WorldWideScience

Sample records for aspergillus niger glucoamylase

  1. Expression and secretion of Aspergillus niger glucoamylase in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    李文清; 何鸣; 罗进贤

    1995-01-01

    Aspergillus niger glucoamylase GA 1 cDNA was inserted in between the yeast PGK promoter and terminator on plasmid pMA91. The resultant plasmid pMAG69 was introduced into Saccharomyces cerevisiae GRF18 by protoplast transformation. The A niger GA I cDNA was expressed efficiently under the contiol of PGK promoter and 99% of the gene products were secreted into the culture medium using its own signal sequence The recombmant yeast can digest 87% of starch in 2 d in the medium containing 10% starch. The recombinant plasmid pMAG69 can exist stably in 5. cerevisiae.

  2. Glucoamylase : green fluorescent protein fusions to monitor protein secretion in Aspergillus niger

    NARCIS (Netherlands)

    Gordon, C.L.; Khalaj, V.; Ram, A.F.J.; Archer, D.B.; Brookman, J.L.; Trinci, A.P.J.; Jeenes, D.J.; Doonan, J.H.; Wells, B.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Robson, G.D.

    2000-01-01

    A glucoamylase: :green fluorescent protein fusion (GLA: :sGFP) was constructed which allows the green fluorescent protein to be used as an in vivo reporter of protein secretion in Aspergillus niger. Two secretory fusions were designed for secretion of GLA: :sGFP which employed slightly different len

  3. Study of the glucoamylase promoter in Aspergillus niger using green fluorescent protein

    NARCIS (Netherlands)

    Santerre Henriksen, A.L.; Even, S.; Müller, C.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Nielsen, J.

    1999-01-01

    An Aspergillus niger strain expressing a red-shifted green fluorescent protein (GFP) in the cytoplasm under the control of the glucoamylase promoter (PglaA) was characterized with respect to its physiology and morphology. Although xylose acted as a repressor carbon source during batch cultivations,

  4. The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture

    NARCIS (Netherlands)

    Swift, R.J.; Karandikar, A.; Griffen, A.M.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Robson, G.D.; Trinci, A.P.J.; Wiebe, M.G.

    2000-01-01

    Aspergillus niger B1, a recombinant strain carrying 20 extra copies of the native glucoamylase gene, was grown in glucose-limited chemostat cultures supplemented with various organic nitrogen sources (dilution rate 0.12 ± 0.01 h-1, pH 5.4). In cultures supplemented with L-alanine, L-methionine, casa

  5. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase

    DEFF Research Database (Denmark)

    Morris, V. M.; Gunning, A. P.; Faults, C. B.;

    2005-01-01

    Atomic force microscopy has been used to investigate the complexes formed between high molecular weight amylose chains and Aspergillus niger glucoamylase mutants (E400Q and W52F), wild-type A. niger starch binding domains (SBDS), and mutant SBDs (W563K and W590K) lacking either of the two starch ...

  6. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  7. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Kwon Min Jin

    2012-12-01

    Full Text Available Abstract Background Filamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights into their metabolic and secretory capacities are sparse and rational strain improvement approaches are therefore limited. In order to gain a genome-wide view on the transcriptional regulation of the protein secretory pathway of A. niger, we investigated the transcriptome of A. niger when it was forced to overexpression the glaA gene (encoding glucoamylase, GlaA and secrete GlaA to high level. Results An A. niger wild-type strain and a GlaA over-expressing strain, containing multiple copies of the glaA gene, were cultivated under maltose-limited chemostat conditions (specific growth rate 0.1 h-1. Elevated glaA mRNA and extracellular GlaA levels in the over-expressing strain were accompanied by elevated transcript levels from 772 genes and lowered transcript levels from 815 genes when compared to the wild-type strain. Using GO term enrichment analysis, four higher-order categories were identified in the up-regulated gene set: i endoplasmic reticulum (ER membrane translocation, ii protein glycosylation, iii vesicle transport, and iv ion homeostasis. Among these, about 130 genes had predicted functions for the passage of proteins through the ER and those genes included target genes of the HacA transcription factor that mediates the unfolded protein response (UPR, e.g. bipA, clxA, prpA, tigA and pdiA. In order to identify those genes that are important for high-level secretion of proteins by A. niger, we compared the transcriptome of the GlaA overexpression strain of A. niger with six other relevant transcriptomes of A. niger. Overall, 40 genes were found to have either elevated (from 36 genes or lowered (from 4 genes transcript levels under all

  8. Study on the molecular basis of glucoamylase overproduc-tion of a mutant strain Aspergillus niger T21

    Institute of Scientific and Technical Information of China (English)

    FAN; Xiaochun

    2001-01-01

    [1]Qiao, D., Tang, G., Zhong, L. et al., The overall analysis and comparison of the expression of glucoamylase in the over-production strain A. niger T21 and its original strain A. niger 3.795, Acta Microbiologica Sinica (in Chinese), 1997, 37(5): 349.[2]Zhong, L, Qiao, D, Tang, G. et al., Cloning, sequencing and comparison of the 5′-flanking regions of glaA gene from high and low glucoamylase producing strains of Aspergillus niger, Acta Microbiologica Sinica (in Chinese), 1996, 36: 181.[3]Qiao, D., Zhong, L., Tang, G. et al., Cloning and sequencing of glucoamylase gene from Aspergillus niger 3.795, Chinese J. Biochem. and Mol. Biology (in Chinese), 1998, 14: 254.[4]Zhong, L., Fan, X., Tang, G., Cotransformation of glucoamylase overproducing strain Aspergillus niger T21 with niaD and uidA gene, Mycosystema (in Chinese), 1999, 18: 172.[5]Roberts, I. N., Oliver, R. P., Punt, P. J. et al., Expression of the Escherichia coli b-glucuronidase gene in industrial and phytopathogenic filamentous fungi, Curr. Genet., 1989, 15: 177.[6]Lowry, O. H., Rosebrough, N. J., Farr, A. L. et al., Protein measurement with the folin phenol reagent, J. Biochem., 1951, 193: 268.[7]Zhu, H., Qu, F., Zhu, L., Isolation of genomic DNAs from fungi using benzyl chloride, Acta Mycologica Sinica (in Chi-nese), 1994, 13: 34.[8]Verwoerd, T. C., Dekker, B. M. M., Hoekema, A., A small-scale procedure for the rapid isolation of plant RNAs, Nucleic Acids Research, 1989, 17: 2362.[9]Campbell, E. I., Unkles, S. E., Marco, J. A. et al., Improved transformation efficiency of Aspergillus niger using the ho-mologous niaD gene for nitrate reductase, Curr. Genet., 1989, 16: 53.[10]Fowler, T., Berka, R. M., Ward, M., Regulation of the glaA gene of Aspergillus niger, Curr. Genet., 1990, 18: 537.[11]Verdoes, J. C., Punt, P. J., Stouthamer, A. H. et al., The effect of multiple copies of the upstream region on expression of the Aspergillus niger glucoamylase

  9. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...... growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase productivity increased linearly with the specific growth rate in the range 0-0.1 h(-1) and was constant in the range 0.1-0.2 h(-1) Maltose and maltodextrin were non-inducing carbon sources...... compared to glucose, and the maximum specific growth rate was 0.19 +/- 0.02 h(-1) irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g 1(-1) were obtained even though the strain contained only one copy of the glaA gene....

  10. Study on the molecular basis of glucoamylase overproduc-tion of a mutant strain Aspergillus niger T21

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The molecular basis for increasing of the glucoamylase (GLA) production of an Aspergillus niger mutant T21 was investigated . Northern blot analysis showed that the amount of glaA specific mRNA of A . niger T21 was about 20 times higher than that of its start strain A . niger AS 3.795. The two glaA promoter fusions (PglaA)-uidAs were respectively introduced into A . niger. Analysis of GUS activity of the transformants revealed that the PglaA activity of the strain T21 is about 3 times stronger than that of the strain AS 3.795. It is considered to be one of the reasons for the increase of glaA transcriptional level in the strain T21. However, comparing with the 20 times increase in the amount of glaA mRNA the alteration of trans regulation should be the most important reason for that. The results of deletion analysis of 5′-cis region of A . niger T21 glaA gene indicated that the region from - 408 to - 513 bp upstream of ATG is responsible for the high level expression of glaA.

  11. The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger

    NARCIS (Netherlands)

    Kwon, M.J.; Jorgensen, T.R.; Nitsche, B.M.; Arentshorst, M.; Park, J.; Ram, A.F.J.; Meyer, V.

    2012-01-01

    Background: Filamentous fungi such as Aspergillus niger are well known for their exceptionally high capacity for secretion of proteins, organic acids, and secondary metabolites and they are therefore used in biotechnology as versatile microbial production platforms. However, system-wide insights int

  12. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger

    NARCIS (Netherlands)

    Al-Sheikh, H.; Watson, A.J.; Lacey, G.A.; Punt, P.J.; MacKenzie, D.A.; Jeenes, D.J.; Pakula, T.; Penttilä, M.; Alcocer, M.J.C.; Archer, D.B.

    2004-01-01

    We describe a new endoplasmic reticulum (ER)-associated stress response in the filamentous fungus Aspergillus niger. The inhibition of protein folding within the ER leads to cellular responses known collectively as the unfolded protein response (UPR) and we show that the selective transcriptional do

  13. Acid protease and formation of multiple forms of glucoamylase in batch and continuous cultures of Aspergillus niger

    DEFF Research Database (Denmark)

    Aalbæk, Thomas; Reeslev, Morten; Jensen, Bo;

    2002-01-01

    with molecular weights of approx. 91 (GAI), 73 (GAII), and 59 kDa (GAIII). Data from batch fermentations with constant pH 3.0 and 5.0 showed a uniform distribution of extracellular GA forms throughout the fermentations and independent of culture growth phases. Furthermore, steady-state data from chemostat......In order to identify factors responsible for production of multiple forms of glucoamylase (GA) by Aspergillus niger Bo-1, the fungus was cultured in both complex and defined media in pH-controlled batch fermenters and chemostats. At all culture conditions three forms of GA were produced...... cultivations at constant pH 3.0 and 5.0 showed a similar distribution of extracellular GA forms and established that the nitrogen concentration of the medium (C/N ratio) did not affect the distribution of multiple forms of GA. The extracellular acid protease activity was only moderate when the fungus...

  14. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    Science.gov (United States)

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  15. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.;

    2006-01-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha...... of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced...... in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed...

  16. Small angle x-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimers in solution

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted; Nøhr, Jane; Kastrup, Jette Sandholm;

    2008-01-01

    The industrially important glucoamylase 1 is an exo-acting glycosidase with substrate preference for alpha-1,4 and alpha-1,6 linkages at non-reducing ends of starch. It consists of a starch binding and a catalytic domain interspersed by a highly glycosylated polypeptide linker. The linker functio...... transient dimer formation during hydrolysis of insoluble substrates and address the question of the cooperative effect of starch binding and hydrolysis.......The industrially important glucoamylase 1 is an exo-acting glycosidase with substrate preference for alpha-1,4 and alpha-1,6 linkages at non-reducing ends of starch. It consists of a starch binding and a catalytic domain interspersed by a highly glycosylated polypeptide linker. The linker function...... lacks a starch binding domain, and an engineered low-glycosylated variant of glucoamylase 1 with a short linker. Low resolution solution structures show that the linker adopts a compact structure rendering a well defined extended overall conformation to glucoamylase. We demonstrate that binding...

  17. Transcriptional profiling of Aspergillus niger

    NARCIS (Netherlands)

    Veen, van der D.

    2009-01-01

    The industrially important fungus Aspergillus niger feeds naturally on decomposing plant material, of which a significant proportion is lipid. Examination of the A. niger genome sequence suggested that all proteins required for metabolic conversion of lipids are present, including 63 predicted lipas

  18. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation); Kuklin, A. I. [Joint Institute for Nuclear Research (Russian Federation); Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute (Russian Federation)

    2016-01-15

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  19. Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase

    Science.gov (United States)

    Schmidt, A. E.; Shvetsov, A. V.; Kuklin, A. I.; Lebedev, D. V.; Surzhik, M. A.; Sergeev, V. R.; Isaev-Ivanov, V. V.

    2016-01-01

    Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantial contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.

  20. Transcriptional profiling of Aspergillus niger

    OpenAIRE

    Veen, van der, J.T.

    2009-01-01

    The industrially important fungus Aspergillus niger feeds naturally on decomposing plant material, of which a significant proportion is lipid. Examination of the A. niger genome sequence suggested that all proteins required for metabolic conversion of lipids are present, including 63 predicted lipases. In contrast to polysaccharide-degrading enzyme networks, not much is known about the signaling and regulatory processes that control lipase expression and activity in fungi. This project was ai...

  1. Regulatory processes in Aspergillus niger

    DEFF Research Database (Denmark)

    Poulsen, Lars

    Filamentous fungi are extensively used in the fermentation industry for synthesis of numerous products. One of the most important, is the fungus Aspergillus niger, used industrially for production of organic acids, and homologous as well as heterologous enzymes. This fungus has numerous of advant......Filamentous fungi are extensively used in the fermentation industry for synthesis of numerous products. One of the most important, is the fungus Aspergillus niger, used industrially for production of organic acids, and homologous as well as heterologous enzymes. This fungus has numerous...

  2. Germination of Aspergillus niger conidia

    OpenAIRE

    Hayer, Kimran

    2014-01-01

    Aspergillus niger is a black-spored filamentous fungus that forms asexual spores called conidospores (‘conidia’). Germination of conidia, leading to the formation of hyphae, is initiated by conidial swelling and mobilisation of endogenous carbon and energy stores, followed by polarisation and emergence of a hyphal germ tube. These morphological and biochemical changes which define the model of germination have been studied with the aim of understanding how conidia sense and utilise different...

  3. Organic acid production by Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de

    2006-01-01

    . Specielt Aspergillus niger er interessant i forbindelse med produktion af organiske syrer, idet denne organisme tolerer lavt pH, kan give høje produktudbytter, og kan give høje produktiviteter som allerede illustreret i anvendelsen af denne organisme i produktionen af citronsyre. Disse faktorer gør A...

  4. Characterisation of Aspergillus niger prolyl aminopeptidase

    NARCIS (Netherlands)

    Basten, E.J.W.; Moers, A.P.H.A.; Ooyen, van A.J.J.; Schaap, P.J.

    2005-01-01

    We have cloned a gene (papA) that encodes a prolyl aminopeptidase from Aspergillus niger. Homologous genes are present in the genomes of the Eurotiales A. nidulans, A. fumigatus and Talaromyces emersonii, but the gene is not present in the genome of the yeast Saccharomyces cerevisiae. Cell extracts

  5. High Expression of Glucoamylase Gene of Aspergillus niger in Pichia pastoris X33%黑曲霉糖化酶基因在毕赤酵母X33中的高效表达

    Institute of Scientific and Technical Information of China (English)

    王强; 徐义兵; 郭春和; 黄毓茂

    2012-01-01

    In order to improve expression of glucoamylase in Pichia pastori, based on the gene sequences encoding as registered in GenBank (serial number is AY652617), using the partiality condon of P. pastoris, the gene was designed and synthesized. The modified gene was cloned into the pGAPZαA vector to construct the recombinant expression vector pGAPZaA-EC. Then the pGAPZaA-EC which was linearized by Bln I was transformed into P. pastoris X33 by electroporation. The transfor-mants were screened with Zeocin and multiply-copy colonies were harvested, in which glucoamylase gene was verified to be inserted into yeast chromosome stably. SDS-PAGE result showed that, a 80 ku secreted protein was produced, consistent with the expected one, concentration of which was 180 mg/L in supernatant. Expression product showed enzymatic activity by Starch-PAGE.%为高效表达黑曲霉糖化酶基因,根据GenBank中糖化酶的氨基酸序列(登录号:AY652617),选用毕赤酵母(Pichia pastoris)密码子偏嗜性,全基因合成新的cDNA序列.改造后的基因克隆到pGAPZaA质粒中,获得重组分泌型酵母表达质粒pGAPZaA-EC,经限制性内切酶Bln Ⅰ酶切线性化后,电击转化人毕赤酵母细胞X33内.经高浓度博莱霉素抗性筛选,得到高拷贝转化子,PCR检测结果显示,糖化酶基因与毕赤酵母染色体稳定结合.糖化酶蛋白获得分泌表达,SDSPAGE分析其分子质量约为80 ku,其表达量约为180 mg/L.表达产物经Starch-PAGE活性染色,显示其具有酶学活性.

  6. Expression of human α1-proteinase inhibitor in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Punt Peter J

    2007-10-01

    Full Text Available Abstract Background Human α1-proteinase inhibitor (α1-PI, also known as antitrypsin, is the most abundant serine protease inhibitor (serpin in plasma. Its deficiency is associated with development of progressive, ultimately fatal emphysema. Currently in the United States, α1-PI is available for replacement therapy as an FDA licensed plasma-derived (pd product. However, the plasma source itself is limited; moreover, even with efficient viral inactivation steps used in manufacture of plasma products, the risk of contamination from emerging viruses may still exist. Therefore, recombinant α1-PI (r-α1-PI could provide an attractive alternative. Although r-α1-PI has been produced in several hosts, protein stability in vitro and rapid clearance from the circulation have been major issues, primarily due to absent or altered glycosylation. Results We have explored the possibility of expressing the gene for human α1-PI in the filamentous fungus Aspergillus niger (A. niger, a system reported to be capable of providing more "mammalian-like" glycosylation patterns to secretable proteins than commonly used yeast hosts. Our expression strategy was based on fusion of α1-PI with a strongly expressed, secreted leader protein (glucoamylase G2, separated by dibasic processing site (N-V-I-S-K-R that provides in vivo cleavage. SDS-PAGE, Western blot, ELISA, and α1-PI activity assays enabled us to select the transformant(s secreting a biologically active glycosylated r-α1-PI with yields of up to 12 mg/L. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis further confirmed that molecular mass of the r-α1-PI was similar to that of the pd-α1-PI. In vitro stability of the r-α1-PI from A. niger was tested in comparison with pd-α1-PI reference and non-glycosylated human r-α1-PI from E. coli. Conclusion We examined the suitability of the filamentous fungus A. niger for the expression of the human gene for α1-PI, a medium size

  7. Significance and occurrence of fumonisins from Aspergillus niger

    OpenAIRE

    Mogensen, Jesper Mølgaard; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Frisvad, Jens Christian

    2012-01-01

    Fumonisins is a well-studied group of mycotoxins, mainly produced in maize by Fusarium species. However with the recent discovery of a fumonisin production by Aspergillus niger, other food commodities are at risk, since A. niger is a ubiquitous contaminant of many food and feed products. The objective of this thesis was to determine the significance and occurrence of fumonisins from Aspergillus niger in food, the frequency of fumonisin production in A. niger isolates, as well as studies of th...

  8. Heterologous, Expression, and Characterization of Thermostable Glucoamylase Derived from Aspergillus flavus NSH9 in Pichia pastoris

    Science.gov (United States)

    Karim, Kazi Muhammad Rezaul; Hossain, Md. Anowar; Sing, Ngieng Ngui; Mohd Sinang, Fazia; Hussain, Mohd Hasnain Md.; Roslan, Hairul Azman

    2016-01-01

    A novel thermostable glucoamylase cDNA without starch binding domain (SBD) of Aspergillus flavus NSH9 was successfully identified, isolated, and overexpressed in Pichia pastoris GS115. The complete open reading frame of glucoamylase from Aspergillus flavus NSH9 was identified by employing PCR that encodes 493 amino acids lacking in the SBD. The first 17 amino acids were presumed to be a signal peptide. The cDNA was cloned into Pichia pastoris and the highest expression of recombinant glucoamylase (rGA) was observed after 8 days of incubation period with 1% methanol. The molecular weight of the purified rGA was about 78 kDa and exhibited optimum catalytic activity at pH 5.0 and temperature of 70°C. The enzyme was stable at higher temperature with 50% of residual activity observed after 20 min at 90°C and 100°C. Low concentration of metal (Mg++, Fe++, Zn++, Cu++, and Pb++) had positive effect on rGA activity. This rGA has the potential for use and application in the saccharification steps, due to its thermostability, in the starch processing industries. PMID:27504454

  9. Reconstruction of the central carbon metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    David, Helga; Åkesson, Mats Fredrik; Nielsen, Jens

    2003-01-01

    The topology of central carbon metabolism of Aspergillus niger was identified and the metabolic network reconstructed, by integrating genomic, biochemical and physiological information available for this microorganism and other related fungi. The reconstructed network may serve as a valuable...

  10. RELATIONSHIP BETWEEN MORPHOLOGY, RHEOLOGY AND GLUCOAMYLASE PRODUCTION BY Aspergillus awamori IN SUBMERGED CULTURES

    Directory of Open Access Journals (Sweden)

    C.R.D. Pamboukian

    1998-09-01

    Full Text Available The influence of inoculum preparation on Aspergillus awamori morphology, broth rheology and glucoamylase synthesis in submerged cultures was investigated. A series of runs were performed in fermenters, using initial total reducing sugar concentrations of 20 g/L and 80 g/L. The inocula were prepared in a rotary shaker, at 35oC and 200 rev/min, using a spore concentration of 9.2 x 105 spores/mL and varying both cultivation time and medium pH during the spore germination step. Three types of inocula were used: inoculum cultivated for 24 hours at an initial pH of 5.0, and inocula cultivated for 7 hours at both a pH of 2.5 and a pH of 5.5. Regarding glucoamylase production, the inoculum which provided the best results was shaker cultivated for 7 hours at a pH of 2.5. This inoculum produced glucoamylase of about 1,221 U/L in the fermenter, which was between 20% and 30% higher than those obtained using other inocula.

  11. Physiological characterisation of acuB deletion in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; De Jongh, Willem Adriaan; Olsson, Lisbeth;

    2009-01-01

    The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed...

  12. Physicochemical Properties Analysis and Secretome of Aspergillus niger in Fermented Rapeseed Meal.

    Science.gov (United States)

    Shi, Changyou; He, Jun; Yu, Jie; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Huang, Zhiqing; Chen, Daiwen

    2016-01-01

    The nutrient digestibility and feeding value of rapeseed meal (RSM) for non-ruminant animals is poor due to the presence of anti-nutritional substances such as glucosinolate, phytic acid, crude fiber etc. In the present study, a solid state fermentation (SSF) using Aspergillus niger was carried out with the purpose of improving the nutritional quality of RSM. The chemical composition and physicochemical properties of RSM before and after fermentation were compared. To further understand possible mechanism of solid state fermentation, the composition of extracellular enzymes secreted by Aspergillus niger during fermentation was analysed using two-dimentional difference gel electrophoresis (2D-DIGE) combined with matrix assisted laser desorption ionization-time of flight-mass spectrometer (MALDI-TOF-MS). Results of the present study indicated that SSF had significant effects on chemical composition of RSM. The fermented rapeseed meal (FRSM) contained more crude protein (CP) and amino acid (AA) (except His) than unfermented RSM. Notably, the small peptide in FRSM was 2.26 time larger than that in unfermented RSM. Concentrations of anti-nutritional substrates in FRSM including neutral detergent fiber (NDF), glucosinolates, isothiocyanate, oxazolidithione, and phytic acid declined (P < 0.05) by 13.47, 43.07, 55.64, 44.68 and 86.09%, respectively, compared with unfermented RSM. A. niger fermentation disrupted the surface structure, changed macromolecular organic compounds, and reduced the protein molecular weights of RSM substrate. Total proteins of raw RSM and FRSM were separated and 51 protein spots were selected for mass spectrometry according to 2D-DIGE map. In identified proteins, there were 15 extracellular hydrolases secreted by A. niger including glucoamylase, acid protease, beta-glucanase, arabinofuranosidase, xylanase, and phytase. Some antioxidant related enzymes also were identified. These findings suggested that A. niger is able to secrete many extracellular

  13. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation

    NARCIS (Netherlands)

    Biesebeke, te R.; Biezen, de N.; Vos, de W.M.; Hondel, van den C.A.M.J.J.; Punt, P.J.

    2005-01-01

    Solid-state fermentation (SSF) with Aspergillus oryzae results in high levels of secreted protein. However, control mechanisms of gene expression in SSF have been only poorly studied. In this study we show that both glucoamylase (glaB) and protease (alpA, nptB) genes are highly expressed during surf

  14. Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger isolated from grapes in Spanish vineyards.

    Science.gov (United States)

    García-Cela, E; Crespo-Sempere, A; Ramos, A J; Sanchis, V; Marin, S

    2014-03-01

    The aim of this study was to evaluate the diversity of black aspergilli isolated from berries from different agroclimatic regions of Spain. Growth characterization (in terms of temperature and water activity requirements) of Aspergillus carbonarius, Aspergillus tubingensis and Aspergillus niger was carried out on synthetic grape medium. A. tubingensis and A. niger showed higher maximum temperatures for growth (>45 °C versus 40-42 °C), and lower minimum aw requirements (0.83 aw versus 0.87 aw) than A. carbonarius. No differences in growth boundaries due to their geographical origin were found within A. niger aggregate isolates. Conversely, A. carbonarius isolates from the hotter and drier region grew and produced OTA at lower aw than other isolates. However, little genetic diversity in A. carbonarius was observed for the microsatellites tested and the same sequence of β-tubulin gene was observed; therefore intraspecific variability did not correlate with the geographical origin of the isolates or with their ability to produce OTA. Climatic change prediction points to drier and hotter climatic scenarios where A. tubingensis and A. niger could be even more prevalent over A. carbonarius, since they are better adapted to extreme high temperature and drier conditions.

  15. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    Science.gov (United States)

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step.

  16. The opposite roles of agdA and glaA on citric acid production in Aspergillus niger.

    Science.gov (United States)

    Wang, Lu; Cao, Zhanglei; Hou, Li; Yin, Liuhua; Wang, Dawei; Gao, Qiang; Wu, Zhenqiang; Wang, Depei

    2016-07-01

    Citric acid is produced by an industrial-scale process of fermentation using Aspergillus niger as a microbial cell factory. However, citric acid production was hindered by the non-fermentable isomaltose and insufficient saccharification ability in A. niger when liquefied corn starch was used as a raw material. In this study, A. niger TNA 101ΔagdA was constructed by deletion of the α-glucosidase-encoding agdA gene in A. niger CGMCC 10142 genome using Agrobacterium tumefaciens-mediated transformation. The transformants A. niger OG 1, OG 17, and OG 31 then underwent overexpression of glucoamylase in A. niger TNA 101ΔagdA. The results showed that the α-glucosidase activity of TNA 101ΔagdA was decreased by 62.5 % compared with CGMCC 10142, and isomaltose was almost undetectable in the fermentation broth. The glucoamylase activity of the transformants OG 1 and OG 17 increased by 34.5 and 16.89 % compared with that of TNA 101ΔagdA, respectively. In addition, for the recombinants TNA 101ΔagdA, OG 1 and OG 17, there were no apparent defects in the growth development. Consequently, in comparison with CGMCC 10142, TNA 101ΔagdA and OG 1 decreased the residual reducing sugar by 52.95 and 88.24 %, respectively, and correspondingly increased citric acid production at the end of fermentation by 8.68 and 16.87 %. Citric acid production was further improved by decreasing the non-fermentable residual sugar and increasing utilization rate of corn starch material in A. niger. Besides, the successive saccharification and citric acid fermentation processes were successfully integrated into one step. PMID:26837219

  17. Phosphate solubilizing ability of two Arctic Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Shiv Mohan Singh,

    2011-06-01

    Full Text Available Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP solubilizing ability in Pikovskaya's medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 µg ml–1, while Aspergillus niger strain-2 solubilized 262 µg ml–1 from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

  18. Biosorption potency of Aspergillus niger for removal of chromium (VI).

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2006-09-01

    Aspergillus niger isolated from soil and effluent of leather tanning mills had higher activity to remove chromium. The potency of Aspergillus niger was evaluated in shake flask culture by absorption of chromium at pH 6 and temperature 30 degrees C. The results of the study indicated removal of more than 75% chromium by Aspergillus niger determined by diphenylcarbazide colorimetric assay and atomic absorption spectrophotometry after 7 days. Study of microbial Cr(VI) reduction and identification of reduction intermediates has been hindered by the lack of analytical techniques that can identify the oxidation state with subcellular spatial resolution. Therefore, removal of chromium was further substantiated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX), which indicated an accumulation of chromium in the fungal mycelium. PMID:16874547

  19. Electrochemical monitoring of citric acid production by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E.; Ciosek, Patrycja; Wróblewski, Wojciech, E-mail: wuwu@ch.pw.edu.pl

    2014-05-01

    Highlights: • Citric acid fermentation process (production) by Aspergillus niger. • Qualitative/quantitative monitoring of standard culture and culture infected with yeast. • Electronic tongue based on potentiometric and voltammetric sensors. • Evaluation of the progress and the correctness of the fermentation process. • The highest classification abilities of the hybrid electronic tongue. - Abstract: Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  20. Identification of thermostable beta-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, H.K.; Frisvad, Jens Christian;

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta-xylosidases. Th...... is a well known enzyme producer, this is the first report of xylanase and thermostable beta-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis....

  1. Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian;

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta-xylosidases. Th...... is a well known enzyme producer, this is the first report of xylanase and thermostable beta-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis....

  2. Electrochemical monitoring of citric acid production by Aspergillus niger.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Wawrzyniak, Urszula E; Ciosek, Patrycja; Wróblewski, Wojciech

    2014-05-01

    Hybrid electronic tongue was developed for the monitoring of citric acid production by Aspergillus niger. The system based on various potentiometric/voltammetric sensors and appropriate chemometric techniques provided correct qualitative and quantitative classification of the samples collected during standard Aspergillus niger culture and culture infected with yeast. The performance of the proposed approach was compared with the monitoring of the fermentation process carried out using classical methods. The results obtained proved, that the designed hybrid electronic tongue was able to evaluate the progress and correctness of the fermentation process.

  3. Can hTNF-alpha be successfully produced and secreted in filamentous fungus Aspergillus niger?

    NARCIS (Netherlands)

    Krasevec, N.; Hondel, C.A.M.J.J. van den; Komel, R.

    2000-01-01

    A gene-fusion expression strategy was applied for the heterologous expression of hTNF-α in A. niger AB1.13. The TNF-α gene was fused with the A. niger glucoamylase GII form as a carrier-gene, behind its transcription control and secretion signal. The protein was expressed in the cells in the form of

  4. A molecular analysis of L-arabinan degradation in Aspergillus niger and Aspergillus nidulans.

    NARCIS (Netherlands)

    Flipphi, M.J.A.

    1995-01-01

    This thesis describes a molecular study of the genetics ofL-arabinan degradation in Aspergillus niger and Aspergillus nidulans. These saprophytic hyphal fungi produce an extracellular hydrolytic enzyme system to depolymerize the plant cell wall polysaccharideL<

  5. Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger

    NARCIS (Netherlands)

    Nikolaev, I.; Mathieu, M.; Vondervoort, van de P.J.I.; Visser, J.; Felenbok, B.

    2002-01-01

    The inducible and strongly expressed alcA gene encoding alcohol dehydrogenase I from Aspergillus nidulans was transferred together with the activator gene alcR, in the industrial fungus Aspergillus niger. This latter organism does not possess an inducible alc system but has an endogenously constitut

  6. Aminopeptidase C of Aspergillus niger is a Novel Phenylalanine Aminopeptidase

    NARCIS (Netherlands)

    Basten, E.J.W.; Dekker, P.J.T.; Schaap, P.J.

    2003-01-01

    A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hy

  7. Biotransformation of quinazoline and phthalazine by Aspergillus niger.

    Science.gov (United States)

    Sutherland, John B; Heinze, Thomas M; Schnackenberg, Laura K; Freeman, James P; Williams, Anna J

    2011-03-01

    Cultures of Aspergillus niger NRRL-599 in fluid Sabouraud medium were grown with quinazoline and phthalazine for 7 days. Metabolites were purified by high-performance liquid chromatography and identified by mass spectrometry and proton nuclear magnetic resonance spectroscopy. Quinazoline was oxidized to 4-quinazolinone and 2,4-quinazolinedione, and phthalazine was oxidized to 1-phthalazinone.

  8. Studies on the production of fungal peroxidases in Aspergillus niger

    NARCIS (Netherlands)

    Conesa, A.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2000-01-01

    To get insight into the limiting factors existing for the efficient production of fungal peroxidase in filamentous fungi, the expression of the Phanerochaete chrysosporium lignin peroxidase H8 (lipA) and manganese peroxidase (MnP) H4 (mnp1) genes in Aspergillus niger has been studied. For this purpo

  9. Enhanced citrate production through gene insertion in Aspergillus niger

    DEFF Research Database (Denmark)

    Jongh, Wian de; Nielsen, Jens

    2007-01-01

    The effect of inserting genes involved in the reductive branch of the tricarboxylic acid (TCA) cycle on citrate production by Aspergillus niger was evaluated. Several different genes were inserted individually and in combination, i.e. malate dehydrogenase (mdh2) from Saccharomyces cerevisiae, two...

  10. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld; Thrane, Ulf;

    2011-01-01

    as safe). However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains) as well as 228 strains from 17 related black Aspergillus species were...... examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2), B(4), and B(6)) were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83...... of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A...

  11. 21 CFR 173.120 - Carbohydrase and cellulase derived from Aspergillus niger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbohydrase and cellulase derived from Aspergillus... cellulase derived from Aspergillus niger. Carbohydrase and cellulase enzyme preparation derived from Aspergillus niger may be safely used in food in accordance with the following prescribed conditions:...

  12. Growth Inhibition of Aspergillus niger by Cinnamaldehyde and Eugenol

    OpenAIRE

    Narumol MATAN

    2007-01-01

    Inhibitory effects of cinnamaldehyde and eugenol against Aspergillus niger, major spoilage mold of fruits and nuts, were investigated. A. niger inoculated on agar plates was exposed to paper discs impregnated with 10 μL of cinnamaldehyde and eugenol at various concentrations (10 - 100 mg/ml) before incubating at 25 °C for 3 days. Antifungal activities of cinnamaldehyde and eugenol at the minimum inhibitory concentration (MIC) were examined at various temperatures ranging from 20 °C to 37 °C. ...

  13. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  14. Cadmium biosorption by Aspergillus niger; Biossorcao de cadmio pelo Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.P.; Barros Junior, L.M.; Duarte, M.M.L.; Macedo, G.R. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)]. E-mail: edmilson@eq.ufrn.br

    2003-07-01

    Biosorption is a property of certain types of inactive, dead, microbial biomass to bind and concentrate heavy metals from even very dilute aqueous solutions. Biomass exhibits this property, acting just as a chemical substance, as an ion exchanger of biological origin. It is particularly the cell wall structure of certain algae, fungi and bacteria which was found responsible for this phenomenon. Some of the biomass types come as a waste by-product of large-scale industrial fermentations (the mold Rhizopus or the bacterium Bacillus subtilis). Other metal-binding biomass types, certain abundant seaweeds (particularly brown algae e.g. Sargassum, Ecklonia), can be readily collected from the oceans. These biomass types, serving as a basis for metal biosorption processes, can accumulate in excess of 25% of their dry weight in deposited heavy metals: Pb, Cd, U, Cu, Zn, even Cr and others. Sorption experiments using the Aspergillus niger fungus for cadmium removal were carried out to study the factors influencing and optimizing the biosorption of this metal. The effects of pH, time, biomass concentration, and initial concentration of the heavy metal on the rate of metallic biosorption were examined. (author)

  15. Biocatalytic Resolution of para-Nitrostyrene Oxide by Resting Cells of Different Aspergillus niger Strains

    Institute of Scientific and Technical Information of China (English)

    金浩; 李祖义; 王清

    2001-01-01

    Biocatalytic resolution of racemic para-nitrostyrene oxide was accomplished by employing the epoxide hydrolases from the whole cells of several Aspergillus niger (A. niger) strains. In the cases investigated, excellent selectivity was achieved with such strains as A, niger 5450, A. niger 5320.

  16. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Diano, Audrey; Nielsen, Jens

    2009-01-01

    The filamentous fungus Aspergillus niger is used extensively for the production of enzymes and organic acids. A major problem in industrial fermentations with this fungus is to ensure sufficient supply of oxygen required for respiratory metabolism of the fungus. In case of oxygen limitation...... behind the strong gpdA promoter from Aspergillus nidulans. Analysis of secreted metabolites, oxygen uptake, CO2 evolution and biomass formation points towards a relief of stress in the mutant expressing VHB when it is exposed to oxygen limitation. Our findings therefore point to an interesting strategy...

  17. Biosorption of Cadmium by Fungal Biomass of Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    QI YANG; JIAN-LONG WANG; ZHI XING

    2005-01-01

    Objective To investigate the removal of cadmium from aqueous solution by waste fungal biomass of Aspergillus niger, originated from citric acid fermentation industry. Methods Batch adsorption test was used to study the biosorption equilibrium and isotherm. The Cd2+ concentration was measured with atomic adsorption spectrophotometer (AAS) HITACHI 180-80. Results The biosorption achieved equilibrium within 30 min. The adsorption isotherm could be described by Freundlich adsorption model, and the constants KF and 1/n were determined to be 2.07 and 0.18, respectively, and the correlation efficiency was 0.97. The optimal pH for Cd adsorption was 6.0. The cadmium-laden biomass could be effectively regenerated using 0.1 N HCl. Conclusion The waste biomass of Aspergillus niger, a by-product of fermentation industry, is a potential biosorbent for the removal of cadmium from aqueous solution.

  18. Biosorption of cadmium using the fungus Aspergillus niger

    OpenAIRE

    Barros Júnior L.M.; Macedo G.R.; Duarte M.M.L.; Silva E.P.; Lobato A.K.C.L.

    2003-01-01

    Sorption experiments using the Aspergillus niger fungus for cadmium removal were carried out to study the factors influencing and optimizing the biosorption of this metal. The effects of pH, time, biomass concentration, and initial concentration of the heavy metal on the rate of metallic biosorption were examined. An experimental design was also used to determine the values of the under study variables that provided the greatest biosorption efficiency. A technique for biomass recovery was als...

  19. Biotransformation of steviol derivatives by Aspergillus niger and Fusarium moniliforme

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bras H. de; Leal, Paulo C. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: bho@ufpr.br; Souza Filho, Jose Dias [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    2005-04-01

    Steviol derivatives have been submitted to biotransformations by fungi. Methyl ent-11{beta},13-dihydroxy-15,16-epoxikauran-19-oate was hydroxylated at C-11 by Aspergillus niger, whereas ent-16{beta}-hydroxybeyeran-19-oic acid was hydroxylated at C-6 and C-7 by Fusarium moniliforme. The hydroxylation at non-activated positions at the carbon skeleton is discussed in connection with the properties of important polyhydroxylated diterpenoids described in the literature. (author)

  20. SILVER NANOPARTICLES SYNTHESIZED BY THE AZERBAIJANIAN ENVIRONMENTAL ISOLATES ASPERGILLUS NIGER

    Directory of Open Access Journals (Sweden)

    Kh. G. Ganbarov

    2014-10-01

    Full Text Available The synthesis of nanoparticles by microorganisms is environmentally safe method. The silver nanoparticles produced by fungi is complex material having different size, shape and other properties depending on the producer. İt is necessary to study new microbial strains to synthesize silver nanoparticles with important properties. The synthesis of different stable silver nanoparticles by the mold fungi was investigated in this work. To achieve this goal different strains (isolates of Aspergillus niger were used. The most intensive formation of nanoparticles was observed in strains Aspergillus niger BDU-A4, BDU-K8, BDU-UB1 and BDU-UB5.While examining nanoparticles the following analysis methods were used: UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM and Energy Dispersive Spectroscopy. Electron microscopic examination showed that the shape, size and nature of nanoparticles’ clusters were dependent on fungal strains. The shape of nanoparticles is usually circular but it may be oval like in case of nanoclusters consisting of a few spherical nanoparticles. Their size varies from 20 to 100 nm.The formation of free ellipsoidal shape nanoparticles was observed at strain of Aspergillus niger BDU-K8, that varies in the range 62,9 - 68,4 nm.

  1. Acid protease and formation of multiple forms of glycoamylase in batch and continuous cultures of Aspergillus niger

    DEFF Research Database (Denmark)

    Aalbæk, Thomas; Reeslev, Morten; Jensen, Bo;

    2002-01-01

    with molecular weights of approx. 91 (GAI), 73 (GAII), and 59 kDa (GAIII). Data from batch fermentations with constant pH 3.0 and 5.0 showed a uniform distribution of extracellular GA forms throughout the fermentations and independent of culture growth phases. Furthermore, steady-state data from chemostat......In order to identify factors responsible for production of multiple forms of glucoamylase (GA) by Aspergillus niger Bo-1, the fungus was cultured in both complex and defined media in pH-controlled batch fermenters and chemostats. At all culture conditions three forms of GA were produced...... cultivations at constant pH 3.0 and 5.0 showed a similar distribution of extracellular GA forms and established that the nitrogen concentration of the medium (C/N ratio) did not affect the distribution of multiple forms of GA. The extracellular acid protease activity was only moderate when the fungus...

  2. Arabinase induction and carbon catabolite repression in Aspergillus niger and Aspergillus nidulans.

    NARCIS (Netherlands)

    Veen, van der P.

    1995-01-01

    The first aim of this thesis was to get a better understanding of the properties and the induction features of arabinan degrading enzymes and enzymes involved in the intracellular L-arabinose catabolic pathway in Aspergillus niger. The second aim was to understand the which role carbon catabolite re

  3. Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger.

    Science.gov (United States)

    Nikolaev, I; Mathieu, M; van de Vondervoort, P; Visser, J; Felenbok, B

    2002-10-01

    The inducible and strongly expressed alcA gene encoding alcohol dehydrogenase I from Aspergillus nidulans was transferred together with the activator gene alcR, in the industrial fungus Aspergillus niger. This latter organism does not possess an inducible alc system but has an endogenously constitutive lowly expressed alcohol dehydrogenase activity. The overall induced expression of the alcA gene was of the same order in both fungi, as monitored by alcA transcription, alcohol dehydrogenase activity and heterologous expression of the reporter enzyme, beta-glucuronidase. However, important differences in the pattern of alcA regulation were observed between the two fungi. A high basal level of alcA transcription was observed in A. niger resulting in a lower ratio of alcA inducibility. This may be due to higher levels of the physiological inducer of the alc regulon, acetaldehyde, from general metabolism in A. niger which differs from that of A. nidulans.

  4. Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2011-10-01

    Full Text Available Abstract Background Considering that the costs of cellulases and hemicellulases contribute substantially to the price of bioethanol, new studies aimed at understanding and improving cellulase efficiency and productivity are of paramount importance. Aspergillus niger has been shown to produce a wide spectrum of polysaccharide hydrolytic enzymes. To understand how to improve enzymatic cocktails that can hydrolyze pretreated sugarcane bagasse, we used a genomics approach to investigate which genes and pathways are transcriptionally modulated during growth of A. niger on steam-exploded sugarcane bagasse (SEB. Results Herein we report the main cellulase- and hemicellulase-encoding genes with increased expression during growth on SEB. We also sought to determine whether the mRNA accumulation of several SEB-induced genes encoding putative transporters is induced by xylose and dependent on glucose. We identified 18 (58% of A. niger predicted cellulases and 21 (58% of A. niger predicted hemicellulases cellulase- and hemicellulase-encoding genes, respectively, that were highly expressed during growth on SEB. Conclusions Degradation of sugarcane bagasse requires production of many different enzymes which are regulated by the type and complexity of the available substrate. Our presently reported work opens new possibilities for understanding sugarcane biomass saccharification by A. niger hydrolases and for the construction of more efficient enzymatic cocktails for second-generation bioethanol.

  5. Fumonisin and ochratoxin production in industrial Aspergillus niger strains.

    Directory of Open Access Journals (Sweden)

    Jens C Frisvad

    Full Text Available Aspergillus niger is perhaps the most important fungus used in biotechnology, and is also one of the most commonly encountered fungi contaminating foods and feedstuffs, and occurring in soil and indoor environments. Many of its industrial applications have been given GRAS status (generally regarded as safe. However, A. niger has the potential to produce two groups of potentially carcinogenic mycotoxins: fumonisins and ochratoxins. In this study all available industrial and many non-industrial strains of A. niger (180 strains as well as 228 strains from 17 related black Aspergillus species were examined for mycotoxin production. None of the related 17 species of black Aspergilli produced fumonisins. Fumonisins (B(2, B(4, and B(6 were detected in 81% of A. niger, and ochratoxin A in 17%, while 10% of the strains produced both mycotoxins. Among the industrial strains the same ratios were 83%, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use of the remaining biomass as animal feed. In conclusion it is recommended to use strains of A. niger with inactive or inactivated gene clusters for fumonisins and ochratoxins, or to choose isolates for biotechnological uses in related non-toxigenic species such as A. tubingensis, A. brasiliensis, A vadensis or A. acidus, which neither produce fumonisins nor ochratoxins.

  6. The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate

    Directory of Open Access Journals (Sweden)

    Wissing Josef

    2010-04-01

    Full Text Available Abstract Background The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS. Results The intracellular proteome of A. niger growing either on xylose or maltose in well-aerated controlled bioreactor cultures revealed striking similarities. In both cultures the most abundant intracellular protein was the TCA cycle enzyme malate-dehydrogenase. Moreover, the glycolytic enzymes fructose-bis-phosphate aldolase and glyceraldehyde-3-phosphate-dehydrogenase and the flavohemoglobin FhbA were identified as major proteins in both cultures. On the other hand, enzymes involved in the removal of reactive oxygen species, such as superoxide dismutase and peroxiredoxin, were present at elevated levels in the culture growing on maltose but only in minor amounts in the xylose culture. The composition of the extracellular proteome differed considerably depending on the carbon substrate. In the secretome of the xylose-grown culture, a variety of plant cell wall degrading enzymes were identified, mostly under the control of the xylanolytic transcriptional activator XlnR, with xylanase B and ferulic acid esterase as the most abundant ones. The secretome of the maltose-grown culture did not contain xylanolytic enzymes, instead high levels of catalases were found and

  7. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    NARCIS (Netherlands)

    Li, A.; Pfelzer, N.; Zuijderwijk, R.; Brickwedde, A.; Zeijl, C. van; Punt, P.

    2013-01-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid produ

  8. Biotransformation of (-)beta-pinene by Aspergillus niger ATCC 9642.

    Science.gov (United States)

    Toniazzo, Geciane; de Oliveira, Débora; Dariva, Cláudio; Oestreicher, Enrique Guillermo; Antunes, Octávio A C

    2005-01-01

    The main objective of this work was to investigate the biotransformations of (-)alpha-pinene, (-)beta-pinene, and (+) limonene by Aspergillus niger ATCC 9642. The culture conditions involved--concentration of cosolvent (EtOH), substrate applied, and sequential addition of substrates were--investigated. Adaptation of the precultures with small amounts of substrate was also studied. The experiments were performed in conical flasks with liquid cultures. This strain of A. niger was able to convert only (-)beta-pinene into alpha-terpineol. An optimum conversion of (-)beta-pinene into alpha-terpineol of about 4% was obtained when the substrate was applied as a diluted solution in EtOH and sequential addition of substrate was used.

  9. UTILIZING Aspergillus niger FOR BIOREMEDIATION OF TANNERY EFFLUENT

    Directory of Open Access Journals (Sweden)

    Jyoti Bisht

    2014-03-01

    Full Text Available Tannery waste water is characterized by highly toxic ammonium, sulfates, surfactants, acids, dyes, sulfonated oils and organic substances, including natural or synthetic tannins. This study was designed to study the potential of Aspergillus niger for bioremediation of tannery effluent. Addition of glucose as a carbon source in the tannery effluent encouraged the growth of A. niger but there was no change in physico-chemical parameters. The toxic effects were mostly reduced after treatment when 20% mineral salt medium was added in tannery effluent. Colour, COD, TS, TDS, TSS, chlorides, sulfides and chromium reduction were 71.9%, 72.1%, 69.0%, 65.0%, 68.1%, 66.8%, 65.7% and 57.8%, respectively.

  10. Expression of Aspergillus niger 9891 Endoinulinase in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Wang Jianhua(王建华); Teng Da; Yao Yi; Yang Yalin; Zhang Fan

    2004-01-01

    An endoinulinase gene from Aspergillus niger 9891 (CGMCC0991) has been expressed in Pichia pastoris GS115 using pPIC9 vector. The recombinant endoinulinase was highly expressed and the optimization of the expression in a 7 liter of fermentor has been investigated. In fermented broth, the concentration of protein secreted is 2.15 mg/ml. The activity of endoinulinase is 1501 U/ml with sucrose as substrate and 291 U/ml with inulin as substrate, 105 and 273 times higher than that from the original strain respectively.

  11. Chitosan Obtained from Cell Wall of Aspergillus Niger Mycelium

    Institute of Scientific and Technical Information of China (English)

    HUANG Hui-li; LIN Wen-luan; LIN Jian-ming

    2004-01-01

    Chitin from cell walls of Aspergillus Niger mycelium was prepared. A new method for the preparation of high deacetylation degree chitosan was studied in a dilute sodium hydroxide solution at a high pressure. The experimental results indicate that the deacetylation degree of the chitosan can reach 80% under the condition of a 5.00 mol/L sodium hydroxide solution at 0.1 MPa of pressure for 1 h. This method shows the advantages of the applications in the industry production and environment protection.

  12. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    Science.gov (United States)

    Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  13. Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae

    DEFF Research Database (Denmark)

    Coutinho, Pedro M.; Andersen, Mikael Rørdam; Kolenova, Katarina;

    2009-01-01

    The plant polysaccharide degradative potential of Aspergillus nidulans was analysed in detail and compared to that of Aspergillus niger and Aspergillus oryzae using a combination of bioinformatics, physiology and transcriptomics. Manual verification indicated that 28.4% of the A. nidulans ORFs...

  14. Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Unni Nair, Balachandran; Puvanakrishnan, Rengarajulu

    2006-06-01

    Chromium toxicity is of prime concern due to chrome tanning processes in the leather sector. Chrome tanning results in the discharge of toxic levels of chromium causing pollution hazards. Chromium levels of Cr(III) and Cr(VI) were high above permissible limits in chrome samples after chrome tanning. The potential of Aspergillus niger MTCC 2594 to accumulate chromium as well as its biosorption capacity is investigated in this study. Bioaccumulation of Cr(III) and Cr(VI) in the spent chrome liquor has resulted in a 75-78% reduction of the initial Cr content in 24-36 h. A. niger biomass is found to be very effective in the biosorption of Cr(III) and Cr(VI) in spent chrome liquor. Maximum adsorption of 83% for biosorption of Cr(III) at 48 h and 79% of Cr(VI) at 36 h in spent chrome liquor is observed. The biosorption characteristics fit well with Langmuir and Freundlich isotherms and the adsorption parameters are evaluated. The biosorption of Cr also follows Lagergren kinetics. A. niger biomass is effectively used for the biosorption of chromium with 79-83% Cr removal in 36-48 h.

  15. Preparation of 3-deacetyl cephalosporins by Aspergillus niger lipase.

    Science.gov (United States)

    Carrea, G; Corcelli, A; Palmisano, G; Riva, S

    1996-12-20

    Lipase from Aspergillus niger was used for the selective hydrolysis of the 3-O-acetate of cephalosporin C to give an intermediate useful for further chemical elaborations. This lipase was purified to homogeneity and its properties compared with previously published data that present some discrepancies. The lipase proved to be very effective in catalyzing 3-O-acetate hydrolysis and versatile toward substitution on the beta-lactamic ring. In fact, as an example, two other cephalosporinic derivatives, cephalotin and cefotaxime, were efficiently deacetylated. The lipase was immobilized on Eupergit C and employed continuously in either a column or a batch reactor for 2 months without appreciable loss of activity. (c) 1996 John Wiley & Sons, Inc. PMID:18629943

  16. Biotransformation of germacranolide from Onopordon leptolepies by Aspergillus niger.

    Science.gov (United States)

    Esmaeili, Akbar; Moazami, Nasrin; Rustaiyan, Abdolhossein

    2012-01-01

    Terpenes are present in the essential oils obtained from herbs and spices. They are produced by these plant species as a chemical defense mechanism against phytopathogenic microorganisms. Therefore, terpenes have attracted great attention in the food industry, e.g., they have been used in foods such as cheese as natural preservatives to prevent fungal growth. Herein, we describe the microbial transformation of onopordopicrin (1) by Aspergillus niger. Four product 11α H-dihydroonopordopicrin (2), 11β H-dihydroonopordopicrin (3), 3β-hydroxy-11β H-dihydroonopordopicrin (4), and 14-hydroxy-11β H-dihydroonopordopicrin (5) were obtained. Their structures were identified on the basis of chemical and spectroscopic data. All the four compounds were novel. PMID:22186324

  17. Metabolic control analysis of Aspergillus niger L-arabinose catabolism

    DEFF Research Database (Denmark)

    de Groot, M.J.L.; Prathumpai, Wai; Visser, J.;

    2005-01-01

    , and their kinetic properties were characterized. For the other enzymes of the pathway the kinetic data were available from the literature. The metabolic model was used to analyze flux and metabolite concentration control of the L-arabinose catabolic pathway. The model demonstrated that flux control does not reside......A mathematical model of the L-arabinose/D-xylose catabolic pathway of Aspergillus niger was constructed based on the kinetic properties of the enzymes. For this purpose L-arabinose reductase, L-arabitol dehydrogenase and D-xylose reductase were purified using dye-affinity chromatography......-arabinose, a level that resulted in realistic intermediate concentrations in the model, flux control coefficients for L-arabinose reductase, L-arabitol dehydrogenase and L-xylulose reductase were 0.68, 0.17 and 0.14, respectively. The analysis can be used as a guide to identify targets for metabolic engineering...

  18. A new diketopiperazine heterodimer from an endophytic fungus Aspergillus niger.

    Science.gov (United States)

    Li, Xiao-Bin; Li, Yue-Lan; Zhou, Jin-Chuan; Yuan, Hui-Qing; Wang, Xiao-Ning; Lou, Hong-Xiang

    2015-01-01

    One new diketopiperazine heterodimer, asperazine A (1), and eight known compounds, asperazine (2), cyclo(d-Phe-l-Trp) (3), cyclo(l-Trp-l-Trp) (4), 4-(hydroxymethyl)-5,6-dihydro-pyran-2-one (5), walterolactone A (6), and campyrones A-C (7-9), were isolated from an endophytic fungus Aspergillus niger. Their structures were determined unequivocally on the basis of extensive spectroscopic data analysis. This is the first report of the presence of compound 3 as a natural product. Cytotoxicity test against human cancer cell lines PC3, A2780, K562, MBA-MD-231, and NCI-H1688 revealed that compounds 1 and 2 had weak activities.

  19. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.;

    2012-01-01

    Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required....... For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential...... of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono-and polysaccharide substrates has allowed elucidation of concerted gene expression from...

  20. Enantioselective accumulation of (--)-pinoresinol through O-demethylation of (+/-)-eudesmin by Aspergillus niger.

    Science.gov (United States)

    Kasahara, H; Miyazawa, M; Kameoka, H

    1997-04-01

    Microbial transformation of (+/-)-eudesmin by Aspergillus niger was investigated. Enantioselective accumulation of (--)-pinoresinol was shown through O-demethylation of (+/-)-eudesmin. This fungus O- demethylated both enantiomers of eudesmin, but the conversion rates for each enantiomer were clearly different.

  1. Initial intracellular proteome profile of Aspergillus niger biofilms

    Directory of Open Access Journals (Sweden)

    Gretty K. Villena

    2011-07-01

    Full Text Available An initial profiling of the intracellular proteome of Aspergillus niger ATCC 10864 biofilm cultures developed on polyester cloth was carried out by using 2D-PAGE and MS-TOF analysis and it was compared to the proteome of conventionally grown free-living submerged cultures. A number of 2D-PAGE protein spots from both types of cultures were subjected to MS-TOF analysis and data interrogation of the NCBI nr database available for this species. Proteomic maps showed different expression patterns in both culture systems with differentially expressed proteins in each case. In biofilm cultures, 19% and 32% of the selected protein spots were over- expressed and differentially expressed, respectively. On the contrary, in free-living cultures, 44% and 7% of the selected protein spots were over-expressed and differentially expressed, respectively. Although preliminary, results presented in this paper show that there are significant differences between the proteomes of A. niger biofilm and free-living mycelia. It seems that cell adhesion is the most important stimulus responsible for biofilm development which is the basis of Surface Adhesion Fermentation.

  2. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger

    OpenAIRE

    Chandra, M. Subhosh; Viswanath, Buddolla; Reddy, B. Rajasekhar

    2007-01-01

    The production of cellulolytic enzymes by Aspergillus niger on lignocellulosic substrates groundnut fodder, wheat bran, rice bran and sawdust in solid state fermentation in a laboratory scale was compared. Czapek Dox liquid broth amended with cellulose (0.5%) was used to moisten lignocellulosic solid supports for cultivation of Aspergillus niger. The production of filter paperase, carboxymethyl cellulase and -glucosidase were monitored at daily intervals for 5 days. The peak production of the...

  3. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    DEFF Research Database (Denmark)

    Pel, Herman J.; de Winde, Johannes H.; Archer, David B.;

    2007-01-01

    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level...... clusters for fumonisin and ochratoxin A synthesis....

  4. Identification and characterization of starch and inulin modifying network of Aspergillus niger by functional genomics

    NARCIS (Netherlands)

    Yuan, Xiao-Lian

    2008-01-01

    Aspergillus niger produces a wide variety of carbohydrate hydrolytic enzymes which have potential applications in the baking, starch, textile, food and feed industries. The goal of this thesis is to unravel the molecular mechanisms of starch and inulin modifying network of A. niger, in order to impr

  5. The molecular and genetic basis of conidial pigmentation in Aspergillus niger

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R.; Park, Joohae; Arentshorst, Mark;

    2011-01-01

    A characteristic hallmark of Aspergillus niger is the formation of black conidiospores. We have identified four loci involved in spore pigmentation of A. niger by using a combined genomic and classical complementation approach. First, we characterized a newly isolated color mutant, colA, which la...

  6. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism

    NARCIS (Netherlands)

    Gruben, B.S.; Zhou, M.; Wiebenga, A.; Ballering, J.; Overkamp, K.M.; Punt, P.J.; Vries, R.P. de

    2014-01-01

    The genome of the filamentous fungus Aspergillus niger is rich in genes encoding pectinases, a broad class of enzymes that have been extensively studied due to their use in industrial applications. The sequencing of the A. niger genome provided more knowledge concerning the individual pectinolytic g

  7. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger

    NARCIS (Netherlands)

    Yuan, X.L.; Goosen, C.; Kools, H.J.; Maarel, van der M.J.; Hondel, van den C.A.M.J.J.; Dijkhuizen, L.; Ram, A.F.

    2006-01-01

    As a soil fungus, Aspergillus niger can metabolize a wide variety of carbon sources, employing sets of enzymes able to degrade plant-derived polysaccharides. In this study the genome sequence of A. niger strain CBS 513.88 was surveyed, to analyse the gene/enzyme network involved in utilization of th

  8. QCM study of microbially influenced corrosion of aluminium subjected to the influence of Aspergillus niger Tiegh

    OpenAIRE

    Miečinskas, Povilas; Leinartas, Konstantinas; Uksienė, Virginija; Lugauskas, Albinas; Ramanauskas, Rimantas; Juzeliūnas, Eimutis

    2006-01-01

    Aspergillus niger Tiegh., a filamentous ascomycete fungus, was isolated from metal samples exposed to marine, rural and urban sites in Lithuania. Al samples prepared as glued foil electrodes on quartz crystal microbalance were subjected to a long-term influence (three months) of A. niger under laboratory conditions in humid atmosphere. The comparison of the QCM data between the samples affected by A. niger and abiotic ones showed a marked increase in the electrode mass due to the development ...

  9. Transcriptomic comparison of Aspergillus niger growing on two different sugars reveals coordinated regulation of the secretory pathway

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; Goosen, Theo; Hondel, Cees A M J J van den;

    2009-01-01

    BACKGROUND: The filamentous fungus, Aspergillus niger, responds to nutrient availability by modulating secretion of various substrate degrading hydrolases. This ability has made it an important organism in industrial production of secreted glycoproteins. The recent publication of the A. niger...

  10. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Berkel, van W.J.H.; Graaff, de L.H.

    2012-01-01

    BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The laccase-li

  11. Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Petersen, Lene Maj; Lyhne, Ellen Kirstine;

    2014-01-01

    Several species in Aspergillus section Nigri have been reported to produce sclerotia on well-known growth media, such as Czapek yeast autolysate (CYA) agar, with sclerotia considered to be an important prerequisite for sexual development. However Aspergillus niger sensu stricto has not been repor...

  12. AMYLASE PRODUCTION BY ASPERGILLUS NIGER UNDER SOLID STATE FERMENTATION USING AGROINDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Suganthi

    2011-02-01

    Full Text Available Solid state fermentation holds tremendous potentials for the production of the enzyme amylase by Aspergillus niger. Different solid substrates like rice bran, wheat bran, black gram bran, coconut oil cake, gingely oil cake and groundnut oil cake are rich in starch. These agro industrial residues are cheap raw materials for amylase production. Aspergillus niger BAN3E was identified to be the best producer of amylase. When A. niger BAN3E was incubated for 6 days at 37°C it showed high yield of amylase in groundnut oil cake substratein solid state fermentation. Sucrose and nitrogen improved the yield in the same medium.

  13. AMYLASE PRODUCTION BY ASPERGILLUS NIGER UNDER SOLID STATE FERMENTATION USING AGROINDUSTRIAL WASTES

    OpenAIRE

    Suganthi; R., Benazir,; J.F., Santhi,; R., Ramesh Kumar,; V., Anjana Hari,; Nitya Meenakshi; Nidhiya; K. A., Kavitha,; G., Lakshmi, R.

    2011-01-01

    Solid state fermentation holds tremendous potentials for the production of the enzyme amylase by Aspergillus niger. Different solid substrates like rice bran, wheat bran, black gram bran, coconut oil cake, gingely oil cake and groundnut oil cake are rich in starch. These agro industrial residues are cheap raw materials for amylase production. Aspergillus niger BAN3E was identified to be the best producer of amylase. When A. niger BAN3E was incubated for 6 days at 37°C it showed high yield of ...

  14. A novel fungal fruiting structure formed by Aspergillus niger and Aspergillus carbonarius in grape berries.

    Science.gov (United States)

    Pisani, Cristina; Nguyen, Trang Thoaivan; Gubler, Walter Douglas

    2015-09-01

    Sour rot, is a pre-harvest disease that affects many grape varieties. Sour rot symptoms include initial berry cracking and breakdown of berry tissue. This is a disease complex with many filamentous fungi and bacteria involved, but is usually initiated by Aspergillus niger or Aspergillus carbonarius. Usually, by the time one sees the rot there are many other organisms involved and it is difficult to attribute the disease to one species. In this study two species of Aspergillus were shown to produce a previously unknown fruiting structure in infected berries. The nodulous morphology, bearing conidia, suggests them to be an 'everted polymorphic stroma'. This structure forms freely inside the berry pulp and assumes multiple shapes and sizes, sometimes sclerotium-like in form. It is composed of a mass of vegetative hyphae with or without tissue of the host containing spores or fruiting bodies bearing spores. Artificially inoculated berries placed in soil in winter showed the possible overwintering function of the fruiting body. Inoculated berry clusters on standing vines produced fruiting structures within 21 d post inoculation when wounds were made at veraison or after (July-September). Histological studies confirmed that the fruiting structure was indeed fungal tissue.

  15. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  16. The effects of types of media on uranium leaching using metabolite of Aspergillus niger

    International Nuclear Information System (INIS)

    To investigate the influences of different media to uranium leaching applying with metabolite of Aspergillus niger, PSA and glucose-steepwater medium were used for the culture of Aspergillus niger, and the metabolite of Aspergillus niger with different pH value produced in the diverse culture temperature were obtained which was applied on the tests of uranium leaching as leaching agent. The test results show that the maximum leaching rate is 83.05% when the leaching agent is the metabolite of Aspergillus niger produced by PSA, as for the glucose- steepwater medium, the maximum leaching rate is 68.20%. The pH value of the metabolite of Aspergillus niger of the two kinds of media has a significant effect on the leaching rate. When PSA is adopted, the best leaching rate appears at the pH value of metabolite ranging from 2.0 to 2.5, and as for the glucose-steepwater medium, the pH value is below 2.1. (authors)

  17. Indigestible dextrin is an excellent inducer for α-amylase, α-glucosidase and glucoamylase production in a submerged culture of Aspergillus oryzae.

    Science.gov (United States)

    Sugimoto, Toshikazu; Shoji, Hiroshi

    2012-02-01

    α-Amylase activities of Aspergillus oryzae grown on dextrin or indigestible dextrin were 7·8 and 27·7 U ml(-1), respectively. Glucoamylase activities of the cultures grown on dextrin or indigestible dextrin were 5·4 and 301 mU ml(-1), respectively. The specific glucoamylase production rate in indigestible dextrin batch culture reached 1·35 U g DW(-1) h(-1). In contrast, biomass concentration of A. oryzae in indigestible dextrin culture was 35% of that in dextrin culture. Thus, the culture method using indigestible dextrin has the potential to improve amylolytic enzyme production and fungal fermentation broth rheology. PMID:22009575

  18. Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose.

    Directory of Open Access Journals (Sweden)

    José Miguel P Ferreira de Oliveira

    Full Text Available Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and β-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15 and vesicular transport (e.g., the endosomal-cargo receptor Erv14. Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.

  19. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    OpenAIRE

    Liu-Hui Fu; Kang-Di Hu; Lan-Ying Hu; Yan-Hong Li; Liang-Bin Hu; Hong Yan; Yong-Sheng Liu; Hua Zhang

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contract...

  20. Elucidation of the biosynthesis of meroterpenoid yanuthone D in Aspergillus Niger

    DEFF Research Database (Denmark)

    Holm, Dorte Koefoed; Petersen, Lene Maj; Klitgaard, Andreas;

    2012-01-01

    We have elucidated the mode of biosynthesis of the meroterpenoid compound Yanuthone D in Aspergillus niger. We have successfully deleted all cluster genes, and identified a number of intermediates. Structures of the intermediates were solved using a combined approach comprising classical 1D- and 2D......-NMR and tandem mass spectrometry (MS/MS). In this study we have confirmed that Yanuthone D is of meroterpenoid origin, and we have identified an unexpected precursor, which has not before been reported for Aspergillus niger....

  1. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    Science.gov (United States)

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome.

  2. BREEDING OF HIGH YIELD STRAIN ASPERGILLUS NIGER 3502 FOR P ECTINASE%果胶酶高产菌株Aspergillus niger 3502的选育

    Institute of Scientific and Technical Information of China (English)

    李廷生; 王平诸; 鲍宇茹

    2001-01-01

    采用紫外线和微波处理黑曲霉(Aspergillus niger) 孢子,获得1株比出发菌株果胶酶产生能力提高2倍的突变株3502;在用正交试验优选而得的最佳固体发酵条件下,酶活力达2 644 u/g.

  3. LOCALIZATION OF GROWTH AND SECRETION OF PROTEINS IN ASPERGILLUS-NIGER

    NARCIS (Netherlands)

    WOSTEN, HAB; MOUKHA, SM; SIETSMA, JH; WESSELS, JGH

    1991-01-01

    Hyphal growth and secretion of proteins in Aspergillus niger were studied using a new method of culturing the fungus between perforated membranes which allows visualization of both parameters. At the colony level the sites of occurrence of growth and general protein secretion were correlated. In 4-d

  4. Development of tools for quantitative intracellular metabolomics of Aspergillus niger chemostat cultures

    NARCIS (Netherlands)

    Lameiras, F.; Heijnen, J.J.; Van Gulik, W.M.

    2015-01-01

    In view of the high citric acid production capacity of Aspergillus niger, it should be well suited as a cell factory for the production of other relevant acids as succinic, fumaric, itaconic and malic. Quantitative metabolomics is an important omics tool in a synthetic biology approach to develop A.

  5. Two New Cerebrosides and Anthraquinone Derivatives from the Marine Fungus Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    WU Zu-Jian; OUYANG Ming-An; SU Ren-Kuan; KUO Yueh-Hsiung

    2008-01-01

    Two new cerebrosides, asperiamide B (1) and C (2), and two known aflatoxins, averufin and nidurufin, have been isolated from a Quanzhou marine fungus Aspergillus niger (MF-16), and the structures were elucidated by spectroscopic data and chemical means. Among the compounds 5 and 6 showed moderate activities in inhibiting multiplication of the Tobacco Mosaic Virus (TMV).

  6. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    Science.gov (United States)

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  7. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    OpenAIRE

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization.

  8. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger

    NARCIS (Netherlands)

    Poulsen, B.R.; Nohr, J.; Douthwaite, S.; Hansen, L.V.; Iversen, J.J.L.; Visser, J.; Ruijter, G.J.G.

    2005-01-01

    Many biosynthetic reactions and bioconversions are limited by low availability of NADPH. With the purpose of increasing the NADPH concentration and/or the flux through the pentose phosphate pathway in Aspergillus niger, the genes encoding glucose 6-phosphate dehydrogenase (gsdA), 6-phosphogluconate

  9. The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger

    NARCIS (Netherlands)

    Braaksma, M.; Smilde, A.K.; Werf, M.J. van der; Punt, P.J.

    2009-01-01

    Proteolytic degradation by host proteases is one of the key issues in the application of filamentous fungi for non-fungal protein production. In this study the influence of several environmental factors on the production of extracellular proteases of Aspergillus niger was investigated systematically

  10. Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger

    NARCIS (Netherlands)

    Ngiam, C.; Jeenes, D.J.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Archer, D.B.

    2000-01-01

    Protein disulfide isomerase (PDI) is important in assisting the folding and maturation of secretory proteins in eukaryotes. A gene, pdiA, encoding PDIA was previously isolated from Aspergillus niger, and we report its functional characterization here. Functional analysis of PDIA showed that it catal

  11. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application

    NARCIS (Netherlands)

    Record, E.; Asther, M.; Sigoillot, C.; Pagès, S.; Punt, P.J.; Delattre, M.; Haon, M.; Hondel, C.A.M.J.J. van den; Sigoillot, J.C.; Lesage-Meessen, L.; Asther, M.

    2003-01-01

    A well-known industrial fungus for enzyme production, Aspergillus niger, was selected to produce the feruloyl esterase FAEA by homologous overexpression for pulp bleaching application. The gpd gene promoter was used to drive FAEA expression. Changing the nature and concentration of the carbon source

  12. Regulation and control of L-arabinose catabolism in Aspergillus niger

    NARCIS (Netherlands)

    Groot, de M.J.L.

    2005-01-01

    This thesis describes studies on the biochemical properties and regulation of L-arabinose metabolism and arabinan degrading enzymes of Aspergillus niger. We focused on the investigation of the catabolic pathway, firstly by isolating pathway specific regulatory mutants using a newly developed selecti

  13. Exo-inulinase of Aspergillus niger N402: A hydrolytic enzyme with significant transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Maarel, M.J. E.C. van der; Dijkhuizen, L.

    2008-01-01

    The purified exo-inulinase enzyme of Aspergillus niger N402 (AngInuE; heterologously expressed in Escherichia coli) displayed a sucrose:inulin (S/I) hydrolysis ratio of 2.3, characteristic for a typical exo-inulinase. The enzyme also had significant transfructosylating activity with increasing sucro

  14. Exo-inulinase of Aspergillus niger N402 : A hydrolytic enzyme with significant transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Van der Maarel, M. J. E. C.; Dijkhuizen, L.

    2008-01-01

    The purified exo-inulinase enzyme of Aspergillus niger N402 (AngInuE; heterologously expressed in Escherichia coli) displayed a sucrose:inulin (S/I) hydrolysis ratio of 2.3, characteristic for a typical exo-inulinase. The enzyme also had significant transfructosylating activity with increasing sucro

  15. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Yuan, Xiao-Lian; van Munster, Jolanda M.; Ram, Arthur F. J.; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert; Goosen, C.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  16. Identification and characterization of glycoside hydrolase family 32 enzymes from Aspergillus niger

    NARCIS (Netherlands)

    Goosen, Coenie

    2007-01-01

    This thesis focuses on the identification and characterization of sucrose and fructan modifying enzymes present in the genome of the industrially important filamentous fungus, Aspergillus niger. In addition to three known activities, encoded by the genes suc1 (invertase activity; designated sucA), i

  17. Aspergillus niger DLFCC-90 Rhamnoside Hydrolase, a New Type of Flavonoid Glycoside Hydrolase

    OpenAIRE

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira

    2012-01-01

    A novel rutin-α-l-rhamnosidase hydrolyzing α-l-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.

  18. EFFECT OF GAMMA IRRADIATION AND ENVIRONMENTAL FACTORS ON -AMYLASE PRODUCTION BY ASPERGILLUS NIGER AND ASPERGILLUS ORYZAE FROM SOME AGRICULTURAL WASTES

    International Nuclear Information System (INIS)

    Amylases are one of the most important and oldest industrial enzymes. The optimization of production of α -amylase from Aspergillus niger and Aspergillus oryzae fungi, using different agro-wastes as sole carbon sources, was performed. The highest productivity of α -amylase by the two organisms was recorded at pH 6 and incubation temperature at 300C when the two organisms were grown on potato peels (PPs) and/or wheat straw (Ws) after days of cultivation. Pre-treated PPs and Ws with 20 kGy gave the best enzyme productivity by the two organisms compared with untreated ones. Also, exposing the inoculums of A. niger and A.oryzae to 0.5 and 0.75 kGy, respectively, led to enhancement of α-amylase to 48 and 46 μ/ml, respectively

  19. The synergetic effects of two CCAAT boxes in Aspergillus niger glaA gene promoter on activation of PglaA transcription

    Institute of Scientific and Technical Information of China (English)

    ZHU; Xingguo; WANG; H.; M.; QIU; Runxiang; LIU; Li; DONG; Zh

    2004-01-01

    EMSA and footprinting analyses have revealed that the 489-414 bp and the 390-345 bp (designated DC and PC respectively) upstream of the Aspergillus niger T21 glaA gene were bound by one protein factor in the A. niger T21 whole cell extract. Both DC and PC contained CCAAT pentanucleotides. The functions of DC and PC in regulation of expression of glucoamylase (GLA) were studied. CCAAT pentanucleotides were replaced with CGTAA and the mutated DNA fragments DCm and PCm lost the binding activities of protein factors in vitro. In vivo when either DC or PC was mutated or the relative orientations between them were changed on the PglaA, the transcriptional activity of PglaA decreased to a basal level. Introduction of multi-copies of DC into the original site at the PglaA in A. niger T21 decreased the expression of endogenous GLA expression and the exogenous reporter E. coli uidA gene introduced under the PglaA promoter, while having no effect on the uidA gene under the control of PgpdA. EMSA revealed that the levels of the specific DNA-binding protein factors in the transformants maintained the same meaning that introduction of multi-copies of DC caused the titration effect. AnghapC gene was cloned from A. niger T21 cDNA and introduced into the DC multi-copied strains. The expression of AnghapC improved the expression of the endogenous GLA and the exogenous gene controlled by PglaA. These results showed that both the CCAAT pentanucleotides were necessary for DC and PC binding to the protein factors, and the simultaneous binding of DC and PC to the protein was necessary for promoting the transcriptional activity of PglaA. AngHapC was the specific positive trans-acting protein factor binding to DC.

  20. Effect of different substrates on the production of amino acids by aspergillus niger

    International Nuclear Information System (INIS)

    In the present work, attempts were made to utilize sugarcane waste as carbon source for amino acid production by Aspergillus nigher. Different concentration (0.3N and 0.6N) of H/sub 2/SO/sub 4/ and NH/sub 4/OH were used to hydrolyze lignocellulosic material of the sugar cane bagasse to release the fermentable sugar, which were incorporated with mineral medium for the growth of Aspergillus niger and amino acid production. Whereas, molasses was diluted in 2.5% and 5% and was mixed with mineral medium for amino acid production by Aspergillus niger. The results were compaired with sugar cane bagasse for amino acid production. Molasses 5% was found better substrate for higher production of amino acids in comparison to hydrolysates of sugar can bagasse. (author)

  1. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    Science.gov (United States)

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

  2. Phytase Production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through Submerged and Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Gunashree B. Shivanna

    2014-01-01

    Full Text Available Fermentation is one of the industrially important processes for the development of microbial metabolites that has immense applications in various fields. This has prompted to employ fermentation as a major technique in the production of phytase from microbial source. In this study, a comparison was made between submerged (SmF and solid-state fermentations (SSF for the production of phytase from Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01. It was found that both the fungi were capable of producing maximum phytase on 5th day of incubation in both submerged and solid-state fermentation media. Aspergillus niger CFR 335 and A. ficuum produced a maximum of 60.6 U/gds and 38 U/gds of the enzyme, respectively, in wheat bran solid substrate medium. Enhancement in the enzyme level (76 and 50.7 U/gds was found when grown in a combined solid substrate medium comprising wheat bran, rice bran, and groundnut cake in the ratio of 2 : 1 : 1. A maximum of 9.6 and 8.2 U/mL of enzyme activity was observed in SmF by A. niger CFR 335 and A.ficuum, respectively, when grown in potato dextrose broth.

  3. Implicações do fungo Aspergillus niger var. niger sobre o crescimento de isolados de Aspergillus da seção Circumdati e produção de Ocratoxina a Implications of Aspergillus niger var. niger's mold, fungi upon growing Aspergillus's isolate of section Circumdati and Ochratoxin a

    Directory of Open Access Journals (Sweden)

    Patrícia Prado Nasser

    2003-10-01

    Full Text Available Buscando esclarecimento a respeito da inibição ou estímulo na produção de ocratoxina A (OTA e no crescimento dos fungos ocratoxigênicos por fungos que também ocorrem naturalmente associados aos grãos de café, com o presente estudo avaliou-se o efeito inibitório do fungo Aspergillus niger var. niger EcoCentro 1181-01(“inibidor” e seu filtrado, sobre o crescimento de isolados de Aspergillus da seção Circumdati e produção de ocratoxina A. O isolado atoxigênico do fungo “inibidor”, selecionado como possível antagonista para espécies toxigênicas do gênero Aspergillus da seção Circumdati, apresentou um efeito positivo inibidor sobre os índices de velocidade de crescimento micelial em relação aos demais isolados testados. A ação antagonista do fungo “inibidor” associado a grãos de café pode ser um dos fatores responsáveis pelos níveis reduzidos de OTA detectados nas amostras analisadas.The present study evaluated the inhibitory effect of the fungus Aspergillus niger var. niger EcoCentro 1181T-01 (inhibitor and its filtrate on the growth of an Aspergillus isolate of the section Circumdati and ochratoxin A (OTA production. An atoxigenic isolate of the inhibitor fungus screened as possible antagonist for toxigenic species of the genus Aspergillus, section Circumdati,showed a positive inhibitory effect upon mycelial growth velocity indices comparing with the isolates tested. The antagonistic action of the inhibitor fungus associated with coffee beans may be one of the factors responsible for the reduced levels of OTA detected in the samples analyzed.

  4. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth;

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  5. Clinical and immunological reactions to Aspergillus niger among workers at a biotechnology plant.

    Science.gov (United States)

    Topping, M D; Scarisbrick, D A; Luczynska, C M; Clarke, E C; Seaton, A

    1985-01-01

    The workforce at a biotechnology plant producing citric acid by fermentation of molasses with a strain of Aspergillus niger was studied. A combination of a respiratory questionnaire and clinical assessment identified 18 subjects (4.9% of the workforce) with work related bronchospasm. In nine of these evidence of sensitisation to A niger was obtained by skin prick tests and radioallergosorbent test (RAST) using as an antigen an extract of the A niger culture fluid from the process. Of the 325 subjects without work related bronchospasm, only nine (2.7%) had a positive prick test. There were no subjects with symptoms of extrinsic allergic alveolitis. Investigation into the source of the antigen showed that whereas, in some areas of the plant, A niger spores were present, in others there were no detectable spores. In these areas, however, extracts of filters from air samplers were shown by RAST inhibition to contain A niger antigens, indicating that the culture fluid was generating airborne antigen. RAST inhibition studies showed that the A niger culture fluid used in the process contained antigens that were not present in a commercially available A niger extract, thus emphasising the importance in this type of investigation of using antigens prepared from material to which the workers are exposed. PMID:3986142

  6. Submerged Conidiation and Product Formation by Aspergillus niger at Low Specific Growth Rates Are Affected in Aerial Developmental Mutants

    NARCIS (Netherlands)

    Jørgensen, T.R.; Nielsen, K.F.; Arentshorst, M.; Park, J.; Van den Hondel, C.A.; Frisvad, J.C.; Ram, A.F.

    2011-01-01

    Exposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation of Aspergillus niger in carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revea

  7. CHANGES IN PHENOLIC CONTENTS OF SAPOTA PULP (ACHRAS SAPOTA L. DUE TO DIFFERENT ISOLATES OF ASPERGILLUS NIGER

    Directory of Open Access Journals (Sweden)

    Pradnya M. Wagh and U. N. Bhale1

    2012-06-01

    Full Text Available During storage conditions Achras sapota gets infected by several fungal diseases like sour rot (Geotrichum candidum, Cladosporium rot, (Cladosporium oxysporum, Blue mould rot (Penicillium itallicum, Rhizopus rot, Aspergillus niger rot etc. Among these diseases Aspergillus niger rot is very serious disease and it causes changes in biochemical contents of sapota pulp. Phenols are said to offer resistance to diseases and pests in plants. In present investigation spore suspension of Aspergillus niger isolates were inoculated in same aged and surface sterilized ripened sapotas of two ultivars i.e. Cricket ball and Kali patti from Thane district of Mahahashtra state. After seven days change in phenolic content was estimated with the Folin-Ciocalteau method. Phenolic content was found to be decreased significantly due to all 5 isolates of Aspergillus niger in three sapota cultivars.

  8. On the safety of Aspergillus niger - a review

    DEFF Research Database (Denmark)

    Schuster, E.; Dunn-Coleman, N.; Frisvad, Jens Christian;

    2002-01-01

    invasion of the outer ear canal but this may be caused by mechanical damage of the skin barrier. A. niger strains produce a series of secondary metabolites, but it is only ochratoxin A that can be regarded as a mycotoxin in the strict sense of the word. Only 3-10% of the strains examined for ochratoxin...... A production have tested positive under favourable conditions. New and unknown isolates should be checked for ochratoxin A production before they are developed as production organisms. It is concluded, with these restrictions, that A. niger is a safe production organism....

  9. 黑曲霉糖化酶基因的克隆及其在毕赤酵母X33中的表达%Cloning of Glucoamylase (glaA) Gene from A. niger and Its Expression in P. pastoris X33

    Institute of Scientific and Technical Information of China (English)

    曹慕琛; 徐健勇; 罗立超; 张同存; 孙劭靖; 宋诙

    2011-01-01

    [目的]以毕赤酵母(Pichia pastoris)X33为宿主菌高效表达黑曲霉(Aspergillus niger)糖化酶,为进一步扩大糖化酶在工业上的应用奠定基础.[方法]利用RT-PCR技术,提取黑曲霉总RNA进行反转录,以得到的cDNA为模板,根据NCBI数据库中A.niger CBS513.88糖化酶的cDNA序列(glaA)设计引物,通过PCR扩增得到去除天然信号肽的糖化酶成熟肽编码基因glaAm,并将其克隆到pUC19载体中,序列分析表明,glaAm的开放阅读框由1 879个核苷酸组成,编码625个氨基酸.以此片段构建了pFLDα-glaAm重组表达载体,经Nsi I线性化后,电击转化毕赤酵母X-33.摇瓶培养中通过添加终浓度为0.5%的甲醇诱导糖化酶的分泌.[结果]SDS-PAGE和Starch-PAGE显示,糖化酶得到正确的分泌表达,且具有较高的生物活性,发酵上清液中酶活最高达到380.78 U/ml(发酵液).重组糖化酶的最适反应温度和最适pH分别为60~65℃和4.0,在pH 2.5~5.5范围内均保持90%以上的酶活力.该酶具有较高的热稳定性,pH 4.0条件下,该酶在50℃下稳定;60℃处理60 min,仍能保持90%以上的酶活力;65℃下的半衰期约为44 min.[结论]黑曲霉糖化酶基因在毕赤酵母X33中得到了异源高效表达.%[ Objective ] The aim was to lay the foundation to further expand the application of glucoamylase in the industry for using P. pa storis X-33 as the host strain to express the glucoamylase gene from A. niger. [ Methods ] Amplified gene of glucoamylase from total RNA of A. niger mycelium by RT-PCR technology. A pair of primers were designed and synthesized according to the cDNA sequence of the glaA gene from A. niger CBS 513.88 in NCBI database (GenBank Accession No. XM_001390493). Sequence analysis revealed that glaAm had an open reading frame of 1879 bp,which encoded a putative polypeptide of 625 amino acids and the theoretical molecular mass was 67 kD. The amplified fragment was cloned into pUC19 to generate the recombinant expression

  10. Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants.

    Science.gov (United States)

    Palencia, Edwin Rene; Glenn, Anthony Elbie; Hinton, Dorothy Mae; Bacon, Charles Wilson

    2013-09-01

    Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.

  11. Genetic relationships among strains of the Aspergillus niger aggregate

    DEFF Research Database (Denmark)

    Ferracin, L.M.; Frisvad, Jens Christian; Taniwaki, M.H.;

    2009-01-01

    We analyzed the genetic relationships between 51 fungal isolates previously identified as A. niger aggregate, obtained from dried fruit samples from worldwide origin and 7 A. tubingensis obtained from Brazilian coffee beans samples. Greater fungal diversity was found in black sultanas. Aspergillu...... about the capability this species for ochratoxin production, because both of them were formed by only non-ochratoxin-producing strains....

  12. Gluconate formation and polyol metabolism in Aspergillus niger.

    NARCIS (Netherlands)

    Witteveen, C.F.B.

    1993-01-01

    The capacity of A.niger to accumulate metabolites is remarkable. Under all conditions polyols accumulate in the cell and when mycelium in later developmental stages is considered, depending on the carbon source, aeration and external pH, polyols and/or organic acids can be formed in a very efficient

  13. Characterization of a starch-hydrolyzing α-amylase produced by Aspergillus niger WLB42 mutated by ethyl methanesulfonate treatment

    OpenAIRE

    Wang, Shihui; Lin, Chaoyang; Liu, Yun; Shen, Zhicheng; Jeyaseelan, Jenasia; Qin, Wensheng

    2016-01-01

    Aspergillus niger is the most commonly used fungus for commercial amylase production, the increase of amylase activity will be beneficial to the amylase industry. Herein we report a high α-amylase producing (HAP) A. niger WLB42 mutated from A. niger A4 by ethyl methanesulfonate treatment. The fermentation conditions for the amylase production were optimized. The results showed that both the amylase activity and total protein content reached highest after 48-h incubation in liquid medium using...

  14. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-09-01

    The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc.), glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in "Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis" C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016) [1]. PMID:27419196

  15. A high yield of amylase from Aspergillus niger by the effect of gamma irradiation

    International Nuclear Information System (INIS)

    When irradiated rice was used as a media for Aspergillus niger a noticeable increase of amylase production was observed. Molecular degradation of starch molecules did occure, and an increase in starch acidity and solubility was noticed, whereas a marked decrease in viscosity as well as swelling capacity was observed. Gelatinization time and temperature of irradiated starch became shorter or lower resp. These results showed that internal changes in irradiated starch molecules and an alteration in its molecular configuration occured. They may affect the pathway of the growth of the fungi Aspergillus niger. When the amount of amylase was determined by measuring enzyme activity, it was observed that amylases in the irradiated media were higher than in the control media. (orig.)

  16. Secretome data from Trichoderma reesei and Aspergillus niger cultivated in submerged and sequential fermentation methods

    Directory of Open Access Journals (Sweden)

    Camila Florencio

    2016-09-01

    Full Text Available The cultivation procedure and the fungal strain applied for enzyme production may influence levels and profile of the proteins produced. The proteomic analysis data presented here provide critical information to compare proteins secreted by Trichoderma reesei and Aspergillus niger when cultivated through submerged and sequential fermentation processes, using steam-explosion sugarcane bagasse as inducer for enzyme production. The proteins were organized according to the families described in CAZy database as cellulases, hemicellulases, proteases/peptidases, cell-wall-protein, lipases, others (catalase, esterase, etc., glycoside hydrolases families, predicted and hypothetical proteins. Further detailed analysis of this data is provided in “Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation process: enzyme production for sugarcane bagasse hydrolysis” C. Florencio, F.M. Cunha, A.C Badino, C.S. Farinas, E. Ximenes, M.R. Ladisch (2016 [1].

  17. Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Vieira Costa

    2007-09-01

    Full Text Available Amyloglucosidase (AMG and exo-polygalacturonase (exo-PG were simultaneously produced by two different strains of Aspergillus niger in solid-state fermentation (SSF using defatted rice-bran as substrate. The effect of Aspergillus niger strain (t0005/007-2 and/or CCT 3312, inoculum type (spore suspension or fermented bran and addition of inducers (pectin and/or starch to the culture media was studied using a 3² x 2¹ factorial experimental design. The production of AMG and exo-PG was significantly affected by fungal strain and inoculum type but inducers had no effect. The maximum yields obtained were 1310 U/g dm for AMG using a spore suspension of A. niger CCT 3312 and 50.2 U/g dm for exo-PG production, using A. niger t0005/007-2 and fermented bran as inoculum. The yields obtained represented acceptable values in comparison with data available in the literature and indicated that defatted rice-bran was a good nutrient source.As enzimas amiloglicosidase (AMG e exo-poligalacturonase (exo-PG foram produzidas simultaneamente por duas cepas de Aspergillus niger, através de fermentação em estado sólido usando farelo de arroz desengordurado como substrato. Foram avaliados os efeitos da cepa de Aspergillus niger, tipo de inóculo e adição de indutores no meio de cultura, utilizando-se um planejamento experimental fracionário 3² x 2¹. O máximo rendimento obtido foi 1310 U/g ms para a produção de AMG e 50,2 U/g ms para a exo-PG. Comparando-se estes resultados com dados da literatura pode-se dizer que os rendimentos obtidos foram aceitáveis e indicam que o farelo de arroz desengordurado é uma boa fonte de nutrientes. A produção de AMG e exo-PG foi significativamente afetada pelas variáveis cepa de A. niger e tipo de inóculo, enquanto a variável indutor não apresentou influência significativa na produção destas enzimas.

  18. Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of Aspergillus niger and Aspergillus welwitschiae.

    Science.gov (United States)

    Massi, Fernanda Pelisson; Sartori, Daniele; de Souza Ferranti, Larissa; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-03-16

    Aspergillus niger "aggregate" is an informal taxonomic rank that represents a group of species from the section Nigri. Among A. niger "aggregate" species Aspergillus niger sensu stricto and its cryptic species Aspergillus welwitschiae (=Aspergillus awamori sensu Perrone) are proven as ochratoxin A and fumonisin B2 producing species. A. niger has been frequently found in tropical and subtropical foods. A. welwitschiae is a new species, which was recently dismembered from the A. niger taxon. These species are morphologically very similar and molecular data are indispensable for their identification. A total of 175 Brazilian isolates previously identified as A. niger collected from dried fruits, Brazil nuts, coffee beans, grapes, cocoa and onions were investigated in this study. Based on partial calmodulin gene sequences about one-half of our isolates were identified as A. welwitschiae. This new species was the predominant species in onions analyzed in Brazil. A. niger and A. welwitschiae differ in their ability to produce ochratoxin A and fumonisin B2. Among A. niger isolates, approximately 32% were OTA producers, but in contrast only 1% of the A. welwitschiae isolates revealed the ability to produce ochratoxin A. Regarding fumonisin B2 production, there was a higher frequency of FB2 producing isolates in A. niger (74%) compared to A. welwitschiae (34%). Because not all A. niger and A. welwitschiae strains produce ochratoxin A and fumonisin B2, in this study a multiplex PCR was developed for detecting the presence of essential genes involved in ochratoxin (polyketide synthase and radHflavin-dependent halogenase) and fumonisin (α-oxoamine synthase) biosynthesis in the genome of A. niger and A. welwitschiae isolates. The frequency of strains harboring the mycotoxin genes was markedly different between A. niger and A. welwitschiae. All OTA producing isolates of A. niger and A. welwitschiae showed in their genome the pks and radH genes, and 95.2% of the nonproducing

  19. Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger

    OpenAIRE

    Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P

    2010-01-01

    Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity sea...

  20. Aspergillus niger peritonitis in a patient on continuous ambulatory peritoneal dialysis

    Directory of Open Access Journals (Sweden)

    Usha Kalawat

    2013-07-01

    Full Text Available Fungal peritonitis is an uncommon condition which is associated with high morbidity and mortality in patients on continuous ambulatory peritoneal dialysis (CAPD. It is associated with several complications and many of the patients who develop this condition are unable to resume CAPD treatment and have to shift to haemodialysis. Here we report the rare occurrence of fungal peritonitis due to Aspergillus niger in a patient on CAPD.

  1. Tensidols, new potentiators of antifungal miconazole activity, produced by Aspergillus niger FKI-2342.

    Science.gov (United States)

    Fukuda, Takashi; Hasegawa, Yoko; Hagimori, Keiichi; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Omura, Satoshi

    2006-08-01

    Two new furopyrrols, designated tensidols A and B, were isolated from the culture broth of Aspergillus niger FKI-2342 by solvent extraction, silica gel column chromatography and HPLC. Their structures were elucidated and shown to have the common skeleton of 6-benzyl-6H-furo[2,3-b]pyrrole. Tensidols A and B potentiated miconazole activity against Candida albicans. Tensidols also showed moderate antimicrobial activity only against Pyricularia oryzae. PMID:17080684

  2. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    OpenAIRE

    Georgi Todorov Dobrev; Boriana Yordanova Zhekova

    2012-01-01

    An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme ac...

  3. Comparative studies on biofilm development by Aspergillus niger on polyester sheet and muslin cloth

    OpenAIRE

    Nitin Verma; Mukesh C.Bansal; Vivek kumar

    2010-01-01

    Filamentous fungi are naturally adapted to adhere on the surfaces in submerged cultures. Cell adhesion plays a vital role in biofilm development in submerged cultures. The objective of the present study is to evaluate the growth rate of Aspergillus on the polyester sheet and muslin cloth with and without solid support in submerged cultures. The growth of A. niger was observed to be high in polyester sheet when compared with muslin cloth.

  4. Fermentasi Etanol dari Limbah Padat Tapioka (Onggok) oleh Aspergillus niger dan Zymomonas mobilis

    OpenAIRE

    RATNA SETYANINGSIH; ARI SUSILOWATI; SITI JUARIAH

    2004-01-01

    The aims of this research were to know the best concentration of onggokflour to produce maximum reduction sugar concentration by Aspergillus niger and efficiency of ethanol production from reduction sugar as the product of onggok flour saccharification by Zymomonas mobilis, and the ethanol concentration which produced. The framework of this research was cassava starch in onggok can be used as substance which yielded ethanol by fermentation. The ethanol yielded serves as an alternative substit...

  5. Fumonisins in Aspergillus niger: Industrial and food aspects

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Nielsen, Kristian Fog; Mogensen, Jesper;

    ever used in biotechnology could produce fuminisins B2, B4 & B6. The strains could be subdivided into two clades (representing A. niger and the “phylospecies” A. awamori), and there were fumonisin producers in both clades. Ochratoxin A was also produced by strains in both clades, but only...... of approximately 6% of the strains. None of the other species in the black Aspergilli produced fumonisins. One strain (NRRL 337), called the “food fungus”, because it is used for single cell protein based on cheap growth substrates, produced both fumonisins and ochratoxin A. Industrial citric acid producers...... production conditions there are several possibilities: • The gene clusters responsible for fumonisin and ochratoxin A production can be inactivated • A non-toxigenic strain of A. niger can be used for industrial applications • A closely related species can be used industrially, fx A. brasiliensis, A...

  6. Optimization of cassava root sieviate medium to an enriched animal feed by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Mbah G.O

    2016-07-01

    Full Text Available - Optimization of the media components cassava root sieviate with Aspergellus Niger was carried out using Face-Centered Central Composite Design (FCCCD of the Response Surface Methodology (RSM and the responses were measured in terms of protein and crude fiber contents. Statistical Analysis (ANOVA of the result showed that time and substrate concentration had effect on biodegraded cassava root sieviate (p-value was 0.00 ie. 0.00 < 0.05. The optimum value of enriched cassava root sieviate with Aspergellus Niger were found to be on 10 days (time and 6g/10ml concentration resulting to 9.42% from 1.85% enrichment in protein content and degrading crude fiber to 8.38%, from 70.3%, thus indicating the potency of Aspergillus niger for the production of economical livestock feed from renewable source.

  7. Preparation of Cross-Linked Glucoamylase Aggregates Immobilization by Using Dextrin and Xanthan Gum as Protecting Agents

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Li

    2016-05-01

    Full Text Available In this paper glucoamylase from Aspergillus niger was immobilized by using a modified version of cross-linked enzyme aggregates (CLEA. The co-aggregates were cross-linked with glutaraldehyde; meanwhile dextrin and xanthan gum as protecting agents were added, which provides high affinity with the enzyme molecules. The immobilized glucoamylase was stable over a broad range of pH (3.0–8.0 and temperature (55–75 °C; dependence shows more catalytic activity than a free enzyme. The thermostability, kinetic behavior, and first-order inactivation rate constant (ki were investigated. The two types of protector made the immobilized glucoamylase more robust than the free form. Both of the immobilized enzymes have excellent recyclability, retaining over 45% of the relative activity after 24 runs. In addition, immobilized enzymes reduced only 40% of the initial activity after three months by the storability measure, indicating high activity.

  8. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Tamayo-Ramos Juan Antonio

    2012-12-01

    Full Text Available Abstract Background Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. Results The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA and 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid (ABTS, and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. Conclusions The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.

  9. Induction of mutation in Aspergillus niger for conversion of cellulose into glucose

    Energy Technology Data Exchange (ETDEWEB)

    Helmi, S.; Khalil, A.E.; Tahoun, M.K.; Khairy, A.H. [Univ. of Alexandria Research Centre, Alexandria (Egypt)

    1991-12-31

    Plant wastes are very important part of biomass used and investigated for energy, chemical, and fuel production. Cellulose is the major renewable form of carbohydrate in the world, about 10{sup 11} tons of which is synthesized annually. For general use, it must be hydrolyzed first, either chemically or by cellulases derived from a few specialized microorganisms. Enzymes are acceptable environmentally but expensive to produce. Certainly, induction of mutations and selection of high cellulose microbial strains with significant adaptability to degrade cellulose to glucose is promising solutions. Induction of mutations in other fungi and Aspergillus sp. rather than Aspergillus niger was reported. Aspergillus ustus and Trichoderma harzianum were induced by gamma irradiation indicating mutants that excrete higher cellulose yields, particularly exocellobiohydrolase (Avicelase) than their respective wild types. Mutants from the celluiolytic fungus Penicillium pinophilum were induced by chemical and UV-irradiation. Enhancing the production of endo-1,4-{Beta}-D-glucanase (CMCase) and particularly {Beta}-glucosidase was obtained by gamma irradiation of Altemaria alternate. To overcome the lower activity of {beta}-glucosidase in certain fungi species rather than A. niger, mixed cultures of different species were tried. Thus, Aspergillus phonicis with Trichoderma reesei Rut 30, produced a cellulose complex that improved activity twofold over cellulose from Trichoderma alone.

  10. Purification and characterization of an intracellular beta-glucosidase from the protoplast fusant of Aspergillus oryzae and Aspergillus niger.

    Science.gov (United States)

    Zhu, F M; Du, B; Gao, H S; Liu, C J; Li, J

    2010-01-01

    Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively. PMID:21254729

  11. Enantioselective hydrolysis of epichlorohydrin using whole Aspergillus niger ZJB-09173 cells in organic solvents

    Indian Academy of Sciences (India)

    Huo-Xi Jin; Zhong-Ce Hu; Yu-Guo Zheng

    2012-09-01

    The enantioselective hydrolysis of racemic epichlorohydrin for the production of enantiopure ()-epichloro-hydrin using whole cells of Aspergillus niger ZJB-09173 in organic solvents was investigated. Cyclohexane was used as the reaction medium based on the excellent enantioselectivity of epoxide hydrolase from A. niger ZJB-09173 in cyclohexane. However, cyclohexane had a negative effect on the stability of epoxide hydrolase from A. niger ZJB-09173. In the cyclohexane medium, substrate inhibition, rather than product inhibition of catalysis, was observed in the hydrolysis of racemic epichlorohydrin using A. niger ZJB-09173. The racemic epichlorohydrin concentration was markedly increased by continuous feeding of substrate without significant decline of the yield. Ultimately, 18.5% of ()-epichlorohydrin with 98% enantiomeric excess from 153.6 mM of racemic epichlorohydrin was obtained by the dry cells of A. niger ZJB-09173, which was the highest substrate concentration in the production of enantiopure ()-epichlorohydrin by epoxide hydrolases using an organic solvent medium among the known reports.

  12. Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum

    Directory of Open Access Journals (Sweden)

    Muhammad Anjum Zia

    2013-12-01

    Full Text Available This work aimed to study the production and purification of glucose oxidase by Aspergillus niger and Penicillium notatum using corn steep liquor as the substrate and evaluate its antimicrobial activity for use in pharmaceutical and food industries. The enzyme was purified by ammonium sulfate precipitation (60-85%, DEAE-cellulose ion exchange and Sephadex G-200 size exclusion chromatography. The crude enzyme extracts of A. niger and P. notatum showed 2.32 and 5.53 U mg-1 specific activities, respectively, which after desalting was 15.52 and 12.05 U mg-1, and after ion exchange and gel filtration chromatography was 29.09 - 62 and 25.72 - 59.37 U mg-1 for A. niger and P. notatum, respectively. The antimicrobial activity was determined by disc diffusion method against selected microbial strains where glucose oxidase from A. niger showed anti-bacterial activity, while no fungicidal effects were shown by both A. niger and P. notatum glucose oxidases.

  13. Characteristics of exo- polygalacturonase produced by irradiated Aspergillus niger and Trichoderma viride spores

    International Nuclear Information System (INIS)

    Out of 69 fungal isolates from nine pectin rich fresh fruit wastes-showed pectinolytic activity, two were the powerful and best. They were identified as Aspergillus niger and Trichoderma viride. Gamma irradiation of the spore suspensions of these two isolates (0- 3 kGy) stimulated the exo-polygalacturonase (PG) production. Treatment with 0.25 kGy and 0.25-0.50 kGy was found to be the best doses for inducing PG activity produced from T. viride and Asp. niger respectively . The enzyme characteristics were also studied. The optimum temperature of T. viride enzyme reaction was 5 C compared with 45 degree C for Asp. niger enzyme extract.The optimum incubation time of T. viride enzyme reaction was 70-80 min which greater than that of Asp. niger namely 60 min.The results of enzyme reaction ph revealed that the best PG activity was observed at ph 5.0 for the extract of the two fungal isolates. The stability of the enzyme was affected markedly by each of incubation temp., incubation period and ph value .A. niger and T. viride crude extract enzymes were stimulated with Mn2+ while Zn2+ and Ca2+ were inhibitors. The best volume of crude enzyme extract was 3.00 ml in case of T. viride while in case of A. niger was 2.00 ml. T. viride enzyme extract showed its highest enzyme activity with substrate concentration 1.5 % while that of A. niger was found to be 3.0%.

  14. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation.

    Science.gov (United States)

    Gong, Weili; Zhang, Huaiqiang; Liu, Shijia; Zhang, Lili; Gao, Peiji; Chen, Guanjun; Wang, Lushan

    2015-11-01

    Filamentous fungi such as Aspergillus spp., Trichoderma spp., and Penicillium spp. are frequently used to produce high concentrations of lignocellulosic enzymes. This study examined the discrepancies in the compositions and dynamic changes in the extracellular enzyme systems secreted by Aspergillus niger ATCC1015, Trichoderma reesei QM9414, and Penicillium oxalicum 114-2 cultured on corn stover and wheat bran. The results revealed different types and an abundance of monosaccharides and oligosaccharides were released during incubation, which induced the secretion of diverse glycoside hydrolases. Both the enzyme activities and isozyme numbers of the three fungal strains increased with time. A total of 279, 161, and 183 secretory proteins were detected in A. niger, T. reesei, and P. oxalicum secretomes, respectively. In the A. niger secretomes, more enzymes involved in the degradation of (galacto)mannan, xyloglucan, and the backbone of pectin distributed mostly in dicots were detected. In comparison, although P. oxalicum 114-2 hardly secreted any xyloglucanases, the diversities of enzymes involved in the degradation of xylan and β-(1,3;1,4)-D-glucan commonly found in monocots were higher. The cellulase system of P. oxalicum 114-2 was more balanced. The degradation preference provided a new perspective regarding the recomposition of lignocellulosic enzymes based on substrate types.

  15. Lethal Effects of Aspergillus niger against Mosquitoes Vector of Filaria, Malaria, and Dengue: A Liquid Mycoadulticide

    Directory of Open Access Journals (Sweden)

    Gavendra Singh

    2012-01-01

    Full Text Available Aspergillus niger is a fungus of the genus Aspergillus. It has caused a disease called black mold on certain fruits and vegetables. The culture filtrates released from the A. niger ATCC 66566 were grown in Czapek dox broth (CDB then filtered with flash chromatograph and were used for the bioassay after a growth of thirty days. The result demonstrated these mortalities with LC50, LC90, and LC99 values of Culex quinquefasciatus 0.76, 3.06, and 4.75, Anopheles stephensi 1.43, 3.2, and 3.86, and Aedes aegypti 1.43, 2.2, and 4.1 μl/cm2, after exposure of seven hours. We have calculated significant LT90 values of Cx. quinquefasciatus 4.5, An. stephensi 3.54, and Ae. aegypti 6.0 hrs, respectively. This liquid spray of fungal culture isolate of A. niger can reduce malaria, dengue, and filarial transmission. These results significantly support broadening the current vector control paradigm beyond chemical adulticides.

  16. Inactivation of Aspergillus niger in mango nectar by high-pressure homogenization combined with heat shock.

    Science.gov (United States)

    Tribst, Alline A L; Franchi, Mark A; Cristianini, Marcelo; de Massaguer, Pilar R

    2009-01-01

    This research evaluated the inactivation of a heat-resistant Aspergillus niger conidia in mango nectar by high-pressure homogenization (HPH) combined with heat shock. A. niger were inoculated in mango nectar (10(6) conidia mL(-1)) and subjected to HPH (300 to 100 MPa) and heat shock (80 degrees C for 5 to 20 min) before or after HPH. Processes were evaluated according to number of decimal reductions reached by each isolated or combined process. Scanning electron microscopy was performed to observe conidia wall after pressure treatment. Pressures below 150 MPa did not inactivate A. niger while pressures of 200 and 300 MPa resulted in 2 and more than 6 log reductions, respectively. D(80 degrees C) of A. niger was determined as 5.03 min. A heat shock of 80 degrees C/15 min, reaching 3 decimal conidia reductions, was applied before or after a 200 MPa pressure treatment to improve the decimal reduction to 5 log cycles. Results indicated that HPH inactivated A. niger in mango nectar at 300 MPa (>6.24 log cycles) and that, with pressure (200 MPa) combined with post heat shock, it was possible to obtain the same decimal reduction, showing a synergistic effect. On the other hand, pre heat shock associated with HPH resulted in an additive effect. The observation of A. niger conidia treated by HPH at 100 and 200 MPa by scanning electron microscopy indicated that HPH promoted intense cell wall damage, which can sensitize the conidia to post heat shock and possibly explain the synergistic effect observed. Practical Application: The results obtained in this paper are relevant to elucidate the mechanism of conidia inactivation in order to develop the application of HPH as an alternative pasteurization process for the fruit nectar industry.

  17. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions.

    Directory of Open Access Journals (Sweden)

    Maria T Brandl

    Full Text Available Salmonella cycles between host and nonhost environments, where it can become an active member of complex microbial communities. The role of fungi in the environmental adaptation of enteric pathogens remains relatively unexplored. We have discovered that S. enterica Typhimurium rapidly attaches to and forms biofilms on the hyphae of the common fungus, Aspergillus niger. Several Salmonella enterica serovars displayed a similar interaction, whereas other bacterial species were unable to bind to the fungus. Bacterial attachment to chitin, a major constituent of fungal cell walls, mirrored this specificity. Pre-incubation of S. Typhimurium with N-acetylglucosamine, the monomeric component of chitin, reduced binding to chitin beads by as much as 727-fold and inhibited attachment to A. niger hyphae considerably. A cellulose-deficient mutant of S. Typhimurium failed to attach to chitin beads and to the fungus. Complementation of this mutant with the cellulose operon restored binding to chitin beads to 79% of that of the parental strain and allowed for attachment and biofilm formation on A. niger, indicating that cellulose is involved in bacterial attachment to the fungus via the chitin component of its cell wall. In contrast to cellulose, S. Typhimurium curli fimbriae were not required for attachment and biofilm development on the hyphae but were critical for its stability. Our results suggest that cellulose-chitin interactions are required for the production of mixed Salmonella-A. niger biofilms, and support the hypothesis that encounters with chitinaceous alternate hosts may contribute to the ecological success of human pathogens.

  18. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum.

    Directory of Open Access Journals (Sweden)

    Liu-Hui Fu

    Full Text Available In this research, the antifungal role of hydrogen sulfide (H2S on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD and catalase (CAT genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation.

  19. Early detection of Aspergillus carbonarius and A. niger on table grapes: a tool for quality improvement.

    Science.gov (United States)

    Ayoub, F; Reverberi, M; Ricelli, A; D'Onghia, A M; Yaseen, T

    2010-09-01

    Aspergillus carbonarius and A. niger aggregate are the main fungal contaminants of table grapes. Besides their ability to cause black rot, they can produce ochratoxin A (OTA), a mycotoxin that has attracted increasing attention worldwide. The objective of this work was to set up a simple and rapid molecular method for the early detection of both fungi in table grapes before fungal development becomes evident. Polymerase chain reaction (PCR)-based assays were developed by designing species-specific primers based on the polyketide synthases (PKS(S)) sequences of A. carbonarius and A. niger that have recently been demonstrated to be involved in OTA biosynthesis. Three table grape varieties (Red globe, Crimson seedless, and Italia) were inoculated with A. carbonarius and A. niger aggregate strains producing OTA. The extracted DNA from control (non-inoculated) and inoculated grapes was amplified by PCR using ACPKS2F-ACPKS2R for A. carbonarius and ANPKS5-ANPKS6 for A. niger aggregate. Both primers allowed a clear detection, even in symptomless samples. PCR-based methods are considered to be a good alternative to traditional diagnostic means for the early detection of fungi in complex matrix for their high specificity and sensitivity. The results obtained could be useful for the definition of a 'quality label' for tested grapes to improve the safety measures taken to guarantee the production of fresh table grapes. PMID:20582777

  20. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Ren Wanxia, E-mail: ren_laura@163.com [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li Peijun, E-mail: lipeijun@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Geng Yong; Li Xiaojun [Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2009-08-15

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  1. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger

    International Nuclear Information System (INIS)

    Bioleaching of heavy metals from a contaminated soil in an industrial area using metabolites, mainly weak organic acids, produced by a fungus Aspergillus niger was investigated. Batch experiments were performed to compare the leaching efficiencies of one-step and two-step processes and to determine the transformation of heavy metal chemical forms during the bioleaching process. After the one or two-step processes, the metal removals were compared using analysis of variance (ANOVA) and least-significance difference (LSD). A. niger exhibits a good potential in generating a variety of organic acids effective for metal solubilisation. Results showed that after the one-step process, maximum removals of 56%, 100%, 30% and 19% were achieved for copper, cadmium, lead and zinc, respectively. After the two-step process, highest removals of 97.5% Cu, 88.2% Cd, 26% Pb, and 14.5% Zn were obtained. Results of sequential extraction showed that organic acids produced by A. niger were effective in removing the exchangeable, carbonate, and Fe/Mn oxide fractions of Cu, Cd, Pb and Zn; and after both processes the metals remaining in the soil were mainly bound in stable fractions. Such a treatment procedure indicated that leaching of heavy metals from contaminated soil using A. niger has the potential for use in remediation of contaminated soils.

  2. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum.

    Science.gov (United States)

    Fu, Liu-Hui; Hu, Kang-Di; Hu, Lan-Ying; Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  3. Aspergillus niger F-01和Aspergillus niger G-1125生淀粉酶糖化酶基因启动子的克隆与比较分析

    Institute of Scientific and Technical Information of China (English)

    孙海彦; 黎娟华; 刘恩世; 易小平; 杨景豪; 彭明

    2015-01-01

    从生淀粉低产菌Aspergillus niger F-01和高产菌Aspergillus niger G-1125中克隆到生淀粉糖化酶的启动序列,这两个菌种生淀粉糖化酶基因启动子序列长分别是651bp和613bp,两个启动子都含有真核生物启动子的典型序列CCAAT和TATAAAT,通过序列比对发现,这两个启动子的同源性为84.4%。

  4. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    Science.gov (United States)

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products.

  5. Efficient Conversion of Inulin to Inulooligosaccharides through Endoinulinase from Aspergillus niger.

    Science.gov (United States)

    Xu, Yanbing; Zheng, Zhaojuan; Xu, Qianqian; Yong, Qiang; Ouyang, Jia

    2016-03-30

    Inulooligosaccharides (IOS) represent an important class of oligosaccharides at industrial scale. An efficient conversion of inulin to IOS through endoinulinase from Aspergillus niger is presented. A 1482 bp codon optimized gene fragment encoding endoinulinase from A. niger DSM 2466 was cloned into pPIC9K vector and was transformed into Pichia pastoris KM71. Maximum activity of the recombinant endoinulinase, 858 U/mL, was obtained at 120 h of the high cell density fermentation process. The optimal conditions for inulin hydrolysis using the recombinant endoinulinase were investigated. IOS were harvested with a high concentration of 365.1 g/L and high yield up to 91.3%. IOS with different degrees of polymerization (DP, mainly DP 3-6) were distributed in the final reaction products. PMID:26961750

  6. Removal of iron impurities from kaolin obtained Reza-Abad mine using Aspergillus niger

    Directory of Open Access Journals (Sweden)

    M. Pazouki

    2010-01-01

    Full Text Available Kaolin known as mineral clay possesses special feature has extensive industrial usage. One of the distinct criteria of this substance is its white color. There are extensive resources of kaolin in Iran which unfortunately, due to the existence of iron oxides does not have transparent properties. In this study biological dissolution of iron oxide by Aspergillus niger NCIM548 was conducted in order to remove kaolin impurities. As a result, a model was developed to predict the percentage of iron removal using A. niger. Bioleaching of iron oxide at optimum condition resulted 2.2 percent of total iron removal. The obtained results were promising for continuous process. There was possibility of increasing iron oxide removal at optimum operating condition with use of related fungi. Further studies may be required to enhance the desired condition for maximum iron oxide removal from kaolin.

  7. Process optimization for a potent wild and mutant strain of aspergillus niger for biosynthesis of amyloglucosidase

    International Nuclear Information System (INIS)

    The present study is concerned with the selection of a potent strain of Aspergillus niger and optimization of the cultural conditions for the biosynthesis of amyloglucosidase. The cultural conditions were optimized for the enzyme production. Twenty percent (50/250ml flask) was found to be optimum volume of the medium. Optimum temperature was 30 deg. C after 72 h of incubation, with the initial pH of the medium 5.0. 2% Starch with 1% glucose as an additional carbon source gave maximum amyloglucosidase production Addition of 0.3% ammonium sulphate in the fermentation medium increased the enzyme production while 2% spore inoculum showed best amyloglucosidase production. (author)

  8. Optimization of solid state fermentation of sugar cane by Aspergillus niger considering particles size effect

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, J.; Rodriguez, L.J.A.; Delgado, G. (Instituto Cubano de Investigaciones de los Derivados de la Cana de Azucar (ICIDCA), La Habana (Cuba)); Espinosa, M.E. (Centro Nacional de Investigaciones Cientificas, La Habana (Cuba))

    1991-01-01

    The protein enrichment of sugar cane by solid state fermentation employing Aspergillus niger was optimized in a packed bed column using a two Factor Central Composit Design {alpha} = 2, considering as independent factors the particle diameter corresponding to different times of grinding for a sample and the air flow rate. It was significative for the air flow rate (optimum 4.34 VKgM) and the particle diameter (optimum 0.136 cm). The average particle size distribution, shape factor, specific surface, volume-surface mean diameter, number of particles, real and apparent density and holloweness for the different times of grinding were determined, in order to characterize the samples. (orig.).

  9. Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger

    OpenAIRE

    Ana Cláudia Elias Pião Benedetti; Eliana Dantas da Costa; Caio Casale Aragon; Andréa Francisco dos Santos; Antônio José Goulart; Derlene Attili-Angelis; Rubens Monti

    2013-01-01

    A strain of the filamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3 , 0.5% NaCl, 0.1% NH4 Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A lowcost hemicellulose residue (powdered corncob) proved to be an excellent inducer of the A. ni...

  10. Production of Citric Acid from a New Substrate, Undersized Semolina, by Aspergillus niger

    OpenAIRE

    Alben, Emine; Erkmen, Osman

    2004-01-01

    The production of citric acid from fermentation medium (mass per volume ratio 0.01 % of undersized semolina) by Aspergillus niger was studied by shake culture method. The effects of initial pH (4.5, 5.5 and 6.5), methanol (volume fraction 1.0, 2.0 and 3.0 %) and ammonium nitrate (mass per volume ratio 0.01 %) on the production of citric acid were investigated. Citric acid concentration, biomass concentration and the amount of total carbohydrates (as glucose) were determined during fermentatio...

  11. Dephosphorylation of Phytate by Using the Aspergillus niger Phytase with a High Affinity for Phytate

    OpenAIRE

    Nagashima, Tadashi; Tange, Tatsuya; Anazawa, Hideharu

    1999-01-01

    A phytase (EC 3.1.3.8) with a high affinity for phytic acid was found in Aspergillus niger SK-57 and purified to homogeneity in four steps by using ion-exchange chromatography (two types), gel filtration, and chromatofocusing. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme gave a single stained band at a molecular mass of approximately 60 kDa. The Michaelis constant of the enzyme for phytic acid (18.7 ± 4.6 μM) was statistically analyzed. In regard to the ort...

  12. A new naphthoquinoneimine derivative from the marine algal-derived endophytic fungus Aspergillus niger EN-13

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cultivation of an endophytic fungus Aspergillus niger EN-13 that was isolated from the inner tissue of the marine brown alga Colpomenia sinuosa resulted in the characterization of a new naphthoquinoneimine derivative, namely, 5,7-dihydroxy-2-[1-(4-methoxy-6-oxo-6H-pyran-2-yl)-2-phenylethylamino]-[ 1,4]naphthoquinone. The structure of the new compound was established on the basis of various NMR spectroscopic analyses including 2D NMR techniques, EI-MS, and HR-ESI-MS. This compound displayed moderate antifungal activity.

  13. Fermentation Process of Tannase from Aspergillus niger%黑曲霉单宁酶发酵工艺

    Institute of Scientific and Technical Information of China (English)

    游见明

    2005-01-01

    用黑曲霉Aspergillus niger QG 0301进行单宁酶发酵,制得酶制剂.实验结果表明:Aspergillus niger QG 0301进行单宁酶发酵的适宜培养基包括:混合碳源(或玉米淀粉)、硫酸铵、磷酸二氢钾、碳酸钙、硫酸镁、单宁酸;在30℃、120r/min振荡培养5天,单宁酶产量平均为18.55u/mL.

  14. Gene overexpression and biochemical characterization of the biotechnologically relevant chlorogenic acid hydrolase from Aspergillus niger.

    Science.gov (United States)

    Benoit, Isabelle; Asther, Michèle; Bourne, Yves; Navarro, David; Canaan, Stéphane; Lesage-Meessen, Laurence; Herweijer, Marga; Coutinho, Pedro M; Asther, Marcel; Record, Eric

    2007-09-01

    The full-length gene that encodes the chlorogenic acid hydrolase from Aspergillus niger CIRM BRFM 131 was cloned by PCR based on the genome of the strain A. niger CBS 513.88. The complete gene consists of 1,715 bp and codes for a deduced protein of 512 amino acids with a molecular mass of 55,264 Da and an acidic pI of 4.6. The gene was successfully cloned and overexpressed in A. niger to yield 1.25 g liter(-1), i.e., 330-fold higher than the production of wild-type strain A. niger CIRM BRFM131. The histidine-tagged recombinant ChlE protein was purified to homogeneity via a single chromatography step, and its main biochemical properties were characterized. The molecular size of the protein checked by mass spectroscopy was 74,553 Da, suggesting the presence of glycosylation. ChlE is assembled in a tetrameric form with several acidic isoforms with pIs of around 4.55 and 5.2. Other characteristics, such as optimal pH and temperature, were found to be similar to those determined for the previously characterized chlorogenic acid hydrolase of A. niger CIRM BRFM 131. However, there was a significant temperature stability difference in favor of the recombinant protein. ChlE exhibits a catalytic efficiency of 12.5 x 10(6) M(-1) s(-1) toward chlorogenic acid (CGA), and its ability to release caffeic acid from CGA present in agricultural by-products such as apple marc and coffee pulp was clearly demonstrated, confirming the high potential of this enzyme.

  15. Identification of Genes Associated with Morphology in Aspergillus Niger by Using Suppression Subtractive Hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Mao, Xingxue; Magnuson, Jon K.; Lasure, Linda L.

    2004-04-01

    The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors including the concentration of manganese (Mn2+). Upon increasing the Mn2+ concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. Molecular mechanisms through which Mn2+ exerts effects on morphology and citric acid production in A. niger have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn2+. Fifteen genes were differentially expressed when A. niger was grown in media containing 1000 ppb Mn2+ (filamentous form) and seven genes in 10 ppb Mn2+ (pelleted form). Of the fifteen filamentous-associated genes, seven are novel and eight share 47-100% identity to genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All ten genes with deduced functions are either involved in amino acid metabolism/protein catabolism or cell regulatory processes. Northern-blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn2+. Steady-state mRNA levels of six selected filamentous associated genes remained high during five days of culture in a filamentous state and low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filamentous-associated clone, Brsa-25 was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at higher concentrations of Mn2+ than could be tolerated by the parent strain. The results suggest the involvement of the newly isolated genes in regulation of A. niger morphology.

  16. Cloning and Expression of Glucoamylase Genes from Aspergilus niger cDNA Library in Pichia pastrois%黑曲霉糖化酶基因在毕赤酵母中的克隆和表达

    Institute of Scientific and Technical Information of China (English)

    汤斌; 钱鹏

    2012-01-01

    从高产糖化酶的黑曲霉的cDNA文库中筛选出糖化酶基因,并研究在毕赤酵母中的表达情况。运用RT-PCR从黑曲霉cDNA文库中克隆糖化酶基因的cDNA片段与载体pPIC9K相连,构建重组载体,电转化毕赤酵母GS115,筛选阳性克隆并进行研究。阳性克隆在MM培养基中发酵72 h和1%的甲醇的诱导的情况下,重组毕赤酵母产生的糖化酶酶活最大为15.6 U/mL。测定结果显示,其糖化酶大小为1 908 bp,编码636个氨基酸残基组成的蛋白质。经柱分离纯化其发酵上清液后,用SDS-PAGE电泳方法,测得分子质量大约为80 ku。黑曲霉糖化酶基因在毕赤酵母GS115中成功得到了表达。%An expression cDNA library was constructed from high-yielding glucoamylase strains of A.niger and the glucoamylase gene was isolated,then the expression of the gene in Pichia pastoris was studied.The cDNA sequence of glucoamylase from A.niger was obtained by RT-PCR.The cDNA fragment was cloned into the expression vector pPIC9K and the linearized recombinant vector was transformed to Pichia pastrois GS115 by electroporation.The positive clones were analyzed subsequently.The recombined Pichia pastrois were cultured in the MM medium,using 1% methanol to induce the expression of recombinant gene.The results showed that the maximum activity of glucoamylase was 15.6 U/mL after it was fermented for 72 h.Sequence analysis revealed that glucoamylase had 1908 bp,which encodes a putative polypeptide of 636 amino acids.The expressed protein was purified from the fermented supernatant using DEAE column and determined by SDS-PAGE.The result of SDS-PAGE also showed that the molecular weights of the enzyme was 80 kDa.The expression vector of the glucoamylase gene was constructed successfully,and it could express glucoamylase in Pichia pastrois.

  17. Terpenoid composition and antifungal activity of three commercially important essential oils against Aspergillus flavus and Aspergillus niger.

    Science.gov (United States)

    Bisht, Deepa; Pal, Anirban; Chanotiya, C S; Mishra, Dhirendra; Pandey, K N

    2011-12-01

    Hydro-distilled essential oils extracted from three commercially important aromatic plants were analysed by capillary gas chromatography-flame ionization detector and gas chromatography/quadrupole mass spectrometry and subjected to antifungal activity. Fifteen compounds, which accounted for 97.8% of Acorus calamus root oil composition have been identified. Besides the major constituent (Z)-asarone (81.1-92.4%), (Z)-methyl isoeugenol (1.8-2.1%), (Z)-isoelemicin (1.2-1.3%), (E)-asarone (1.0-2.6%), (E)-methyl isoeugenol (0.2-0.4%), (Z)-β-ocimene (0.2-0.4%), elemicin (0.2-0.3%), linalool (0.1-0.9%) and kessane (t-0.2%) were identified. Monoterpenes constituted the main fraction of Origanum vulgare essential oil attaining 90.5% of the total oil composition. p-Cymene (10.3%) was the major component of the monoterpene hydrocarbon fraction while thymol (53.2%) and carvacrol (3.9%) were the most abundant oxygenated monoterpenes among the 33 identified constituents. Cinnamomum tamala leaf oil contained (E)-cinnamaldehyde as the principal component. Quantitative variations in (Z)-cinnamaldehyde (5.8-7.1%), linalool (6.4-8.5%) and (E)-cinnamyl acetate (4.7-5.2%) were significant. The antifungal activity of the hydro-distilled essential oils of A. calamus, O. vulgare and C. tamala were evaluated against Aspergillus flavus and Aspergillus niger. Disc diffusion method was used for the determination of the inhibitory effect. O. vulgare essential oil exhibited the highest activity. Moreover, all three essential oils inhibit the growth of A. flavus and A. niger. PMID:21707253

  18. Studies on influence of natural biowastes on cellulase production by Aspergillus niger.

    Science.gov (United States)

    Kiranmayi, M Usha; Poda, Sudhakar; Vijayalakshmi, M; Krishna, P V

    2011-11-01

    The objective of this study was to determine the influence of natural biowaste substrates such as banana peel powder and coir powder at varying environmental parameters of pH (4-9) and temperature (20-50 degrees C) on the cellulase enzyme production by Aspergillus niger. The cellulase enzyme production was analyzed by measuring the amount of glucose liberated in IU ml(-1) by using the dinitrosalicylic acid assay method. The substrates were pretreated with 1% NaOH (alkaline treatment) and autoclaved. The maximum activity of the enzyme was assayed at varying pH with temperatures being constant and varying temperatures with pH being constant. The highest activity of the enzyme at varying pH was recorded at pH 6 for banana peel powder (0.068 +/- 0.002 IU ml) and coir powder (0.049 +/- 0.002 IU ml(-1)) and the maximum activity of the enzyme at varying temperature was recorded at 35 degrees C for both banana peel powder (0.072 +/- 0.001 IU ml(-1)) and coir powder (0.046 +/- 0.003 IU ml(-1)). At varying temperatures and pH the high level of enzyme production was obtained at 35 degrees C and pH 6 by using both the substrates, respectively. However among the two substrates used for the production of cellulases by Aspergillus niger banana peel powder showed maximum enzymatic activity than coir powder as substrate.

  19. Random mutagenesis of aspergillus niger and process optimization for enhanced production of glucose oxidase

    International Nuclear Information System (INIS)

    The study deals with the improvement of wild strain Aspergillus niger IIB-31 through random mutagenesis using chemical mutagens. The main aim of the work was to enhance the glucose oxidase (GOX) yield of wild strain (24.57+-0.01 U/g of cell mass) through random mutagenesis and process optimization. The wild strain of Aspergillus niger IIB-31 was treated with chemical mutagens such as Ethyl methane sulphonate (EMS) and nitrous acid for this purpose. Mutagen treated 98 variants indicating the positive results were picked and screened for the glucose oxidase production using submerged fermentation. EMS treated E45 mutant strain gave the highest glucose oxidase production (69.47 + 0.01 U/g of cell mass), which was approximately 3-folds greater than the wild strain IIB-31. The preliminary cultural conditions for the production of glucose oxidase using submerged fermentation from strain E45 were also optimized. The highest yield of GOD was obtained using 8% glucose as carbon and 0.3% peptone as nitrogen source at a medium pH of 7.0 after an incubation period of 72 hrs at 30 degree. (author)

  20. The effects of inorganic salts on biosynthesis of pectinolytic enzymes by Aspergillus Niger

    Directory of Open Access Journals (Sweden)

    Kiro Mojsov

    2010-02-01

    Full Text Available The paper examines effects of different inorganic salts in an apple pulp base on the production of pectinolytic enzymes with the aim of optimizing the medium for maximal enzyme production. The apple pulp combined with corn flour and simple mineral salts was used as a nourishing base in submerged production of pectinolytic enzymes by the fungus Aspergillus niger MK-15. The growth of the microorganism (dry weight on different sources of nitrogen showed maximum dry weight with (NH42HPO4. The growth of the microorganism (dry weight on different concentration of (NH42HPO4 (by 0.2% to 0.8% provided maximal dry weight with 0.7% (NH42HPO4. The different inorganic salts (sources of nitrogen on base stimulated the production of pectinolytic enzymes and enhanced by up to twofold the growth of Aspergillus niger in submerged fermentation. The best source of nitrogen on base was (NH42HPO4 with optimal concentration of 0.7%. The obtained results represent practical importance for using apple pulp as a carbon source for production of pectinolytic enzymes in submerged fermentation.

  1. Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger.

    Science.gov (United States)

    Singh, O V; Sharma, A; Singh, R P

    2001-11-01

    Aspergillus niger ORS-4, isolated from the sugarcane industry waste materials was found to produce notable level of gluconic acid. From this strain, a mutant Aspergillus niger ORS-4.410 having remarkable increase in gluconic acid production was isolated and compared for fermentation properties. Among the various substrates used, glucose resulted into maximum production of gluconic acid (78.04 g/L). 12% concentration led to maximum production. Effect of spore age and inoculum level on fermentation indicated an inoculum level of 2% of the 4-7 days old spores were best suited for gluconic acid production. Maximum gluconate production could be achieved after 10-12 days of the fermentation at 30 degrees C and at a pH of 5.5. Kinetic analysis of production indicated that growth of the mutant was favoured during initial stages of the fermentation (4-8 days) and production increased during the subsequent 8-12 days of the fermentation. CaCO3 and varying concentrations of different nutrients affected the production of gluconic acid. Analysis of variance for the factors evaluated the significant difference in the production levels.

  2. Influence of Gibberellic Acid on Enhancement Growth of Aspergillus Niger for Chitosan Production

    International Nuclear Information System (INIS)

    Chitosan is obtained by chemical conversion of chitin, which is a constituent of the exoskeleton of crustacean and insects. An alternative source of chitosan is the cell wall of fungi. The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. In this research we study the effect of different production media, different concentrations of molass, the effect of addition of gibberellic acid at different concentrations (1-5 mg/l) on mycelial growth and chitosan production from Aspergillus niger. Studying the effect of different incubation time. The results showed that, the best production medium was molass salt medium (MSM) with molass concentration 50 g/l and incubation time 48h. Maximum enhancement was observed at 2 mg gibberellic acid. Gibberellic acid at high concentrations inhibit both growth and chitosan content. The produced fungal chitosan was characterized with deacetylation degree of 81.3%, a molecular weight of 24.2 kDa and their FT-IR spectra were compared with that of shrimp chitosan.

  3. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    Science.gov (United States)

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  4. Physiological and Chemical Studies on the Bioconversion of Glycyrrhizin by Aspergillus niger NRRL595

    Directory of Open Access Journals (Sweden)

    El-Refai, A. M. H.

    2012-06-01

    Full Text Available Glycyrrhizin (GL, the well-known sweet saponin of licorice, has been used as a food-additive and as a medicine. Its aglycone, glycyrrhetic acid (GA showed antiinflamatory, antiulcer and antiviral properties. GA is now produced form GL by acid hydrolysis. However, it is difficult to obtain GA in a good yield by using this method, because many by-productsare also produced. Screening of different microorganisms (13 bacteria, 2 yeasts and 23 fungi for production of GA from GL revealed that Aspergillus niger NRRL 595 produced the highest yield of GA. The bioconversion of GL by A. niger NRRL 595 for 96 h, followed by isolation and purification of the transformation products led to the separation of two conversion products, namely: GA and 3-oxo-GA. Confirmation of the identity of these products was established by determination of their Rf values, m.p., and IR, UV, MS and NMR spectra. The conditions for cultivation of this fungus with the maximum hydrolytic activity for the maximum yield of GA were investigated. Based on the results, A. niger NRRL 595 was cultivated with a medium composed of 1.75 % GL, 0.5 % glucose, 0.8 % corn steep liquor at pH 6.5 at 32 °C for 96 h. The cultivation of fungal cells under the latter conditions afforded GA and 3-oxo-GA in a yield of 65 % and 22 %, respectively.

  5. Optimization of fresh palm oil mill effluent biodegradation with Aspergillus niger and Trichoderma virens

    Directory of Open Access Journals (Sweden)

    Jalaludin Noorbaizura

    2016-03-01

    Full Text Available In this work, response surface optimization strategy was employed to enhance the biodegradation process of fresh palm oil mill effluent (POME by Aspergillus niger and Trichoderma virens. A central composite design (CCD combined with response surface methodology (RSM were employed to study the effects of three independent variables: inoculum size (%, agitation rate (rpm and temperature (°C on the biodegradation processes and production of biosolids enriched with fungal biomass protein. The results achieved using A. niger were compared to those obtained using T. virens. The optimal conditions for the biodegradation processes in terms of total suspended solids (TSS, turbidity, chemical oxygen demand (COD, specific resistance to filtration (SRF and production of biosolids enriched with fungal biomass protein in fresh POME treated with A. niger and T. virens have been predicted by multiple response optimization and verified experimentally at 19% (v/v inoculum size, 100 rpm, 30.2°C and 5% (v/v inoculum size, 100 rpm, 33.3°C respectively. As disclosed by ANOVA and response surface plots, the effects of inoculum size and agitation rate on fresh POME treatment process by both fungal strains were significant.

  6. Putative Aspergillus niger-induced oxalate nephrosis in sheep : clinical communication

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2009-05-01

    Full Text Available A sheep farmer provided a maize-based brewer's grain (mieliemaroek and bales of Eragrostis curvula hay to ewes and their lambs, kept on zero-grazing in pens. The 'mieliemaroek' was visibly mouldy. After 14 days in the feedlot, clinical signs, including generalised weakness, ataxia of the hind limbs, tremors and recumbency, were noticed. Six ewes died within a period of 7 days. A post mortem examination was performed on 1 ewe. The carcass appeared to be cachectic with mild effusions into the body cavities; mild lung congestion and pallor of the kidneys were observed. Microscopical evaluation revealed nephrosis and birefringent oxalate crystals in the renal tubules when viewed under polarised light. A provisional diagnosis of oxalate nephrosis with subsequent kidney failure was made. Amongst other fungi, Aspergillus niger was isolated from 'mieliemaroek' samples submitted for fungal culture and identification. As A. niger is known to synthesise oxalates, a qualitative screen to detect oxalic acid in the mieliemaroek and purified A. niger isolates was performed using high-performance liquid chromatography (HPLC. Oxalic acid was detected, which supported a diagnosis of soluble oxalate-induced nephropathy.

  7. Tratamento de efluentes de refinaria de petróleo em reatores com Aspergillus niger Treatment of petroleum refinery wastewater by reactors inoculated with Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sandra Tédde Santaella

    2009-03-01

    Full Text Available Neste trabalho, avaliou-se o efeito do tempo de detenção hidráulica (TDH no desempenho de três reatores aeróbios inoculados com Aspergillus niger AN400, usados para tratamento de efluentes de refinarias de petróleo. Cada reator foi operado com um tempo de detenção hidráulica diferente: 4, 8 e 12 horas, durante 152 dias. Eles possuíam leito fixo de espuma de poliuretano e o escoamento era ascendente e contínuo. Determinaram-se: pH, fenóis, demanda química de oxigênio (DQO, amônia, nitrito e nitrato, no afluente e efluentes dos reatores. O TDH de oito horas foi o melhor para remoção de DQOsolúvel e não houve diferença entre os TDHs para remoção de fenóis totais. No período estável não houve remoção de nitrato; no entanto ocorreu remoção de nitrito de aproximadamente 99%. Além disto, houve produção de amônia devido à amonificação a partir do nitrito presente no meio.This paper evaluated the effect of hydraulic retention time (HRT on the performance of three upflow aerobic reactors, with polyurethane foam as support material, inoculated with Aspergillus niger AN400, used for the treatment of petroleum refinery wastewater. Each reactor was operated with a different HRT: 4, 8 and 12 hours, during 152 days. The performance was evaluated based on pH; phenols; COD, nitrate and nitrite. The results show that for the COD removal, it is more reasonable to operate the reactor with HRT of eight hours. However, there was no difference among results of phenol removal efficiency of the different HRTs. During steady state condition, nitrite was removed in approximately 99%, but there was no reduction on the nitrate concentration. Ammonia was produced in all reactors, probably due to ammonification of nitrite.

  8. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp

    Directory of Open Access Journals (Sweden)

    Sidra Ilyas

    2013-01-01

    Full Text Available In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synazol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synazol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synazol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50[degree sign]C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synazol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

  9. Molecular and Chemical Characterization of the Biosynthesis of the 6-MSA-Derived Meroterpenoid Yanuthone D in Aspergillus niger

    DEFF Research Database (Denmark)

    Holm, Dorte Koefoed; Petersen, Lene Maj; Klitgaard, Andreas;

    2014-01-01

    Secondary metabolites in filamentous fungi constitute a rich source of bioactive molecules. We have deduced the genetic and biosynthetic pathway of the antibiotic yanuthone D from Aspergillus niger. Our analyses show that yanuthone D is a meroterpenoid derived from the polyketide 6-methylsalicylic...

  10. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of aspergillus niger

    NARCIS (Netherlands)

    van der Kaaij, R. A.; Yuan, X.-L.; Franken, A.; Ram, A. F. J.; Punt, P. J.; Dijkhuizen, L.; Maarel, M.J.E.C. van der

    2007-01-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidyllinosit

  11. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored α-glucanotransferase enzymes of Aspergillus niger

    NARCIS (Netherlands)

    Kaaij, R.M. van der; Yuan, X.L.; Franken, A.; Ram, A.F.J.; Punt, P.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal α-amylases. The protein sequences derived from these genes were different in two ways from all described fungal α-amylases: they were predicted to be glycosylphosphatidylinositol anchor

  12. Crystallization and preliminary crystallographic analysis of endo-1,4-beta-xylanase I from Aspergillus niger

    NARCIS (Netherlands)

    Krengel, U; Rozeboom, HJ; Kalk, KH; Dijkstra, BW

    1996-01-01

    A family G xylanase from Aspergillus niger has been crystallized using the vapor-diffusion method. Several crystal forms could be obtained using various sodium salts as precipitants. Three of the crystal forms belong to space groups P2(1), P2(1)2(1)2(1) and P4(3) and have cell parameters of approxim

  13. EFFECT OF INOCULUM SIZE ON SURVIVAL RATE OF CANDIDA-ALBICANS AND ASPERGILLUS-NIGER IN TOPICAL PREPARATIONS

    NARCIS (Netherlands)

    VANDOORNE, H; DEVRINGER, T

    1994-01-01

    The survival of Candida albicans and Aspergillus niger in O/W creams with different types and concentrations of parabens was studied. The survival was not only dependent on the type and concentration of the preservative, but also on the size of the inoculum. The results are relevant for future propo

  14. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification

    NARCIS (Netherlands)

    Plumridge, A.; Hesse, S.J.A.; Watson, A.J.; Lowe, K.C.; Stratford, M.; Archer, D.B.

    2004-01-01

    The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of m

  15. Biochemical characterization of Aspergillus niger Cfcl, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis

    NARCIS (Netherlands)

    van Munster, Jolanda M.; van der Kaaij, Rachel M.; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.

    2012-01-01

    The genome of the industrially important fungus Aspergillus niger encodes a large number of glycoside hydrolase family 18 members annotated as chitinases. We identified one of these putative chitinases, Cfcl, as a representative of a distinct phylogenetic clade of homologous enzymes conserved in all

  16. Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport

    NARCIS (Netherlands)

    Vondervoort, van de P.J.I.; Groot, de M.J.L.; Ruijter, G.J.G.; Visser, J.

    2006-01-01

    Aspergillus niger is known for its biotechnological applications, such as the use of xylanase enzyme for the degradation of hemicellulose. Depending on culture conditions, several polyols may also be accumulated, such as xylitol during D-xylose oxidation. Also during industrial fermentation of xylos

  17. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    Science.gov (United States)

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  18. An artificially constructed Syngonium podophyllum-Aspergillus niger combinate system for removal of uranium from wastewater.

    Science.gov (United States)

    He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei

    2015-12-01

    Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl.

  19. Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange.

    Science.gov (United States)

    Omojasola, P F; Jilani, O P

    2008-10-15

    The wastes materials from the sweet orange (Citrus sinensis) were used as substrate for the production of cellulase. The rind, the pericarp or albedo and the pulp were hydrolyzed by cellulolytic enzymes of Trichoderma longibrachiatum, Aspergillus niger and Saccharomyces cerevisiae after they were treated with alkali and steam. The amount of glucose released from the substrates following the secretion of cellulase by the three microorganisms was measured. The orange wastes released amounts of glucose ranging from 0.76-0.96 mg mL(-1) by Trichoderma longibrachiatum, 0.90-1.08 mg mL(-1) by A. niger and 0.60-0.76 mg mL(-1) by S. cerevisiae after five days of fermentation. The conditions of the fermentation were then varied to determine their effect on cellulase production. Fermentation parameters varied were time, pH, substrate concentration, temperature and inoculum size. After this, conditions that produced highest amounts of glucose were combined in an optimization experiment. Glucose production under optimized conditions were 0.94 mg mL(-1) by T. longibrachiatum, 0.83 mg mL(-1) by A. niger and 0.67 mg mL(-1) by S. cerevisae. The activity of the test organisms' cellulase against CMC on the orange wastes was also determined with T. longibrachiatum producing 3.86 mg mL(-1), A. niger 2.94 mg mL(-1) and S. cerevisiae 2.30 mg mL(-1) glucose amounts all from orange pulp. PMID:19137846

  20. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Grigoriev Igor V

    2009-02-01

    Full Text Available Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR. Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6% of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  1. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    Science.gov (United States)

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB. PMID:27582326

  2. Secondary glaucoma associated with bilateral Aspergillus niger endophthalmitis in an HIV-positive patient: case report Glaucoma secundário a endoftalmite bilateral por Aspergillus niger em paciente HIV-positivo: relato de caso

    Directory of Open Access Journals (Sweden)

    Jayter Silva Paula

    2006-06-01

    Full Text Available Aspergillus endophthalmitis is usually related to systemic or local dissemination in immunosuppressed subjects. The authors report a rare case of severe bilateral glaucoma secondary to an intraocular infection with Aspergillus niger, in the absence of any detectable focus of aspergillosis, in an HIV-infected patient. There were no confirming signs of injection drug use, and the agent was isolated after inoculation in experimental animals. This case shows that Aspergillus endophthalmitis should be considered in non-injecting drug users and HIV-infected patients even in the absence of systemic aspergillosis.Endoftalmite por Aspergillus é geralmente relacionada à disseminação local ou sistêmica do agente em indivíduos imunocomprometidos. Os autores relatam um caso raro de glaucoma bilateral grave secundário a uma infecção intra-ocular por Aspergillus niger, na ausência de qualquer foco detectável de aspergilose em paciente HIV-positivo. Foram afastados sinais e antecedentes de uso de drogas injetáveis e o agente foi isolado após inoculação em animais experimentais. Este caso demonstra que a endoftalmite por Aspergillus deve ser considerada em pacientes HIV-positivos não-usuários de drogas injetáveis, mesmo na ausência de aspergilose sistêmica.

  3. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2014-05-01

    The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.

  4. Interesterification of butter fat by partially purified extracellular lipases from Pseudomonas putida, Aspergillus niger and Rhizopus oryzae.

    Science.gov (United States)

    Pabai, F; Kermasha, S; Morin, A

    1995-11-01

    Three extracellular lipases were produced by batch fermentation of Pseudomonas putida ATCC 795, Aspergillus niger CBS 131.52 and Rhizopus oryzae ATCC 34612 during the late phase of growth, at 72, 96 and 96 h, respectively. The lipases were partially purified by (NH4)2SO4 fractionation. The lipase of P. putida was optimal at pH 8.0 whereas those from A. niger and R. oryzae were optimal at pH 7.5. The A. niger lipase had the lowest V max value (0.51×10(-3) U/min) and R. oryzae the highest (1.86×10(-3) U/min). The K m values for P. putida, A. niger and R. oryzae lipases were 1.18, 0.97, and 0.98 mg/ml, respectively. Native PAGE of the partially-purified lipase extracts showed two to four major bands. The interesterification of butter fat by A. niger lipase decreased the water activity as well as the hydrolytic activity. The A. niger lipase had the highest interesterification yield value (26%) and the R. oryzae lipase the lowest (4%). In addition, A. niger lipase exhibited the highest decrease (17%) in long-chain hypercholesterolemic fatty acids (C12:0, C14:0 and C16:0) at the sn-2-position; the P. putida lipase demonstrated the least favourable changes in specificity at the same position. PMID:24415019

  5. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    International Nuclear Information System (INIS)

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g-1 at 400 mg L-1 dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r2 > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  6. Aspergillus niger: sua utilização na indústria farmacêutica

    OpenAIRE

    Afonso, Sara de Oliveira Mateus

    2015-01-01

    Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz Aspergillus niger é um fungo bastante utilizado na indústria farmacêutica e com muita importância a nível biotecnológico. Tem a capacidade de produzir compostos a nível industrial, como, ácido cítrico, ácido glucónico, ácido málico, várias enzimas e vitamina C, através de processos fermentativos. Também é utilizado para a execução de biotransformação de produtos já existentes, formando compost...

  7. Research on Pectase Secreted by Aspergillus Niger Degumming Kenaf Bast Fiber

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lai-jiu; DU Bing; HUANG Xiu-bao

    2007-01-01

    In this paper, the aerobic metabolism mechanism of Aspergillus Niger (AS 3.3 50), which is the most suitable bacteria for degumming kenaf fiber, is expounded, and macromolecular structure of pectin is also analyzed.The fracture position of the macromolecular chain of kenaf pectin and its outgrowth structure, affected by Endo-PG and Exo-PG are secreted by AS 3. 350 and explored in molecule scale. The optimal value of degumming parameters are fixed: temperature 34 - 36℃, time 48 - 50 h, pH 6.5 - 7.5. Compared with kenaf fibers obtained by natural method, the ones degummed by bio-enzymatic method possess of smoother surface, better, separation, less impairment and higher: strength with. residual pectin percentage of 14.5 %.

  8. Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam.

    Science.gov (United States)

    Vassilev, N B; Vassileva, M C; Spassova, D I

    1993-06-01

    Production of gluconic acid by cells of Aspergillus niger immobilized on polyurethane foam was studied in repeated-batch shake-flask and bubble-column fermentations. For passive immobilization, various amounts of polyurethane foam and spore suspension were tested in order to obtain a suitable combination for optimal concentration of immobilized biomass. Immobilized cells were successfully reused with higher levels of product formation being maintained for longer period (65-70 h) than free cells. The highest gluconic acid concentration of about 143 g l-1 was reached on hydrol-based production medium with 0.3-cm3 foam cubes in the bubble column, where the effect of more suitable aeration and particle volume: medium volume ratio scheme was also investigated.

  9. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation.

    Science.gov (United States)

    Roukas, T

    2000-12-01

    The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30 degrees C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35 degrees C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively.

  10. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  11. Effect of Microgravity on Fungistatic Activity of an α-Aminophosphonate Chitosan Derivative against Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Kesavan Devarayan

    Full Text Available Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants.

  12. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    Science.gov (United States)

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. PMID:25382689

  13. Partial purification and characterization of xylanase produced from aspergillus niger using wheat bran

    International Nuclear Information System (INIS)

    In present exploration, purification and characterization of xylanase was carried out to find its optimum conditions for maximum functionality. The xylanase (EC 3.2.1.8) synthesized by Aspergillus niger in submerged fermentation was partially purified and characterized for different parameters like temperature, pH and heat stability. The molecular mass determined through SDS-PAGE was found 30 kDa. The specific activity of the enzyme was raised from 41.85 to 613.13 with 48.63% yield just in a two step partial purification comprising ammonium sulphate precipitation and Sephadex gel filteration column chromatography. The partially purified enzyme was found to be optimally active at 60 degree C and 7.5 pH. Conclusively, for the application of xylanase in food, feed or paper manufacturing processes, it is necessary to consider its optimum pH and temperature. (author)

  14. Fumonisin B2 production by Aspergillus niger in Thai coffee beans

    DEFF Research Database (Denmark)

    Noonim, P.; Mahakarnchanaku, W.; Nielsen, Kristian Fog;

    2009-01-01

    During 2006 and 2007, a total of 64 Thai dried coffee bean samples (Coffea arabica) from two growing sites in Chiangmai Province and 32 Thai dried coffee bean samples (Coffea canephora) from two growing sites in Chumporn Province, Thailand, were collected and assessed for fumonisin contamination...... by black Aspergilli. No Fusarium species known to produce fumonisin were detected, but black Aspergilli had high incidences on both Arabica and Robusta Thai coffee beans. Liquid chromatography (LC) with high-resolution mass spectrometric (HRMS) detection showed that 67% of Aspergillus niger isolates from...... coffee beans were capable of producing fumonisins B2 (FB2) and B4 when grown on Czapek Yeast Agar with 5% NaCl. Small amounts (1-9.7 ng g-1) of FB2 were detected in seven of 12 selected coffee samples after ion-exchange purification and LC-MS/MS detection. Two samples also contained FB4...

  15. Citric acid production by gamma irradiated aspergillus niger from treated beet molasses under different fermentation conditions

    International Nuclear Information System (INIS)

    The necessary treatments of beet molasses by addition of any the chelating agents potassium ferrocyanide and ethylenediamine tetraacetic acid (EDTA), to improve its suitability as a substrate for citric acid production by gamma irradiated inocula (at dose 0.4 KGy) of aspergillus niger EMCC 111 was studied. Addition of potassium ferrocyanide stimulated citric acid production and maximum production (10.92 g%) was obtained with 0.1 g% of ferrocyanide. In contrast, EDTA at 0.1 g% increased citric acid production but further addition of EDTA repressed the production. Addition of low molecular weight alcohols (methanol or ethanol)improved the yield of citric acid. Methanol and ethanol when added at concentration of 2%(v/v) elevate citric acid yield % to 47.58% and 46.51% respectively. 6 tabs

  16. Kinetics Studies on citric acid production by gamma ray induced mutant of Aspergillus niger

    International Nuclear Information System (INIS)

    Effect of cultural pH and incubation temperature on citric acid yield and kinetic patterns of citric acid fermentation by a natural isolate of aspergillus niger as CA16 and one of its gamma ray induced mutants were studied using cane molasses as growth and fermentation substrate. Mutant strain, 277/30 gave maximum citric acid yield of 85 g/l at pH 3.5 and 28 degree centigrade in molasses medium adjusted to 16% sugar and 25% prescott salt in the medium. Parent strain, CA16 gave a maximum yield of 34 g/l at pH 4.0 and 26 degree centigrade in molasses medium adjusted to 16% sugar and 100% prescott salt in the medium. In kinetic studies, strains showed combination kinetics of citric acid fermentation where product formation is directly related to growth and cell mass and indirectly related to carbohydrate uptake

  17. Systemic analysis of the response of Aspergillus niger to ambient pH

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Lehmann, Linda Olkjær; Nielsen, Jens

    2009-01-01

    three levels of pH. Results: With genome scale modeling with an optimization for extracellular proton-production, it was possible to reproduce the preferred pH levels for citrate and oxalate. Transcriptome analysis and clustering expanded upon these results and allowed the identification of 162 clusters......Background: The filamentous fungus Aspergillus niger is an exceptionally efficient producer of organic acids, which is one of the reasons for its relevance to industrial processes and commercial importance. While it is known that the mechanisms regulating this production are tied to the levels...... of ambient pH, the reasons and mechanisms for this are poorly understood. Methods: To cast light on the connection between extracellular pH and acid production, we integrate results from two genome-based strategies: A novel method of genome-scale modeling of the response, and transcriptome analysis across...

  18. An acidic pectin lyase from Aspergillus niger with favourable efficiency in fruit juice clarification.

    Science.gov (United States)

    Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H

    2015-02-01

    The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume.

  19. Biotransformations of Imbricatolic Acid by Aspergillus niger and Rhizopus nigricans Cultures

    Directory of Open Access Journals (Sweden)

    Cristina Theoduloz

    2007-05-01

    Full Text Available Microbial transformation of imbricatolic acid (1 by Aspergillus niger afforded 1α-hydroxyimbricatolic acid (2, while transformation with Rhizopus nigricans yielded 15-hydroxy-8,17-epoxylabdan-19-oic acid (3. When the diterpene 1 was added to a Cunninghamella echinulata culture, the main products were the microbial metabolites mycophenolic acid (4 and its 3-hydroxy derivative 5. All the structures were elucidated by spectroscopic methods. The cytotoxicity of these compounds towards human lung fibroblasts and AGS cells was assessed. While 4 and 5 showed low cytotoxicity, with IC50 values > 1000 μM against AGS cells and fibroblasts, 1α-hydroxyimbricatolic acid (2 presented moderate toxicity towards these targets, with IC50 values of 307 and 631 μM, respectively. The structure of 2 is presented for the first time.

  20. Influence of agitation speeds and aeration rates on the Xylanase activity of Aspergillus niger SS7

    Directory of Open Access Journals (Sweden)

    Yasser Bakri

    2011-08-01

    Full Text Available In this study, the effect of agitation and aeration rates on xylanase activity of Aspergillus niger SS7 in 3-litre stirred tank bioreactor was investigated. The agitation rates tested were 100, 200 and 300 rpm at each airflow rates of 0.5, 1.0 and 1.5 vvm. The maximum xylanase activity in mono- agitator system was at the agitation speed of 200 rpm and aeration rate of 1.0 vvm. In bi-agitator system, at low agitation speed (100 rpm, the xylanase activity was enhanced by 13% compared to mono- agitator system for an aeration rate of 1.0 vvm. Xylanase productivity in continuous culture was higher by approximately 3.5 times than in batch culture.

  1. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    Science.gov (United States)

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals. PMID:20082377

  2. Pomelo peels as alternative substrate for extracellular pectinase production by Aspergillus niger HFM-8

    Directory of Open Access Journals (Sweden)

    Ibrahim, D.

    2013-12-01

    Full Text Available Aims: The aim of this work was to develop an effective bioprocess to enhance the pectinase production by solid-state cultures of Aspergillus niger HFM-8. Methodology and results: The pectinase production produced by A. niger HFM-8 was studied under solid state fermentation using Malaysian pomelo (Citrus grandis peel as the substrate. This local agricultural waste is rich with lignocellulolytic material including pectin acts as the inducer of pectinase production. Under optimized conditions, 5 g of 0.75 mm pomelo peel size, moisture content of 60% (v/w sterile distilled water pH 5.0, inoculums size of 1x10^4 spores/mL, cultivation temperature of room temperature (30 ± 2 °C, no mixing incurred and with the addition of 1% (w/w citrus pectin and 0.1% (w/w urea has produced pectinase production of 306.89 U/g substrate and 0.78 mg glucosamine/g substrate of fungal growth on the 8th day of cultivation. Conclusion, significance and impact of study: There was 48.82% increment in enzyme production after the improvement of parameters. It was found that pomelo peel is a suitable feedstock for pectinase production.

  3. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    Science.gov (United States)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  4. Conversion of cassava starch to biomass, carbohydrates, and acids by Aspergillus niger.

    Science.gov (United States)

    Tan, K H; Ferguson, L B; Carlton, C

    1984-01-01

    The filamentous fungus, Aspergillus niger, efficiently converted cassava polysaccharides to mycelial mass, simple sugars, and acids during the course of its growth. A typical 70-ml culture broth containing 2% cassava polysaccharides yielded 0.38 g dry mycelial mass, 1.14 mmol reducing sugars, and 1.17 meq acids at the end of 42 h. About 70% of the initial total carbohydrate in the medium was degraded during the same period. The sugars and acids in the culture broths were analyzed by HPLC on a single Aminex HPX-87 column at 55 degrees C, using 0.013 N H2SO4 as the eluting solvent. Cassava polysaccharides were degraded to oligosaccharides, maltotriose, maltose, and glucose beyond the 20-h growth periods, with maltotriose emerging as the major simple sugar. The appearance of citric, malic, gluconic, succinic, and fumaric acids accounted mostly for the decreasing pH in the growth media. Formation of carbohydrate species in the culture broths was closely related to the biosynthesis and secretion of several carbohydrases by A. niger. The extracellular carbohydrases were separated and identified by chromatofocusing and polyacrylamide gel electrophoresis to be amyloglucosidase (EC 3.1.2.3), alpha-amylase (EC 3.2.1.1), and alpha-glucosidase (EC 3.2.1.20), respectively.

  5. Process optimization of citric acid production from aspergillus niger using fuzzy logic design

    International Nuclear Information System (INIS)

    The inherent non-linearity of citric acid fermentation from Aspergillus niger renders its control difficult, so there is a need to fine-tune the bioreactor performance for maximum production of citric acid in batch culture. For this, fuzzy logic is becoming a popular tool to handle non-linearity of a batch process. The present manuscript deals with fuzzy logic control of citric acid accretion by A. niger in a stirred tank reactor using blackstrap sugarcane molasses as a basal fermentation medium. The customary batches were termed as control while those under fuzzy logic were experimental. The performance of fuzzy logic control of stirred tank reactor was found to be very encouraging for enhanced production of citric acid. The comparison of kinetic parameters showed improved citrate synthase ability of experimental culture (Yp/x = 7.042 g/g). When the culture grown on 150 g/l carbohydrates was monitored for Qp, Qs and Yp/s, there was significant enhancement in these variables over the control. Specific productivity of culture (qp = 0.070 g/g cells/h) was several fold increased. The enthalpy (HD = 70.5 kJ/mol) and entropy of activation (S = -144 J/mol/K) of enzyme for citric acid biosynthesis, free energies for transition state formation and substrate binding for sucrose hydrolysis of experimental were substantially improved. (author)

  6. Process optimization of citric acid production from aspergillus niger using fuzzy logic design

    International Nuclear Information System (INIS)

    The inherent non-linearity of citric acid fermentation from Aspergillus niger renders its control difficult, so there is a need to fine-tune the bioreactor performance for maximum production of citric acid in batch culture. For this, fuzzy logic is becoming a popular tool to handle non-linearity of a batch process. The present manuscript deals with fuzzy logic control of citric acid accretion by A. niger in a stirred tank reactor using blackstrap sugarcane molasses as a basal fermentation medium. The customary batches were termed as 'control' while those under fuzzy logic were 'experimental'. The performance of fuzzy logic control of stirred tank reactor was found to be very encouraging for enhanced production of citric acid. The comparison of kinetic parameters showed improved citrate synthase ability of experimental culture (Yp/x = 7.042 g/g). When the culture grown on 150 g/l carbohydrates was monitored for Qp, Qs and Yp/s, there was significant enhancement in these variables over the control. Specific productivity of culture (qp = 0.070 g/g cells/h) was several fold increased. The enthalpy (HD = 70.5 kJ/mol) and entropy of activation (S = -144 J/mol/K) of enzyme for citric acid biosynthesis, free energies for transition state formation and substrate binding for sucrose hydrolysis of experimental were substantially improved. (author)

  7. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Science.gov (United States)

    Lopes, Fernanda Cortez; Silva, Lucas André Dedavid e; Tichota, Deise Michele; Daroit, Daniel Joner; Velho, Renata Voltolini; Pereira, Jamile Queiroz; Corrêa, Ana Paula Folmer; Brandelli, Adriano

    2011-01-01

    A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism. PMID:22007293

  8. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  9. Low-cost carbon sources for the production of a thermostable xylanase by Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Elias Pião Benedetti

    2013-01-01

    Full Text Available A strain of the filamentous fungus Aspergillus niger was isolated and shown to possess extracellular xylanolytic activity. These enzymes have biotechnological potential and can be employed in various industries. This fungus produced its highest xylanase activity in a medium made up of 0.1% CaCO3 , 0.5% NaCl, 0.1% NH4 Cl, 0.5% corn steep liquor and 1% carbon source, at pH 8.0. A lowcost hemicellulose residue (powdered corncob proved to be an excellent inducer of the A. niger xylanolytic complex. Filtration of the crude culture medium with suspended kaolin was ideal for to clarify the extract and led to partial purification of the xylanolytic activity. The apparent molecular mass of the xylanase was about 32.3 kDa. Maximum enzyme activity occurred at pH 5.0 and 55-60ºC. Apparent Km was 10.41 ± 0.282 mg/mL and Vmax was 3.32 ± 0.053 U/mg protein, with birchwood xylan as the substrate. Activation energy was 4.55 kcal/mol and half-life of the crude enzyme at 60ºC was 30 minutes. Addition of 2% glucose to the culture medium supplemented with xylan repressed xylanase production, but in the presence of xylose the enzyme production was not affected.

  10. Production of Proteolytic Enzymes by a Keratin-Degrading Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Fernanda Cortez Lopes

    2011-01-01

    Full Text Available A fungal isolate with capability to grow in keratinous substrate as only source of carbon and nitrogen was identified as Aspergillus niger using the sequencing of the ITS region of the rDNA. This strain produced a slightly acid keratinase and an acid protease during cultivation in feather meal. The peak of keratinolytic activity occurred in 48 h and the maximum proteolytic activity in 96 h. These enzymes were partly characterized as serine protease and aspartic protease, respectively. The effects of feather meal concentration and initial pH on enzyme production were evaluated using a central composite design combined with response surface methodology. The optimal conditions were determined as pH 5.0 for protease and 7.8 for keratinase and 20 g/L of feather meal, showing that both models were predictive. Production of keratinases by A. niger is a less-exploited field that might represent a novel and promising biotechnological application for this microorganism.

  11. Recovery of metals from low-grade ores by Aspergillus niger

    International Nuclear Information System (INIS)

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low - grade ores and mining residues, these are considered new sources of metals. On the other hand, they potentially endanger the environment, as the metals they contain may be released to the environment in a hazardous form. Hence, mining industries are seeking an efficient technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulphuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition to this, different auxiliary processes were tried in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron codissolution was minimized as only 7% removal occurred. (author)

  12. Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger.

    Science.gov (United States)

    Mulligan, Catherine N; Kamali, Mahtab; Gibbs, Bernard F

    2004-07-01

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low-grade ores and mining residues, these are potential viable sources of metals. In addition, they potentially endanger the environment, as the metals they contain may be released to the environment in hazardous form. Hence, mining industries are seeking an efficient, economic technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulfuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition, different auxiliary processes were evaluated in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron co-dissolution was minimized as only 7% removal occurred. PMID:15177728

  13. Recovery of metals from low-grade ores by Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, M.; Mulligan, C.N. [Concordia Univ., Dept. of Building, Civil and Environmental Engineering, Montreal, Quebec (Canada)]. E-mail: mulligan@civil.concordia.ca

    2002-06-15

    The main concern of this study is to develop a feasible and economical technique to microbially recover metals from oxide low-grade ores. Owing to the significant quantities of metals that are embodied in low - grade ores and mining residues, these are considered new sources of metals. On the other hand, they potentially endanger the environment, as the metals they contain may be released to the environment in a hazardous form. Hence, mining industries are seeking an efficient technique to handle these ores. Pyrometallurgical and hydrometallurgical techniques are either very expensive, energy intensive or have a negative impact on the environment. For these reasons, biohydrometallurgical techniques are coming into perspective. In this study, by employing Aspergillus niger, the feasibility of recovery of metals from a mining residue is shown. A. niger exhibits good potential in generating a variety of organic acids effective for metal solubilization. Organic acid effectiveness was enhanced when sulphuric acid was added to the medium. Different agricultural wastes such as potato peels were tested. In addition to this, different auxiliary processes were tried in order to either elevate the efficiency or reduce costs. Finally, maximum solubilization of 68%, 46% and 34% were achieved for copper, zinc and nickel, respectively. Also iron codissolution was minimized as only 7% removal occurred. (author)

  14. Microbially influenced corrosion of zinc and aluminium - Two-year subjection to influence of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Juzeliunas, Eimutis [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)], E-mail: ejuzel@ktl.mii.lt; Ramanauskas, Rimantas; Lugauskas, Albinas; Leinartas, Konstantinas; Samuleviciene, Meilute; Sudavicius, Aloyzas; Juskenas, Remigijus [Institute of Chemistry, A.Gostauto 9, 01108 Vilnius (Lithuania)

    2007-11-15

    Aspergillus niger. Tiegh., a filamentous ascomycete fungus, was isolated from the metal samples exposed to marine, rural and urban sites in Lithuania. Al and Zn samples were subjected to two-year influence of A. niger under laboratory conditions in humid atmosphere. Electrochemical impedance spectroscopy (EIS) ascertained microbially influenced corrosion acceleration (MICA) of Zn and inhibition (MICI) of Al. EIS data indicated a two-layer structure of corrosion products on Zn. The microorganisms reduced the thickness of the inner layer, whose passivating capacity was much higher when compared to that of the outer layer. An increase in aluminium oxide layer resistance but decrease in the layer thickness implied that MICI affected primarily the sites of localized corrosion of Al (pores, micro-cracks, etc.). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies indicated that bioproducts (i.e. organic acids) did not form crystalline phases with corrosion products of zinc. The study suggested a hypothesis that microorganisms could be used as corrosion protectors instead of toxic chemicals, application of which tends to be increasingly restricted.

  15. Antimicrobial Activity of Biocompatible Microemulsions Against Aspergillus niger and Herpes Simplex Virus Type 2

    Science.gov (United States)

    Alkhatib, Mayson H; Aly, Magda M; Rahbeni, Rajaa A; Balamash, Khadijah S

    2016-01-01

    Background Microemulsions (MEs), which consist of oil, water, surfactants, and cosurfactants, have recently generated considerable interest as antimicrobial agents. Objectives To determine the antifungal and antiviral activities of three ME formulations (MEa, MEb, and MEc) that differ in their hydrophilicity. Methods The ME formulas were produced by mixing different fractions of Tween 80, Span 20, ethanol, oil, isopropyl myristate, and distilled water. The antifungal activity of the ME formulas against Aspergillus niger, A. flavus, Bacillus, Candida albicans, and C. glabrata were determined by the solid medium diffusion cytotoxicity test against the mitochondria, measuring the minimum inhibitory concentration, dry biomass, and leakage of potassium, and characterizing the cell morphology. The antiviral activities of the ME formulas against the herpes simplex virus type 2 (HSV-2) were determined using the cytopathic effect assay. Results Significant antimicrobial activities were recorded against A. niger and herpes simplex virus type 2 (HSV-2) when treated with MEb that had hydrophobic nanodroplets with an average diameter of 4.7 ± 1.22 nm. A volume of 0.1 mL of MEb (10 mL of potato dextrose broth) inhibited the germination of A. niger cells, reduced their dry biomass, enhanced the leakage of potassium from the cell membranes, affected their mitochondria, and altered the shape of their conidia, in addition to enlarging them. MEb was able to destroy the HSV-2 virus at a 200-fold dilution in Dulbecco’s modified eagle medium. Conclusions The water-in-oil ME with equivalent surfactant-to-oil ratio (MEb) has great potential as an antifungal and antiviral agent.

  16. Data on the presence or absence of genes encoding essential proteins for ochratoxin and fumonisin biosynthesis in Aspergillus niger and Aspergillus welwitschiae

    Science.gov (United States)

    Massi, Fernanda Pelisson; Sartori, Daniele; Ferranti, Larissa de Souza; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Vieira, Maria Lucia Carneiro; Fungaro, Maria Helena Pelegrinelli

    2016-01-01

    We present the multiplex PCR data for the presence/absence of genes involved in OTA and FB2 biosynthesis in Aspergillus niger/Aspergillus welwitschiae strains isolated from different food substrates in Brazil. Among the 175 strains analyzed, four mPCR profiles were found: Profile 1 (17%) highlights strains harboring in their genome the pks, radH and the fum8 genes. Profile 2 (3.5%) highlights strains harboring genes involved in OTA biosynthesis i.e. radH and pks. Profile 3 (51.5%) highlights strains harboring the fum8 gene. Profile 4 (28%) highlights strains not carrying the genes studied herein. This research content is supplemental to our original research article, “Prospecting for the incidence of genes involved in ochratoxin and fumonisin biosynthesis in Brazilian strains of A. niger and A. welwitschiae” [1]. PMID:27054181

  17. Clarification of Tomato Juice with Polygalacturonase Obtained from Tomato Fruits Infected by Aspergillus niger.

    Science.gov (United States)

    Ajayi, A A; Peter-Albert, C F; Akeredolu, M; Shokunbi, A A

    2015-02-01

    Two varieties of tomato fruits commonly available in Nigerian markets are the Roma VF and Ibadan local varieties of tomato fruits. The Roma VF fruits are oval in shape. It is a common type of cultivar in the Northern region of Nigeria and it is not susceptible to cracking. The Ibadan local variety of tomato fruits is a local variety commonly found on farmers fields in South-western region of Nigeria. They are highly susceptible to cracking. The Ibadan local variety was employed for this research. There are lots of benefits derived from the consumption of tomato fruits. The fruits can be made into tomato juice clarified with pectinases. Polygalacturonase is one of the pectinases used commercially in the clarification of fruit juice from different fruits. This study examined the production of polygalacturonase during the deterioration of tomato fruits by Aspergillus niger and the role of the purified polygalacturonase in the clarification of tomato juice. Tomato fruits of the Ibadan local variety were inoculated with mycelia discs containing spores of a 96-h-old culture of Aspergillus niger served as the inoculum. The organism from the stock culture was subcultured onto potato dextrose agar plates. The extraction of polygalacturonase after 10 days of incubation at 27 degrees C was carried out by homogenizing the fruits with liquid extractant using the MSE homogenizer after the deteriorated fruits had been chilled for 30 min inside a freezer. Control fruits were similarly treated except that sterile potato dextrose agar served as the inoculum. The effect of different temperature of incubation and different volume of enzyme on the tomato juice from the tomato fruits was investigated. Extracts from the inoculated fruits exhibited appreciable polygalacturonase activity. The juice with polygalacturonase was visually clearer and more voluminous than the juice treated with water for all parameters studied. The highest volume of juice was obtained after an incubation period

  18. Enhanced production of Aspergillus niger laccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system

    NARCIS (Netherlands)

    Tamayo Ramos, J.A.; Barends, S.; Lange, D.; Jel, de A.; Verhaert, R.M.; Graaff, de L.H.

    2013-01-01

    In filamentous fungi, most of the strategies used for the improvement of protein yields have been based on an increase in the transcript levels of a target gene. Strategies focusing at the translational level have been also described, but are far less explored. Here the 5' untranslated sequence of t

  19. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    Science.gov (United States)

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  20. SCREENING AND OPTIMIZATION OF CULTURE CONDITIONS FOR CELLULASE PRODUCTION BY ASPERGILLUS NIGER NSPR012 IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Juliet Bamidele Akinyele

    2014-12-01

    Full Text Available This study aimed at screening of selected fungal strains and optimization of process parameters for cellulases production in submerged fermentation. Aspergillus niger NSPR012 was selected for further studies as the most potent in producing cellulase of high activity. Utilization of various agro-wastes as substitute tocarboxy methyl cellulose (CMC for cellulase production was also investigated. Among tested carbon sources, banana peels at a concentration of 5% was found to be the most effective carbon source. The cellulase production by Aspergillus niger NSPR012 in mineral salt medium attained maximum after 96 h of incubation. Maximum cellulase activity (0.466µmol/min/mL was obtained with locust beans as the best organic nitrogen source. The optimum incubation temperature and initial pH were 37°C and 5.5, respectively. With this information, banana peels could have good biotechnological potential for bio-products formation in which cellulase is one.

  1. Selection and characterisation of a xylitol-derepressed Aspergillus niger mutant that is apparently impaired in xylitol transport

    OpenAIRE

    Vondervoort, van de, P.J.I.; Groot, de, W.T.; Ruijter, G.J.G.; J. Visser

    2006-01-01

    Aspergillus niger is known for its biotechnological applications, such as the use of xylanase enzyme for the degradation of hemicellulose. Depending on culture conditions, several polyols may also be accumulated, such as xylitol during D-xylose oxidation. Also during industrial fermentation of xylose for the production of fuel ethanol by recombinant yeast, xylitol is a by-product. We studied xylitol metabolism by isolating mutants that have impaired xylitol-mediated repression. Genetic and bi...

  2. Acción del Aspergillus niger sobre la fibra de rayón-viscosa en presentaciones diferentes

    OpenAIRE

    García Vargas, Minerva Cristina; Riva Juan, Mª del Carmen

    2003-01-01

    Se describen los resultados de la investigación relacionada con la acción del hongo Aspergillus niger sobre las propiedades físicas de la fibra rayón-viscosa de distintas características (título, corte, tenacidad en húmedo y porcentaje de elongación). El biodeterioro se valora en términos de cambios en la resistencia a la rotura y porcentajes de alargamiento.

  3. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    OpenAIRE

    Tong-Jiang Xu; Thulasya Ramanathan; Yen-Peng Ting

    2014-01-01

    This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter) and a swollen pellet structure. I...

  4. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    Directory of Open Access Journals (Sweden)

    Frisvad Jens C

    2009-12-01

    Full Text Available Abstract Background Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B2 (FB2 production in four strains of this biotechnologically important workhorse. Results In the present study, a screening of 5 A. niger strains and 25 assumed fumonisin producing Fusarium strains from 6 species, showed that all 5 A. niger strains produced FB2 and 23 of 25 Fusarium produced fumonisin B1 and other isoforms (fumonisin B2 and B3. Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production of FB1 and FB2 at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB2 production of A. niger, whereas addition of glycerol reduced FB2 production. All three water activity lowering solutes reduced the fumonisin production of the Fusarium species. Conclusion The present study shows that the regulation of fumonisin production is very different in A. niger and Fusarium, and that food and feeds preserved by addition of sugar or salts may be good substrates for fumonisin B2 production by A. niger.

  5. Citric acid production by selected mutants of Aspergillus niger from cane molasses.

    Science.gov (United States)

    Ikram-Ul, Haq; Ali, Sikander; Qadeer, M A; Iqbal, Javed

    2004-06-01

    The present investigation deals with citric acid production by some selected mutant strains of Aspergillus niger from cane molasses in 250 ml Erlenmeyer flasks. For this purpose, a conidial suspension of A. niger GCB-75, which produced 31.1 g/l citric acid from 15% (w/v) molasses sugar, was subjected to UV-induced mutagenesis. Among the 3 variants, GCM-45 was found to be a better producer of citric acid (50.0 +/- 2a) and it was further improved by chemical mutagenesis using N-methyl, N-nitro-N-nitroso-guanidine (MNNG). Out of 3,2-deoxy-D-glucose resistant variants, GCMC-7 was selected as the best mutant, which produced 96.1 +/- 1.5 g/l citric acid 168 h after fermentation of potassium ferrocyanide and H2SO4 pre-treated blackstrap molasses in Vogel's medium. On the basis of kinetic parameters such as volumetric substrate uptake rate (Qs), and specific substrate uptake rate (qs), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and produced more citric acid. The mutant GCMC-7 has greater commercial potential than the parental strain with regard to citrate synthase activity. The addition of 2.0 x 10(-5) M MgSO4 x 5H2O into the fermentation medium reduced the Fe2+ ion concentration by counter-acting its deleterious effect on mycelial growth. The magnesium ions also induced a loose-pelleted form of growth (0.6 mm, diameter), reduced the biomass concentration (12.5 g/l) and increased the volumetric productivity of citric acid monohydrate (113.6 +/- 5 g/l).

  6. Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger.

    Science.gov (United States)

    Hayer, Kimran; Stratford, Malcolm; Archer, David B

    2013-11-01

    The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.

  7. Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores.

    Science.gov (United States)

    Ramachandran, Sumitra; Fontanille, Pierre; Pandey, Ashok; Larroche, Christian

    2008-12-01

    Aspergillus niger spores were used as catalyst in the bioconversion of glucose to gluconic acid. Spores produced by solid-state fermentation were treated with 15 different terpenes including monoterpenes and monoterpenoids to permeabilize and inhibit spore germination. It was found that spore membrane permeability is significantly increased by treatment with terpenoids when compared to monoterpenes. Best results were obtained with citral and isonovalal. Studies were carried out to optimize spores concentration (10(7)-10(10) spores/mL), terpene concentrations in the bioconversion medium and time of exposure (1-18 h) needed for permeabilization of spores. Fed-batch production of gluconate was done in a bioreactor with the best conditions [10(9) spores/mL of freeze-thawed spores treated with citral (3% v/v) for 5 h] followed by sequential additions of glucose powder and pH-regulated with a solution containing 2 mol/L of either NaOH or KOH. Bioconversion performance of the spore enzyme was compared with the commercial glucose oxidase at 50, 60, and 70 degrees C. Results showed that the spore enzyme was comparatively stable at 60 degrees C. It was also found that the spores could be reutilized for more than 14 cycles with almost similar reaction rate. Similar biocatalytic activity was rendered by spores even after its storage of 1 year at -20 degrees C. This study provided an experimental evidence of the significant catalytic role played by A. niger spore in bioconversion of glucose to gluconic acid with high yield and stability, giving protection to glucose oxidase.

  8. Biological Control of Meloidogyne incognita by Aspergillus niger F22 Producing Oxalic Acid.

    Science.gov (United States)

    Jang, Ja Yeong; Choi, Yong Ho; Shin, Teak Soo; Kim, Tae Hoon; Shin, Kee-Sun; Park, Hae Woong; Kim, Young Ho; Kim, Hun; Choi, Gyung Ja; Jang, Kyoung Soo; Cha, Byeongjin; Kim, In Seon; Myung, Eul Jae; Kim, Jin-Cheol

    2016-01-01

    Restricted usage of chemical nematicides has led to development of environmentally safe alternatives. A culture filtrate of Aspergillus niger F22 was highly active against Meloidogyne incognita with marked mortality of second-stage juveniles (J2s) and inhibition of egg hatching. The nematicidal component was identified as oxalic acid by organic acid analysis and gas chromatography-mass spectroscopy (GC-MS). Exposure to 2 mmol/L oxalic acid resulted in 100% juvenile mortality at 1 day after treatment and suppressed egg hatching by 95.6% at 7 days after treatment. Oxalic acid showed similar nematicidal activity against M. hapla, but was not highly toxic to Bursaphelenchus xylophilus. The fungus was incubated on solid medium and dried culture was used for preparation of a wettable powder-type (WP) formulation as an active ingredient. Two WP formulations, F22-WP10 (ai 10%) and oxalic acid-WP8 (ai 8%), were prepared using F22 solid culture and oxalic acid. In a field naturally infested with M. incognita, application of a mixture of F22-WP10 + oxalic acid-WP8 at 1,000- and 500-fold dilutions significantly reduced gall formation on the roots of watermelon plants by 58.8 and 70.7%, respectively, compared to the non-treated control. The disease control efficacy of the mixture of F22-WP10 + oxalic acid-WP8 was significantly higher than that of a chemical nematicide, Sunchungtan (ai 30% fosthiazate). These results suggest that A. niger F22 can be used as a microbial nematicide for the control of root-knot nematode disease. PMID:27258452

  9. Lactobacillus brevis-based bioingredient inhibits Aspergillus niger growth on pan bread

    Directory of Open Access Journals (Sweden)

    Mariaelena Di Biase

    2014-11-01

    Full Text Available Bread shelf life is generally compromised by fungi mainly belonging to Aspergillus and Penicillium genera, which colonise the surface of the product within few days from the production. The aim of this study was to select a Lactobacillus brevis-based bioingredient (LbBio able to inhibit the growth of Aspergillus niger ITEM5132 on pan bread in order to prolong its shelf life. Four LbBio formulations, obtained by growing a selected L. brevis strain in a flour-based medium containing different carbon sources or acid precursors (fructose, LbBio1; fructose and maltose, LbBio2; α-chetoglutaric acid, LbBio3; short-chain fructooligosaccharides, LbBio4, were evaluated for their content of organic acids (lactic, acetic, propionic, phenyllactic, 4-hydroxy-phenyllactic, valeric, isovaleric acids. The LbBio formulations were applied in yeast-leavened bread during bread-making trials and the resulting products were inoculated after baking with A. niger spore’s suspension and the fungal growth was monitored during storage (25°C for 6 days. The formulation showing the highest inhibitory activity was separated by ultra-filtration method, and whole and fractions obtained were evaluated for their in vitro activity. The fraction showing the highest activity was further separated by gel-filtration and the resulting products were investigated for their protein content and in vitro inhibition. The results from the bread-making trials performed using different formulations of LbBio showed a delay in fungal growth (1 day respect to the bread not containing the bioingredient (control or including calcium propionate (0.3% w/w. The formulation LbBio2, prepared with fructose and maltose 1% (w/vol, contained the highest amount of total organic acids, including phenyllactic and hydroxyl-phenyllactic acids, and reduced the visual spoilage of bread. This formulation was separated by ultra-filtration and fractions containing metabolites with molecular weight higher than 30 k

  10. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger β-galactosidase

    Directory of Open Access Journals (Sweden)

    Becerra Manuel

    2006-12-01

    Full Text Available Abstract Background The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. Results The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5 and temperature (40°C for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence

  11. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.

    Science.gov (United States)

    Del Mundo Dacera, Dominica; Babel, Sandhya

    2008-04-01

    The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge. PMID:17512728

  12. Removal of heavy metals from contaminated sewage sludge using Aspergillus niger fermented raw liquid from pineapple wastes.

    Science.gov (United States)

    Del Mundo Dacera, Dominica; Babel, Sandhya

    2008-04-01

    The environmental benefits derived from using citric acid in the removal of heavy metals from contaminated sewage sludge have made it promising as an extracting agent in the chemical extraction process. At present, citric acid is produced commercially by fermentation of sucrose using mutant strains of Aspergillus niger (A. niger), and chemical synthesis. In recent years, various carbohydrates and wastes (such as pineapple wastes) have been considered experimentally, to produce citric acid by A. niger. This study investigated the potential of using A. niger fermented raw liquid from pineapple wastes as a source of citric acid, in extracting chromium (Cr), copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) from anaerobically digested sewage sludge. Results of the study revealed that metal removal efficiencies varied with pH, forms of metals in sludge and contact time. At pH approaching 4, and contact time of 11 days, A. niger fermented liquid seemed to remove all Cr and Zn while removing 94% of Ni. Moreover, chemical speciation studies revealed that metals which are predominantly in the exchangeable and oxidizable phases seemed to exhibit ease of leachability (e.g., Zn). The by-products of the process such as pineapple pulp and mycelium which are rich in protein, can still be used as animal feed. It can be said therefore that this novel process provides a sustainable way of managing contaminated sewage sludge.

  13. SYNERGISTIC ACTIVITY OF ENZYMES PRODUCED BY EUPENICILLIUM JAVANICUM AND ASPERGILLUS NIGER NRRL 337 ON PALM OIL FACTORY WASTES

    Directory of Open Access Journals (Sweden)

    TRESNAWATI PURWADARIA

    2003-01-01

    Full Text Available The use of palm kernel cake (PKC and palm oil mill effluent (POME, substances from palm oil factory wastes, for monogastric is limited by their high cellulose and mannan contents. Hydrolytic enzymes have been supplemented to increase the nutrient digestibility. The maximal digestibility was obtained in the synergistic action of all enzyme components including B-D-endoglucanase (CMCase, B-D-glucosidase, B-D-mannanase, p-D-mannosidase, and oc-D-galactosidase. Two kinds of enzymes produced by Eupenicillium javanicum and Aspergillus niger NRRL 337 on the submerged culture containing 3% coconut meal were selected to hydrolyze PKC or dry POME. Enzyme from E. javanicum contained higher CMCase, B-D-mannanase, and a-D- galactosidase activities, while that from A. niger NRRL 337 contained more p-D-glucosidase and p-D-mannosidase activities. Saccharification (hydrolytic activities of enzyme mixtures on PKC and POME were determined at pH 5.0, the optimal pH for p-D-mannanase from E. javanicum, and at 5.4 the optimal pH for a-D-galactosidase from E. javanicum and P-D-glucosidase from A. niger NRRL 337. The enzyme proportions of E. javanicum and A. niger NRRL 337 were 100 : 0, 80 : 20, 60 : 40, 40 : 60, and 0 : 100%. The highest Saccharification activity on both substrates was observed on the mixture of 80% A. niger NRRL 337. The pH levels did not significantly affect Saccharification activity. Fiber components in PKC were more digestable than in POME. Further analysis on the reducing sugar components using thin layer chromatography showed that more monomers were produced in the 60 or 80% of A. niger NRRL 337. The glycosidases of A. niger NRRL 337 played more important role in the Saccharification activity.

  14. Evaluation of free and immobilized Aspergillus niger NRC1ami pectinase applicable in industrial processes.

    Science.gov (United States)

    Esawy, Mona A; Gamal, Amira A; Kamel, Zeinat; Ismail, Abdel-Mohsen S; Abdel-Fattah, Ahmed F

    2013-02-15

    The Aspergillus niger NRC1ami pectinase was evaluated according to its hydrolysis efficiency of dry untreated orange peels (UOP), HCl-treated orange peels and NaOH-treated orange peels (HOP and NOP). Pectinase was entrapped in polyvinyl alcohol (PVA) sponge and the optimum pH and temperature of the free and immobilized enzymes were shifted from 4, 40 °C to 6, 50 °C respectively. The study of pH stability of free and immobilized pectinase showed that the immobilization process protected the enzyme strongly from severe alkaline pHs. The immobilization process improved the enzyme thermal stability to great instant. The unique feature of the immobilization process is its ability to solve the orange juice haze problem completely. Immobilized enzyme was reused 12 times in orange juice clarification with 9% activity loss from the original activity. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the partially purified form were significantly changed after immobilization.

  15. Chemical modification of Aspergillus nigerβ-glucosidase and its catalytic properties

    Directory of Open Access Journals (Sweden)

    Samia A. Ahmed

    2015-03-01

    Full Text Available Aspergillus niger β-glucosidase was modified by covalent coupling to periodate activated polysaccharides (glycosylation. The conjugated enzyme to activated starch showed the highest specific activity (128.5 U/mg protein. Compared to the native enzyme, the conjugated form exhibited: a higher optimal reaction temperature, a lower Ea (activation energy, a higher Km (Michaelis constant and Vmax (maximal reaction rate, and improved thermal stability. The calculated t1/2 (half-life values of heat in-activation at 60 °C and 70 °C were 245.7 and 54.5 min respectively, whereas at these temperatures the native enzyme was less stable (t1/2of 200.0 and 49.5 min respectively. The conjugated enzyme retained 32.3 and 29.7%, respectively from its initial activity in presence of 5 mM Sodium Dodecyl Sulphate (SDS and p-Chloro Mercuri Benzoate (p-CMB, while the native enzyme showed a remarkable loss of activity (retained activity 1.61 and 13.7%, respectively. The present work has established the potential of glycosylation to enhance the catalytic properties of β-glucosidase enzyme, making this enzyme potentially feasible for biotechnological applications.

  16. New approach for selecting pectinase producing mutants of Aspergillus niger well adapted to solid state fermentation.

    Science.gov (United States)

    Antier, P; Minjares, A; Roussos, S; Viniegra-González, G

    1993-01-01

    The aim of this paper is to review and study a new approach for improving strains of Aspergillus niger specially adapted to produce pectinases by Solid State Fermentation (SSF) with materials having low levels of water activity (a(w)), i.e., coffee pulp. Special emphasis is placed on the use of two antimetabolic compounds: 2-deoxy-glucose (DG) and 2,4-dinitro-phenol (DNP) combined with a water depressant (ethylene glycol = EG) in order to put strong selection pressures on UV treated spores from parental strain C28B25 isolated from a coffee plantation. Such a strain was found to be DG sensitive. Results suggested the existence of a reciprocal relation between adaptation of isolated strains to SSF or to Submerged Fermentation (SmF) systems. Preliminary physiological analysis of isolated strains showed that at least some few initially DG resistant mutants could revert to DG sensitive phenotype but conserving increased pectinase production. Also it was found that phenotype for DNP resistance could be associated to changes of DG resistance. Finally, it was found that low levels of a(w) produced by adding 15% EG to agar plates, were a significant selection factor for strains well adapted to SSF system.

  17. Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; FAN Ting; ZENG Guang-ming; LI Xin; TONG Qing; YE Fei; ZHOU Ming; XU Wei-hua; HUANG Yu-e

    2006-01-01

    The potential of living Aspergillus niger to remove cadmium and zinc from aqueous solution was investigated. Effects of pH, initial concentration, contact time, temperature and agitation rate on the biosorption of Cd(Ⅱ) and Zn(Ⅱ) ions were studied. The optimum adsorption pH value for Cd(Ⅱ) and Zn(Ⅱ) were 4.0 and 6.0. The best temperature and agitation rate were in the range of 25-30 ℃ and 120 r/min for all metal ions. Under the optimal conditions, the maximum uptake capacities of Cd(Ⅱ) and Zn( Ⅱ ) ions are 15.50 mg/g and 23.70 mg/g at initial concentrations of 75 mg/L and 150 mg/L, respectively. Biosorption equilibrium is established within 24 h for cadmium and zinc ions. The adsorption data provide an excellent fit to Langmuir isotherm model. The results of the kinetic studies show that the rate of adsorption follows the pseudo-second order kinetics.

  18. Microalgae Harvest through Fungal Pelletization—Co-Culture of Chlorella vulgaris and Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sarman Oktovianus Gultom

    2014-07-01

    Full Text Available Microalgae harvesting is a labor- and energy-intensive process and new approaches to harvesting microalgae need to be developed in order to decrease the costs. In this study; co-cultivatation of filamentous fungus (Aspergillus niger and microalgae (Chlorella vulgaris to form cell pellets was evaluated under different conditions, including organic carbon source (glucose; glycerol; and sodium acetate concentration; initial concentration of fungal spores and microalgal cells and light. Results showed that 2 g/L of glucose with a 1:300 ratio of fungi to microalgae provided the best culturing conditions for the process to reach >90% of cell harvest efficiency. The results also showed that an organic carbon source was required to sustain the growth of fungi and form the cell pellets. The microalgae/fungi co-cultures at mixotrophic conditions obtained much higher total biomass than pure cultures of each individual strains; indicating the symbiotic relationship between two strains. This can benefit the microbial biofuel production in terms of cell harvest and biomass production.

  19. The influence of metal ions on malic enzyme activity and lipid synthesis in Aspergillus niger.

    Science.gov (United States)

    Jernejc, Katarina; Legisa, Matic

    2002-12-17

    In the presence of copper significant induction of citric acid overflow was observed, while concomitantly lower levels of total lipids were detected in the cells. Its effect was more obvious in a medium with magnesium as sole divalent metal ions, while in a medium with magnesium and manganese the addition of copper had a less pronounced effect. Since the malic enzyme was recognised as a supplier of reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate for lipid biosynthesis, its kinetic parameters with regard to different concentrations of metal ions were investigated. Some inhibition was found with Fe(2+) and Zn(2+), while Cu(2+) ions in a concentration of 0.1 mM completely abolished malic enzyme activity. The same metal ions proportionally reduced the levels of total lipids in Aspergillus niger cells. A strong competitive inhibition of the enzyme by Cu(2+) was observed. It seemed that copper competes with Mg(2+) and Mn(2+) for the same binding site on the protein.

  20. Metabolic activity in dormant conidia of Aspergillus niger and developmental changes during conidial outgrowth.

    Science.gov (United States)

    Novodvorska, Michaela; Stratford, Malcolm; Blythe, Martin J; Wilson, Raymond; Beniston, Richard G; Archer, David B

    2016-09-01

    The early stages of development of Aspergillus niger conidia during outgrowth were explored by combining genome-wide gene expression analysis (RNAseq), proteomics, Warburg manometry and uptake studies. Resting conidia suspended in water were demonstrated for the first time to be metabolically active as low levels of oxygen uptake and the generation of carbon dioxide were detected, suggesting that low-level respiratory metabolism occurs in conidia for maintenance. Upon triggering of spore germination, generation of CO2 increased dramatically. For a short period, which coincided with mobilisation of the intracellular polyol, trehalose, there was no increase in uptake of O2 indicating that trehalose was metabolised by fermentation. Data from genome-wide mRNA profiling showed the presence of transcripts associated with fermentative and respiratory metabolism in resting conidia. Following triggering of conidial outgrowth, there was a clear switch to respiration after 25min, confirmed by cyanide inhibition. No effect of SHAM, salicylhydroxamic acid, on respiration suggests electron flow via cytochrome c oxidase. Glucose entry into spores was not detectable before 1h after triggering germination. The impact of sorbic acid on germination was examined and we showed that it inhibits glucose uptake. O2 uptake was also inhibited, delaying the onset of respiration and extending the period of fermentation. In conclusion, we show that conidia suspended in water are not completely dormant and that conidial outgrowth involves fermentative metabolism that precedes respiration. PMID:27378203

  1. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    Science.gov (United States)

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase.

  2. Biodiesel Production by Aspergillus niger Lipase Immobilized on Barium Ferrite Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed I. El-Batal

    2016-05-01

    Full Text Available In this study, Aspergillus niger ADM110 fungi was gamma irradiated to produce lipase enzyme and then immobilized onto magnetic barium ferrite nanoparticles (BFN for biodiesel production. BFN were prepared by the citrate sol-gel auto-combustion method and characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared (FTIR and scanning electron microscopy with energy dispersive analysis of X-ray (SEM/EDAX analysis. The activities of free and immobilized lipase were measured at various pH and temperature values. The results indicate that BFN–Lipase (5% can be reused in biodiesel production without any treatment with 17% loss of activity after five cycles and 66% loss in activity in the sixth cycle. The optimum reaction conditions for biodiesel production from waste cooking oil (WCO using lipase immobilized onto BFN as a catalyst were 45 °C, 4 h and 400 rpm. Acid values of WCO and fatty acid methyl esters (FAMEs were 1.90 and 0.182 (mg KOH/g oil, respectively. The measured flash point, calorific value and cetane number were 188 °C, 43.1 MJ/Kg and 59.5, respectively. The cloud point (−3 °C, pour point (−9 °C, water content (0.091% and sulfur content (0.050%, were estimated as well.

  3. Improving the extraction conditions of endoglucanase produced by Aspergillus niger under solid-state fermentation

    Directory of Open Access Journals (Sweden)

    R. D. P. B. Pirota

    2013-03-01

    Full Text Available Production of cellulases under solid-state fermentation (SSF is a promising technique that can help to reduce costs. Besides optimizing the production process, it is also important to consider enzyme recovery during the extraction step. Here, an experimental design methodology was used to investigate the effects of the operational parameters solid to liquid ratio (1:3, 1:6 and 1:9, stirring rate (80, 120 and 160 rpm, and temperature (10, 22 and 35 °C on the recovery of endoglucanases produced by Aspergillus niger cultivated under SSF. Statistical analysis revealed that only the solid to liquid ratio had a significant influence on endoglucanase extraction. The highest endoglucanase recovery (35.7 U/g was achieved using 0.2 mol/L acetate buffer at pH 4.8, together with a solid to liquid ratio of 1:9 and an agitation time of 10 minutes. In sequential extraction experiments, it was shown that most of the enzyme was recovered during the first extraction. The procedure adopted increased the efficiency of endoglucanase extraction by 70%, emphasizing the importance of selection of suitable operational conditions during SSF processes.

  4. Production and action pattern of inulinase from Aspergillus Niger-245: hydrolysis of inulin from several sources

    Directory of Open Access Journals (Sweden)

    Cruz Vinícius D?Arcadia

    1998-01-01

    Full Text Available A strain of Aspergillus niger isolated from soil samples showed great capacity to produce extracellular inulinase. Although the enzyme has been synthesized in presence of monosaccharides, sucrose and sugar cane molasse, the productivity was significantly higher (p<0.05 when the microorganism was inoculated in media formulated with dahlia extract and pure inulin, as carbon sources. With regard to the nitrogen source, the best results were obtained with casein and other sources of proteic nitrogen, comparatively to the mineral nitrogen. However, statistic significance (p<0.01 only was found between the productivity obtained in the medium prepared with casein and ammonium sulphate. The optimum pH of the purified enzyme for inulin hydrolysis was found between 4.0 and 4.5 and the optimun temperature at 60oC. When treated by 30 minutes in this temperature no loss of activity was observed. The enzyme showed capacity to hydrolyse sucrose, raffinose and inulin from which it liberated only fructose units showing, therefore, an exo-action mechanism. Acting on inulins from several sources, the enzyme showed larger hydrolysis speed on the polissaccharide from chicory (Cichorium intibus, comparatively, to the inulins from dahlia (Dahlia pinnata and Jerusalem artichoke (Helianthus tuberosus roots.

  5. Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state

    Directory of Open Access Journals (Sweden)

    Ibrahim Che Omar

    2005-03-01

    Full Text Available Isolate USM A1 I which was identified to be Aspergillus niger was selected as a potential producer of xylanase via a solid state fermentation system (SSF using palm kernel cake (PKC as substrate. The modification of the physical conditions of the SSF system indicated that the xylanase activity was 23.97 U/g PKC at the moisture ratio of 1:0.75 of PKC: moistening agent with the inoculum size of 1¥104 spores/ml and cultivated at the ambient temperature (28±3ºC. The supplementation of additional carbon and nitrogen sources in the PKC medium could enhance enzyme productivity. The maximum production of xylanase and growth obtained with the supplementation of xylose at 0.75% (w/w were 25.40 U/g and 1.69 mg glucosamine/ g PKC. Moreover, the presence of NaNO3 at 0.075% (w/w as additional nitrogen source further enhanced xylanase production to 33.99 U/g PKC although the growth remained unchanged at about 1.67 mg glucosa- mine/g PKC. The optimized conditions showed an increased xylanase production by 157% compared to before the optimization of the SSF system. The xylanase productivity was 23.12 U/mg glucosamine after optimization and 11.72 U/mg glucosamine before optimization.

  6. Hydroxylation of 1,8-cineole by Mucor ramannianus and Aspergillus niger.

    Science.gov (United States)

    Ramos, Aline de Souza; Ribeiro, Joyce Benzaquem; Teixeira, Bruna Gomes; Ferreira, José Luiz Pinto; Silva, Jefferson Rocha de A; Ferreira, Alexandre do Amaral; de Souza, Rodrigo Octavio Mendonça Alves; Amaral, Ana Claudia F

    2015-03-01

    The monoterpenoid 1,8-cineole is obtained from the leaves of Eucalyptus globulus and it has important biological activities. It is a cheap natural substrate because it is a by-product of the Eucalyptus cultivation for wood and pulp production. In this study, it was evaluated the potential of three filamentous fungi in the biotransformation of 1,8-cineole. The study was divided in two steps: first, reactions were carried out with 1,8-cineole at 1 g/L for 24 h; afterwards, reactions were carried out with substrate at 5 g/L for 5 days. The substrate was hydroxylated into 2-exo-hydroxy-1,8-cineole and 3-exo-hydroxy-1,8-cineole by fungi Mucor ramannianus and Aspergillus niger with high stereoselectivity. Trichoderma harzianum was also tested but no transformation was detected. M. ramannianus led to higher than 99% of conversion within 24 h with a starting high substrate concentration (1 g/L). When substrate was added at 5 g/L, only M. ramannianus was able to catalyze the reaction, but the conversion level was 21.7% after 5 days. Both products have defined stereochemistry and could be used as chiral synthons. Furthermore, biological activity has been described for 3-exo-hydroxy-1,8-cineol. To the best of our knowledge, this is the first report on the use of M. ramannianus in this reaction. PMID:26221115

  7. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    Directory of Open Access Journals (Sweden)

    Georgi Todorov Dobrev

    2012-03-01

    Full Text Available An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65ºC respectively. Endoglucanase was stable at 40ºC, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis.

  8. Expression and characterization of a cutinase (AnCUT2 from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Tammar Khadijah

    2016-03-01

    Full Text Available Cutin hydrolase (EC 3.1.1.74, an extracellular polyesterase found in pollens, bacteria and fungi, is an efficient catalyst that exhibits hydrolytic activity on a variety of water-soluble esters, synthetic fibers, plastics and triglycerides. Thus, cutinase can be used in various applications such as ester synthesis, bio-scouring, food and detergent industries. Ancut2 is one of five genes encoding cutinases present in the Aspergillus niger ATCC 10574 genome. The cDNA of Ancut2 comprising of an open reading frame of 816 bp encoding a protein of 271 amino acid residues, was isolated and expressed in Pichia pastoris. The partially purified recombinant cutinase exhibited a molecular mass of approximately 40 kDa. The enzyme showed highest activity at 40°C with a preference for acidic pH (5.0-6.0. AnCUT2 showed hydrolytic activity towards various p-nitrophenyl esters with preference towards shorter chain esters such as p-nitrophenyl butyrate (C4. Scanning Electron Microscopy demonstrated that AnCUT2 was capable of modifying surfaces of synthetic polycaprolactone and polyethylene terephthalate plastics. The properties of this enzyme suggest that it may be applied in synthetic fiber modification and fruit processing industries.

  9. Characterization And Application Of Tannase Produced By Aspergillus Niger ITCC 6514.07 On Pomegranate Rind

    Directory of Open Access Journals (Sweden)

    Anita Srivastava

    2009-12-01

    Full Text Available Extracellular tannase and gallic acid were produced optimally under submerged fermentation at 37 0C, 72 h, pH 5.0, 10 %(v/v inoculum and 4 %(w/v of the agroresidue pomegranate rind (PR powder by an Aspergillus niger isolate. Tannic acid (1 % stimulated the enzyme production by 245.9 % while with 0.5 % glucose, increase was marginal. Tannase production was inhibited by gallic acid and nitrogen sources such as NH4NO3, NH4Cl, KNO3, asparatic acid, urea and EDTA. The partially purified enzyme showed temperature and pH optima of 35 0C and 6.2 respectively which shifted to 40 0C and 5.8 on immobilization in alginate beads. Activity of the enzyme was inhibited by Zn+2, Ca+, Mn+2, Mg+2, Ba+2and Ag+. The immobilized enzyme removed 68.8 % tannin from juice of aonla/myrobalan (Phyllanthus emblica, a tropical fruit, rich in vitamin C and other essential nutrients. The enzymatic treatment of the juice with minimum reduction in vitamin C is encouraging as non enzymatic treatments of myrobalan juice results in vitamin C removal.

  10. Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger

    Science.gov (United States)

    Biswas, Supratim; Samanta, Saikat; Dey, Rajib; Mukherjee, Siddhartha; Banerjee, Pataki C.

    2013-08-01

    Leaching of nickel and cobalt from two physical grades (S1, 125-190 μm, coarser and S3, 53-75 μm, finer) of chromite overburden was achieved by treating the overburden (2% pulp density) with 21-d culture filtrate of an Aspergillus niger strain grown in sucrose medium. Metal dissolution increases with ore roasting at 600°C and decreasing particle size due to the alteration of microstructural properties involving the conversion of goethite to hematite and the increase in surface area and porosity as evident from X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (DT-TGA), and field emission scanning electron microscopy (FESEM). About 65% Ni and 59% Co were recovered from the roasted S3 ore employing bioleaching against 26.87% Ni and 31.3% Co using an equivalent amount of synthetic oxalic acid under identical conditions. The results suggest that other fungal metabolites in the culture filtrate played a positive role in the bioleaching process, making it an efficient green approach in Ni and Co recovery from lateritic chromite overburden.

  11. Enhanced solubilization of iron and calcium phosphates by Aspergillus niger by the addition of alcohols

    Directory of Open Access Journals (Sweden)

    Cinthya Babá Barroso

    2013-04-01

    Full Text Available The present study deals with the effect of increased concentrations of alcohols (methanol and ethanol on the solubilization of FePO4 and CaHPO4 by Aspergillus niger. The efficiency of solubilization (ES of inorganic phosphates, fungal growth, acid production and pH variation were determined. The concentrations of alcohols that most favored the solubilization of phosphates were 4% methanol and 3% ethanol. The ES of phosphates by the fungus in media containing methanol ranged from 11-96% and 0.4-87% for ethanol. The stimulation or inhibition of solubilization was dependent on greater or lesser fungus growth, acid production and decreased pH. These responses were supported by the correlation between the amount of phosphate dissolved and fungal growth (0.630** to 0.831**, the production of acids (0.529* to 0.989** and a decrease in pH (-0.755** to -0.962**. Thus, the addition of alcohols facilitated insoluble phosphates dissolution during the fungus growth.

  12. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp.

    Science.gov (United States)

    Auta, Helen Shnada; Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol(-1), 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol(-1), 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol(-1), incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol(-1), and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol(-1). The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production.

  13. Improving the Secretory Expression of an α-Galactosidase from Aspergillus niger in Pichia pastoris

    Science.gov (United States)

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  14. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H2O2. Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  15. Amelioration Of Radiation-Induced Oxidative Stress Using Water Soluble Chitosan Produced By Aspergillus Niger

    International Nuclear Information System (INIS)

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study, low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H2O2. Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malondialdehyde, decreased glutathione, superoxide dismutase, catalase and glutatione peroxidase, while significantly increased alanine transferase, aspartate transferase, urea and creatinine levels. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation

  16. Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris.

    Science.gov (United States)

    Zheng, Xianliang; Fang, Bo; Han, Dongfei; Yang, Wenxia; Qi, Feifei; Chen, Hui; Li, Shengying

    2016-01-01

    α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1' residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1' site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application. PMID:27548309

  17. Produção de celulases por Aspergillus niger e cinética da desativação celulásica=Cellulases production by Aspergillus niger and cellulase deactivation kinetic

    OpenAIRE

    Caroline Mariana de Aguiar; Sérgio Luiz de Lucena

    2011-01-01

    O presente trabalho teve como objetivo a avaliação da cinética de produção de enzimas celulases pelo fungo Aspergillus niger e da cinética de desativação das celulases. Foi utilizado bagaço de cana-de-açúcar pré-tratado como fonte de carbono na fermentação para a produção do complexo celulásico e também como substrato da hidrólise enzimática. A. niger foi cultivado em três bateladas, cada uma contendo 10, 50 e 100 g L-1 de bagaço pré-tratado com NaOH 4% (m v-1). A cinética da produção das cel...

  18. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.

  19. Gene identification and functional analysis of methylcitrate synthase in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Honda, Yuki; Kirimura, Kohtaro

    2013-01-01

    Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity. PMID:23832368

  20. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species

    DEFF Research Database (Denmark)

    Mogensen, Jesper Mølgaard; Nielsen, Kristian Fog; Samson, Robert A.;

    2009-01-01

    Background Fumonisins are economically important mycotoxins which until recently were considered to originate from only a few Fusarium species. However recently a putative fumonisin gene cluster was discovered in two different Aspergillus niger strains followed by detection of an actual fumonisin B...... fumonisin B1 and other isoforms (fumonisin B2 and B3). Five A. niger and five Fusarium spp. were incubated at six different temperatures from 15-42°C on Czapek Yeast Agar +5% salt or Potato Dextrose Agar. A. niger had the highest production of FB2 at 25-30°C whereas Fusarium spp. had the maximal production...... of FB1 and FB2 at 20-25°C. Addition of 2.5-5% NaCl, or 10-20% sucrose increased the FB2 production of A. niger, whereas addition of glycerol reduced FB2 production. All three water activity lowering solutes reduced the fumonisin production of the Fusarium species. Conclusion The present study shows...

  1. Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis.

    Science.gov (United States)

    Chhikara, S; Hooda, A; Rana, L; Dhankhar, R

    2010-09-01

    Aspergillus niger was treated with acid and immobilized in calcium alginate matrix. The dynamic removal of Cr (VI) ion was studied using continuously fed column packed with immobilized biosorbent beads. Column experiments were carried out to study the effect of various bed heights (20, 30, 40 cm) under different flow rates (5, 7.5, 10 ml min(-1)) on efficiency of biosorption. The maximum time (1020 minutes; 17 hr) before breakthrough point was observed in case of 40 cm bed height with flow rate of 5ml min(-1). FTIR analysis of acid treated immobilized A. niger was used fora qualitative and preliminary analysis of chemical functional groups present on its cell wall which provided the information on nature of cell wall and Cr (VI) interaction during the process of biosorption. The IR spectra of biosorbent recorded before and after chromium biosorption had shown some changes in the band patterns, which were finally analyzed and was found that chemical interaction such as ion-exchange between carboxyl (-COOH), hydroxyl (-OH) and amine (-NH2) group of biosorbent and Chromium ion were mainlyinvolved in biosorption of Cr (VI) onto A. niger cell wall surface. The biosorbed metal was eluted from biosorbent by using 0.1 M H2SO4 as eluant. Immobilized biosorbent could be reused for five consecutive biosorption and desorption cycles without apparent loss of efficiency after its reconditioning. Considering all above factors together this paper discusses the efficient chromium biosorption process carried out by immobilized A. niger biosorbent. PMID:21387903

  2. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    Science.gov (United States)

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %. PMID:24052336

  3. Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: properties and application for cellulose hydrolysis.

    Science.gov (United States)

    Bansal, Namita; Janveja, Chetna; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2014-01-01

    Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0-9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92-98 %.

  4. Increase of fungitoxicity of mercuric chloride by methionine, ethionine and S-methylcysteine. [Aspergillus niger; Cladosporium cucumerinum; Scopulariopsis brevicaulis

    Energy Technology Data Exchange (ETDEWEB)

    Vonk, J.W.; Sijpesteijn, A.K.

    1974-01-01

    The fungitoxicity of mercuric chloride to Aspergillus niger was increased in the presence of D-, L-, DL-methionine, DL-ethionine, DL-S-methylcysteine or sodium methylmercaptide. The same effect was observed with methionine for two other fungi investigated: Cladosporium cucumerinum and Scopulariopsis brevicaulis. It is suggested that this effect can be ascribed to the formation of CH/sub 3/SHg/sup +/ or (CH/sub 3/S)/sub 2/Hg, or the corresponding ethyl compounds. CH/sub 3/SHgCl and (CH/sub 3/S)/sub 2/Hg were synthetically prepared and proved indeed far more fungitoxic than HgCl/sub 2/. The hypothesis was further substantiated by the observation that A. niger rapidly converts DL-methionine into CH/sub 3/SH, which undoubtedly reacts with Hg/sup 2 +/ to give the above mentioned methylthiomercury compounds. 16 references, 2 figures, 2 tables.

  5. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger.

    Science.gov (United States)

    Ikeda, Yuko; Park, Enock Y; Okuda, Naoyuki

    2006-05-01

    Gluconic acid production was investigated using an enzymatic hydrolysate of waste office automation paper in a culture of Aspergillus niger. In repeated batch cultures using flasks, saccharified solution medium (SM) did not show any inhibitory effects on gluconic acid production compared to glucose medium (GM). The average gluconic acid yields were 92% (SM) and 80% (GM). In repeated batch cultures using SM in a turbine blade reactor (TBR), the gluconic acid yields were 60% (SM) and 67% (GM) with 80-100 g/l of gluconic acid. When pure oxygen was supplied the production rate increased to four times higher than when supplying air. Remarkable differences in the morphology of A. niger and dry cell weight between SM and GM were observed. The difference in morphology may have caused a reduction of oxygen transfer, resulting in a decrease in gluconic acid production rate in SM.

  6. Purification and characterization of β-Fructosidase with inulinase activity from Aspergillus niger - 245

    Directory of Open Access Journals (Sweden)

    Vinícius D'Arcadia Cruz

    1998-01-01

    Full Text Available Aspergillus niger - 245, a strain isolated from soil samples showed good β-fructosidase activity when inoculated in medium formulated with dahlia extract tubers. The enzyme was purified by precipitation in ammonium sulphate and percolated in DEAE-Sephadex A-50 and CM-cellulose columns, witch showed a single peack in all the purification steps, maintaining the I/S ratio between 0.32 to, 0.39. Optimum pH for inulinase activity (I was between 4.0 - 4.5 and for invertase activity (S between 2.5 and 5.0. The optimum temperature was 60O.C for both activities and no loss in activity was observed when it was maintained at this temperature for 30 min. The Km value was 1.44 and 5.0, respectively, for I and S and Vm value 10.48 and 30.55, respectively. The I activity was strongly inhibited by Hg2+ and Ag+ and 2 x 10-3 M of glucose, but not by fructose at the same concentration. The enzyme showed an exo-action mechanism, acting on the inulin of different origins. In assay conditions total hydrolysis of all the frutans was obtained, although it has shown larger activity on the chicory inulin than that one from artichoke Jerusalem and dahlia, in the first 30 min. The obtained results suggested that the enzyme presented good potential for industrial application in the preparing the fructose syrupsAspergillus niger - 245, isolado do solo mostrou boa atividade de b-frutosidase meio formulado com extrato de tubérculos de dahlia. A enzima foi purificada por precipitação em sulfato de amônia e percolada em colunas de DEAE-Sephadex A-50 e CM-celulose, produzindo um único pico em todas as fases de purificação e mantendo a relação I/S entre 0,32 a 0,39. O pH ótimo para a atividade de inulinase (I foi encontrado entre 4,0 - 4.5 e para a atividade de invertase (S em 2,5 e 5,0. A temperatura ótima foi de 60O.C para ambas as atividades e nenhuma perda foi observada quando mantida nesta temperatura por 30 min. Os valores de Km foram de 1,44 e 5

  7. Adsorption of amyloglucosidase from Aspergillus niger NRRL 3122 using ion exchange resin

    Directory of Open Access Journals (Sweden)

    Ana Paula Manera

    2008-10-01

    Full Text Available Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1 and desorption (k2 constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .A enzima amiloglicosidase foi produzida por Aspergillus niger NRRL 3122 através de fermentação em estado sólido, tendo como substrato farelo de arroz desengordurado. Os efeitos dos parâmetros de processo (pH e temperatura no coeficiente de partição no equilíbrio, para o sistema amiloglicosidase - resina DEAE-celulose foram investigados, com o objetivo de se obter as melhores condições para um posterior processo de purificação. Os maiores coeficientes de partição foram obtidos usando tampão Tris-HCl 0,025M pH 8,0 e 25°C. Determinadas as condições que forneceram o maior coeficiente de partição obteve-se a isoterma que melhor descrevia o processo de adsorção de amiloglicosidase. Foi verificado que adsorção pode ser bem descrita pela equação de Langmuir e os valores de Qm e Kd foram estimados em 133,0 U mL-1 e 15,4 U mL-1 respectivamente. A

  8. Improvement of xylanase production by Aspergillus niger XY-1 using response surface methodology for optimizing the medium composition

    Institute of Scientific and Technical Information of China (English)

    Yao-xing XU; Yan-li LI; Shao-chun XU; Yong LIU; Xin WANG; Jiang-wu TANG

    2008-01-01

    Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization.Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by mul-tiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=-1.68 (2.64 g/L), x3 (MGSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.

  9. Niger

    DEFF Research Database (Denmark)

    Hahonou, Eric Komlavi

    2015-01-01

    The chapter provides knowledge about the role of non-state actors in security provision in Niger. It argues that it is of upmost importance to dig into the causes of ongoing armed conflicts and volatile situations. It points out the long-term decline of public service provision (including the rol...... played by police force in protection rackets) and the growing gap between ruling elites and ordinary citizens. These developments have paved the way for the rise of alternative security providers, including Islamic reformist movements....

  10. Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.

    Science.gov (United States)

    Choengpanya, Khuanjarat; Arthornthurasuk, Siriphan; Wattana-amorn, Pakorn; Huang, Wan-Ting; Plengmuankhae, Wandee; Li, Yaw-Kuen; Kongsaeree, Prachumporn T

    2015-11-01

    β-Xylosidases catalyze the breakdown of β-1,4-xylooligosaccharides, which are produced from degradation of xylan by xylanases, to fermentable xylose. Due to their important role in xylan degradation, there is an interest in using these enzymes in biofuel production from lignocellulosic biomass. In this study, the coding sequence of a glycoside hydrolase family 3 β-xylosidase from Aspergillus niger ASKU28 (AnBX) was cloned and expressed in Pichia pastoris as an N-terminal fusion protein with the α-mating factor signal sequence (α-MF) and a poly-histidine tag. The expression level was increased to 5.7 g/l in a fermenter system as a result of optimization of only five codons near the 5' end of the α-MF sequence. The recombinant AnBX was purified to homogeneity through a single-step Phenyl Sepharose chromatography. The enzyme exhibited an optimal activity at 70°C and at pH 4.0-4.5, and a very high kinetic efficiency toward a xyloside substrate. AnBX demonstrated an exo-type activity with retention of the β-configuration, and a synergistic action with xylanase in hydrolysis of beechwood xylan. This study provides comprehensive data on characterization of a glycoside hydrolase family 3 β-xylosidase that have not been determined in any prior investigations. Our results suggested that AnBX may be useful for degradation of lignocellulosic biomass in bioethanol production, pulp bleaching process and beverage industry. PMID:26166179

  11. Control of Acid Phosphatases Expression from Aspergillus niger by Soil Characteristics

    Directory of Open Access Journals (Sweden)

    Ely Nahas

    2015-10-01

    Full Text Available ABSTRACTThis work studied the acid phosphatase (APase activity from culture medium (extracellular, eAPase and mycelial extract (intracellular, iAPase ofAspergillus niger F111. The influence of fungus growth and phosphate concentration of the media on the synthesis and secretion of phosphatase was demonstrated. The effects of pH, substrate concentration and inorganic and organic compounds added to the reaction mixture on APase activity were also studied. Both enzymes were repressed by high concentrations of phosphate. Overexpression of iAPase in relation to eAPase was detected; iAPase activity was 46.1 times higher than eAPase. The maximal activity of eAPase was after 24h of fungus growth and for iAPase was after 96h. Optimal pH and substrate concentrations were 4.5 and 8.0 mM, respectively. Michaelis-Menten constant (Km for the hydrolysis of p-nitrophenyl phosphate was 0.57 mM with Vmax = 14,285.71 U mg-1 mycelium for the iAPase and 0.31 mM with V max = 147.06 U mg-1 mycelium for eAPase. Organic substances had little effect on acid phosphatases when compared with the salts. Both the APases were inhibited by 10 mM KH 2PO4 and 5 mM (NH42MoO4; eAPase was also inhibited by 1 mM CoCl2.

  12. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    Directory of Open Access Journals (Sweden)

    Nitsche Benjamin M

    2012-08-01

    Full Text Available Abstract Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292 of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The

  13. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance.

    Science.gov (United States)

    Monteiro, Paulo S; Guimarães, Valéria M; de Melo, Ricardo R; de Rezende, Sebastião T

    2015-03-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  14. Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Lars Poulsen

    Full Text Available Acid formation in Aspergillus niger is known to be subjected to tight regulation, and the acid production profiles are fine-tuned to respond to the ambient pH. Based on transcriptome data, putative trans-acting pH responding transcription factors were listed and through knock out studies, mutants exhibiting an oxalate overproducing phenotype were identified. The yield of oxalate was increased up to 158% compared to the wild type and the corresponding transcription factor was therefore entitled Oxalic Acid repression Factor, OafA. Detailed physiological characterization of one of the ΔoafA mutants, compared to the wild type, showed that both strains produced substantial amounts of gluconic acid, but the mutant strain was more efficient in re-uptake of gluconic acid and converting it to oxalic acid, particularly at high pH (pH 5.0. Transcriptional profiles showed that 241 genes were differentially expressed due to the deletion of oafA and this supported the argument of OafA being a trans-acting transcription factor. Furthermore, expression of two phosphoketolases was down-regulated in the ΔoafA mutant, one of which has not previously been described in fungi. It was argued that the observed oxalate overproducing phenotype was a consequence of the efficient re-uptake of gluconic acid and thereby a higher flux through glycolysis. This results in a lower flux through the pentose phosphate pathway, demonstrated by the down-regulation of the phosphoketolases. Finally, the physiological data, in terms of the specific oxygen consumption, indicated a connection between the oxidative phosphorylation and oxalate production and this was further substantiated through transcription analysis.

  15. Application of kaolin to improve citric acid production by a thermophilic Aspergillus niger.

    Science.gov (United States)

    Ali, Sikander

    2006-12-01

    Citric acid production by a thermophilic strain of the filamentous fungus Aspergillus niger IIB-6 in a medium containing blackstrap cane molasses was improved by the addition of kaolin to the fermentation medium. The fermentation was run in a 7.5-l stirred bioreactor (60% working volume). The optimal sugar concentration was found to be 150 g/l. Kaolin (1.0 ml) was added to the fermentation medium to enhance volumetric production. The best results in terms of product formation were observed when 15 parts per million (ppm) kaolin was added 24 h after inoculation. With added kaolin, citric acid production was enhanced 2.34-fold, compared to a control fermentation without added kaolin. The length of incubation to attain this product yield was shortened from 168 to 96 h. The comparison of kinetic parameters showed improved citrate synthase activity of the culture (Y (p/x)=7.046 g/g). When the culture grown at various kaolin concentrations was monitored for Q (p), Q (s), and q (p), there was significant improvement in these variables over the control. Specific production by the culture (q (p)=0.073 g/g cells/h) was improved several fold. The addition of kaolin substantially improved the enthalpy (DeltaH (D)=74.5 kJ/mol) and entropy of activation (DeltaS=-174 J/mol/K) for citric acid production, free energies for transition state formation, and substrate binding for sucrose hydrolysis. The performance of fuzzy logic control of the bioreactor was found to be very promising for an improvement ( approximately 4.2-fold) in the production of citric acid (96.88 g/l), which is of value in commercial applications. PMID:16871375

  16. Purification and characterization of methylamine oxidase induced in Aspergillus niger AKU 3302.

    Science.gov (United States)

    Frébort, I; Matsushita, K; Toyama, H; Lemr, K; Yamada, M; Adachi, O

    1999-01-01

    Crude extract of Aspergillus niger AKU 3302 mycelia incubated with methylamine showed a single amine oxidase activity band in a developed polyacrylamide gel that weakly cross-reacted with the antibody against a copper/topa quinone-containing amine oxidase (AO-II) from the same strain induced by n-butylamine. Since the organism cannot grow on methylamine and the already known quinoprotein amine oxidases of the organism cannot catalyze oxidation of methylamine, the organism was forced to produce another enzyme that could oxidize methylamine when the mycelia were incubated with methylamine. The enzyme was separated and purified from the already known two quinoprotein amine oxidases formed in the same mycelia. The purified enzyme showed a sharp symmetric sedimentation peak in analytical ultracentrifugation showing S20,w0 of 6.5s. The molecular mass of 133 kDa estimated by gel chromatography and 66.6 kDa found by SDS-PAGE confirmed the dimeric structure of the enzyme. The purified enzyme was pink in color with an absorption maximum at 494 nm. The enzyme readily oxidized methylamine, n-hexylamine, and n-butylamine, but not benzylamine, histamine, or tyramine, favorite substrates for the already known two quinoprotein amine oxidases. Inactivation by carbonyl reagents and copper chelators suggested the presence of a copper/topa quinone cofactor. Spectrophotometric titration by p-nitrophenylhydrazine showed one reactive carbonyl group per subunit and redox-cyclic quinone staining confirmed the presence of a quinone cofactor. pH-dependent shift of the absorption spectrum of the enzyme-p-nitrophenylhydrazone (469 nm at neutral to 577 nm at alkaline pH) supported the identity of the cofactor with topaquinone. Nothern blot analysis indicated that the methylamine oxidase encoding gene is largely different from the already known amine oxidase in the organism.

  17. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    Directory of Open Access Journals (Sweden)

    Paulo S. Monteiro

    2015-03-01

    Full Text Available An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE, indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The KM for sodium phytate hydrolysis was 30.9 mM, while the kcat and kcat/KM were 1.46 ×105 s−1 and 4.7 × 106s−1.M−1, respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg2+, Cd2+, K+ and Ca2+, and it was drastically inhibited by F−. The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.

  18. CONTROL OF AFLATOXIGENIC Aspergillus flavus IN PEANUTS USING NONAFLATOXIGENIC A. flavus, A. niger and Trichoderma harzianum

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    2003-01-01

    Full Text Available The effects of nontoxigenic Aspergillus flavus, A. niger and Trichoderma harzianum inoculated into planting media on toxigenic A. flavus infection and its aflatoxin production in peanut kernels at harvest were investigated together with (1 the moisture content of planting media before peanut planting, at the time of inflorescence, and at harvest, (2 the population of aflatoxigenic and nonaflatoxigenic A. flavus, A. niger and T. harzianum in peanut planting media before peanut planting, at the time of inflorescence, and at harvest, (3 the moisture content of peanut kernels at harvest, and (4 toxigenic A. flavus invasion in peanut plant parts (r oots, stems, petioles, leaves and flowers at the time of inflorescence. The fungal isolates were inoculated into planting media at the same time with the planting of peanut seeds. Peanut plants were grown under glasshouse conditions. Treated planting media were inoculated with the combined use of (1 toxigenic and nontoxigenic A. flavus, (2 toxigenic A. flavus and A. niger, and (3 toxigenic A. flavus and T. harzianum. Planting media inoculated only with each fungal isolat e and uninoculated planting media were used as controls. Two watering treatments of peanut plants were carried out, i.e. watering un til harvest and not watering for 15 days before harvest. The populations of the fungal isolates in the planting media and peanut kernels were determined using dilution method followed by pour plate method; the percentages of toxigenic A. flavus and test fungal colonizations in peanut plant parts were de termined using plating method; the moisture content of planting media and peanut kernels were determined using oven method; the aflatoxin content of peanut kernels was determined using Thin Layer Chromatography method. The results indicated that at the time of harvest the decr ease in moisture contents of planting media not watered for 15 days before harvest was higher than those watered until harvest. The

  19. In Vitro Evaluation Of Selected Plant Extracts As Biocontrol Agents Against Black Mold Aspergillus Niger Van Tieghem Of Onion Bulbs Allium Cepa L.

    OpenAIRE

    SAIFELDIN A. F. EL-NAGERABI; Awad H. M. Ahmed; ABDULKADIR E. ELSHAFIE

    2015-01-01

    Black mold disease caused by Aspergillus niger V. Tiegh. is the most devastating infection occurs in onions Allium cepa L. under field and store conditions. The use of biocontrol agents is ecofriendly approach for controlling seedborne and soilborne diseases compared to the use of toxic synthetic fungicides. This study has been designed to assess the contamination levels of onion seeds with A. niger and its effect on seed germination and to evaluate the in vitro antifungal activity of Prunus ...

  20. Comparison of glucose oxidases from Penicillium adametzii, Penicillium Funiculosum and Aspergillus Niger in the design of amperometric glucose biosensors.

    Science.gov (United States)

    Ramanavicius, Arunas; Voronovic, Jaroslav; Semashko, Tatiana; Mikhailova, Raisa; Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira

    2014-01-01

    The properties of amperometric glucose biosensors based on three different glucose oxidases and various redox mediators were evaluated. Glucose oxidases (GOx) from Penicillium adametzii, Penicillium funiculosum and Aspergillus niger and artificial redox mediators, such as ferrocene, ferrocenecarboxaldehyde, α-methylferrocene methanol and ferrocenecarboxylic acid, were used for modifying the graphite rod electrode and amperometrical reagent-less glucose detection. The obtained results were compared using N-methylphenazonium methyl sulphate in the solution. Taking into account the experimental kinetic parameters and the stability of the tested enzymatic electrodes, GOx from Penicillium funiculosum proved to be more suitable for glucose biosensor design in comparison with other evaluated enzymes. PMID:25492463

  1. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.;

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme...... and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant...

  2. Removal of Heavy Metals from Synthesis Industrial Wastewater Using Local Isolated Candida Utilis and Aspergillus Niger as Bio-Filter

    OpenAIRE

    Safaa Abd Alrasool Ali

    2013-01-01

    In this study biomass filter of Candida Utilis which isolated from food sample in Baghdad local market and Aspergillus Niger which isolated from Baghdad soil used to biosorption heavy metals from synthesis industrial wastewater. two bio-filters were designed as cylindrical Perspex with height 10cm, diameter 3cm as a shell and inside their are layers of Sponge were prepare as the size of diameter of the cylindrical filter with thickness of 2cm arrange inside it, biomass production were 6 g of ...

  3. Semi-pilot scale production of citric acid in cane molasses by gamma-ray induced mutants of Aspergillus niger

    International Nuclear Information System (INIS)

    Utilizing cane molasses as substrate, semi-pilot scale production of citric acid was investigated in fermentation trays (40 x 35 cm) with several gamma-ray induced mutants of Aspergillus niger. Of the mutants tested, two were found to have high yield efficiency (14/20, 51.06%; 79/20, 50.35%) of sugar to citric acid. The yield of other mutants (HB3, 10/20, 164/20, 277/30 and 112/40) ranged between 30 to 42%. The prospect of utilizing the high yielding mutants for commercial production of citric acid has been discussed. (author)

  4. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

    OpenAIRE

    Aliyu Salihu; Muntari Bala; Bala, Shuaibu M.

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween...

  5. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran

    OpenAIRE

    Anupama; Ravindra Pogaku

    2001-01-01

    An attempt was made to apply the solid state fermentation (SSF) for the production of single cell protein (SCP) using oil free rice bran waste as substrate. A local isolate of Aspergillus niger, was used as protein source for the studies. Total proteins were extracted to estimate the mycelial biomass from the moldy bran. Carbonate-bicarbonate extraction buffer and a pH 10 was found to be most efficient among the buffers used for the extraction of the proteins from the organism. The effect of ...

  6. Genetic and phenotypic diversity of naturally isolated wild strains of Aspergillus niger with hyper glucose oxidase production

    Directory of Open Access Journals (Sweden)

    MAHMOUD EL-HARIRI

    2015-12-01

    Full Text Available Glucose oxidase (GOx is the basic stone for many of biological industry worldwide. The improvement of GOx production basically depends on selection of hyper producer strain of Aspergillus niger. Selective isolation and screening for natural hyper producer strains of A. niger and sequence analysis of the GOD gene, which is responsible for production of the enzyme, are very effective approaches to investigate the naturally modified strains of A. niger with hyper productive capacity of GOx enzyme. The aims of the current study were selective isolation of naturally hyper GOx producing strains of A. niger and evaluation of their GOx activities under optimized parameters in the laboratory. Five wild Egyptian isolates of A. niger were screened for GOx and catalase activity using two types of modified basal liquid media. The GOx activity was evaluated by high throughout liquid phase system. The isolates showed a variable activity for GOx production ranged from 0 to 28.7 U.ml-1. One isolate coded Strain 7 was negative GOx producer on Vogel's broth medium in comparison to other isolates, while its GOx activity on Cazpek Dox was considered as positive (7.28 U.ml-1. It was concluded that GOx production is affected by three controllable factors – the basal media components, time of incubation, and the strain with its adaption to the media components‎. Also, the catalase activity was tested and it was produced with a different degree of variability, which may be reflected on GOx stability. GOD genes of these wild variant of A. niger were cloned and sequenced to determine intraspecies diversity of GOD between the wild variants. The comparison of isolated wild variants to other reference hyper GOx producer strains of A. niger was performed to determine if the GOD sequence analysis of these strains can be distinguished based on their GOx activity. This is the first report for isolation and detection of naturally A. niger hyper GOx-producer strains with

  7. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi;

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different...... and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60 +/- 0.81 KU/g DW/h in maltose-limited chemostats...... at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10 +/- 0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which...

  8. Antifungal activity of lemon, eucalyptus, thyme, oregano, sage and lavender essential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2016-01-01

    Full Text Available Today, it is very important to find out the protection of products of natural origin as an alternative to synthetic fungicides. The promising alternative is the use of the essential oils (EOs. Essential oils from plants have great potential as a new source of fungicide to control the pathogenic fungi.The main objective of this study was evaluation of the antifungal activity of lemon (Citrus lemon L., eucalyptus (Eucalyptus globulus LABILL., thyme (Thymus vulgaris L., oregano (Origanum vulgare L. sage (Salvia officinalis L. and lavender (Lavandula angustifolia MILLER. EOs against Aspergillus niger and Aspergillus tubingensis isolated from grapes and their ability to affect the growth. It was tested by using the vapor contact with them. At first both tested isolates were identified by using PCR method. Sequence data of 18S rRNA supported the assignment of these isolates to the genus Aspergillus and species A. niger (ITS region: KT824061; RPB2: KT824060 and A. tubingensis (ITS region: KT824062; RPB2: KT824059. Second, EO antifungal activity was evaluated. The effect of the EO volatile phase was confirmed to inhibit growth of A. niger and A tubingensis. EOs were diluted in DMSO (dimethyl sulfoxide final volume of 100 μL. Only 50 μL this solution was distributed on a round sterile filter paper (1 x 1 cm by micropipette, and the paper was placed in the center of the lid of Petri dishes. Dishes were kept in an inverted position. The essential oils with the most significant activity were determined by method of graded concentration of oils - minimum inhibitory doses (MIDs. The most effective tested EOs were oregano and thyme oils, which totally inhibited growth of tested isolates for all days of incubation at 0.625 μL.cm-3 (in air with MFDs 0.125 μL.cm-3 (in air. Lavender EO was less active aginst tested strains (MIDs 0.313 μL.cm-3. The results showed that the tested EOs had antifungal activity, except lemon and eucalyptus. Sage EO was the only

  9. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37 Produção e glucoamilase por Aspergillus flavus A1.1 e Thermomyces lanuginosus A13.37

    OpenAIRE

    Eleni Gomes; Simone Regina de Souza; Roseli Picolo Grandi; Roberto da Silva

    2005-01-01

    Thirteen thermophilic fungal strains were isolated from agricultural soil, tubers and compost samples in tropical Brazil. Two strains were selected based on of their ability to produce considerable glucoamylase activity while growing in liquid medium at 45ºC with starch as the only carbon source. They were identified as Aspergillus flavus A1.1 and Thermomyces lanuginosus A 13.37 Tsiklinsky. The experiment to evaluate the effect of carbon source, temperature and initial pH of the medium on enz...

  10. Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism

    OpenAIRE

    Andersen Mikael R; Lametsch Rene; Sørensen Louise M; Nielsen Per V; Frisvad Jens C

    2009-01-01

    Background: Aspergillus niger is a filamentous fungus found in the environment, on foods andfeeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium.Results: Fumonisin B2 pr...

  11. Increased resistance to 14 alpha-demethylase inhibitors (DMIs) in Aspergillus niger by coexpression of the Penicillium itulicum eburicol 14 alpha-demethylase (cyp51) and the A-niger cytochromeP450 reductase (cprA) genes

    NARCIS (Netherlands)

    Brink, van den J.M.; Nistelrooy, van J.G.M.; Waard, de M.A.; Hondel, van den C.A.M.J.J.; Gorcom, van R.F.M.

    1996-01-01

    In this paper we describe the effects of over-expression of the Penicillium italicum gene encoding eburicol 14α-demethylase (cyp51), in Aspergillus niger strains with one or multiple copies of the gene encoding cytochrome P450 reductase (cprA), on the eburicol 14α-demethylase activity. Eburicol 14α-

  12. Gluconic acid production by Aspergillus niger mutant ORS-4.410 in submerged and solid state surface fermentation.

    Science.gov (United States)

    Singh, O V; Sharma, A; Singh, R P

    2001-07-01

    Aspergillus niger ORS-4.410, a mutant of Aspergillus niger ORS-4 was produced by repeated irradiation with UV rays. Treatments with chemical mutagnes also resulted into mutant strains. The mutants differed from the parent strain morphologically and in gluconic acid production. The relationship between UV treatment dosage, conidial survival and frequency of mutation showed the maximum frequency of positive mutants (25%) was obtained along with a conidial survival of 59% after second stage of UV irradiation. Comparison of gluconic acid production of the parent and mutant ORS-4.410 strain showed a significant increase in gluconic acid production that was 87% higher than the wild type strain. ORS-4.410 strain when transferred every 15 days and monitored for gluconic acid levels for a total period of ten months appeared stable. Mutant ORS-4.410 at 12% substrate concentration resulted into significantly higher i.e. 85-87 and 94-97% yields of gluconic acid under submerged and solid state surface conditions respectively. Further increase in substrate concentration appeared inhibitory. Maximum yield of gluconic acid was obtained after 6 days under submerged condition and decreased on further cultivation. Solid state surface culture condition on the other hand resulted into higher yield after 12 days of cultivation and similar levels of yields continued thereafter.

  13. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    Science.gov (United States)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  14. Review of secondary metabolites and mycotoxins from the Aspergillus niger group

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Mogensen, Jesper Mølgaard; Johansen, Maria;

    2009-01-01

    (excluding A. aculeatus and its close relatives) from which currently 145 different secondary metabolites have been isolated and/or detected. From a human and animal safety point of view, the mycotoxins ochratoxin A (from A. carbonarius and less frequently A. niger) and fumonisin B2 (from A. niger...

  15. Production of Fumonisin B-2 and B-4 by Aspergillus niger on Grapes and Raisins

    DEFF Research Database (Denmark)

    Mogensen, Jesper Mølgaard; Frisvad, Jens Christian; Thrane, Ulf;

    2010-01-01

    on grapes and raisins. Sixty-six A. niger, 4 A. tubingensis, and 16 A. acidus strains isolated from raisins were tested for fumonisin production on laboratory media. Neither A. tubingensis nor A. acidus strains produced fumonisins, but 77% of A. niger strains did. None of the strains produced ochratoxin A...

  16. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process.

    Science.gov (United States)

    Vakilchap, F; Mousavi, S M; Shojaosadati, S A

    2016-10-01

    Annual worldwide growth rate of red mud (RM) as a hazardous waste has caused serious environmental problems for its disposal in the mining and metallurgy industries. Accordingly, the aim of this study was to investigate biological leaching of RM and recovery of metals using organic acids exerted by Aspergillus niger. Experiments using A. niger were conducted in batch cultures with a pulp density of 2% (w/v) RM under one-step, two-step and spent-medium bioleaching. Based on HPLC results, the major lixiviant was the secretion of organic acids (citric, gluconic, oxalic and malic) by A. niger. Leaching efficiency of metals in the one-step process was the highest and the amounts of leached metals were 69.8%, 60% and 25.4% for Al, Ti and Fe, respectively. The fungal leaching technique demonstrated an adequate recovery of metals, with an efficient and cost-effective means and respect to a reuse of RM for economic and environmental purposes.

  17. Enhanced hexadecane degradation and low biomass production by Aspergillus niger exposed to an electric current in a model system.

    Science.gov (United States)

    Velasco-Alvarez, Nancy; González, Ignacio; Damian-Matsumura, Pablo; Gutiérrez-Rojas, Mariano

    2011-01-01

    The effects of an electric current on growth and hexadecane (HXD) degradation by Aspergillus niger growth were determined. A 450-mL electrochemical cell with titanium ruthenium-oxide coated electrodes and packed with 15 g of perlite (inert biomass support) was inoculated with A. niger (2.0×10(7) spores (g of dry inert support)(-1)) and incubated for 12 days (30 °C; constant ventilation). 4.5 days after starting culture a current of 0.42 mA cm(-2) was applied for 24h. The current reduced (52±11%) growth of the culture as compared to that of a culture not exposed to current. However, HXD degradation was 96±1.4% after 8 days whereas it was 81±1.2% after 12 days in control cultures. Carbon balances of cultures not exposed to current suggested an assimilative metabolism, but a non-assimilative metabolism when the current was applied. This change can be related to an increase in total ATP content. The study contributes to the knowledge on the effects of current on the mycelial growth phase of A. niger, and suggests the possibility of manipulating the metabolism of this organism with electric current. PMID:20739180

  18. Submerged culture for production of ellagic acid from pomegranate husk by Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    L. Sepúlveda

    2014-01-01

    Full Text Available El ácido elágico es un compuesto bioactivo derivado de la hidrólisis de los elagitaninos. El ácido elágico tiene importantes aplicaciones en la industria de alimentos, farmacéutica y cosmética, debido a que presenta propiedades biológicas benéficas. El ácido elágico se obtiene de diferentes fuentes, tales como bayas de frutas, plantas del semi-desierto, y corteza de encinos. La cáscara de granada contiene una gran proporción de elagitaninos, los cuales pueden ser biotransformados en ácido elágico mediante bioprocesos fúngicos, aunque no existe producción biotecnológica industrial. El objetivo de este trabajo fue encontrar las condiciones apropiadas para la producción de ácido elágico por Aspergillus niger GH1 en cultivo sumergido, a partir del polvo de cáscara de granada. Se utilizó un diseño Box-Bhenken para estudiar la influencia de los factores de cultivo sobre la producción de ácido elágico. La mayor producción de ácido elágico fue de 21.19 mg g -1 de cáscara de granada en polvo. El sustrato y el pH influyeron directamente sobre la producción de ácido elágico. Se observó un consumo constante durante la cinética de taninos hidrolizables (elagitaninos presentes en el sustrato. La máxima acumulación de proteínas se alcanzó a las 24 h, lo cual se puede asociar con la actividad de algunas enzimas presentes en el cultivo. Las mejores condiciones de producción de ácido elágico en cultivo sumergido fueron: una concentración de sustrato de 7.5 g L -1 , pH 5.5, y una agitación de 150 rpm. El sistema desarrollado representa una alternativa para la producción de ácido elágico a gran escala.

  19. Aborto por Aspergillus fumigatus e A. niger em bovinos no sul do Brasil

    Directory of Open Access Journals (Sweden)

    Corbellini Luís G.

    2003-01-01

    Full Text Available As infecções micóticas apresentam distribuição mundial e podem causar placentite e aborto em diversas espécies de animais. Entre setembro 2001 e novembro 2002, foram processados no Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 147 fetos bovinos abortados com o objetivo de avaliar as principais causas de aborto infeccioso bovino no sul do Brasil. Destes, 34 estavam acompanhados da placenta. Aborto micótico foi diagnosticado em cinco casos (3,4% mediante cultivo puro de quatro amostras de Aspergillus fumigatus e uma de A. niger associado a lesões histológicas características de fungo. Os exames virológico, bacteriológico e imunofluorescência direta para Leptospira sp foram negativos nestes casos. A idade dos fetos variava entre 5 e 8 meses de idade. Lesões macroscópicas foram observadas em quatro casos e eram caracterizadas por áreas circulares multifocais branco-acinzentadas na pele, principalmente na região da cabeça e dorso, em dois fetos, lesões nodulares no fígado em um caso e espessamento dos cotilédones em duas placentas enviadas juntamente com os fetos. Lesões histológicas foram observadas principalmente no fígado, pulmão e placenta, caracterizadas por hepatite necrótica multifocal, broncopneumonia supurativa e placentite necrótica. Através da coloração de Grocott hifas septadas foram observadas em duas placentas e nas bordas das lesões necróticas no fígado de um feto. Em dois casos hifas foram observadas somente na placenta e não no feto, salientando-se a importância deste tecido para o diagnóstico de aborto micótico bovino.

  20. Stabilizing Effect of Various Polyols on the Native and the Denatured States of Glucoamylase

    Directory of Open Access Journals (Sweden)

    Mohammed Suleiman Zaroog

    2013-01-01

    Full Text Available Different spectral probes were employed to study the stabilizing effect of various polyols, such as, ethylene glycol (EG, glycerol (GLY, glucose (GLC and trehalose (TRE on the native (N, the acid-denatured (AD and the thermal-denatured (TD states of Aspergillus niger glucoamylase (GA. Polyols induced both secondary and tertiary structural changes in the AD state of enzyme as reflected from altered circular dichroism (CD, tryptophan (Trp, and 1-anilinonaphthalene-8-sulfonic acid (ANS fluorescence characteristics. Thermodynamic analysis of the thermal denaturation curve of native GA suggested significant increase in enzyme stability in the presence of GLC, TRE, and GLY (in decreasing order while EG destabilized it. Furthermore, CD and fluorescence characteristics of the TD state at 71°C in the presence of polyols showed greater effectiveness of both GLC and TRE in inducing native-like secondary and tertiary structures compared to GLY and EG.

  1. Aspergillus niger mstA encodes a high affinity sugar/H+ symporter which is regulated in persponse to extracellular pH

    NARCIS (Netherlands)

    Kuyk, van P.A.; Diderich, J.A.; MacCabe, A.P.; Hererro, O.; Ruijter, G.J.G.; Visser, J.

    2004-01-01

    A sugar-transporter-encoding gene, mstA, which is a member of the major facilitator superfamily, has been cloned from a genomic DNA library of the filamentous fungus Aspergillus niger. To enable the functional characterization of MSTA, a full-length cDNA was expressed in a Saccharomyces cerevisiae s

  2. Phosphate solubilization and promotion of maize growth in a calcareous soil by penicillium oxalicum P4 and aspergillus niger P85

    Science.gov (United States)

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere as the over-application of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in C...

  3. Aspergillus niger protein estA defines a new class of fungal esterases within the alfa/beta hydrolase fold superfamily of proteins

    NARCIS (Netherlands)

    Bourne, Y.; Hasper, A.A.; Chahinian, H.; Juin, M.; Graaff, de L.H.

    2004-01-01

    From the fungus Aspergillus niger, we identified a new gene encoding protein EstA, a member of the alpha/beta-hydrolase fold superfamily but of unknown substrate specificity. EstA was overexpressed and its crystal structure was solved by molecular replacement using a lipaseacetylcholinesterase chime

  4. Variation in fumonisin and ochratoxin production associated with differences in biosynthetic gene content in Aspergillus niger and A. welwitschiae isolates from multiple crop and geographic origins

    Science.gov (United States)

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both specie...

  5. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes

    NARCIS (Netherlands)

    Battaglia, Evy; Zhou, M.; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. H

  6. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of D-galacturonic acid from pectin

    NARCIS (Netherlands)

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E; Peng, Mao; Aguilar Pontes, Maria Victoria; van Kan, Jan A L; Visser, Jaap; de Vries, Ronald P; Ram, Arthur F J

    2016-01-01

    We identified the D-galacturonic acid (GA) responsive transcriptional activator GaaR of the saprotrophic fungus Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression analy

  7. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin

    NARCIS (Netherlands)

    Alazi, Ebru; Niu, Jing; Kowalczyk, Joanna E.; Peng, Mao; Aguilar Pontes, Maria Victoria; Kan, Van Jan A.L.; Visser, Jaap; Vries, De Ronald P.; Ram, Arthur F.J.

    2016-01-01

    We identified the d-galacturonic acid (GA)-responsive transcriptional activator GaaR of the saprotrophic fungus, Aspergillus niger, which was found to be essential for growth on GA and polygalacturonic acid (PGA). Growth of the ΔgaaR strain was reduced on complex pectins. Genome-wide expression anal

  8. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles

    NARCIS (Netherlands)

    Yuan, X.-L.; Kaaij, R.M. van der; Hondel, C.A.M.J.J. van den; Punt, P.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.; Ram, A.F.J.

    2008-01-01

    The filamentous ascomycete Aspergillus niger is well known for its ability to produce a large variety of enzymes for the degradation of plant polysaccharide material. A major carbon and energy source for this soil fungus is starch, which can be degraded by the concerted action of α-amylase, glucoamy

  9. The role of the Aspergillus niger furin-type protease gene in processing of fungal proproteins and fusion proteins: Evidence for alternative processing of recombinant (fusion-) proteins

    NARCIS (Netherlands)

    Punt, P.J.; Drint-Kuijvenhoven, A.; Lokman, B.C.; Spencer, J.A.; Jeenes, D.; Archer, D.A.; Hondel, C.A.M.J.J. van den

    2003-01-01

    We have characterized growth and protein processing characteristics of Aspergillus niger strains carrying a disrupted allele of the previously cloned and characterized kexB gene [Appl. Environ. Microbiol. 66 (2000) 363] encoding a furin-type endoprotease. Deletion of the single-copy gene confirms it

  10. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  11. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    Science.gov (United States)

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  12. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus.

    Science.gov (United States)

    Almeida, E J R; Corso, C R

    2014-10-01

    Azo dyes are an important class of environmental contaminants and are characterized by the presence of one or more azo bonds (-N=N-) in their molecular structure. Effluents containing these compounds resist many types of treatments due to their molecular complexity. Therefore, alternative treatments, such as biosorption and biodegradation, have been widely studied to solve the problems caused by these substances, such as their harmful effects on the environment and organisms. The aim of the present study was to evaluate biosorption and biodegradation of the azo dye Procion Red MX-5B in solutions with the filamentous fungi Aspergillus niger and Aspergillus terreus. Decolorization tests were performed, followed by acute toxicity tests using Lactuca sativa seeds and Artemia salina larvae. Thirty percent dye removal of the solutions was achieved after 3 h of biosorption. UV-Vis spectroscopy revealed that removal of the dye molecules occurred without major molecular changes. The acute toxicity tests confirmed lack of molecular degradation following biosorption with A. niger, as toxicity to L. sativa seed reduced from 5% to 0%. For A. salina larvae, the solutions were nontoxic before and after treatment. In the biodegradation study with the fungus A. terreus, UV-Vis and FTIR spectroscopy revealed molecular degradation and the formation of secondary metabolites, such as primary and secondary amines. The biodegradation of the dye molecules was evaluated after 24, 240 and 336 h of treatment. The fungal biomass demonstrated considerable affinity for Procion Red MX-5B, achieving approximately 100% decolorization of the solutions by the end of treatment. However, the solutions resulting from this treatment exhibited a significant increase in toxicity, inhibiting the growth of L. sativa seeds by 43% and leading to a 100% mortality rate among the A. salina larvae. Based on the present findings, biodegradation was effective in the decolorization of the samples, but generated

  13. Produção de celulases por Aspergillus niger e cinética da desativação celulásica=Cellulases production by Aspergillus niger and cellulase deactivation kinetic

    Directory of Open Access Journals (Sweden)

    Caroline Mariana de Aguiar

    2011-10-01

    Full Text Available O presente trabalho teve como objetivo a avaliação da cinética de produção de enzimas celulases pelo fungo Aspergillus niger e da cinética de desativação das celulases. Foi utilizado bagaço de cana-de-açúcar pré-tratado como fonte de carbono na fermentação para a produção do complexo celulásico e também como substrato da hidrólise enzimática. A. niger foi cultivado em três bateladas, cada uma contendo 10, 50 e 100 g L-1 de bagaço pré-tratado com NaOH 4% (m v-1. A cinética da produção das celulases foi obtida determinando-se a atividade enzimática das amostras coletadas ao longo do tempo. As variações do pH também foram determinadas. A deativação enzimática foi avaliada determinando-se periodicamente a atividade das amostras armazenadas nas condições de resfriamento (4°C e de congelamento (-18ºC. Conclui-se que o A. niger produz celulases quando cultivado em meio de cultivo contendo bagaço de cana-de-açúcar pré-tratado e que o tempo ideal para coleta do caldo enzimático foi de aproximadamente sete dias, com produtividade máxima de 0,0013 U mL-1∙h para a batelada com 10 g L-1 e 0,0018 U mL-1∙h para as bateladas com 50 e 100 g L-1. O complexo celulásico não sofre desativação se armazenado à temperatura de -18°C por 43 dias, mas perde cerca de 40% da sua atividade após 48h se armazenado a 4°C.This work aimed to evaluate the kinetic for the cellulase production by Aspergillus niger and the deactivation kinetic of the cellulase enzymes. Cellulase were produced in three different batches using NaOH 4% (w v-1 pre-treated sugarcane bagasse as the carbon source in the fermentation broth. The amount of the bagasse in each batch was 10, 50 and 100 g L-1. The kinetic of the cellulase production was accomplished by periodically determining the cellulasic activity of the fermentation broth using pre-treated bagasse as the hydrolysis substrate. Changes in the pH also were determined. The cellulase

  14. Influência da glicose sobre o consumo de fenol por Aspergillus niger an 400 em reatores em batelada The influence of glucose on the phenol consumption by Aspergillus niger an 400 in batch reactors

    OpenAIRE

    Kelly de Araújo Rodrigues; Glória Maria Marinho S. Sampaio; Marcelo Zaiat; Sandra Tédde Santaella

    2007-01-01

    Aspergillus niger AN 400 foi inoculado em reatores em batelada para remoção de fenol de meio sintético, na presença e ausência de glicose. O experimento possuía: 5 reatores de controle (grupo 1) com meio contento apenas fenol; 5 reatores (grupo 2) inoculados com fungos e com meio com fenol e sem glicose; e 5 reatores (grupo 3) inoculados com fungos e com meio com fenol e glicose (5 g/L). Os reatores foram agitados a 200 rpm, a 30°C, durante 5 dias. A concentração média inicial de fenol foi de...

  15. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    Science.gov (United States)

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  16. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    Directory of Open Access Journals (Sweden)

    Shazia Rehman

    2014-12-01

    Full Text Available Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE, in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase using a novel substrate, Banana Peels (BP for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  17. [Effect of alcoholic extracts of wild plants on the inhibition of growth of Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme and Fusarium poae moulds].

    Science.gov (United States)

    Tequida-Meneses, Martín; Cortez-Rocha, Mario; Rosas-Burgos, Ema Carina; López-Sandoval, Susana; Corrales-Maldonado, Consuelo

    2002-06-01

    Fungicidal activity of wild plants Larrea tridentata, Karwinskia humboldtiana, Ricinus communis, Eucalyptus globulus, Ambrosia ambrosioides, Nicotiana glauca, Ambrosia confertiflora, Datura discolor, Baccharis glutinosa, Proboscidea parviflora, Solanum rostratum, Jatropha cinerea, Salpianthus macrodonthus y Sarcostemma cynanchoides was evaluated against the moulds species Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium poae y Fusarium moniliforme moulds species. Alcoholic extracts 6% (w/v) were prepared using six grams of dried plant powders (leaves and stems) and alcohol (70% ethanol or 70% methanol). A spore suspension (1x10(6); ufc/ml) of each mould was prepared by adding saline solution (0.85%) and 0.1% tween 80. The extracts were mixed with Czapeck yeast agar (CYA) at 45-50 degrees C in 1:10 relation on Petri dishes. Triplicate Petri dishes of each treatment and for each mould were centrally inoculated and three Petri dishes were used without treatment as controls. The inoculated dishes and controls were incubated at 25 +/- 2 degrees C for eight days. The incubated dishes were examined each 48 h and after the colony diameter (radial growth) was measured. Two mould species were controlled by L. tridentata, B. glutinosa and P. parviflora. Extracts of L. tridentata in methanol or ethanol at 41.5-100% inhibited all six species of moulds.

  18. Sugarcane molasses and yeast powder used in the Fructooligosaccharides production by Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611.

    Science.gov (United States)

    Dorta, Claudia; Cruz, Rubens; de Oliva-Neto, Pedro; Moura, Danilo José Camargo

    2006-12-01

    Different concentrations of sucrose (3-25% w/v) and peptone (2-5% w/v) were studied in the formulation of media during the cultivation of Aspergillus japonicus-FCL 119T and Aspergillus niger ATCC 20611. Moreover, cane molasses (3.5-17.5% w/v total sugar) and yeast powder (1.5-5% w/v) were used as alternative nutrients for both strains' cultivation. These media were formulated for analysis of cellular growth, beta-Fructosyltransferase and Fructooligosaccharides (FOS) production. Transfructosylating activity (U ( t )) and FOS production were analyzed by HPLC. The highest enzyme production by both the strains was 3% (w/v) sucrose and 3% (w/v) peptone, or 3.5% (w/v) total sugars present in cane molasses and 1.5% (w/v) yeast powder. Cane molasses and yeast powder were as good as sucrose and peptone in the enzyme and FOS (around 60% w/w) production by studied strains. PMID:16835781

  19. A NOVEL STRAIN OF Aspergillus niger PRODUCING A COCKTAIL OF HYDROLYTIC DEPOLYMERISING ENZYMES FOR THE PRODUCTION OF SECOND GENERATION BIOFUELS

    Directory of Open Access Journals (Sweden)

    Namita Bansal

    2011-02-01

    Full Text Available The screening and isolation of fungi producing a cocktail of hydrolytic enzymes was studied. Among the various isolates obtained from different soil samples, a strain NS-2 was selected. The phylogenetic analysis of this strain showed highest homology (99% with Aspergillus niger. It was capable of producing cellulolytic, hemicellulolytic, amylolytic, and pectinolytic enzymes in appreciable titers on wheat bran based liquid and solid state media. The mixture of enzymes produced by this organism could effectively hydrolyze various domestic waste residues, revealing conversion efficiencies of 89 to 92% and produced high reducing sugar yields of 0.48 to 0.66 g/g of dry residue. This enzyme cocktail could potentially find a significant application in the conversion of agricultural and other waste residues having cellulose, hemicellulose, starch, and pectin as carbohydrates to produce simpler sugars which can be fermented for the production of second generation biofuels.

  20. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications. PMID:26724553

  1. Caracterización de la biomasa inactiva de Aspergillus niger O-5 como sorbente de Pb (II

    Directory of Open Access Journals (Sweden)

    Yusleydi Enamorado Horrutiner

    2011-01-01

    Full Text Available The inactive biomass of fungus Aspergillus niger O-5 obtained in Cuba was characterized as sorbent of Pb2+ by several structural analysis and others techniques. In addition, the biomass was studied for the separation / preconcentration of Pb2+ from aqueous solution. The maximum biosorption capacity was obtained for the contact time of 30 min and pH 5. The kinetic of sorption process occurred according to the model of Ho. The Freundlich or Langmuir models suitably described the experimental adsorption isotherms. The biomass can be used as sorbent for Pb2+ with a maximum capacity of 4.7 - 6.2 mg g-1. The pretreatment with NaOH solution improved its sorption capacity.

  2. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

    Science.gov (United States)

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M.

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology. PMID:25937979

  3. Bio sorption of Reactive Dye from Textile Wastewater by Non-viable Biomass of Aspergillus niger and Spirogyra sp

    International Nuclear Information System (INIS)

    The Potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a bio sorbents for removal of reactive dye (Synazol) from its multi-component textile wastewater. Pre-treatment of fungal and algal biomass with autoclaving increased the removal of dye more than that pre-treated with gamma-irradiation. The heat dried autoclaved biomass for the 2 organisms exhibited maximum dye removal at ph 3, temperature 30 degree C and 8 g/l (w/v) biomass conc. after 18 h contact time. The results showed that the non-viable biomass possessed high stability and efficiency of dye removal over 3 repeated batches

  4. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications.

  5. Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting.

    Science.gov (United States)

    Nasir, Nurfarahana Mohd; Bakar, Nur Syuhada Abu; Lananan, Fathurrahman; Abdul Hamid, Siti Hajar; Lam, Su Shiung; Jusoh, Ahmad

    2015-08-01

    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.

  6. Biochemical characterization of N-methyl N' -nitro-N-nitrosoguanidine-induced cadmium resistant mutants of Aspergillus niger

    Indian Academy of Sciences (India)

    Samar Kumar Pal; Tapan Kumar Das

    2005-12-01

    Two cadmium resistant mutants (Cd1 and Cd2) of Aspergillus niger, among the six isolated by mutagenization with N-methyl N′-nitro-N-nitrosoguanidine (MNNG) at pH 6.4 were selected for the study. Analysis of lipid composition of the mutants and the wildtype indicated that total lipid as well as individual lipids of the cadmium resistant mutants were changed as compared with that of the wildtype. The increased activities of metal-lothionein and reduced activities of D-xylose isomerase and L-phenylalanine ammonia lyase in cell free extract of the cadmium resistant mutants suggested that mutants could allow high concentration of cadmium salt as compared with that of the wildtype. The respiratory activity and intracellular as well as extracellular Cd2+ concentration of the mutants reflected the high tolerance of the Cd mutants to cadmium ion.

  7. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran

    Directory of Open Access Journals (Sweden)

    Anupama

    2001-01-01

    Full Text Available An attempt was made to apply the solid state fermentation (SSF for the production of single cell protein (SCP using oil free rice bran waste as substrate. A local isolate of Aspergillus niger, was used as protein source for the studies. Total proteins were extracted to estimate the mycelial biomass from the moldy bran. Carbonate-bicarbonate extraction buffer and a pH 10 was found to be most efficient among the buffers used for the extraction of the proteins from the organism. The effect of supplementation by various sources of nitrogen and mineral solution on the final biomass yield was compared. The influence of C/N ratio on the protein yield was also studied. Sodium nitrate at C/N ratio of 1.387 was found to be an effective nitrogen-supplementing source, as it gave the higher biomass yield.

  8. Optimization of the integrated citric acid-methane fermentation process by air stripping and glucoamylase addition.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Wang, Ke; Tang, Lei; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2015-03-01

    To solve the problem of extraction wastewater in citric acid industry, an integrated citric acid-methane fermentation process was proposed. In the integrated process, extraction wastewater was treated by mesophilic anaerobic digestion and then reused to make mash for the next batch of citric acid fermentation. In this study, an Aspergillus niger mutant strain exhibiting resistance to high metal ions concentration was used to eliminate the inhibition of 200 mg/L Na(+) and 300 mg/L K(+) in anaerobic digestion effluent (ADE) and citric acid production increased by 25.0 %. Air stripping was used to remove ammonium, alkalinity, and part of metal ions in ADE before making mash. In consequence, citric acid production was significantly improved but still lower by 6.1 % than the control. Results indicated that metal ions in ADE synergistically inhibited the activity of glucoamylase, thus reducing citric acid production. When 130 U/g glucoamylase was added before fermentation, citric acid production was 141.5 g/L, which was even higher than the control (140.4 g/L). This process could completely eliminate extraction wastewater discharge and reduce water resource consumption.

  9. Expression of acid protease from Aspergillus kawachii in Aspergillus niger%白曲霉酸性蛋白酶在黑曲霉中表达

    Institute of Scientific and Technical Information of China (English)

    李杰; 吴婷; 马南; 王欣; 杨建乐; 李健友; 张会

    2016-01-01

    's genome sequence of Aspergillus kawachii and encoding protein was 100% similar to acid protease of Aspergillus kawachii, and it was named as pepB. Furthermore Aspergilluse niger expression vector pSZHG-pepB was constructed and the homozygous transformation of homologous recombination at the glaA site was selected by Agrobacterium mediated transformation of Aspergillus niger CICC2462 By shaking flask fermentation, the product was studied by SDS-PAGE and the activity was detected, acid protease's characterization and stabilitywas studied. Experimental results showed that the pure homologous recombination strains had about 47 ku protein band which was found by SDS-PAGE and acid protease activity of fermentation product was 5 543 U·mL-1 which is 152 times of the activity of starting strain. By studying the acid protease's characterization and stability of this strain, we found that the enzyme optimum reaction temperature is 50℃, the optimal pH was 3.0, what's more, enzyme activity is stable when the pH is between 3.0 and 4.0 meanwhile the temperature is 4 ℃ or 25℃.

  10. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    International Nuclear Information System (INIS)

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli

  11. The correlation between mannanase and cellulase activities towards fibre content of palm oil sludge fermented with Aspergillus niger

    Directory of Open Access Journals (Sweden)

    T. Purwadaria

    1998-12-01

    Full Text Available Enzyme (mannanase and cellulase activities and fibre (hemicellulose, cellulose and lignin contents were determined during the fermentation course of palm oil sludge with Aspergillus niger TL (wild type and A. niger ES I (an asporogenous mutant. The analyses were carried out at the incubation time of 3 and 4 days of aerobic fennentation and at 2 days of anaerobic fermentation afterward. The correlations between mamlanase activity with hemicellulose content and cellulose activity with cellulose content were calculated by linear regression . The activities of matutanase and cellulase are increasing during the aerobic fennentation, while in the anaerobic fennentation the enzyme activities are decreasing due to instability of the enzymes. The enzyme activities of ESI are higher than the TL. The regression coefficient is highly significant for correlation between mamlanase and hemicellulose content of fermented product by ESI (r = 0.83; P0 .05 . Marutanase and cellulase activities were also detected after the fermented product dried at 60°C which indicated the enzymes are quite stable .

  12. In vitro and in vivo antifungal activity of Cassia surattensis flower against Aspergillus niger.

    Science.gov (United States)

    Sumathy, Vello; Zakaria, Zuraini; Jothy, Subramanion L; Gothai, Sivapragasam; Vijayarathna, Soundararajan; Yoga Latha, Lachimanan; Chen, Yeng; Sasidharan, Sreenivasan

    2014-12-01

    Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.

  13. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Woon, J. S. K., E-mail: jameswoon@siswa.ukm.edu.my; Murad, A. M. A., E-mail: munir@ukm.edu.my; Abu Bakar, F. D., E-mail: fabyff@ukm.edu.my [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  14. Growth Kinetics and Mechanistic Action of Reactive Oxygen Species Released by Silver Nanoparticles from Aspergillus niger on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Shivaraj Ninganagouda

    2014-01-01

    Full Text Available Silver Nanoparticles (AgNPs, the real silver bullet, are known to have good antibacterial properties against pathogenic microorganisms. In the present study AgNPs were prepared from extracellular filtrate of Aspergillus niger. Characterization of AgNPs by UV-Vis spectrum reveals specific surface plasmon resonance at peak 416 nm; TEM photographs revealed the size of the AgNPs to be 20–55 nm. Average diameter of the produced AgNPs was found to be 73 nm with a zeta potential that was −24 mV using Malvern Zetasizer. SEM micrographs showed AgNPs to be spherical with smooth morphology. EDS revealed the presence of pure metallic AgNPs along with carbon and oxygen signatures. Of the different concentrations (0, 2.5, 5, 10, and 15 μg/mL used 10 μg/mL were sufficient to inhibit 107 CFU/mL of E. coli. ROS production was measured using DCFH-DA method and the the free radical generation effect of AgNPs on bacterial growth inhibition was investigated by ESR spectroscopy. This paper not only deals with the damage inflicted on microorganisms by AgNPs but also induces cell death through the production of ROS released by AgNPs and also growth kinetics of E. coli supplemented with AgNPs produced by A. niger.

  15. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger

    Science.gov (United States)

    2014-01-01

    Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared. PMID:24949267

  16. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    Science.gov (United States)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  17. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  18. Efeito da toxicidade de Cr (VI e Zn (II no crescimento do fungo filamentoso Aspergillus niger isolado de efluente industrial Toxicity effect of Cr (VI and Zn (II on growth of filamentous fungi Aspergillus niger isolated from industrial effluent

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Vale

    2011-09-01

    Full Text Available Processos convencionais de tratamento de efluentes utilizam microrganismos vivos, o que sugere limitações relativas À toxicidade de metais para os microrganismos. O experimento consistiu em adicionar soluções monoelementares de Cr (VI e Zn(II em diferentes concentrações (0, 20, 50, 100, 200, 300, 400, 500 mg.L-1 ao meio de crescimento e observar a influência dos metais no crescimento micelial e germinativo do fungo Aspergillus Níger por verificação visual da expansão radial do micélio e da germinação de esporos, seguida de registro fotográfico. Os resultados mostraram que o metabolismo do fungo foi completamente inibido em concentrações acima de 500 mg Zn (II.L-1 e 150 mg Cr (VI.L-1. O ED50 (concentração de ingrediente ativo capaz de inibir 50% do crescimento micelial do fungo para os dois íons metálicos, nas condições estudadas, está na faixa entre 100 e 150 mg.L-1. Palavras-chave: metais pesados; inibição; crescimento micelial; Aspergillus niger; ED50.Many standard processes of wastewater treatment use live microorganisms, which suggests limitations on a metal toxicity to the microorganism. The experiment consisted in adding mono elementary solutions of Cr (VI and Zn (II at different concentrations (0, 20, 50, 100, 200, 300, 400, 500 mg.L-1 to the growth mean, and to observe the influence of metals on mycelial and germinative growth of the Aspergillus niger fungus, by means of visual observation of the radial expansion of the mycelius and the germination of spores, followed by photograph registration. The results showed that the metabolism of the fungus was completely inhibited at concentrations above 500 mg Zn (II.L-1 and 150 mg Cr (VI.L-1. The ED50 (concentration of active ingredient capable of inhibiting 50% of mycelial growth of the fungus for both metal ions, under the studied conditions, is in the range between 100 and 150 mg.L-1.

  19. Expression of soluble human tumor necrosis factor receptor Ⅰ in Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The cDNA of soluble human tumor necrosis factor receptorⅠ(sTNFRI) was inserted into fusion-protein expression plasmid pIGF of A. niger to construct fusion expression vector pHBC containing a KEX2 like protein processing site designed on the fusion position. Extracellular protease-deficient strain of A. niger 3.795-1-23 was transformed with pHBC. Positive clone was estimated by Southern hybridization. SDS-PAGE for protein produced by re-combinant strain showed the distinctive expression band. Western blotting indicated that the secreted protein had immunoactivity of sTNFRI.

  20. Purification and characterization of a chlorogenic acid hydrolase from Aspergillus niger catalysing the hydrolysis of chlorogenic acid.

    Science.gov (United States)

    Asther, Michèle; Estrada Alvarado, Maria Isabel; Haon, Mireille; Navarro, David; Asther, Marcel; Lesage-Meessen, Laurence; Record, Eric

    2005-01-12

    Among 15 Aspergillus strains, Aspergillus niger BRFM 131 was selected for its high chlorogenic acid hydrolase activity. The enzyme was purified and characterized with respect to its physico-chemical and kinetic properties. Four chromatographic steps were necessary to purify the protein to homogeneity with a recovery of 2%. Km of the chlorogenic acid hydrolase was estimated to be 10 microM against chlorogenic acid as substrate. Under native conditions, the protein presented a molecular mass of 170 kDa, and SDS-PAGE analysis suggested the presence of two identical 80 kDa subunits. Isoelectric point was 6.0; pH optimum for activity was determined to be 6.0 and temperature optima to be 55 degrees C. The N-terminal sequence did not present any homology with other cinnamoyl ester hydrolases previously described suggesting the purification of a new protein. The chlorogenic acid hydrolase was used successfully for the production of caffeic acid, which possesses strong antioxidant properties, from natural substrates specially rich in chlorogenic acid like apple marc and coffee pulp.

  1. Asperpyrone-Type Bis-Naphtho-γ-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger.

    Science.gov (United States)

    Fang, Wei; Lin, Xiuping; Wang, Jianjiao; Liu, Yonghong; Tao, Huaming; Zhou, Xuefeng

    2016-01-01

    Bis-naphtho-γ-pyrones (BNPs) are an important group of aromatic polyketides derived from fungi, and asperpyrone-type BNPs are produced primarily by Aspergillus species. The fungal strain Aspergillus niger SCSIO Jcsw6F30, isolated from a marine alga, Sargassum sp., and identified according to its morphological traits and the internal transcribed spacer (ITS) region sequence, was studied for BNPs secondary metabolisms. After HPLC/MS analysis of crude extract of the fermentation broth, 11 asperpyrone-type BNPs were obtained directly and quickly by chromatographic separation in the extract, and those isolated asperpyrone-type BNPs were structurally identified by NMR and MS analyses. All of the BNPs showed weak cytotoxicities against 10 human tumor cells (IC50 > 30 μM). However, three of them, aurasperone F (3), aurasperone C (6) and asperpyrone A (8), exhibited obvious COX-2-inhibitory activities, with the IC50 values being 11.1, 4.2, and 6.4 μM, respectively. This is the first time the COX-2-inhibitory activities of BNPs have been reported. PMID:27447606

  2. Involvement of the opportunistic pathogen Aspergillus tubingensis in osteomyelitis of the maxillary bone : a case report

    NARCIS (Netherlands)

    Bathoorn, Erik; Salazar, Natalia Escobar; Sepehrkhouy, Shahrzad; Meijer, Martin; de Cock, Hans; Haas, Pieter-Jan

    2013-01-01

    Background: Aspergillus tubingensis is a black Aspergillus belonging to the Aspergillus section Nigri, which includes species that morphologically resemble Aspergillus niger. Recent developments in species determination have resulted in clinical isolates presumed to be Aspergillus niger being reclas

  3. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    Science.gov (United States)

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  4. Characterization of β-Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose

    OpenAIRE

    Anderson Baraldo Junior; Borges, Diogo G.; Tardioli, Paulo W.; Farinas, Cristiane S.

    2014-01-01

    β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger culti...

  5. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    OpenAIRE

    F. Veana; J.L. Martínez-Hernández; Aguilar, C. N.; Rodríguez-Herrera, R.; G. Michelena

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemi...

  6. Hydrolysis of cellobiose by β-glucosidase from Aspergillus niger in the presence of soil solid phases: minerals, biochar, and activated carbon

    OpenAIRE

    Lammirato, Carlo

    2012-01-01

    This study investigates the effects of different soil solid phases on the extracellular enzymatic hydrolysis of cellobiose to glucose. Montmorillonite, kaolinite, goethite and wood char did not adsorb cellobiose whereas they adsorbed 10, 70, 70, 99 % respectively of β-glucosidase from Aspergillus niger. The hydrolysis rate decreased with increasing enzyme adsorption; wood char, for instance, reduced it by 30 %. Activated carbon adsorbed almost 100 % of both cellobiose and β-glucosidase and in...

  7. Expression and secretion in Aspergillus nidulans and Aspergillus niger of a cell surface glycoprotein from the cattle tick, Boophilus microplus, by using the fungal amdS promoter system.

    OpenAIRE

    Turnbull, I F; Smith, D R; Sharp, P. J.; Cobon, G S; Hynes, M J

    1990-01-01

    A cell surface glycoprotein (Bm86) from cells of the digestive tract of the cattle tick Boophilus microplus, which has been shown to elicit a protective immunological response in vaccinated cattle, was expressed and secreted in the filamentous fungi Aspergillus nidulans and Aspergillus niger by using the fungal amdS promoter system. The cloned gene coded for the Bm86 secretory signal and all of the Bm86 mature polypeptide except for the hydrophobic carboxy-terminal segment. High levels of Bm8...

  8. Fermentation of sugar beet waste by ¤Aspergillus niger¤ facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Medina, A.; Jakobsen, Iver; Vassilev, N.;

    2007-01-01

    Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC......-33 and (32)p in order to measure P uptake by the AM fungal mycelium, of which length density was also measured. Whole cell fatty acid (WCFA) signatures were used as biomarkers of the AM fungal mycelium and other soil microorganisms. The amount of biomarkers of saprotrophic fungi and both Grain...... of exudates by A. niger, as a consequence of fermentation process of sugar beet waste, could possibly explain the increase of AM growth in ASB treatments. On the other hand, the highest P uptake was a result of the solubilisation of rock phosphate by A. niger during the fermentation. (c) 2006 Elsevier Ltd...

  9. Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2009-12-01

    Full Text Available Abstract Background Aspergillus niger is a filamentous fungus found in the environment, on foods and feeds and is used as host for production of organic acids, enzymes and proteins. The mycotoxin fumonisin B2 was recently found to be produced by A. niger and hence very little is known about production and regulation of this metabolite. Proteome analysis was used with the purpose to reveal how fumonisin B2 production by A. niger is influenced by starch and lactate in the medium. Results Fumonisin B2 production by A. niger was significantly increased when lactate and starch were combined in the medium. Production of a few other A. niger secondary metabolites was affected similarly by lactate and starch (fumonisin B4, orlandin, desmethylkotanin and pyranonigrin A, while production of others was not (ochratoxin A, ochratoxin alpha, malformin A, malformin C, kotanin, aurasperone B and tensidol B. The proteome of A. niger was clearly different during growth on media containing 3% starch, 3% starch + 3% lactate or 3% lactate. The identity of 59 spots was obtained, mainly those showing higher or lower expression levels on medium with starch and lactate. Many of them were enzymes in primary metabolism and other processes that affect the intracellular level of acetyl-CoA or NADPH. This included enzymes in the pentose phosphate pathway, pyruvate metabolism, the tricarboxylic acid cycle, ammonium assimilation, fatty acid biosynthesis and oxidative stress protection. Conclusions Lactate added in a medium containing nitrate and starch can increase fumonisin B2 production by A. niger as well as production of some other secondary metabolites. Changes in the balance of intracellular metabolites towards a higher level of carbon passing through acetyl-CoA and a high capacity to regenerate NADPH during growth on medium with starch and lactate were found to be the likely cause of this effect. The results lead to the hypothesis that fumonisin production by A. niger

  10. Simultaneous saccharification and fermentation of wheat bran flour into ethanol using coculture of amylotic Aspergillus niger and thermotolerant Kluyveromyces marxianus

    Institute of Scientific and Technical Information of China (English)

    K.MANIKANDAN; T.VIRUTHAGIRI

    2009-01-01

    Studies on simultaneous saccharification and fermentation (SSF) of wheat bran flour, a grain milling residue as the substrate using coculture method were carried out with strains of starch digesting Aspergillus niger and nonstarch digesting and sugar fermenting Kluyveromyces marxianus in batch fermentation. Experi-ments based on central composite design (CCD) were conducted to maximize the glucose yield and to study the effects of substrate concentration, pH, temperature, and enzyme concentration on percentage conversion of wheat bran flour starch to glucose by treatment with fungal α-amylase and the above parameters were optimized using response surface methodology (RSM). The optimum values of substrate concentration, pH, temperature, and enzyme concentration were found to be 200 g/L, 5.5, 65℃ and 7.5 IU, respectively, in the starch saccharification step. The effects of pH, temperature and substrate concentration on ethanol concentration, biomass and reducing sugar concentration were also investigated. The optimum temperature and pH were found to be 30℃ and 5.5, respectively. The wheat bran flour solution equivalent to 6% (w/V) initial starch concentration gave the highest ethanol concentration of 23.1 g/L after 48 h of fermentation at optimum conditions of pH and temperature. The growth kinetics was modeled using Monod model and Logistic model and product formation kinetics using Leudeking-Piret model. Simultaneous saccharificiation and fermenta-tion of liquefied wheat bran starch to bioethanol was studied using coculture of amylolytic fungus A. niger and nonamylolytic sugar fermenting K. marxianus.

  11. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris.

    Science.gov (United States)

    Han, Y; Lei, X G

    1999-04-01

    Economical and thermostable phytase enzymes are needed to release phytate-phosphorus in plant foods for human and animal nutrition and to reduce phosphorus pollution of animal waste. Our objectives were to determine if a methylotrophic yeast, Pichia pastoris, was able to express a phytase gene (phyA) from Aspergillus niger efficiently and if suppression of glycosylation by tunicamycin affected its functional expression. The gene (1.4 kb) was inserted into an expression vector pPICZalphaA with a signal peptide alpha-factor, under the control of AOX1 promoter. The resulting plasmid was transformed into two P. pastoris strains: KM71 (methanol utilization slow) and X33 (wild-type). Both host strains produced high levels of active phytase (25-65 units/ml of medium) that were largely secreted into the medium. The expressed enzyme was cross-reacted with the polyclonal antibody raised against the wild-type enzyme and showed two pH optima, 2.5 and 5.5, and an optimal temperature at 60 degrees C. Compared with the phyA phytase overexpressed by A. niger, this phytase had identical capacity in hydrolyzing phytate-phosphorus from soybean meal and slightly better thermostability. Deglycosylation of the secreted phytase resulted in reduction in the size from 95 to 55 kDa and in thermostability by 34%. Tunicamycin (20 microg/ml of medium) resulted in significant reductions of both intracellular and extracellular phytase activity expression. Because there was no accumulation of intracellular phytase protein, the impairment did not seem to occur at the level of translocation of phytase. In conclusion, glycosylation was vital to the biosynthesis of the phyA phytase in P. pastoris and the thermostability of the expressed enzyme. PMID:10087168

  12. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at "Evolution Canyon", Mount Carmel, Israel.

    Directory of Open Access Journals (Sweden)

    Natarajan Singaravelan

    Full Text Available BACKGROUND: Adaptation is an evolutionary process in which traits in a population are tailored by natural selection to better meet the challenges presented by the local environment. The major discussion relating to natural selection concerns the portraying of the cause and effect relationship between a presumably adaptive trait and selection agents generating it. Therefore, it is necessary to identify trait(s that evolve in direct response to selection, enhancing the organism's fitness. "Evolution Canyon" (EC in Israel mirrors a microcosmic evolutionary system across life and is ideal to study natural selection and local adaptation under sharply, microclimatically divergent environments. The south-facing, tropical, sunny and xeric "African" slope (AS receives 200%-800% higher solar radiation than the north-facing, temperate, shady and mesic "European" slope (ES, 200 meters apart. Thus, solar ultraviolet radiation (UVR is a major selection agent in EC influencing the organism-environment interaction. Melanin is a trait postulated to have evolved for UV-screening in microorganisms. Here we investigate the cause and effect relationship between differential UVR on the opposing slopes of EC and the conidial melanin concentration of the filamentous soil fungus Aspergillus niger. We test the working hypothesis that the AS strains exhibit higher melanin content than strains from the ES resulting in higher UV resistance. METHODOLOGY/PRINCIPAL FINDINGS: We measured conidial melanin concentration of 80 strains from the EC using a spectrophotometer. The results indicated that mean conidial melanin concentration of AS strains were threefold higher than ES strains and the former resisted UVA irradiation better than the latter. Comparisons of melanin in the conidia of A. niger strains from sunny and shady microniches on the predominantly sunny AS and predominantly shady ES indicated that shady conditions on the AS have no influence on the selection on melanin

  13. 黑曲霉孢子红外波段消光性能研究%Infrared extinction performance of Aspergillus niger spores

    Institute of Scientific and Technical Information of China (English)

    李乐; 胡以华; 顾有林; 陈卫

    2014-01-01

    The reflection spectra of Aspergillus niger spores within the waveband of 2.5-15 μm were measured by squash method. Based on the measured data, complex refractive index of Aspergillus niger spores within the waveband of 2.5-15μm were calculated by using Krames-Kronig (K-K) relationship. Then, the mass extinction coefficient of Aspergillus niger spores within the waveband of 2.5-15μm were obtained by utilizing Mie scattering theory, and the results were analyzed and discussed. The average mass extinction coefficient of Aspergillus niger spores is 0.68 m2/g in the range of 2.5-15μm, and the average mass extinction coefficient decreases monotonically with the particle size increases. Compared with common inorganic compounds, Aspergillus niger spores possesses a good extinction performance within the waveband of 2.5-15 μm, and the requirement of particle size is relative wide in a certain extinction performance.%采用压片法对黑曲霉孢子2.5~15μm波段的反射光谱进行了测量。针对采集的光谱数据,利用Krames-Kronig(K-K)关系对黑曲霉孢子2.5~15μm波段的复折射率进行了计算。然后,根据Mie散射理论求出了2.5~15μm波段黑曲霉孢子质量消光系数,并对结果进行了分析和讨论。分析结果表明,在粒径r=1.2μm时,黑曲霉孢子在2.5~15μm波段的平均质量消光系数为0.68 m2/g,随着粒径的增大,平均质量消光系数单调减小;与常见无机物相比,黑曲霉孢子在2.5~15μm波段具有较好的消光性能,而且在保证一定消光性能的情况下,黑曲霉孢子的粒径尺寸要求相对较宽。

  14. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  15. Primary cutaneous aspergillosis due to Aspergillus niger in an immunocompetent patient

    Directory of Open Access Journals (Sweden)

    Mohapatra S

    2009-01-01

    Full Text Available Primary cutaneous aspergillosis is a rare entity, usually caused by A. fumigatus and A. flavus . Here, we present such a case, manifested by ulceration due to A. niger, which remained undiagnosed for a prolonged period. The immunological status was intact, although the patient had associated severe fungal infection. Recurrence of the lesion occurred despite repeated anti-fungal therapies. Anti fungal testing was done based on the broth dilution (M-38A, NCCLS, USA method. The culture isolate was found to be sensitive to fluconazole and amphotericin B. Continuation of antifungal therapy improved the symptoms, reducing the size of the lesion.

  16. Biotransformation of natural compounds: unexpected thio conjugation of Sch-642305 with 3-mercaptolactate catalyzed by Aspergillus niger ATCC 16404 cells.

    Science.gov (United States)

    Adelin, Emilie; Martin, Marie-Thérèse; Bricot, Marie-Françoise; Cortial, Sylvie; Retailleau, Pascal; Ouazzani, Jamal

    2012-12-01

    Sch-642305 is produced by the endophytic fungi Phomopsis sp. CMU-LMA and exhibits both antimicrobial and cytotoxic activities. The incubation of Sch-642305 with Aspergillus niger ATCC 16404 resting cells leads to two unexpected thio conjugates. Compound (1) is formed by the addition of the cysteine metabolite 3-mercaptolactate to the double bond of Sch-642305. Compound (1) undergoes an intramolecular rearrangement to give compound (2), which contains two rings: a five-membered hydroxylactone ring and a five-membered thiophene ring. The absolute configuration of compound (1) is similar to that of the parent compound, but the configuration of the mercaptolactate side-chain was not determined. The absolute configuration of compound (2) was deduced from the crystal structure and confirmed by the anomal effect of the sulfur atom. To the best of our knowledge, this is the first time such a conjugation rearrangement reactions were observed. The biological significance and the reaction mechanisms are discussed. Compound (1) exhibits a weak antimicrobial activity against Gram-positive bacteria, whereas derivatives (1) and (2) showed an IC₅₀ of 1 and 1.2 μM, respectively, against colonic epithelial cancer cells. PMID:22975164

  17. Phenotypic characterization of Aspergillus niger and Candida albicans grown under simulated microgravity using a three-dimensional clinostat.

    Science.gov (United States)

    Yamazaki, Takashi; Yoshimoto, Maki; Nishiyama, Yayoi; Okubo, Yoichiro; Makimura, Koichi

    2012-07-01

    The living and working environments of spacecraft become progressively contaminated by a number of microorganisms. A large number of microorganisms, including pathogenic microorganisms, some of which are fungi, have been found in the cabins of space stations. However, it is not known how the characteristics of microorganisms change in the space environment. To predict how a microgravity environment might affect fungi, and thus how their characteristics could change on board spacecraft, strains of the pathogenic fungi Aspergillus niger and Candida albicans were subjected to on-ground tests in a simulated microgravity environment produced by a three-dimensional (3D) clinostat. These fungi were incubated and cultured in a 3D clinostat in a simulated microgravity environment. No positive or negative differences in morphology, asexual reproductive capability, or susceptibility to antifungal agents were observed in cultures grown under simulated microgravity compared to those grown in normal earth gravity (1 G). These results strongly suggest that a microgravity environment, such as that on board spacecraft, allows growth of potentially pathogenic fungi that can contaminate the living environment for astronauts in spacecraft in the same way as they contaminate residential areas on earth. They also suggest that these organisms pose a similar risk of opportunistic infections or allergies in astronauts as they do in people with compromised immunity on the ground and that treatment of fungal infections in space could be the same as on earth. PMID:22537211

  18. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.).

    Science.gov (United States)

    Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A

    2016-02-01

    The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen.

  19. Purification and Characterization of a Ginsenoside Rb1-Hydrolyzing β-Glucosidase from Aspergillus niger KCCM 11239

    Directory of Open Access Journals (Sweden)

    Kyung Hoon Chang

    2012-09-01

    Full Text Available Rb1-hydrolyzing β-glucosidase from Aspergillus niger KCCM 11239 was studied to develop a bioconversion process for minor ginsenosides. The specific activity of the purified enzyme was 46.5 times greater than that of the crude enzyme. The molecular weight of the native enzyme was estimated to be approximately 123 kDa. The optimal pH of the purified enzyme was pH 4.0, and the enzyme proved highly stable over a pH range of 5.0–10.0. The optimal temperature was 70 °C, and the enzyme became unstable at temperatures above 60 °C. The enzyme was inhibited by Cu2+, Mg2+, Co2+, and acetic acid (10 mM. In the specificity tests, the enzyme was found to be active against ginsenoside Rb1, but showed very low levels of activity against Rb2, Rc, Rd, Re, and Rg1. The enzyme hydrolyzed the 20-C,β-(1→6-glucoside of ginsenoside Rb1 to generate ginsenoside Rd and Rg3, and hydrolyzed 3-C,β-(1→2-glucoside to generate F2. The properties of the enzyme indicate that it could be a useful tool in biotransformation applications in the ginseng industry, as well as in the development of novel drug compounds.

  20. Characterizing and improving the thermostability of purified xylanase from Aspergillus niger DFR-5 grown on solid-state-medium

    Directory of Open Access Journals (Sweden)

    Ajay Pal

    2010-12-01

    Full Text Available  The thermostability of absolutely purified xylanase from Aspergillus niger DFR-5 was improved using polyols. Supplementation of sorbitol at 2M concentration was found to increase the half-life and D-value of xylanase at elevated temperatures (45-70ºC. Thermodynamic parameters associated with the process were analyzed revealing that the stability at higher temperatures was due to the increased enthalpy (∆Hº and free energy (∆Gº change of enzyme denaturation in the presence of sorbitol. The negative values of ∆Sº (-150.093 Jmol-1K-1 at 70ºC clearly indicated that enzyme underwent a significant process of aggregation during denaturation. The enzyme required divalent cations for maximum activity and inhibited by chelator. The diminution of activity by various thiol-binding agents and enhancement by reducing agents like β-ME confirmed the essentiality of cysteine for catalysis. The enzyme had a half-life and D-value of 277 and 921 days when stored at 4 ºC.

  1. Downstream processing of pectinase produced by Aspergillus niger in solid state cultivation and its application to fruit juices clarification

    Directory of Open Access Journals (Sweden)

    Patrícia Poletto

    2015-06-01

    Full Text Available In this work, a protocol for the formulation of an enzyme concentrated product to be applied in fruit juice treatment is described. Downstream processing conditions for the recovery and concentration of pectinases produced by the new strain Aspergillus niger LB-02-SF in solid state cultivation were assessed. The solid-liquid ratio in the extraction step of pectinases recovery from the cultivated media was evaluated and the highest activity was obtained with a solid-liquid ratio of 1:10. The crude extract was concentrated by ultrafiltration and the total pectinase (TP activity was 73.6-fold concentrated in relation to the crude extract, and a final TP titer of 663 U mL–1 was obtained with 73.7% of recovery yield. KCl and different glycerol concentrations were added to the concentrated extract and the stability of pectinases during the storage at 5°C for 59 weeks was tested. The formulation with 50% w/w glycerol was applied to the treatment of apple and grape juices and the results of these tests were statistically comparable to those obtained with two high-quality commercial preparations.

  2. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  3. Characterization of β -Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose.

    Science.gov (United States)

    Baraldo Junior, Anderson; Borges, Diogo G; Tardioli, Paulo W; Farinas, Cristiane S

    2014-01-01

    β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications. PMID:24940510

  4. Effects of inclusion Aspergillus niger fermented shrimp waste meal in broiler diets on live performance and digestive organ weight

    Directory of Open Access Journals (Sweden)

    Irfan H. Djunaidi

    2009-06-01

    Full Text Available An experiment was conducted to evaluate the effect of the inclusion of different levels of shrimp waste meal fermented with Aspergillus niger (LUF in diets on growth performance and digestive organ weight of broilers. A total of 75 d-old chicks were randomly allocated to 5 (five treatments in 3 replication pens of 5 birds each. Treatments consisted of LUF inclusion of 0 (control, and 5, 7.5, 10 and 12,5% (P0, P1, P2, P3 and P4 in the diets. Birds were raised under standard condition and provided with feed and water ad-libitum. Feed and birds were weighed weekly up to 35 days to determine body weight, feed intake and feed conversion. At the end of experimental period, the birds were slaughatered and dressed up to determine carcass percentage and digestive organ weight. There was a significant negative linear response in body weight, feed consumption and feed conversion with increase of LUF more than 7.5% in the diets until 35 days of age, but % carcass was almost the same for all treatment. There was no significant response in digestive organ weight with increasing levels of LUF. The present result indicated that LUF could be considered as a potential feed ingredient as protein source of broiler but its inclusion should be limited until 7.5% of the diet to maintain growth performance and digestive organ weight.

  5. Optimization of cultural conditions for the production of alpha amylase by aspergillus niger (btm-26) in solid state fermentation

    International Nuclear Information System (INIS)

    The present study deals with the isolation, screening and selection of native fungal strain for the alpha amylase production. Forty fungal strains were isolated from different soil samples. These strains were initially screened qualitatively on starch agar medium and quantitative screening was carried out in solid state fermentation. A strain of Aspergillus niger showing maximum production (432 +- 0.9 U/ml/min) of enzyme was selected and assigned the code BTM-26. The yield on various agricultural products, namely, coconut oil cake (COC), rice bran (RB), vegetable wastes or banana peel and wheat bran (WB) was compared. Wheat bran proved to be the best substrate for alpha amylase production. The effect of incubation temperature, initial pH, and inoculum size was investigated for the enzyme production. The maximum enzyme production was obtained at 30 degree C, pH 5, and inoculum size of 1 ml. The rate of fermentation was also studied and the highest yield of enzyme was obtained after 72 h of inoculation. Addition of 1.5% lactose as carbon source and 0.2% (NH/sub 4/)2SO/sub 4/ and 0.3% yeast extract as inorganic and organic nitrogen sources respectively gave enzyme production 990 +- 0.81 U/ml/min which reflects about 1.87 fold increase in alpha amylase production as compared to the medium containing wheat bran alone as substrate. (author)

  6. A new crystal form of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Sasaki, H; Muramatsu, T; Iwata, S; Hamaya, T; Takizawa, T; Takahashi, K

    1993-10-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase, whose catalytic residues and mechanism remain to be elucidated. A new form of proteinase A crystals more suitable for crystallography than that obtained previously was prepared from an ammonium sulfate solution at pH 3.5 by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1), with unit cell dimensions of a = 69.75 +/- 0.06 A, b = 87.55 +/- 0.05 A, and c = 60.83 +/- 0.04 A. On the assumption of two enzyme molecules per asymmetric unit, the calculated volume to unit protein mass ratio (Vm) was 2.08 A3/Da. By assuming the specific volume to be 0.74 cm3/g, the solvent content (Vso1) was estimated to be 41%, i.e., much larger than that of the crystal form obtained previously at pH 2.0 (Vso1 = 26%). Diffraction data were collected up to a resolution higher than 1.6 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation.

  7. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger.

    Science.gov (United States)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-01-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03. PMID:27126606

  8. Immobilization of Aspergillus niger F7-02 Lipase in Polysaccharide Hydrogel Beads of Irvingia gabonensis Matrix

    Directory of Open Access Journals (Sweden)

    Safaradeen Olateju Kareem

    2014-01-01

    Full Text Available The potential of polysaccharide Irvingia gabonensis matrix as enzyme immobilization support was investigated. Lipase of Aspergillus niger F7-02 was immobilized by entrapment using glutaraldehyde as the cross-linking agent and stabilized in ethanolic-formaldehyde solution. The pH and temperature stability and activity yield of the immobilized enzyme were determined. Such parameters as enzyme load, bead size, number of beads, and bead reusability were also optimized. Adequate gel strength to form stabilized beads was achieved at 15.52% (w/v Irvingia gabonensis powder, 15% (v/v partially purified lipase, 2.5% (v/v glutaraldehyde, and 3 : 1 (v/v ethanolic-formaldehyde solution. There was 3.93-fold purification when the crude enzyme was partially purified in two-step purification using Imarsil and activated charcoal. Optimum lipase activity 75.3 Ug−1 was achieved in 50 mL test solution containing 15 beads of 7 mm bead size. Relative activity 80% was retained at eight repeated cycles. The immobilization process gave activity yield of 59.1% with specific activity of 12.3 Umg−1 and stabilized at optimum pH 4.5 and temperature 55°C. Thus the effectiveness and cost-efficiency of I. gabonensis as a polymer matrix for lipase immobilization have been established.

  9. SCANNING ELECTRON MICROSCOPY (SEM) FOR THE BIOAGENTS ASPERGILLUS NIGER AND PENICILLIUM OXALICUM AGAINST THE MEDITERRANEAN FRUIT FLY, CERATITIS CAPITATA (WIED.)

    International Nuclear Information System (INIS)

    As an alternative to chemical control or as a part of integrated pest management (IPM program), there is a resurgence of interest in using microbial agents for pest population suppression before the application of the sterile insect technique (SIT) against the Mediterranean fruit fly, Ceratitis capitata (Wiedmann). The insect-fungus interaction between the fungal isolates, Aspergillus niger and Penicillium oxalicum, when applied as a spore suspension against the adults of Medfly in the laboratory showed visual fungal development after 7 days from inoculation. Examination of the infected parts of the dead fly with light microscopy showed a markedly damage as evidenced by the occurrence of the attached conidia and features of pathogen penetration. Using the scanning electron microscopy (SEM), the abundant sporulation of both fungal isolates was investigated over all parts of the dead fly and their associated sensillae. The recognized shape of the fungal conidial spores and their arrangement on the hyphae of both bio agents was investigated. This ultra structural study may be helpful in evaluating the effectiveness of both fungal bio agents on the functions of all infected parts of the insect and their associated sensillae (the main communication system between insects, their internal and external environment) and their main role in the courtship, male mating ability, the selection of fruit host plants necessary for the adults food and also the selection of a suitable oviposition site

  10. PRODUCTION OF LIPASES IN SOLID-STATE FERMENTATION BY Aspergillus niger F7-02 WITH AGRICULTURAL RESIDUES

    Directory of Open Access Journals (Sweden)

    Olayinka Quadri Adio

    2015-06-01

    Full Text Available In this study mould strains screened and molecularly identified as Aspergillus niger F7-02 was used to produced extracellular lipase in Solid State Fermentation (SSF process. Different agricultural residues were combined in different ratios as carbon, nitrogen and elemental sources in the solid culture medium. The optimization of the culture medium was carried out for such parameters as incubation time (24 h - 96 h, inoculum concentration (0.5 – 3.0%, w/v, initial moisture content (40 – 70%, w/v, and initial pH (6 – 8 for maximum yield. The maximum lipase activity of 76.7 U/ml was obtained with a medium containing rice bran (RB, palm kernel cake (PKC, groundnut cake (GNC and starch (S at the ratio of 5:5:3:1 (%w/w with optimum conditions of 60% moisture, 1% inoculum and a pH of 7.0 with an incubation temperature of 30 oC and incubation time of 72 h.

  11. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  12. 黑曲霉Aspergillus niger P-6021浆态发酵常山胡柚皮渣产果胶霉%Pectinase Production by Aspergillus Niger P-6021 on Citrus Changshan-huyou Peel in Slurry-state Fermentation

    Institute of Scientific and Technical Information of China (English)

    钟卫鸿; 岑沛霖

    2005-01-01

    The peel of Citrus changshan-huyou, coupled with wheat bran, could be utilized by Aspergillus niger P-6021 in slurry-state fermentation to produce pectinase with suitable enzyme composition for application in apple juice processing. The production of pectinase is improved by additional nitrogen source substances and mineral supplements. The ratio of carbon source substances to nitrogen source substances in the medium also has significant effect on the pectinase production by A. niger P-6021 in slurry-state fermentation. In the optimized medium 30℃. The crude pectinase shows significant effect to improve the yield and clarification of apple juice.

  13. Citric Acid Production by the Aspergillus niger Isolated from the Microflora of Iran

    Directory of Open Access Journals (Sweden)

    R.Yazdanparast

    1995-08-01

    Full Text Available Citric acid production by A.niger, isolated from the microflora of Iran, has been investigated in liquid and semi-solid states using growth media with different compositions. In 2% media made of Rocheh grape pomace or sabouraud dextrose, the yield of citric acid production was 0.7 g per Kg of the pomace; and the yield decreased by 50% in 2% saghal solian grape pomace medium. However, in 40% (W/W saghal solian semi-solid medium containing 3% methanol, the yield of citric acid production has improved to 80 g per Kg of pomace in stationary mode of production and to 120 g per Kg of pomace in the rolling mode of fermentation.

  14. MODELING AND MOLECULAR DOCKING STUDIES ON ASPERGILLUS RNASE NIGER AND LEISHMANIA DONOVANI ACTIN: ANTILEISHMANIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Ravi Kumar Gundampati

    2013-01-01

    Full Text Available A.niger Rnase was designed from ACTBIND (PDB ID: 3D3Z. Yeast actin-human gelsolin segment 1 complex (PDB ID: 1YAG was used as template for L. donovani actin protein for 3D model in Modeller9v8. These models were testified by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and VERIFY-3D. All evidences suggest that the geometric quality of the backbone conformation, energy profile, residue interaction and contact of the structures were well within the limits of reliable structures. The interaction energy of docking was calculated using the HEX server. Etotal and calculated RMSD values were -1.902, -9.323 kcal moL-1 and 0.402 Å, respectively. The study presented here has an advantage to design molecules that may have antileishmanial activity.

  15. improving citric acid production from some carbohydrates by-products using irradiated aspergillus niger

    International Nuclear Information System (INIS)

    Twenty strains of A. niger were isolated from different sources, screened for their capacity to produce citric acid. All the isolated strains were able to produce citric acid in different quantities at different time intervals i.e. 4, 8 and 12 days on indicator medium. The best incubation period for production for all isolates was 12 days. The most potent strains for production were A1, A4 and A5, while A8, A16, A18 and A19 recorded weak production on that medium. Citric acid productivity were obtained by all strains when using different concentrations of four carbohydrate by-products (maize straw, potato peel wastes, sugar beet pulp and molasses) when each used alone without any additions after 12 days incubation and the production enhanced when the fermentation medium amended with the same concentrations of the mentioned substrates. Type and concentration of carbohydrate by-product affect the production of citric acid by A. niger strains under the study. Increasing substrate concentration led to increase in production, the best concentration for production was 25% for all carbohydrate by-products. As recorded with indicator medium, A1, A4 and A5 are also the most potent strains for production when growing on the four carbohydrate by-products supplemented to the basal medium, while A8, A6, A18 and A19 recorded the weak production with the carbohydrate by-products used.production of the parental isolates A1, A4 and A5 on indicator medium were: 0.96, 0.95 and 0.99 (mg/ml) respectively after 12 days incubation, while maximum production by the obtaining resulting isolates (Treated by UV irradiation) were: 1.78, 1.70 and 1.73 (mg/ml) from A4T2 (5 min.), A4T1 (10 min.) and A1T1 (5 min.), respectively.

  16. Binding of trans-acting protein AngCP to the CCAAT-containing motifs in Aspergillus niger glaA promoter

    Institute of Scientific and Technical Information of China (English)

    ZHU Xingguo; QIU Runxiang; LIU Li; TANG Guomin

    2004-01-01

    CCAAT-binding proteins AngCP1 and AngCP2 of Aspergillus niger binding to DC(- 489- - 414 bp)and PC(- 390~ - 345 bp)of A.Niger glaA gene were respectively purified by 20 % ~ 40 % saturated ammonium sulfate,gel filtration,Heparin SepharoseC1-6B chromatography and DNA sequence-specific affinity chromatography.Gel filtration and SDS-PAGE revealed that both AngCP1 and AngCP2 were of 120 kD,comprised of two suhunits of 34 kD and 50 kD.Western blot showed that the 34 kD subunits of both AngCP1 and AngCP2 cross-reacted specifically with the anti-AngHAPC antiserum.Further electrophoretic mobility shift assay identified that AngCP1 and AngCP2 were the same protein,designated AngCP.Southwestern blot showed that the affinity of the 34 kD subunit to DC was stronger than that of the 50 kD subunit to PC.These results suggested that interaction between AngCP,DC and PC plays an important role in the regulation of transcription of Aspergillus niger glaA gene.

  17. Customization of Aspergillus niger morphology through addition of talc micro particles.

    Science.gov (United States)

    Wucherpfennig, Thomas; Lakowitz, Antonia; Driouch, Habib; Krull, Rainer; Wittmann, Christoph

    2012-01-01

    The filamentous fungus A. niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology. It ranges from dense spherical pellets to viscous mycelia. Various process parameters and ingredients are known to influence fungal morphology. Since optimal productivity correlates strongly with a specific morphological form, the fungal morphology often represents the bottleneck of productivity in industrial production. A straight forward and elegant approach to precisely control morphological shape is the addition of inorganic insoluble micro particles (like hydrous magnesium silicate, aluminum oxide or titanium silicate oxide) to the culture medium contributing to increased enzyme production. Since there is an obvious correlation between micro particle dependent morphology and enzyme production it is desirable to mathematically link productivity and morphological appearance. Therefore a quantitative precise and holistic morphological description is targeted. Thus, we present a method to generate and characterize micro particle dependent morphological structures and to correlate fungal morphology with productivity which possibly contributes to a better understanding of the morphogenesis of filamentous microorganisms. The recombinant strain A. niger SKAn1015 is cultivated for 72 h in a 3 L stirred tank bioreactor. By addition of talc micro particles in concentrations of 1 g/L, 3 g/L and 10 g/L prior to inoculation a variety of morphological structures is reproducibly generated. Sterile samples are taken after 24, 48 and 72 hours for determination of growth progress and activity of the produced enzyme. The formed product is the high-value enzyme β-fructofuranosidase, an important biocatalyst for neo-sugar formation in food or pharmaceutical industry, which catalyzes among others the reaction of sucrose to

  18. HIDROLISIS ENZIMATIK MINYAK IKAN UNTUK PRODUKSI ASAM LEMAK OMEGA-3 MENGGUNAKAN LIPASE DARI Aspergillus niger [Enzymatic Hydrolysis of Fish Oil for Production of Omega-3 Fatty Acids Using Lipase Derived from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Sapta Raharja*

    2011-06-01

    Full Text Available Fish oil is the source of important fatty-acid, especially polyunsaturated fatty acid (PUFA omega-3, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. Lipase catalysis activity of Aspergillus niger is low when it is used in fish oil hydrolysis. The activity of the lipase can be increased by adding organic solvent such as hexane into the media. This research aimed to determine temperature, pH and amount of water which produce the highest degree of hydrolysis of fish oil in the presence of hexane. Correlation between the highest degree of hydrolysis and the amount of omega-3 fatty acid was also investigated. The variables used in this research were temperatures (25-65 oC, pH (5-9, and water addition (1-5 %v/v. The highest degree of enzymatic hydrolysis of fish oil in the media without hexane was 28.07 % that was reached at 45oC and pH 5. In the presence of hexane, the highest degree of hydrolysis was 75.12 % which was reached at 5% water addition, temperature 45oC, and pH 5. GC-MS analysis showed that omega-3 fatty acid content especially EPA and DHA increased along with increase in the degree of hydrolysis. Concentration of omega-3 fatty acid produced without hexane addition was 18.42 % with EPA amounted to 12,17% and DHA 0,86%. Meanwhile omega-3 fatty acid content in the presence of hexane reached 21.93 % with EPA amounted to 17.75 % and DHA 1.21 %.

  19. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  20. Nariginase of Aspergillus niger: Production optimization by response surface methodology and utilisation of ultrasound for extraction
    Naringinase de Aspergillus niger: Otimização da produção por metodologia de superfície de resposta e uso do ultrassom para extração

    OpenAIRE

    Maria Antonia Pedrine Colabone Celligoi; João Batista Buzato; Dionizio Borsato; Cristiani Barros da Silva Rosa

    2011-01-01

    Brazil is the world's largest producer of orange and concentrated juice for export. Concentrated juice with high levels of naringin has excessive bitterness, which reduces the quality and value on the market. The debittering can be obtained by using naringinase, an enzymatic complex that degrades naringin. This study reports the production of naringinase by Aspergillus niger 426 utilizing both sugar cane molasses as carbon source and yeast extract as nitrogen source. Naringin was used as indu...

  1. 黑曲霉发酵对咖啡碱代谢的影响%Influence of Aspergillus niger Fermentation on Caffeine Metabolism

    Institute of Scientific and Technical Information of China (English)

    马存强; 李静; 周斌星; 柴洁; 杨超; 任小盈; 张梦华

    2014-01-01

    The essence of pu-erh tea solid-fermentation process is microbial metabolism , and Aspergillus niger is a dominant fungus in the metabolism and has a huge impact on caffeine metabolism .In this study, Aspergillus niger strains were inoculated into tea, tea infusion, and liquid medium containing caffeine , then the content of purine base at different stages of fermentation was de -termined .The results showed that Aspergillus niger had grater effect on theophylline than on theobromine , and greater effect on theo-bromine than on caffeine .In addition , during the liquid -fermentation of pure caffeine , theophylline content increased to a maxi-mum extent , and it was positively correlated with caffeine concentration .%普洱茶固态发酵过程的实质是微生物代谢作用,而黑曲霉在代谢中为优势菌,对咖啡碱代谢产生巨大影响。以黑曲霉为单一菌种,分别接种到茶叶、茶汤和含咖啡碱的液态培养基,并测定不同发酵阶段嘌呤碱的含量。结果表明,黑曲霉对茶叶碱的影响大于可可碱,对可可碱的影响大于咖啡碱,在咖啡碱液态培养基发酵中,茶叶碱增加幅度最大,且与咖啡碱浓度存在正相关性。

  2. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Adhish S Walvekar

    Full Text Available NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol resulted in preferential attenuation of AnGDH reductive amination (forward activity but with a negligible effect on oxidative deamination (reverse activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH, resembling a hypothetical 'one-way' active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme.

  3. Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design.

    Science.gov (United States)

    Huang, Jian-Wen; Chen, Chun-Chi; Huang, Chun-Hsiang; Huang, Ting-Yung; Wu, Tzu-Hui; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Liu, Je-Ruei; Guo, Rey-Ting

    2014-03-01

    β-Mannanase has found various biotechnological applications because it is capable of degrading mannans into smaller sugar components. A highly potent example is the thermophilic β-mannanase from Aspergillus niger BK01 (ManBK), which can be efficiently expressed in industrial yeast strains and is thus an attractive candidate for commercial utilizations. In order to understand the molecular mechanism, which helps in strategies to improve the enzyme's performance that would meet industrial demands, 3D-structural information is a great asset. Here, we present the 1.57Å crystal structure of ManBK. The protein adopts a typical (β/α)8 fold that resembles the other GH5 family members. Polysaccharides were subsequently modeled into the substrate binding groove to identify the residues and structural features that may be involved in the catalytic reaction. Based on the structure, rational design was conducted to engineer ManBK in an attempt to enhance its enzymatic activity. Among the 23 mutants that we constructed, the most promising Y216W showed an 18±2.7% increase in specific activity by comparison with the wild type enzyme. The optimal temperature and heat tolerance profiles of Y216W were similar to those of the wild type, manifesting a preserved thermostability. Kinetic studies showed that Y216W has higher kcat values than the wild type enzyme, suggesting a faster turnover rate of catalysis. In this study we applied rational design to ManBK by using its crystal structure as a basis and identified the Y216W mutant that shows great potentials in industrial applications.

  4. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells of Aspergillus niger.

    Science.gov (United States)

    Mostafa, Yasser S; Alamri, Saad A

    2012-04-01

    Date syrup as an economical source of carbohydrates and immobilized Aspergillus niger J4, which was entrapped in calcium alginate pellets, were employed for enhancing the production of citric acid. Maximum production was achieved by pre-treating date syrup with 1.5% tricalcium phosphate to remove heavy metals. The production of citric acid using a pretreated medium was 38.87% higher than an untreated one that consumed sugar. The appropriate presence of nitrogen, phosphate and magnesium appeared to be important in order for citric acid to accumulate. The production of citric acid and the consumed sugar was higher when using 0.1% ammonium nitrate as the best source of nitrogen. The production of citric acid increased significantly when 0.1 g/l of KH2PO4 was added to the medium of date syrup. The addition of magnesium sulfate at the rate of 0.20 g/l had a stimulating effect on the production of citric acid. Maximum production of citric acid was obtained when calcium chloride was absent. One of the most important benefits of immobilized cells is their ability and stability to produce citric acid under a repeated batch culture. Over four repeated batches, the production of citric acid production was maintained for 24 days when each cycle continued for 144 h. The results obtained in the repeated batch cultivation using date syrup confirmed that date syrup could be used as a medium for the industrial production of citric acid.

  5. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    OpenAIRE

    Widayat Widayat; Abdullah Abdullah; H. Satriadi; M Hadi

    2011-01-01

    Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% anti...

  6. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

    Science.gov (United States)

    Florencio, Camila; Cunha, Fernanda M; Badino, Alberto C; Farinas, Cristiane S; Ximenes, Eduardo; Ladisch, Michael R

    2016-08-01

    Cellulases and hemicellulases from Trichoderma reesei and Aspergillus niger have been shown to be powerful enzymes for biomass conversion to sugars, but the production costs are still relatively high for commercial application. The choice of an effective microbial cultivation process employed for enzyme production is important, since it may affect titers and the profile of protein secretion. We used proteomic analysis to characterize the secretome of T. reesei and A. niger cultivated in submerged and sequential fermentation processes. The information gained was key to understand differences in hydrolysis of steam exploded sugarcane bagasse for enzyme cocktails obtained from two different cultivation processes. The sequential process for cultivating A. niger gave xylanase and β-glucosidase activities 3- and 8-fold higher, respectively, than corresponding activities from the submerged process. A greater protein diversity of critical cellulolytic and hemicellulolytic enzymes were also observed through secretome analyses. These results helped to explain the 3-fold higher yield for hydrolysis of non-washed pretreated bagasse when combined T. reesei and A. niger enzyme extracts from sequential fermentation were used in place of enzymes obtained from submerged fermentation. An enzyme loading of 0.7 FPU cellulase activity/g glucan was surprisingly effective when compared to the 5-15 times more enzyme loadings commonly reported for other cellulose hydrolysis studies. Analyses showed that more than 80% consisted of proteins other than cellulases whose role is important to the hydrolysis of a lignocellulose substrate. Our work combined proteomic analyses and enzymology studies to show that sequential and submerged cultivation methods differently influence both titers and secretion profile of key enzymes required for the hydrolysis of sugarcane bagasse. The higher diversity of feruloyl esterases, xylanases and other auxiliary hemicellulolytic enzymes observed in the enzyme

  7. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins.

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  8. Variation in Fumonisin and Ochratoxin Production Associated with Differences in Biosynthetic Gene Content in Aspergillus niger and A. welwitschiae Isolates from Multiple Crop and Geographic Origins

    Science.gov (United States)

    Susca, Antonia; Proctor, Robert H.; Morelli, Massimiliano; Haidukowski, Miriam; Gallo, Antonia; Logrieco, Antonio F.; Moretti, Antonio

    2016-01-01

    The fungi Aspergillus niger and A. welwitschiae are morphologically indistinguishable species used for industrial fermentation and for food and beverage production. The fungi also occur widely on food crops. Concerns about their safety have arisen with the discovery that some isolates of both species produce fumonisin (FB) and ochratoxin A (OTA) mycotoxins. Here, we examined FB and OTA production as well as the presence of genes responsible for synthesis of the mycotoxins in a collection of 92 A. niger/A. welwitschiae isolates from multiple crop and geographic origins. The results indicate that (i) isolates of both species differed in ability to produce the mycotoxins; (ii) FB-nonproducing isolates of A. niger had an intact fumonisin biosynthetic gene (fum) cluster; (iii) FB-nonproducing isolates of A. welwitschiae exhibited multiple patterns of fum gene deletion; and (iv) OTA-nonproducing isolates of both species lacked the ochratoxin A biosynthetic gene (ota) cluster. Analysis of genome sequence data revealed a single pattern of ota gene deletion in the two species. Phylogenetic analysis suggest that the simplest explanation for this is that ota cluster deletion occurred in a common ancestor of A. niger and A. welwitschiae, and subsequently both the intact and deleted cluster were retained as alternate alleles during divergence of the ancestor into descendent species. Finally, comparison of results from this and previous studies indicate that a majority of A. niger isolates and a minority of A. welwitschiae isolates can produce FBs, whereas, a minority of isolates of both species produce OTA. The comparison also suggested that the relative abundance of each species and frequency of FB/OTA-producing isolates can vary with crop and/or geographic origin. PMID:27667988

  9. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources Produção e caracterização da glucoamilase do fungo Aspergillus awamori expressa em levedura Saccharomyces cerevisiae usando diferentes fontes de carbono

    Directory of Open Access Journals (Sweden)

    Fabiana Carina Pavezzi

    2008-03-01

    Full Text Available Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a

  10. Response surface methodology for optimization of culture conditions for dye decolorization by a fungus, Aspergillus niger HM11 isolated from dye affected soil

    Directory of Open Access Journals (Sweden)

    P Lakshmanaperumalsamy

    2010-12-01

    Full Text Available Background and Objectives: Discharge of wastewater from textile dyeing industries has been a problem in terms of pollution and treatment of these waters is a great task. Keeping this in mind, the aim of our current research is to study the effect of various bioprocess variables on decolorization of an azo dye, Congo red, by a fungal isolate, Aspergillus niger HM11."nMaterials and Methods: Central composite design (CCD and response surface methodology (RSM have been applied to design experiments to evaluate the interactive effects of the operating variables: on the decolorization of Congo red. A total of 30 experiments were conducted in the present study and a regression coefficient between the variables was generated."nResults: The RSM indicated that pH 6.0, 150 rpm agitation, incubation time of 36 hrs and a glucose concentration of 1.0% were optimal for maximum decolorization of Congo red and the response indicated excellent evaluation of experimental data."nConclusion: From this study, it is very obvious that the fungal isolate, Aspergillus niger HM11 can be used as a promising microbial strain for decolorization of textile dyeing effluent containing similar dyes.

  11. Evaluasi Nilai Nutrisi dan Kecernaan In Vitro Pelepah Kelapa Sawit (Oil Palm Fronds yang Difermentasi Menggunakan Aspergillus niger dengan Penambahan Sumber Karbohidrat yang Berbeda

    Directory of Open Access Journals (Sweden)

    Sitti Wajizah

    2015-04-01

    Full Text Available (The evaluation of  nutritive value and In Vitro digestibility of oil palm fronds through fermentation by using  Aspergillus niger  with  different soluble carbohydrate sources  ABSTRACT. Oil palm frond (OPF is one of potential sources of alternative feed, but has limited use due to high crude fiber and low crude protein contents. Fermentation is one of the methods widely applied to improve nutritive value of animal feed. The purpose of this research is to increase nutritive value of fermented oil palm fronds by adding different soluble carbohydrate source into fermentation media. The results of the experiments indicated that fermented oil palm fronds by Aspergillus niger had a significant effect (P<0,05  on the content of crude protein, crude fiber, and ash. Generally, fermented oil palm fronds with different soluble carbohydrate was able to increase the content of crude protein of oil palm fronds, but not optimal yet in reducing the crude fiber content of fermented substrate. However, the addition of rice bran on the fermentation medium showed the best results, characterized by increasing crude protein and decreasing crude fiber contents as well as improved dry matter and organic matter digestibility, reflected in high concentration of VFA.

  12. Relation between citric acid production by solid-state fermentation from cassava bagasse and respiration of Aspergillus niger LPB 21 in semi-pilot scale

    Directory of Open Access Journals (Sweden)

    Flávera Camargo Prado

    2005-06-01

    Full Text Available The aim of this work was to study the relation between citric acid production and respiration of Aspergillus niger LPB 21 in solid-state fermentation of cassava bagasse. The experiments were carried out in horizontal drum bioreactor coupled with a gas chromatography system. Fermentation was conduced for 144 h with initial substrate moisture of 60% using heat-treated cassava bagasse as sole carbon source. The exhausted air from the bioreactor was analyzed for the monitoring of CO2 produced and O2 consumed in order to estimate the biomass biosynthesis by the fungal culture. The metabolic activity of A. niger growth was associated to citric acid production. The system using FERSOL software determined 4.372 g of biomass/g of consumed O2. Estimated and analytically determined biomass values followed the same pattern showing that the applied mathematical model was adapted.Este estudo permitiu verificar a relação ente a produção de ácido cítrico e a respiração do Aspergillus niger LPB 21 na fermentação no estado sólido do bagaço de mandioca. Os experimentos foram realizados em biorreator tipo tambor horizontal acoplado com um sistema de cromatografia gasosa. A fermentação foi conduzida durante 144 h com 60% de umidade inicial do substrato usando bagaço de mandioca termicamente tratado como única fonte de carbono. O ar de saída do biorreator foi analisado para monitorar a produção de CO2 e o consumo de O2 com o objetivo de estimar a biomassa sintetizada pelo fungo. A atividade metabólica do crescimento do Aspergillus niger está associada à produção de ácido cítrico. Usando o software FERSOL, o sistema determinou uma biomassa de 4.372 g de biomassa/g de O2 consumido. Os valores da biomassa estimada e da determinada analiticamente seguiram a mesma tendência mostrando que o modelo matemático aplicado foi adaptado.

  13. The Indoor Fungus Cladosporium halotolerans Survives Humidity Dynamics Markedly Better than Aspergillus niger and Penicillium rubens despite Less Growth at Lowered Steady-State Water Activity

    Science.gov (United States)

    Segers, Frank J. J.; van Laarhoven, Karel A.; Huinink, Hendrik P.; Adan, Olaf C. G.; Wösten, Han A. B.

    2016-01-01

    ABSTRACT Indoor fungi cause damage in houses and are a potential threat to human health. Indoor fungal growth requires water, for which the terms water activity (aw) and relative humidity (RH) are used. The ability of the fungi Aspergillus niger, Cladosporium halotolerans, and Penicillium rubens at different developmental stages to survive changes in aw dynamics was studied. Fungi grown on media with high aw were transferred to a controlled environment with low RH and incubated for 1 week. Growth of all developmental stages was halted during incubation at RHs below 75%, while growth continued at 84% RH. Swollen conidia, germlings, and microcolonies of A. niger and P. rubens could not reinitiate growth when retransferred from an RH below 75% to a medium with high aw. All developmental stages of C. halotolerans showed growth after retransfer from 75% RH. Dormant conidia survived retransfer to medium with high aw in all cases. In addition, retransfer from 84% RH to medium with high aw resulted in burst hyphal tips for Aspergillus and Penicillium. Cell damage of hyphae of these fungi after incubation at 75% RH was already visible after 2 h, as observed by staining with the fluorescent dye TOTO-1. Thus, C. halotolerans is more resistant to aw dynamics than A. niger and P. rubens, despite its limited growth compared to that of these fungi at a lowered steady-state aw. The survival strategy of this phylloplane fungus in response to the dynamics of aw is discussed in relation to its morphology as studied by cryo-scanning electron microscopy (cryo-SEM). IMPORTANCE Indoor fungi cause structural and cosmetic damage in houses and are a potential threat to human health. Growth depends on water, which is available only at certain periods of the day (e.g., during cooking or showering). Knowing why fungi can or cannot survive indoors is important for finding novel ways of prevention. Until now, the ability of fungi to grow on media with little available water at steady state

  14. Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain

    NARCIS (Netherlands)

    Levasseur, A.; Pagès, S.; Fierobe, H.-P.; Navarro, D.; Punt, P.; Belaïch, J.-P.; Asther, M.; Record, E.

    2004-01-01

    A chimeric enzyme associating feruloyl esterase A (FAEA) from Aspergilhis niger and dockerin from Clostridium thermocellum was produced in A. niger. A completely truncated form was produced when the dockerin domain was located downstream of the FAEA (FAEA-Doc), whereas no chimeric protein was produc

  15. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger.

    Science.gov (United States)

    Liu, Jing; Zhou, Lin; Chen, Ji-Hong; Mao, Wang; Li, Wen-Jian; Hu, Wei; Wang, Shu-Yang; Wang, Chun-Ming

    2014-01-01

    This study aimed to investigate the tolerance of a melanized wild-type strain of Aspergillus niger (CON1) and its light-colored mutant (MUT1) to UV-C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (-UV, -O3), (-UV, +O3), (+UV, -O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical-scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV-C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.

  16. Overexpression of the NADP+-specific isocitrate dehydrogenase gene (icdA) in citric acid-producing Aspergillus niger WU-2223L.

    Science.gov (United States)

    Kobayashi, Keiichi; Hattori, Takasumi; Hayashi, Rie; Kirimura, Kohtaro

    2014-01-01

    In the tricarboxylic acid (TCA) cycle, NADP(+)-specific isocitrate dehydrogenase (NADP(+)-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP(+) as a cofactor. We constructed an NADP(+)-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP(+)-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP(+)-ICDH activity. Therefore, NADP(+)-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.

  17. Phenotypes of gene disruptants in relation to a putative mitochondrial malate-citrate shuttle protein in citric acid-producing Aspergillus niger.

    Science.gov (United States)

    Kirimura, Kohtaro; Kobayashi, Keiichi; Ueda, Yuka; Hattori, Takasumi

    2016-09-01

    The mitochondrial citrate transport protein (CTP) functions as a malate-citrate shuttle catalyzing the exchange of citrate plus a proton for malate between mitochondria and cytosol across the inner mitochondrial membrane in higher eukaryotic organisms. In this study, for functional analysis, we cloned the gene encoding putative CTP (ctpA) of citric acid-producing Aspergillus niger WU-2223L. The gene ctpA encodes a polypeptide consisting 296 amino acids conserved active residues required for citrate transport function. Only in early-log phase, the ctpA disruptant DCTPA-1 showed growth delay, and the amount of citric acid produced by strain DCTPA-1 was smaller than that by parental strain WU-2223L. These results indicate that the CTPA affects growth and thereby citric acid metabolism of A. niger changes, especially in early-log phase, but not citric acid-producing period. This is the first report showing that disruption of ctpA causes changes of phenotypes in relation to citric acid production in A. niger.

  18. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Aryal, Uma K.; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D.; Magnuson, Jon K.; Adney, William S.; Beckham, Gregg T.; Brunecky, Roman; Himmel, Michael E.; Decker, Stephen R.; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E.

    2013-12-01

    ALG3 is a Family 58 glycosyltransferase enzyme involved in early N-linked glycan synthesis. Here, we investigated the effect of the alg3 gene disruption on growth, development, metabolism, and protein secretion in Aspergillus niger. The alg3 gene deletion resulted in a significant reduction of growth on complete (CM) and potato dextrose agar (PDA) media and a substantial reduction of spore production on CM. It also delayed spore germination in the liquid cultures of both CM and PDA media, but led to a significant accumulation of red pigment on both CM and liquid modified minimal medium (MM) supplemented with yeast extract. The relative abundance of 55 proteins of the total 190 proteins identified in the secretome was significantly different as a result of alg3 gene deletion. Comparison of a Trichoderma reesei cellobiohydrolase (Cel7A) heterologously expressed in A. niger parental and Δalg3 strains showed that the recombinant Cel7A expressed in the mutant background was smaller in size than that from the parental strains. This study suggests that ALG3 is critical for growth and development, pigment production, and protein secretion in A. niger. Functional analysis of recombinant Cel7A with aberrant glycosylation demonstrates the feasibility of this alternative approach to evaluate the role of N-linked glycosylation in glycoprotein secretion and function.

  19. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality.

    Science.gov (United States)

    Hattingh, M; Alexander, A; Meijering, I; van Reenen, C A; Dicks, L M T

    2014-03-01

    Good quality malt is characterised by the presence of high levels of fermentable sugars, amino acids and vitamins. To reach the starch-rich endosperm of the kernel, β-glucan- and arabinoxylan-rich cell walls have to be degraded. β-Glucanase is synthesized in vast quantities by the aleurone layer and scutellum during germination. Secretion of hydrolytic enzymes is often stimulated by addition of the plant hormone gibberellic acid (GA3) during germination. We have shown an enhanced β-glucanase and α-amylase activity in malt when germinating barley was inoculated with a combination of Lactobacillus plantarum B.S1.6 and spores of Aspergillus niger MH1, Rhizopus oligosporus MH2 or Trichoderma reesei MH3, and L. plantarum B.S1.6 combined with cell-free culture supernatants from each of these fungi. Highest malt β-glucanase activity (414 Units/kg malt) was recorded with a combination of L. plantarum B.S1.6 and spores of A. niger MH1. Highest α-amylase activities were recorded with a combination of L. plantarum B.S1.6 and spores of R. oligosporus MH2 (373 Ceralpha Units/g malt). Highest FAN levels were recorded when L. plantarum was inoculated in combination with spores of either R. oligosporus MH2 or T. reesei MH3 (259 and 260 ppm, respectively). This is the first study showing that cell-free culture supernatants of Aspergillus, Rhizopus and Trichoderma have a stimulating effect on β-glucanase and α-amylase production during malting. A combination of L. plantarum B.S1.6, and spores of A. niger MH1 and R. oligosporus MH2 may be used as starter cultures to enhance malt quality.

  20. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis.

    Science.gov (United States)

    Park, Joohae; Hulsman, Mark; Arentshorst, Mark; Breeman, Matthijs; Alazi, Ebru; Lagendijk, Ellen L; Rocha, Marina C; Malavazi, Iran; Nitsche, Benjamin M; van den Hondel, Cees A M J J; Meyer, Vera; Ram, Arthur F J

    2016-09-01

    The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis. PMID:27264789

  1. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  2. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    Directory of Open Access Journals (Sweden)

    C. v. Sperber

    2015-03-01

    Full Text Available Phosphorus (P is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi from organic phosphorus compounds (Porg. Phytic acid (IP6 is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP and glycerophosphate (GPO4 as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰, which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰ where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ −12‰, again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ε to the same amino acid sequence motif (RHGXRXP at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate

  3. In Vitro Evaluation Of Selected Plant Extracts As Biocontrol Agents Against Black Mold Aspergillus Niger Van Tieghem Of Onion Bulbs Allium Cepa L.

    Directory of Open Access Journals (Sweden)

    Saifeldin A. F. El-Nagerabi

    2015-08-01

    Full Text Available Black mold disease caused by Aspergillus niger V. Tiegh. is the most devastating infection occurs in onions Allium cepa L. under field and store conditions. The use of biocontrol agents is ecofriendly approach for controlling seedborne and soilborne diseases compared to the use of toxic synthetic fungicides. This study has been designed to assess the contamination levels of onion seeds with A. niger and its effect on seed germination and to evaluate the in vitro antifungal activity of Prunus mahaleb seeds Commiphora myrrha resin 0.5 1.0 1.5 2.0 g100 ml Syzygium aromaticum dry buds clove and Panax ginseng roots extracts 0.5 1.0 2.0 2.5 g100 ml against black mold of onion bulbs. The fungus is seedborne pathogen which significantly contaminated onion seeds 89-100 and reduced seed germination 39-83. The extracts of clove caused 43-96 inhibition in spore germination followed by mahaleb 37-96 myrrha 33-88 and ginseng 34-87. The highest concentration of these extracts 3.0 did not affect seed germination but significantly reduced seed contamination by A. niger up to 84 80 71 and 65 for Syzygium aromaticum Syzygium aromaticum Panax ginseng and Prunus mahaleb respectively. The extracts apparently inhibited the fungal growth and mold development on stored onion bulbs which indicates the antifungal property of these extracts against A. niger. Therefore they can be recommended as effective biocontrol agents to reduce seed contamination and enhance the storability of onion bulbs. Thus the use of healthy and certified seeds for onion production is a priority.

  4. 含顺丁烯二酸酐结构化合物抑制黑曲霉性能的研究%Research on Inhibition of the Compound with Maleic Anhydride Structure on the Performance of Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    金侃华; 陈小龙

    2009-01-01

    [Objective]The aim was to research the relationships between the side chain of maleic anhydride structure compounds and inhibition effect on Aspergillus niger. [Method]Choosing 7 kinds of common compounds with maleic anhydride structure and tautomycin, the test of inhibiting Aspergillus niger was carried out by using oxford cup method. [Result]Diphenylmaleic anhydride with the concentration of 10 g/L had a good inhibition on Aspergillus niger, while tautomycin with the lower concentration of 1 g/L also had a considerable inhibition effect. [Conclusions]The side chain of maleic anhydride structure compounds containing chlorine could promote the inhibition effect on Aspergillus niger, and containing benzene couldn't enhance the activity of inhibition on Aspergillus niger.%[目的]研究含顺丁烯二酸酐结构化合物侧链结构与抑制黑曲霉效果的关系. [方法]选取7种常见含顺丁烯二酸酐结构化合物以及变构霉素,用牛津杯法进行抑制黑曲霉试验.[结果]3, 6-二氯邻苯二甲酸酐在10 g/L浓度下对黑曲霉有较好的抑制作用,变构霉素在1 g/L 浓度下仍对黑曲霉有一定的抑制作用. [结论]含顺丁烯二酸酐结构化合物侧链含有氯对抑制黑曲霉有促进作用,而含有苯环则不能增强其对抑制黑曲霉的活性.

  5. Construction of Gene Engineering Gluconacetobacter Expressing Amylase and Glucoamylase%表达淀粉酶、糖化酶葡糖酸醋杆菌工程菌的构建

    Institute of Scientific and Technical Information of China (English)

    潘凌鸿; 李欣; 颜彩玲; 黄建忠

    2011-01-01

    A signal peptide of secreted protein CMCax from Gluconacetobacter hansenii ATCC23769 was respectively fused with amylase gene from Bacillus subtilis WB600 and glucoamylase gene from Aspergillus niger to construct fusion proteins using gene fusion technique. The fusion proteins were linked to vector pbs-HlS capable of self-replicate in G. Hansenii ATCC23769 and were transformed into G. Hansenii ATCC23769 by electric shock to construct engineering Gluconacetobacter strains which could express amylase, glucoamylase and amylase-glucoamylase. The results of starch plate transparent ring test and DNS enzymatic activity test showed that the three engineering strains could express and secret amylase and glucoamylase successfully.%采用基因融合技术,将葡糖酸醋杆菌Gluconacetobacter hansenii ATCC23769分泌蛋白CMCax的信号肽序列分别与来源于枯草芽胞杆菌的淀粉酶基因、黑曲霉的糖化酶基因融合构建融合蛋白,连入能在G.hansenii ATCC23769自主复制的载体pbs-H1S中,电击转入G.hansenii ATCC23769,构建能内源表达淀粉酶、糖化酶,以及淀粉酶-糖化酶的葡糖酸醋杆菌.淀粉平板透明圈检测结果和DNS测酶活结果显示,构建的3种工程菌能成功表达并分泌淀粉酶和糖化酶.

  6. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37 Produção e glucoamilase por Aspergillus flavus A1.1 e Thermomyces lanuginosus A13.37

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2005-03-01

    Full Text Available Thirteen thermophilic fungal strains were isolated from agricultural soil, tubers and compost samples in tropical Brazil. Two strains were selected based on of their ability to produce considerable glucoamylase activity while growing in liquid medium at 45ºC with starch as the only carbon source. They were identified as Aspergillus flavus A1.1 and Thermomyces lanuginosus A 13.37 Tsiklinsky. The experiment to evaluate the effect of carbon source, temperature and initial pH of the medium on enzyme production was developed in a full factorial design (2x2x3. Enzyme productivity was influenced by the type of starch used as carbon source. Cassava starch showed to be a better substrate than corn starch for glucoamylase production by A. flavus but for T. lanuginosus the difference was not significant. Enzyme activities were determined using as substrates 0.3% soluble starch, 0.3% maltose or 0.3% of starch plus 0.1% maltose. The enzymes from A. flavus A1.1 hydrolyzed soluble starch preferentially but also exhibited a significant maltase activity. Moreover higher quantities of glucose were released when the substrate used was a mixture of starch and maltose, suggesting that this fungus produced two types of enzyme. In the case T. lanuginosus A 13.37, the substrate specificity test indicated that the enzyme released also hydrolyzed starch more efficiently than maltose, but there was no increase in the liberation of glucose when a mixture of starch and maltose was used as substrate, suggesting that only one type of enzyme was secreted. Glucoamylases produced from A. flavus A1.1 and T. lanuginous A.13-37 have high optimum temperature (65ºC and 70ºC and good thermostability in the absence of substrate (maintaining 50% of activity for 5 and 8 hours, respectively, at 60ºC and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for industrial starch processing.Entre 13 linhagens de fungos filamentosos

  7. Degradation and Application of Aflatoxin B1 by Aspergillus Niger%黑曲霉对黄曲霉毒素B1的降解与应用研究

    Institute of Scientific and Technical Information of China (English)

    李冰; 董征英; 常维山

    2012-01-01

    试验利用黑曲霉对黄曲霉毒素B1进行了降解率、活性组分的确定、安全性及对饲料中降解黄曲霉毒素效果的研究。研究结果表明,黑曲霉对黄曲霉毒素B1的降解率达93.28%,其中黑曲霉的胞外粗提液对黄曲霉毒素B1的降解活性最高,证明黑曲霉对黄曲霉毒素B1的降解是一种生物化学反应,黑曲霉发酵液对饲料中的黄曲霉毒素B1具有很强的降解作用。小鼠的急性毒理学试验证明,试验用黑曲霉本身具有良好的安全性。%The determination of degradation efficiency and active components of aflatoxin B1 safety and the effect of degradation aflatoxin in feed about the screened aspergillus was researched in this experiment used aspergillus niger. The result showed that the degradation of aflatoxin B1 by aspergillus niger was 93.28%, the degrading efficiencies of aflatoxin B1 by exocellular coarse extraction liquid was highest, and this proved that the degration of aflatoxin B1 by aspergillus niger was a biological reaction. The degrading effect of aflatoxin B1 in feed by aspergillus fermented liquid was strong. A favorable safety of aspergillus niger was testified through the acute toxicology experiments in mice.

  8. Aminopeptidases from Aspergillus niger

    NARCIS (Netherlands)

    Wijk, van D.

    2004-01-01

    Aspergillusis a filamentous fungus that can grow in many environments, on several substrates at different conditions. In the soil,Aspergillirecycle nutrients by the degradation of plant material. In particular,Aspergilliare known for their capabili

  9. Solid-state fermentation for gluconic acid production from sugarcane molasses by Aspergillus niger ARNU-4 employing tea waste as the novel solid support.

    Science.gov (United States)

    Sharma, Amit; Vivekanand, V; Singh, Rajesh P

    2008-06-01

    Solid-state fermentation (SSF) was evaluated to produce gluconic acid by metal resistant Aspergillus niger (ARNU-4) strain using tea waste as solid support and with molasses based fermentation medium. Various crucial parameters such as moisture content, temperature, aeration and inoculum size were derived; 70% moisture level, 30 degrees C temperature, 3% inoculum size and an aeration volume of 2.5l min(-1) was suited for maximal (76.3 gl(-1)) gluconic acid production. Non-clarified molasses based fermentation media was utilized by strain ARNU-4 and maximum gluconic acid production was observed following 8-12 days of fermentation cycle. Different concentrations of additives viz. oil cake, soya oil, jaggary, yeast extract, cheese whey and mustard oil were supplemented for further enhancement of the production ability of microorganism. Addition of yeast extract (0.5%) was observed inducive for enhanced (82.2 gl(-1)) gluconic acid production.

  10. Simultaneous Cellulase Production, Saccharification and Detoxification Using Dilute Acid Hydrolysate of S. spontaneum with Trichoderma reesei NCIM 992 and Aspergillus niger.

    Science.gov (United States)

    Sateesh, Lanka; Rodhe, Adivikatla Vimala; Naseeruddin, Shaik; Yadav, Kothagauni Srilekha; Prasad, Yenumulagerard; Rao, Linga Venkateswar

    2012-06-01

    Bioethanol production from lignocellulosic materials has several limitations. One aspect is the high production cost of cellulases used for saccharification of substrate and inhibition of fermenting yeast due to inhibitors released in acid hydrolysis. In the present work we have made an attempt to achieve simultaneous cellulases production, saccharification and detoxification using dilute acid hydrolysate of Saccharum spontaneum with and without addition of nutrients, supplemented with acid hydrolyzed biomass prior to inoculation in one set and after 3 days of inoculation in another set. Organisms used were T. reesei NCIM 992, and Aspergillus niger isolated in our laboratory. Cellulase yield obtained was 0.8 IU/ml on fourth day with T. reesei. Sugars were found to increase from fourth to fifth day, when hydrolysate was supplemented with nutrients and acid hydrolyzed biomass followed by inoculation with T. reesei. Phenolics were also found to decrease by 67%. PMID:23729891

  11. Enzymatic synthesis of novel oligosaccharides from N-acetylsucrosamine and melibiose using Aspergillus niger α-galactosidase, and properties of the products.

    Science.gov (United States)

    Sakaki, Yohei; Tashiro, Mitsuru; Katou, Moe; Sakuma, Chiseko; Hirano, Takako; Hakamata, Wataru; Nishio, Toshiyuki

    2016-09-01

    Two kinds of oligosaccharides, N-acetylraffinosamine (RafNAc) and N-acetylplanteosamine (PlaNAc), were synthesized from N-acetylsucrosamine and melibiose using the transgalactosylation activity of Aspergillus niger α-galactosidase. RafNAc and PlaNAc are novel trisaccharides in which d-glucopyranose residues in raffinose (Raf) and planteose are replaced with N-acetyl-d-glucosamine. These trisaccharides were more stable in acidic solution than Raf. RafNAc was hydrolyzed more rapidly than Raf by α-galactosidase of green coffee bean. In contrast, RafNAc was not hydrolyzed by Saccharomyces cerevisiae invertase, although Raf was hydrolyzed well by this enzyme. These results indicate that the physicochemical properties and steric structure of RafNAc differ considerably from those of Raf. PMID:27254139

  12. Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation

    Institute of Scientific and Technical Information of China (English)

    Darah; Ibrahim; Haritharan; Weloosamy; Sheh-Hong; Lim

    2015-01-01

    AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger(A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 m L of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/m L suspension and incubated at 30 ℃ with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper(Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 ℃ until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope.RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed(150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/m L. There were significant different(Duncan, P < 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the mycelial

  13. 内切葡聚糖酶基因在黑曲霉中的同源表达%Endo-glucanase gene homologous expressed in Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    李杰; 高博; 江连洲; 刘君; 邓晨旭; 陈璐璐; 张会

    2014-01-01

    An endo-glucanase can truncate long chains of cellulose in cellulose non-crystal ine region through random hydrolysis of β-1, 4-glycosidic linkage, which plays an important role in the overal degradation of cellulose. In order to improve the endo-glucanase activity of Aspergil us niger, a gene designated Eng1 encoding an endo-glucanase from Aspergil us niger CICC2462 was cloned by using the reverse transcription PCR method. Using the highly expressed elment of glaA encoding a glucoamylase, the recombinant expression vector pSZHG-Eng1 was constructed and transformed into the strain CICC2462 via the Agrobacterium-mediated method. Two strains were obtained by screening hygromycin resistant mutants and base pair substitution based on homologous recombination was established by PCR to exist in glaA gene loci gene. Under the shaking flask fermentation condition, the endo-glucanase activity of the A.niger transformant reached 272 U·mL-1 in the fermentation solution, which was 5.2-fold as high as that of the original strain. The approximately 36 ku protein band from two strains was observed on the SDS-PAGE, and the expressed enzyme was quantitated to be 165-193μg·mL-1. This results showed that the endo-glucanase gene was successful y transformed and homologously expressed in Aspergil us niger, which laid the foundation for the construction of an engineered strain to produce a food-grade endo-glucanase in large-scale industrial production.%内切葡聚糖酶作用于纤维素的非结晶区,随机水解β-1,4-糖苷键,将长链的纤维素截断,对纤维素的整体降解起重要作用。研究从黑曲霉CICC2462中扩增得到内切葡聚糖酶基因Eng1,并针对黑曲霉中高表达的糖化酶基因glaA位点,构建Eng1基因表达载体pSZHG-Eng1,进一步通过农杆菌介导法转化黑曲霉CICC2462。经潮霉素筛选和PCR鉴定获得2株在glaA基因位点发生基因置换的同源重组转化子。在摇瓶发酵条件下,发酵液上

  14. Role of different additives and metallic micro minerals on the enhanced citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials.

    Science.gov (United States)

    Ali, Sikander; Haq, Ikram-ul

    2005-01-01

    The present investigation deals with the promotry effect of different additives and metallic micro minerals on citric acid production by Aspergillus niger MNNG-115 using different carbohydrate materials. For this, sugar cane bagasse was fortified with sucrose salt medium. Ethanol and coconut oil at 3.0% (v/w) level increased citric acid productivity. Fluoroacetate at a concentration of 1.0 mg/ml bagasse enhanced the yield of citric acid significantly. However, the addition of ethanol and fluoroacetate after 6 h of growth gave the maximum conversion of available sugar to citric acid. In another study, influence of some metallic micro-minerals viz. copper sulphate, molybdenum sulphate, zinc sulphate and cobalt sulphate on microbial synthesis of citric acid using molasses medium was also carried out. It was found that copper sulphate and molybdenum sulphate remarkably enhanced the production of citric acid while zinc sulphate was not so effective. However, cobalt sulphate was the least effective for microbial biosynthesis of citric acid under the same experimental conditions. In case of CuSO(4), the strain of Aspergillus niger MNNG-115 showed enhanced citric productivity with experimental (9.80%) over the control (7.54%). In addition, the specific productivity of the culture at 30 ppm CuSO(4) (Q(p) = 0.012a g/g cells/h) was several folds higher than other all other concentrations. All kinetic parameters including yield coefficients and volumetric rates revealed the hyper productivity of citric acid by CuSO(4) using blackstrap molasses as the basal carbon source.

  15. Influencia de la concentración de inóculo en la producción de celulasa y xilanasa por Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Myriam L. Izarra

    2010-10-01

    Full Text Available Título en inglés: Influence of inoculum concentration on the cellulase and xylanase production by Aspergillus niger Resumen Existe un gran interés por el uso de enzimas lignocelulolíticas en varias industrias, y en la biodegradación de biomasa para la producción de biocombustibles y otras aplicaciones. Entre las fuentes microbianas de enzimas, Aspergillus niger es uno de los microorganismos más utilizados en la producción de enzimas industriales, debido a sus niveles altos de secreción de proteína y a su condición GRAS (generally regarded as safe. El objetivo del presente estudio fue evaluar la influencia de la concentración de inóculo en la morfología y producción de celulasas y xilanasas con A. niger en cultivo sumergido. Para ello, fueron inoculados matraces de 250 mL con 40 mL de medio con 3% (v/v de una suspensión de 104 o 108 esporas por mililitro e incubados a 28 ºC y 175 rpm durante 120 horas. Se utilizaron 10 g*L-1 de lactosa como fuente de carbono. En cada caso se determinó la cantidad de biomasa, la proteína extracelular soluble, lactosa residual, actividad celulasa total y xilanasa cada 24 horas. Aunque no hubo un efecto notorio en la morfología de crecimiento, salvo en el color y el diámetro de pellets obtenidos, sí se afectó la µmax (0,06 y 0,03 h-1 para 104 y 108 esporas*mL-1, respectivamente y la concentración máxima de biomasa. Además, mientras que las productividades volumétricas de celulasa (ΓFPA (8,2 y 8,0 UI.*L-1*h-1 para 104 y 108 esporas*mL-1, respectivamente fueron similares para ambos inóculos, la productividad de xilanasa (ΓXIL fue mayor para el inóculo más concentrado (29,7 y 33,4 UI¨*L-1*h-1 para 104 y 108 esporas*mL-1, respectivamente. Los resultados indican que la productividad de celulasas y xilanasas está estrechamente relacionada con la concentración de inóculo. Palabras clave: celulasa; xilanasa; cultivo sumergido; morfología; Aspergillus niger. Abstract There is a great

  16. Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants.

    Science.gov (United States)

    Hoffmann, T; Golz, C; Schieder, O

    1994-12-01

    Different transgenic plants of Brassica napus, Brassica nigra, Datura innoxia and Vicia narbonensis expressing the hph gene under the control of the 35s promoter were co-cultivated with mycelial material of Aspergillus niger in microcosms under sterile conditions. A significantly higher number of hygromycin B-resistant colonies of re-isolated fungi was obtained if compared with co-cultures with non-transgenic plants. The hph gene and other foreign sequences could be detected in some of the resistant strains only for a short time after selection, indicating a rapid loss of foreign DNA. A more stable transgenic strain was obtained after co-culture with transgenic plants of D. innoxia including a high number of hph copies in their genome. DNA with detected pUC sequences was prepared to transform E. coli DH5 alpha. One of the recovered plasmids is shown to include pieces of the plant-transforming vector and a foreign sequence. The 35s-regulated expression of genes is studied in A. niger.

  17. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse).

  18. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    F. Veana

    2014-06-01

    Full Text Available Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents; the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid. Results indicated that, the enzymatic yield (5231 U/L is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse.

  19. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R;

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......A resulted in a two- to fivefold reduction in affinity for glucose and led to expression of a low-affinity glucose transport gene, mstC, at high dilution rate. The effect of mstA disruption was more subtle at low and intermediate dilution rates, pointing to some degree of functional redundancy in the high......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  20. PENGARUH PERLAKUAN DELIGNIFIKASI DENGAN LARUTAN NAOH DAN KONSENTRASI SUBSTRAT JERAMI PADI TERHADAP PRODUKSI ENZIM SELULASE DARI ASPERGILLUS NIGER NRRL A-II, 264

    Directory of Open Access Journals (Sweden)

    IDA BAGUS WAYAN GUNAM

    2010-12-01

    Full Text Available his research was done in order to utilize agricultural waste (rice straw as substrate to produce crude cellulase enzyme from Aspergillus niger. This research was conducted in two stages; the first stage was determination of the initial pH and fermentation time by pH treatment (5, 6 and 7 and fermentation time (7, 9 and 11 days. The second stage was determination of concentration of NaOH treatment and concentration of substrate, namely: concentrations of NaOH (2, 4 and 6% and concentrations of substrate (1, 2 and 3% (w/v. The results showed that the fermentation time of 9 days with the initial pH 6.0 was the optimal condition for production of crude cellulase enzyme from A. niger with rice straw as a substrate. The highest enzyme activity derived from interaction of delignification treatment with NaOH concentration of 6% and 2% rice straw substrate which produces endoglukanase enzyme activity (0.037 units/ml, filter paperase activity (0.033 units/ml, soluble protein (0.362 mg/ml, and specific activity of filter paperase (0.123 units/mg.

  1. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.

    Science.gov (United States)

    Buddhiwant, Priyanka; Bhavsar, Kavita; Kumar, V Ravi; Khire, Jayant M

    2016-08-17

    This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett-Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box-Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5-6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the "generally regarded as safe" (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF).

  2. Phytase production by solid-state fermentation of groundnut oil cake by Aspergillus niger: A bioprocess optimization study for animal feedstock applications.

    Science.gov (United States)

    Buddhiwant, Priyanka; Bhavsar, Kavita; Kumar, V Ravi; Khire, Jayant M

    2016-08-17

    This investigation deals with the use of agro-industrial waste, namely groundnut oil cake (GOC), for phytase production by the fungi Aspergillus niger NCIM 563. Plackett-Burman design (PBD) was used to evaluate the effect of 11 process variables and studies here showed that phytase production was significantly influenced by glucose, dextrin, distilled water, and MgSO4 · 7H2O. The use of response surface methodology (RSM) by Box-Behnken design (BBD) of experiments further enhanced the production by a remarkable 36.67-fold from the original finding of 15 IU/gds (grams of dry substrate) to 550 IU/gds. This is the highest solid-state fermentation (SSF) phytase production reported when compared to other microorganisms and in fact betters the best known by a factor of 2. Experiments carried out using dried fermented koji for phosphorus and mineral release and also thermal stability have shown the phytase to be as efficient as the liquid enzyme extract. Also, the enzyme, while exhibiting optimal activity under acidic conditions, was found to have significant activity in a broad range of pH values (1.5-6.5). The studies suggest the suitability of the koji supplemented with phytase produced in an SSF process by the "generally regarded as safe" (GRAS) microorganism A. niger as a cost-effective value-added livestock feed when compared to that obtained by submerged fermentation (SmF). PMID:26176365

  3. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    Science.gov (United States)

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  4. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.

    Science.gov (United States)

    Veana, F; Martínez-Hernández, J L; Aguilar, C N; Rodríguez-Herrera, R; Michelena, G

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  5. Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents

    Directory of Open Access Journals (Sweden)

    Shafiquzzaman Siddiquee

    2015-05-01

    Full Text Available A simple, fast, repeatable, and less laborious sample-preparation protocol based on gas chromatography–mass spectrometry was developed and applied for the analysis of bioactive compounds derived from the filamentous fungus Aspergillus niger strain SS10. The match factors for the spectra of the samples with reference to the mass-spectral library of fungal volatile compounds were determined and used to study the complex hydrocarbons and other volatile compounds that were separated using two different capillary columns and nonpolar and medium-polar stationary phases. More than 295 volatile compounds (spectral match factor of at least 90%, such as normal saturated hydrocarbons (C7–C30, cyclohexane, cyclopentane, fatty acids, alcohols, esters, sulfur- and bromo-containing compounds, simple pyrane, and benzene derivatives, were identified. Most of these compounds have not been reported earlier. The method described in this article is a suitable research tool for the determination of volatile compounds from the cultures of A. niger.

  6. Bioinformatics Analysis of pectin lyases in Aspergillus niger%黑曲霉果胶裂解酶的生物信息分析

    Institute of Scientific and Technical Information of China (English)

    柯崇榕; 杨欣伟; 林晓华; 吴毕莎; 陈荣珠; 黄建忠

    2011-01-01

    用生物信息方法对果胶裂解酶(PNL)基因的核酸序列及其推导氨基酸序列的组成、亚细胞定位、疏水性/亲水性以及二、三级结构等进行分析.结果表明,黑曲霉的PNL为具有一定亲水性的稳定酸性分泌蛋白,具有明显的信号肤,无跨膜结构区,保守功能结构域为Pee_lyase_C.二级结构主要构成是不规则卷曲,具有以β片层结构为基础的相似三维空间结构.%Analyzed and predicted the nucleotide and amino acids composition、sub -cell location,signal peptides and tran -membrane regions、hydrophobicity/hydrophilicity ..secondary and tertiary structure of pectin lyases including Aspergillus niger from NCBI database. Results shows that A. Niger PNLs are stability of hydrophilic secreted protein, with a clear signal peptide, non - transmembrane area. The structures of PNL include a characteristic functional domain of Pec_lyase_C. Random coil is the main components of its secondary structure and has similar tertiary structures with the β sheet structure.

  7. High efficiency cell-recycle continuous sodium gluconate production by Aspergillus niger using on-line physiological parameters association analysis to regulate feed rate rationally.

    Science.gov (United States)

    Lu, Fei; Li, Chao; Wang, Zejian; Zhao, Wei; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-11-01

    In this paper, a system of cell-recycle continuous fermentation for sodium gluconate (SG) production by Aspergillus niger (A. niger) was established. Based on initial continuous fermentation result (100.0h) with constant feed rate, an automatic feedback strategy to regulate feed rate using on-line physiological parameters (OUR and DO) was proposed and applied successfully for the first time in the improved continuous fermentation (240.5h). Due to less auxiliary time, highest SG production rate (31.05±0.29gL(-1)h(-1)) and highest yield (0.984±0.067molmol(-1)), overall SG production capacity (975.8±5.8gh(-1)) in 50-L fermentor of improved continuous fermentation increased more than 300.0% compared to that of batch fermentation. Improvement of mass transfer and dispersed mycelia morphology were the two major reasons responsible for the high SG production rate. This system had been successfully applied to industrial fermentation and SG production was greatly improved. PMID:27611026

  8. Perfil bioquímico do soro de frangos de corte alimentados com dieta suplementada com alfa-amilase de Cryptococcus flavus e Aspergillus niger HM2003 Biochemichal serum profile of broilers fed diets suplemented with alfa-amylase from Cryptococcus flavus and Aspergillus niger HM2003

    Directory of Open Access Journals (Sweden)

    Cibele Silva Minafra

    2010-12-01

    Full Text Available Avaliou-se o perfil bioquímico do soro de frangos de corte alimentados com a enzima α-amilase produzida por dois microrganismos. Produziram-se dois extratos, um com a-amilase obtida a partir de Cryptococcus flavus em meio de levedura comercial e outro com Aspergillus niger HM2003 em meio de proteína de soja e amido comercial, com atividade de 9,58 U/mL e 10,0 U/mL, respectivamente. Utilizaram-se 360 pintos de corte Cobb 500 de 1 dia de idade e com 49,72 ± 0,68 g de peso vivo inicial. As aves foram alojadas em baterias e foram criadas até os 21 dias de idade. Foram utilizados três dietas, cada uma com cinco repetições de 12 aves, em delineamento inteiramente casualizado. A primeira dieta (basal foi formulada sem adição de enzima e as outras duas receberam a suplementação de a-amilase produzida por cultivo de Cryptococcus flavus e Aspergillus niger HM2003. Dietas à base de milho e soja foram formuladas em duas fases: pré-inicial (1-7 dias e inicial (8-21 dias. Na fase pré-inicial, foram observados os seguintes valores médios para cálcio (6,90 e 5,99 mg/dL, proteína plasmática (2,0 e 2,50 g/dL e fosfatase alcalina (979,98 e 974,66 UI/L, respectivamente para Cryptococcus flavus e Aspergillus niger HM2003. A dieta acrescida de a-amilase obtida a partir de Aspergillus niger HM2003 determinou maior concentração sérica de fósforo. Na fase inicial, os resultados significativos relacionaram-se a potássio quando avaliadas dietas com adição de a-amilase pelas duas fontes. A incorporação das enzimas testadas não proporciona alterações metabólicas ou toxicidade nos animais.It was evaluated the biochemical serum profile of broilers fed rations supplemented with α-amylase produced by two microorganisms. Two extracts were produced, one was produced with a-amylase obtained from Cryptococcus flavus in a commercial yeast-based medium and the other with Aspergillus niger HM2003 produced in soybean protein and commercial starch medium

  9. STATISTICAL OPTIMIZATION OF AQUEOUS LEAF EXTRACT OF AERVA LANATA FOR CITRININ AND FUNGAL BIOMASS REDUCTION IN SUBMERGED FERMENTATION BY ASPERGILLUS NIGER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Ajaz Ahmad

    2013-12-01

    Full Text Available Citrinin, a nephrotoxic mycotoxin produced by several fungal strains belonging to the genera Penicillium, Aspergillus, and Monascus. Generally found in stored grains and after their harvest. The objective of the present investigation was to study the antimicrobial activity (anti-fungal of aqueous leaf extract of Aerva lanata and to optimize its conditions for the maximum inhibition of citrinin and fungal biomass by Aspergillus niger. Optimization of culture conditions was carried out using Box-Behnken method of response surface methodology. Extent of inhibition of citrinin was carried out using HPLC and reduction in fungal biomass was carried out using dry cell weight after comparing with controls. Optimized culture conditions as per the point prediction tool were found to be 11.27 mg/L for concentration of Aerva lanata extract, nine and half days of incubation period and temperature of 25.5 °C resulted in maximum inhibition of citrinin. These optimized values of tested parameters were and compared with control citrinin production (243.28 mg/L and dry cell weight production (362.28mg.An average of 87.77±1.21% inhibition of citrinin and 80.02±1.42% of dry cell weight was obtained in an optimized medium at 9.5th d of fermentation with 97.82 % and 96.21% validity, respectively.

  10. Isolation and NMR Characterization of Fumonisin B-2 and a New Fumonisin B-6 from Aspergillus niger

    DEFF Research Database (Denmark)

    Månsson, Maria; Klejnstrup, Marie Louise; Phipps, Richard Kerry;

    2010-01-01

    of FBI and iso-FB1, having hydroxyl functions at C3, C4, and C5. Analysis of the NMR data for FB2 showed very similar chemical shift values when compared to an authentic Fusarium FB2 standard, strongly indicating identical molecules despite that an absolute stereochemical assignment of FB2 from A. niger...

  11. Expression of agsA, one of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger, is induced in response to cell wall stress

    NARCIS (Netherlands)

    Damveld, R.A.; Kuyk, P.A. van; Arentshorst, M.; Klis, F.M.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2005-01-01

    1,3-α-d-Glucan is an important component of the cell wall of filamentous fungi. We have identified a family of five 1,3-α-d-glucan synthase-encoding genes in Aspergillus niger. The agsA gene was sequenced and the predicted protein sequence indicated that the overall domain structure of 1,3-α-d-gluca

  12. Antibacterial Activity and Chemical Constituents of Petroleum Ether Fraction in Aspergillus niger Mycelia%黑曲霉菌丝体抗菌活性及石油醚部分化学成分

    Institute of Scientific and Technical Information of China (English)

    刘吴娟; 陈青; 王嫱; 冯焕鹏; 李祝; 郭金; 龙云川

    2013-01-01

    Objective:In order to develop natural antibacterial agents, the antibacterial activity of Aspergillus niger xj was investigated. Method:The disc diffusion method was used to measure the antibacterial activity of petroleum ether (P. E) , ethyl acetate (EtOAc) and water extracts of Aspergillus niger mycelia. The P. E fraction with antibacterial activity was separated by silica gel column chromatography method, then separated and identified by GC-MS after being esterified with methanol. Result:Ten compounds were isolated and identified from the petroleum ether extract of mycelia which exhibited inhibitory effect against Staphylococcus aureus. Conclusion:The petroleum ether extract of Aspergillus niger xj mycelia contained natural substances with antibacterial activity in which fatty acids are the main constituents.%目的:对黑曲霉Aspergillus niger xj抗菌活性及化学成分进行研究以筛选天然抗菌药物.方法:采用滤纸片扩散法对黑曲霉菌丝体石油醚、醋酸乙酯和水提取物进行抗菌活性测定,并对石油醚部位活性部位进行硅胶柱色谱,甲酯化,通过气相色谱-质谱联用技术(GC-MS)对其化学成分进行分析.结果:菌丝体石油醚部分具有一定抗菌活性,从中鉴定出10个化合物.结论:黑曲霉菌丝体的石油醚部分存在抗菌活性物质,其化学成分以脂肪酸占较大比例.

  13. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    DEFF Research Database (Denmark)

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.;

    2015-01-01

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme...... production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination...... was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production...

  14. Gallic acid formation from gallotannins-rich agricultural wastes using Aspergillus niger AUMC 4301 or its tannase enzyme

    International Nuclear Information System (INIS)

    Gallic acid is used in many fields including dye-making, leather and chemical industries. Seven agricultural wastes were chosen for their high gallotannin content. They were apple baggages, green tea waste, mango seed kernel, olive mill, palm kernel cake, peat moss and tamarind. Each waste was used as a carbon source instead of tannic acid in the fermentation medium. Some agricultural wastes under investigation were already contain free gallic acid especially mango seed kernel followed by green tea waste, while olive mill, peat moss and tamarind were found to be free from gallic acid. The highest concentration of liberated gallic acid from wastes fermented by A. niger AUMC 4301 was occurred at the third day of fermentation. After 72 h, a sharp decrease in gallic acid accumulation was noticed. To overcome this sharp decrease, agricultural wastes were treated with extracellular crude A. niger tannase directly in stead of tannase producer. The concentration of gallic acid increased gradually and reached its maximum at 18 h incubation in case of apple baggages, green tea waste and palm kernel cake. On the other hand, gallic acid production was delayed for a lag period (12-18) h depends on the complexity of used agriculture waste. To increase the tannase productivity by A. niger AUMC 4301, the producer fungus was irradiated by different doses of γ rays, D10 value was 0.81 kGy. Radiation dose 0.5 kGy shows a positive effect on tannase productivity. An experiment examined the change in amino acid profile between irradiated and unirradiated A. niger AUMC 4301 was also conducted.

  15. The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger

    NARCIS (Netherlands)

    Franken, A.C.W.; Werner, E.R.; Haas, H.; Lokman, B.C.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.; Weert, S. de; Punt, P.J.

    2013-01-01

    Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and

  16. The role of Coproporphyrinogen III oxidase and Ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger

    NARCIS (Netherlands)

    Punt, P.J.; Weert, S. de; Ram, A.F.J.; Hondel, C.A.M.J.J. van den; Lokman, Christien; Haas, H.; Werner, E.R.; Franken, A.C.W.

    2013-01-01

    Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and

  17. Expression of exo-inulinase gene from Aspergillus niger 12 in E. coli strain Rosetta-gami B (DE3) and its characterization.

    Science.gov (United States)

    Yedahalli, Shreyas S; Rehmann, Lars; Bassi, Amarjeet

    2016-05-01

    Inulin is a linear carbohydrate polymer of fructose subunits (2-60) with terminal glucose units, produced as carbon storage in selected plants. It cannot directly be taken up by most microorganisms due to its large size, unless prior hydrolysis through inulinase enzymes occurs. The hydrolyzed inulin can be taken up by microbes and/or recovered and used industrially for the production of high fructose syrup, inulo-oligosaccharides, biofuel, and nutraceuticals. Cell-free enzymatic hydrolysis would be desirable for industrial applications, hence the recombinant expression, purification and characterization of an Aspergillus niger derived exo-inulinase was investigated in this study. The eukaroyototic exo-inulinase of Aspergillus niger 12 has been expressed, for the first time, in an E. coli strain [Rosetta-gami B (DE3)]. The molecular weight of recombinant exo-inulinase was estimated to be ∼81 kDa. The values of Km and Vmax of the recombinant exo-inulinase toward inulin were 5.3 ± 1.1 mM and 402.1 ± 53.1 µmol min(-1)  mg(-1) protein, respectively. Towards sucrose the corresponding values were 12.20 ± 1.6 mM and 902.8 ± 40.2 µmol min(-1)  mg(-1) protein towards sucrose. The S/I ratio was 2.24 ± 0.7, which is in the range of native inulinase. The optimum temperature and pH of the recombinant exo-inulinase towards inulin was 55°C and 5.0, while they were 50°C and 5.5 towards sucrose. The recombinant exo-inulinase activity towards inulin was enhanced by Cu(2+) and reduced by Fe(2+) , while its activity towards sucrose was enhanced by Co(2+) and reduced by Zn(2+) . © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:629-637, 2016. PMID:26833959

  18. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE by Aspergillus niger in soil

    Directory of Open Access Journals (Sweden)

    Farzin Shabani

    2015-07-01

    Main conclusions:  Accurately evaluating the impact of landfilling on land use and predicting future climate are vital components for effective long-term planning of waste management. From a social and economic perspective, utilization of our mapped projections to detect suitable regions for establishing landfills in areas highly sustainable for microorganisms like A. niger growth will allow a significant cost reduction and improve the performance of biodegradation of LDPE over a long period of time, through making use of natural climatic and environmental factors.

  19. Physiology of Aspergillus niger in Oxygen-Limited Continuous Cultures: Influence of Aeration, Carbon Source Concentration and Dilution Rate

    DEFF Research Database (Denmark)

    Diano, Audrey; Peeters, J.; Dynesen, Jens Østergaard;

    2009-01-01

    of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations....... Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol...

  20. Efeito da toxicidade de Cr (VI) e Zn (II) no crescimento do fungo filamentoso Aspergillus niger isolado de efluente industrial Toxicity effect of Cr (VI) and Zn (II) on growth of filamentous fungi Aspergillus niger isolated from industrial effluent

    OpenAIRE

    Maria do Socorro Vale; Katiany do Vale Abreu; Sandro Thomaz Gouveia; Renato Carrhá Leitão; Sandra Tédde Santaella

    2011-01-01

    Processos convencionais de tratamento de efluentes utilizam microrganismos vivos, o que sugere limitações relativas À toxicidade de metais para os microrganismos. O experimento consistiu em adicionar soluções monoelementares de Cr (VI) e Zn(II) em diferentes concentrações (0, 20, 50, 100, 200, 300, 400, 500 mg.L-1) ao meio de crescimento e observar a influência dos metais no crescimento micelial e germinativo do fungo Aspergillus Níger por verificação visual da expansão radial do micélio e da...

  1. Catalysis of Rice Straw Hydrolysis by the Combination of Immobilized Cellulase from Aspergillus niger on β-Cyclodextrin-Fe3O4 Nanoparticles and Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Po-Jung Huang

    2015-01-01

    Full Text Available Cellulase from Aspergillus niger was immobilized onto β-cyclodextrin-conjugated magnetic particles by silanization and reductive amidation. The immobilized cellulase gained supermagnetism due to the magnetic nanoparticles. Ninety percent of cellulase was immobilized, but the activity of immobilized cellulase decreased by 10%. In this study, ionic liquid (1-butyl-3-methylimidazolium chloride was introduced into the hydrolytic process because the original reaction was a solid-solid reaction. The activity of immobilized cellulase was improved from 54.87 to 59.11 U g immobilized cellulase−1 at an ionic liquid concentration of 200 mM. Using immobilized cellulase and ionic liquid in the hydrolysis of rice straw, the initial reaction rate was increased from 1.629 to 2.739 g h−1 L−1. One of the advantages of immobilized cellulase is high reusability—it was usable for a total of 16 times in this study. Compared with free cellulase, magnetized cellulase can be recycled by magnetic field and the activity of immobilized cellulase was shown to remain at 85% of free cellulase without denaturation under a high concentration of glucose (15 g L−1. Therefore, immobilized cellulase can hydrolyze rice straw continuously compared with free cellulase. The amount of harvested glucose can be up to twentyfold higher than that from the hydrolysis by free cellulase.

  2. Optimization of Initial pH and Total Sugar Concentration Variables on Citric Acid Production from Pineapple Waste with Aspergillus niger Yeast by Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2011-06-01

    Full Text Available Citric acid can be produced from pineapple waste by using fermentation process. This process is done in bubble column reactor with Aspergillus niger yeast. The objective of this research is to find the optimum conditions of initial pH and total sugar concentration. The optimization method used was response surface methodology. This research was carried out at a temperature of 30 oC, spore concentration of 1.23 x 109 spore/ml, total volume 2.0 liter, flow rate of air 58.07 cc/sec and a 5% antifoam concentration. The fermentation process lasted 7 days and the citric acid concentration was analyzed by High Pressure Liquid Cromatography (HPLC method. Statistica 6 software was used for the data treatment. The mathematical model for the optimization citric acid fermentation in bubble column reactor is Y = 54.507 + 2.9851X - 8.987X12 - 2.581X2 - 15.446X22 - 7.989X1X2 The parameter of Y is citric acid yield, X1 is a coding initial pH and X2 is a coding total sugar concentration. The results has given an initial pH optimum 3.61 and total sugar concentration 19,285% w/v with optimum an yield of 55.03 % . Keywords: Bubble column bioreactor, Citric acid fermentation, Initial pH, Total sugar concentration, Response surface methodology

  3. Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620.

    Science.gov (United States)

    Sabu, A; Pandey, A; Daud, M Jaafar; Szakacs, G

    2005-07-01

    Palm kernel cake (PKC), the residue obtained after extraction of palm oil from oil palm seeds and tamarind seed powder (TSP) obtained after removing the fruit pulp from tamarind fruit pod were tested for the production of tannase under solid-state fermentation (SSF) using Aspergillus niger ATCC 16620. The fungal strain was grown on the substrates without any pretreatment. In PKC medium, a maximum enzyme yield of 13.03 IU/g dry substrate (gds) was obtained when SSF was carried out at 30 degrees C, 53.5% initial substrate moisture, 33 x 10(9) spores/5 g substrate inoculum size and 5% tannic acid as additional carbon source after 96 h of fermentation. In TSP medium, maximum tannase yield of 6.44 IU/gds was obtained at 30 degrees C, 65.75% initial substrate moisture, 11 x 10(9) spores/5 g substrate inoculum, 1% glycerol as additional carbon source and 1% potassium nitrate as additional nitrogen source after 120 h of fermentation. Results from the study are promising for the economic utilization and value addition of these important agro residues, which are abundantly available in many tropical and subtropical countries.

  4. [Determination of the antimicrobial capacity of green tea (Camellia sinensis) against the potentially pathogenic microorganisms Escherichia coli, Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, Candida albicans and Aspergillus niger].

    Science.gov (United States)

    Mora, Andreína; Pawa, Jonathan; Chaverri, José M; Arias, María Laura

    2013-09-01

    Many studies can be found in scientific literature demonstrating the antimicrobial capacity of different herbs, including green tea. Never-theless, many results are divergent or cannot be compared. Several green tea formulations may be found in market, but there is scarce or non-information about its activity. In this work, the potential antimicrobial effect of 50 samples of dry green tea and in 10% infusion against Escherichia coli, Salmonella enterica, Listeria monocytogenes, Staphylococcus aureus, Candida albicans and Aspergillus niger distributed in the metropolitan area of Costa Rica, was determined. This activity was compared with the effect produced by Chinese origin green tea (Camellia sinensis). Different solvents were evaluated for preparing polyphenol enriched extracts from green tea samples. Total phenols were determined using the Folin-Ciocalteu spectrophotometric methodology, using galic acid as reference. Antimicrobial activity of green tea extracts and infusions was evaluated using the microplate methodology described by Breuking (2006). Ethanol was the most efficient solvent used for the polyphenol extractions. There was no antimicrobial effect of the different green tea extracts and infusions against the microorganisms evaluated, except for Listeria monocytogenes, where the extracts of 70% of samples analyzed and the control showed an inhibitory effect in the 10.5 mg/mL and 1.05 mg/L concentrations. None of the infusions tested, including the control, showed any effect against this bacteria. PMID:25362825

  5. OPTIMIZATION OF MILK-CLOTTING PROTEASE PRODUCTION BY A LOCAL ISOLATE OF ASPERGILLUS NIGER FFB1 IN SOLID-STATE FERMENTATION

    Directory of Open Access Journals (Sweden)

    Souhila Bensmail

    2015-04-01

    Full Text Available The need to surmount the limitation of obtaining rennin, has been actively pushed researches to find new substitutes that present high milk-clotting activity which enables the production of high yields of cheese. In this study, the production of extracellular milk-clotting protease by locally isolated fungal specie, Aspergillus niger FFB1 under solid-state fermentation (SSF using cheep agro-industrial byproduct (wheat bran was optimized. The effects of several physicochemical and environmental factors were investigated to select the optimal conditions that ensure the best milk-clotting activity by application of "One-factor-at-a-time" method. A trial of cheese production using the crude extract was also carried out. The maximum enzyme activity (830 SU/g bran with a ratio MCA/PA of 4.25 was obtained under the optimum conditions of temperature (30°C, spores concentration (106 spores/mL, incubation time (72 hours, and moisture content of solid substrate (39.2% adjusted suitably with mineral solution (Czapek-Dox of pH 4.

  6. Characterization of β-Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose

    Directory of Open Access Journals (Sweden)

    Anderson Baraldo Junior

    2014-01-01

    Full Text Available β-Glucosidase (BGL is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications.

  7. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Directory of Open Access Journals (Sweden)

    Mojdeh Dinarvand

    2013-01-01

    Full Text Available The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM with a five-variable and three-level central composite design (CCD was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2 more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v sucrose, 2.5% (w/v yeast extract, 2% (w/v NaNO3, 1.5 mM (v/v Zn+2, and 1% (v/v Triton X-100 by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.

  8. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    David Friday Apata

    2011-01-01

    Full Text Available A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (>.05 in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40% of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (.05 altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (<.05 increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents.

  9. Crystallization and preliminary X-ray investigation of proteinase A, a non-pepsin-type acid proteinase from Aspergillus niger var. macrosporus.

    Science.gov (United States)

    Tanokura, M; Matsuzaki, H; Iwata, S; Nakagawa, A; Hamaya, T; Takizawa, T; Takahashi, K

    1992-01-01

    Proteinase A from Aspergillus niger var. macrosporus is a non-pepsin-type acid proteinase distinctly different in various properties from the family of pepsin-type aspartic proteinases, and so far it remains unknown which residues participate in the catalysis of the enzyme and how the mechanism operates. The acid proteinase A was crystallized from an ammonium sulfate solution by the hanging-drop vapor diffusion method. The space group of the crystals was P2(1)2(1)2(1) with unit cell dimensions of a = 54.7 A, b = 70.4 A and c = 38.0 A. On the assumption that there is one enzyme molecule in the asymmetric unit, the calculated ratio of volume to unit protein mass (Vm) was 1.64 A3 per dalton. Diffraction data were collected up to a resolution higher than 1.5 A, using the Weissenberg camera for macromolecular crystallography with synchrotron radiation. The crystal of proteinase A is, therefore, suitable for the structural analysis with a high resolution.

  10. Expresión diferencial de los genes de algunas enzimas lignocelulolíticas en biopelículas de Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Gretty K. Villena

    2008-12-01

    Full Text Available Se realizó una evaluación génica preliminar a nivel transcripcional de biopelículas de Aspergillus niger ATCC 10864 desarrolladas sobre poliéster respecto a algunas enzimas lignocelulolíticas. El análisis de expresión de genes de enzimas lignocelulolíticas y genes reguladores mediante RT-PCR mostró que los genes eng1, eglC, exo y eglA, eglB y xynB son diferencialmente expresados ya sea temporalmente o mediante más de un transcripto en comparación con cultivos sumergidos. Asimismo, los genes reguladores xlnR y creA mostraron patrones temporales de expresión distintos en ambos sistemas. Los resultados obtenidos aportan la evidencia molecular inicial de expresión diferencial de genes en biopelículas así como patrones de regulación diferencial muy probablemente ligada a la adhesión celular.

  11. Producción de ácido cítrico con Aspergillus niger NRRL 2270 a partir de suero de leche

    Directory of Open Access Journals (Sweden)

    CARLOS ANDRÉS LÓPEZ RÍOS

    2006-01-01

    Full Text Available Con el fin de aprovechar el subproducto de la fabricación de queso blanco, se evaluó el suero de leche como sustrato para la producción de ácido cítrico utilizando Aspergillus niger NRRL 2270. Para este sustrato se comparó la hidrólisis ácida y enzimática de la lactosa con el fin de proporcionar al microorganismo una fuente de carbono más asimilable. En el suero entero (SE y desproteinizado e hidrolizado (SDH, se estudió el efecto del pH y la adición de nitrógeno, además en el suero hidrolizado (SH la complementación con sacarosa; posteriormente se estudió la adición de nitrógeno y fósforo en el SE y SDH; se determinó la producción de ácido cítrico al agregar magnesio, carboximetil celulosa (CMC, gelatina y metanol al SE. El proceso fermentativo se realizó en cultivo sumergido discontinuo agitado y a las mejores condiciones nutricionales se hizo un seguimiento de las variables del proceso en el tiempo.

  12. SYNONYMOUS CONDON USAGE BIAS AND OVEREXPRESSION OF A SYNTHETIC xynB GENE FROM Aspergillus niger NL-1 IN Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Fei Li, Shiyi Yang,

    2012-02-01

    Full Text Available To further improve the expression level of recombinant xylanase in Pichia pastoris, the xynB gene, encoding the mature peptide from Aspergillus niger NL-1, was designed and synthesized based on the synonymous condon bias of P. pastoris and optimized G+C content. 155 nucleotides were changed, and the GC content decreased from 57.7% to 43.6%. The synthetic xynB was inserted into the pPICZaA and then integrated into P. pastoris GS115. The activity of the recombinant xylanase reached 1414.7 U/mL, induced with 0.8% methanol after 14-day cultivation at a temperature of 28oC in shake flasks, which was 267% higher than that of the native gene. Furthermore, the maximum xylanase activity of 20424.2 U/mL was obtained by high-density fermentation in a 5-L fermenter, which was the highest xylanase expression in P. pastoris yet reported. The recombinant xylanase had its optimal activity at a pH of 5.0 and temperature of 50oC. The recombinant xylanase was stable over a pH range of 4.5 to 8.0. Thus, this report provides an industrial means to produce the recombinant xylanase in P. pastoris.

  13. Regulation of Development in Aspergillus nidulans and Aspergillus fumigatus

    OpenAIRE

    Yu, Jae-Hyuk

    2010-01-01

    Members of the genus Aspergillus are the most common fungi and all reproduce asexually by forming long chains of conidiospores (or conidia). The impact of various Aspergillus species on humans ranges from beneficial to harmful. For example, several species including Aspergillus oryzae and Aspergillus niger are used in industry for enzyme production and food processing. In contrast, Aspergillus flavus produce the most potent naturally present carcinogen aflatoxins, which contaminate various pl...

  14. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA.

    Directory of Open Access Journals (Sweden)

    Jolanda M van Munster

    Full Text Available BACKGROUND: The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. RESULTS: In this study, we used developmental mutants (ΔflbA and ΔbrlA which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. CONCLUSION: The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation

  15. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger.

    Science.gov (United States)

    Dai, Ziyu; Aryal, Uma K; Shukla, Anil; Qian, Wei-Jun; Smith, Richard D; Magnuson, Jon K; Adney, William S; Beckham, Gregg T; Brunecky, Roman; Himmel, Michael E; Decker, Stephen R; Ju, Xiaohui; Zhang, Xiao; Baker, Scott E

    2013-12-01

    Dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl α-1,3-mannosyltransferase (also known as "asparagine-linked glycosylation 3", or ALG3) is involved in early N-linked glycan synthesis and thus is essential for formation of N-linked protein glycosylation. In this study, we examined the effects of alg3 gene deletion (alg3Δ) on growth, development, pigment production, protein secretion and recombinant Trichoderma reesei cellobiohydrolase (rCel7A) expressed in Aspergillus niger. The alg3Δ delayed spore germination in liquid cultures of complete medium (CM), potato dextrose (PD), minimal medium (MM) and CM with addition of cAMP (CM+cAMP), and resulted in significant reduction of hyphal growth on CM, potato dextrose agar (PDA), and CM+cAMP and spore production on CM. The alg3Δ also led to a significant accumulation of red pigment on both liquid and solid CM cultures. The relative abundances of 54 of the total 215 proteins identified in the secretome were significantly altered as a result of alg3Δ, 63% of which were secreted at higher levels in alg3Δ strain than the parent. The rCel7A expressed in the alg3Δ mutant was smaller in size than that expressed in both wild-type and parental strains, but still larger than T. reesei Cel7A. The circular dichroism (CD)-melt scans indicated that change in glycosylation of rCel7A does not appear to impact the secondary structure or folding. Enzyme assays of Cel7A and rCel7A on nanocrystalline cellulose and bleached kraft pulp demonstrated that the rCel7As have improved activities on hydrolyzing the nanocrystalline cellulose. Overall, the results suggest that alg3 is critical for growth, sporulation, pigment production, and protein secretion in A. niger, and demonstrate the feasibility of this alternative approach to evaluate the roles of N-linked glycosylation in glycoprotein secretion and function. PMID:24076077

  16. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.

    Science.gov (United States)

    Stratford, Malcolm; Plumridge, Andrew; Pleasants, Mike W; Novodvorska, Michaela; Baker-Glenn, Charles A G; Pattenden, Gerald; Archer, David B

    2012-07-16

    Moulds are able to cause spoilage in preserved foods through degradation of the preservatives using the Pad-decarboxylation system. This causes, for example, decarboxylation of the preservative sorbic acid to 1,3-pentadiene, a volatile compound with a kerosene-like odour. Neither the natural role of this system nor the range of potential substrates has yet been reported. The Pad-decarboxylation system, encoded by a gene cluster in germinating spores of the mould Aspergillus niger, involves activity by two decarboxylases, PadA1 and OhbA1, and a regulator, SdrA, acting pleiotropically on sorbic acid and cinnamic acid. The structural features of compounds important for the induction of Pad-decarboxylation at both transcriptional and functionality levels were investigated by rtPCR and GCMS. Sorbic and cinnamic acids served as transcriptional inducers but ferulic, coumaric and hexanoic acids did not. 2,3,4,5,6-Pentafluorocinnamic acid was a substrate for the enzyme but had no inducer function; it was used to distinguish induction and competence for decarboxylation in combination with the analogue chemicals. The structural requirements for the substrates of the Pad-decarboxylation system were probed using a variety of sorbic and cinnamic acid analogues. High decarboxylation activity, ~100% conversion of 1mM substrates, required a mono-carboxylic acid with an alkenyl double bond in the trans (E)-configuration at position C2, further unsaturation at C4, and an overall molecular length between 6.5Å and 9Å. Polar groups on the phenyl ring of cinnamic acid abolished activity (no conversion). Furthermore, several compounds were shown to block Pad-decarboxylation. These compounds, primarily aldehyde analogues of active substrates, may serve to reduce food spoilage by moulds such as A. niger. The possible ecological role of Pad-decarboxylation of spore self-inhibitors is unlikely and the most probable role for Pad-decarboxylation is to remove cinnamic acid-type inhibitors from

  17. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    Science.gov (United States)

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10.

  18. 黑曲霉降酸菌株F1降解酒石酸关键酶的分离纯化%Isolation and Purification of Key Tartaric Acid Degrading Enzyme from Aspergillus niger F1

    Institute of Scientific and Technical Information of China (English)

    王贵珍; 董昕; 文连奎

    2012-01-01

    The purpose of this study was to prepare a key tartaric acid degrading enzyme from Aspergillus niger F1.Aspergillus niger F1 was cultured and the expression of tartaric acid degrading enzymes was induced by adding tartaric acid into the medium.Cultured mycelia of Aspergillus niger F1 were collected and homogenized in liquid nitrogen.Crude enzyme extract was obtained by ultrasonic assisted extraction,added with protamine sulfate for removing nucleic acids,denatured for removing unwanted proteins,concentrated by PEG treatment,dialyzed for desalting,and then purified by DEAE-cellulose 52 anion exchange chromatography and Sephadex G-75 gel filtration chromatography to obtain a single component with a purification factor of 14.32.The enzyme was proven to be a dehydrogenase.%为得到黑曲霉菌株F1中具有降酸作用的蛋白,将黑曲霉菌株F1经酒石酸诱导发酵得到菌丝体,用液氮研磨破碎细胞壁,超声波辅助提取得到粗酶液,硫酸鱼精蛋白去除核酸,热变除杂蛋白,聚乙二醇浓缩,透析脱盐,DEAE-纤维素52阴离子交换层析,Sephadex G-75葡聚糖凝胶柱分子筛层析,最终得到该蛋白的单一组分,其纯化倍数为14.32,并确定该酶为脱氢酶类。

  19. 产葡萄糖氧化酶黑曲霉紫外诱变及产酶条件的研究%Research on UV Mutation of Aspergillus niger and Glucose Oxidase-producing Conditions

    Institute of Scientific and Technical Information of China (English)

    朱洪菊; 袁建国; 高艳华; 李峰

    2012-01-01

    Objective To improve the production of glucose oxidase from Aspergillus niger. Methods The dominant bacterial strain was selected through UV mutation, and the conditions were optimized, including carbon source, nitrogen source, calcium carbonate, fermentation time and so on. Results The enzyme activity of Aspergillus niger fermentation liquid was 6.5 U/ml, which was five times higher than initial bacterial strain. The single factor test dedicated that the optimal carbon source was sucrose, nitrogen source was peptone and sodium nitrate, the pH of liquid medium was about 6.0, and the fermentation cycle was 48h at 30℃. Conclusion The vitality of glucose oxidase can be obviously improved through UV mutation of Aspergillus niger.%目的 提高黑曲霉中葡萄糖氧化酶的产量.方法 紫外诱变法选出产酶优势菌株,优化碳源、氮源、碳酸钙、发酵时间等条件.结果 黑曲霉发酵液酶活达到6.5 U/mL,比初始酶活提高5倍;单因素条件试验表明,最适碳源是蔗糖,最适氮源是蛋白胨和NaNO3,发酵周期为48 h,培养温度是30℃,液体培养基的初始pH值为6.0产酶效果最好.结论 紫外诱变后,葡萄糖氧化酶的活力有明显提高.

  20. Optimization of tannase production by Aspergillus niger solid-state fermentation%单宁酶产生菌的发酵培养基优化

    Institute of Scientific and Technical Information of China (English)

    马如意; 赵祥颖; 刘建军

    2011-01-01

    用响应面试验对一株单宁酶产生菌黑曲霉的固体发酵培养基进行优化,优化后的最佳发酵培养基组成为:在250mL三角瓶中装入5g麸皮和5mL由(蔗糖12g/L,KNO325b/L、玉米浆22.4g/L、五倍子65.1g/L、MgSO4 13.6g/L,CoCl2 0.2g/L、柠檬酸钠3g/L、NaCl2.5g/L)组成的盐溶液,在此条件下,发酵单宁酶酶活为13.54U/g,比优化前提高了1.82倍.%Response surface experiment was designed to identify optimum medium. The optimal suitable solid-state fermentation conditions for Aspergillus niger producting enzyme were: Each wheat bran 5g and 5ml salt solution containing (sucrose 12g/L, KNO3 25g/L, com steep liquor 22.4g/L, gallnut 165.1g/L, MgSO4·7H2O 13.6g/L, CaCl2·2H2O 0.2g/L, sodium citrate 3g/L, NaCl 2.5g/L) was taken in 250ml conical flasks. Under these conditions, the yield of tannase was 13.56U/g, increased for about 1.82 times more than before.

  1. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-11-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials. PMID:26112323

  2. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.

    Science.gov (United States)

    Yin, Zhongwei; Shi, Fachao; Jiang, Hongmei; Roberts, Daniel P; Chen, Sanfeng; Fan, Bingquan

    2015-12-01

    Alternative tactics for improving phosphorus nutrition in crop production are needed in China and elsewhere, as the overapplication of phosphatic fertilizers can adversely impact agricultural sustainability. Penicillium oxalicum P4 and Aspergillus niger P85 were isolated from a calcareous soil in China that had been exposed to excessive application of phosphatic fertilizer for decades. Each isolate excreted a number of organic acids into, acidified, and solubilized phosphorus in a synthetic broth containing insoluble tricalcium phosphate or rock phosphate. Isolate P4, applied as a seed treatment, increased maize fresh mass per plant when rock phosphate was added to the calcareous soil in greenhouse pot studies. Isolate P85 did not increase maize fresh mass per plant but did significantly increase total phosphorus per plant when rock phosphate was added. Significant increases in 7 and 4 organic acids were detected in soil in association with isolates P4 and P85, respectively, relative to the soil-only control. The quantity and (or) number of organic acids produced by these isolates increased when rock phosphate was added to the soil. Both isolates also significantly increased available phosphorus in soil in the presence of added rock phosphate and effectively colonized the maize rhizosphere. Studies reported here indicate that isolate P4 is adapted to and capable of promoting maize growth in a calcareous soil. Plant-growth promotion by this isolate is likely due, at least in part, to increased phosphorus availability resulting from the excretion of organic acids into, and the resulting acidification of, this soil. PMID:26469739

  3. Aspergillus niger lipase-catalyzed synthesis of high contentlauric acid monoglyceride%黑曲霉脂肪酶合成单月桂酸甘油酯

    Institute of Scientific and Technical Information of China (English)

    邓颖颖; 杨哪; 徐学明

    2012-01-01

    A lipase from Aspergillus niger has been found with strong catalytic activity and selectivity.In order to prove the lipase high selectivity,it was used to catalyze the fatty acids and glycerin synthetic fatty acid glyceride and optimize the reaction process parameters.The results showed that when the ratio of glycerol to lauric acid 1:1.5,the lipase dosage 0.5%(W/W),the water dosage 3%(W/W)based on the reactant which was employed in the reacting system,the conversion rate of lauric acid could reach 91.2% at 50℃ for 12h reaction.The content of lauric acid monoglycerid was about 70% in the reacting production.%从黑曲霉中提出了一种具有很高催化活性和选择性的脂肪酶,为证明这种脂肪酶的高选择性,用此酶直接催化甘油和月桂酸反应合成单月桂酸甘油酯,并且优化了反应的工艺参数。实验表明,采用甘油月桂酸摩尔比为1∶1.5,脂肪酶与底物质量比为0.5%,水与底物质量比为3%的条件在50℃下反应12h,可使月桂酸转化率达到91.2%,单酯含量高达70%。

  4. Production of a highly potent epoxide through the microbial metabolism of 3β-acetoxyurs-11-en-13β,28-olide by Aspergillus niger culture.

    Science.gov (United States)

    Ali, Sajid; Nisar, Muhammad; Gulab, Hussain

    2016-09-01

    Context 3β-Acetoxyurs-11-en-13β,28-olide (I), a triterpenoid, is found in most plant species. Pharmacologically triterpenes are very effective compounds with potent anticancer, anti-HIV and antimicrobial activities. Objectives Microbial transformation of 3β-acetoxyurs-11-en-13β,28-olide (I) was performed in order to obtain derivatives with improved pharmacological potential. Materials and methods Compound (I, 100 mg) was incubated with Aspergillus niger culture for 12 d. The metabolite formed was purified through column chromatography. Structure elucidation was performed through extensive spectroscopy (IR, MS and NMR). In vitro α- and β-glucosidase inhibitory, and antiglycation potentials of both substrate and metabolite were evaluated. Results Structure of metabolite II was characterized as 3β-acetoxyurs-11,12-epoxy-13β,28-olide (II). Metabolite II was found to be an oxidized product of compound I. In vitro α- and β-glucosidases revealed that metabolite II was a potent and selective inhibitor of α-glucosidase (IC50 value = 3.56 ± 0.38 μM), showing that the inhibitory effect of metabolite II was far better than compound I (IC50 value = 14.7 ± 1.3 μM) as well as acarbose (IC50 value = 545 ± 7.9 μM). Antiglycation potential of compound II was also high with 82.51 ± 1.2% inhibition. Thus, through oxidation, the biological potential of the substrate molecule can be enhanced. Conclusion Biotransformation can be used as a potential tool for the production of biologically potent molecules.

  5. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; da Silva, Nina Morena Rêgo Muniz; Anastácio, Thalita Cardoso; Vassilev, Nikolay Bojkov; Ribeiro, José Ivo; da Silva, Ivo Ribeiro; Costa, Maurício Dutra

    2015-11-01

    A biotechnological strategy for the production of an alternative P fertilizer is described in this work. The fertilizer was produced through rock phosphate (RP) solubilization by Aspergillus niger in a solid-state fermentation (SSF) with sugarcane bagasse as substrate. SSF conditions were optimized by the surface response methodology after an initial screening of factors with significant effect on RP solubilization. The optimized levels of the factors were 865 mg of biochar, 250 mg of RP, 270 mg of sucrose and 6.2 ml of water per gram of bagasse. At this optimal setting, 8.6 mg of water-soluble P per gram of bagasse was achieved, representing an increase of 2.4 times over the non-optimized condition. The optimized SSF product was partially incinerated at 350°C (SB-350) and 500°C (SB-500) to reduce its volume and, consequently, increase P concentration. The post-processed formulations of the SSF product were evaluated in a soil-plant experiment. The formulations SB-350 and SB-500 increased the growth and P uptake of common bean plants (Phaseolus vulgaris L.) when compared with the non-treated RP. Furthermore, these two formulations had a yield relative to triple superphosphate of 60% (on a dry mass basis). Besides increasing P concentration, incineration improved the SSF product performance probably by decreasing microbial immobilization of nutrients during the decomposition of the remaining SSF substrate. The process proposed is a promising alternative for the management of P fertilization since it enables the utilization of low-solubility RPs and relies on the use of inexpensive materials.

  6. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01

    Directory of Open Access Journals (Sweden)

    Sigoillot Jean-Claude

    2009-11-01

    Full Text Available Abstract Background Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS. Results A gene encoding mannan endo-1,4-β-mannosidase or 1,4-β-D-mannan mannanohydrolase (E.C. 3.2.1.78, commonly termed β-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5, was cloned and successfully expressed heterologously (up to 243 μg of active recombinant protein per mL in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant β-mannanase is highly thermostable with a half-life time of approximately 56 h at 70°C and pH 4.0. The optimal temperature (10-min assay and pH value for activity are 80°C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity, locust bean gum galactomannan, carob galactomannan (low viscosity, and 1,4-β-D-mannan (from carob are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these

  7. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  8. Activity of Tri-N-Butyl Tin maleate in carpets against Staphylococcus aureus and Aspergillus niger, verified through two methodologies: Inhibition Halo (HZ and Inhibition Surface (Print Atividade de tri-n-butyl tin maleate em carpetes contra Staphylococcus aureus e Aspergillus niger, verificada através de duas metodologias: Zona de Inibição (ZI e Superfície de Inibição (Impressão

    Directory of Open Access Journals (Sweden)

    Satiko Uehara

    2008-06-01

    Full Text Available The aim of the present study was to verify the activity of the Tri-N-Butyl Tin maleate compound against Staphylococcus aureus and Aspergillus niger, after its industrial application in 40 samples of carpets of different materials (polypropylene, polyester, polyamide and wool. The qualitative assays were performed through two methodologies: Inhibition Halo (HZ and Inhibition of Surface (Print. The carpet with the product inhibited 100% of bacterial (Staphylococcus aureus and fungi (Aspergillus niger growth, under the conditions of this study. The microbial inhibition was higher in upper portion of carpets. The methodologies employed appear to be adequate to test the bactericide and fungicide activities of the Tri-N-Butyl Tin maleate. The print methodology confirmed the results obtained by the inhibition zone assay. Further studies using the same methodologies are needed to confirm our results.O objetivo do presente estudo foi verificar a atividade do composto maleato de estanho tri-n-butílico contra Staphylococcus aureus e Aspergillus niger, após sua aplicação industrial em 40 amostras de carpetes de diferentes materiais (polipropileno, poliéster, poliamida e lã. Os ensaios qualitativos foram realizados através de duas metodologias: Zona de Inibição (ZI e Superfície de Inibição (Impressão. Os carpetes tratados com o produto apresentaram 100% de inibição de crescimento bacteriano (Staphylococcus aureus e fúngico (Aspergillus niger, sob as condições desse estudo. A inibição de crescimento microbiano foi mais elevada na porção superior dos carpetes. As metodologias empregadas parecem ser adequadas para testar a atividade bactericida e fungicida do maleato de estanho tri-n-butílico. A metodologia de impressão confirmou os resultados obtidos no ensaio de zona de inibição. Estudos futuros utilizando as mesmas metodologias são necessários para confirmação destes dados.

  9. 肉桂、紫苏精油对青霉和黑曲霉抑菌特性研究%Study on Antifungal Properties of Cinnamon and Perilla oil on Penicillium sp. and Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    许倩; 牛希跃; 张冰冰; 李述刚

    2014-01-01

    Penicillium sp.and Aspergillus niger were isolated from red dates as the tested strains. Through determination of cinnamon oil and perilla oil in different scale, different temperature and different pH conditions, study on inhibition of the two fungi, and on the basis of orthogonal test optimization to determine the optimum inhibited conditions. The test results show that:cinnamon oil to Penicillium sp. minimum inhibitory concentration (MIC) is 0.313μL/mL, Aspergillus niger MIC is 0.156μL/mL, and perilla oil on Penicillium sp. and Aspergillus niger MIC are 10 μL/mL and 5 μL/mL;cinnamon oil and perilla oil in the total content of 0.42 μL/mL, two concentration ratio was 3 ∶ 1, 5 ℃, pH 3 on Penicillium sp. antibacterial circle diameter up to 24 mm, on Aspergillus niger antibacterial circle diameter up to 22.7 mm. The composite essential oils of cinnamon and perilla which has obvious inhibiting effect on Penicillium sp. and Aspergillus niger, is a good storage of Dongzao jujube mildew inhibitor.%以冬枣中常见致病菌青霉(Penicillium sp.)和黑曲霉(Aspergillus niger)为控制对象,通过单因素和正交试验研究不同复配比、不同处理温度和pH条件下肉桂精油和紫苏精油对这两种霉菌的抑制效果。结果表明:(1)肉桂精油对青霉和黑曲霉的最小抑菌浓度(MIC)分别为:0.313μL/mL和0.156μL/mL;紫苏精油对青霉和黑曲霉的MIC分别是10μL/mL和5μL/mL;(2)肉桂精油与紫苏精油在总含量为0.42μL/mL,复配比为3∶1,处理温度为5℃和pH为3时抑菌效果最好,对青霉和黑曲霉的最大抑菌圈直径可高达24 mm和22.7 mm。说明复配精油对青霉和黑曲霉均有明显的抑制作用,是一种良好的冬枣贮藏霉菌抑制剂。

  10. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites.

    Science.gov (United States)

    Niu, Jing; Arentshorst, Mark; Nair, P Deepa S; Dai, Ziyu; Baker, Scott E; Frisvad, Jens C; Nielsen, Kristian F; Punt, Peter J; Ram, Arthur F J

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  11. Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Jing Niu

    2016-01-01

    Full Text Available The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402 and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  12. 黑曲霉苹果酸酶基因的敲除及其功能研究%Deletion and Functional Analysis of the Malic Enzyme Encoding Gene in Aspergillus Niger

    Institute of Scientific and Technical Information of China (English)

    尹升明; 耿红冉; 周闯; 刘浩

    2012-01-01

    通过敲除黑曲霉(Aspergillus niger)菌株ATCC1015的苹果酸酶(Malic enzyme,ME)基因,研究了ME基因敲除对黑曲霉TCA循环相关代谢的影响.利用农杆菌(Agrobacterium tumefaciens)介导的转化方法转化黑曲霉,通过同源重组敲除黑曲霉ME基因,筛选ME基因敲除菌株,获得了遗传性能稳定的ME基因敲除菌株.通过发酵实验,对比了野生菌株和ME基因敲除菌株在代谢产物累积方面的差异,发现ME基因敲除菌株的TCA循环中各种有机酸的产量与野生菌株相比没有明显变化.表明,ME基因的敲除对TCA循环没有产生明显影响.%By deletion the malic enzyme gene(ME) in Aspergillus niger ATCC1015,the effect of ME deletion on TCA cycle was assayed. The gene ME in A. niger was deleted by homologous recombination, subsequently fermentation experiments were carried out and metabolic production accumulation was compared between wild type(WT) and ME deletion strain. A stable ME deletion strain was obtained, which did not show significantly difference in organic acids production compared with WT, indicating that there was no obvious effect on the TCA cycle when ME was deleted.

  13. Degradation of corn bran by solid-state fermentation using Aspergillus niger%黑曲霉固态发酵及酶解玉米皮

    Institute of Scientific and Technical Information of China (English)

    胡慧东; 许赣荣

    2011-01-01

    The residues of corn bran were used as main substrates for solid-state fermentation (SSF) and the cellulose in corn bran was degraded. The first step was cellulase production with Aspergillus Niger by SSF and the second step was enzymatic degradation of cellulose in corn bran. The PlackettBurman and Response Surface Methods were used for optimization. The fermentation conditions were as follows: temperature 30 ℃, 10% inoculum, initial moisture content of 60% , material thickness of 2.47 cm, pH of 5.79, fermentation time 6 d. The filter paper activity was 1 I. 01 U/g and increased 40.61% higher than the original enzyme activity. pH 4.8 acetate-sodium acetate buffer solution was added after fermentation and enzymolysis at 50 ℃ for 144 h, neutral detergent fiber and acid detergent fiber degradation rates were 46.09% and 48.82 %, respectively, and the reducing sugar content was 9.02 %.%以玉米提取淀粉后的玉米皮渣为主要原料,采用黑曲霉固态发酵法产酶再酶解的二步法降解玉米皮中纤维素类物质.经Plackett-Burman法及响应面设计优化发酵条件得:温度30℃,接种量10%,初始水分体积分数60%,物料厚度2.47 cm,初始pH 5.79,发酵时间6d;滤纸比酶活可达11.01 U/g,较原始酶活提高了40.61%;产酶结束后加入pH4.8醋酸-醋酸钠缓冲液,置于50℃下酶解144 h,中性洗涤纤维与酸性洗涤纤维降解率分别为46.09%、48.82%,还原糖质量分数达到9.02%.

  14. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing; Arentshorst, Mark; Nair, Deepa; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F.

    2016-01-11

    Rapid acidification of the culture medium by the production of organic acids and the production of acid-induced proteases are key characteristics of the filamentous fungus Aspergillus niger. The D15 mutant of A. niger is non-acidifying mutant and used often for the expression of recombinant proteins in A. niger, because of its reduced production of extracellular proteases under non-acidic conditions. In this study, the D15 mutant is characterized in detail. Strongly reduced levels of citric and oxalic acid were observed in the D15 mutant both in shake flask cultures and in controlled batch cultivations. To identify the mutation in the D15 mutant, we successfully combined high-throughput sequencing (Illumina) with bulk segregant analysis. Because of the lack of a sexual cycle for A. niger, the parasexual cycle was used to generate a pool of segregants. From the 52 single nucleotide polymorphisms (SNPs) between the parental strains, three SNPs were homozygous in the genomic DNA of pool of segregants. These three SNPs mapped to all the right arm of chromosome II, indicating that this region contains the genetic locus affecting the phenotype related to acid production. Of the three SNPs, one mutation resulted in a missense mutation in the gene encoding the A. niger homologue of the A. nidulans methyltransferase gene laeA. Complementation analysis of the original mutant with the laeA gene and targeted disruption of laeA further confirmed that LaeA is involved in citric acid production in A. niger lab (N402) and citric acid production strains (ATCC 11414). Analysis of the secondary metabolite (SM) profile of the laeA mutants indicate that LaeA is required for the production of several SMs (asperrubrol, atromentin and JBIR86), but deletion of laeA also resulted in the presence of SMs (aspernigrin A/B and BMS-192548) that were not detected in the wild-type strain. The levels of ten other SMs were not strongly affected as a result of laeA deletion indicating that only a

  15. Production of Fructooligosaccharides using Free-whole-cell Biotransformation by Aspergillus niger CGMCC No.6640%Aspergillusniger CGMCC No.6640全细胞生物转化制备蔗果低聚糖

    Institute of Scientific and Technical Information of China (English)

    周康; 刘冬梅; 范梦珂; 叶嘉伦

    2013-01-01

    Fructooligosaecharides (FOS) have received particular interest because of their excellent biological and functional properties for using as a prebiotic compound.The strain Aspergillus niger CGMCC No.6640 with independent intellectual property rights was found capable of producing FOS using sucrose as the substrate.To produce FOS using free-whole-cell biotransformation by A.niger 6640,the effects of production parameters on the biotransformation of sucrose were investigated by HPLC with the column of Rezex RCM-Monosaccharife Cat.The catalysate concentration of the Nystose (or 1F-Fructofuranosylnystose),kestose,sucrose,glucose and fructose were simultaneously detected,and their retention time was 8.403 min,8.853 min,9.705 min,11.473 min and 14.683 min,respectively.The free-whole-cell concentration and substrate concentration positively affected the maximum FOS yield.However CaCl2 concentration negatively affected the FOS yield.The free-whole-cell concentration,the initial reaction pH,the temperature for catalysis,biotransformation time and sucrose concentration were 60g/L,7.0,33 ℃,40 h and 600 g/L,respectively.Under the optimal conditions were as follows,the FOS contents reached 314.60 g/L.In summary,the free-whole-cell biocatalyst of A.niger 6640 can effectively produce FOS indicating a potential for industrial production.%蔗果低聚糖(FOS)作为一种益生元物质,由于其具有极好的生物和功能性质,受到人们极大的关注.具有独立知识产权的菌株Aspergillus niger CGMCC No.6640被发现能利用蔗糖制备FOS.为利用A.niger 6640的全细胞制备FOS,以蔗糖为底物,利用高效液相法对该菌株的全细胞生物转化参数进行了研究.利用色谱柱Rezex RCM-Monosaccharife Cat的高效液相法能同时检测催化产物中蔗果四糖(或蔗果五糖)、蔗果三糖、蔗糖、葡萄糖和果糖的浓度,其保留时间分别为8.403 min,8.853 min,9.705 rmin,11.473min和14.683 min.全细胞生物催化剂浓度和底

  16. Nariginase of Aspergillus niger: Production optimization by response surface methodology and utilisation of ultrasound for extractionNaringinase de Aspergillus niger: Otimização da produção por metodologia de superfície de resposta e uso do ultrassom para extração

    Directory of Open Access Journals (Sweden)

    Maria Antonia Pedrine Colabone Celligoi

    2011-08-01

    Full Text Available Brazil is the world's largest producer of orange and concentrated juice for export. Concentrated juice with high levels of naringin has excessive bitterness, which reduces the quality and value on the market. The debittering can be obtained by using naringinase, an enzymatic complex that degrades naringin. This study reports the production of naringinase by Aspergillus niger 426 utilizing both sugar cane molasses as carbon source and yeast extract as nitrogen source. Naringin was used as inducer. Five nitrogen sources were studied and yeast extract was found as the best one as 225.6 mU/mL of naringinase activity at 120 hours of fermentation was achivied. For optimization of naringinase production it was applied response-surface methodology, with 22 incomplete factorial design. An activity value of 354.26 mU/mL of naringinase was achivied when as independent variables yeast extract (14.0g/L and naringin (0.2g/L were used. When applied ultrasound waves at 20 kHz of intensity for 2 minutes in the fermented broth, the activity reached the highest value of 473.6 mU/mL. Thus, naringinase, this enzyme of great potential for biotechnological applications, has its production increased by using statistical design and ultrasound.O Brasil é o maior produtor mundial de laranja e de suco concentrado destinado à exportação. Sucos cítricos concentrados para exportação com níveis elevados de naringina são excessivamente amargos, o que reduz a qualidade e o valor comercial do produto. A redução do amargor pode ser obtida pela naringinase, um complexo enzimático que degrada a naringina. Neste trabalho Aspergillus niger 426 foi usado como produtor de naringinase utilizando matérias-prima da agroindústria, melaço como fonte de carbono e extrato de levedura como fonte de nitrogênio. Naringina foi usada como indutor. Dentre as cinco fontes de nitrogênio pesquisadas, extrato de levedura apresentou o melhor resultado de 225,6 mU/mL de naringinase em 120

  17. 响应面法优化黑曲霉发酵产低聚异麦芽糖培养基%Response Surface Methodology for Optimization of Medium Composition for Isomaltooligosaccharide Production by Aspergillus niger CU-1

    Institute of Scientific and Technical Information of China (English)

    吴孔阳; 王学军; 周培华; 黄时海; 张云开; 陈桂光; 梁智群

    2012-01-01

    采用全因子试验、最陡爬坡试验以及Box—Behnken试验设计对黑曲霉CU-1(Aspergillus nigerCU-1)发酵生产低聚异麦芽糖培养基的主要成分进行优化。结果表明:最优培养基成分为:麸皮浸汁体积分数4%、玉米浆添加量19.67g/L、NaNO3添加量2.24g/L、木薯淀粉糖化液添加量250g/L,在该培养条件下,在3.6L发酵罐中进行验证,发酵液中异麦芽糖、潘糖和异麦芽三糖总产量达到37.4%,低聚异麦芽糖总产量高达83.1%,说NBox—Behnken试验设计法用于黑曲霉发酵生产低聚异麦芽糖培养基优化是可行的,数学模型的预测值与实验观察值相符。%The major fermentation medium components for isomaltooligosaccharide production by Aspergillus niger CU-1 were optimized by full factorial, steepest ascent and Box-Behnken designs. The optimal medium components were determined to be 4% wheat bran extract, 19.67 g/L corn steep liquor, 2.24 g/L NaNO3, and 250 g/L saccharified cassava starch. Fermentation of the optimized medium by Aspergillus niger CU-1 was carried out in a 3.6 L fermenter to obtain isomaltose, panose and isomaltotriose yield as high as 37.4%, an isomaltooligosaccharide yield as high as 83.1%. The good agreement between the predictive and actual values indicated that the mathematical model established based on Box- Behnken design was valid.

  18. 黑曲霉产糖化酶黑箱模型的构建和应用%Construction and application of black-box model for glucoamylase production by Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    李连伟; 鲁洪中; 夏建业; 储炬; 庄英萍; 张嗣良

    2015-01-01

    利用碳限制恒化实验研究了黑曲霉生长和糖化酶生产之间的相关性,结果表明当比生长速率低于0.068 h-1时,菌体生长与产酶是相关的,当比生长速率大于0.068 h-1时,菌体生长与产酶不相关.根据恒化实验结果获得黑曲霉葡萄糖底物消耗的Monod动力学模型,并结合葡萄糖和氧消耗的Herbert-Pirt方程和产物形成的Luedeking-Piret方程构建黑曲霉产糖化酶的黑箱模型.应用该模型设计指数补料分批发酵实验控制菌体比生长速率在0.05 h-1,使糖化酶的得率最高达到0.127 g糖化酶/g葡萄糖,并成功地使用模型描述了黑曲霉产糖化酶的发酵过程.实验值和模拟值进行比较表现出很好的适用性,表明黑箱模型可以用于指导黑曲霉产糖化酶发酵过程的设计和优化.

  19. Proteome analysis of Aspergillus niger: Lactate added in starch-containing medium can increase production of the mycotoxin fumonisin B2 by modifying acetyl-CoA metabolism

    DEFF Research Database (Denmark)

    Sørensen, Louise Marie; Lametsch, Rene; Andersen, Mikael Rørdam;

    2009-01-01

    . Production of a few other A. niger secondary metabolites was affected similarly by lactate and starch (fumonisin B4, orlandin, desmethylkotanin and pyranonigrin A), while production of others was not (ochratoxin A, ochratoxin alpha, malformin A, malformin C, kotanin, aurasperone B and tensidol B...

  20. Removal of Heavy Metals from Urban Sewage by Aspergillus Niger and Pseudomonas Fluorescens%黑曲霉、荧光假单胞菌去除污水中重金属试验研究

    Institute of Scientific and Technical Information of China (English)

    李海华; 白国强; 付莹莹; 金艳艳

    2011-01-01

    将黑曲霉和荧光假单胞菌引入到传统的卡鲁塞尔氧化沟工艺模型中,参照规范中氧化沟的水力停留时间,分别选取12、16、20、24、28、32和36 h水力停留时间进行试验,研究了不同水力停留时间2种菌种对重金属Cd、Cr、Pb和Cu的吸附降解规律.对水力停留时间为36 h进行了接种对比试验研究.研究发现接种2种菌种后,当水力停留时间为20 h时,黑曲霉对4种重金属的去除率达到52%~91%.荧光假单胞菌对4种重金属的去除率均达到70%以上,去除效果非常显著,而这个时间参数也正是氧化沟常规的设计参数,由此可以说明,将黑曲霉和荧光假单胞菌引入到城市污水处理工艺中,可以明显提高常规工艺对重金属的吸附降解效率.%Aspergillus niger and Pseudomonas fluorescens were inoculated to the activated sludge in order to improve the removal effectiveness of the oxidation ditch. The comparative experimental study were car ried out when the Hydraulic Retention Time (HRT) was 36 h, and six different HRT of 12 h, 16 h, 20 h, 24 h, 28 h, and 32 h were considered to study the adsorption degradation of Cd, Cr, Pb and Cu by Asper gillus niger and Pseudomonas fluorescens in the oxidation ditch. The result indicated that each of the two strains removal efficiency of the four heavy metals compared with the control group was significantly im proved, and the removal increased with the increasing HRT. When the HRT was 20 h, the removal effi ciency of the four heavy metals by the Aspergillus niger were found to be in the range of 52% to 91%, and the removal efficiency by Pseudomonas fluorescens reached 70%. Most of the heavy metals can be degrad ed in the HRT of 20 h, and this time parameter is exactly the conventional design parameters of oxidation ditch. It can be say that the degradation efficiency of adsorption of heavy metals can be significantly im proved when inoculated with Aspergillus niger and Pseudomonas