

    Full Text Available Context: The asphalt technology and modified asphalt mixtures has been widely used and studied, worldwide. Adding polymers to asphalt modifies mechanical, chemical and rheological properties, trying to improve behavior of the mixtures subjected to different environmental and load conditions. The paper report results from rheological and thermal characterization on conventional 60-70 asphalt cement and 60-70 asphalt cement modified by introducing a waste of low density polyethylene (LDPE. Method: Modification of the asphalt was performed by wet way in a proportion of LDPE/CA=5% with respect to the mass. Rheological (using DSR, Thermogravimetry (TGA and Differential Scanning Calorimetry (DSC techniques were performed. Results and Conclusions: The modified asphalt develops a remarkable increase in stiffness and improvement of the performance grade at high temperatures of service. Additionally, the modified asphalt is more resistant to oxidation and aging processes due to heat. However, the asphalt modified showed a decrease in crack resistance at low and intermediate temperatures of service.

  5. Hinged roof timber

    Energy Technology Data Exchange (ETDEWEB)

    Shestov, P I; Golub, A G; Yefremov, V I

    1980-08-07

    A hinged roof timer is suggested which includes a beam with prong and loop on the end which have openings in the form of ring slits for the distance wedges and round for the pins. In this case the opening of the distance wedge in the ring is arranged in relation to the opening for the pin closer to the end of the beam, and in the prong, in the opposite order. In order to improve the operating quality by guaranteeing active support of the cantilever roof timber without increasing its overall dimensions for the height of the opening for the distance wedge in the prong and the ring, beams are arranged axisymmetrically to the longitudinal axis.

  6. Advanced Experimental Evaluation of Asphalt Mortar for Induction Healing Purposes

    NARCIS (Netherlands)

    Apostolidis, P.; Liu, X.; Scarpas, Athanasios; van Bochove, G; van de Ven, M.F.C.

    2016-01-01

    This paper studied the induction heating and healing capacity of asphalt mortar by adding electrically conductive additives (e.g. iron powder and steel fibers), and examined the influence of different combinations of them on the mechanical response of asphalt mortars. Induction heating technique is

  7. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  8. Do green roofs cool the air?

    NARCIS (Netherlands)

    Solcerova, A.; van de Ven, F.H.M.; Wang, Mengyu; Rijsdijk, Michiel; van de Giesen, N.C.

    2017-01-01

    Rapid urbanization and an increasing number and duration of heat waves poses a need to mitigate extremely high temperatures. One of the repeatedly suggested measures to moderate the so called urban heat island are green roofs. This study investigates several extensive sedum-covered green roofs in

  9. An Image-Based Finite Element Approach for Simulating Viscoelastic Response of Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Wenke Huang

    2016-01-01

    Full Text Available This paper presents an image-based micromechanical modeling approach to predict the viscoelastic behavior of asphalt mixture. An improved image analysis technique based on the OTSU thresholding operation was employed to reduce the beam hardening effect in X-ray CT images. We developed a voxel-based 3D digital reconstruction model of asphalt mixture with the CT images after being processed. In this 3D model, the aggregate phase and air void were considered as elastic materials while the asphalt mastic phase was considered as linear viscoelastic material. The viscoelastic constitutive model of asphalt mastic was implemented in a finite element code using the ABAQUS user material subroutine (UMAT. An experimental procedure for determining the parameters of the viscoelastic constitutive model at a given temperature was proposed. To examine the capability of the model and the accuracy of the parameter, comparisons between the numerical predictions and the observed laboratory results of bending and compression tests were conducted. Finally, the verified digital sample of asphalt mixture was used to predict the asphalt mixture viscoelastic behavior under dynamic loading and creep-recovery loading. Simulation results showed that the presented image-based digital sample may be appropriate for predicting the mechanical behavior of asphalt mixture when all the mechanical properties for different phases became available.

  10. PROSPECTS FOR APPLICATION OF COMPLEX-MODIFIED SAND ASPHALT CONCRETE IN ROAD CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    D. Yu. Alexandrov

    2017-01-01

    Full Text Available The paper considers a possibility to use sand asphalt concrete as a material for protection of asphalt concrete and cement concrete road pavements against affection of external destructive factors. Advantages and disadvantages of sand asphalt concrete road pavements have been determined in the paper. The paper provides recommendations on improvement of sand asphalt concrete properties and contains an analysis of possible variants for usage of complex-modified sand asphalt concrete in the road construction. It has been noted that according to its potentially possible physical and mechanical properties activated quartz sand being micro-reinforced by dispersive industrial wastes is considered as an efficient component for creation of constructive layers in road asphalt concrete pavements. The paper reveals only specific aspects of the efficient application of quartz sand in road asphalt concrete. The subject of the paper loоks rather interesting for regions where there are no rock deposits for obtaining broken-stone ballast but there is rather significant spreading of local quarts sand. Its successful application is connected with the necessity to develop special equipment for physical and chemical activation of sand grain surface that permits strongly to increase an adhesive strength in the area of phase separation within the “bitumen–SiO2” system. The considered problem is a topical one and its solution will make it possible to local sand in a maximum way and partially to exclude application of broken stone in road construction.

  11. Hot Mix Asphalt Recycling: Practices and Principles

    OpenAIRE

    Mohajeri, M.

    2015-01-01

    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  12. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    Science.gov (United States)

    Mashaan, Nuha Salim; Ali, Asim Hassan; Karim, Mohamed Rehan; Abdelaziz, Mahrez

    2014-01-01

    An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM) obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM) could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction. PMID:24688369

  13. A Review on Using Crumb Rubber in Reinforcement of Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Nuha Salim Mashaan

    2014-01-01

    Full Text Available An immense problem affecting environmental pollution is the increase of waste tyre vehicles. In an attempt to decrease the magnitude of this issue, crumb rubber modifier (CRM obtained from waste tyre rubber has gained interest in asphalt reinforcement. The use of crumb rubber in the reinforcement of asphalt is considered as a smart solution for sustainable development by reusing waste materials, and it is believed that crumb rubber modifier (CRM could be an alternative polymer material in improving hot mix asphalt performance properties. In this paper, a critical review on the use of crumb rubber in reinforcement of asphalt pavement will be presented and discussed. It will also include a review on the effects of CRM on the stiffness, rutting, and fatigue resistance of road pavement construction.

  14. System for monitoring of green roof performance: use of weighing roof segment and non-invasive visualization

    Science.gov (United States)

    Jelinkova, Vladmira; Dohnal, Michal; Picek, Tomas; Sacha, Jan

    2015-04-01

    Understanding the performance of technogenic substrates for green roofs is a significant task in the framework of sustainable urban planning and water/energy management. The potential retention and detention of the anthropogenic, light weight soil systems and their temporal soil structure changes are of major importance. A green roof test segment was built to investigate the benefits of such anthropogenic systems. Adaptable low-cost system allows long-term monitoring of preferred characteristics. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the substrates provide basis for detailed analysis of thermal and hydrological regime in green roof systems. The first results confirmed the benefits of green roof systems. The reduction of temperature fluctuations as well as rainfall runoff was significant. Depending on numerous factors such substrate material or vegetation cover the test green roof suppressed the roof temperature amplitude for the period analyzed. The ability to completely prevent (light rainfall events) or reduce and delay (medium and heavy rainfall events) the peak runoff was also analyzed. Special attention is being paid to the assessment of soil structural properties related to possible aggregation/disaggregation, root growth, weather conditions and associated structural changes using non-invasive imaging method. X-ray computed microtomography of undisturbed soil samples (taken from experimental segments) is used for description of pore space geometry, evaluation of surface to volume ratio, additionally for description of cracks and macropores as a product of soil flora and fauna activity. The information from computed tomography imaging will be used for numerical modeling of water flow in variable saturated porous media. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech

  15. The Self-Drying Concept for Flat Roofs

    DEFF Research Database (Denmark)

    Korsgaard, Vagn; Bunch-Nielsen, Tommy; Rode, Carsten

    1996-01-01

    ways. From the interior by diffusion and convection. During construction from moist materials or rain. Later on, rain water may enter through leaks in the roofing.From laboratory experiment, computer calculations and practical experience it is concluded, that the Self-Drying Roof concept works for both...... cold- and warm deck roof systems in climate zones where a vapor retarder is needed, if the traditional water proof vapor retarder is substituted by a water permeable vapor retarder....

  16. The Geometric Theory of Roof Reflector Resonators

    Science.gov (United States)

    1976-12-01

    reflector, if properly oriented, (The terms "roof-top prism ," "right-angle prism ," and - incorrectly - " Porro prism " are encountered in .the literature...Q-switch prisms ) in laser resonators have been infrequent compared to the attention given spherical mirrors. This chapter summarizes the relevant...designator (Refs 42 and 43). In one experiment, a 900 roof prism was tested in a resonator with a 70% reflecting filat mirror. Thus, in Fig. 2, the right roof

  17. Realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2013-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. According to this definition, some roofs may have faces

  18. Characteristic Asphalt Concrete Wearing Course (ACWC) Using Variation Lime Filler

    Science.gov (United States)

    Permana, R. A.; Pramesti, F. P.; Setyawan, A.

    2018-03-01

    This research use of lime filler Sukaraja expected add durability layers of concrete pavement is asphalt damage caused by the weather and load traffic. This study attempts to know how much value characteristic Marshall on a mixture of concrete asphalt using lime filler. This research uses experimental methods that is with a pilot to get results, thus will look filler utilization lime on construction concrete asphalt variation in filler levels 2 %, 3 %, 4 %.The results showed that the use of lime filler will affect characteristic a mixture of concrete asphalt. The more filler chalk used to increase the value of stability. On the cretaceous filler 2 % value of stability is 1067,04 kg. When lime filler levels added to the levels of filler 4 %, the value of stability increased to 1213,92 kg. The flexibility increased the number of filler as levels lime 2 % to 4 % suggests that are conducted more stiff mix.

  19. Phosphate Leaching from Green Roof Substrates—Can Green Roofs Pollute Urban Water Bodies?

    Directory of Open Access Journals (Sweden)

    Agnieszka Karczmarczyk

    2018-02-01

    Full Text Available Green roofs are an effective stormwater measure due to high water retention capacity and the ability of delaying stormwater runoff. However, low importance is still given to the pollutant leaching potential of substrates used in green roof construction. The aim of the study is to estimate the concentrations and loads of P-PO43− in runoff from extensive and intensive substrates. To achieve this goal, several commonly-used fresh substrates were analyzed for P-PO43− leaching potential in different scale experiments, from laboratory batch tests, leaching column experiments, and long-term monitoring of open air green roof containers. The results of the study confirmed that fresh green roof substrates contain phosphorus in significant amounts of 17–145 mg∙P-PO43−/kg and, thus, can contribute to eutrophication of freshwater ecosystems. High correlation between phosphate content estimated by HCl extraction and cumulative load in leachate tests suggests that the batch HCl extraction test can be recommended for the comparison and selection of substrates with low potential P leaching. Volume-weighted mean concentrations and UALs of P-PO43− leaching from fresh substrates were higher in cases of intensive substrates, but there was no clear relationship between substrate type and the observed P-PO43− concentration range. To avoid increasing eutrophication of urban receivers the implementation of P reduction measures is strongly recommended.

  20. Greenbacks from green roofs: forging a new industry in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Peck, S. W.; Callaghan, C. [Peck and Associates, Toronto, ON (Canada); Bass, B. [Environment Canada, Toronto, ON (Canada); Kuhn, M. [Toronto, ON (Canada)

    1999-03-01

    This report provides a comprehensive review of the qualitative and quantitative benefits of green roof and vertical garden technologies, explains the nature of roof greening and green roof systems, examines the barriers to their more rapid diffusion into Canadian markets, and makes recommendations as to how how these barriers may be overcome. Two basic types of green roof systems, extensive and intensive, are identified. Extensive green roofs are characterized by their low weight, low capital cost and low maintenance. Intensive green roofs, by contrast, are heavier, more costly to establish, require intensive planting and higher maintenance. Both types of green roofs may be further subdivided into accessible or inaccessible. Accessible green roofs are flat, outdoor open spaces intended for use as gardens or terraces, while inaccessible roofs are only accessible for periodic maintenance. 'Vertical gardens' are a type of extensive green roof, characterized by the growing of plants on or up against the facade of buildings. The many benefits of green roof or vertical garden technologies include energy cost savings due to increased insulation and improved protection of the roof membrane, air quality improvements, new employment opportunities for a wide range of people including suppliers of roof membranes and related products, and social benefits such as improved aesthetics, health and horticultural therapy. Barriers to diffusion in Canada have been identified as lack of awareness, lack of incentives to implement, cost implications, lack of technical standards, few existing examples and risks associated with uncertainty. The recommendations to overcome market barriers are intended to address these barriers, i.e. they call for increased efforts to generate awareness through addressing the knowledge availability issue, and through high profile demonstration projects, government-sponsored technology diffusion, financial incentives to overcome cost-based barriers

  1. Removal of contaminated asphalt layers by using heat generating powder metallic systems

    International Nuclear Information System (INIS)

    Barinov, A.S.; Karlina, O.K.; Ojovan, M.I.

    1996-01-01

    Heat generating systems on the base of powder metallic fuel were used for the removal of contaminated asphalt layers. Decontamination of spots which had complex geometric form was performed. Asphalt layers with deep contamination were removed essentially all radionuclides being retained in asphalt residue. Only a small part (1 - 2 %) of radionuclides could pass to combustion slag. No radionuclides were detected in aerosol-gas phase during decontamination process

  2. Research on the characteristics of temperature field of asphalt pavement in seasonal frozen region

    International Nuclear Information System (INIS)

    Qiao, Jiangang; Liu, Weizheng

    2014-01-01

    The characteristics of climate in seasonal frozen area are low temperature and a large range of temperature variation between day and night in winter. These characteristics often lead to problems of asphalt pavement, especially transverse cracks. To reduce the problems of asphalt pavement, it is necessary to examine the distribution of the temperature range of asphalt pavement. A three-dimensional finite element model was used, taking the SMA asphalt pavement as an example with solid70 and plane55 unit features of ANSYS software. It can obtain the relationship between temperature gradient and time and the relationship between temperature gradient and depth. In addition, a function relation model of stress and time was also established. It can provide a theoretical basis for the prevention and treatment of problems of asphalt pavement in seasonal frozen area. Moreover, it has an important significance for improving asphalt pavement design

  3. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Šrámek Juraj

    2015-12-01

    Full Text Available The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E* measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ε6. The test equipment and software is used to evaluate fatigue and deformation characteristics.

  4. Wind loads on solar energy roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van

    2007-01-01

    This paper presents an overview of the wind loads on roofs, equipped with solar energy products, so called Active Roofs. Values given in this paper have been based on wind tunnel and full scale measurements, carried out at TNO, and on an interpretation of existing rules and guidelines. The results

  5. Application of minerals residues in the asphalt composition; Aplicacao de residuos minerais na composicao do asfalto

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Roberto Carlos da C.; Seidl, Peter Rudolf [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Correia, Julio Cesar Guedes [Centro de Tecnologia Mineral - CETEM, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The performance of asphalt pavements depends mainly on the properties of their constituents: mineral aggregates and asphalt cement. The mineral aggregate represents about 95% in weight of asphalt mixtures having a significant influence on the properties and performance of these mixtures. Asphalt cement (CAP) corresponds to the smaller fraction but it is mainly responsible for adsorption on the mineral aggregates. The objective of this study was to evaluate the interaction between different CAPs with residues from granite saw wills in place of mineral aggregates that run up costs with extraction and processing in asphalt production. This way asphalt production costs as well as the environmental problems that are caused by mineral residue are reduced. Five different asphalt cements, referred to as A, B, C, D and E, and a granite residue were used in this work. The results indicated that the residue strongly absorbs all the CAPs that were studied; particularly CAP A, which is considered the most adequate for the production of asphalt from this residue. Preliminary tests this indicate that asphalt production can use mineral residues instead of mineral aggregates in its composition. (author)

  6. In-Place Recycling and Reclamation of Asphaltic Concrete Pavements in Kentucky

    Science.gov (United States)

    2017-11-01

    Full-depth reclamation has been defined by the Asphalt Recycling and Reclaiming Association as a rehabilitation technique in which the full thickness of the asphalt pavement and a predetermined portion of the underlying material (base, subbase, an...

  7. Development of asphaltic mix with waste products use

    Directory of Open Access Journals (Sweden)

    Pugin Konstantin Georgievich

    2014-07-01

    Full Text Available The trend of high growth of the vehicle fleet in Russia along with the positive impact on the socio-economic development of the country has a number of adverse consequences, one of which is the high accident rate on the roads. The paper considers modern way to provide the safe vehicles flow with the use of colored asphalt, which is a kind of hot asphalt and can have a variety of colors, which consists of coloring pigments. The conventional method of coloring the asphalt mix is produced by adding color rubble or pigmenting additives. The task, which was put forward, was the establishment of such road concrete mix, from which, without the use of primary materials and without increasing the consumption of bitumen, asphalt concrete road surfaces of acceptable strength could be obtained. As a pigment the dust of gas purification system of electrical furnace DSP - 60 of «Kamastal» plant, Perm, was used. The composition of the dust waste from the furnace consists of metal oxides and silicates. Dust-gas-cleaning is a fine powder with a high specific surface (1.2…2.5 thousand cm /g and bulk density of 3.7…4.2 g/cm . The powder color is dark brown. The density of the ready colored asphalt samples is 2.47...2.49 g/cm , and water saturation is 3.50…3.55 %. As a result of the research the diagrams of the dependence of road concrete mix’s water saturation from dust percentage and a diagram of dependence of concrete mixes’ durability from dust percentage at t = 20° and 50° C were built. After analyzing the obtained curves it can be concluded that the increase of the percentage of dust leads to increase of water saturation of road concrete mix and reduced strength. Thus, the developed asphalt concrete mix allows visually separating the lanes on the road, it has the relevant regulatory requirements durability and water resistance. This mixture corresponds to the type B mark III and can be used in regions I, II, and partly III of road-climatic zones

  8. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures

    Directory of Open Access Journals (Sweden)

    Suched Likitlersuang

    2016-09-01

    Full Text Available The influence of filler materials on volumetric and mechanical performances of asphalt concrete was investigated in this study. The AC60/70 asphalt binder incorporating with cement and fly ash as filler materials was mixed with limestone following the Marshall mix design method. The filler contents of cement and/or fly ash were varied. The non-filler asphalt concrete mixtures of the AC60/70 and the polymer modified asphalt were prepared for the purpose of comparison. The investigation programme includes the indirect tensile test, the resilient modulus test and the dynamic creep test. The tests are conducted under the humid temperate environments. All tests were then carried out under standard temperature (25 °C and high temperature (55 °C by using a controlled temperature chamber via the universal testing machine. The wet-conditioned samples were prepared to investigate the moisture susceptibility. Results show that cement and/or fly ash were beneficial in terms of improved strength, stiffness and stripping resistance of asphalt mixture. In addition, the combined use of cement and fly ash can enhance rutting resistance at wet and high temperature conditions. The results indicate that the strength, stiffness and moisture susceptibility performances of the asphalt concrete mixtures improved by filler are comparable to the performance of the polymer modified asphalt mixture. Keywords: Asphalt concrete, Filler, Resilient modulus, Dynamic creep test, Moisture susceptibility

  9. ROOF GARDENS AS LANDSCAPING IN MODERN TIMES

    Directory of Open Access Journals (Sweden)

    Vaska Sandeva

    2017-02-01

    Full Text Available As we know we live in a process of industrialization and massive building of residential buildings, both individually and as a collective housing. Given all that happens even with the procedural other things to come up with all this, the country remains less green space that is required for a single environment, so the roof gardens are the best choice for all of this to get a beautiful country. For roof gardens should be given the explanation that, roof gardens, call it beautiful, flat roofs, and with gentle slope, with rich composition intensively maintained and often impose a constructive adaptation of the building and benefits by the architectural beauty, insulation, absorption. Commonly found in urban areas and almost always are placed foliage with not very high growth.

  10. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  11. Investigating the Properties of Asphalt Concrete Containing Glass Fibers and Nanoclay

    Directory of Open Access Journals (Sweden)

    Hasan Taherkhani

    2016-06-01

    Full Text Available The performance of asphaltic pavements during their service life is highly dependent on the mechanical properties of the asphaltic layers. Therefore, in order to extend their service life, scientists and engineers are constantly trying to improve the mechanical properties of the asphaltic mixtures. One common method of improving the performance of asphaltic mixtures is using different types of additives. This research investigated the effects of reinforcement by randomly distributed glass fibers and the simultaneous addition of nanoclayon some engineering properties of asphalt concrete have been investigated. The properties of a typical asphalt concrete reinforced by different percentages of glass fibers were compared with those containing both the fibers and nanoclay. Engineering properties, including Marshall stability, flow, Marshall quotient, volumetric properties and indirect tensile strength were studied. Glass fibers were used in different percentages of 0.2, 0.4 and 0.6% (by weight of total mixture, and nanoclay was used in 2, 4 and 6% (by the weight of bitumen. It was found that the addition of fibers proved to be more effective than the nanoclay in increasing the indirect tensile strength. However, nanoclay improved the resistance of the mixture against permanent deformation better than the glass fibers. The results also showed that the mixture reinforced by 0.2% of glass fiber and containing 6% nanoclay possessed the highest Marshall quotient, and the mixture containing 0.6% glass fibers and 2% nanoclay possessedthe highest indirect tensile strength.

  12. Investigation of asphalt core-plinth connection in embankment dams

    Directory of Open Access Journals (Sweden)

    Weibiao Wang

    2017-12-01

    Full Text Available The asphalt core itself is a no-joint water barrier in embankment dams and is connected to the concrete plinth on the bottom of the core. A reliable asphalt core-plinth connection is crucial and must remain watertight when the core deforms due to deformations in the embankment and foundation and due to reservoir water pressure. A large number of tension tests were conducted to determine the best ratios, joint thickness and suitable additives for the sandy asphalt mastic (SAM mix used for the connection. With the ratios of bitumen to filler to sand of 20%:35%:45% and by adding 4% SBS in the bitumen, one got a very suitable composition for the asphalt core-plinth connection in tensile conditions. Model tests were conducted to study the connection behavior when subjected to large shear displacements and high water pressure. The joint model test results indicate that the plane-surface plinth, curved-surface plinth, and plinth with or without copper water-stop showed no significant difference for the connection in the joint shear behavior. However, plinth with copper water-stop is suggested to enhance its tensile and shear behavior.

  13. Cool roofs and the influence on the energy consumption under Danish conditions

    DEFF Research Database (Denmark)

    Brandt, Erik; Bunch-Nielsen, Tommy; Juhl, Lasse

    Experience from countries in warm climates has shown that the color of the roofing material has a significant effect on the energy consumption of the building. Especially changing from black to white roofing material provides reduction in energy consumption. The investigated roofs have been...... with a moderate amount of thermal insulation. The Danish Roofing Advisory Board in Denmark has conducted an analysis of the effects of roofing color on buildings energy consumption under Danish conditions i.e. with a colder climate and with a larger amount of thermal insulation. An experiment was performed...... in order to study the effects of the roofing color on the temperature distribution in a roof structure. The studied roof specimens were flat roofs covered with roofing felt in different colors. Temperatures have been measured in the roofing felt as well as in the middle and the bottom of the structure...

  14. Rutting and Fatigue Cracking Resistance of Waste Cooking Oil Modified Trinidad Asphaltic Materials

    Directory of Open Access Journals (Sweden)

    Rean Maharaj

    2015-01-01

    Full Text Available The influence of waste cooking oil (WCO on the performance characteristics of asphaltic materials indigenous to Trinidad, namely, Trinidad Lake Asphalt (TLA, Trinidad Petroleum Bitumen (TPB, and TLA : TPB (50 : 50 blend, was investigated to deduce the applicability of the WCO as a performance enhancer for the base asphalt. The rheological properties of complex modulus (G∗ and phase angle (δ were measured for modified base asphalt blends containing up to 10% WCO. The results of rheology studies demonstrated that the incremental addition of WCO to the three parent binders resulted in incremental decreases in the rutting resistance (decrease in G∗/sinδ values and increases in the fatigue cracking resistance (decrease in G∗sinδ value. The fatigue cracking resistance and rutting resistance for the TLA : TPB (50 : 50 blends were between those of the blends containing pure TLA and TPB. As operating temperature increased, an increase in the resistance to fatigue cracking and a decrease in the rutting resistance were observed for all of the WCO modified asphaltic blends. This study demonstrated the capability to create customized asphalt-WCO blends to suit special applications and highlights the potential for WCO to be used as an environmentally attractive option for improving the use of Trinidad asphaltic materials.

  15. Performance Assessment of Warm Mix Asphalt (WMA) Pavements : Executive Summary Report

    Science.gov (United States)

    2009-09-01

    Warm Mix Asphalt (WMA) is a new technology which was : introduced in 1995 in Europe. WMA is gaining attention all : over the world because it offers several advantages over : conventional asphalt concrete mixes. The benefits include: : (1) Reduced en...

  16. Investigation of the Asphalt Pavement Analyzer (APA) testing program in Nebraska.

    Science.gov (United States)

    2008-03-01

    The asphalt pavement analyzer (APA) has been widely used to evaluate hot-mix asphalt (HMA) rutting potential in mix : design and quality control-quality assurance (QC-QA) applications, because the APA testing and its data analyses are : relatively si...

  17. Thermal segregation of asphalt material in road repair

    Directory of Open Access Journals (Sweden)

    Juliana Byzyka

    2017-08-01

    Full Text Available This paper presents results from a field study of asphaltic pavement patching operations performed by three different contractors working in a total of ten sites. It forms part of an ongoing research programme towards improving the performance of pothole repairs. Thermal imaging technology was used to record temperatures of the patching material throughout the entire exercise, from the stage of material collection, through transportation to repair site, patch forming, and compaction. Practical complications occurring during patch repairs were also identified. It was found that depending on the weather conditions, duration of the travel and poor insulation of the transported hot asphalt mix, its temperature can drop as high as 116.6 °C over the period that the reinstatement team travel to the site and prepare the patch. This impacting is on the durability and performance of the executed repairs. Cold spots on the asphalt mat and temperature differentials between the new hot-fill asphalt mix and existing pavement were also identified as poorly compacted areas that were prone to premature failure. For example, over the five-minute period, the temperature at one point reduced by 33% whereas the temperatures of nearby areas decreased by 65% and 71%. A return visit to the repair sites, three months later, revealed that locations where thermal segregation was noted, during the patching operation, had failed prematurely.

  18. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    Science.gov (United States)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  19. The use of atomic force microscopy to evaluate warm mix asphalt.

    Science.gov (United States)

    2013-01-01

    The main objective of this study was to use the Atomic Force Microscopy (AFM) to examine the moisture susceptibility : and healing characteristics of Warm Mix Asphalt (WMA) and compare it with those of conventional Hot Mix Asphalt (HMA). To : this en...

  20. Use of warm mix asphalt pavement on Route 9, in Durham.

    Science.gov (United States)

    2012-06-01

    A number of new technologies have been developed to lower the production and placement temperatures : of hot-mix asphalt (HMA). Generically, these technologies are referred to as warm-mix asphalt (WMA). : In Europe and to a lesser extent in North Ame...

  1. Cool metal roofing tested for energy efficiency and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.A.; Desjarlais, A. [Oak Ridge National Laboratory, Oakridge, TN (United States); Parker, D.S. [Florida Solar Energy Center, Cocoa, FL (United States); Kriner, S. [Metal Construction Association, Glenview, IL (United States)

    2004-07-01

    A 3 year field study was conducted in which temperature, heat flow, reflectance and emittance field data were calculated for 12 different painted and unpainted metal roofs exposed to weathering at an outdoor test facility at Oak Ridge National Laboratory in Oakridge, Tennessee. In addition, the Florida Solar Energy Center tested several Habitat for Humanity homes during one summer in Fort Myers, Florida. The objective was to determine how cooling and heating energy loads in a building are affected by the solar reflectance and infrared emittance of metal roofs. The Habitat for Humanities houses had different roofing systems which reduced the attic heat gain. White reflective roofs were shown to reduce cooling energy needs by 18 to 26 per cent and peak demand by 28 to 35 per cent. High solar reflectance and high infrared emittance roofs incur surface temperatures that are about 3 degrees C warmer than the ambient air temperature. A dark absorptive roof exceeds the ambient air temperature by more than 40 degrees C. It hot climates, a high solar reflectance and high infrared emittance roof can reduce the air conditioning load and reduce peak energy demands on the utility. It was concluded that an informed decision of the roof surface properties of reflectance and emittance can significantly reduce energy costs for homeowners and builders in hot climates. 7 refs., 2 tabs., 7 figs.

  2. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  3. Modelling and Laboratory Studies on the Adhesion Fatigue Performance for Thin-Film Asphalt and Aggregate System

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2014-01-01

    Full Text Available Adhesion between asphalt and aggregate plays an important role in the performance of asphalt mixtures. A low-frequency adhesion fatigue test was proposed in this paper to study the effect of environment on the asphalt-aggregate adhesion system. The stress-based fatigue model had been utilized to describe the fatigue behavior of thin-film asphalt and aggregate system. The factors influencing the adhesion fatigue performance were also investigated. Experiment results show that asphalt has more important effect on the adhesion performance comparing with aggregate. Basalt, which is regarded as hydrophobic aggregates with low silica content, has better adhesion performance to asphalt binder when compared with granite. The effects of aging on the adhesion fatigue performance are different for PG64-22 and rubber asphalt. Long-term aging is found to reduce the adhesion fatigue lives for rubber asphalt and aggregate system, while the effect of long-term aging for aggregate and PG64-22 binder system is positive. Generally the increased stress amplitude and test temperature could induce greater damage and lead to less fatigue lives for adhesion test system.

  4. Load test of the 3701U Building roof deck and support structure

    International Nuclear Information System (INIS)

    McCoy, R.M.

    1994-01-01

    The 3701U Building roof area was load tested according to the approved load-test procedure. The 3701U Building is located in the 300 Area of the Hanford Site and has the following characteristics: Roof deck--metal decking supported by steel purlins; Roof membrane--tar and gravel; Roof slope--flat (<10 deg); and Roof elevation--height of about 12.5 ft. The 3701U Building was visited in August 1992 for a visual inspection, but because of insulation an inspection could not be performed. The building was revisited in March 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access. The test procedure called for the use of a remotely-controlled robot. The conclusions are that the roof has been qualified for 500-lb total roof load and that the ''No Roof Access'' signs can be changed to ''Roof Access Restricted'' signs

  5. Determination of the biodegradation rate of asphalt for the Hanford grout vaults

    International Nuclear Information System (INIS)

    Luey, J.; Li, S.W.

    1993-04-01

    Testing was initiated in March 1991 and completed in November 1992 to determine the rate at which asphalt is biodegraded by microorganisms native to the Hanford Site soils. The asphalt tested (AR-6000, US Oil, Tacoma, Washington) is to be used in the construction of a diffusion barrier for the Hanford grout vaults. Experiments to determine asphalt biodegradation rates were conducted using three separate test sets. These test sets were initiated in March 1991, January 1992, and June 1992 and ran for periods of 6 months, 11 months, and 6 months, respectively. The experimental method used was one originally developed by Bartha and Pramer (1965), and further refined by Bowerman et al. (1985), that determined the asphalt biodegradation rate through the measurement of carbon dioxide evolved

  6. Chemical composition of water from roofs in Gdansk, Poland

    International Nuclear Information System (INIS)

    Tsakovski, Stefan; Tobiszewski, Marek; Simeonov, Vasil; Polkowska, Zaneta; Namiesnik, Jacek

    2010-01-01

    This study deals with the assessment of roof runoff waters from the region of Gdansk collected during the winter season (2007/2008). The chemical analysis includes 16 chemical variables: major ions, PAHs and PCBs measured at 3 sampling sites for 6-14 rain events. Although the data set is of limited volume the statistical data treatment using self-organizing maps (SOM) reveals the main factors controlling roof runoff water quality even for a data set with small dimension. This effort for explanation of the identified factors by the possible emission sources of the urban environment and air-particulate formation seems to be very reliable. Additionally to the roof runoff water quality factors the rain events patterns are found: 'background' group of events and groups formally named 'PAHs', 'PCBs' and 'air-borne particles' - dominated events. The SOM classification results give an opportunity to uncover the role of roof 'impact' on the runoff waters. Rain runoff water quality is described by four latent factors and the 'roof' impact is uncovered. - Identification of the urban roof runoff water quality factors and 'roof' impact by self-organizing map classification.

  7. Multi functional roof structures of the energy efficient buildings

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra

    2006-01-01

    Full Text Available Modern architectural concepts, which are based on rational energy consumption of buildings and the use of solar energy as a renewable energy source, give the new and significant role to the roofs that become multifunctional structures. Various energy efficient roof structures and elements, beside the role of protection, provide thermal and electric energy supply, natural ventilation and cooling of a building, natural lighting of the indoor space sunbeam protection, water supply for technical use, thus according to the above mentioned functions, classification and analysis of such roof structures and elements are made in this paper. The search for new architectural values and optimization in total energy balance of a building or the likewise for the urban complex, gave to roofs the role of "climatic membranes". Contemporary roof forms and materials clearly exemplify their multifunctional features. There are numerous possibilities to achieve the new and attractive roof design which broadens to the whole construction. With such inducement, this paper principally analyze the configuration characteristics of the energy efficient roof structures and elements, as well as the visual effects that may be achieved by their application.

  8. Preparation and Properties of Asphalt Binders Modified by THFS Extracted From Direct Coal Liquefaction Residue

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-11-01

    Full Text Available This paper aims to study the preparation and viscoelastic properties of asphalt binder modified by tetrahydrofuran soluble fraction (THFS extracted from direct coal liquefaction residue. The modified asphalt binders, which blended with SK-90 (control asphalt binder and 4%, 6%, 8% and 10% THFS (by weight of SK-90, were fabricated. The preparation process for asphalt binder was optimized in terms of the orthogonal array test strategy and gray correlation analysis results. The properties of asphalt binder were measured by applying Penetration performance grade and Superpave performance grade specifications. In addition, the temperature step and frequency sweep test in Dynamic Shear Rheometer were conducted to predict the rheological behavior, temperature and frequency susceptibility of asphalt binder. The test results suggested the optimal preparation process, such as 150 °C shearing temperature, 45 min shearing time and 4000 rpm shearing rate. Subsequently, the addition of THFS was beneficial in increasing the high-temperature properties but decreased the low-temperature properties and resistance to fatigue. The content analysis of THFS showed the percentage of 4~6% achieved a balance in the high-and-low temperature properties of asphalt binder. The asphalt binder with higher THFS content exhibited higher resistance to rutting and less sensitivity to frequency and temperature.

  9. Experimental analysis of green roof substrate detention characteristics.

    Science.gov (United States)

    Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni

    2013-01-01

    Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.

  10. Effect of Waste Plastic as Bitumen Modified in Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Ezree

    2017-01-01

    Full Text Available The objectives of this study are to investigate the engineering properties of the asphalt mixtures containing waste plastic at different percentages i.e. 4%, 6%, 8%, and 10% by weight of bitumen. The experimental tests performed in the study were stability, tensile strength, resilient modulus and dynamic creep test. Results showed that the mixture with 4% plastic has the highest stability (184kN. However, the stability slightly decreases with the increase of plastic additive. On the other hand, the highest tensile strength among the modified asphaltic concrete is 1049kPa (8% plastic added. The modified asphalt mixture with 8% plastic has the highest resilient modulus, which is 3422 MPa (25°C and 494Mpa (40°C. Where the highest creep modulus recorded is 73.30Mpa at 8% plastic added. It can be concluded that the addition of 8% plastic gave the highest value properties of asphalt mixture. Finally, it can be said that 8% plastic is the optimum value adding.

  11. 0-6686 : improving DMS 9210 requirements for limestone rock asphalt : [project summary].

    Science.gov (United States)

    2013-08-01

    Limestone rock asphalt (LRA) mixtures have : been produced and placed for several decades : using specification requirements currently listed : under DMS 9210, Limestone Rock Asphalt (LRA). : Several Texas Department of Transportation : (TxDOT) distr...

  12. Assessment of Asphalt Concrete Reinforcement Grid in Flexible Pavements

    Science.gov (United States)

    2016-05-01

    successfully used as interlayers include asphalt rubber and geotextiles, and the applica- tion of recycling techniques to rework the upper 2–4 in. of the...from a set of weights dropped from increasingly greater predetermined heights onto a rubber buffer system connected to a 12 in. diameter segmented...pavement temperature at depth, IR = the infrared pavement surface temperature (°C), D = the asphalt depth to estimate the temperature (mm), 1

  13. MODELING OF STORM WATER RUNOFF FROM GREEN ROOFS

    Directory of Open Access Journals (Sweden)

    Ewa Burszta-Adamiak

    2014-10-01

    Full Text Available Apart from direct measurements, modelling of runoff from green roofs is valuable source of information about effectiveness of this type of structure from hydrological point of view. Among different type of models, the most frequently used are numerical models. They allow to assess the impact of green roofs on decrease and attenuation of runoff, reduction of peak runoff and value of water retention. This paper presents preliminary results of research on computing the rate of runoff from green roofs using GARDENIA model. The analysis has been carried out for selected rainfall events registered during measuring campaign on pilot-scale green roofs. Obtained results are promising and show good fit between observed and simulated runoff.

  14. Assessment of green roof systems in terms of water and energy balance

    Directory of Open Access Journals (Sweden)

    Mert Ekşi

    2016-01-01

    Full Text Available Green roofs concept term is used for extensive green roofs which are planted with herbaceous plants that can be adapted into changeable environmental conditions on a shallow substrate layer, require minimal maintenance, installed for their benefits to building and urban scale. Main objective of this study is to determine the characteristics of a green roof such as thermal insulation, water holding capacity, runoff characteristics, plant growth and its interaction with environmental factors in Istanbul climate conditions by performing comparative measurements. In this study, a research site (IU Green Roof Research Station was founded to assess water and energy balance of green roofs. Thus, a typical green roof was evaluated in terms of water and energy balance and its interaction with the building and city was determined. energy efficiency of green roof system was 77% higher than reference roof. Temperature fluctuations on green roof section of the roof were 79% lower. In addition, green roof retained 12,8% - 100% of precipitation and delayed runoff up to 23 hours depending on water content of substrate.

  15. Monitoring hot mix asphalt temperature to improve homogeneity and pavement quality

    NARCIS (Netherlands)

    ter Huerne, Henderikus L.; Miller, Seirgei Rosario; Doree, Andries G.; Santagata, E.

    2009-01-01

    This paper describes how controlled compaction practices lead to better quality asphalt. Therefore, it is important that during compaction operations the mixture is at a suitable temperature in order to achieve the specified degree of compaction. The University of Twente’s Asphalt Paving Research

  16. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-01-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessmentclose quotes procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable in a form that future inspections will have comparative information

  17. Structural assessment of roof decking using visual inspection methods

    International Nuclear Information System (INIS)

    Giller, R.A.; McCoy, R.M.; Wagenblast, G.R.

    1993-10-01

    The Hanford Site has approximately 1,100 buildings, some of which date back to the early 1940s. The roof on these buildings provides a weather resisting cover as well as the load resisting structure. Past experience has been that these roof structures may have structural modifications, the weather resisting membrane may have been replaced several times, and the members may experience some type of material degradation. This material degradation has progressed to cause the collapse of some roof deck members. The intent of the Hanford Site Central Engineering roof assessment effort is to provide an expedient structural assessment of the large number of buildings at the Hanford Site. This assessment is made by qualified structural inspectors following the open-quotes Preliminary Assessment close-quote procedures given in the American Society of Civil Engineers (ASCE) Standard ASCE 11-90. This roof assessment effort does not provide a total qualification of the roof for the design or in-place loads. This inspection does provide a reasonable estimate of the roof loading capacity to determine if personnel access restrictions are needed. A document search and a visual walkdown inspection provide the initial screening to identify modifications and components having questionable structural integrity. The structural assessment consists of baseline dead and live load stress calculations of all roofing components based on original design material strengths. The results of these assessments are documented in a final report which is retrievable form that future inspections will have comparative information

  18. Entire cities could benefit from green roofs : Heleen Mees is investigating how five metropolises are greenifying their roofs

    NARCIS (Netherlands)

    Mees, Heleen

    Rotterdam is making good progress with its creation of green roofs. Heleen Mees, researcher at Utrecht University, drew this conclusion from her research, in which she compared the green roof policy of four different cities with that of Rotterdam. Rotterdam awards grants to those wishing to create a

  19. Sustainable Performance of Iraqi Asphalt Base Course Using Recycled Glass as Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Hamid Athab Eedan Al-Jameel

    2018-03-01

    Full Text Available Nowadays, a lot of waste glass produced through different sides of life. Applying sustainability has been widely used in different construction materials and flexible pavement was contained different recycled materials through different studies. Recycled glass, where it is nonmetallic and inorganic, it can neither be incinerated nor decomposed, so it may be difficult to reclaim, has been used as filler, fine and coarse aggregates in the asphalt base course. In this study, various standard asphalt tests, such as stability, flow, density and air voids, have been conducted on reference mix asphalt and mix asphalt with different percentages of recycled glass when it has been used as filler, fine and coarse aggregates in the base course. Generally, the results show good indication, especially when using 10% of the recycled glass instead of coarse aggregate with 40-50 asphalt grades. This percentage improves most characteristics such as strength retained index which indicates better performance than reference mix.  

  20. Performance of asphaltic concrete incorporating styrene butadiene rubber subjected to varying aging condition

    Science.gov (United States)

    Salah, Faisal Mohammed; Jaya, Ramadhansyah Putra; Mohamed, Azman; Hassan, Norhidayah Abdul; Rosni, Nurul Najihah Mad; Mohamed, Abdullahi Ali; Agussabti

    2017-12-01

    The influence of styrene butadiene rubber (SBR) on asphaltic concrete properties at different aging conditions was presented in this study. These aging conditions were named as un-aged, short-term, and long-term aging. The conventional asphalt binder of penetration grade 60/70 was used in this work. Four different levels of SBR addition were employed (i.e., 0 %, 1 %, 3 %, and 5 % by binder weight). Asphalt concrete mixes were prepared at selected optimum asphalt content (5 %). The performance was evaluated based on Marshall Stability, resilient modulus, and dynamic creep tests. Results indicated the improving stability and permanent deformation characteristics that the mixes modified with SBR polymer have under aging conditions. The result also showed that the stability, resilient modulus, and dynamic creep tests have the highest rates compared to the short-term aging and un-aged samples. Thus, the use of 5 % SBR can produce more durable asphalt concrete mixtures with better serviceability.

  1. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement.

    Science.gov (United States)

    Sun, Daquan; Sun, Guoqiang; Zhu, Xingyi; Guarin, Alvaro; Li, Bin; Dai, Ziwei; Ling, Jianming

    2018-05-09

    Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD Method

    Directory of Open Access Journals (Sweden)

    Hui Yao

    2017-01-01

    Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.

  3. Effect of nanosilica particles on polypropylene polymer modified asphalt mixture performance

    Directory of Open Access Journals (Sweden)

    Nura Bala

    2018-06-01

    Full Text Available The current study was conducted to investigate the effect of nanosilica particles on the performance characteristics of polymer modified asphalt binders. In this study, control 80/100 binder were modified with polypropylene polymer and nanosilica particles at concentration of 0%–4%. Both nanosilica particles and polypropylene polymer were added by weight of total bitumen content. The asphalt performance tests flexural four point beam fatigue test, indirect tensile strength, indirect tensile stiffness modulus and draindown tests are conducted to evaluate the effect of nanosilica particles. The results of the study shows that nanosilica particles improves the fatigue properties of polypropylene polymer modified binder. This indicates that nanosilica particles have significant effect on improving the performance properties of polymer modified binders. Also, the result reveals that thermoplastic polymer polypropylene with nanosilica particles when used as bitumen modifiers improve the performance and durability of asphalt mixtures. Keywords: Polypropylene, Fatigue cracking, Stiffness modulus, Modified asphalt, Draindown

  4. NOx removal from vehicle emissions by functionality surface of asphalt road

    International Nuclear Information System (INIS)

    Chen Meng; Liu Yanhua

    2010-01-01

    This paper reported the potential of heterogeneous photocatalysis as an advanced oxidation technology for NO x removal from vehicle emissions by using TiO 2 as a photocatalyst immobilized on the surface of asphalt road. Based on asphalt road material porous characteristic, we utilized permeability technology to make asphalt nano-TiO 2 to be environmental protection materials. And then using scanning electron microscope, we observed the penetrating effect of TiO 2 . The effect of surface friction, humidity and light intensity on NO x removal had been systematically investigated by the use of TiO 2 immobilized on the surface of asphalt road as photocatalytic environmental protection materials. In addition, the decontaminating effect was tested by contrast test in TiO 2 spraying section with non-spraying section, while the productions were used in road environment. Results of experiment revealed that decontaminating rate of the productions ranged from 6% to 12% this kind of photochemical catalysis environmental protection material has good environment purification function.

  5. Improving the durability of flat roof constructions

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1999-01-01

    of the system, thereby making it easier to detect leaks faster. When a leak is detected, the membrane is repaired locally. In order to remove water which has already entered the insulation, an air gap or a system of air channels between the deck and the insulation is subjected to forced ventilation with outdoor...... air. When the water is removed, the ventilation is stopped, and the roofing construction can continue to function as intended.Roofing systems where trapped moisture can be removed are cost-effective compared to traditional roofing insulation systems, and as leakage can be treated, they have a longer...

  6. Green roof systems: a study of public attitudes and preferences in southern Spain.

    Science.gov (United States)

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of asphalt treated permeable base.

    Science.gov (United States)

    2013-12-01

    III : Tec : hnical : Report Documentation Page : 1. Report No. : 2. Government Accession : No. : 3. Recipient's Catalog No : . : 201 : 3 : - : 09 : - : - : - : - : - : - : 4. Title and Subtitle : 5. Report Date : Evaluation of Asphalt Treated Permeab...

  8. Evaluation of rubber modified asphalt demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    As part of the Ontario Government's medium-term scrap tire management strategy, 11 rubber modified asphalt demonstration projects were funded or completed, with 13 additional projects from small to large (1,500-65,000 passenger tire equivalents) approved for the 1993 paving season. This report presents the results of an August to November 1993 study of the 11 demonstration projects. The evaluation included a description of the technology; technical review of the projects; economic analysis; review of the environmental literature; environmental review of the projects; comparison of the projects with similar ones in other jurisdictions; and recommendations. Detailed information on asphalt technology is included in an appendix.

  9. Optical microtopographic inspection of asphalt pavement surfaces

    Science.gov (United States)

    Costa, Manuel F. M.; Freitas, E. F.; Torres, H.; Cerezo, V.

    2017-08-01

    Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.

  10. Quantifying Asphalt Emulsion-Based Chip Seal Curing Times Using Electrical Resistance Measurements.

    Science.gov (United States)

    2017-04-15

    Chip sealing typically consists of covering a pavement surface with asphalt emulsion into which aggregate chips are embedded. The asphalt emulsion cures through the evaporation of water, thus providing mechanical strength to adhere to the pavement wh...

  11. Effects of roof tile permeability on the thermal performance of ventilated roofs. Analysis of annual performance

    Energy Technology Data Exchange (ETDEWEB)

    D' Orazio, M.; Di Perna, C.; Principi, P.; Stazi, A. [DACS, Universita politecnica delle Marche, 60100 Ancona (Italy)

    2008-07-01

    This paper shows the results of the second part of an experimental study aimed at analysing the effects of roof tile permeability on the thermal performances of ventilation ducts. Ventilation ducts under the layer of tiles are typically used in south European countries to limit the energy load during the summer period. The results of the first part of the study, carried out by analysing 14 different types of roof, proved that the air permeability of the layer of tiles determines a certain amount of heat to be released, in addition to the release connected with the stack effect, in ventilation ducts which have the same characteristics but are perfectly airtight. However, the study did not completely resolve some issues since it was carried out on a model roof (6 m x 1.5 m) with devices to raise the layer of tiles and to create the ventilation duct but without those building elements which are present in real roofs and are used to stop insects and small animals from entering the ventilation duct. These elements narrow the inlet and outlet and consequently cause important reductions in pressure. Moreover, the measurements were based on data collected for limited periods of time during the summer season. So as to eliminate any possible uncertainty from the results of the research, the study continued with the creation of a model building on which five types of ventilated roof with different cross sections of the ventilation duct were analysed. The results show that the presence of air permeable layers and elements to protect the ventilation duct eliminate any differences in performance which were due to the cross section of the ventilation duct. (author)

  12. Bugs, bees and spiders : green roof design for rare invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Gedge, D. [Livingroofs.org, London (United Kingdom); Kadas, G. [Royal Holloway Univ. of London, London (United Kingdom)

    2004-07-01

    The use of green roofs as mitigation technique for biodiversity is particularly relevant for the objectives of the London Biodiversity Partnership, particularly since London is undergoing large-scale regeneration and many of the new developments will be targeted on brownfield land. In 2002 two research projects were undertaken to create a baseline of data on how invertebrates were using the current green roofs in London. The London Biodiversity Partnership's Black Redstart Action Plan conducts research into green roofs to demonstrate how they can be maximized for biodiversity. The Black Redstart Project ensures that green roofs are used in new developments in London where such developments threaten this species. It is one of the country's rarest breeding birds, and is unique in that it is predominantly found in cities, on brownfield sites and post-industrial sites. Three green roof laboratories were established at 2 sites in London to investigate how substrates, substrate depths and planting affects the fauna associated with brownfields and green roofs in London. Although conservationists in London have urged many developers to provide green roofs to help the Black Redstart, there is concern that many of these roofs do no provide the proper support for the species. In some cases roofs are constructed of commercially driven products such as sedum mats that do provide habitat for some rare invertebrates but are not as supportive of a greater diversity of species as they could be due to the design process and a lack of knowledge of green roof technology. It was suggested that there is a need for cooperation between ecologists and Architects in order to achieve the habitat. 18 refs., 6 figs.

  13. Leachability of Cr(VI) and other metals from asphalt composites with addition of filter dust.

    Science.gov (United States)

    Vahcic, Mitja; Milacic, Radmila; Mladenovic, Ana; Murko, Simona; Zuliani, Tea; Zupancic, Marija; Scancar, Janez

    2008-12-01

    The potential use of filter dust in asphalt composites for road construction was investigated. Filter dust contains high concentrations of metals, of which Cr(VI) and Pb are leached with water. Compact and ground asphalt composites with addition of 2% of filter dust by mass were studied. In order to evaluate their environmental impact, leachability tests were performed using water and salt water as leaching agents. The concentrations of Cr(VI) and Pb were determined in leachates over a time period of 182 days. The results indicated that Pb was not leached with leaching agents from asphalt composites. Cr(VI) was also not leached with leaching agents from compact asphalt composites. However, in ground asphalt composites, Cr(VI) was leached with water in concentrations up to 220 microg L(-1) and in salt water up to 150 microg L(-1). From the physico-mechanical and environmental aspects, filter dust can be used as a component in asphalt mixtures.

  14. Modelling absorption in porous asphalt concrete for oblique incident sound waves

    NARCIS (Netherlands)

    Bezemer-Krijnen, Marieke; Wijnant, Ysbrand H.; de Boer, Andries; Sas, P; Moens, D.; Denayer, H.

    2014-01-01

    A numerical model to predict the sound absorption of porous asphalt has been developed. The approach is a combination between a microstructural approach and a finite element approach. The model used to describe the viscothermal properties of the air inside the pores of the asphalt is the low reduced

  15. Automated titration method for use on blended asphalts

    Science.gov (United States)

    Pauli, Adam T [Cheyenne, WY; Robertson, Raymond E [Laramie, WY; Branthaver, Jan F [Chatham, IL; Schabron, John F [Laramie, WY

    2012-08-07

    A system for determining parameters and compatibility of a substance such as an asphalt or other petroleum substance uses titration to highly accurately determine one or more flocculation occurrences and is especially applicable to the determination or use of Heithaus parameters and optimal mixing of various asphalt stocks. In a preferred embodiment, automated titration in an oxygen gas exclusive system and further using spectrophotometric analysis (2-8) of solution turbidity is presented. A reversible titration technique enabling in-situ titration measurement of various solution concentrations is also presented.

  16. Effect of Natural Sand Percentages on Fatigue Life of Asphalt Concrete Mixture

    Directory of Open Access Journals (Sweden)

    Nahla Yassub Ahmed

    2016-03-01

    Full Text Available The design of a flexible pavement requires the knowledge of the material properties which are characterized by stiffness and fatigue resistance. The fatigue resistance relates the number of load cycles to failure with the strain level applied to the asphalt mixture. The main objective of this research is the evaluation of the fatigue life of asphalt mixtures by using two types of fine aggregate having different percentages. In this study, two types of fine aggregate were used natural sand (desert sand and crushed sand. The crushed sand was replaced by natural sand (desert sand with different percentages (0%, 25%, 75% and 100% by the weight of the sand (passing sieve No.8 and retained on sieve No.200 and one type of binder (40/50 penetration from Al-Daurah refinery. The samples of beams were tested by four point bending beam fatigue test at the control strain mode (250, 500 and 750 microstrain while the loading frequency (5Hz and testing temperature (20oC according to (AASHTO T321. The experimental work showed that fatigue life (Nf and initial flexural stiffness increased when control strain decreased for asphalt mixtures. Acceptable fatigue life at 750 microstrain was obtained with asphalt concrete mixtures containing 100% crushed sand as well as asphalt concrete contained 25% natural sand. The asphalt concrete contained 100% and 75% of natural sand exhibited high fatigue life at low level of microstrain (250. The main conclusion of this study found that best proportion of natural sand to be added to an asphaltic concrete mixture is falling within the range (0% and 25% by weight of fraction (passing No.8 and retained on No.200 sieve .

  17. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation

  18. Field investigation of skid resistance degradation of asphalt pavement during early service

    Directory of Open Access Journals (Sweden)

    Yinghao Miao

    2016-07-01

    Full Text Available This paper documents a field investigation into the skid resistance degradation of asphalt pavement during early service. Field tests were conducted 7 times during more than 2 years. There are 2 highway sections included in the field tests, which cover 4 asphalt surface types, i.e., dense asphalt concrete (DAC, rubber asphalt concrete (RAC, stone matrix asphalt (SMA, and ultra-thin wearing course (UTWC. Macrotexture and friction data were collected using the sand patch method and the dynamic friction tester respectively. The degradation of the mean texture depth (MTD and the friction coefficient at slip speed of 60 km/h (DFT60 were analyzed. The international friction index (IFI was also calculated using the friction coefficient at slip speed of 20 km/h (DFT20 with MTD to evaluate the skid resistance degradation. The UTWC has relatively good skid resistance even after 7.4 × 106 standard vehicle passes. The SMA has very stable friction performance which maintains almost the same friction level after 4.61 × 106 standard vehicle passes. The DAC and RAC have relatively poor friction performance while the RAC has better macrotexture. The changing trends of skid resistance with traffic wear can be fitted by a logarithmic model for all surface types. The SMA and UTWC have relatively clear relationship between DFT20 and MTD, while the RAC and the DAC show more complex. Keywords: Asphalt pavement, Skid resistance, Degradation, International friction index

  19. Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test.

    Science.gov (United States)

    Pszczola, Marek; Jaczewski, Mariusz; Rys, Dawid; Jaskula, Piotr; Szydlowski, Cezary

    2018-01-10

    Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from -20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

  20. Evaluation of Thermal Oxidative Aging Effect on the Rheological Performance of Modified Asphalt Binders

    Science.gov (United States)

    Zhu, Cheng

    Modified asphalt binder, which is combined by base binder and additive modifier, has been implemented in pavement industry for more than 30 years. Recently, the oxidative aging mechanism of asphalt binder has been studied for several decades, and appreciable finding results of asphalt binder aging mechanism were achieved from the chemistry and rheological performance aspects. However, most of these studies were conducted with neat binders, the research of aging mechanism of modified asphalt binder was limited. Nowadays, it is still highly necessary to clarify how the asphalt binder aging happens with the modified asphalt binder, what is the effect of the different modifiers (additives) on the binder aging process, how the rheological performance changes under the thermal oxidative aging conditions and so on. The objective of this study was to investigate the effect of isothermal oxidative aging conditions on the rheological performance change of the modified and controlled asphalt binders. There were totally 14 different sorts of asphalt binders had been aged in the PAV pans in the air-force drafted ovens at 50°C, 60°C and 85°C for 0.5 day to 240 days. The Fourier-Transform Infrared Spectroscopy (FT-IR) and Dynamic Shear Rheometer (DSR) were used to perform the experiments. The analysis of rheological indices (Low shear viscosity-LSV, Crossover modulus-G*c, Glover-Rowe Parameter-G-R, DSR function-DSR Fn) as a function of carbonyl area (CA) was conducted. With the SBS modification, both of the hardening susceptibility of the rheological index-LSV and G-R decreases compared with the corresponding base binder. The TR increased the hardening susceptibility of all the rheological indexes. While for the G*c, SBS increases the slope of the most modified asphalt binders except A and B_TR_X series binders. The multiple linear regression statistical analysis results indicate that the oxidative aging conditions play an important role on the CA, and rheological performance

  1. Performance of antisolar insulated roof system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Irshad [Alternative Energy Development Board (AEDB), House No. 1, Main Nazimuddin Road, F-10/4, Islamabad (Pakistan)

    2010-01-15

    Rooms with concrete slab roofs directly exposed to the sun become unbearably hot during summer and very cold during winter. Huge amounts of energy are required to keep them comfortable. Application of thermal insulation on roofs significantly reduces energy required for heating and cooling. The effectiveness of roof insulations may be further enhanced if a layer of antisolar coating is applied on top of the insulation. The antisolar coating reflects most of the incident sunlight and prevents the roof from heating up. This reduces the daily cycles of thermal expansion and contraction which cause cracks in the roof slabs for the rainwater to leak through. The antisolar coating prolongs the useful life of the building structure as well as the life of the insulation that evaporates with heat. The method of application of the antisolar coating has been specially developed to eliminate thermal bridges formed between the edges of the tiles. This report presents the results of an experiment conducted at the Attock Refinery Limited (ARL) Rawalpindi to assess the performance of the antisolar insulated roof system. Record of the room temperature before and after the installation of the system shows a significant reduction in the indoor temperature. The room occupants, who used to experience a very high thermal stress after 10:30 am in spite of the 1.5-ton air conditioner operating in the room, felt much relieved after the installation. They had to turn back the thermostat of the air conditioner and even had to switch it off occasionally. A detailed thermal analysis of the room shows that cost of an antisolar system is paid back in less than a year in the form of savings of energy required for air-conditioning in summer and for gas heating in winter. In addition, the system prevents the addition of 150 kg per year of green house gases to the atmosphere for each square meter of the area covered by the system. It also provides a quieter environment by reducing the operational

  2. Survey of microbial degradation of asphalts with notes on relationship to nuclear waste management

    International Nuclear Information System (INIS)

    ZoBell, C.E.; Molecke, M.A.

    1978-12-01

    A survey has been made of the microbial degradation of asphalts. Topics covered include chemical and physical properties of asphalts, their chemical stability, methods of demonstrating their microbial degradation, and environmental extremes for microbial activity based on existing literature. Specific concerns for the use of asphalt in nuclear waste management, plus potential effects and consequences thereof are discussed. 82 references

  3. Determination of the most favorable experimental conditions for obtaining asphalt emulsions modified with discarded polymers in the reconstruction of pavements

    International Nuclear Information System (INIS)

    Coward Ugalde, Hector Arturo

    2014-01-01

    The most favorable experimental conditions are determined for the production of asphalt emulsions modified with tire scrap rubber, petroleum material and recycled asphalt in the reconstruction of flexible pavements in a slow breaking process. Asphalt emulsions are made with 65% V/V of fluidized asphalt at different conditions of operation and composition of soap solution. The equipment of a centrifugal pump and a colloidal mill are used. Two different compositions are employed to make soap solutions. The best conditions to prepare the asphalt emulsions in the pilot plant have been: a stirring speed of 2100 rpm in the centrifugal pump and a speed of 3300 rpm of the colloidal mill. Asphaltic grouts made with asphalt emulsion modified to 1% m/m of rubber have shown the best coverage in the stripping test, evidencing little asphalt release, high adhesion of the asphalt on the aggregate and good stability. Asphalt emulsions with rubber are recommended with a granulometry that passes the No. 200 mesh for rubber and use the indicated equipment to carry out the process of asphalt modification to obtain better results in the performance of asphalt emulsion [es

  4. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  5. Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation

    Science.gov (United States)

    2009-04-01

    Warm mix asphalt (WMA) is an emerging technology that can allow asphalt to flow at a lower temperature for mixing, placing and compaction. The advantages of WMA include reduced fuel consumption, less carbon dioxide emission, longer paving season, lon...

  6. Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating.

    Science.gov (United States)

    González, A; Norambuena-Contreras, J; Storey, L; Schlangen, E

    2018-05-15

    The concept of self-healing asphalt mixtures by bitumen temperature increase has been used by researchers to create an asphalt mixture with crack-healing properties by microwave or induction heating. Metals, normally steel wool fibers (SWF), are added to asphalt mixtures prepared with virgin materials to absorb and conduct thermal energy. Metal shavings, a waste material from the metal industry, could be used to replace SWF. In addition, reclaimed asphalt pavement (RAP) could be added to these mixtures to make a more sustainable road material. This research aimed to evaluate the effect of adding metal shavings and RAP on the properties of asphalt mixtures with crack-healing capabilities by microwave heating. The research indicates that metal shavings have an irregular shape with widths larger than typical SWF used with asphalt self-healing purposes. The general effect of adding metal shavings was an improvement in the crack-healing of asphalt mixtures, while adding RAP to mixtures with metal shavings reduced the healing. The average surface temperature of the asphalt samples after microwave heating was higher than temperatures obtained by induction heating, indicating that shavings are more efficient when mixtures are heated by microwave radiation. CT scan analysis showed that shavings uniformly distribute in the mixture, and the addition of metal shavings increases the air voids. Overall, it is concluded that asphalt mixtures with RAP and waste metal shavings have the potential of being crack-healed by microwave heating. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. U-value measurements on a roof window

    DEFF Research Database (Denmark)

    Duer, Karsten

    1998-01-01

    This report describes the results of the U-value measurements performed on a roof window. The work is as a part of the development of an ISO/CEN standard measuring procedure for roof windows.The measurements have been performed using the procedures given in ISO 12567 draft version 1998...

  8. Flat roofs, a grey area; Grauzone Flachdach

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Anja

    2012-11-01

    The boom of low-ballast assembly systems for flat roofs is going on. Solar assembly racks are set up directly on the sealing foil without fastening bolts. But what happens in case of water ingress? And what should be done to prevent damage to the roof cover? (orig.)

  9. Generating realistic roofs over a rectilinear polygon

    KAUST Repository

    Ahn, Heekap; Bae, Sangwon; Knauer, Christian; Lee, Mira; Shin, Chansu; Vigneron, Antoine E.

    2011-01-01

    Given a simple rectilinear polygon P in the xy-plane, a roof over P is a terrain over P whose faces are supported by planes through edges of P that make a dihedral angle π/4 with the xy-plane. In this paper, we introduce realistic roofs by imposing

  10. Asphalt Concrete Mixtures: Requirements with regard to Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jan Mikolaj

    2015-01-01

    Full Text Available Design of asphalt concrete, required properties of constituent materials and their mixing ratios, is of tremendous significance and should be implemented with consideration given to the whole life cycle of those materials and the final construction. Conformity with requirements for long term performance of embedded materials is the general objective of the Life Cycle Assessment (LCA. Therefore, within the assessment, material properties need to be evaluated with consideration given to the whole service life—from the point of embedding in the construction until their disposal or recycling. The evaluation focuses on verification of conformity with criteria set for these materials and should guarantee serviceability and performance during their whole service life. Recycling and reuse of asphalt concrete should be preferred over disposal of the material. This paper presents methodology for LCA of asphalt concrete. It was created to ensure not only applicability of the materials in the initial stage, at the point of their embedding, but their suitability in terms of normatively prescribed service performance of the final construction. Methods described and results are presented in a case study for asphalt mixture AC 11; I design.

  11. LABORATORY EVALUATION OF COMPACTABILITY AND PERFORMANCE OF WARM MIX ASPHALT

    Directory of Open Access Journals (Sweden)

    Allex Eduardo Álvarez Lugo

    Full Text Available Warm mix asphalt (WMA is the term used to describe the set of technologies that allow fabrication of asphalt mixtures at lower temperatures than those specified for conventional hot mix asphalt (HMA. This temperature reduction leads to advantages, compared to construction of HMA, that include energy savings, reduced emissions, and safer working conditions. However, WMA is a relatively new technology and several aspects are still under evaluation. This paper assesses some of these aspects including laboratory compactability and its relation to mixture design, and performance of WMA (i.e., permanent deformation and cracking resistance fabricated with three WMA additives, namely Advera®, Sasobit®, and Evotherm®. Corresponding results showed better or equivalent laboratory compactability for the WMA, as compared to that of the HMA used as reference (or control-HMA, leading to smaller optimum asphalt contents selected based on a specific target density (i.e., 96%. In terms of performance, inclusion of the WMA additives led to decrease the mixture resistance to permanent deformation, although the mixture resistance to cracking can remain similar or even improve as compared to that of the control-HMA.

  12. Review of warm mix rubberized asphalt concrete : Towards a sustainable paving technology

    NARCIS (Netherlands)

    Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, Athanasios

    2018-01-01

    In recent years, transportation agencies and the general public alike are demanding increased considerations of sustainability in transport infrastructure. Warm mix asphalt (WMA) is developed for reducing energy consumptions and emissions in asphalt paving industry. In addition, the use of

  13. Evaluation of recycled hot mix asphalt concrete on Route 220 : final report.

    Science.gov (United States)

    1985-01-01

    This report describes the performance of an approximately 8-mi section of roadway on which the rod two layers of asphalt concrete were milled, recycled through a conventional asphalt batch plant, and relaid. The recycled mix consisted of about 40% re...

  14. Bio deterioration behaviour in different colour roofing tiles (red and straw coloured)

    International Nuclear Information System (INIS)

    Guzulla, M. F.; Sanchez, E.; Gonzalez, J. M.; Orduna, M.

    2014-01-01

    Bio colonization of building materials is a critical problem for the durability of constructions. Industrial experience shows that straw coloured roofing tiles are more prone to colonization than red roofing tiles, even having similar characteristics. The aim of this work is to explain the difference of bio colonization between different colour roofing tiles. The chemical composition of the surface of straw coloured and red roofing tiles, the phase composition and the microstructure of the roofing tiles were determined by WD-XRF, XRD and SEM-EDX, respectively. The pore size distribution was carried out by Hg porosimetry. The solubility was studied by determining the soluble salts (Ca, Mg, Na, K, Cl and SO 4 2-) by ICP-OES and ionic chromatography. Roofing tile bio receptivity was evaluated by determining fluorescence intensity using a pulse amplitude- modulated (PAM) fluoro meter, and cyanobacteria Oscillator sp. The results obtained show higher concentration of calcium and sulphur in straw coloured roofing tiles surface, and higher solubility than red roofing tiles. Moreover, according to the results obtained in bio receptivity assays, straw coloured roofing tiles are more prone to colonization than red roofing tiles, so, there is a relationship between surface properties of roofing tiles and bio colonization, as it is observed in industrial products. (Author)

  15. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  16. Development of Clay Tile Coatings for Steep-Sloped Cool Roofs

    OpenAIRE

    Pisello, Anna; Cotana, Franco; Nicolini, Andrea; Brinchi, Lucia

    2013-01-01

    Most of the pitched roofs of existing buildings in Europe are covered by non-white roofing products, e.g., clay tiles. Typical, cost effective, cool roof solutions are not applicable to these buildings due to important constraints deriving from: (i) the owners of homes with roofs visible from the ground level; (ii) the regulation about the preservation of the historic architecture and the minimization of the visual environment impact, in particular in historic centers. In this perspective, th...

  17. A study on engineering characteristics of asphalt concrete using filler with recycled waste lime.

    Science.gov (United States)

    Sung Do, Hwang; Hee Mun, Park; Suk keun, Rhee

    2008-01-01

    This study focuses on determining the engineering characteristics of asphalt concrete using mineral fillers with recycled waste lime, which is a by-product of the production of soda ash (Na(2)CO(3)). The materials tested in this study were made using a 25%, 50%, 75%, and 100% mixing ratio based on the conventional mineral filler ratio to analyze the possibility of using recycled waste lime. The asphalt concretes, made of recycled waste lime, hydrated lime, and conventional asphalt concrete, were evaluated through their fundamental engineering properties such as Marshall stability, indirect tensile strength, resilient modulus, permanent deformation characteristics, moisture susceptibility, and fatigue resistance. The results indicate that the application of recycled waste lime as mineral filler improves the permanent deformation characteristics, stiffness and fatigue endurance of asphalt concrete at the wide range of temperatures. It was also determined that the mixtures with recycled waste lime showed higher resistance against stripping than conventional asphalt concrete. It was concluded from various test results that a waste lime can be used as mineral filler and, especially, can greatly improve the resistance of asphalt concrete to permanent deformation at high temperatures.

  18. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.

    Science.gov (United States)

    Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  19. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    Science.gov (United States)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  20. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.