WorldWideScience

Sample records for aspergillus fumigatus strains

  1. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain

    Energy Technology Data Exchange (ETDEWEB)

    Furtado, Niege A.J.C; Pupo, Monica T.; Carvalho, Ivone; Campo, Vanessa L. Campo; Bastos, Jairo K. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: jkbastos@fcfrp.usp.br; Duarte, Marta Cristina T. [Universidade Estadual de Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2005-11-15

    Seven diketopiperazines, corresponding to the cycles (L)-Pro-(L)-Phe, (L)-Pro-Gly, (L)-Pro- (L)-Pro, (L)-Pro-(L)-Val, (L)-4-OH-Pro-(L)-Leu, (L)-4-OH-Pro-(L)-Phe, and (L)-Pro-(L)-Leu, were isolated from the Aspergillus fumigatus fermentation broth. The relative and absolute stereochemistries were determined on the basis of NOESY experiments and by using a modified version of Marfey's method using HPLC, respectively. (author)

  2. Antifungal activity of terrestrial Streptomyces rochei strain HF391 against clinical azole -resistant Aspergillus fumigatus

    Science.gov (United States)

    Hadizadeh, S; Forootanfar, H; Shahidi Bonjar, GH; Falahati Nejad, M; Karamy Robati, A; Ayatollahi Mousavi, SA; Amirporrostami, S

    2015-01-01

    Background and Purpose: Actinomycetes have been discovered as source of antifungal compounds that are currently in clinical use. Invasive aspergillosis (IA) due to Aspergillus fumigatus has been identified as individual drug-resistant Aspergillus spp. to be an emerging pathogen opportunities a global scale. This paper described the antifungal activity of one terrestrial actinomycete against the clinically isolated azole-resistant A. fumigatus. Materials and Methods: Soil samples were collected from various locations of Kerman, Iran. Thereafter, the actinomycetes were isolated using starch-casein-nitrate-agar medium and the most efficient actinomycetes (capable of inhibiting A. fumigatus) were screened using agar block method. In the next step, the selected actinomycete was cultivated in starch-casein- broth medium and the inhibitory activity of the obtained culture broth was evaluated using agar well diffusion method. Results: The selected actinomycete, identified as Streptomyces rochei strain HF391, could suppress the growth of A. fumigatus isolates which was isolated from the clinical samples of patients treated with azoles. This strain showed higher inhibition zones on agar diffusion assay which was more than 15 mm. Conclusion: The obtained results of the present study introduced Streptomyces rochei strain HF391 as terrestrial actinomycete that can inhibit the growth of clinically isolated A. fumigatus. PMID:28680984

  3. Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, L. [Department of Biomolecular Sciences, University of Urbino Carlo Bo (Italy); Battistelli, M. [Department of Earth, Life Sciences & Environment, University of Urbino Carlo Bo (Italy); Giorgi, L. [Department of Base Sciences and Foundations, Chemistry Section, University of Urbino Carlo Bo (Italy); Iacobucci, M. [Department of Earth, Life Sciences & Environment, University of Urbino Carlo Bo (Italy); Gobbi, L. [Department of Science and Engineering of Matter, of Environment and Urban Planning, Polytechnic University of Marche, Ancona (Italy); Andreozzi, E.; Pianetti, A. [Department of Biomolecular Sciences, University of Urbino Carlo Bo (Italy); Franchi, R. [Department of Base Sciences and Foundations, Chemistry Section, University of Urbino Carlo Bo (Italy); Bruscolini, F., E-mail: francesca.bruscolini@uniurb.it [Department of Biomolecular Sciences, University of Urbino Carlo Bo (Italy)

    2016-04-05

    Highlights: • Aspergillus fumigatus strain able to grow on metal cyanide complexes. • Tolerance test revealed that Ag(I) Minimum Inhibitory Concentration was 6 mM. • The fungus reduced and sequestrated intracellularly silver forming nanoparticles. • Best culture conditions for Ag(I) absorption were pH 8.5 at temperatures of 20–30 °C. - Abstract: We studied the strategy of an Aspergillus fumigatus strain able to grow on metal cyanide wastes to cope with silver. The tolerance test revealed that the Minimum Inhibitory Concentration of Ag(I) was 6 mM. In 1 mM AgNO{sub 3} aqueous solution the fungus was able to reduce and sequestrate silver into the cell in the form of nanoparticles as evidenced by the change in color of the biomass and Electron Microscopy observations. Extracellular silver nanoparticle production also occurred in the filtrate solution after previous incubation of the fungus in sterile, double-distilled water for 72 h, therefore evidencing that culture conditions may influence nanoparticle formation. The nanoparticles were characterized by UV–vis spectrometry, X-ray diffraction and Energy Dispersion X-ray analysis. Atomic absorption spectrometry revealed that the optimum culture conditions for silver absorption were at pH 8.5.The research is part of a polyphasic study concerning the behavior of the fungal strain in presence of metal cyanides; the results provide better understanding for further research targeted at a rationale use of the microorganism in bioremediation plans, also in view of possible metal recovery. Studies will be performed to verify if the fungus maintains its ability to produce nanoparticles using KAg(CN){sub 2}.

  4. Tolerance to silver of an Aspergillus fumigatus strain able to grow on cyanide containing wastes

    International Nuclear Information System (INIS)

    Sabatini, L.; Battistelli, M.; Giorgi, L.; Iacobucci, M.; Gobbi, L.; Andreozzi, E.; Pianetti, A.; Franchi, R.; Bruscolini, F.

    2016-01-01

    Highlights: • Aspergillus fumigatus strain able to grow on metal cyanide complexes. • Tolerance test revealed that Ag(I) Minimum Inhibitory Concentration was 6 mM. • The fungus reduced and sequestrated intracellularly silver forming nanoparticles. • Best culture conditions for Ag(I) absorption were pH 8.5 at temperatures of 20–30 °C. - Abstract: We studied the strategy of an Aspergillus fumigatus strain able to grow on metal cyanide wastes to cope with silver. The tolerance test revealed that the Minimum Inhibitory Concentration of Ag(I) was 6 mM. In 1 mM AgNO 3 aqueous solution the fungus was able to reduce and sequestrate silver into the cell in the form of nanoparticles as evidenced by the change in color of the biomass and Electron Microscopy observations. Extracellular silver nanoparticle production also occurred in the filtrate solution after previous incubation of the fungus in sterile, double-distilled water for 72 h, therefore evidencing that culture conditions may influence nanoparticle formation. The nanoparticles were characterized by UV–vis spectrometry, X-ray diffraction and Energy Dispersion X-ray analysis. Atomic absorption spectrometry revealed that the optimum culture conditions for silver absorption were at pH 8.5.The research is part of a polyphasic study concerning the behavior of the fungal strain in presence of metal cyanides; the results provide better understanding for further research targeted at a rationale use of the microorganism in bioremediation plans, also in view of possible metal recovery. Studies will be performed to verify if the fungus maintains its ability to produce nanoparticles using KAg(CN) 2 .

  5. Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest.

    Science.gov (United States)

    Paul, Sujay; Zhang, Angel; Ludeña, Yvette; Villena, Gretty K; Yu, Fengan; Sherman, David H; Gutiérrez-Correa, Marcel

    2017-06-10

    Here, we report the complete genome sequence of a high alkaline cellulase producing Aspergillus fumigatus strain LMB-35Aa isolated from soil of Peruvian Amazon rainforest. The genome is ∼27.5mb in size, comprises of 228 scaffolds with an average GC content of 50%, and is predicted to contain a total of 8660 protein-coding genes. Of which, 6156 are with known function; it codes for 607 putative CAZymes families potentially involved in carbohydrate metabolism. Several important cellulose degrading genes, such as endoglucanase A, endoglucanase B, endoglucanase D and beta-glucosidase, are also identified. The genome of A. fumigatus strain LMB-35Aa represents the first whole sequenced genome of non-clinical, high cellulase producing A. fumigatus strain isolated from forest soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microbial Observatory (ISS-MO): Draft Genome Sequence of two Aspergillus fumigatus Strains Isolated from the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — Aspergillus fumigatus is a saprophytic filamentous fungus that is ubiquitous outdoors (soil decaying vegetation) and indoors (hospitals simulated closed habitats...

  7. The volatome of Aspergillus fumigatus.

    Science.gov (United States)

    Heddergott, C; Calvo, A M; Latgé, J P

    2014-08-01

    Early detection of invasive aspergillosis is absolutely required for efficient therapy of this fungal infection. The identification of fungal volatiles in patient breath can be an alternative for the detection of Aspergillus fumigatus that still remains problematic. In this work, we investigated the production of volatile organic compounds (VOCs) by A. fumigatus in vitro, and we show that volatile production depends on the nutritional environment. A. fumigatus produces a multiplicity of VOCs, predominantly terpenes and related compounds. The production of sesquiterpenoid compounds was found to be strongly induced by increased iron concentrations and certain drugs, i.e., pravastatin. Terpenes that were always detectable in large amounts were α-pinene, camphene, and limonene, as well as sesquiterpenes, identified as α-bergamotene and β-trans-bergamotene. Other substance classes that were found to be present in the volatome, such as 1-octen-3-ol, 3-octanone, and pyrazines, were found only under specific growth conditions. Drugs that interfere with the terpene biosynthesis pathway influenced the composition of the fungal volatome, and most notably, a block of sesquiterpene biosynthesis by the bisphosphonate alendronate fundamentally changed the VOC composition. Using deletion mutants, we also show that a terpene cyclase and a putative kaurene synthase are essential for the synthesis of volatile terpenes by A. fumigatus. The present analysis of in vitro volatile production by A. fumigatus suggests that VOCs may be used in the diagnosis of infections caused by this fungus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Pharmacodynamics of isavuconazole in an Aspergillus fumigatus mouse infection model

    NARCIS (Netherlands)

    Seyedmousavi, S.; Bruggemann, R.J.; Meis, J.F.G.M.; Melchers, W.J.G.; Verweij, P.E.; Mouton, J.W.

    2015-01-01

    Azole resistance is an emerging problem in Aspergillus fumigatus which translates into treatment failure. Alternative treatments with new azoles may improve therapeutic outcome in invasive aspergillosis (IA) even for strains with decreased susceptibility to current azoles. The in vivo efficacy of

  9. Polyphasic taxonomy of Aspergillus fumigatus and related species

    DEFF Research Database (Denmark)

    Hong, S.B.; Go, S.J.; Shin, H.D.

    2005-01-01

    . fumigatus sensu stricto species. A. lentulus including isolates from clinical origin, Korean soil and from a dolphin Clustered into an isolated group based on beta-tubulin, calmodulin and actin gene sequences, differing from A. fumigalus by morphological characters, growth temperature and extrolite profile......The variability within Aspergillus fumigalus Fresenius and related species was examined using macro-, micro-morphology, growth temperature regimes and extrolite patterns. In addition, DNA analyses including partial beta-tubulin, calmodulin and actin gene sequences were used. Detailed examination...... of strains, considered as A. fumigatus earlier, showed that they could be divided into four groups including A. fumigatus sensu stricto, A. lentulus and two new species. The intraspecific genetic variability within A. fumigatus sensu stricto was low, the sequence differences among 23 strains of the species...

  10. Gliotoxin production by Aspergillus fumigatus strains from animal environment. Micro-analytical sample treatment combined with a LC-MS/MS method for gliotoxin determination.

    Science.gov (United States)

    Pena, G A; Monge, M P; González Pereyra, M L; Dalcero, A M; Rosa, C A R; Chiacchiera, S M; Cavaglieri, L R

    2015-08-01

    In this study, gliotoxin production by Aspergillus fumigatus strains from animal environment is studied. Moreover, a rapid, easy and environment-friendly micro-analytical sample treatment procedure coupled with LC-MS/MS was applied for the determination of gliotoxin from A. fumigatus cultures. The ability of gliotoxin production by 143 strains was assayed in yeast extract sucrose agar, and 1 ml of chloroform was used for toxin extraction without further clean-up. Mean recoveries at two spiking levels (2500 and 7000 ng/g; n = 6) were 100.3 ± 6.6 % relative SD (RSD) and 92.4 ± 3.8 % RSD. Repeatability and within-laboratory reproducibility for different concentration levels of gliotoxin (25 to 1000 ng/ml; n = 12) ranged from 0.3 to 5.4 % RSD and from 3.9 to 12.7 % RSD, respectively. The detection limit of the analytical method was 3.5 ng/g. The ability for gliotoxin production by A. fumigatus revealed that 61.5 % of the strains were able to produce the toxin at levels ranging from LOQ to 3430.5 ng/g. However, all the tested samples had similar percentages of producing strains (81.8 to 86.6 %). The micro-analytical sample treatment coupled with LC-MS/MS detection is a precise and useful methodology for determining gliotoxin from fungal extracts of A. fumigatus and allows working both fast and safely and also reducing the effect on the environment. This toxin plays a critical role in the pathobiology of A. fumigatus, and its presence in animal environments could affect animal health and productivity; in addition, there are risks of contamination for rural workers during handling and storage of animal feedstuffs.

  11. Degradation of melanin by Aspergillus fumigatus.

    Science.gov (United States)

    Luther, J P; Lipke, H

    1980-07-01

    A strain of Aspergillus fumigatus from composted coffee and garden wastes utilized natural deproteinized insect, banana, hair, octopus, and synthetic tyrosine and dopa melanins as sole sources of carbon. With a sucrose supplement, degradation was essentially complete after 50 days in Czapek medium pH 6.5 at 30 degrees C. The catabolic rate differed for each substrate pigment, as did the molecular weight distribution of products accumulating in the medium. After incubation with L-[U-14C]melanin, over 50% was recovered in a dark fungal pigment, the remainder appearing as cell protein, chitin, lipid, CO2, and polar metabolites. When grown on melanin, the normally pale mycelia darkened with the production of a fungal allomelanin, with infrared spectrum and alkali fusion products differing from those of the substrate pigment. Isotope distribution in amino acids for A. fumigatus grown on labeled melanin supplemented with sucrose suggested separate pools for synthesis of cell proteins and melanoproteins. Deposition of allomelanin increased resistance of conidia, sterigma, and conidiophores to lytic carbohydrases as judged by scanning electron microscopy.

  12. Aspergillus fumigatus colonization of punctal plugs.

    Science.gov (United States)

    Tabbara, Khalid F

    2007-01-01

    Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.

  13. Specific detection of Aspergillus fumigatus in sputum sample of ...

    African Journals Online (AJOL)

    We developed a two-step PCR assay that specifically amplifies a region of the 18S rRNA gene that is highly conserved in Aspergillus fumigatus. This assay allows direct and rapid detection of down to 10 fg of Aspergillus fumigatus DNA corresponding to 1 to 5 colony forming unit (CFU) per ml of sputum sample of pulmonary ...

  14. Aspergillus fumigatus conidial melanin modulates host cytokine response.

    NARCIS (Netherlands)

    Chai, L.; Netea, M.G.; Sugui, J.; Vonk, A.G.; Sande, W.W. van de; Warris, A.; Kwon-Chung, K.J.; Kullberg, B.J.

    2010-01-01

    Melanin biopigments have been linked to fungal virulence. Aspergillus fumigatus conidia are melanised and are weakly immunogenic. We show that melanin pigments on the surface of resting Aspergillus fumigatus conidia may serve to mask pathogen-associated molecular patterns (PAMPs)-induced cytokine

  15. Aspergillus fumigatus conidial melanin modulates host cytokine response

    NARCIS (Netherlands)

    L.Y.A. Chai (Louis); M.G. Netea (Mihai); J. Sugui (Janyce); A.G. Vonk (Alieke); W.W.J. van de Sande (Wendy); A. Warris (Adilia); K.J. Kwon-Chung (Kyung); B. Jan Kullberg (Bart)

    2010-01-01

    textabstractMelanin biopigments have been linked to fungal virulence. Aspergillus fumigatus conidia are melanised and are weakly immunogenic. We show that melanin pigments on the surface of resting Aspergillus fumigatus conidia may serve to mask pathogen-associated molecular patterns (PAMPs)-induced

  16. Exact Molecular Typing of Aspergillus fumigatus. Methods and Applications.

    NARCIS (Netherlands)

    Valk-van Haren, J.A. de

    2008-01-01

    Aspergillus species are widely distributed fungi that release large amounts of airborne conidia that are dispersed in the environment. Aspergillus fumigatus is the species most frequently isolated from human infections. In this thesis a novel assay for fingerprinting A. fumigatus is described and

  17. Role of Hydrophobins in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Isabel Valsecchi

    2017-12-01

    Full Text Available Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA–RodG belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus, conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus.

  18. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR₃₄/L98H mutations in the cyp51A gene in India.

    Directory of Open Access Journals (Sweden)

    Anuradha Chowdhary

    Full Text Available Azole resistance is an emerging problem in Aspergillus which impacts the management of aspergillosis. Here in we report the emergence and clonal spread of resistance to triazoles in environmental Aspergillus fumigatus isolates in India. A total of 44 (7% A. fumigatus isolates from 24 environmental samples were found to be triazole resistant. The isolation rate of resistant A. fumigatus was highest (33% from soil of tea gardens followed by soil from flower pots of the hospital garden (20%, soil beneath cotton trees (20%, rice paddy fields (12.3%, air samples of hospital wards (7.6% and from soil admixed with bird droppings (3.8%. These strains showed cross-resistance to voriconazole, posaconazole, itraconazole and to six triazole fungicides used extensively in agriculture. Our analyses identified that all triazole-resistant strains from India shared the same TR(34/L98H mutation in the cyp51 gene. In contrast to the genetic uniformity of azole-resistant strains the azole-susceptible isolates from patients and environments in India were genetically very diverse. All nine loci were highly polymorphic in populations of azole-susceptible isolates from both clinical and environmental samples. Furthermore, all Indian environmental and clinical azole resistant isolates shared the same multilocus microsatellite genotype not found in any other analyzed samples, either from within India or from the Netherlands, France, Germany or China. Our population genetic analyses suggest that the Indian azole-resistant A. fumigatus genotype was likely an extremely adaptive recombinant progeny derived from a cross between an azole-resistant strain migrated from outside of India and a native azole-susceptible strain from within India, followed by mutation and then rapid dispersal through many parts of India. Our results are consistent with the hypothesis that exposure of A. fumigatus to azole fungicides in the environment causes cross-resistance to medical triazoles. The

  19. Triazole resistance surveillance in Aspergillus fumigatus.

    Science.gov (United States)

    Resendiz Sharpe, Agustin; Lagrou, Katrien; Meis, Jacques F; Chowdhary, Anuradha; Lockhart, Shawn R; Verweij, Paul E

    2018-04-01

    Triazole resistance is an increasing concern in the opportunistic mold Aspergillus fumigatus. Resistance can develop through exposure to azole compounds during azole therapy or in the environment. Resistance mutations are commonly found in the Cyp51A-gene, although other known and unknown resistance mechanisms may be present. Surveillance studies show triazole resistance in six continents, although the presence of resistance remains unknown in many countries. In most countries, resistance mutations associated with the environment dominate, but it remains unclear if these resistance traits predominately migrate or arise locally. Patients with triazole-resistant aspergillus disease may fail to antifungal therapy, but only a limited number of cohort studies have been performed that show conflicting results. Treatment failure might be due to diagnostic delay or due to the limited number of alternative treatment options. The ISHAM/ECMM Aspergillus Resistance Surveillance working group was set up to facilitate surveillance studies and stimulate international collaborations. Important aims are to determine the resistance epidemiology in countries where this information is currently lacking, to gain more insight in the clinical implications of triazole resistance through a registry and to unify nomenclature through consensus definitions.

  20. Novel cytosolic allergens of Aspergillus fumigatus identified from germinating conidia.

    Science.gov (United States)

    Singh, Bharat; Sharma, Gainda L; Oellerich, Michael; Kumar, Ram; Singh, Seema; Bhadoria, Dharam P; Katyal, Anju; Reichard, Utz; Asif, Abdul R

    2010-11-05

    Aspergillus fumigatus is the common cause of allergic broncho-pulmonary aspergillosis (ABPA) and most of the allergens have been described from its secreted fraction. In the present investigation, germinating conidial cytosolic proteins of A. fumigatus were extracted from a 16 h culture. The proteome from this fraction was developed, and immuno-blots were generated using pooled ABPA patients' sera. Well separated Immunoglobulin-E (IgE) and Immunoglobulin-G (IgG) reactive spots were picked from corresponding 2DE gels and subjected to mass spectrometric analysis. As a result, 66 immuno-reactive proteins were identified from two geographically different strains (190/96 and DAYA) of A. fumigatus. Only 3 out of 66 proteins reacted with IgG, and the remaining 63 proteins were found to be IgE reactive. These 63 IgE-reactive cytosolic proteins from germinating conidia included 2 already known (Asp f12 and Asp f22) and 4 predicted allergens (Hsp88, Hsp70, malate dehydrogenase, and alcohol dehydrogenase) based on their homology with other known fungal allergens. In view of this, the panel of presently identified IgE-reactive novel proteins holds the potential of providing a basis for the wider diagnostic application in assay for allergic aspergillosis. We could demonstrate that recombinantly expressed proteins from this panel showed consistent reactivity with IgE of individual sera of ABPA patients. The recombinantly expressed proteins may also be useful in desensitization therapy of allergic disorders including ABPA.

  1. Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Katie Falloon

    Full Text Available Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs form a complex with calcineurin in the presence of FK506 (FKBP12-FK506 and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn't localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don't play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn't show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated "paradoxical growth effect" at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A

  2. Mating type protein Mat1-2 from asexual Aspergillus fumigatus drives sexual reproduction in fertile Aspergillus nidulans.

    Science.gov (United States)

    Pyrzak, Wioletta; Miller, Karen Y; Miller, Bruce L

    2008-06-01

    The lack of an experimentally amenable sexual genetic system in Aspergillus fumigatus is a major limitation in the study of the organism's pathogenesis. A recent comparative genome analysis revealed evidence for potential sexuality in A. fumigatus. Homologs of mating type genes as well as other genes of the "sexual machinery" have been identified in anamorphic A. fumigatus. The mat1-2 gene encodes a homolog of MatA, an HMG box mating transcriptional factor (Mat(HMG)) that regulates sexual development in fertile Aspergillus nidulans. In this study, the functionalities of A. fumigatus mat1-2 and the Mat1-2 protein were determined by interspecies gene exchange between sterile A. fumigatus and fertile A. nidulans. Ectopically integrated A. fumigatus mat1-2 (driven by its own promoter) was not functional in a sterile A. nidulans Delta matA strain, and no sexual development was observed. In contrast, the A. fumigatus mat1-2 open reading frame driven by the A. nidulans matA promoter and integrated by homologous gene replacement at the matA locus was functional and conferred full fertility. This is the first report showing that cross species mating type gene exchange between closely related Ascomycetes did not function in sexual development. This is also the first report demonstrating that a Mat(HMG) protein from an asexual species is fully functional, with viable ascospore differentiation, in a fertile homothallic species. The expression of mat1-2 was assessed in A. fumigatus and A. nidulans. Our data suggest that mat1-2 may not be properly regulated to allow sexuality in A. fumigatus. This study provides new insights about A. fumigatus asexuality and also suggests the possibility for the development of an experimentally amenable sexual cycle.

  3. Detection of Polish clinical Aspergillus fumigatus isolates resistant to triazoles

    DEFF Research Database (Denmark)

    Nawrot, Urszula; Kurzyk, Ewelina; Arendrup, Maiken Cavling

    2018-01-01

    We studied the presence of triazole resistance of 121 Aspergillus fumigatus clinical isolates collected in two Polish cities, Warsaw and Wrocław, to determine if resistance is emerging in our country. We identified five itraconazole resistant isolates (4.13%) carrying the TR34/L98H alteration in ...

  4. Protective role of Aspergillus fumigatus melanin against ultraviolet ...

    African Journals Online (AJOL)

    Melanin protects pigmented cells from physical and biological stresses which are associated with virulence in several important human pathogens, but little is known about the immune response to this ubiquitous biologic compound. Melanin content increased in Aspergillus fumigatus mycelium exposed to ultraviolet for 10 ...

  5. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus

    NARCIS (Netherlands)

    Lewis, R.E.; Verweij, P.E.

    2017-01-01

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment

  6. Inflammatory cells and airway defense against Aspergillus fumigatus

    NARCIS (Netherlands)

    Kauffman, HF; Tomee, JFC

    The authors offer a summary of the attack strategies of A. fumigatus and interactions with the airway defense system. The possible role of proteolytic enzymes from Aspergillus in the inflammatory response of the airways is also discussed. Evidence is given for the in vivo production of these

  7. New restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus.

    Science.gov (United States)

    Semighini, C P; Delmas, G; Park, S; Amstrong, D; Perlin, D; Goldman, G H

    2001-07-01

    In this study, we isolated and tested restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus based on PCR products amplified by the random amplified polymorphic DNA (RAPD) primer R108. Four DNA fragments, Afd, Af5, Af4, and Af4A, were amplified. Fragments Afd and Af5 were 85% and 88% identical at the DNA level to part of the Afut1 retrotransposon from A. fumigatus. Fragment Af4A is a duplication of fragment Af4 and both showed similarity at the amino acid level with endonucleases from other fungal retrotransposons. We used both RAPD with primer R108 and RFLP assays with Afut1, Afd, and Af4A, to determine the genetic relatedness of clinical isolates of A. fumigatus isolated sequentially from four patients colonized with A. fumigatus. The combination of these different methods suggested that the isolates infecting the four patients were not identical.

  8. Biodegradation of Pollutants from Winery wastewater by Using Fungi Aspergillus fumigatus and Bacterium Bacillus subtilis

    OpenAIRE

    , C.S. Mahajan; , D.V. Patil; , D.B. Sarode; , R.N. Jadhav; , S.B. Attarde

    2012-01-01

    Aspergillus fumigatus was used as fungal strain and Bacillus subtilis was used as bacterial species for the biodegradation of winery wastewater pollutants. The fungal strain and bacterial species was allowed to grow on PDA and NA slant. Loop full of both fungal and bacterial culture was inoculated and incubated at room temperature for 7 days. After the incubation the sample was filtered and analyzed for the chemical characteristics to verify the degradation capacity of both species,after trea...

  9. Aspergillus fumigatus Does Not Require Fatty Acid Metabolism via Isocitrate Lyase for Development of Invasive Aspergillosis▿

    Science.gov (United States)

    Schöbel, Felicitas; Ibrahim-Granet, Oumaïma; Avé, Patrick; Latgé, Jean-Paul; Brakhage, Axel A.; Brock, Matthias

    2007-01-01

    Aspergillus fumigatus is the most prevalent airborne filamentous fungus causing invasive aspergillosis in immunocompromised individuals. Only a limited number of determinants directly associated with virulence are known, and the metabolic requirements of the fungus to grow inside a host have not yet been investigated. Previous studies on pathogenic microorganisms, i.e., the bacterium Mycobacterium tuberculosis and the yeast Candida albicans, have revealed an essential role for isocitrate lyase in pathogenicity. In this study, we generated an isocitrate lyase deletion strain to test whether this strain shows attenuation in virulence. Results have revealed that isocitrate lyase from A. fumigatus is not required for the development of invasive aspergillosis. In a murine model of invasive aspergillosis, the wild-type strain, an isocitrate lyase deletion strain, and a complemented mutant strain were similarly effective in killing mice. Moreover, thin sections demonstrated invasive growth of all strains. Additionally, thin sections of lung tissue from patients with invasive aspergillosis stained with anti-isocitrate lyase antibodies remained negative. From these results, we cannot exclude the use of lipids or fatty acids as a carbon source for A. fumigatus during invasive growth. Nevertheless, test results do imply that the glyoxylate cycle from A. fumigatus is not required for the anaplerotic synthesis of oxaloacetate under infectious conditions. Therefore, an antifungal drug inhibiting fungal isocitrate lyases, postulated to act against Candida infections, is assumed to be ineffective against A. fumigatus. PMID:17178786

  10. cipC is important for Aspergillus fumigatus virulence.

    Science.gov (United States)

    Canela, Heliara Maria Spina; Takami, Luciano Akira; da Silva Ferreira, Márcia Eliana

    2017-02-01

    Aspergillus fumigatus is the main causative agent of invasive aspergillosis, a disease that affects immunocompromised patients and has a high mortality rate. We previously observed that the transcription of a cipC-like gene was increased when A. fumigatus encountered an increased CO 2 concentration, as occurs during the infection process. CipC is a protein of unknown function that might be associated with fungal pathogenicity. In this study, the cipC gene was disrupted in A. fumigatus to evaluate its importance for fungal pathogenicity. The gene was replaced, and the germination, growth phenotype, stress responses, and virulence of the resultant mutant were assessed. Although cipC was not essential, its deletion attenuated A. fumigatus virulence in a low-dose murine infection model, suggesting the involvement of the cipC gene in the virulence of this fungus. This study is the first to disrupt the cipC gene in A. fumigatus. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  11. Investigation of Aspergillus fumigatus biofilm formation by various omics approaches

    Directory of Open Access Journals (Sweden)

    Laetitia eMuszkieta

    2013-02-01

    Full Text Available In the lung, Aspergillus fumigatus usually forms a dense colony of filaments embedded in a polymeric extracellular matrix called biofilm (BF. This extracellular matrix embeds and glues hyphae together and protects the fungus from an outside hostile environment. This extracellular matrix is absent in fungal colonies grown under classical liquid shake conditions (PL which were historically used to understand A. fumigatus pathobiology. Recent works have shown that the fungus in this aerial grown biofilm-like state exhibits reduced susceptibility to antifungal drugs and undergoes major metabolic changes that are thought to be associated to virulence. These differences in pathological and physiological characteristics between biofilm and liquid shake conditions suggest that the PL condition is a poor in vitro disease model. In the laboratory, A. fumigatus mycelium embedded by the extracellular matrix can be produced in vitro in aerial condition using an agar-based medium. To provide a global and accurate understanding of A. fumigatus in vitro biofilm growth, we utilized microarray, RNA-sequencing and proteomic analysis to compare the global gene and protein expression profiles of A. fumigatus grown under BF and PL conditions. In this review, we will present the different signatures obtained with these three omics methods. We will discuss the advantages and limitations of each method and their complementarity.

  12. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence.

    Directory of Open Access Journals (Sweden)

    Patrícia Alves de Castro

    Full Text Available Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca(2+ through the addition of the Ca(2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.

  13. Cross-allergenicity between Aspergillus restrictus, Aspergillus fumigatus and Alternaria alternata determined by radioallergosorbent test inhibition

    Directory of Open Access Journals (Sweden)

    Tatsuo Sakamoto

    1996-01-01

    Full Text Available Aspergillus restrictus, an osmophilic fungus, is abundant in house dust. We have shown previously that the incidence of immediate hypersensitivity to A. restrictus is comparable to that for Aspergillus fumigatus and Alternaria alternata in asthmatic children. Radioallergosorbent test (RAST inhibition was used to determine whether A. restrictus shares similar allergenic components with A. fumigatus and A. alternata. Mycelial mats of the three species cultivated on completely synthetic media were used for extract preparation. IgE antibodies to each fungus were measured with RAST using a polyvinyl chloride microplate as a solid phase. Analysis of a serum pool obtained from nine asthmatic children with a positive RAST to A. restrictus showed that A. restrictus inhibited the RAST to A. restrictus, A. fumigatus and A. alternata by more than 80%. Similar results were observed with A. fumigatus and A. alternata. Additionally, when 13 serum samples with a positive RAST to A. restrictus were tested separately, A. restrictus substantially inhibited the A. restrictus RAST in all subjects tested. A. fumigatus and A. alternata inhibited the A. restrictus RAST in 10 and 8 of the samples studied, respectively. These findings indicate that A. restrictus shares allergenic components with A. fumigatus and A. alternata. The allergenic cross-reactivity between A. fumigatus and A. alternata was also demonstrated.

  14. Targeting zinc homeostasis to combat Aspergillus fumigatus infections

    Directory of Open Access Journals (Sweden)

    Rocío eVicentefranqueira

    2015-02-01

    Full Text Available Aspergillus fumigatus is able to invade and grow in the lungs of immunosuppressed individuals and causes invasive pulmonary aspergillosis. The concentration of free zinc in living tissues is much lower than that required for optimal fungal growth in vitro because most of it is tightly bound to proteins. To obtain efficiently zinc from a living host A. fumigatus uses the zinc transporters ZrfA, ZrfB and ZrfC. The ZafA transcriptional regulator induces the expression of all these transporters and is essential for virulence. Thus, ZafA could be targeted therapeutically to inhibit fungal growth. The ZrfC transporter plays the major role in zinc acquisition from the host whereas ZrfA and ZrfB rather have a supplementary role to that of ZrfC. In addition, only ZrfC enables A. fumigatus to overcome the inhibitory effect of calprotectin, which is an antimicrobial Zn/Mn-chelating protein synthesized and released by neutrophils within the fungal abscesses of immunosuppressed non-leucopenic animals. Hence, fungal survival in these animals would be undermined upon blocking therapeutically the function of ZrfC. Therefore, both ZafA and ZrfC have emerged as promising targets for the discovery of new antifungals to treat Aspergillus infections.

  15. Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Gregory J. Fischer

    2017-05-01

    Full Text Available The opportunistic human pathogen Aspergillus fumigatus initiates invasive growth through a programmed germination process that progresses from dormant spore to swollen spore (SS to germling (GL and ultimately invasive hyphal growth. We find a lipoxygenase with considerable homology to human Alox5 and Alox15, LoxB, that impacts the transitions of programmed spore germination. Overexpression of loxB (OE::loxB increases germination with rapid advance to the GL stage. However, deletion of loxB (ΔloxB or its signal peptide only delays progression to the SS stage in the presence of arachidonic acid (AA; no delay is observed in minimal media. This delay is remediated by the addition of the oxygenated AA oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE that is a product of human Alox5. We propose that A. fumigatus acquisition of LoxB (found in few fungi enhances germination rates in polyunsaturated fatty acid-rich environments.

  16. Impact of Aspergillus fumigatus in allergic airway diseases

    Directory of Open Access Journals (Sweden)

    Chaudhary Neelkamal

    2011-06-01

    Full Text Available Abstract For decades, fungi have been recognized as associated with asthma and other reactive airway diseases. In contrast to type I-mediated allergies caused by pollen, fungi cause a large number of allergic diseases such as allergic bronchopulmonary mycoses, rhinitis, allergic sinusitis and hypersensitivity pneumonitis. Amongst the fungi, Aspergillus fumigatus is the most prevalent cause of severe pulmonary allergic disease, including allergic bronchopulmonary aspergillosis (ABPA, known to be associated with chronic lung injury and deterioration in pulmonary function in people with chronic asthma and cystic fibrosis (CF. The goal of this review is to discuss new understandings of host-pathogen interactions in the genesis of allergic airway diseases caused by A. fumigatus. Host and pathogen related factors that participate in triggering the inflammatory cycle leading to pulmonary exacerbations in ABPA are discussed.

  17. High prevalence of azole-resistant Aspergillus fumigatus in adults with cystic fibrosis exposed to itraconazole.

    NARCIS (Netherlands)

    Burgel, P.R.; Baixench, M.T.; Amsellem, M.; Audureau, E.; Chapron, J.; Kanaan, R.; Honore, I.; Dupouy-Camet, J.; Dusser, D.; Klaassen, C.H.; Meis, J.F.G.M.; Hubert, D.; Paugam, A.

    2012-01-01

    Aspergillus fumigatus is the most frequent fungus found in the sputum of cystic fibrosis (CF) subjects. Itraconazole is prescribed for allergic bronchopulmonary aspergillosis (ABPA) or Aspergillus bronchitis in CF subjects. We hypothesized that A. fumigatus isolates in the sputum of CF subjects with

  18. Aspergillus fumigatus in ovine lung in Brazil - Case report

    Directory of Open Access Journals (Sweden)

    Huber Rizzo

    2016-12-01

    Full Text Available ABSTRACT. Rizzo H., Silva Júnior V., Mota R.A., Rocha L.L.L., Ono M.S.B., Cruz J.A.L. de O., de Torres S.M., Coutinho L.C. de A., Guimarães J.A. & Dantas A.C. [Aspergillus fumigatus in ovine lung in Brazil - Case report.] Aspergillus fumigatus em pulmão de ovino no Brasil - Relato de caso. Revista Brasileira de Medicina Veterinária, 38(4:413-419, 2016. Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Recife, PE 52171-900, Brasil. E-mail: hubervet@gmail.com Its described a case of mycotic pneumonia caused by Aspergillus fumigatus in a three months old sheep, that died during the treatment period at the AGA/DMV/UFRPE consequence of skin lesions caused by dog attack. The animal did not respond to antibiotic treatment base on florafenicol, keeping high leukometric values. Macroscopically the lungs showed multifocal areas of cheesy aspect, varing shape and sizes, with yellowish tinge to the center and red at the edges. Microscopically were found granulomatous lesion with extensive dystrophic calcification area, presence of fibrin exudate in the bronchi, inflammatory infiltration of mononuclear diffuse, fibroblast proliferation delimiting a capsule around the inflammatory foci, epiteliodida robe with negative images of hyphae in the lung parenchyma, foamy macrophages, but no giant cells were seen. The blood culture on agar revealed the development of filamentous fungus with grayish color and lots of aerial hyphae, and the culture on Sabouraud media were seen colonies of dark green color with whitish borders both compatible with macromorphology colonies of A. fumigatus . The micromorphology of fungal growth revealed vesicles stick format with sporulation begins in the upper half of the vesicles. The imprints of nodular lesions of the lungs on slides, through panotic dye, showed septate hyphae and branched invading the tissue. Pulmonary infection by A. fumigatus, showed fatal and

  19. Designing a treatment protocol with voriconazole to eliminate Aspergillus fumigatus from experimentally inoculated pigeons.

    Science.gov (United States)

    Beernaert, Lies A; Pasmans, Frank; Baert, Kris; Van Waeyenberghe, Lieven; Chiers, Koen; Haesebrouck, Freddy; Martel, An

    2009-11-18

    To investigate the efficacy of voriconazole for the treatment of aspergillosis, three groups of six racing pigeons (Columba livia domestica) were inoculated in the apical part of the right lung with 2x10(7) conidia of an avian derived Aspergillus fumigatus strain. The minimal inhibitory concentration of voriconazole for this strain was 0.25 microg/ml. In two groups, voriconazole treatment was started upon appearance of the first clinical signs and continued for fourteen days. The third group was sham treated. The voriconazole-treated pigeons received voriconazole orally at a dose of 10 mg/kg body weight (BW) q12h (group 1) or 20 mg/kg BW q24h (group 2). Sixteen days post-inoculation all surviving pigeons were euthanized. Weight loss, clinical scores, daily mortality, lesions at necropsy and isolation of A. fumigatus were compared between all groups. In both voriconazole-treated groups, a significant reduction in clinical signs and lesions was observed. Administering voriconazole at 10 mg/kg BW q12h eliminated A. fumigatus and administering voriconazole at 20 mg/kg BW q24h reduced A. fumigatus isolation rates. Mild histological liver abnormalities were found in group 1 (10 mg/kg BW q12h), while mild histological as well as macroscopic liver abnormalities were found in group 2 (20 mg/kg BW q24h). In conclusion, voriconazole at 10 mg/kg BW q12h in pigeons reduces clinical signs and eliminates A. fumigatus in racing pigeons experimentally infected with A. fumigatus.

  20. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Meis, Jacques F; Chowdhary, Anuradha; Rhodes, Johanna L; Fisher, Matthew C; Verweij, Paul E

    2016-12-05

    Aspergillus fungi are the cause of an array of diseases affecting humans, animals and plants. The triazole antifungal agents itraconazole, voriconazole, isavuconazole and posaconazole are treatment options against diseases caused by Aspergillus However, resistance to azoles has recently emerged as a new therapeutic challenge in six continents. Although de novo azole resistance occurs occasionally in patients during azole therapy, the main burden is the aquisition of resistance through the environment. In this setting, the evolution of resistance is attributed to the widespread use of azole-based fungicides. Although ubiquitously distributed, A. fumigatus is not a phytopathogen. However, agricultural fungicides deployed against plant pathogenic moulds such as Fusarium, Mycospaerella and A. flavus also show activity against A. fumigatus in the environment and exposure of non-target fungi is inevitable. Further, similarity in molecule structure between azole fungicides and antifungal drugs results in cross-resistance of A. fumigatus to medical azoles. Clinical studies have shown that two-thirds of patients with azole-resistant infections had no previous history of azole therapy and high mortality rates between 50% and 100% are reported in azole-resistant invasive aspergillosis. The resistance phenotype is associated with key mutations in the cyp51A gene, including TR 34 /L98H, TR 53 and TR 46 /Y121F/T289A resistance mechanisms. Early detection of resistance is of paramount importance and if demonstrated, either with susceptibility testing or through molecular analysis, azole monotherapy should be avoided. Liposomal amphotericin B or a combination of voriconazole and an echinocandin are recomended for azole-resistant aspergillosis.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  1. Integrative analysis of the heat shock response in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Brakhage Axel A

    2010-01-01

    Full Text Available Abstract Background Aspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE. To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock. Results 91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS. They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones, oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha

  2. Antifungal Activity of Extracts Biarum carduchorum (Kardeh on Aspergillus fumigatus and Penicillium expansum in Vitro

    Directory of Open Access Journals (Sweden)

    Farideh Tabatabaei-Yazdi

    2016-04-01

    Full Text Available Background Plants provide the probability of a strategy in exploration for new drugs. Infectious diseases, which account for the significant ratio of the health problems, are most frequently catered for by this system of medicine. Objectives The aim of this study is to investigate the antimicrobial effect of Biarum carduchorum (Kardeh on Aspergillus fumigatus and Penicillium expansum in vitro. Materials and Methods In this experimental study the antibacterial activity of methanol and aqueous extracts of Biarum carduchorum against 2 laboratory strains of fungi (Aspergillus fumigatus and Penicillium expansum, were evaluated with using paper disk methods, Collins method, minimal inhibitory concentration (MIC and minimum fungicidal concentration (MFC. Results The methanolic extract inhibited the growth of all tested microorganisms. The phytochemical analysis of the methanolic extract of B. carduchorum revealed the presence of phenolics (+++, alkaloids (+++, tannins (++, flavonoids (++, saponins (+, phlobatanins (+, anthraquinones (+, terpenes (++ and cardiac glycosides (+. The result showed that MIC of B. carduchorum leaves of the aqueous and methanolic extracts for P. expansum and A. fumigatus was 32, 8, 16, 4 mg/mL respectively. The aqueous and methanolic extracts MFC of B. carduchorum leaves for P. expansum was 64 and 32 mg/mL respectively. Conclusions The presence of antibacterial activity in different fractions indicates that the extract possesses different compounds, which have different activities. The result of this study suggests that the methanolic and aqueous extracts of B. carduchorum could be suitable for the treatment on the microorganisms associated with infections.

  3. MLST versus microsatellites for typing Aspergillus fumigatus isolates.

    Science.gov (United States)

    Klaassen, C H W

    2009-01-01

    In recent years, there has been a clear and growing tendency to use exact typing methods for discrimination between microbial isolates. Exact typing methods that yield an unambiguous typing result offer a number of advantages over conventional methods in the generation of typing data that is reproducible, portable and exchangeable. Two such methods are multi-locus sequence typing (MLST) and microsatellite-based typing. Here I will discuss the basic principles of both methods and compare them from a practical and performance point of view with respect to typing Aspergillus fumigatus isolates. Microsatellites offer the best available typing option by outperforming MLST in terms of speed, throughput, costs and discriminatory power. This latter advantage of microsatellites is a direct consequence of their inherent instability. This (in)stability of individual microsatellite markers and alleles should be taken into account in the interpretation of microsatellite-based typing data.

  4. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  5. Targeted Disruption of Nonribosomal Peptide Synthetase pes3 Augments the Virulence of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Cairns, Timothy; Stack, Deirdre

    2011-01-01

    Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricro...

  6. In vitro interaction of voriconazole and anidulafungin against triazole-resistant Aspergillus fumigatus

    NARCIS (Netherlands)

    Seyedmousavi, S.; Meletiadis, J.; Melchers, W.J.G.; Rijs, A.J.M.M.; Mouton, J.W.; Verweij, P.E.

    2013-01-01

    Voriconazole is the recommended drug of first choice to treat infections caused by Aspergillus fumigatus. The efficacy of voriconazole might be hampered by the emergence of azole resistance. However, the combination of voriconazole with anidulafungin could improve therapeutic outcomes in

  7. Triazole Resistance Is Still Not Emerging in Aspergillus fumigatus Isolates Causing Invasive Aspergillosis in Brazilian Patients

    NARCIS (Netherlands)

    Negri, C.E.; Goncalves, S.S.; Sousa, A.C.P.; Bergamasco, M.D.; Martino, M.D.V.; Queiroz-Telles, F.; Aquino, V.R.; Castro, P.T.O.; Hagen, F.; Meis, J.F.G.M.; Colombo, A.L.

    2017-01-01

    Aspergillus fumigatus azole resistance has emerged as a global health problem. We evaluated the in vitro antifungal susceptibility of 221 clinical A. fumigatus isolates according to CLSI guidelines. Sixty-one isolates exhibiting MICs at the epidemiological cutoff value (ECV) for itraconazole or

  8. Intercountry Transfer of Triazole-Resistant Aspergillus fumigatus on Plant Bulbs

    NARCIS (Netherlands)

    Dunne, K.; Hagen, F.; Pomeroy, N.; Meis, J.F.G.M.; Rogers, T.R.

    2017-01-01

    We investigated whether plants imported to Ireland from the Netherlands might harbor triazole-resistant Aspergillus fumigatus. Samples of plant bulbs were positive for triazole-resistant A. fumigatus with CYP51A mutations. We hypothesize that this represents a route for intercountry transfer of an

  9. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management

    NARCIS (Netherlands)

    Verweij, P.; Zhang, J.; Debets, A.J.M.; Meis, J.F.; Schoustra, S.E.; Veerdonk, van de F.L.; Zwaan, B.J.; Melchers, W.J.G.

    2016-01-01

    Aspergillus fumigatus causes a range of diseases in human beings, some of which are characterised by fungal persistence. A fumigatus can persist by adapting to the human lung environment through physiological and genomic changes. The physiological changes are based on the large biochemical

  10. Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA

    Directory of Open Access Journals (Sweden)

    Goldman Gustavo H

    2010-01-01

    Full Text Available Abstract Background Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and ΔAfcrzA mutant strains. Results We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively. Decreased mRNA abundance in the ΔcrzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 μM, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl2 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP::RcnA was mostly detected along the germling, did not accumulate in the nuclei and its location is not affected by the cellular response to calcium chloride. Conclusion We have performed a transcriptional profiling analysis of the A. fumigatus ΔAfcrzA mutant strain exposed to calcium stress. This provided an excellent opportunity to identify genes and pathways that are under the influence of AfCrzA. AfRcnA, one of these selected genes, encodes a modulator of calcineurin

  11. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    Directory of Open Access Journals (Sweden)

    Neelkamal Chaudhary

    2010-02-01

    Full Text Available Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H1-T(H17 and destructive allergic (T(H2 immunity. How Aspergillus allergens (Asp f proteins participate in the development of allergic sensitization is unknown.To determine whether Asp f proteins are strictly associated with T(H2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17 to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H1-responses to Asp f3 (a putative peroxismal membrane protein, Asp f9/16 (cell wall glucanase, Asp f11 (cyclophilin type peptidyl-prolyl isomerase and Asp f22 (enolase. Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals.Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  12. Healthy human T-Cell Responses to Aspergillus fumigatus antigens.

    Science.gov (United States)

    Chaudhary, Neelkamal; Staab, Janet F; Marr, Kieren A

    2010-02-17

    Aspergillus fumigatus is associated with both invasive and allergic pulmonary diseases, in different hosts. The organism is inhaled as a spore, which, if not cleared from the airway, germinates into hyphal morphotypes that are responsible for tissue invasion and resultant inflammation. Hyphae secrete multiple products that function as antigens, evoking both a protective (T(H)1-T(H)17) and destructive allergic (T(H)2) immunity. How Aspergillus allergens (Asp f proteins) participate in the development of allergic sensitization is unknown. To determine whether Asp f proteins are strictly associated with T(H)2 responses, or represent soluble hyphal products recognized by healthy hosts, human T cell responses to crude and recombinant products were characterized by ELISPOT. While responses (number of spots producing IFN-gamma, IL-4 or IL-17) to crude hyphal antigen preparations were weak, responses to recombinant Asp f proteins were higher. Recombinant allergens stimulated cells to produce IFN-gamma more so than IL-4 or IL-17. Volunteers exhibited a diverse CD4+ and CD8+ T cell antigen recognition profile, with prominent CD4 T(H)1-responses to Asp f3 (a putative peroxismal membrane protein), Asp f9/16 (cell wall glucanase), Asp f11 (cyclophilin type peptidyl-prolyl isomerase) and Asp f22 (enolase). Strong IFN-gamma responses were reproduced in most subjects tested over 6 month intervals. Products secreted after conidial germination into hyphae are differentially recognized by protective T cells in healthy, non-atopic individuals. Defining the specificity of the human T cell repertoire, and identifying factors that govern early responses may allow for development of novel diagnostics and therapeutics for both invasive and allergic Aspergillus diseases.

  13. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA.

    Directory of Open Access Journals (Sweden)

    Robyn M Perrin

    2007-04-01

    Full Text Available Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, DeltalaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent DeltalaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, DeltalaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus-specific mycotoxin clusters, were expressed at significantly lower levels in the DeltalaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs, polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE was greatly reduced in the DeltalaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity.

  14. The Proteomic Signature of Aspergillus fumigatus During Early Development*

    Science.gov (United States)

    Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.

    2011-01-01

    Aspergillus fumigatus is a saprophytic fungus that causes a range of diseases in humans including invasive aspergillosis. All forms of disease begin with the inhalation of conidia, which germinate and develop. Four stages of early development were evaluated using the gel free system of isobaric tagging for relative and absolute quantitation to determine the full proteomic profile of the pathogen. A total of 461 proteins were identified at 0, 4, 8, and 16 h and fold changes for each were established. Ten proteins including the hydrophobin rodlet protein RodA and a protein involved in melanin synthesis Abr2 were found to decrease relative to conidia. To generate a more comprehensive view of early development, a whole genome microarray analysis was performed comparing conidia to 8 and 16 h of growth. A total of 1871 genes were found to change significantly at 8 h with 1001 genes up-regulated and 870 down-regulated. At 16 h, 1235 genes changed significantly with 855 up-regulated and 380 down-regulated. When a comparison between the proteomics and microarray data was performed at 8 h, a total of 22 proteins with significant changes also had corresponding genes that changed significantly. When the same comparison was performed at 16 h, 12 protein and gene combinations were found. This study, the most comprehensive to date, provides insights into early pathways activated during growth and development of A. fumigatus. It reveals a pathogen that is gearing up for rapid growth by building translation machinery, generating ATP, and is very much committed to aerobic metabolism. PMID:21825280

  15. Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus

    NARCIS (Netherlands)

    Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.J.; Lee, van der H.A.; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E.

    2012-01-01

    Background Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to

  16. Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus

    NARCIS (Netherlands)

    Verweij, P.E.; Kema, G.H.; Zwaan, B.; Melchers, W.J.G.

    2013-01-01

    Azole resistance is an emerging problem in the opportunistic mould Aspergillus fumigatus. The triazoles are the most important agents for the management of Aspergillus diseases in humans. Selection for acquired resistance may occur in the hospital setting through exposure to high doses of azoles

  17. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

    NARCIS (Netherlands)

    Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.; Lee, H.A.L. van der; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E.

    2012-01-01

    BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to

  18. Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus.

    Science.gov (United States)

    Goetz, Kerry E; Coyle, Christine M; Cheng, Johnathan Z; O'Connor, Sarah E; Panaccione, Daniel G

    2011-06-01

    Genes required for ergot alkaloid biosynthesis are clustered in the genomes of several fungi. Several conserved ergot cluster genes have been hypothesized, and in some cases demonstrated, to encode early steps of the pathway shared among fungi that ultimately make different ergot alkaloid end products. The deduced amino acid sequence of one of these conserved genes (easC) indicates a catalase as the product, but a role for a catalase in the ergot alkaloid pathway has not been established. We disrupted easC of Aspergillus fumigatus by homologous recombination with a truncated copy of that gene. The resulting mutant (ΔeasC) failed to produce the ergot alkaloids typically observed in A. fumigatus, including chanoclavine-I, festuclavine, and fumigaclavines B, A, and C. The ΔeasC mutant instead accumulated N-methyl-4-dimethylallyltryptophan (N-Me-DMAT), an intermediate recently shown to accumulate in Claviceps purpurea strains mutated at ccsA (called easE in A. fumigatus) (Lorenz et al. Appl Environ Microbiol 76:1822-1830, 2010). A ΔeasE disruption mutant of A. fumigatus also failed to accumulate chanoclavine-I and downstream ergot alkaloids and, instead, accumulated N-Me-DMAT. Feeding chanoclavine-I to the ΔeasC mutant restored ergot alkaloid production. Complementation of either ΔeasC or ΔeasE mutants with the respective wild-type allele also restored ergot alkaloid production. The easC gene was expressed in Escherichia coli, and the protein product displayed in vitro catalase activity with H(2)O(2) but did not act, in isolation, on N-Me-DMAT as substrate. The data indicate that the products of both easC (catalase) and easE (FAD-dependent oxidoreductase) are required for conversion of N-Me-DMAT to chanoclavine-I.

  19. Animal Models for Studying Triazole Resistance in Aspergillus fumigatus.

    Science.gov (United States)

    Lewis, Russell E; Verweij, Paul E

    2017-08-15

    Infections caused by triazole-resistant Aspergillus fumigatus are associated with a higher probability of treatment failure and mortality. Because clinical experience in managing these infections is still limited, mouse models of invasive aspergillosis fulfill a critical void for studying treatment regimens designed to overcome resistance. The type of immunosuppression, the route of infection, the timing of antifungal administration, and the end points used to assess antifungal activity affect the interpretation of data from these models. Nevertheless, these models provide important insights that help guide treatment decisions in patients with triazole-resistant invasive aspergillosis. Animal models confirmed that a high triazole minimal inhibitory concentration corresponded with triazole treatment failure and that the efficacy of other classes of drugs, such as the polyenes and echinocandins, was not affected by the presence of triazole resistance mutations. Furthermore, the feasibility of triazole dose escalation, combination therapy, and prophylaxis were explored as strategies to overcome resistance. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Felix Ellett

    2017-01-01

    Full Text Available Invasive aspergillosis (IA, primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching.

  1. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus.

    Science.gov (United States)

    Baccile, Joshua A; Spraker, Joseph E; Le, Henry H; Brandenburger, Eileen; Gomez, Christian; Bok, Jin Woo; Macheleidt, Juliane; Brakhage, Axel A; Hoffmeister, Dirk; Keller, Nancy P; Schroeder, Frank C

    2016-06-01

    Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multimodular polyketide synthases and nonribosomal peptide synthetases; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several new isoquinoline alkaloids known as the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi.

  2. Immuno-polymerase chain reaction for detection ofAspergillus fumigatus

    OpenAIRE

    Sarma, P. Usha; Bir, Nivedita; Paliwal, Anubha; Reddy, Prasad

    1997-01-01

    A number of Aspergillus infections are caused by the opportunistic fungal pathogenAspergillus fumigatus in humans especially under immunosuppressed conditions. Major forms of the disease include invasive aspergillosis, allergic bronchopulmonary aspergillosis and aspergilloma. A procedure that uses chitinase and microwave treatment is described for the extraction of genomic DNA of Aspergillus species from the sputum and bronchial aspirate of patients with established aspergillosis. Detection o...

  3. Mating Type Protein Mat1-2 from Asexual Aspergillus fumigatus Drives Sexual Reproduction in Fertile Aspergillus nidulans▿

    OpenAIRE

    Pyrzak, Wioletta; Miller, Karen Y.; Miller, Bruce L.

    2008-01-01

    The lack of an experimentally amenable sexual genetic system in Aspergillus fumigatus is a major limitation in the study of the organism's pathogenesis. A recent comparative genome analysis revealed evidence for potential sexuality in A. fumigatus. Homologs of mating type genes as well as other genes of the “sexual machinery” have been identified in anamorphic A. fumigatus. The mat1-2 gene encodes a homolog of MatA, an HMG box mating transcriptional factor (MatHMG) that regulates sexual devel...

  4. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management.

    Science.gov (United States)

    Verweij, Paul E; Zhang, Jianhua; Debets, Alfons J M; Meis, Jacques F; van de Veerdonk, Frank L; Schoustra, Sijmen E; Zwaan, Bas J; Melchers, Willem J G

    2016-11-01

    Aspergillus fumigatus causes a range of diseases in human beings, some of which are characterised by fungal persistence. A fumigatus can persist by adapting to the human lung environment through physiological and genomic changes. The physiological changes are based on the large biochemical versatility of the fungus, and the genomic changes are based on the capacity of the fungus to generate genetic diversity by spontaneous mutations or recombination and subsequent selection of the genotypes that are most adapted to the new environment. In this Review, we explore the adaptation strategies of A fumigatus in relation to azole resistance selection and the clinical implications thereof for management of diseases caused by Aspergillus spp. We hypothesise that the current diagnostic tools and treatment strategies do not take into account the biology of the fungus and might result in an increased likelihood of fungal persistence in patients. Stress factors, such as triazole exposure, cause mutations that render resistance. The process of reproduction-ie, sexual, parasexual, or asexual-is probably crucial for the adaptive potential of Aspergillus spp. As any change in the environment can provoke adaptation, switching between triazoles in patients with chronic pulmonary aspergillosis might result in a high-level pan-triazole-resistant phenotype through the accumulation of resistance mutations. Alternatively, when triazole therapy is stopped, an azole-free environment is created that could prompt selection for compensatory mutations that overcome any fitness costs that are expected to accompany resistance development. As a consequence, starting, switching, and stopping azole therapy has the risk of selecting for highly resistant strains with wildtype fitness. A similar adaptation is expected to occur in response to other stress factors, such as endogenous antimicrobial peptides; over time the fungus will become increasingly adapted to the lung environment, thereby limiting

  5. Neutrophil chemotactic responses induced by fresh and swollen Rhizopus oryzae spores and Aspergillus fumigatus conidia.

    OpenAIRE

    Waldorf, A R; Diamond, R D

    1985-01-01

    With the induction of germination, Rhizopus oryzae spores and Aspergillus fumigatus conidia activate the complement system and induce neutrophil chemotaxis. In contrast, freshly isolated R. oryzae spores did not induce neutrophil migration into lung tissue of mice after intranasal inoculation. Moreover, in microchemotaxis assays neither fresh R. oryzae spores nor A. fumigatus conidia activated sera to stimulate human neutrophil chemotaxis above control migration until at least 10(7) or 10(8) ...

  6. АЛЛЕРГЕНЫ ASPERGILLUS NIGER И ASPERGILLUS FUMIGATUS

    OpenAIRE

    БАЯЗИТОВА А.А.; ГЛУШКО Н.И.; ЛИСОВСКАЯ С.А.; ХАЛДЕЕВА Е.В.; ПАРШАКОВ В.Р.; ИЛЬИНСКАЯ О.И.

    2016-01-01

    Риск развития микогенной аллергии, наряду со способностью вызывать микозы и оказывать токсическое действие, является одним из медицински значимых свойств грибов. В обзоре рассмотрены грибы рода Aspergillus, в частности, Aspergillus niger и Aspergillus fumigatus, как одни из важных источников ингаляционных аллергенов. Предоставлена оценка аллергенности Aspergillus niger и Aspergillus fumigatus, также приведена более подробная характеристика наиболее значимых аллергенов....

  7. Evidence for the involvement of cofilin in Aspergillus fumigatus internalization into type II alveolar epithelial cells.

    Science.gov (United States)

    Bao, Zhiyao; Han, Xuelin; Chen, Fangyan; Jia, Xiaodong; Zhao, Jingya; Zhang, Changjian; Yong, Chen; Tian, Shuguang; Zhou, Xin; Han, Li

    2015-08-13

    The internalization of Aspergillus fumigatus into alveolar epithelial cells (AECs) is tightly controlled by host cellular actin dynamics, which require close modulation of the ADF (actin depolymerizing factor)/cofilin family. However, the role of cofilin in A. fumigatus internalization into AECs remains unclear. Here, we demonstrated that germinated A. fumigatus conidia were able to induce phosphorylation of cofilin in A549 cells during the early stage of internalization. The modulation of cofilin activity by overexpression, knockdown, or mutation of the cofilin gene in A549 cells decreased the efficacy of A. fumigatus internalization. Reducing the phosphorylation status of cofilin with BMS-5 (LIM kinase inhibitor) or overexpression of the slingshot phosphatases also impeded A. fumigatus internalization. Both the C. botulimun C3 transferase (a specific RhoA inhibitor) and Y27632 (a specific ROCK inhibitor) reduced the internalization of A. fumigatus and the level of phosphorylated cofilin. β-1,3-glucan (the major component of the conidial cell wall) and its host cell receptor dectin-1 did not seem to be associated with cofilin phosphorylation during A. fumigatus infection. These results indicated that cofilin might be involved in the modulation of A. fumigatus internalization into type II alveolar epithelial cells through the RhoA-ROCK-LIM kinase pathway.

  8. Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage-fungus interactions.

    Science.gov (United States)

    Van Waeyenberghe, Lieven; Baré, Julie; Pasmans, Frank; Claeys, Myriam; Bert, Wim; Haesebrouck, Freddy; Houf, Kurt; Martel, An

    2013-12-01

    Aspergillus fumigatus and free-living amoebae are common inhabitants of soil. Mechanisms of A. fumigatus to circumvent the amoeba's digestion may facilitate overcoming the vertebrate macrophage defence mechanisms. We performed co-culture experiments using A. fumigatus conidia and the amoeba Acanthamoeba castellanii. Approximately 25% of the amoebae ingested A. fumigatus conidia after 1 h of contact. During intra-amoebal passage, part of the ingested conidia was able to escape the food vacuole and to germinate inside the cytoplasm of A. castellanii. Fungal release into the extra-protozoan environment by exocytosis of conidia or by germination was observed with light and transmission electron microscopy. These processes resulted in structural changes in A. castellanii, leading to amoebal permeabilization without cell lysis. In conclusion, A. castellanii internalizes A. fumigatus conidia, resulting in fungal intracellular germination and subsequent amoebal death. As such, this interaction highly resembles that of A. fumigatus with mammalian and avian macrophages. This suggests that A. fumigatus virulence mechanisms to evade macrophage killing may be acquired by co-evolutionary interactions among A. fumigatus and environmental amoebae. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. IgE sensitization to Aspergillus fumigatus is associated with reduced lung function in asthma.

    Science.gov (United States)

    Fairs, Abbie; Agbetile, Joshua; Hargadon, Beverley; Bourne, Michelle; Monteiro, William R; Brightling, Christopher E; Bradding, Peter; Green, Ruth H; Mutalithas, Kugathasan; Desai, Dhananjay; Pavord, Ian D; Wardlaw, Andrew J; Pashley, Catherine H

    2010-12-01

    The importance of Aspergillus fumigatus sensitization and colonization of the airways in patients with asthma is unclear. To define the relationship between the clinical and laboratory features of A. fumigatus-associated asthma. We studied 79 patients with asthma (89% classed as GINA 4 or 5) classified into 3 groups according to A. fumigatus sensitization: (1) IgE-sensitized (immediate cutaneous reactivity > 3 mm and/or IgE > 0.35 kU/L); (2) IgG-only-sensitized (IgG > 40 mg/L); and (3) nonsensitized. These were compared with 14 healthy control subjects. Sputum culture was focused toward detection of A. fumigatus and compared with clinical assessment data. A. fumigatus was cultured from 63% of IgE-sensitized patients with asthma (n = 40), 39% of IgG-only-sensitized patients with asthma (n = 13), 31% of nonsensitized patients with asthma (n = 26) and 7% of healthy control subjects (n = 14). Patients sensitized to A. fumigatus compared with nonsensitized patients with asthma had lower lung function (postbronchodilator FEV₁ % predicted, mean [SEM]: 68 [±5]% versus 88 [±5]%; P < 0.05), more bronchiectasis (68% versus 35%; P < 0.05), and more sputum neutrophils (median [interquartile range]: 80.9 [50.1-94.1]% versus 49.5 [21.2-71.4]%; P < 0.01). In a multilinear regression model, A. fumigatus-IgE sensitization and sputum neutrophil differential cell count were important predictors of lung function (P = 0.016), supported by culture of A. fumigatus (P = 0.046) and eosinophil differential cell count (P = 0.024). A. fumigatus detection in sputum is associated with A. fumigatus-IgE sensitization, neutrophilic airway inflammation, and reduced lung function. This supports the concept that development of fixed airflow obstruction in asthma is consequent upon the damaging effects of airway colonization with A. fumigatus.

  10. Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence

    Directory of Open Access Journals (Sweden)

    Katrin eLapp

    2014-09-01

    Full Text Available Aspergillus fumigatus is a saprophytic mold that can cause life-threatening infections in immunocompromised patients. In the lung, inhaled conidia are confronted with immune effector cells that attack the fungus by various mechanisms such as phagocytosis, production of antimicrobial proteins or generation of reactive oxygen intermediates. Macrophages and neutrophils can also form nitric oxide (NO and reactive nitrogen intermediates (RNI that potentially also contribute to killing of the fungus. However, fungi can produce several enzymes involved in RNI detoxification. Based on genome analysis of A. fumigatus, we identified two genes encoding flavohemoglobins, FhpA and FhpB, which have been shown for other fungi to convert NO to nitrate, and a gene encoding S-nitrosoglutathione reductase GnoA reducing S-nitrosoglutathione to ammonium and glutathione disulphide. To elucidate the role of these enzymes in detoxification of RNI, single and double deletion mutants of FhpA, FhpB and GnoA encoding genes were generated. The analysis of mutant strains using the NO donor DETA-NO indicated that FhpA and GnoA play the major role in defense against RNI. By generating fusions with the green fluorescence protein, we showed that both FhpA-eGFP and GnoA-eGFP were located in the cytoplasm of all A. fumigatus morphotypes, from conidia to hyphae, whereas FhpB-eGFP was localized in mitochondria. Because fhpA and gnoA mRNA was also detected in the lungs of infected mice, we investigated the role of these genes in fungal pathogenicity by using a murine infection model for invasive pulmonary aspergillosis. Remarkably, all mutant strains tested displayed wild-type pathogenicity, indicating that the ability to detoxify host-derived RNI is not essential for virulence of A. fumigatus in the applied mouse infection model. Consistently, no significant differences in killing of ΔfhpA, ΔfhpB or ΔgnoA conidia by cells of the macrophage cell line MH-S were observed when

  11. Characterization of the Aspergillus fumigatus detoxification systems for reactive nitrogen intermediates and their impact on virulence.

    Science.gov (United States)

    Lapp, Katrin; Vödisch, Martin; Kroll, Kristin; Strassburger, Maria; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2014-01-01

    Aspergillus fumigatus is a saprophytic mold that can cause life-threatening infections in immunocompromised patients. In the lung, inhaled conidia are confronted with immune effector cells that attack the fungus by various mechanisms such as phagocytosis, production of antimicrobial proteins or generation of reactive oxygen intermediates. Macrophages and neutrophils can also form nitric oxide (NO) and other reactive nitrogen intermediates (RNI) that potentially also contribute to killing of the fungus. However, fungi can produce several enzymes involved in RNI detoxification. Based on genome analysis of A. fumigatus, we identified two genes encoding flavohemoglobins, FhpA, and FhpB, which have been shown to convert NO to nitrate in other fungi, and a gene encoding S-nitrosoglutathione reductase GnoA reducing S-nitrosoglutathione to ammonium and glutathione disulphide. To elucidate the role of these enzymes in detoxification of RNI, single and double deletion mutants of FhpA, FhpB, and GnoA encoding genes were generated. The analysis of mutant strains using the NO donor DETA-NO indicated that FhpA and GnoA play the major role in defense against RNI. By generating fusions with the green fluorescence protein, we showed that both FhpA-eGFP and GnoA-eGFP were located in the cytoplasm of all A. fumigatus morphotypes, from conidia to hyphae, whereas FhpB-eGFP was localized in mitochondria. Because fhpA and gnoA mRNA was also detected in the lungs of infected mice, we investigated the role of these genes in fungal pathogenicity by using a murine infection model for invasive pulmonary aspergillosis. Remarkably, all mutant strains tested displayed wild-type pathogenicity, indicating that the ability to detoxify host-derived RNI is not essential for virulence of A. fumigatus in the applied mouse infection model. Consistently, no significant differences in killing of ΔfhpA, ΔfhpB, or ΔgnoA conidia by cells of the macrophage cell line MH-S were observed when compared to the

  12. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

    OpenAIRE

    Snelders, E.; Camps, S.M.T.; Karawajczyk, A.; Schaftenaar, G.; Kema, G.H.; Lee, H.A.L. van der; Klaassen, C.H.; Melchers, W.J.G.; Verweij, P.E.

    2012-01-01

    BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14alpha-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34)/L98H). We invest...

  13. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles

    NARCIS (Netherlands)

    Snelders, Eveline; Huis In 't Veld, Robert A. G.; Rijs, Anthonius J. M. M.; Kema, Gert H. J.; Melchers, Willem J. G.; Verweij, Paul E.

    2009-01-01

    We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in

  14. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles.

    NARCIS (Netherlands)

    Snelders, E.; Huis In 't Veld, R.A.; Rijs, A.J.M.M.; Kema, G.H.; Melchers, W.J.G.; Verweij, P.E.

    2009-01-01

    We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in

  15. Possible Environmental Origin of Resistance of Aspergillus fumigatus to Medical Triazoles

    NARCIS (Netherlands)

    Snelders, E.; Veld, R.; Rijs, A.; Kema, G.H.J.; Melchers, W.J.G.; Verweij, P.E.

    2009-01-01

    We reported the emergence of resistance to medical triazoles of Aspergillus fumigatus isolates from patients with invasive aspergillosis. A dominant resistance mechanism was found, and we hypothesized that azole resistance might develop through azole exposure in the environment rather than in

  16. Chitin enhances serum IgE in Aspergillus fumigatus induced allergy in mice

    DEFF Research Database (Denmark)

    Dubey, Lalit Kumar; Moeller, Jesper Bonnet; Schlosser, Anders

    2015-01-01

    Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus that activates, suppresses or modulates the immune response by changing its cell wall structure and by secreting proteases. In this study, we show that chitin acts as an adjuvant in a murine model of A. fumigatus protease induced allergy....... The mice were immunised intraperitoneally with A. fumigatus culture filtrate antigen either with or without chitin and were subsequently challenged with the culture filtrate antigen intranasally. Alum was used as an adjuvant control. Compared to alum, chitin induced a weaker inflammatory response...... in the lungs, measured as the total cell efflux in BAL, EPO and chitinase production. However, chitin enhanced the total IgE, specific IgE and specific IgG1 production as efficiently as alum. Pre-treatment with chitin but not with alum depressed the concentration of the Th2 cytokines IL-4 and IL-13 in BAL...

  17. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima.

    Science.gov (United States)

    Ismaiel, Ahmed A; Ahmed, Ashraf S; Hassan, Ismail A; El-Sayed, El-Sayed R; Karam El-Din, Al-Zahraa A

    2017-07-01

    Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L -1 , respectively. Based on macroscopic and microscopic characteristics, ITS1-5.8S-ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L -1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L -1 . Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL -1 . Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.

  18. Dynamic immune cell recruitment after murine pulmonary Aspergillus fumigatus infection under different immunosuppressive regimens

    Directory of Open Access Journals (Sweden)

    Natarajaswamy Kalleda

    2016-07-01

    Full Text Available Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.

  19. Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens

    Science.gov (United States)

    Kalleda, Natarajaswamy; Amich, Jorge; Arslan, Berkan; Poreddy, Spoorthi; Mattenheimer, Katharina; Mokhtari, Zeinab; Einsele, Hermann; Brock, Matthias; Heinze, Katrin Gertrud; Beilhack, Andreas

    2016-01-01

    Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. PMID:27468286

  20. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Chad Steele

    2005-12-01

    Full Text Available Alveolar macrophages represent a first-line innate host defense mechanism for clearing inhaled Aspergillus fumigatus from the lungs, yet contradictory data exist as to which alveolar macrophage recognition receptor is critical for innate immunity to A. fumigatus. Acknowledging that the A. fumigatus cell wall contains a high beta-1,3-glucan content, we questioned whether the beta-glucan receptor dectin-1 played a role in this recognition process. Monoclonal antibody, soluble receptor, and competitive carbohydrate blockage indicated that the alveolar macrophage inflammatory response, specifically the production of tumor necrosis factor-alpha (TNF-alpha, interleukin-1alpha (IL-1alpha, IL-1beta, IL-6, CXCL2/macrophage inflammatory protein-2 (MIP-2, CCL3/macrophage inflammatory protein-1alpha (MIP-1alpha, granulocyte-colony stimulating factor (G-CSF, and granulocyte monocyte-CSF (GM-CSF, to live A. fumigatus was dependent on recognition via the beta-glucan receptor dectin-1. The inflammatory response was triggered at the highest level by A. fumigatus swollen conidia and early germlings and correlated to the levels of surface-exposed beta glucans, indicating that dectin-1 preferentially recognizes specific morphological forms of A. fumigatus. Intratracheal administration of A. fumigatus conidia to mice in the presence of a soluble dectin-Fc fusion protein reduced both lung proinflammatory cytokine/chemokine levels and cellular recruitment while modestly increasing the A. fumigatus fungal burden, illustrating the importance of beta-glucan-initiated dectin-1 signaling in defense against this pathogen. Collectively, these data show that dectin-1 is centrally required for the generation of alveolar macrophage proinflammatory responses to A. fumigatus and to our knowledge provides the first in vivo evidence for the role of dectin-1 in fungal innate defense.

  1. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia

    Directory of Open Access Journals (Sweden)

    Anuradha eChowdhary

    2015-05-01

    Full Text Available Aspergillus fumigatus causes varied clinical syndromes ranging from colonization to deep infections. The mainstay of therapy of Aspergillus diseases is triazoles but several studies globally highlighted variable prevalence of triazole resistance, which hampers the management of aspergillosis. We studied the prevalence of resistance in clinical A. fumigatus isolates during 4 years in a referral Chest Hospital in Delhi, India and reviewed the scenario in Asia and the Middle East. Aspergillus species (n=2117 were screened with selective plates for azole resistance. The isolates included 45.4% A. flavus, followed by 32.4% A. fumigatus, 15.6% Aspergillus species and 6.6% A. terreus. Azole resistance was found in only 12 (1.7% A. fumigatus isolates.These triazole resistant A. fumigatus (TRAF isolates were subjected to (a calmodulin and β tubulin gene sequencing (b in vitro antifungal susceptibility testing against triazoles using CLSI M38-A2 (c sequencing of cyp51A gene and real-time PCR assay for detection of mutations and (d microsatellite typing of the resistant isolates. TRAF harbored TR34/L98H mutation in 10 (83.3% isolates with a pan-azole resistant phenotype. Among the remaining 2 TRAF isolates, one had G54E and the other had three non-synonymous point mutations. The majority of patients were diagnosed as invasive aspergillosis followed by allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. The Indian TR34/L98H isolates had a unique genotype and were distinct from the Chinese, Middle East and European TR34/L98H strains. This resistance mechanism has been linked to the use of fungicide azoles in agricultural practices in Europe as it has been mainly reported from azole naïve patients. Reports published from Asia demonstrate the same environmental resistance mechanism in A. fumigatus isolates from two highly populated countries in Asia i.e., China and India and also from the neighboring Middle East.

  2. Impact of human mesenchymal stromal cells on antifungal host response againstAspergillus fumigatus.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Schneider, Andreas; Schubert, Ralf; Balan, Ada; Degistirici, Özer; Meisel, Roland; Lehrnbecher, Thomas

    2017-11-10

    Mesenchymal stromal cells (MSCs) are increasingly given as immunotherapy to hematopoietic stem cell transplant (HSCT) recipients with refractory graft-versus-host disease (GvHD). Whereas the immunosuppressive properties of MSCs seem to be beneficial in GvHD, there is, at the same time, major concern that MSCs increase the risk for infection. We therefore investigated the interplay of human MSCs with Aspergillus fumigatus and the impact of MSCs on different arms of the anti- Aspergillus host response in vitro . Although A. fumigatus hyphae increase mRNA levels of IL6 in MSCs, the extracellular availability of IL-6 and other pro-inflammatory cytokines remains unaffected. Human MSCs are able to phagocyte Aspergillus conidia, but phagocytosis of conidia is not associated with an alteration of the cytokine production by MSCs. In addition, human MSCs do not affect activation and function of A. fumigatus specific CD4 + T cells, and MSCs do not negatively impact the oxidative burst activity of phagocytes. Our in vitro data indicate that administration of human MSCs is not associated with a negative impact on the host response against A. fumigatus and that the fungus does not stimulate MSCs to increase the release of those cytokines which play a central role in the pathophysiology of GvHD.

  3. Interaktionen des humanpathogenen Pilzes Aspergillus fumigatus mit dem angeborenen Immunsystem und Thrombozyten

    OpenAIRE

    Czakai, Kristin Bernadette

    2015-01-01

    Pilze sind in unserer Umwelt allgegenwärtig und besiedeln im Fall von Candida albicans (C. albicans) sogar bei über 50% der Menschen die Schleimhäute, während Sporen von Aspergillus fumigatus (A. fumigatus) täglich über die Atmung in die Lunge des Menschen gelangen. Dennoch sind Erkrankungen, die durch diese zwei Pilze ausgelöst werden, bei gesunden Menschen selten. Ist jedoch das Immunsystem beeinträchtigt, können diese Pilze zu systemischen und damit lebensbedrohlichen Erkrankungen wie der ...

  4. In vitro interaction of voriconazole and anidulafungin against triazole-resistant Aspergillus fumigatus.

    Science.gov (United States)

    Seyedmousavi, Seyedmojtaba; Meletiadis, Joseph; Melchers, Willem J G; Rijs, Antonius J M M; Mouton, Johan W; Verweij, Paul E

    2013-02-01

    Voriconazole is the recommended drug of first choice to treat infections caused by Aspergillus fumigatus. The efficacy of voriconazole might be hampered by the emergence of azole resistance. However, the combination of voriconazole with anidulafungin could improve therapeutic outcomes in azole-resistant invasive aspergillosis (IA). The in vitro interaction between voriconazole and anidulafungin was determined against voriconazole-susceptible and voriconazole-resistant (substitutions in the cyp51A gene, including single point [M220I and G54W] and tandem repeat [34-bp tandem repeat in the promoter region of the cyp51A gene in combination with substitutions at codon L98 and 46-bp tandem repeat in the promoter region of the cyp51A gene in combination with mutation at codons Y121 and T289] mutations) clinical A. fumigatus isolates using a checkerboard microdilution method with spectrophotometric analysis and a viability-based XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide} assay within 2 h of exposure after 24 and 48 h of incubation at 35 °C to 37 °C. Fractional inhibitory concentration (FIC) indexes (FICis) were determined using different MIC endpoints and Bliss independence analysis performed based on the response surface calculation of the no-drug interaction. Significant synergistic interactions obtained based on measuring the FIC index were dependent on the MIC endpoint, in which FICs were inversely related to voriconazole and anidulafungin MICs and were influenced by the CYP51A genotype. A statistically significant difference was observed between FIC indexes of isolates harboring tandem repeat mutations and wild-type controls (P = 0.006 by one-way analysis of variance [ANOVA]), indicating that synergy is decreased in azole-resistant strains. Our results indicated that a combination of voriconazole and anidulafungin might be effective against infections caused by both azole-susceptible and azole-resistant A

  5. SYBR safeTMefficiently replaces ethidium bromide in Aspergillus fumigatus gene disruption.

    Science.gov (United States)

    Canela, H M S; Takami, L A; Ferreira, M E S

    2017-02-08

    Invasive aspergillosis is a disease responsible for high mortality rates, caused mainly by Aspergillus fumigatus. The available drugs are limited and this disease continues to occur at an unacceptable frequency. Gene disruption is essential in the search for new drug targets. An efficient protocol for A. fumigatus gene disruption was described but it requires ethidium bromide, a genotoxic agent, for DNA staining. Therefore, the present study tested SYBR safe TM , a non-genotoxic DNA stain, in A. fumigatus gene disruption protocol. The chosen gene was cipC, which has already been disrupted successfully in our laboratory. A deletion cassette was constructed in Saccharomyces cerevisiae and used in A. fumigatus transformation. There was no statistical difference between the tested DNA stains. The success rate of S. cerevisiae transformation was 63.3% for ethidium bromide and 70% for SYBR safe TM . For A. fumigatus gene disruption, the success rate for ethidium bromide was 100 and 97% for SYBR safe TM . In conclusion, SYBR safe TM efficiently replaced ethidium bromide, making this dye a safe and efficient alternative for DNA staining in A. fumigatus gene disruption.

  6. Isolation of azole-resistant Aspergillus fumigatus from the environment in the south-eastern USA.

    Science.gov (United States)

    Hurst, Steven F; Berkow, Elizabeth L; Stevenson, Katherine L; Litvintseva, Anastasia P; Lockhart, Shawn R

    2017-09-01

    Azole resistance in isolates of the fungus Aspergillus fumigatus has been associated with agricultural use of azole fungicides. Environmental isolation of resistant isolates has been reported in Asia, Africa, Europe and South America. To determine whether A. fumigatus isolates containing TR34/L98H or TR46/Y121F/T289A can be found in fields in the USA treated with agricultural azoles. Crop debris was collected and screened for A. fumigatus. All A. fumigatus isolates were screened for azole resistance. The CYP51A gene of azole-resistant isolates was sequenced. The population structure of a subset of isolates was determined using microsatellite typing. This article identifies azole-resistant A. fumigatus isolates containing the TR34/L98H mutation in an experimental peanut field that had been treated with azole fungicides. These findings suggest the development of resistance to azole antifungals in A. fumigatus may be present where agricultural azoles are used in the USA. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy 2017. This work is written by US Government employees and is in the public domain in the US.

  7. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling.

    NARCIS (Netherlands)

    Snelders, E.; Karawajczyk, A.; Schaftenaar, G.; Verweij, P.E.; Melchers, W.J.G.

    2010-01-01

    Molecular studies have shown that the majority of azole resistance in Aspergillus fumigatus is associated with amino acid substitutions in the cyp51A gene. To obtain insight into azole resistance mutations, the cyp51A gene of 130 resistant and 76 susceptible A. fumigatus isolates was sequenced. Out

  8. The Aspergillus fumigatus Damage Resistance Protein Family Coordinately Regulates Ergosterol Biosynthesis and Azole Susceptibility

    Directory of Open Access Journals (Sweden)

    Jinxing Song

    2016-02-01

    Full Text Available Ergosterol is a major and specific component of the fungal plasma membrane, and thus, the cytochrome P450 enzymes (Erg proteins that catalyze ergosterol synthesis have been selected as valuable targets of azole antifungals. However, the opportunistic pathogen Aspergillus fumigatus has developed worldwide resistance to azoles largely through mutations in the cytochrome P450 enzyme Cyp51 (Erg11. In this study, we demonstrate that a cytochrome b5-like heme-binding damage resistance protein (Dap family, comprised of DapA, DapB, and DapC, coordinately regulates the functionality of cytochrome P450 enzymes Erg5 and Erg11 and oppositely affects susceptibility to azoles. The expression of all three genes is induced in an azole concentration-dependent way, and the decreased susceptibility to azoles requires DapA stabilization of cytochrome P450 protein activity. In contrast, overexpression of DapB and DapC causes dysfunction of Erg5 and Erg11, resulting in abnormal accumulation of sterol intermediates and further accentuating the sensitivity of ΔdapA strains to azoles. The results of exogenous-hemin rescue and heme-binding-site mutagenesis experiments demonstrate that the heme binding of DapA contributes the decreased azole susceptibility, while DapB and -C are capable of reducing the activities of Erg5 and Erg11 through depletion of heme. In vivo data demonstrate that inactivated DapA combined with activated DapB yields an A. fumigatus mutant that is easily treatable with azoles in an immunocompromised mouse model of invasive pulmonary aspergillosis. Compared to the single Dap proteins found in Saccharomyces cerevisiae and Schizosaccharomyces pombe, we suggest that this complex Dap family regulatory system emerged during the evolution of fungi as an adaptive means to regulate ergosterol synthesis in response to environmental stimuli.

  9. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus

    NARCIS (Netherlands)

    Meletiadis, J.; Mortensen, K.L.; Verweij, P.E.; Mouton, J.W.; Arendrup, M.C.

    2017-01-01

    OBJECTIVES: Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on

  10. Antifungal Effects of Thyme, Agastache and Satureja Essential Oils on Aspergillus fumigatus, Aspergillus flavus and Fusarium solani

    Directory of Open Access Journals (Sweden)

    Karim Mardani

    2010-09-01

    Full Text Available Growth inhibition of Aspergillus fumigatus,Aspergillus flavus and Fusarum solani exposed to the essential oils including Thyme, Agastache and Satureja were studied. Disc Diffusion Method was used to evaluate the fungal growth inhibitory effects of the essential oils. Minimal inhibitory concentration (MIC and minimal fungicidal concentration (MFC of the oils were determined and compared with each other. The results showed that all three essential oils examined, had antifungal effects against three fungi species. The MIC data revealed that Thyme oil was the most effective essential oil with the MIC of 62.5 μl ml-1.

  11. Prevalence of azole-resistant Aspergillus fumigatus in the environment of Thailand.

    Science.gov (United States)

    Tangwattanachuleeporn, Marut; Minarin, Nanthakan; Saichan, Saranya; Sermsri, Pornsuda; Mitkornburee, Ruthairat; Groß, Uwe; Chindamporn, Ariya; Bader, Oliver

    2017-06-01

    Occurrence of azole-resistant Aspergillus fumigatus (ARAF) in the environment is an emerging problem worldwide, likely impacting on patient treatment. Several resistance mutations are thought to have initially arisen through triazole-based fungicide use in agriculture and subsequently being propagated in a similar manner. Here we investigated the prevalence of ARAF in the environment of Thailand and characterized their susceptibility profiles toward clinically used azole compounds along with underlying resistance mutations. Three hundred and eight soil samples were collected and analyzed, out of which 3.25% (n = 10) were positive for ARAF. All isolates obtained were resistant to itraconazole (MIC ≥ 8 μg/ml), two showed additional increased MIC values toward posaconazole (MIC = 0.5 μg/ml), and one other toward voriconazole (MIC = 2 μg/ml). Sequencing of the respective cyp51A genes revealed that eight of the isolates carried the TR34/L98H allele and those two with elevated MIC values to posaconazole the G54R substitution. Although a clear correlation between the use of triazole-based fungicides and isolation of ARAF strains from agricultural lands could not be established for Thailand, but this study clearly demonstrates the spread of globally observed ARAF strains to the environment of South East Asia. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Proteomic analysis of temperature dependent extracellular proteins from Aspergillus fumigatus grown under solid-state culture condition.

    Science.gov (United States)

    Adav, Sunil S; Ravindran, Anita; Sze, Siu Kwan

    2013-06-07

    Fungal species of the genus Aspergillus are filamentous ubiquitous saprophytes that play a major role in lignocellulosic biomass recycling and also are considered as cell factories for the production of organic acids, pharmaceuticals, and industrially important enzymes. Analysis of extracellular secreted biomass degrading enzymes using complex lignocellulosic biomass as a substrate by solid-state fermentation could be a more practical approach to evaluate application of the enzymes for lignocellulosic biorefinery. This study isolated a fungal strain from compost, identified as Aspergillus fumigatus, and further analyzed it for lignocellulolytic enzymes at different temperatures using label free quantitative proteomics. The profile of secretome composition discovered cellulases, hemicellulases, lignin degrading proteins, peptidases and proteases, and transport and hypothetical proteins; while protein abundances and further their hierarchical clustering analysis revealed temperature dependent expression of these enzymes during solid-state fermentation of sawdust. The enzyme activities and protein abundances as determined by exponentially modified protein abundance index (emPAI) indicated the maximum activities at the range of 40-50 °C, demonstrating the thermophilic nature of the isolate A. fumigatus LF9. Characterization of the thermostability of secretome suggested the potential of the isolated fungal strain in the production of thermophilic biomass degrading enzymes for industrial application.

  13. Volatile Compounds Emitted by Pseudomonas aeruginosa Stimulate Growth of the Fungal Pathogen Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Benoit Briard

    2016-03-01

    Full Text Available Chronic lung infections with opportunistic bacterial and fungal pathogens are a major cause of morbidity and mortality especially in patients with cystic fibrosis. Pseudomonas aeruginosa is the most frequently colonizing bacterium in these patients, and it is often found in association with the filamentous fungus Aspergillus fumigatus. P. aeruginosa is known to inhibit the growth of A. fumigatus in situations of direct contact, suggesting the existence of interspecies communication that may influence disease outcome. Our study shows that the lung pathogens P. aeruginosa and A. fumigatus can interact at a distance via volatile-mediated communication and expands our understanding of interspecific signaling in microbial communities.

  14. Isolate-dependent growth, virulence, and cell wall composition in the human pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Nansalmaa Amarsaikhan

    Full Text Available The ubiquitous fungal pathogen Aspergillus fumigatus is a mediator of allergic sensitization and invasive disease in susceptible individuals. The significant genetic and phenotypic variability between and among clinical and environmental isolates are important considerations in host-pathogen studies of A. fumigatus-mediated disease. We observed decreased radial growth, rate of germination, and ability to establish colony growth in a single environmental isolate of A. fumigatus, Af5517, when compared to other clinical and environmental isolates. Af5517 also exhibited increased hyphal diameter and cell wall β-glucan and chitin content, with chitin most significantly increased. Morbidity, mortality, lung fungal burden, and tissue pathology were decreased in neutropenic Af5517-infected mice when compared to the clinical isolate Af293. Our results support previous findings that suggest a correlation between in vitro growth rates and in vivo virulence, and we propose that changes in cell wall composition may contribute to this phenotype.

  15. Infection-Mediated Priming of Phagocytes Protects against Lethal Secondary Aspergillus fumigatus Challenge.

    Directory of Open Access Journals (Sweden)

    Amélie Savers

    Full Text Available Phagocytes restrict the germination of Aspergillus fumigatus conidia and prevent the establishment of invasive pulmonary aspergillosis in immunecompetent mice. Here we report that immunecompetent mice recovering from a primary A. fumigatus challenge are protected against a secondary lethal challenge. Using RAGγc knock-out mice we show that this protection is independent of T, B and NK cells. In protected mice, lung phagocytes are recruited more rapidly and are more efficient in conidial phagocytosis and killing. Protection was also associated with an enhanced expression of CXCR2 and Dectin-1 on bone marrow phagocytes. We also show that protective lung cytokine and chemokine responses are induced more rapidly and with enhanced dynamics in protected mice. Our findings support the hypothesis that following a first encounter with a non-lethal dose of A. fumigatus conidia, the innate immune system is primed and can mediate protection against a secondary lethal infection.

  16. Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus.

    Science.gov (United States)

    Blatzer, Michael; Latgé, Jean-Paul

    2017-12-01

    In contrast to obligate pathogens opportunistic pathogens such as Aspergillus fumigatus do not need a specific host to propagate or survive. However several characteristics of the saprophytic life-style and the selective pressure encountered in the primary ecological niche contribute to the virulence of A. fumigatus. All fungi depend on metals for growth and proliferation, like iron, copper, zinc, manganese or calcium. In the recent past several studies explored the manifold impact of metals modulating virulence of pathogens. Components which might be scarce in the natural environment but also in the host due to nutritional immunity. This review recapitulates molecular constituents of metal ion uptake systems in A. fumigatus, their regulation and their significance at the host-pathogen battlefield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway.

    Science.gov (United States)

    Thywißen, Andreas; Heinekamp, Thorsten; Dahse, Hans-Martin; Schmaler-Ripcke, Jeannette; Nietzsche, Sandor; Zipfel, Peter F; Brakhage, Axel A

    2011-01-01

    Aspergillus fumigatus is the most important air-borne fungal pathogen of humans. The interaction of the pathogen with the host's immune system represents a key process to understand pathogenicity. For elimination of invading microorganisms, they need to be efficiently phagocytosed and located in acidified phagolysosomes. However, as shown previously, A. fumigatus is able to manipulate the formation of functional phagolysosomes. Here, we demonstrate that in contrast to pigmentless pksP mutant conidia of A. fumigatus, the gray-green wild-type conidia inhibit the acidification of phagolysosomes of alveolar macrophages, monocyte-derived macrophages, and human neutrophil granulocytes. Therefore, this inhibition is independent of the cell type and applies to the major immune effector cells required for defense against A. fumigatus. Studies with melanin ghosts indicate that the inhibitory effect of wild-type conidia is due to their dihydroxynaphthalene (DHN)-melanin covering the conidia, whereas the hydrophobin RodA rodlet layer plays no role in this process. This is also supported by the observation that pksP conidia still exhibit the RodA hydrophobin layer, as shown by scanning electron microscopy. Mutants defective in different steps of the DHN-melanin biosynthesis showed stronger inhibition than pksP mutant conidia but lower inhibition than wild-type conidia. Moreover, A. fumigatus and A. flavus led to a stronger inhibition of phagolysosomal acidification than A. nidulans and A. terreus. These data indicate that a certain type of DHN-melanin that is different in the various Aspergillus species, is required for maximal inhibition of phagolysosomal acidification. Finally, we identified the vacuolar ATPase (vATPase) as potential target for A. fumigatus based on the finding that addition of bafilomycin which inhibits vATPase, led to complete inhibition of the acidification whereas the fusion of phagosomes containing wild-type conidia and lysosomes was not affected.

  18. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  19. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus.

    Science.gov (United States)

    König, Claudia C; Scherlach, Kirstin; Schroeckh, Volker; Horn, Fabian; Nietzsche, Sandor; Brakhage, Axel A; Hertweck, Christian

    2013-05-27

    Stimulating encounter: The intimate, physical interaction between the soil-derived bacterium Streptomyces rapamycinicus and the human pathogenic fungus Aspergillus fumigatus led to the activation of an otherwise silent polyketide synthase (PKS) gene cluster coding for an unusual prenylated polyphenol (fumicycline A). The meroterpenoid pathway is regulated by a pathway-specific activator gene as well as by epigenetic factors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Screening of Xylanolytic Aspergillus fumigatus for Prebiotic Xylooligosaccharide Production Using Bagasse

    Directory of Open Access Journals (Sweden)

    Pedro de Oliva Neto

    2015-01-01

    Full Text Available Sugarcane bagasse is an important lignocellulosic material studied for the production of xylooligosaccharides (XOS. Some XOS are considered soluble dietary fibre, with low caloric value and prebiotic effect, but they are expensive and not easily available. In a screening of 138 fungi, only nine were shortlisted, and just Aspergillus fumigatus M51 (35.6 U/mL and A. fumigatus U2370 (28.5 U/mL were selected as the most significant producers of xylanases. These fungi had low β-xylosidase activity, which is desirable for the production of XOS. The xylanases from Trichoderma reesei CCT 2768, A. fumigatus M51 and A. fumigatus U2370 gave a significantly higher XOS yield, 11.9, 14.7 and 7.9 % respectively, in a 3-hour reaction with hemicellulose from sugarcane bagasse. These enzymes are relatively thermostable at 40–50 °C and can be used in a wide range of pH values. Furthermore, these xylanases produced more prebiotic XOS (xylobiose and xylotriose when compared with a commercial xylanase. The xylanases from A. fumigatus M51 reached a high level of XOS production (37.6 % in 48–72 h using hemicellulose extracted from sugarcane bagasse. This yield represents 68.8 kg of prebiotic XOS per metric tonne of cane bagasse. In addition, in a biorefinery, after hemicellulose extraction for XOS production, the residual cellulose could be used for the production of second-generation ethanol.

  1. Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells.

    Science.gov (United States)

    Maisonneuve, Elodie; Cateau, Estelle; Kaaki, Sihem; Rodier, Marie-Hélène

    2016-11-01

    Free living amoebae (FLA) are protists ubiquitously present in the environment. Aspergillus fumigatus is a mould responsible for severe deep-seated infections, and that can be recovered in the same habitats as the FLA. By conducting coculture experiments and fungal incubation with amoebal supernatants, we report herein that Vermamoeba vermiformis, a FLA present in hospital water systems, promotes filamentation and growth of A. fumigatus. This finding is of particular importance to institutions whose water systems might harbor FLA and could potentially be used by immunocompromised patients. Also, the relationships between V. vermiformis and A. fumigatus were compared to those between this fungus and two other phagocytic cells: Acanthamoeba castellanii, another FLA, and macrophage-like THP-1 cells. After 4 h of coincubation, the percentages of the three phagocytic cell types with adhered conidia were similar, even though the types of receptors between FLA and macrophagic cell seemed different. However, the percentage of THP-1 with internalized conidia was considerably lower (40 %) in comparison with the two other cell types (100 %). Thus, this study revealed that interactions between A. fumigatus and these three phagocytic cell types show similarities, even though it is premature to extrapolate these results to interpret relationships between A. fumigatus and macrophages.

  2. Dectin-1 agonist curdlan modulates innate immunity to Aspergillus fumigatus in human corneal epithelial cells

    Directory of Open Access Journals (Sweden)

    Cheng-Cheng Zhu

    2015-08-01

    Full Text Available AIM: To explore the immunomodulatory effects of curdlan on innate immune responses against Aspergillus fumigatus (A. fumigatus in cultured human corneal epithelial cells (HCECs, and whether C-type lectin receptor Dectin-1 mediates the immunomodulatory effects of curdlan.METHODS:The HCECs were stimulated by curdlan in different concentrations (50, 100, 200, 400 μg/mL for various time. Then HCECs pretreated with or without laminarin (Dectin-1 blocker, 0.3 mg/mL and curdlan were stimulated by A. fumigatus hyphae. The mRNA and protein production of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were determined by real-timequantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The protein level of Dectin-1 was measured by Western blot.RESULTS: Curdlan stimulated mRNA expression of TNF-α and IL-6 in a dose and time dependent manner in HCECs. Curdlan pretreatment before A. fumigatus hyphae stimulation significantly enhanced the expression of TNF-α and IL-6 at mRNA and protein levels compared with A. fumigatus hyphae stimulation group (P<0.05. Both curdlan and A. fumigatus hyphae up-regulated Dectin-1 protein expression in HCECs, and Dectin-1 expression was elevated to 1.5- to 2-fold by curdlan pretreatment followed hyphaestimulation. The Dectin-1 blocker laminarin suppressed the mRNA expression and protein production of TNF-α and IL-6 induced by curdlan and hyphae (P<0.05.CONCLUSION:These findings demonstrated that curdlan pretreatment enhanced the inflammatory response induced by A. fumigatus hyphae in HCECs. Dectin-1 is essential for the immunomodulatory effects of curdlan. Curdlan may have high clinical application values in fungal keratitis treatment.

  3. SREBP-Dependent Triazole Susceptibility in Aspergillus fumigatus Is Mediated through Direct Transcriptional Regulation of erg11A (cyp51A)

    Science.gov (United States)

    Blosser, Sara J.

    2012-01-01

    As triazole antifungal drug resistance during invasive Aspergillus fumigatus infection has become more prevalent, the need to understand mechanisms of resistance in A. fumigatus has increased. The presence of two erg11 (cyp51) genes in Aspergillus spp. is hypothesized to account for the inherent resistance of this mold to the triazole fluconazole (FLC). Recently, an A. fumigatus null mutant of a transcriptional regulator in the sterol regulatory element binding protein (SREBP) family, the ΔsrbA strain, was found to have increased susceptibility to FLC and voriconazole (VCZ). In this study, we examined the mechanism engendering the observed increase in A. fumigatus triazole susceptibility in the absence of SrbA. We observed a significant reduction in the erg11A transcript in the ΔsrbA strain in response to FLC and VCZ. Transcript levels of erg11B were also reduced but not to the extent of erg11A. Interestingly, erg11A transcript levels increased upon extended VCZ, but not FLC, exposure. Construction of an erg11A conditional expression strain in the ΔsrbA strain was able to restore erg11A transcript levels and, consequently, wild-type MICs to the triazole FLC. The VCZ MIC was also partially restored upon increased erg11A transcript levels; however, total ergosterol levels remained significantly reduced compared to those of the wild type. Induction of the erg11A conditional strain did not restore the hypoxia growth defect of the ΔsrbA strain. Taken together, our results demonstrate a critical role for SrbA-mediated regulation of ergosterol biosynthesis and triazole drug interactions in A. fumigatus that may have clinical importance. PMID:22006005

  4. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole.

    Science.gov (United States)

    Amarsaikhan, Nansalmaa; Albrecht-Eckardt, Daniela; Sasse, Christoph; Braus, Gerhard H; Ogel, Zumrut B; Kniemeyer, Olaf

    2017-10-01

    Antifungal resistance is an emerging problem and one of the reasons for treatment failure of invasive aspergillosis (IA). Voriconazole has become a standard therapeutic for the treatment of this often fatal infection. We studied the differentially expressed proteins as a response of Aspergillus fumigatus to voriconazole by employing the two-dimensional difference gel electrophoresis (DIGE) technique. Due to addition of drug, a total of 135 differentially synthesized proteins were identified by MALDI-TOF/TOF-mass spectrometry. In particular, the level of proteins involved in the general stress response and cell detoxification increased prominently. In contrast, cell metabolism and energy proteins were down-regulated, which suggests the cellular effort to maintain balance in energy utilization while trying to combat the cellular stress exerted by the drug. We detected several so-far uncharacterized proteins which may play a role in stress response and drug metabolism and which could be future targets for antifungal treatment. A mutant strain, which is deleted in the cross-pathway control gene cpcA, was treated with voriconazole to investigate the contribution of the general control of amino acid biosynthesis to drug resistance. We compared the mutant strain's protein expression profile with the wild-type strain. The absence of CpcA led to an increased resistance to voriconazole and a reduced activation of some general stress response proteins, while the transcript level of the triazole target gene erg11A (cyp51A) remained unchanged. In contrast, the sensitivity of strain ΔcpcA to terbinafine and amphotericin B was slightly increased. These findings imply a role of CpcA in the cellular stress response to azole drugs at the post transcriptional level. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Data from: Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides

    NARCIS (Netherlands)

    Zhang, J.; Heuvel, van den Joost; Debets, A.J.M.; Verweij, Paul E.; Melchers, Willem J.G.; Zwaan, B.J.; Schoustra, S.E.

    2017-01-01

    Resistance to medical triazoles in Aspergillus fumigatus is an emerging problem for patients at risk of aspergillus diseases. There are currently two presumed routes for medical triazole-resistance selection: (i) through selection pressure of medical triazoles when treating patients and (ii) through

  6. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides

    NARCIS (Netherlands)

    Zhang, Jianhua; Heuvel, van den Joost; Debets, Fons; Verweij, Paul E.; Melchers, Willem J.G.; Zwaan, Bas J.; Schoustra, Sijmen E.

    2017-01-01

    Resistance to medical triazoles in Aspergillus fumigatus is an emerging problem for patients at risk of aspergillus diseases. There are currently two presumed routes for medical triazole-resistance selection: (i) through selection pressure of medical triazoles when treating patients and (ii)

  7. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides

    NARCIS (Netherlands)

    Zhang, J.; Heuvel, J. van den; Debets, A.J.; Verweij, P.E.; Melchers, W.J.G.; Zwaan, B.J.; Schoustra, S.E.

    2017-01-01

    Resistance to medical triazoles in Aspergillus fumigatus is an emerging problem for patients at risk of aspergillus diseases. There are currently two presumed routes for medical triazole-resistance selection: (i) through selection pressure of medical triazoles when treating patients and (ii) through

  8. Biosorption characteristics of Aspergillus fumigatus in removal of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Nineteen fungal species were isolated from soil contaminated with industrial wastes of which. Aspergillus species were the most dominant. The growth of the isolates was notice by Cd concentration in growth medium, thus about 20% of the isolates can grow up to 50 mg Cd/100 ml medium and only.

  9. Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter

    Directory of Open Access Journals (Sweden)

    Barker Bridget M

    2012-02-01

    Full Text Available Abstract Background Aspergillus fumigatus is a mold responsible for the majority of cases of aspergillosis in humans. To survive in the human body, A. fumigatus must adapt to microenvironments that are often characterized by low nutrient and oxygen availability. Recent research suggests that the ability of A. fumigatus and other pathogenic fungi to adapt to hypoxia contributes to their virulence. However, molecular mechanisms of A. fumigatus hypoxia adaptation are poorly understood. Thus, to better understand how A. fumigatus adapts to hypoxic microenvironments found in vivo during human fungal pathogenesis, the dynamic changes of the fungal transcriptome and proteome in hypoxia were investigated over a period of 24 hours utilizing an oxygen-controlled fermenter system. Results Significant increases in transcripts associated with iron and sterol metabolism, the cell wall, the GABA shunt, and transcriptional regulators were observed in response to hypoxia. A concomitant reduction in transcripts was observed with ribosome and terpenoid backbone biosynthesis, TCA cycle, amino acid metabolism and RNA degradation. Analysis of changes in transcription factor mRNA abundance shows that hypoxia induces significant positive and negative changes that may be important for regulating the hypoxia response in this pathogenic mold. Growth in hypoxia resulted in changes in the protein levels of several glycolytic enzymes, but these changes were not always reflected by the corresponding transcriptional profiling data. However, a good correlation overall (R2 = 0.2, p A. fumigatus. Conclusions Taken together, our data suggest a robust cellular response that is likely regulated both at the transcriptional and post-transcriptional level in response to hypoxia by the human pathogenic mold A. fumigatus. As with other pathogenic fungi, the induction of glycolysis and transcriptional down-regulation of the TCA cycle and oxidative phosphorylation appear to major

  10. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Intan M. W. Dewi

    2017-10-01

    Full Text Available The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.

  11. Profile and functional analysis of small RNAs derived from Aspergillus fumigatus infected with double-stranded RNA mycoviruses.

    Science.gov (United States)

    Özkan, Selin; Mohorianu, Irina; Xu, Ping; Dalmay, Tamas; Coutts, Robert H A

    2017-05-30

    Mycoviruses are viruses that naturally infect and replicate in fungi. Aspergillus fumigatus, an opportunistic pathogen causing fungal lung diseases in humans and animals, was recently shown to harbour several different types of mycoviruses. A well-characterised defence against virus infection is RNA silencing. The A. fumigatus genome encodes essential components of the RNA silencing machinery, including Dicer, Argonaute and RNA-dependent RNA polymerase (RdRP) homologues. Active silencing of double-stranded (ds)RNA and the generation of small RNAs (sRNAs) has been shown for several mycoviruses and it is anticipated that a similar mechanism will be activated in A. fumigatus isolates infected with mycoviruses. To investigate the existence and nature of A. fumigatus sRNAs, sRNA-seq libraries of virus-free and virus-infected isolates were created using Scriptminer adapters and compared. Three dsRNA viruses were investigated: Aspergillus fumigatus partitivirus-1 (AfuPV-1, PV), Aspergillus fumigatus chrysovirus (AfuCV, CV) and Aspergillus fumigatus tetramycovirus-1 (AfuTmV-1, NK) which were selected because they induce phenotypic changes such as coloration and sectoring. The dsRNAs of all three viruses, which included two conventionally encapsidated ones PV and CV and one unencapsidated example NK, were silenced and yielded characteristic vsiRNAs together with co-incidental silencing of host fungal genes which shared sequence homology with the viral genomes. Virus-derived sRNAs were detected and characterised in the presence of virus infection. Differentially expressed A. fumigatus microRNA-like (miRNA-like) sRNAs and small interfering RNAs (siRNAs) were detected and validated. Host sRNA loci which were differentially expressed as a result of virus infection were also identified. To our knowledge, this is the first study reporting the sRNA profiles of A. fumigatus isolates.

  12. Anti-hyphal formation property of allicin in suppression of Aspergillus fumigatus growth

    Directory of Open Access Journals (Sweden)

    Sajali, N.

    2013-01-01

    Full Text Available Aims: The aim of this study was to examine whether allicin, a compound derived from fresh garlic, leads to growth inhibition and changes in the ultrastructure of the cell surface on medically important filamentous fungi, particularly Aspergillus fumigatus.Methodology and results: The minimum inhibitory concentration (MIC of allicin in A. fumigatus ATCC 36607 was determined by broth microdilution method according to the CLSI M38-A2 documents whereby the minimal fungicidal concentration (MFC was determined by plating suspensions from visibly clear wells onto Sabouraud dextrose agar (SDA. Morphological changes on cell surface were observed through scanning electron microscopy (SEM after 48 h incubation with allicin. In addition, time kill assay was conducted by incubating A. fumigatus at selected time points within 24 h period. Our finding indicated that the MIC and MFC for allicin were both 3.2 µg/mL. Quantitative data for optical density obtained through microplate reader indicated that p<0.05 at MIC value in comparison with untreated control. Observation of allicin-treated cells through SEM demonstrated complete abrogation of hyphae formation at 3.2 µg/mL and reduced mycelial growth at 1.6 µg/mL of allicin. This finding revealed anti-hyphal activity of allicin at 3.2 µg/mL. When A. fumigatus was incubated with 3.2 µg/mL allicin in the time course assay, the inhibitory effect of allicin was evident after 12 h incubation. Conclusion, significance and impact of study: Our finding strongly implied that allicin exerts its antifungal activity against A. fumigatus via inhibiting the fungal cell proliferation as well as hindering transformation of the conidia into hyphae. Thus, this study depicted potential antifungal property of allicin to be used as alternative therapy to alleviate invasive fungal infection caused by A. fumigatus.

  13. Obtenção e avaliação de antígenos de Aspergillus fumigatus Obtention and evaluation of Aspergillus fumigatus antigens extraction

    Directory of Open Access Journals (Sweden)

    Vanda de Sá Lirio

    1992-08-01

    Full Text Available Antígenos de três amostras de A. fumigatus (354, 356, JIG e antissoro contra a mistura destes antígenos foram produzidos e avaliados imunoquimicamente. Os antígenos de filtrado de cultura foram obtidos após concentração com acetona conforme adaptação da técnica descrita por Coleman & Kaufman. Em prova de ID obteve-se 100% de positividade com os soros de pacientes com aspergilose estudados. Com relação aos soros heterólogos encontramos reatividade com soro de um paciente com candidíase e com soro de um paciente com histoplasmose; foi encontrado padrão idêntico de resposta quando se utilizou o antígeno de referência. O antissoro foi titulado por ID, CIE e RFC MI contra o antígeno específico apresentando títulos respectivos de 1:32, 1:32 e 1:128, e utilizado para reagir contra o mesmo antígeno por IEF, demonstrando 8 linhas de precipitação, sendo 5 na região anódica e 3 na região catódica. O perfil de bandeamento do antígeno em eletroforese utilizando gel de poliacrilamida (SDS-PAGE a 12,5% apresentou-se complexo com 26 sub-unidades protéicas, cujos pesos moleculares variaram de 18 a > 100kDa. Quando estes componentes foram eletrotransferidos e reagidos com o antissoro específico ("immunoblotting", verificou-se imunogenicidade em todas as frações bandeadas.Antigens from three strains of Aspergillus fumigatus (354, 356, and JIG and an antiserum against the mixing of these antigens have been produced, and evaluated immunochemically. The antigens were obtained through a modified Coleman & Kaufman technique (culture filtrate concentrated by acetone. Analysis by the immunodiffusion test (ID against homologous serum has yielded 100% sensitivity (with the studied sera. Concerning heterologous sera we found reactivity with a serum of a patient of candidiasis and another with histoplasmosis. The same result was obtained with a reference antigen in immunodiffusion, showing similar standards of response. Titration of the

  14. The role of interleukin-1 family members in the host defence against Aspergillus fumigatus.

    Science.gov (United States)

    Gresnigt, Mark S; van de Veerdonk, Frank L

    2014-12-01

    The interleukin (IL)-1 family consists of 11 members, which all play significant roles in regulating inflammatory responses in the host. IL-1α and IL-1β exert potent pro-inflammatory effects and are key players in the recruitment of neutrophils to the site of inflammation. Protective anti-Aspergillus host responses during the early stages of invasive aspergillosis are critically dependent on neutrophil recruitment, and several lines of evidence support that there is an important role for IL-1 in this process. However, IL-1-mediated inflammation needs to be tightly regulated, since uncontrolled inflammation can result in inflammatory pathology and thereby be detrimental for the host. Aspergillus-induced IL-1-mediated inflammation could therefore be amendable for IL-1 blockade under specific circumstances. This review describes the current understanding of the role of IL-1 family members in the host response against Aspergillus fumigatus and highlights the importance of balanced IL-1 responses in aspergillosis.

  15. Immunoproteome of Aspergillus fumigatus Using Sera of Patients with Invasive Aspergillosis

    Directory of Open Access Journals (Sweden)

    Emylli D. Virginio

    2014-08-01

    Full Text Available Invasive aspergillosis is a life-threatening lung or systemic infection caused by the opportunistic mold Aspergillus fumigatus. The disease affects mainly immunocompromised hosts, and patients with hematological malignances or who have been submitted to stem cell transplantation are at high risk. Despite the current use of Platelia™ Aspergillus as a diagnostic test, the early diagnosis of invasive aspergillosis remains a major challenge in improving the prognosis of the disease. In this study, we used an immunoproteomic approach to identify proteins that could be putative candidates for the early diagnosis of invasive aspergillosis. Antigenic proteins expressed in the first steps of A. fumigatus germination occurring in a human host were revealed using 2-D Western immunoblots with the serum of patients who had previously been classified as probable and proven for invasive aspergillosis. Forty antigenic proteins were identified using mass spectrometry (MS/MS. A BLAST analysis revealed that two of these proteins showed low homology with proteins of either the human host or etiological agents of other invasive fungal infections. To our knowledge, this is the first report describing specific antigenic proteins of A. fumigatus germlings that are recognized by sera of patients with confirmed invasive aspergillosis who were from two separate hospital units.

  16. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens.

    Science.gov (United States)

    Asif, Abdul R; Oellerich, Michael; Amstrong, Victor W; Riemenschneider, Birgit; Monod, Michel; Reichard, Utz

    2006-04-01

    Aspergillus fumigatus is a mold causing most of the invasive fungal lung infections in the immunocompromised host. In addition, the species is the causative agent of certain allergic diseases. Both in invasive and in allergic diseases, the conidial surface mediates the first contact with the human immune system. Thus, conidial surface proteins may be reasonable vaccine candidates as well as important allergens. To broaden the list of those antigens, intact viable Aspergillus conidia were extracted with mild alkaline buffer at pH 8.5 in the presence of a 1,3-beta-glucanase. The proteome of this fraction was separated by two- dimensional gel electrophoresis (2-DE) and analyzed by liquid chromatography coupled with tandem mass spectrometry. Altogether 26 different A. fumigatus proteins were identified, twelve of which contain a signal for secretion. Among these were the known major conidial surface protein rodlet A, one acid protease PEP2, one lipase, a putative disulfide isomerase and a putative fructose-1,6-biphosphatase. The known allergen Aspf 3 was identified among the proteins without a signal for secretion. On the basis of the recently annotated A. fumigatus genome (Nature 2005, 438, 1151-1156), proteome analysis is now a powerful tool to confirm expression of hypothetical proteins and, thereby to identify additional vaccine candidates and possible new allergens of this important fungal pathogen.

  17. Biochemical properties and primary structure of elastase inhibitor AFUEI from Aspergillus fumigatus.

    Science.gov (United States)

    Okumura, Yoshiyuki; Matsui, Takeshi; Ogawa, Kenji; Uchiya, Kei-ichi; Nikai, Toshiaki

    2008-07-01

    An elastase inhibitor from Aspergillus fumigatus (AFUEI) was isolated, and its biochemical properties and primary structure examined. The inhibitor was purified by column chromatography using DE52 cellulose and Sephadex G-75, and was found to be homogeneous as indicated by a single band following discontinuous PAGE and SDS-PAGE. A molecular mass of 7525.1 Da was observed by matrix-assisted desorption/ionization time-of-flight mass spectroscopy. The elastolytic activity of elastases from A. fumigatus, Aspergillus flavus and human leukocytes was inhibited by AFUEI. However, the elastolytic activity of porcine pancreas elastase, Pseudomonas aeruginosa elastase and elastase from snake venom was not affected by AFUEI. No inhibitory effect of DTT or 2-mercaptoethanol on the elastase inhibitory activity of AFUEI was observed. The amino acid sequence of AFUEI peptides derived from digests utilizing clostripain was determined by Edman sequencing. AFUEI was composed of 68 aa and had a calculated molecular mass of 7526.2 Da. The search for amino acid homology with other proteins demonstrated that aa 1-68 of AFUEI are 100 % identical to aa 20-87 of the hypothetical protein AFUA 3G14940 of A. fumigatus.

  18. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Nir eOsherov

    2012-09-01

    Full Text Available Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just innocent bystanders or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.

  19. Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype.

    Directory of Open Access Journals (Sweden)

    Shikha Bhatia

    Full Text Available The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1, a key marker of alternatively activated macrophages (AAMs. The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c(+ alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.

  20. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia

    Directory of Open Access Journals (Sweden)

    Georgeault Sonia

    2009-08-01

    Full Text Available Abstract Background Aspergillus fumigatus is the most common agent of invasive aspergillosis, a feared complication in severely immunocompromised patients. Despite the recent commercialisation of new antifungal drugs, the prognosis for this infection remains uncertain. Thus, there is a real need to discover new targets for therapy. Particular attention has been paid to the biochemical composition and organisation of the fungal cell wall, because it mediates the host-fungus interplay. Conidia, which are responsible for infections, have melanin as one of the cell wall components. Melanin has been established as an important virulence factor, protecting the fungus against the host's immune defences. We suggested that it might also have an indirect role in virulence, because it is required for correct assembly of the cell wall layers of the conidia. Results We used three A. fumigatus isolates which grew as white or brown powdery colonies, to demonstrate the role of melanin. Firstly, sequencing the genes responsible for biosynthesis of melanin (ALB1, AYG1, ARP1, ARP2, ABR1 and ABR2 showed point mutations (missense mutation, deletion or insertion in the ALB1 gene for pigmentless isolates or in ARP2 for the brownish isolate. The isolates were then shown by scanning electron microscopy to produce numerous, typical conidial heads, except that the conidia were smooth-walled, as previously observed for laboratory mutants with mutations in the PKSP/ALB1 gene. Flow cytometry showed an increase in the fibronectin binding capacity of conidia from mutant isolates, together with a marked decrease in the binding of laminin to the conidial surface. A marked decrease in the electronegative charge of the conidia and cell surface hydrophobicity was also seen by microelectrophoresis and two-phase partitioning, respectively. Ultrastructural studies of mutant isolates detected considerable changes in the organisation of the conidial wall, with the loss of the outermost

  1. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans.

    Science.gov (United States)

    Behnsen, Judith; Narang, Priyanka; Hasenberg, Mike; Gunzer, Frank; Bilitewski, Ursula; Klippel, Nina; Rohde, Manfred; Brock, Matthias; Brakhage, Axel A; Gunzer, Matthias

    2007-02-01

    The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D) environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D) extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why "delocalized" Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals.

  2. Environmental dimensionality controls the interaction of phagocytes with the pathogenic fungi Aspergillus fumigatus and Candida albicans.

    Directory of Open Access Journals (Sweden)

    Judith Behnsen

    2007-02-01

    Full Text Available The fungal pathogens Aspergillus fumigatus and Candida albicans are major health threats for immune-compromised patients. Normally, macrophages and neutrophil granulocytes phagocytose inhaled Aspergillus conidia in the two-dimensional (2-D environment of the alveolar lumen or Candida growing in tissue microabscesses, which are composed of a three-dimensional (3-D extracellular matrix. However, neither the cellular dynamics, the per-cell efficiency, the outcome of this interaction, nor the environmental impact on this process are known. Live imaging shows that the interaction of phagocytes with Aspergillus or Candida in 2-D liquid cultures or 3-D collagen environments is a dynamic process that includes phagocytosis, dragging, or the mere touching of fungal elements. Neutrophils and alveolar macrophages efficiently phagocytosed or dragged Aspergillus conidia in 2-D, while in 3-D their function was severely impaired. The reverse was found for phagocytosis of Candida. The phagocytosis rate was very low in 2-D, while in 3-D most neutrophils internalized multiple yeasts. In competitive assays, neutrophils primarily incorporated Aspergillus conidia in 2-D and Candida yeasts in 3-D despite frequent touching of the other pathogen. Thus, phagocytes show activity best in the environment where a pathogen is naturally encountered. This could explain why "delocalized" Aspergillus infections such as hematogeneous spread are almost uncontrollable diseases, even in immunocompetent individuals.

  3. First itraconazole resistant Aspergillus fumigatus clinical isolate harbouring a G54E substitution in Cyp51Ap in South America.

    Science.gov (United States)

    Leonardelli, Florencia; Theill, Laura; Nardin, María Elena; Macedo, Daiana; Dudiuk, Catiana; Mendez, Emilce; Gamarra, Soledad; Garcia-Effron, Guillermo

    A 27-year-old male rural worker was admitted with a fungal keratitis due to an injury involving plant detritus. Specimens were collected for microscopy examination and culture. The isolate was identified by morphological and molecular criteria. Susceptibility testing was performed using CLSI methods. CYP51A gene was PCR amplified and sequenced. An Aspergillus fumigatus strain resistant to itraconazole (MIC>8μg/ml) was isolated. The isolate was susceptible to amphotericin B, posaconazole, voriconazole and caspofungin. CYP51A sequencing showed two mutations leading on the G54E substitution. The patient received natamycin as treatment. This is the first report in South America of a clinical A. fumigatus strain carrying the substitution G54E at Cyp51Ap associated with itraconazole resistance. Considering the patient was azole-naive, this resistant isolate may have been acquired from the environment. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Aborto e placentite micótica por Aspergillus fumigatus em uma égua Mycotic placentitis and abortion due to Aspergillus fumigatus in a mare

    Directory of Open Access Journals (Sweden)

    David Driemeier

    1998-06-01

    Full Text Available É descrito um caso de placentite micótica e aborto em uma égua com 7 meses de gestação. Alterações macroscópicas incluíam subdesenvolvido, áreas brancas na placenta e espessamento da membrana cório-alantóide. No pulmão fetal havia duas nodulações com 1 cm de diâmetro. Microscopicamente as lesões placentárias eram predominantemente necrótico-purulentas com focos de mineralização na placenta e trombose com inflamação purulenta no pulmão do feto. Hifas fúngicas septadas e ramificadas estavam presentes na placenta e também nos nódulos pulmonares. Aspergillus fumigatus foi isolado das lesões placentárias. O diagnóstico baseou-se nos achados histopatológicos e no isolamento do agente.A case of mycotic placentitis with abortion in a mare in the 7th month of gestation is described. Gross changes included an underdeveloped fetus, patch whitish areas in the placenta and thickenning of the allantochorion. In the fetal lungs there were nodules of 1 cm diameter. Histopathological changes consisted mainly of necrosupurative placentitis with multifocal mineralization on the placenta and thrombosis with focal supurative inflamation in the fetal lung. Branching, septaded fungal hyphae could be demonstrated in the placental lesions and in the lungs of the fetus. Aspergillus fumigatus was isolated from the placental lesions. Diagnosis was based on the histopathology and isolation of the agent.

  5. Ficolins Promote Fungal Clearance in vivo and Modulate the Inflammatory Cytokine Response in Host Defense against Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Genster, N; Cramer, E Præstekjær; Rosbjerg, A

    2016-01-01

    Aspergillus fumigatus is an opportunistic fungal pathogen that causes severe invasive infections in immunocompromised patients. Innate immunity plays a major role in protection against A. fumigatus. The ficolins are a family of soluble pattern recognition receptors that are capable of activating...... the lectin pathway of complement. Previous in vitro studies reported that ficolins bind to A. fumigatus, but their part in host defense against fungal infections in vivo is unknown. In this study, we used ficolin-deficient mice to investigate the role of ficolins during lung infection with A. fumigatus......-mediated complement activation in ficolin knockout mice and wild-type mice. In conclusion, this study demonstrates that ficolins are important in initial innate host defense against A. fumigatus infections in vivo....

  6. A New Sesquiterpenoid Derivative from the Coastal Saline Soil Fungus Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Desheng Liu

    2016-05-01

    Full Text Available A new sesquiterpenoid derivative, named aspergiketone (1, along with seven known compounds (2-8 were isolated from the coastal saline soil fungus Aspergillus fumigatus. Their structures were elucidated by spectroscopic analysis, and by comparison of experimental and reported data. The absolute configuration of compound 1 was defined by X-ray diffraction analysis. Compound 1 was cytotoxic towards HL-60 and A549 cell lines with IC 50 values of 12.4 and 22.1 μ M , respectively.

  7. Environmental study of azole-resistant Aspergillus fumigatus and other aspergilli in Austria, Denmark, and Spain

    DEFF Research Database (Denmark)

    Mortensen, Klaus Leth; Mellado, Emilia; Lass-Flörl, Cornelia

    2010-01-01

    in the environment in other European countries, we collected samples from the surroundings of hospitals in Copenhagen, Innsbruck, and Madrid, flowerbeds in an amusement park in Copenhagen, and compost bags purchased in Austria, Denmark, and Spain and screened for azole resistance using multidish agars...... was present in seven samples from Austria. Multi-azole-resistant A. fumigatus is present in the environment in Denmark. The resistance mechanism is identical to that of environmental isolates in the Netherlands. No link to commercial compost could be detected. In Spain and Austria, only Aspergillus species...

  8. Aspergillus nidulans cell wall composition and function change in response to hosting several Aspergillus fumigatus UDP-galactopyranose mutase activity mutants.

    Directory of Open Access Journals (Sweden)

    Md Kausar Alam

    Full Text Available Deletion or repression of Aspergillus nidulans ugmA (AnugmA, involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63 was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.

  9. Activation of Vitamin D Regulates Response of Human Bronchial Epithelial Cells to Aspergillus fumigatus in an Autocrine Fashion

    Directory of Open Access Journals (Sweden)

    Pei Li

    2015-01-01

    Full Text Available Aspergillus fumigatus (A. fumigatus is one of the most common fungi to cause diseases in humans. Recent evidence has demonstrated that airway epithelial cells play an important role in combating A. fumigatus through inflammatory responses. Human airway epithelial cells have been proven to synthesize the active vitamin D, which plays a key role in regulating inflammation. The present study was conducted to investigate the impact of A. fumigatus infection on the activation of vitamin D and the role of vitamin D activation in A. fumigatus-elicited antifungal immunity in normal human airway epithelial cells. We found that A. fumigatus swollen conidia (SC induced the expression of 1α-hydroxylase, the enzyme catalyzing the synthesis of active vitamin D, and vitamin D receptor (VDR in 16HBE cells and led to increased local generation of active vitamin D. Locally activated vitamin D amplified SC-induced expression of antimicrobial peptides in 16HBE cells but attenuated SC-induced production of cytokines in an autocrine fashion. Furthermore, we identified β-glucan, the major A. fumigatus cell wall component, as the causative agent for upregulation of 1α-hydroxylase and VDR in 16HBE cells. Therefore, activation of vitamin D is inducible and provides a bidirectional regulation of the responses to A. fumigatus in 16HBE cells.

  10. Aspergillus fumigatus from normal and condemned carcasses with airsacculitis in commercial poultry

    Directory of Open Access Journals (Sweden)

    Andréia Spanamberg

    2013-09-01

    Full Text Available Carcass inspection is important for the detection of certain diseases and for monitoring their prevalence in slaughterhouses. The objective of this study was to assess the occurrence of aspergillosis caused by Aspergillus fumigatus in commercial poultry, through mycological and histopathological diagnosis, and to verify the causal association between the aspergillosis diagnosis criteria and condemnation due to airsacculitis in broilers through a case-control study. The study was carried out with 380 samples. Lungs were collected from broilers that were condemned (95 or not condemned (285 due to airsacculitis directly from the slaughter line. Forty-six (12% lung samples were positive for A. fumigatus in mycological culture. Among all samples, 177 (46.6% presented histopathological alterations, with necrotic, fibrinous, heterophilic pneumonia; heterophilic pneumonia and lymphoid hyperplasia being the most frequent. Out of the 380 lungs analyzed, 65.2% (30 showed histopathological alterations and isolation of fungi. The statistical analysis (McNemar's chi-square test indicated a significant association between the presence of histopathological lesions and the isolation of A. fumigatus. Mycological cultivation and histopathological diagnosis increase the probability of detecting pulmonary alterations in birds condemned by the Final Inspection System, which suggests that such diagnostic criteria can improve the assessment and condemnation of birds affected by airsacculitis.

  11. Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms

    Science.gov (United States)

    Rajendran, Ranjith; Williams, Craig; Lappin, David F.; Millington, Owain; Martins, Margarida

    2013-01-01

    Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy. PMID:23314962

  12. eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae.

    Science.gov (United States)

    de Heer, K; Vonk, S I; Kok, M; Kolader, M; Zwinderman, A H; van Oers, M H J; Sterk, P J; Visser, C E

    2016-07-22

    Invasive pulmonary mold disease (IPMD) is often fatal in neutropenic patients. This is because IPMD is difficult to diagnose timely, especially when non-Aspergillus molds are the causative agent, as they are usually not associated with a positive galactomannan assay. In 2013 we showed that exhaled breath analysis might be used to diagnose invasive aspergillosis through profiling of patterns in exhaled volatile organic compounds (VOCs) by electronic nose (eNose) technology. The current study aimed to determine (1) whether molds can be discriminated from other microorganisms (using two mold species: Aspergillus fumigatus and a pathogenic mold not associated with a positive galactomannan assay, i.c. Rhizopus oryzae) and (2) whether both molds can be discriminated from each other. First, we cultured strains of Streptococcus pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, A. fumigatus and R. oryzae in separate airtight bottles. We examined whether an eNose (Cyranose 320) could discriminate the headspaces of bottles with molds from those with bacteria/yeasts. Second, we examined whether an eNose could discriminate A. fumigatus and R. oryzae. Diagnostic algorithms were created using canonical discriminant analysis after principle component analysis. Primary outcome parameter was the validated accuracy. The eNose discriminated A. fumigatus from bacteria/yeasts with a cross-validated accuracy of 92.9% (sensitivity 95.2%, specificity 91.9%). The eNose had an accuracy (validated using split-half analysis) of 100% in discriminating A. fumigatus from R. oryzae. Our study suggests that an eNose can identify and classify molds in vitro. This warrants prospective in vivo studies aimed at detecting and classifying IPMD using exhaled breath.

  13. Microcolony imaging of Aspergillus fumigatus treated with echinocandins reveals both fungistatic and fungicidal activities.

    Directory of Open Access Journals (Sweden)

    Colin J Ingham

    Full Text Available BACKGROUND: The echinocandins are lipopeptides that can be employed as antifungal drugs that inhibit the synthesis of 1,3-β-glucans within the fungal cell wall. Anidulafungin and caspofungin are echinocandins used in the treatment of Candida infections and have activity against other fungi including Aspergillus fumigatus. The echinocandins are generally considered fungistatic against Aspergillus species. METHODS: Culture of A. fumigatus from conidia to microcolonies on a support of porous aluminium oxide (PAO, combined with fluorescence microscopy and scanning electron microscopy, was used to investigate the effects of anidulafungin and caspofungin. The PAO was an effective matrix for conidial germination and microcolony growth. Additionally, PAO supports could be moved between agar plates containing different concentrations of echinocandins to change dosage and to investigate the recovery of fungal microcolonies from these drugs. Culture on PAO combined with microscopy and image analysis permits quantitative studies on microcolony growth with the flexibility of adding or removing antifungal agents, dyes, fixatives or osmotic stresses during growth with minimal disturbance of fungal microcolonies. SIGNIFICANCE: Anidulafungin and caspofungin reduced but did not halt growth at the microcony level; additionally both drugs killed individual cells, particularly at concentrations around the MIC. Intact but not lysed cells showed rapid recovery when the drugs were removed. The classification of these drugs as either fungistatic or fungicidal is simplistic. Microcolony analysis on PAO appears to be a valuable tool to investigate the action of antifungal agents.

  14. Culture-Based Methods and Molecular Tools for Azole-Resistant Aspergillus fumigatus Detection in a Belgian University Hospital

    OpenAIRE

    Montesinos, I.; Argudín, M. A.; Hites, M.; Ahajjam, F.; Dodémont, M.; Dagyaran, C.; Bakkali, M.; Etienne, I.; Jacobs, F.; Knoop, C.; Patteet, S.; Lagrou, K.

    2017-01-01

    Azole-resistant Aspergillus fumigatus is an increasing worldwide problem with major clinical implications. Surveillance is warranted to guide clinicians to provide optimal treatment to patients. To investigate azole resistance in clinical Aspergillus isolates in our institution, a Belgian university hospital, we conducted a laboratory-based surveillance between June 2015 and October 2016. Two different approaches were used: a prospective culture-based surveillance using VIPcheck on unselected...

  15. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Eveline Snelders

    2008-11-01

    Full Text Available BACKGROUND: Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured from patients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus is unknown. We investigated the prevalence and spread of azole resistance using our culture collection that contained A. fumigatus isolates collected between 1994 and 2007. METHODS AND FINDINGS: We investigated the prevalence of itraconazole (ITZ resistance in 1,912 clinical A. fumigatus isolates collected from 1,219 patients in our University Medical Centre over a 14-y period. The spread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients, from 28 other medical centres in The Netherlands and 317 isolates from six other countries. The isolates were characterized using phenotypic and molecular methods. The electronic patient files were used to determine the underlying conditions of the patients and the presence of invasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases were observed after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with two copies of a 34-bp sequence in tandem in the gene promoter (TR/L98H, was found to be the dominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolates were genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to be responsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found in isolates from 13 patients (12.8% from nine other medical centres in The Netherlands, of which 69% harboured the TR/L98H substitution, and in six isolates originating from four other countries. CONCLUSIONS: Azole resistance has emerged in A. fumigatus and might be more

  16. Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds.

    Science.gov (United States)

    Korniłłowicz-Kowalska, Teresa; Kitowski, Ignacy

    2013-02-01

    A study was performed on the numbers and species diversity of thermophilic fungi (growing at 45 °C in vitro) in 38 nests of 9 species of wetland birds, taking into account the physicochemical properties of the nests and the bird species. It was found that in nests with the maximum weight (nests of Mute Swan), the number and diversity of thermophilic fungi were significantly greater than in other nests, with lower weight. The diversity of the thermophilic biota was positively correlated with the individual mass of bird and with the level of phosphorus in the nests. The dominant species within the mycobiota under study was Aspergillus fumigatus which inhabited 95% of the nests under study, with average frequency of ca. 650 cfu g(-1) of dry mass of the nest material. In a majority of the nests studied (nests of 7 bird species), the share of A. fumigatus exceeded 50% of the total fungi growing at 45 °C. Significantly higher frequencies of the fungal species were characteristic of the nests of small and medium-sized piscivorous species, compared with the other bird species. The number of A. fumigatus increased with increase in the moisture level of the nests, whereas the frequency of occurrence of that opportunistic pathogen, opposite to the general frequency of thermophilic mycobiota, was negatively correlated with the level of phosphorus in the nest material, and with the body mass and length of the birds. The authors indicate the causes of varied growth of thermophilic fungi in nests of wetland birds and, in particular, present a discussion of the causes of accumulation of A. fumigatus, the related threats to the birds, and its role as a source of transmission in the epidemiological chain of aspergillosis.

  17. A proteomic approach to investigating gene cluster expression and secondary metabolite functionality in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Rebecca A Owens

    Full Text Available A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414 from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18 from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001, confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05 of proliferating cell nuclear antigen (PCNA, NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05 of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05 involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05 of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism.

  18. The Aspergillus fumigatus farnesyltransferase β-subunit, RamA, mediates growth, virulence, and antifungal susceptibility

    Science.gov (United States)

    Norton, Tiffany S.; Al Abdallah, Qusai; Hill, Amy M.; Lovingood, Rachel V.; Fortwendel, Jarrod R.

    2017-01-01

    ABSTRACT Post-translational prenylation mechanisms, including farnesylation and geranylgeranylation, mediate both subcellular localization and protein-protein interaction in eukaryotes. The prenyltransferase complex is an αβ heterodimer in which the essential α-subunit is common to both the farnesyltransferase and the geranylgeranyltransferase type-I enzymes. The β-subunit is unique to each enzyme. Farnesyltransferase activity is an important mediator of protein localization and subsequent signaling for multiple proteins, including Ras GTPases. Here, we examined the importance of protein farnesylation in the opportunistic fungal pathogen Aspergillus fumigatus through generation of a mutant lacking the farnesyltransferase β-subunit, ramA. Although farnesyltransferase activity was found to be non-essential in A. fumigatus, diminished hyphal outgrowth, delayed polarization kinetics, decreased conidial viability, and irregular distribution of nuclei during polarized growth were noted upon ramA deletion (ΔramA). Although predicted to be a target of the farnesyltransferase enzyme complex, we found that localization of the major A. fumigatus Ras GTPase protein, RasA, was only partially regulated by farnesyltransferase activity. Furthermore, the farnesyltransferase-deficient mutant exhibited attenuated virulence in a murine model of invasive aspergillosis, characterized by decreased tissue invasion and development of large, swollen hyphae in vivo. However, loss of ramA also led to a Cyp51A/B-independent increase in resistance to triazole antifungal drugs. Our findings indicate that protein farnesylation underpins multiple cellular processes in A. fumigatus, likely due to the large body of proteins affected by ramA deletion. PMID:28489963

  19. TREM-1 expression in rat corneal epithelium with Aspergillus fumigatus infection

    Directory of Open Access Journals (Sweden)

    Li-Ting Hu

    2015-04-01

    Full Text Available AIM: To investigate the expression of triggering receptor expressed on myeloid cells-1 (TREM-1 in the aberrant inflammation within the corneal epithelium at early period of fungal infection. METHODS: A total of 65 Wistar rats were randomly divided into control group, sham group and fungal keratitis (FK group, in which the cornea was infected by Aspergillus fumigatus (A. fumigatus. After executed randomly at 8, 16, 24, 48 and 72h after experimental model being established, the severity of keratomycosis in rats was scored visually with the aid of a dissecting microscope and slit lamp. Then corneas in three groups were collected to assess the expression of TREM-1 through quantitative reverse transcription-polymerase chain reaction (RT-PCR, immunofluorescence technique and Western blot analysis. The correlation between FK inflammation and expression of TREM-1 was also analyzed. RESULTS: Corneal inflammation scores increased with time after fungal infection (F=49.74, P=0.000. The inflammation scores in FK group were obviously higher than those in sham group on the whole (F=137.78, P=0.000. Levels of TREM-1 in the infected rat corneal epithelium had elevated at 8h and peaked at 48h (P<0.001, compared with control group. Western blot analysis also showed an obviously elevated TREM-1 level in rat corneal epithelium at 24h and 48h after fungal infection. Immunofluorescence technique showed that TREM-1 mainly existed in corneal epithelium and infected corneal stoma of rat. TREM-1 protein expression was enhanced after fungal infection. Moreover, severity of FK inflammation was significantly related to TREM-1 expression in FK (r=0.942, P=0.000. CONCLUSION: TREM-1 may contribute to amplify the inflammation in the cornea infected with A. fumigatus and play critical roles in the battle against A. fumigatus in the innate immune responses.

  20. Effectiveness of voriconazole in the treatment of Aspergillus fumigatus-associated asthma (EVITA3 study).

    Science.gov (United States)

    Agbetile, Joshua; Bourne, Michelle; Fairs, Abbie; Hargadon, Beverley; Desai, Dhananjay; Broad, Clare; Morley, Joseph; Bradding, Peter; Brightling, Christopher E; Green, Ruth H; Haldar, Pranabashis; Pashley, Catherine H; Pavord, Ian D; Wardlaw, Andrew J

    2014-07-01

    IgE sensitization to Aspergillus fumigatus and a positive sputum fungal culture result are common in patients with refractory asthma. It is not clear whether these patients would benefit from antifungal treatment. We sought to determine whether a 3-month course of voriconazole improved asthma-related outcomes in patients with asthma who are IgE sensitized to A fumigatus. Asthmatic patients who were IgE sensitized to A fumigatus with a history of at least 2 severe exacerbations in the previous 12 months were treated for 3 months with 200 mg of voriconazole twice daily, followed by observation for 9 months, in a double-blind, placebo-controlled, randomized design. Primary outcomes were improvement in quality of life at the end of the treatment period and a reduction in the number of severe exacerbations over the 12 months of the study. Sixty-five patients were randomized. Fifty-nine patients started treatment (32 receiving voriconazole and 27 receiving placebo) and were included in an intention-to-treat analysis. Fifty-six patients took the full 3 months of medication. Between the voriconazole and placebo groups, there were no significant differences in the number of severe exacerbations (1.16 vs 1.41 per patient per year, respectively; mean difference, 0.25; 95% CI, 0.19-0.31), quality of life (change in Asthma Quality of Life Questionnaire score, 0.68 vs 0.88; mean difference between groups, 0.2; 95% CI, -0.05 to -0.11), or any of our secondary outcome measures. We were unable to show a beneficial effect of 3 months of treatment with voriconazole in patients with moderate-to-severe asthma who were IgE sensitized to A fumigatus on either the rate of severe exacerbations, quality of life, or other markers of asthma control. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  1. Self-protection against gliotoxin--a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin.

    Directory of Open Access Journals (Sweden)

    Markus Schrettl

    Full Text Available Gliotoxin, and other related molecules, are encoded by multi-gene clusters and biosynthesized by fungi using non-ribosomal biosynthetic mechanisms. Almost universally described in terms of its toxicity towards mammalian cells, gliotoxin has come to be considered as a component of the virulence arsenal of Aspergillus fumigatus. Here we show that deletion of a single gene, gliT, in the gliotoxin biosynthetic cluster of two A. fumigatus strains, rendered the organism highly sensitive to exogenous gliotoxin and completely disrupted gliotoxin secretion. Addition of glutathione to both A. fumigatus Delta gliT strains relieved gliotoxin inhibition. Moreover, expression of gliT appears to be independently regulated compared to all other cluster components and is up-regulated by exogenous gliotoxin presence, at both the transcript and protein level. Upon gliotoxin exposure, gliT is also expressed in A. fumigatus Delta gliZ, which cannot express any other genes in the gliotoxin biosynthetic cluster, indicating that gliT is primarily responsible for protecting this strain against exogenous gliotoxin. GliT exhibits a gliotoxin reductase activity up to 9 microM gliotoxin and appears to prevent irreversible depletion of intracellular glutathione stores by reduction of the oxidized form of gliotoxin. Cross-species resistance to exogenous gliotoxin is acquired by A. nidulans and Saccharomyces cerevisiae, respectively, when transformed with gliT. We hypothesise that the primary role of gliotoxin may be as an antioxidant and that in addition to GliT functionality, gliotoxin secretion may be a component of an auto-protective mechanism, deployed by A. fumigatus to protect itself against this potent biomolecule.

  2. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature.

    NARCIS (Netherlands)

    Camps, S.M.T.; Linden, J.W.M. van der; Li, Y.; Kuijper, E.J.; Dissel, J.T. van; Verweij, P.E.; Melchers, W.J.G.

    2012-01-01

    Nine consecutive isogenic Aspergillus fumigatus isolates cultured from a patient with aspergilloma were investigated for azole resistance. The first cultured isolate showed a wild-type phenotype, but four azole-resistant phenotypes were observed in the subsequent eight isolates. Four mutations were

  3. Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C Production in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    O'Hanlon, Karen A.; Gallagher, Lorna; Schrettl, Markus

    2012-01-01

    The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end produc...

  4. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence

    NARCIS (Netherlands)

    Zhang, Jianhua; Snelders, Eveline; Zwaan, Bas J.; Schoustra, Sijmen E.; Meis, Jacques F.; Dijk, van Karin; Hagen, Ferry; Beek, van der Martha T.; Kampinga, Greetje A.; Zoll, Jan; Melchers, Willem J.G.; Verweij, Paul E.; Debets, Fons

    2017-01-01

    This study investigated the dynamics of Aspergillus fumigatus azoleresistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50)

  5. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence

    NARCIS (Netherlands)

    Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.G.M.; Dijk, K van; Hagen, F.; Beek, M.T. van der; Kampinga, G.A.; Zoll, J.; Melchers, W.J.G.; Verweij, P.E.; Debets, A.J.

    2017-01-01

    This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50)

  6. Emergence of Aspergillus fumigatus azole-resistance in azole-naïve COPD patients and their homes

    DEFF Research Database (Denmark)

    Dauchy, Camille; Bautin, Nathalie; Nseir, Saad

    2016-01-01

    Azole-resistant Aspergillus fumigatus (ARAF) has been reported in COPD patients, but has not been specifically assessed so far. Here, we evaluated ARAF prevalence in azole-naïve COPD patients and their homes, and assessed whether CYP51A mutations were similar in clinical and environmental reservo...

  7. Cytokine responses and regulation of interferon-gamma release by human mononuclear cells to Aspergillus fumigatus and other filamentous fungi.

    NARCIS (Netherlands)

    Warris, A.; Netea, M.G.; Verweij, P.E.; Gaustad, P.; Kullberg, B.J.; Weemaes, C.M.R.; Abrahamsen, T.G.

    2005-01-01

    There is substantial evidence that the production of proinflammatory cytokines is important in host resistance to invasive aspergillosis. Knowledge of the host response towards other filamentous fungi is scarce, as most studies have focused on Aspergillus fumigatus. In addition, interferon-gamma

  8. Dysregulated gliotoxin biosynthesis attenuates the production of unrelated biosynthetic gene cluster-encoded metabolites in Aspergillus fumigatus.

    Science.gov (United States)

    Doyle, Sean; Jones, Gary W; Dolan, Stephen K

    2018-04-01

    Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus. The gliotoxin bis-thiomethyltransferase, GtmA, attenuates gliotoxin biosynthesis in A. fumigatus by conversion of dithiol gliotoxin to bis-thiomethylgliotoxin (BmGT). Here we show that disruption of dithiol gliotoxin bis-thiomethylation functionality in A. fumigatus results in significant remodelling of the A. fumigatus secondary metabolome upon extended culture. RP-HPLC and LC-MS/MS analysis revealed the reduced production of a plethora of unrelated biosynthetic gene cluster-encoded metabolites, including pseurotin A, fumagillin, fumitremorgin C and tryprostatin B, occurs in A. fumigatus ΔgtmA upon extended incubation. Parallel quantitative proteomic analysis of A. fumigatus wild-type and ΔgtmA during extended culture revealed cognate abundance alteration of proteins encoded by relevant biosynthetic gene clusters, allied to multiple alterations in hypoxia-related proteins. The data presented herein reveal a previously concealed functionality of GtmA in facilitating the biosynthesis of other BGC-encoded metabolites produced by A. fumigatus. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Purification and characterization of an alpha-galactosidase from Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Sebastião Tavares de Rezende

    2005-03-01

    Full Text Available Aspergillus fumigatus secreted invertase (beta-fructofuranosidase and alpha-galactosidase enzymatic activities able to hydrolyzing raffinose oligosaccharides (RO. alpha-Galactosidase was induced by galactose, melibiose and raffinose, but galactose was the most efficient inducer. It was purified by gel filtration and two ion exchange chromatographies and showed Mw of 54.7 kDa. The purified enzyme showed maximal activity against p-nitrophenyl-alpha-D-galactopyranoside (pNPGal at pH 4.5-5.5 and 55 °C, and retained about 80% of the original activity after incubation for 90 minutes at 50ºC. The KM for pNPGal was 0.3 mM. Melibiose was hydrolyzed by the enzyme but raffinose was very poor substrate.O fungo termofílico Aspergillus fumigatus secreta as enzimas invertase (beta-frutofuranosidase e alfa-galactosidase (alfa-D-galactosídeo galactohi-drolase que estão envolvidas na hidrólise completa dos oligossacarídeos de rafinose. A enzima alfa-galactosidase foi produzida em meio de cultura do fungo Aspergillus fumigatus crescido por 36 h a 42 °C em meio mineral mínimo contendo os açúcares galactose, ou melibiose, ou rafinose como fontes de carbono. A enzima foi purificada por filtração em gel, seguida por duas cromatografias de troca iônica. A massa molecular da alfa-galactosidase determinada por SDS-PAGE foi de 54,7 kDa. A atividade máxima da enzima purificada, utilizando o substrato ro-nitrofenil-alfa-D-galactopiranosídeo (roNPGal foi na faixa de pH entre 4,5 e 5,5 e a 55 °C. A enzima manteve aproximadamente 80% de sua atividade original mesmo após pré-incubação por 90 minutos a 50 °C. O valor de KM para o substrato roNPGal foi 0,3 mM. A enzima foi capaz de hidrolisar melibiose, mas sua atividade foi muito reduzida na presença do substrato rafinose.

  10. Functional analysis of an ATP-binding cassette transporter protein from Aspergillus fumigatus by heterologous expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Paul, Sanjoy; Moye-Rowley, W Scott

    2013-08-01

    Aspergillus fumigatus is the major filamentous fungal pathogen in humans. Although A. fumigatus can be treated with many of the available antifungal drugs, including azole compounds, drug resistant isolates are being recovered at an increasing rate. In other fungal pathogens such as the Candida species, ATP-binding cassette (ABC) transporter proteins play important roles in development of clinically-significant azole resistance phenotypes. Central among these ABC transporter proteins are homologues of the Saccharomyces cerevisiae Pdr5 multidrug transporter. In this work, we test the two A. fumigatus genes encoding proteins sharing the highest degree of sequence similarity to S. cerevisiae Pdr5 for their ability to be function in a heterologous pdr5Δ strain of S. cerevisiae. Expression of full-length cDNAs for these two Afu proteins failed to suppress the drug sensitive phenotype of a pdr5Δ strain and no evidence could be obtained for their expression as green fluorescent protein (GFP) fusions. To improve the expression of one of these Afu ABC transporters (XP_755847), we changed the sequence of the cDNA to use codons corresponding to the major tRNA species in S. cerevisiae. This codon-optimized (CO Afu abcA) cDNA was efficiently expressed in pdr5Δ cells and able to be detected as a GFP fusion protein. The CO Afu abcA did not correct the drug sensitivity of the pdr5Δ strain and exhibited a high degree of perinuclear fluorescence suggesting that this fusion protein was localized to the S. cerevisiae ER. Interestingly, when these experiments were repeated at 37 °C, the CO Afu abcA was able to complement the drug sensitive phenotype of pdr5Δ cells and exhibited less intracellular fluorescence. Additionally, we found that the CO Afu abcA was able to reduce resistance to drugs like phytosphingosine that act via causing mislocalization of amino acid permeases in fungi. These data suggest that the Afu abcA protein can carry out two different functions of Pdr5: drug

  11. Molecular detection of Candida spp. and Aspergillus fumigatus in bronchoalveolar lavage fluid of patients with ventilator-associated pneumonia.

    Science.gov (United States)

    Khorvash, Farzin; Abbasi, Saeed; Yaran, Majid; Abdi, Fateme; Ataei, Behrooz; Fereidooni, Farzaneh; Hoseini, Shervin Ghaffari; Ahmadi-Ahvaz, Nasrin; Parsazadeh, Malihe; Haghi, Fariba

    2014-03-01

    Ventilator-associated pneumonia (VAP) is a common nosocomial infection in critically ill patients with high morbidity and mortality rates. The etiology of VAP is usually bacterial. Opportunistic fungi such as Candida and Aspergillus species (spp.) are found frequently in the respiratory track secretions of immunocompetent critically ill patients known as colonization. Contribution of fungi colonization to severe bacterial VAP and poor prognosis of these patients has been documented in several studies. The aim of this study was to detect Candida spp. and Aspergillus fumigatus colonization in patients with a clinical diagnosis of VAP as a marker of high risk pneumonia. Bronchoscopic alveolar lavage (BAL) fluids from patients with VAP in central intensive care unit (ICU) of a tertiary university hospital in Isfahan were examined by real time polymerase chain reaction (PCR) to detect Candida spp. or A. fumigatus. Rate of fungi colonization and its association with clinical criteria of the patients was determined. BAL fluids from 38 patients were tested from which six samples (15.8%) were positive for Candida spp. and five (13.2%) for A. fumigatus. Fungi colonization was not associated with age, sex, or mortality rate of patients. Rate of A. fumigatus colonization was significantly more in traumatic patients (P = 0.036), and higher in patients ventilated more than 4 weeks (P = 0.022). High rate of A. fumigatus colonization in our ICU patients indicates that underlying causes such as unfavorable ICU conditions and other patient related factors such as unnecessary antibiotic therapy should be further evaluated.

  12. Iron – a key nexus in the virulence of Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Hubertus eHaas

    2012-02-01

    Full Text Available Iron is an essential but in excess toxic nutrient. Therefore, fungi evolved fine-tuned mechanisms for uptake and storage of iron, such as the production of siderophores (low-molecular mass iron-specific chelators. In Aspergillus fumigatus, iron starvation causes extensive transcriptional remodeling involving two central transcription factors, which are interconnected in a negative transcriptional feed-back loop: the GATA-factor SreA and the bZip-factor HapX. During iron sufficiency SreA represses iron uptake, including reductive iron assimilation and siderophore-mediated iron uptake, to avoid toxic effects. During iron starvation HapX represses iron-consuming pathways, including heme biosynthesis and respiration, to spare iron and activates synthesis of ribotoxin AspF1 and siderophores, the latter partly by ensuring supply of the precursor ornithine. In agreement with the expression pattern and mode of action, detrimental effects of inactivation of SreA and HapX are confined to growth during iron sufficiency and iron starvation, respectively. Deficiency in HapX, but not SreA, attenuates virulence of A. fumigatus in a murine model of aspergillosis, which underlines the crucial role of adaptation to iron limitation in virulence. Consistently, production of both extra- and intracellular siderophores is crucial for virulence of A. fumigatus. Recently, the sterol-regulatory element-binding protein SrbA was found to be essential for adaptation to iron starvation, thereby linking regulation of iron metabolism, ergosterol biosynthesis, azole drug resistance and hypoxia adaptation.

  13. SECONDARY METABOLITE OF Aspergillus fumigatus, ENDOPHYTIC FUNGI OF THE MEDICINAL PLANT Garcinia griffithii

    Directory of Open Access Journals (Sweden)

    Tri Indah

    2011-11-01

    Full Text Available The endophytic fungi Aspergillus fumigatus was isolated from the tissues of the fruits of Garcinia griffithii. The fungalstrain was identified from the colony, and it was characteristic of cell morphology. The ethyl acetate extracts derivedfrom fungus cultures showed major spots on TLC under UV light, which was continued to the isolation of thesecondary metabolites. The structure of the isolated compound was elucidated on the basis of NMR analyses (1H-NMR,13C-NMR, HMQC, HMBC and H-H COSY. The compounds were identified as: 4,6-dihydroxy, 3,8a-dimethyl-1-oxo-5-(3’-oxobutan-2’-yl-1,4,4a,5,6,8a-hexahydronaphthalen-2-yl-1”,2”-dimethyl-5”-(2”’-methylprop-1”’-enylcyclopentanecarboxylate.

  14. Mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus: therapeutic and evolutionary implications.

    Science.gov (United States)

    Neubauer, Michael; Zhu, Zhaojun; Penka, Mirjam; Helmschrott, Christoph; Wagener, Nikola; Wagener, Johannes

    2015-12-01

    Mitochondria within eukaryotic cells continuously fuse and divide. This phenomenon is called mitochondrial dynamics and crucial for mitochondrial function and integrity. We performed a comprehensive analysis of mitochondrial dynamics in the pathogenic mold Aspergillus fumigatus. Phenotypic characterization of respective mutants revealed the general essentiality of mitochondrial fusion for mitochondrial genome maintenance and the mold's viability. Surprisingly, it turned out that the mitochondrial rhomboid protease Pcp1 and its processing product, s-Mgm,1 which are crucial for fusion in yeast, are dispensable for fusion, mtDNA maintenance and viability in A. fumigatus. In contrast, mitochondrial fission mutants show drastically reduced growth and sporulation rates and increased heat susceptibility. However, reliable inheritance of mitochondria to newly formed conidia is ensured. Strikingly, mitochondrial fission mutants show a significant and growth condition-dependent increase in azole resistance. Parallel disruption of fusion in a fission mutant partially rescues growth and sporulation defects and further increases the azole resistance phenotype. Taken together, our results indicate an emerging dispensability of the mitochondrial rhomboid protease function in mitochondrial fusion, the suitability of mitochondrial fusion machinery as antifungal target and the involvement of mitochondrial dynamics in azole susceptibility. © 2015 John Wiley & Sons Ltd.

  15. Column bioleaching of arsenic and Heavy metals from gold mine tailings by aspergillus fumigatus

    International Nuclear Information System (INIS)

    Seh-Bardan, Bahi Jalili; Othman, Radziah; Ab Wahid, Samsuri; Husin, Aminudin; Sadegh-Zadeh, Fardin

    2012-01-01

    A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    2017-12-01

    Full Text Available Aspergillus fumigatus produce airborne spores (conidia, which are inhaled in abundant quantity. In an immunocompromised population, the host immune system fails to clear the inhaled conidia, which then germinate and invade, leading to pulmonary aspergillosis. In an immunocompetent population, the inhaled conidia are efficiently cleared by the host immune system. Soluble mediators of the innate immunity, that involve the complement system, acute-phase proteins, antimicrobial peptides and cytokines, are often considered to play a complementary role in the defense of the fungal pathogen. In fact, the soluble mediators are essential in achieving an efficient clearance of the dormant conidia, which is the morphotype of the fungus upon inhalation by the host. Importantly, harnessing the host soluble mediators challenges the immunological inertness of the dormant conidia due to the presence of the rodlet and melanin layers. In the review, we summarized the major soluble mediators in the lung that are involved in the recognition of the dormant conidia. This knowledge is essential in the complete understanding of the immune defense against A. fumigatus.

  17. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    Science.gov (United States)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  18. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Mark Schütte

    Full Text Available BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16 which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.

  19. Production of xylanases and cellulases by aspergillus fumigatus ms16 using crude lignocellulosic substrates

    International Nuclear Information System (INIS)

    Naseeb, S.; Sohai, M.; Ahmad, A.; Khan, S.A.

    2015-01-01

    Xylanolytic and cellulolytic potential of a soil isolate, Aspergillus fumigatus (MS16) was studied by growing it on a variety of lignocellulosics, purified cellulose and xylan supplemented media. It was noted that carboxymethyl cellulose, salicin and xylan induce the -glucosidase and xylanase, respectively production of endoglucanase. The study revealed that Aspergillus fumigatus (MS16) co-secretes xylanase and cellulase in the presence of xylan; the ratio of the two enzymes was influenced by the initial pH of the medium. The maximum titers of xylanase and cellulase were noted at initial pH of 5.0. Relatively higher titers of both the enzymes were obtained when the fungus was cultivated at 35 degree C. Whereas, cellulase production was not detected when the fungus was cultivated at 40 degree C. The volumetric productivity (Qp) of xylanase was much higher than cellulases. The organism produced 2-3 folds higher titers of xylanase when grown on lignocellulosic materials in submerged cultivation than under solid-state cultivation, suggesting a different pattern of enzyme production in presence and in absence of free water. The partial characterization of enzymes showed that xylanase from this organism has -glucosidase. The higher melting temperature than endoglucanase and optimum temperature for activity was higher for xylanases than cellulases, whereas the optimum pH differed slightly i.e. in the range of 4.0-5.0. Enzyme preparation from this organism was loaded on some crude substrates and it showed that the enzyme preparation can be used to hydrolyze a variety of vegetable and agricultural waste materials. (author)

  20. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    Directory of Open Access Journals (Sweden)

    Mark S. Gresnigt

    2017-12-01

    Full Text Available One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA. Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the

  1. Potent synergistic in vitro interaction between nonantimicrobial membrane-active compounds and itraconazole against clinical isolates of Aspergillus fumigatus resistant to itraconazole.

    NARCIS (Netherlands)

    Afeltra, J.; Vitale, R.G.; Mouton, J.W.; Verweij, P.E.

    2004-01-01

    To develop new approaches for the treatment of invasive infections caused by Aspergillus fumigatus, the in vitro interactions between itraconazole (ITZ) and seven different nonantimicrobial membrane-active compounds--amiodarone (AMD), amiloride, lidocaine, lansoprazole (LAN), nifedipine (NIF),

  2. Calcineurin Orchestrates Hyphal Growth, Septation, Drug Resistance and Pathogenesis of Aspergillus fumigatus: Where Do We Go from Here?

    Directory of Open Access Journals (Sweden)

    Praveen R Juvvadi

    2015-12-01

    Full Text Available Studies on fungal pathogens belonging to the ascomycota phylum are critical given the ubiquity and frequency with which these fungi cause infections in humans. Among these species, Aspergillus fumigatus causes invasive aspergillosis, a leading cause of death in immunocompromised patients. Fundamental to A. fumigatus pathogenesis is hyphal growth. However, the precise mechanisms underlying hyphal growth and virulence are poorly understood. Over the past 10 years, our research towards the identification of molecular targets responsible for hyphal growth, drug resistance and virulence led to the elucidation of calcineurin as a key signaling molecule governing these processes. In this review, we summarize our salient findings on the significance of calcineurin for hyphal growth and septation in A. fumigatus and propose future perspectives on exploiting this pathway for designing new fungal-specific therapeutics.

  3. Isolation of Aspergillus fumigatus from sputum is associated with elevated airborne levels in homes of patients with asthma.

    Science.gov (United States)

    Fairs, A; Agbetile, J; Bourne, M; Hargadon, B; Monteiro, W R; Morley, J P; Edwards, R E; Wardlaw, A J; Pashley, C H

    2013-08-01

    Indoor bioaerosols, such as mold spores, have been associated with respiratory symptoms in patients with asthma; however, dose-response relationships and guidelines on acceptable levels are lacking. Furthermore, a causal link between mold exposure and respiratory infections or asthma remains to be established. The aim of this study was to determine indoor concentrations of Aspergillus fumigatus and a subset of clinically relevant fungi in homes of people with asthma, in relation to markers of airways colonization and sensitization. Air and dust samples were collected from the living room of 58 properties. Fungal concentrations were quantified using mold-specific quantitative PCR and compared with traditional microscopic analysis of air samples. Isolation of A. fumigatus from sputum was associated with higher airborne concentrations of the fungus in patient homes (P = 0.04), and a similar trend was shown with Aspergillus/Penicillium-type concentrations analyzed by microscopy (P = 0.058). No association was found between airborne levels of A. fumigatus and sensitization to this fungus, or dustborne levels of A. fumigatus and either isolation from sputum or sensitization. The results of this study suggest that the home environment should be considered as a potential source of fungal exposure, and elevated home levels may predispose people with asthma to airways colonization. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation.

    Science.gov (United States)

    Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A

    2015-07-01

    The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Distinct roles for Dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis.

    Directory of Open Access Journals (Sweden)

    Sixto M Leal

    2010-07-01

    Full Text Available Aspergillus species are a major worldwide cause of corneal ulcers, resulting in visual impairment and blindness in immunocompetent individuals. To enhance our understanding of the pathogenesis of Aspergillus keratitis, we developed a murine model in which red fluorescent protein (RFP-expressing A. fumigatus (Af293.1RFP conidia are injected into the corneal stroma, and disease progression and fungal survival are tracked over time. Using Mafia mice in which c-fms expressing macrophages and dendritic cells can be induced to undergo apoptosis, we demonstrated that the presence of resident corneal macrophages is essential for production of IL-1beta and CXCL1/KC, and for recruitment of neutrophils and mononuclear cells into the corneal stroma. We found that beta-glucan was highly expressed on germinating conidia and hyphae in the cornea stroma, and that both Dectin-1 and phospho-Syk were up-regulated in infected corneas. Additionally, we show that infected Dectin-1(-/- corneas have impaired IL-1beta and CXCL1/KC production, resulting in diminished cellular infiltration and fungal clearance compared with control mice, especially during infection with clinical isolates expressing high beta-glucan. In contrast to Dectin 1(-/- mice, cellular infiltration into infected TLR2(-/-, TLR4(-/-, and MD-2(-/- mice corneas was unimpaired, indicating no role for these receptors in cell recruitment; however, fungal killing was significantly reduced in TLR4(-/- mice, but not TLR2(-/- or MD-2(-/- mice. We also found that TRIF(-/- and TIRAP(-/- mice exhibited no fungal-killing defects, but that MyD88(-/- and IL-1R1(-/- mice were unable to regulate fungal growth. In conclusion, these data are consistent with a model in which beta-glucan on A.fumigatus germinating conidia activates Dectin-1 on corneal macrophages to produce IL-1beta, and CXCL1, which together with IL-1R1/MyD88-dependent activation, results in recruitment of neutrophils to the corneal stroma and TLR4

  6. Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus

    Science.gov (United States)

    Karawajczyk, Anna; Schaftenaar, Gijs; Kema, Gert H. J.; van der Lee, Henrich A.; Klaassen, Corné H.; Melchers, Willem J. G.; Verweij, Paul E.

    2012-01-01

    Background Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs. Methods and Findings Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. Conclusions Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs

  7. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Eveline Snelders

    Full Text Available BACKGROUND: Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs. The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34/L98H. We investigated if TR(34/L98H could have developed through exposure to DMIs. METHODS AND FINDINGS: Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in The Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR(34/L98H isolate in 1998. Through microsatellite genotyping of TR(34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR(34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. CONCLUSIONS: Our findings support a fungicide-driven route of TR(34/L98H development in A. fumigatus. Similar molecule structure

  8. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus.

    Science.gov (United States)

    Snelders, Eveline; Camps, Simone M T; Karawajczyk, Anna; Schaftenaar, Gijs; Kema, Gert H J; van der Lee, Henrich A; Klaassen, Corné H; Melchers, Willem J G; Verweij, Paul E

    2012-01-01

    Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR(34)/L98H). We investigated if TR(34)/L98H could have developed through exposure to DMIs. Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in The Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR(34)/L98H isolate in 1998. Through microsatellite genotyping of TR(34)/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR(34)/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes. Our findings support a fungicide-driven route of TR(34)/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles

  9. Sensitization to Aspergillus fumigatus as a risk factor for bronchiectasis in COPD

    Directory of Open Access Journals (Sweden)

    Everaerts S

    2017-08-01

    Full Text Available Stephanie Everaerts,1,2 Katrien Lagrou,3,4 Adriana Dubbeldam,5 Natalie Lorent,1 Kristina Vermeersch,2 Erna Van Hoeyveld,3 Xavier Bossuyt,3,4 Lieven J Dupont,1,2 Bart M Vanaudenaerde,2 Wim Janssens1,2 1Department of Respiratory Diseases, University Hospitals Leuven, 2Laboratory of Respiratory Diseases, Department of Clinical and Experimental Medicine, KU Leuven, 3Department of Laboratory Medicine, University Hospitals Leuven, 4Department of Microbiology and Immunology, KU Leuven, 5Department of Radiology, University Hospitals Leuven, Leuven, Belgium Background: Bronchiectasis–chronic obstructive pulmonary disease (COPD overlap presents a possible clinical phenotype of COPD, but it is unclear why it develops in a subset of patients. We hypothesized that sensitization to Aspergillus fumigatus (A fum is associated with bronchiectasis in COPD and occurs more frequently in vitamin D-deficient patients.Methods: This observational study investigated sensitization to A fum in an outpatient clinical cohort of 300 COPD patients and 50 (ex- smoking controls. Total IgE, A fum-specific IgE against the crude extract and against the recombinant antigens and A fum IgG were measured using ImmunoCAP fluoroenzyme immunoassay. Vitamin D was measured by radioimmunoassay, and computed tomography images of the lungs were scored using the modified Reiff score.Results: Sensitization to A fum occurred in 18% of COPD patients compared to 4% of controls (P=0.0110. In all, 31 COPD patients (10% were sensitized to the crude extract and 24 patients (8% had only IgE against recombinant antigens. A fum IgG levels were significantly higher in the COPD group (P=0.0473. Within COPD, A fum-sensitized patients were more often male (P=0.0293 and more often had bronchiectasis (P=0.0297. Pseudomonas aeruginosa and Serratia marcescens were more prevalent in historical sputum samples of A fum-sensitized COPD patients compared to A fum-non-sensitized COPD patients (P=0.0436. Vitamin D

  10. Immuno PET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    DEFF Research Database (Denmark)

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.

    2016-01-01

    a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging.Administration of a [64Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus...

  11. Molecular detection of Candida spp. and Aspergillus fumigatus in bronchoalveolar lavage fluid of patients with ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Farzin Khorvash

    2014-01-01

    Full Text Available Background: Ventilator-associated pneumonia (VAP is a common nosocomial infection in critically ill patients with high morbidity and mortality rates. The etiology of VAP is usually bacterial. Opportunistic fungi such as Candida and Aspergillus species (spp. are found frequently in the respiratory track secretions of immunocompetent critically ill patients known as colonization. Contribution of fungi colonization to severe bacterial VAP and poor prognosis of these patients has been documented in several studies. The aim of this study was to detect Candida spp. and Aspergillus fumigatus colonization in patients with a clinical diagnosis of VAP as a marker of high risk pneumonia. Materials and Methods: Bronchoscopic alveolar lavage (BAL fluids from patients with VAP in central intensive care unit (ICU of a tertiary university hospital in Isfahan were examined by real time polymerase chain reaction (PCR to detect Candida spp. or A. fumigatus. Rate of fungi colonization and its association with clinical criteria of the patients was determined. Results: BAL fluids from 38 patients were tested from which six samples (15.8% were positive for Candida spp. and five (13.2% for A. fumigatus. Fungi colonization was not associated with age, sex, or mortality rate of patients. Rate of A. fumigatus colonization was significantly more in traumatic patients (P = 0.036, and higher in patients ventilated more than 4 weeks (P = 0.022. Conclusion: High rate of A. fumigatus colonization in our ICU patients indicates that underlying causes such as unfavorable ICU conditions and other patient related factors such as unnecessary antibiotic therapy should be further evaluated.

  12. Molecular characterization of an adaptive response to alkylating agents in the opportunistic pathogen Aspergillus fumigatus

    Science.gov (United States)

    O’Hanlon, Karen A.; Margison, Geoffrey P.; Hatch, Amy; Fitzpatrick, David A.; Owens, Rebecca A.; Doyle, Sean; Jones, Gary W.

    2012-01-01

    An adaptive response to alkylating agents based upon the conformational change of a methylphosphotriester (MPT) DNA repair protein to a transcriptional activator has been demonstrated in a number of bacterial species, but this mechanism appears largely absent from eukaryotes. Here, we demonstrate that the human pathogen Aspergillus fumigatus elicits an adaptive response to sub-lethal doses of the mono-functional alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). We have identified genes that encode MPT and O6-alkylguanine DNA alkyltransferase (AGT) DNA repair proteins; deletions of either of these genes abolish the adaptive response and sensitize the organism to MNNG. In vitro DNA repair assays confirm the ability of MPT and AGT to repair methylphosphotriester and O6-methylguanine lesions respectively. In eukaryotes, the MPT protein is confined to a select group of fungal species, some of which are major mammalian and plant pathogens. The evolutionary origin of the adaptive response is bacterial and rooted within the Firmicutes phylum. Inter-kingdom horizontal gene transfer between Firmicutes and Ascomycete ancestors introduced the adaptive response into the Fungal kingdom. Our data constitute the first detailed characterization of the molecular mechanism of the adaptive response in a lower eukaryote and has applications for development of novel fungal therapeutics targeting this DNA repair system. PMID:22669901

  13. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus.

    Science.gov (United States)

    Dias, L M; Dos Santos, B V; Albuquerque, C J B; Baeta, B E L; Pasquini, D; Baffi, M A

    2018-03-01

    We investigated the role of carbon and nitrogen sources in the production of cellulase and hemicellulase by Aspergillus strains. The strains Aspergillus niger SCBM1 and Aspergillus fumigatus SCBM6 were cultivated under solid-state fermentation (SSF), with biomass sorghum (BS) and wheat bran (WB) as lignocellulosic substrates, in different proportions, along with variable nitrogen sources. The best SSF condition for the induction of such enzymes was observed employing A. niger SCBM1 in BS supplemented with peptone; maximum production levels were achieved as follows: 72 h of fermentation for xylanase and exoglucanase (300·07 and 30·64 U g -1 respectively), 120 h for β-glucosidase and endoglucanase (54·90 and 41·47 U g -1 respectively) and 144 h for β-xylosidase (64·88 U g -1 ). This work demonstrated the viability of the use of BS for the production of hemi- and cellulolytic enzymes; the high concentration of celluloses in BS could be associated with the significant production of cellulases, mainly exoglucanase. This is the first study which presents the promising use of biomass sorghum (genetically modified sorghum to increase its biomass content) as an alternative carbon source for the production of enzymes by SSF. © 2017 The Society for Applied Microbiology.

  14. The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro.

    Directory of Open Access Journals (Sweden)

    Charles O Morton

    2011-01-01

    Full Text Available Dendritic cells (DC are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC were infected with viable resting conidia of Aspergillus fumigatus (Af293 for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; >80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes.

  15. The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro.

    LENUS (Irish Health Repository)

    Morton, Charles O

    2011-01-01

    Dendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; >80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes.

  16. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase.

    Directory of Open Access Journals (Sweden)

    Najwane Saïd-Sadier

    Full Text Available Invasive aspergillosis (IA is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1beta release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K(+ efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1beta expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1beta. Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1beta; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine.

  17. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores.

    Science.gov (United States)

    Sze Wah Wong, Sarah; Rani, Manjusha; Dodagatta-Marri, Eswari; Ibrahim-Granet, Oumaima; Kishore, Uday; Bayry, Jagadeesh; Latgé, Jean-Paul; Sahu, Arvind; Madan, Taruna; Aimanianda, Vishukumar

    2018-02-05

    Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SPD has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike unopsonized conidia, SPD-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocytederived macrophages. Further, SP-D -/- mice challenged intranasally with wild-type conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wild-type mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.

  18. SNaPAfu: a novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens.

    Directory of Open Access Journals (Sweden)

    Rita Caramalho

    Full Text Available OBJECTIVE: Early diagnosis of invasive aspergillosis is essential for positive patient outcome. Likewise genotyping of fungal isolates is desirable for outbreak control in clinical setting. We designed a molecular assay that combines detection, identification, and genotyping of Aspergillus fumigatus in a single reaction. METHODS: To this aim we combined 20 markers in a multiplex reaction and the results were seen following mini-sequencing readings. Pure culture extracts were firstly tested. Thereafter, Aspergillus-DNA samples obtained from clinical specimens of patients with possible, probable, or proven aspergillosis according to European Organization for the Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG criteria. RESULTS: A new set of designed primers allowed multilocus sequence typing (MLST gene amplification in a single multiplex reaction. The newly proposed SNaPAfu assay had a specificity of 100%, a sensitivity of 89% and detection limit of 1 ITS copy/mL (∼0.5 fg genomic Aspergillus-DNA/mL. The marker A49_F was detected in 89% of clinical samples. The SNaPAfu assay was accurately performed on clinical specimens using only 1% of DNA extract (total volume 50 µL from 1 mL of used bronchoalveolar lavage. CONCLUSIONS: The first highly sensitive and specific, time- and cost-economic multiplex assay was implemented that allows detection, identification, and genotyping of A. fumigatus strains in a single amplification followed by mini-sequencing reaction. The new test is suitable to clinical routine and will improve patient management.

  19. Cerebral aspergillosis due to Aspergillus fumigatus in AIDS patient: first culture - proven case reported in Brazil Aspergilosis cerebral causada por Aspergillus fumigatus en paciente con SIDA: primer reporte de caso demostrado por cultivo en Brasil

    Directory of Open Access Journals (Sweden)

    José E. Vidal

    2005-06-01

    Full Text Available Cerebral aspergillosis is a rare cause of brain expansive lesion in AIDS patients. We report the first culture-proven case of brain abscess due to Aspergillus fumigatus in a Brazilian AIDS patient. The patient, a 26 year-old male with human immunodeficiency virus (HIV infection and history of pulmonary tuberculosis and cerebral toxoplasmosis, had fever, cough, dyspnea, and two episodes of seizures. The brain computerized tomography (CT showed a bi-parietal and parasagittal hypodense lesion with peripheral enhancement, and significant mass effect. There was started anti-Toxoplasma treatment. Three weeks later, the patient presented mental confusion, and a new brain CT evidenced increase in the lesion. He underwent brain biopsy, draining 10 mL of purulent material. The direct mycological examination revealed septated and hyaline hyphae. There was started amphotericin B deoxycholate. The culture of the material demonstrated presence of the Aspergillus fumigatus. The following two months, the patient was submitted to three surgeries, with insertion of drainage catheter and administration of amphotericin B intralesional. Three months after hospital admission, his neurological condition suffered discrete changes. However, he died due to intrahospital pneumonia. Brain abscess caused by Aspergillus fumigatus must be considered in the differential diagnosis of the brain expansive lesions in AIDS patients in Brazil.La aspergilosis cerebral es una causa rara de lesión expansiva cerebral en pacientes con SIDA. Presentamos el primer reporte de un absceso cerebral causado por Aspergillus fumigatus en un paciente brasileño con SIDA. El paciente, de 26 años de edad, presentaba antecedentes de infección por el virus de la inmunodeficiencia humana (VIH, tuberculosis pulmonar y toxoplasmosis cerebral. Manifestó fiebre, tos, disnea y dos episódios de convulsiones. La tomografía computadorizada (TC demostró una lesión hipodensa parasagital y bi-parietal con

  20. Analysis of the in vitro activity of human neutrophils against Aspergillus fumigatus in presence of antifungal and immunosuppressive agents.

    Science.gov (United States)

    Decker, Christina; Wurster, Sebastian; Lazariotou, Maria; Hellmann, Anna-Maria; Einsele, Hermann; Ullmann, Andrew J; Löffler, Jürgen

    2017-10-09

    Neutrophils are essential in the first line defense against moulds. This in vitro study assessed different neutrophil effector mechanisms in the presence of clinically relevant antifungal and immunosuppressive agents. Therapeutic concentrations of liposomal amphotericin B led to reduced IL-8 and oxidative burst response to the synthetic stimulus PMA, whereas no major alterations of oxidative burst, phagocytosis, or cytokine response to germinated stages of Aspergillus fumigatus and no supra-additive effects of antifungal and immunosuppressive drugs were observed. Conventional and liposomal amphotericin B as well as voriconazole, however, led to reduced neutrophil extracellular trap formation in response to A. fumigatus germ tubes. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Prevalence, persistence, and phenotypic variation of Aspergillus fumigatus in the outdoor environment in Manchester, UK, over a 2-year period.

    Science.gov (United States)

    Alshareef, Fadwa; Robson, Geoffrey D

    2014-05-01

    Aspergillus fumigatus, an opportunistic fungal pathogen that causes invasive aspergillosis in immunosuppressed patients, is considered to be the world's most dangerous mould. It is widely distributed in the environment, and airborne asexual conidia serve as the main mode of transport for pulmonary lung infection. It is important to monitor seasonal airborne conidia levels when assessing the risk of acquiring this infection. In this study, air was sampled for total viable fungal spores and viable A. fumigatus conidia monthly over a 2-year period (2009 and 2010) close to Manchester, UK, city center. Total viable airborne fungal counts varied seasonally, peaking in the summer and autumn for both years and reaching levels of approximately 1100-1400 colony-forming units (CFU)/m(3); counts were strongly positively correlated to mean temperature (R(2) = 0.697). By contrast, A. fumigatus viable airborne counts were not seasonally associated; persistent low levels were between 3 and 20 CFU/m(3) and were not correlated with mean temperature (R(2) = 0.018). A total of 220 isolates of A. fumigatus were recovered on potato dextrose agar (PDA) at 45°C, and internal transcribed spacer sequencing and restriction digestion of a partial polymerase chain reaction amplicon of the β-tubulin gene (benA) of 34 randomly selected isolates were used to confirm the isolates as A. fumigatus. When the colony radial growth rates (Kr) were determined, the highest rates were observed on PDA, followed by Vogel's medium supplemented with phosphatidylcholine and Vogel's medium alone. Clinical isolates had a significantly higher mean colony Kr on PDA compared with environmental isolates.

  2. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-01-01

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus

  3. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr [Division of Life Science, Daejeon University, Daejeon, 300-716 (Korea, Republic of); Kim, Young Hwan [Biomedical Omics Team, Korea Basic Science Institute (KBSI), Ohcang, 368-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Yu, Jae-Hyuk, E-mail: jyu1@wisc.edu [Departments of Bacteriology and Genetics, The University of Wisconsin–Madison, Madison, WI, 53706 (United States)

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.

  4. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence.

    Directory of Open Access Journals (Sweden)

    Maiken Cavling Arendrup

    Full Text Available Four sequential Aspergillus fumigatus isolates from a patient with chronic granulomatous disease (CGD eventually failing azole-echinocandin combination therapy were investigated. The first two isolates (1 and 2 were susceptible to antifungal azoles, but increased itraconazole, voriconazole and posaconazole MICs were found for the last two isolates (3 and 4. Microsatellite typing showed that the 4 isolates were isogenic, suggesting that resistance had been acquired during azole treatment of the patient. An immunocompromised mouse model confirmed that the in vitro resistance corresponded with treatment failure. Mice challenged with the resistant isolate 4 failed to respond to posaconazole therapy, while those infected by susceptible isolate 2 responded. Posaconazole-anidulafungin combination therapy was effective in mice challenged with isolate 4. No mutations were found in the Cyp51A gene of the four isolates. However, expression experiments of the Cyp51A showed that the expression was increased in the resistant isolates, compared to the azole-susceptible isolates. The microscopic morphology of the four isolates was similar, but a clear alteration in radial growth and a significantly reduced growth rate of the resistant isolates on solid and in broth medium was observed compared to isolates 1 and 2 and to unrelated wild-type controls. In the mouse model the virulence of isolates 3 and 4 was reduced compared to the susceptible ones and to wild-type controls. For the first time, the acquisition of azole resistance despite azole-echinocandin combination therapy is described in a CGD patient and the resistance demonstrated to be directly associated with significant change of virulence.

  5. Surfactant Protein-A inhibits Aspergillus fumigatus-induced allergic T-cell responses

    Directory of Open Access Journals (Sweden)

    Russo Scott J

    2005-08-01

    Full Text Available Abstract Background The pulmonary surfactant protein (SP-A has potent immunomodulatory activities but its role and regulation during allergic airway inflammation is unknown. Methods We studied changes in SP-A expression in the bronchoalveolar lavage (BAL using a murine model of single Aspergillus fumigatus (Af challenge of sensitized animals. Results SP-A protein levels in the BAL fluid showed a rapid, transient decline that reached the lowest values (25% of controls 12 h after intranasal Af provocation of sensitized mice. Decrease of SP-A was associated with influx of inflammatory cells and increase of IL-4 and IL-5 mRNA and protein levels. Since levels of SP-A showed a significant negative correlation with these BAL cytokines (but not with IFN-γ, we hypothesized that SP-A exerts an inhibitory effect on Th2-type immune responses. To study this hypothesis, we used an in vitro Af-rechallenge model. Af-induced lymphocyte proliferation of cells isolated from sensitized mice was inhibited in a dose-dependent manner by addition of purified human SP-A (0.1–10 μg/ml. Flow cytometric studies on Af-stimulated lymphocytes indicated that the numbers of CD4+ (but not CD8+ T cells were significantly increased in the parental population and decreased in the third and fourth generation in the presence of SP-A. Further, addition of SP-A to the tissue culture inhibited Af-induced IL-4 and IL-5 production suggesting that SP-A directly suppressed allergen-stimulated CD4+ T cell function. Conclusion We speculate that a transient lack of this lung collectin following allergen exposure of the airways may significantly contribute to the development of a T-cell dependent allergic immune response.

  6. Home Environment as a Source of Life-Threatening Azole-Resistant Aspergillus fumigatus in Immunocompromised Patients.

    Science.gov (United States)

    Lavergne, Rose-Anne; Chouaki, Taieb; Hagen, Ferry; Toublanc, Bénédicte; Dupont, Hervé; Jounieaux, Vincent; Meis, Jacques F; Morio, Florent; Le Pape, Patrice

    2017-01-01

    A case of fatal aspergillosis due to a TR 46 /Y121F/T289A azole-resistant Aspergillus fumigatus is reported. Environmental investigations at the patient's residence led to the recovery of TR 46 /Y121F/T289A isolates, genotypically indistinguishable from the clinical isolate, supporting for the first time the direct role of household as potential source of azole-resistant invasive aspergillosis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus

    NARCIS (Netherlands)

    Zhang, ZH; Liu, RY; Noordhoek, JA; Kauffman, HF

    2005-01-01

    Objective. To study the interaction of airway epithelial cell line A549 with fragments of mycelium, spores of Aspergitlus fumigatus in vitro and to determine if toll-like receptors (TLRs) are involved in the process. Methods. A549 cells were exposed to fragments of A. fumigatus mycelium, zymosan and

  8. Synergistic antifungal activity of KB425796-C in combination with micafungin against Aspergillus fumigatus and its efficacy in murine infection models.

    Science.gov (United States)

    Kai, Hirohito; Yamashita, Midori; Nakamura, Ikuko; Yoshikawa, Koji; Nitta, Kumiko; Watanabe, Masato; Inamura, Noriaki; Fujie, Akihiko

    2013-08-01

    KB425796-C is a novel antifungal metabolite produced by the newly isolated bacterial strain Paenibacillus sp. No. 530603. This compound is a 40-membered macrocyclic lipopeptidolactone consisting of 12 amino acids and a 3-hydroxy-15-methylpalmitoyl moiety. KB425796-C displayed antifungal activity against micafungin-resistant fungi and was fungicidal to Trichosporon asahii in vitro. In a murine systemic infection model of T. asahii, KB425796-C showed excellent efficacy upon i.p. administration at 32 mg kg(-1). In addition, KB425796-C induced morphological changes in the hyphae of Aspergillus fumigatus and had fungicidal effects in combination with micafungin. In a mouse model of septic A. fumigatus infection, although non-treated mice survived for a maximum of only 6 days, the survival rate of micafungin-treated mice (0.1 mg kg(-1)) increased to 20%, while the survival rate of mice treated with a combination of micafungin (0.1 mg kg(-1)) and KB425796-C (32 mg kg(-1)) increased to 100% during the 31-day post-infection period. Our findings suggest that KB425796-C is a good candidate for the treatment of aspergillosis in combination with micafungin.

  9. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Juvvadi, Praveen Rao; Belina, Detti [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Soderblom, Erik J.; Moseley, M. Arthur [Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC (United States); Steinbach, William J., E-mail: bill.steinbach@duke.edu [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (United States)

    2013-02-15

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems.

  10. Septic arthritis caused by Aspergillus fumigatus in an immunosuppressive patient: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Tuba Dal

    2012-03-01

    Full Text Available Septic arthritis is a serious medical problem that causes rapidly chronic and irreversible joint damage when diagnosisand treatment are delayed. Although, the bacteria are the most frequent cause of septic arthritis, rarely fungi may beresponsible for this disease. We presented here a case of septic arthritis caused by Aspergillus fumigatus, developed ina 65 years-old-male patient with diabetes mellitus. The patient admitted to our hospital with complaints of pain, swelling,redness in the right knee and high fever, which are not exceeding despite using vancomycin and ceftriaxone for 18days. Imipenem was started to the patient in our hospital. At the end of 7 days because of no regression of patient’scomplaints, arthroscopic synovectomy and lavage were performed for the patient’s right knee. Aspergillus fumigatuswas isolated from the aspiration biopsy specimen that received during the surgical operation and patient was treatedwith voriconazole, successfully. J Microbiol Infect Dis 2012; 2(1: 29-32

  11. Antígenos nativos de Aspergillus fumigatus con utilidad para el inmunodiagnóstico de aspergiloma

    Directory of Open Access Journals (Sweden)

    José Casquero

    2009-04-01

    Full Text Available Con el objetivo de evaluar la utilidad de los antígenos nativos de cepas autóctonas de Aspergillus fumigatus para el inmunodiagnóstico de aspergiloma, se desarrolló un estudio empleando dos cepas de ese hongo, aisladas de pacientes con diagnóstico de aspergiloma (533 y 554, los cuales fueron confrontados con sueros controles comerciales de A. fumigatus, A. flavus, A. niger, Candida, Coccidioides, Histoplasma y Paracoccidioides mediante la prueba de inmunodifusión, asimismo, se evaluaron frente a 28 sueros de pacientes con sospecha de aspergiloma. Además, se realizó la caracterización de los componentes proteicos de los antígenos nativos con la técnica de SDS-PAGE y se confrontaron con diez sueros de pacientes con aspergiloma, paracoccidioidomicosis, histoplasmosis, proteína C reactiva e hidatidosis y suero de persona sana por inmunoblot. Se encontró una buena concordancia (kappa 0,92 entre los antígenos 533 y 554, y algo menor de éstos con el antígeno comercial para A. fumigatus (kappa 0,73 y 0,81 para el 553 y 554; respectivamente. La banda de 97 kDa reaccionó sólo con sueros de pacientes con aspergiloma siendo inmunodominante.

  12. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides.

    Science.gov (United States)

    Zhang, Jianhua; van den Heuvel, Joost; Debets, Alfons J M; Verweij, Paul E; Melchers, Willem J G; Zwaan, Bas J; Schoustra, Sijmen E

    2017-09-27

    Resistance to medical triazoles in Aspergillus fumigatus is an emerging problem for patients at risk of aspergillus diseases. There are currently two presumed routes for medical triazole-resistance selection: (i) through selection pressure of medical triazoles when treating patients and (ii) through selection pressure from non-medical sterol-biosynthesis-inhibiting (SI) triazole fungicides which are used in the environment. Previous studies have suggested that SI fungicides can induce cross-resistance to medical triazoles. Therefore, to assess the potential of selection of resistance to medical triazoles in the environment, we assessed cross-resistance to three medical triazoles in lineages of A. fumigatus from previous work where we applied an experimental evolution approach with one of five different SI fungicides to select for resistance. In our evolved lines we found widespread cross-resistance indicating that resistance to medical triazoles rapidly arises through selection pressure of SI fungicides. All evolved lineages showed similar evolutionary dynamics to SI fungicides and medical triazoles, which suggests that the mutations inducing resistance to both SI fungicides and medical triazoles are likely to be the same. Whole-genome sequencing revealed that a variety of mutations were putatively involved in the resistance mechanism, some of which are in known target genes. © 2017 The Author(s).

  13. Structure of the sliding clamp from the fungal pathogen Aspergillus fumigatus (AfumPCNA) and interactions with Human p21.

    Science.gov (United States)

    Marshall, Andrew C; Kroker, Alice J; Murray, Lauren A M; Gronthos, Kahlia; Rajapaksha, Harinda; Wegener, Kate L; Bruning, John B

    2017-03-01

    The fungal pathogen Aspergillus fumigatus has been implicated in a drastic increase in life-threatening infections over the past decade. However, compared to other microbial pathogens, little is known about the essential molecular processes of this organism. One such fundamental process is DNA replication. The protein responsible for ensuring processive DNA replication is PCNA (proliferating cell nuclear antigen, also known as the sliding clamp), which clamps the replicative polymerase to DNA. Here we present the first crystal structure of a sliding clamp from a pathogenic fungus (A. fumigatus), at 2.6Å. Surprisingly, the structure bears more similarity to the human sliding clamp than other available fungal sliding clamps. Reflecting this, fluorescence polarization experiments demonstrated that AfumPCNA interacts with the PCNA-interacting protein (PIP-box) motif of human p21 with an affinity (K d ) of 3.1 μm. Molecular dynamics simulations were carried out to better understand how AfumPCNA interacts with human p21. These simulations revealed that the PIP-box bound to AfuPCNA forms a secondary structure similar to that observed in the human complex, with a central 3 10 helix contacting the hydrophobic surface pocket of AfumPCNA as well as a β-strand that forms an antiparallel sheet with the AfumPCNA surface. Differences in the 3 10 helix interaction with PCNA, attributed to residue Thr131 of AfumPCNA, and a less stable β-strand formation, attributed to residues Gln123 and His125 of AfumPCNA, are likely causes of the over 10-fold lower affinity of the p21 PIP-box for AfumPCNA as compared to hPCNA. The atomic coordinates and structure factors for the Aspergillus fumigatus sliding clamp can be found in the RCSB Protein Data Bank (http://www.rcsb.org) under the accession code 5TUP. © 2017 Federation of European Biochemical Societies.

  14. Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to PulmonaryAspergillus fumigatusInfection.

    Science.gov (United States)

    Seddigh, Pegah; Bracht, Thilo; Molinier-Frenkel, Válerie; Castellano, Flavia; Kniemeyer, Olaf; Schuster, Marc; Weski, Juliane; Hasenberg, Anja; Kraus, Andreas; Poschet, Gernot; Hager, Thomas; Theegarten, Dirk; Opitz, Christiane A; Brakhage, Axel A; Sitek, Barbara; Hasenberg, Mike; Gunzer, Matthias

    2017-12-01

    The ubiquitous mold Aspergillus fumigatus threatens immunosuppressed patients as inducer of lethal invasive aspergillosis. A. fumigatus conidia are airborne and reach the alveoli, where they encounter alveolar epithelial cells (AEC). Previous studies reported the importance of the surfactant-producing AEC II during A. fumigatus infection via in vitro experiments using cell lines. We established a negative isolation protocol yielding untouched primary murine AEC II with a purity >90%, allowing ex vivo analyses of the cells, which encountered the mold in vivo By label-free proteome analysis of AEC II isolated from mice 24h after A. fumigatus or mock infection we quantified 2256 proteins and found 154 proteins to be significantly differentially abundant between both groups (ANOVA p value ≤ 0.01, ratio of means ≥1.5 or ≤0.67, quantified with ≥2 peptides). Most of these proteins were higher abundant in the infected condition and reflected a comprehensive activation of AEC II on interaction with A. fumigatus This was especially represented by proteins related to oxidative phosphorylation, hence energy production. However, the most strongly induced protein was the l-amino acid oxidase (LAAO) Interleukin 4 induced 1 (IL4I1) with a 42.9 fold higher abundance (ANOVA p value 2.91 -10 ). IL4I1 has previously been found in B cells, macrophages, dendritic cells and rare neurons. Increased IL4I1 abundance in AEC II was confirmed by qPCR, Western blot and immunohistology. Furthermore, A. fumigatus infected lungs showed high levels of IL4I1 metabolic products. Importantly, higher IL4I1 abundance was also confirmed in lung tissue from human aspergilloma. Because LAAO are key enzymes for bactericidal product generation, AEC II might actively participate in pathogen defense. We provide insights into proteome changes of primary AEC II thereby opening new avenues to analyze the molecular changes of this central lung cell on infectious threats. Data are available via Proteome

  15. Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Margaret V Powers-Fletcher

    Full Text Available Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.

  16. A fast and quantitative evaluation of the Aspergillus fumigatus biofilm adhesion properties by means of digital pulsed force mode

    International Nuclear Information System (INIS)

    Maiorana, Alessandro; Papi, Massimiliano; Bugli, Francesca; Torelli, Riccardo; Maulucci, Giuseppe; Cacaci, Margherita; Posteraro, Brunella; Sanguinetti, Maurizio; De Spirito, Marco

    2013-01-01

    The opportunistic pathogenic mould Aspergillus fumigatus (A. fumigatus) is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network embedded in an extracellular matrix (ECM) meanly composed by polysaccharides, melanin, proteins. Because adhesion properties is one primary factor affecting the balance between growth, detachment and biofilm formation, its quantification is essential in understanding, predicting, and modelling biofilm development. Atomic force microscopy (AFM) imaging and force spectroscopy have recently opened a range of novel applications in microbiology including the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes. Nevertheless, the principal disadvantage of this approach is the relatively slow acquisition rate that makes AFM is not able to detect fast dynamics. In this study we demonstrated that digital pulsed force mode (DPFM) atomic force microscopy can be used to obtain high-resolution topographical images and to quantify the adhesion properties of the A. fumigatus biofilm with an high acquisition rate. Here we show by means of DPFM-AFM that Alginate Lyase (AlgL), an enzyme known to reduce negatively charged alginate levels in microbial biofilm, is able to reduce the biofilm adhesion forces forming several nano-fractures in the ECM. These results suggest that the AlgL could used to enhance the antifungal drugs transit through the ECM.

  17. A fast and quantitative evaluation of the Aspergillus fumigatus biofilm adhesion properties by means of digital pulsed force mode

    Energy Technology Data Exchange (ETDEWEB)

    Maiorana, Alessandro [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Papi, Massimiliano, E-mail: m.papi@rm.unicatt.it [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Bugli, Francesca; Torelli, Riccardo [Istituto di Microbiologia, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Maulucci, Giuseppe [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Cacaci, Margherita; Posteraro, Brunella; Sanguinetti, Maurizio [Istituto di Microbiologia, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); De Spirito, Marco [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy)

    2013-08-15

    The opportunistic pathogenic mould Aspergillus fumigatus (A. fumigatus) is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network embedded in an extracellular matrix (ECM) meanly composed by polysaccharides, melanin, proteins. Because adhesion properties is one primary factor affecting the balance between growth, detachment and biofilm formation, its quantification is essential in understanding, predicting, and modelling biofilm development. Atomic force microscopy (AFM) imaging and force spectroscopy have recently opened a range of novel applications in microbiology including the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes. Nevertheless, the principal disadvantage of this approach is the relatively slow acquisition rate that makes AFM is not able to detect fast dynamics. In this study we demonstrated that digital pulsed force mode (DPFM) atomic force microscopy can be used to obtain high-resolution topographical images and to quantify the adhesion properties of the A. fumigatus biofilm with an high acquisition rate. Here we show by means of DPFM-AFM that Alginate Lyase (AlgL), an enzyme known to reduce negatively charged alginate levels in microbial biofilm, is able to reduce the biofilm adhesion forces forming several nano-fractures in the ECM. These results suggest that the AlgL could used to enhance the antifungal drugs transit through the ECM.

  18. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Jorge Amich

    Full Text Available Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  19. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus.

    Science.gov (United States)

    Amich, Jorge; Schafferer, Lukas; Haas, Hubertus; Krappmann, Sven

    2013-01-01

    Sulphur is an essential element that all pathogens have to absorb from their surroundings in order to grow inside their infected host. Despite its importance, the relevance of sulphur assimilation in fungal virulence is largely unexplored. Here we report a role of the bZIP transcription factor MetR in sulphur assimilation and virulence of the human pathogen Aspergillus fumigatus. The MetR regulator is essential for growth on a variety of sulphur sources; remarkably, it is fundamental for assimilation of inorganic S-sources but dispensable for utilization of methionine. Accordingly, it strongly supports expression of genes directly related to inorganic sulphur assimilation but not of genes connected to methionine metabolism. On a broader scale, MetR orchestrates the comprehensive transcriptional adaptation to sulphur-starving conditions as demonstrated by digital gene expression analysis. Surprisingly, A. fumigatus is able to utilize volatile sulphur compounds produced by its methionine catabolism, a process that has not been described before and that is MetR-dependent. The A. fumigatus MetR transcriptional activator is important for virulence in both leukopenic mice and an alternative mini-host model of aspergillosis, as it was essential for the development of pulmonary aspergillosis and supported the systemic dissemination of the fungus. MetR action under sulphur-starving conditions is further required for proper iron regulation, which links regulation of sulphur metabolism to iron homeostasis and demonstrates an unprecedented regulatory crosstalk. Taken together, this study provides evidence that regulation of sulphur assimilation is not only crucial for A. fumigatus virulence but also affects the balance of iron in this prime opportunistic pathogen.

  20. Aborto por Aspergillus fumigatus e A. niger em bovinos no sul do Brasil

    Directory of Open Access Journals (Sweden)

    Corbellini Luís G.

    2003-01-01

    Full Text Available As infecções micóticas apresentam distribuição mundial e podem causar placentite e aborto em diversas espécies de animais. Entre setembro 2001 e novembro 2002, foram processados no Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 147 fetos bovinos abortados com o objetivo de avaliar as principais causas de aborto infeccioso bovino no sul do Brasil. Destes, 34 estavam acompanhados da placenta. Aborto micótico foi diagnosticado em cinco casos (3,4% mediante cultivo puro de quatro amostras de Aspergillus fumigatus e uma de A. niger associado a lesões histológicas características de fungo. Os exames virológico, bacteriológico e imunofluorescência direta para Leptospira sp foram negativos nestes casos. A idade dos fetos variava entre 5 e 8 meses de idade. Lesões macroscópicas foram observadas em quatro casos e eram caracterizadas por áreas circulares multifocais branco-acinzentadas na pele, principalmente na região da cabeça e dorso, em dois fetos, lesões nodulares no fígado em um caso e espessamento dos cotilédones em duas placentas enviadas juntamente com os fetos. Lesões histológicas foram observadas principalmente no fígado, pulmão e placenta, caracterizadas por hepatite necrótica multifocal, broncopneumonia supurativa e placentite necrótica. Através da coloração de Grocott hifas septadas foram observadas em duas placentas e nas bordas das lesões necróticas no fígado de um feto. Em dois casos hifas foram observadas somente na placenta e não no feto, salientando-se a importância deste tecido para o diagnóstico de aborto micótico bovino.

  1. beta-1,3-Glucan-Induced Host Phospholipase D Activation Is Involved in Aspergillus fumigatus Internalization into Type II Human Pneumocyte A549 Cells

    NARCIS (Netherlands)

    Han, Xuelin; Yu, Rentao; Zhen, Dongyu; Tao, Sha; Schmidt, Martina; Han, Li

    2011-01-01

    The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of

  2. Multicentre validation of 4-well azole agar plates as a screening method for detection of clinically relevant azole-resistant Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Verweij, Paul E; Mouton, Johan W

    2017-01-01

    Objectives: Azole-resistant Aspergillus fumigatus is emerging worldwide. Reference susceptibility testing methods are technically demanding and no validated commercial susceptibility tests for moulds currently exist. In this multicentre study a 4-well azole-containing screening agar method was ev...

  3. Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of Aspergillus fumigatus-Rhizopus oryzae pulmonary infection.

    Science.gov (United States)

    Lewis, Russell E; Liao, Guangling; Wang, Weiqun; Prince, Randall A; Kontoyiannis, Dimitrios P

    2011-01-01

    Mucormycosis is an uncommon fungal infection that has been increasingly reported in severely immunocompromised patients receiving Aspergillus-active antifungals. Although clinical studies and pre-clinical animal models have suggested a unique predisposition for breakthrough mucormycoses in patients receiving voriconazole, no study has specifically evaluated the selection dynamics of various Aspergillus -active antifungal classes in vivo. We utilized an Aspergillus fumigatus:Rhizopus oryzae (10:1) model of mixed fungal pneumonia in corticosteroid-immunosuppressed mice to compare the selection dynamics of daily liposomal-amphotericin B (L-AMB), micafungin (MCFG) and voriconazole (VRC) therapy. A. fumigatus and R. oryzae lung fungal burden were serially monitored in parallel using non-cross-amplifying quantitative real-time PCR assays for each fungal genus. Additionally, experiments were performed where the R. oryzae component of the mixed inoculum was serially-passed on VRC-containing agar before animal infection. We found prior exposure to voriconazole in vitro, consistently resulted in a 1.5-2 log 10 increase in R. oryzae fungal burden by day +5 in vivo relative to animals infected with the non-VRC preexposed inoculum, irrespective of the antifungal-treatment administered in mice (P ≤ 0.02 all treatment groups). Mice infected with the VRC-preexposed inoculum and subsequently treated with saline or VRC had the highest mortality rates (82-86%), followed by MCFG (55%) then L-AMB (39%, P = 0.04 vs. control). However, in vivo treatment alone with voriconazole alone did not consistently increase the virulence of non- voriconazole preexposed R. oryzae versus controls. We conclude that exposure of R. oryzae sporangiospores to voriconazole in vitro modulates the subsequent growth rate and/or virulence of the fungus in vivo, which reduces effectiveness of Mucorales-active antifungals. The mechanisms underlying this phenotypic change are unknown.

  4. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining with Lugol's iodine solution. The best strain was identified by method of Pitt and Hocking as Aspergillus fumigates. The enzyme production was optimized by application of the factorial design which involves five factors, each at three levels. Five factors were carbon sources (whey, sugar, stevia and ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results showed that the optimum condition for enzyme production was at 32 °C, PH = 6 , 3g / L manganese sulfate, 2.75g / L of ammonium sulfate, 10g / L of each carbon source (whey, stevia, and glucose. Optimum of enzyme production was observed in the presence of 1.328 mg / ml of glucose. Molecular weight of enzyme was obtained about 40 kDa by SDS-PAGE. Discussion and conclusion: The results demonstrated that this strain could grow in a wide range of carbon sources, PH and temperature. This study indicates that this strain is a good candidate for use in industrial application.

  5. Influence of Platelet-rich Plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus.

    Science.gov (United States)

    Czakai, Kristin; Dittrich, Marcus; Kaltdorf, Martin; Müller, Tobias; Krappmann, Sven; Schedler, Anette; Bonin, Michael; Dühring, Sybille; Schuster, Stefan; Speth, Cornelia; Rambach, Günter; Einsele, Hermann; Dandekar, Thomas; Löffler, Jürgen

    2017-02-01

    Dendritic cells (DCs) and macrophages (MΦ) are critical for protection against pathogenic fungi including Aspergillus fumigatus. To analyze the role of platelets in the innate immune response, human DCs and MΦs were challenged with A. fumigatus in presence or absence of human platelet rich plasma (PRP). Gene expression analyses and functional investigations were performed. A systems biological approach was used for initial modelling of the DC - A. fumigatus interaction. DCs in a quiescent state together with different corresponding activation states were validated using gene expression data from DCs and MΦ stimulated with A. fumigatus. To characterize the influence of platelets on the immune response of DCs and MΦ to A. fumigatus, we experimentally quantified their cytokine secretion, phagocytic capacity, maturation, and metabolic activity with or without platelets. PRP in combination with A. fumigatus treatment resulted in the highest expression of the maturation markers CD80, CD83 and CD86 in DCs. Furthermore, PRP enhanced the capacity of macrophages and DCs to phagocytose A. fumigatus conidia. In parallel, PRP in combination with the innate immune cells significantly reduced the metabolic activity of the fungus. Interestingly, A. fumigatus and PRP stimulated MΦ showed a significantly reduced gene expression and secretion of IL6 while PRP only reduced the IL-6 secretion of A. fumigatus stimulated DCs. The in silico systems biological model correlated well with these experimental data. Different modules centrally involved in DC function became clearly apparent, including DC maturation, cytokine response and apoptosis pathways. Taken together, the ability of PRP to suppress IL-6 release of human DCs might prevent local excessive inflammatory hemorrhage, tissue infarction and necrosis in the human lung. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Complementary Roles of the Classical and Lectin Complement Pathways in the Defense against Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Rosbjerg, Anne; Genster, Ninette; Pilely, Katrine

    2016-01-01

    , lectin, and alternative pathways under both immunocompetent and immunocompromised conditions to provide a relevant dual-perspective on the response against A. fumigatus. Conidia (spores) from a clinical isolate of A. fumigatus were combined with various human serum types (including serum deficient...... of various complement components and serum from umbilical cord blood). We also combined this with inhibitors against C1q, mannose-binding lectin (MBL), and ficolin-2 before complement activation products and phagocytosis were detected by flow cytometry. Our results showed that alternative pathway amplified...

  7. Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis.

    Science.gov (United States)

    Upadhyay, Srijana; Torres, Guadalupe; Lin, Xiaorong

    2013-12-01

    Aspergillus fumigatus produces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster in A. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression of A. fumigatus laccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction of abr1 and abr2, a response similar to that induced by copper starvation. Furthermore, nonpigmented ctpAΔ conidia elicited much stronger immune responses from the infected invertebrate host Galleria mellonella than the pigmented ctpAΔ or wild-type conidia. Such enhancement in eliciting Galleria immune responses was independent of the ctpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.

  8. Use of cell surface protein typing for genotyping of azole-resistant and -susceptible Aspergillus fumigatus isolates in Iran.

    Science.gov (United States)

    Falahatinejad, Mahsa; Vaezi, Afsane; Fakhim, Hamed; Abastabar, Mahdi; Shokohi, Tahereh; Zahedi, Nina; Ansari, Saham; Meis, Jacques F; Badali, Hamid

    2018-02-01

    Aspergillus fumigatus is the leading cause of mortality in severely immunocompromised individuals. Understanding pathogen dispersion and relatedness is essential for determining the epidemiology of nosocomial infections. Therefore, the aim of this study was to investigate the diversity and putative origins of clinical and environmental azole-susceptible and -resistant A. fumigatus isolates from Iran. In all, 79 isolates, including 64 azole-susceptible and 15 -resistant isolates, were genotyped using the cell surface protein (CSP) gene. Seven distinct repeat types (r01, r02, r03, r04, r05, r06 and r07) and 11 different CSP variants (t01, t02, t03, t04A, t06A, t06B, t08, t10, t18A, t18B and t22) were observed. Interestingly, t06B, t18A and t18B were exclusively present in azole-resistant isolates. The Simpson's index of diversity (D) was calculated at 0.78. Resistant isolates were genetically less diverse than azole-susceptible isolates. However, azole-resistant A. fumigatus without TR 34 /L98H were more diverse than with TR 34 /L98H. The limited CSP type diversity of the TR 34 /L98H isolates versus azole-susceptible isolates suggests that repeated independent emergence of the TR 34 /L98H mechanism is unlikely. It has been suggested that CSP types might have a common ancestor that developed locally and subsequently migrated worldwide. © 2017 Blackwell Verlag GmbH.

  9. Heterologous expression of hydrophobins RodA and RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    Introduction: Hydrophobins are small amphipatic proteins present on the spore surface of filamentous fungi. They most likely play an important role in the attachment of spores to a solid phase. The pathogenic fungus Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface...... of its conidia and these may be of importance to the pathogenesis of the fungus. Although heterologous expression of hydrophobins has proven to be a challenge by past investigators, we made it the aim of this project to produce pure hydrophobins in sufficient quantities for further characterication...... and transformants were selected by zeocin resistance. The presence of the RodA and RodB genes in the transformants was confirmed by colony PCR. The expression of RodA and RodB genes was induced by growing cells in culture flasks for three days in buffered complex methanol medium as protein production was dependent...

  10. Isolation and characterization of a beta-primeverosidase-like endo-manner beta-glycosidase from Aspergillus fumigatus AP-20.

    Science.gov (United States)

    Yamamoto, Shigeru; Okada, Masamichi; Usui, Taichi; Sakata, Kanzo

    2002-04-01

    A novel beta-glycosidase-producing microorganism was isolated from soil and identified as Aspergillus fumigatus AP-20 based on its taxonomical characteristics. The enzyme was found to be an extracellular protein in the culture of the isolated fungus and was purified 88-fold by fractionation with ammonium sulfate followed by successive column chromatographies on phenyl-Sepharose HP and Mono P HR. The molecular mass was estimated to be 47 kDa by SDS-PAGE and the isoelectric point to be pH 6.0 by isoelectric focusing. The purified enzyme was highly specific for a substrate, p-nitrophenyl beta-primeveroside (6-O-beta-D-xylopyranosyl-beta-D-glucopyranoside), which was cleaved in an endo-manner into primeverose and p-nitrophenol.

  11. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps.

    Directory of Open Access Journals (Sweden)

    Flávio V Loures

    2015-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs. The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.

  12. [Aspergillus fumigatus and Candida albicans in cystic fibrosis: clinical significance and specific immune response involving serum immunoglobulins G, A, and M].

    Science.gov (United States)

    Máiz, Luis; Cuevas, Manuela; Lamas, Adelaida; Sousa, Aurora; Quirce, Santiago; Suárez, Lucrecia

    2008-03-01

    The aim of this study was to analyze the clinical significance of Aspergillus fumigatus and Candida albicans in respiratory secretions from patients with cystic fibrosis and to assess the immune response to these fungi in serum. The study included 66 patients with cystic fibrosis (34 men; mean age, 16.2 years). Sera from 15 healthy individuals were used as controls. The serum concentrations of immunoglobulin (Ig) G, IgA, and IgM against A fumigatus and C albicans were higher in patients than in the control group. There was no correlation between the presence of A fumigatus in respiratory secretions and the immune response to the fungus measured in serum. In contrast, the presence of C albicans in respiratory secretions was correlated with the immune response to that fungus. The likelihood of obtaining A fumigatus cultures from respiratory secretions increased with age. The presence of these fungi in respiratory samples was not a risk factor for greater respiratory impairment. In response to increased colonization of the lower respiratory tract by A fumigatus and C albicans, patients with cystic fibrosis have elevated serum levels of IgG, IgA, and IgM against those fungi. In patients with cystic fibrosis, culture of sputum and oropharyngeal secretions is adequate for the assessment of lower respiratory tract colonization by C albicans but not A fumigatus. Fungal colonization of the lower respiratory tract is not a risk factor for greater respiratory impairment in patients with cystic fibrosis.

  13. Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus.

    Science.gov (United States)

    Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen

    2017-01-01

    Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.

  14. Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Anna-Maria Hellmann

    2017-12-01

    Full Text Available Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs, macrophages, and polymorphonuclear cells (PMNs using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies.

  15. Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels Produção de pectinases e poligalacturonase por Aspergillus fumigatus termofílico isolado de cascas de laranja em decomposição

    Directory of Open Access Journals (Sweden)

    Urmila Phutela

    2005-03-01

    Full Text Available A thermophilic fungal strain producing both pectinase and polygalacturonase was isolated after primary screening of 120 different isolates. The fungus was identified as Aspergillus fumigatus Fres. MTCC 4163. Using solid-state cultivation, the optimum levels of variables for pectinase and polygalacturonase (PG production were determined. Maximal levels of enzyme activities were achieved upon growing the culture in a medium containing wheat bran, sucrose, yeast extract and (NH42SO4 after 2-3 days of incubation at a temperature of 50ºC. Highest enzyme activities of 1116 Ug-1 for pectinase and 1270 Ug-1 for polygalacturonase were obtained at pH 4.0 and 5.0, respectively.Através da tiragem de 120 cepas de fungos, isolou-se uma cepa capaz de produzir tanto pectinase quanto poligalacturonase. A cepa foi identificada como Aspergillus fumigatus Fres. MTCC 4163. Empregando cultivo em estado sólido, determinou-se os níveis ótimos das variáveis para a produção de pectinase e de poligalacturonase. Os níveis máximos de atividade enzimática foram obtidos quando a cultura era realizada em meio contendo farelo de trigo, sacarose, extrato de levedura e (NH42SO4 por 2-3 dias a uma temperatura de 50ºC. A atividade máxima de pectinase (1116 Ug-1 e de poligalacturonase (1270 Ug-1 foi obtida em pH 4,0 e 5,0, respectivamente.

  16. Spectrophotometric reading of EUCAST antifungal susceptibility testing of Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Meletiadis, J.; Leth Mortensen, K.; Verweij, P. E.

    2017-01-01

    Objectives Given the increasing number of antifungal drugs and the emergence of resistant Aspergillus isolates, objective, automated and high-throughput antifungal susceptibility testing is important. The EUCAST E.Def 9.3 reference method for MIC determination of Aspergillus species relies on vis...

  17. Transcriptome analysis of cyclic AMP-dependent protein kinase A–regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus

    Science.gov (United States)

    Macheleidt, Juliane; Scherlach, Kirstin; Neuwirth, Toni; Schmidt-Heck, Wolfgang; Straßburger, Maria; Spraker, Joseph; Baccile, Joshua A.; Schroeder, Frank C.; Keller, Nancy P.; Hertweck, Christian; Heinekamp, Thorsten; Brakhage, Axel A.

    2015-01-01

    Summary Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete nonribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the TetOn system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLCHRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model. PMID:25582336

  18. Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis.

    Science.gov (United States)

    Asif, Abdul R; Oellerich, Michael; Amstrong, Victor W; Gross, Uwe; Reichard, Utz

    2010-06-01

    Invasive aspergillosis caused by the mould Aspergillus fumigatus is a life-threatening lung or systemic infection in the immunocompromised host. In this study, a protective immune response against the disease was achieved in two infected rabbits, and the cellular fungal antigenic proteome that mediated such a response was investigated against the background of vaccine development efforts. Altogether, 59 different Aspergillus proteins were found becoming reactive in the course of the developing immunity, many of which are described in this context for the first time. These included proteins related to oxidative stress management, glycolysis and other metabolic pathways. As oxidative stress is suspected to be one of the major defense mechanisms, the results may indicate at least in part a continuous response of the pathogen to evade the host's immune system. In addition, proteins with suspected cell surface association or crucial function for fungal cell development were identified. As these antigens are newly recognized during the process of the developing immunoprotection, they may not only represent valuable infection markers but also importantly broaden the list of possible vaccine candidates.

  19. Micromorphological changes on the embryonic membranes of turkey eggs infected with Aspergillus fumigatus and their importance for embryonic survival

    Directory of Open Access Journals (Sweden)

    Jezdimirović Nemanja V.

    2013-01-01

    Full Text Available Aspergillosis is a frequent fungal disease of young and adult poultry in our commercial flocks. Infection can occur after hatching by inhalation of Aspergillus conidia which can be present in contaminated hatcheries, or later, by spores from moldy litter, dust, faeces or feed. Spores from the surface of egg shell can penetrate inside of an egg. The main characteristic of aspergillosis is granulomatous inflammation of respiratory system, although generalized form is possible as well. Multiple yellow nodules can be seen as major patomorphological changes and they are usually localized in lungs, air sacs, and can also be found in spleen, brain, subcutis and eyes. Egg embryos are quite susceptible to infection by Aspergillus fumigatus during incubation. In this study, the history of a case on one local farm with mortality rate of 7.2% in the turkey flock is presented. At the same time, 28 day old 30 incubated hatching turkey eggs were sampled, that were unable to hatch. The aim of the present work was to determine the cause and to identify the agent of embryonic mortality. Total of the 30 eggs were opened, and 16 of them had thickened egg membranes in the area of air sac. Membrane thickening was visible and circumscript or diffuse presence of black-grey or grey-green fungal growth was observed. Only 3 samples air sacs were filled with developed stages of fungi. To evaluate histopathological lesions, changed egg membranes were processed by standard histological technique. Dominant microscopic finding was thickening of egg membranes as a consequence of fungal growth and many of them penetrated deep towards embryo. Most of the hyphae were growing vertically through membranes. On the outside surface of the membranes, the elements of fungi (conidial heads with phialids and spores on them, could be clearly observed. These changes were responsible for embryonic death, which on the basis of the size of dead embryos occurred between 7th and 10th day of

  20. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    Science.gov (United States)

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  1. Abundance, genetic diversity and sensitivity to demethylation inhibitor fungicides of Aspergillus fumigatus isolates from organic substrates with special emphasis on compost.

    Science.gov (United States)

    Santoro, Karin; Matić, Slavica; Gisi, Ulrich; Spadaro, Davide; Pugliese, Massimo; Gullino, Maria L

    2017-12-01

    Aspergillus fumigatus is a widespread fungus that colonizes dead organic substrates but it can also cause fatal human diseases. Aspergilloses are treated with demethylation inhibitor (DMI) fungicides; however, resistant isolates appeared recently in the medical and also environmental area. The present study aims at molecular characterizing and quantifying A. fumigatus in major environmental habitats and determining its sensitivity to medical and agricultural DMI fungicides. A. fumigatus was isolated only rarely from soil and meadow/forest organic matter but high concentrations (10 3 to 10 7  cfu/g) were detected in substrates subjected to elevated temperatures, such as compost and silage. High genetic diversity of A. fumigatus from compost was found based on SSR markers, distinguishing among fungal isolates even when coming from the same substrate sample, while subclustering was observed based on mutations in cyp51A gene. Several cyp51A amino acid substitutions were found in 15 isolates, although all isolates were fully sensitive to the tested DMI fungicides, with exception of one isolate in combination with one fungicide. This study suggests that the tested A. fumigatus isolates collected in Italy, Spain and Hungary from the fungus' major living habitats (compost) and commercial growing substrates are not potential carriers for DMI resistance in the environment. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Human primary myeloid dendritic cells interact with the opportunistic fungal pathogen Aspergillus fumigatus via the C-type lectin receptor Dectin-1.

    Science.gov (United States)

    Hefter, Maike; Lother, Jasmin; Weiß, Esther; Schmitt, Anna Lena; Fliesser, Mirjam; Einsele, Hermann; Loeffler, Juergen

    2017-07-01

    Aspergillus fumigatus is an opportunistic fungal pathogen causing detrimental infections in immunocompromised individuals. Dendritic cells (DCs) are potent antigen-presenting cells and recognize the A. fumigatus cell wall component β-1,3 glucan via Dectin-1, followed by DC maturation and cytokine release. Here, we demonstrate that human primary myeloid DCs (mDCs) interact with different morphotypes of A. fumigatus. Dectin-1 is expressed on mDCs and is down-regulated after contact with A. fumigatus, indicating that mDCs recognize A. fumigatus via this receptor. Blocking of Dectin-1, followed by stimulation with depleted zymosan diminished the up-regulation of the T-cell co-stimulatory molecules CD40, CD80, HLA-DR and CCR7 on mDCs and led to decreased release of the cytokines TNF-α, IL-8, IL-1β and IL-10. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Aspergillus fumigatus carrying TR34/L98H resistance allele causing complicated suppurative otitis media in Tanzania: Call for improved diagnosis of fungi in sub-Saharan Africa.

    Science.gov (United States)

    Mushi, Martha F; Buname, Gustave; Bader, Oliver; Groß, Uwe; Mshana, Stephen E

    2016-09-02

    Suppurative otitis media (SOM) is a major public health concern worldwide and is associated with increased morbidity. Cases of fungal suppurative otitis media were studied to establish the effect of fungi in otitis media. Ear swabs from 410 patients were collected aseptically using sterile cotton swabs from discharging ear through perforated tympanic membrane. Swabs were subjected to microscopic and culture investigations. The species of fungal growing on Sabouraud's agar were identified using MALDI-TOF MS. For moulds broth micro dilution method following EUCAST guidelines was employed to determine susceptibility patterns against itraconazole, voriconazole and posaconazole. A total of 44 (10.74 %) cases with positive fungal culture growth were studied. The median age of patients with fungal infection was 29.5 (IQR 16-43) years. Of 44 patients; 35 (79.6 %) had pure growth of one type of fungal. Candida albicans was the most common fungus isolated (n = 13; 29.6 %) followed by Aspergillus versicolor (n = 8; 18.2 %). A total of 7 (15.9 %) patients had disease complication at time of enrollment; of them 6 (13.6 %) had hearing loss. On follow up 7 (15.9 %) had poor treatment outcome. All five Aspergillus fumigatus strains resistant itraconazole with reduced susceptibility to voriconazole and posaconazole carried carrying TR34/L98H resistance allele. In addition, all Penicillium citrinum isolates were resistant to voriconazole while all Penicillium sumatrense were resistant to both itraconazole and voriconazole. There were non-significant association of poor treatment outcome and female gender, being HIV positive and being infected with moulds. Fungal infections play a significant role in SOM pathology in our setting. Diagnosis of fungal infections in developing countries should be improved so that appropriate management can be initiated on time to prevent associated complications.

  4. The effect of lipoprotein-associated phospholipase A2 deficiency on pulmonary allergic responses in aspergillus fumigatus sensitized mice

    Directory of Open Access Journals (Sweden)

    Jiang Zhilong

    2012-11-01

    Full Text Available Abstract Background Lipoprotein-associated phospholipase A2 (Lp-PLA2/platelet-activating factor acetylhydrolase (PAF-AH has been implicated in the pathogenesis of cardiovascular disease. A therapeutic targeting of this enzyme was challenged by the concern that increased circulating platelet activating factor (PAF may predispose to or increase the severity of the allergic airway response. The aim of this study was to investigate whether Lp-PLA2 gene deficiency increases the risk of PAF and IgE-mediated inflammatory responses in vitro and in vivo using mouse models. Methods Lp-PLA2-/- mice were generated and back crossed to the C57BL/6 background. PAF-AH activity was measured using a hydrolysis assay in serum and bronchoalveolar lavage (BAL samples obtained from mice. Aspergillus fumigatus (Af-specific serum was prepared for passive allergic sensitization of mice in vivo and mast cells in vitro. β- hexosaminidase release was studied in bone marrow derived mast cells sensitized with Af-specific serum or DNP-IgE and challenged with Af or DNP, respectively. Mice were treated with lipopolysaccharide (LPS and PAF intratracheally and studied 24 hours later. Mice were sensitized either passively or actively against Af and were studied 48 hours after a single intranasal Af challenge. Airway responsiveness to methacholine, inflammatory cell influx in the lung tissue and BAL, immunoglobulin (ELISA and cytokine (Luminex profiles were compared between the wild type (WT and Lp-PLA2-/- mice. Results PAF-AH activity was reduced but not completely abolished in Lp-PLA2-/- serum or by in vitro treatment of serum samples with a high saturating concentration of the selective Lp-PLA2 inhibitor, SB-435495. PAF inhalation significantly enhanced airway inflammation of LPS treated WT and Lp-PLA2-/- mice to a similar extent. Sensitized WT and Lp-PLA2-/- bone-marrow derived mast cells released β-hexosaminidase following stimulation by allergen or IgE crosslinking to

  5. A Novel Environmental Azole Resistance Mutation in Aspergillus fumigatus and a Possible Role of Sexual Reproduction in Its Emergence

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2017-06-01

    Full Text Available This study investigated the dynamics of Aspergillus fumigatus azole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50 wild-type and 2% (1/50 azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45 wild-type and 91% (41/45 resistant isolates. From the latter compost, 80% (36/45 of the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45 harbored the TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45 had a novel pan-triazole-resistant mutation (TR463/Y121F/M172I/T289A/G448S with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinical A. fumigatus isolates showed that the novel TR463 mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR46 repeats. Importantly, in the laboratory, we recovered the TR463 mutation from a sexual cross between two TR46 isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment of Aspergillus diseases.

  6. Infecção por pox vírus e Aspergillus fumigatus em Bubo virginianus (Coruja jacurutu

    Directory of Open Access Journals (Sweden)

    Joanna V.Z. Echenique

    Full Text Available Resumo: Este trabalho descreve um caso de infecção mista por pox vírus e Aspergillus fumigatus em Bubo virginianus (coruja jacurutu. A ave, um macho adulto, foi encaminhada ao Núcleo de Reabilitação da Fauna Silvestre do Instituto de Biologia da Universidade Federal de Pelotas (NURFS/CETAS/UFPEL. Apresentava bom estado corporal, estava ativa, porém com incapacidade de voo. Após três dias apresentou lesões crostosas e de aspecto verrucoso na superfície dorsal das patas. Havia, também, nódulos de mesmo aspecto na pálpebra esquerda e na cera. A ave morreu após 15 dias de sua chegada ao NURFS e foi necropsiada no Laboratório Regional de Diagnóstico da Faculdade de Veterinária da Universidade Federal de Pelotas (LRD/UFPel. Histologicamente, as lesões verrucosas caracterizavam-se por hiperplasia do epitélio e nas células das camadas basal, espinhosa, granular e córnea havia corpúsculos de inclusão intracitoplasmáticos do tipo Bollinger. Na microscopia eletrônica foram visualizadas partículas virais características de pox vírus, incluindo Bubo virginianus como um hospedeiro do vírus. Havia, ainda, infiltrado inflamatório de células mononucleares e focos de colônias bacterianas na derme. Nos pulmões havia congestão e presença de granulomas com hifas fúngicas, que pela técnica de Grocott, apresentaram ramificação dicotômica compatível com Aspergillus spp., identificado na cultura como A. fumigatus. O diagnóstico de infecção por avipoxvirus pode contribuir para estudos relacionados com a ocorrência desta doença nas populações de vida livre e como informação auxiliar para o manejo e conservação desta espécie. Sugere-se, ainda, a inclusão do uso de raios-X nos protocolos de centros de reabilitação como o diagnostico de aspergilose em aves rapinantes com bom estado corporal, porém incapazes de voar.

  7. Aflatoxin B1 producing potential of Aspergillus flavus strains isolated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... However, 65% of the strains produced AFB1 on Czapek's agar, 53% of the strains on potato dextrose agar (PDA) and none of the strains on Aspergillus flavus and parasiticus agar media (AFPA). The strain, DRAf 009 produced maximum AFB1 (4.0 – 40 µg/g agar) on all the agar media tested. Five strains of ...

  8. Preparative separation and purification of fumigaclavine C from fermented mycelia of Aspergillus fumigatus CY018 by macroporous adsorption resin.

    Science.gov (United States)

    Yao, Ling-Yun; Zhu, Yi-Xiang; Liu, Chang-Qing; Jiao, Rui-Hua; Lu, Yan-Hua; Tan, Ren-Xiang

    2015-05-01

    In this work, the separation and purification of fumigaclavine C (FC), an ergot alkaloid with strong anti-inflammatory activity from fermented mycelia of Aspergillus fumigatus was systematically evaluated. Among the eight tested resins, the non-polar resin D101 displayed the best adsorption and desorption based on of static adsorption and desorption tests. Adsorption isotherms were constructed on D101 resin and fitted well to the Freundlich model. Dynamic adsorption and desorption tests on a column packed with D101 resin have been investigated for optimization of chromatographic parameters. Under optimized conditions, the contents of FC increased from 7.32% (w/w) in the crude extract to 67.54% in the final product with a recovery yield of 90.35% (w/w) via one run. Furthermore, a lab scale-up separation was carried out, in which the FC content and recovery yield were 65.83% and 90.13%, respectively. These results demonstrated that this adsorption-desorption strategy by using D101 resin was simple and efficient, thus showing potential for large scale purification and preparation of FC in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Aspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity

    Directory of Open Access Journals (Sweden)

    Arsa Thammahong

    2017-04-01

    Full Text Available Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB, which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions.

  10. Assessment of Aspergillus fumigatus in Guinea Pig Bronchoalveolar Lavages and Pulmonary Tissue by Culture and Realtime Polymerase Chain Reaction Studies

    Directory of Open Access Journals (Sweden)

    Thomas F. Patterson

    2012-01-01

    Full Text Available In this study we pursued a diagnostic target in Aspergillus fumigatus (AF by using qualitative Realtime PCR combined with proprietary DNA primers and a hydrolysis probe specific for this fungal target. Qualitative Realtime PCR is a diagnostic tool that utilizes Realtime PCR technology and detects the presence or absence target specific DNA within a predetermined detection range. Respiratory tissue and fluids from experimentally infected guinea pigs were tested by extracting DNA from the samples which were amplified and detected using AF specific DNA primers and probe. This study included qualitative evaluations of all specimens for the presence of the DNA of AF. The findings in the tissues after AF infection were compared to the numbers of spores in aerosolized samples used to inoculate the animals. Results demonstrated that the specific probe and primer set could detect the presence or absence of AF DNA in the sample. The qualitative detection limit of the assay ranged from 6 × 104 copies to 6 copies. Since blood cultures are rarely positive for Aspergillosis, our data indicate that qualitative Realtime PCR, in combination with the appropriate DNA primers and probe can serve as an effective diagnostic tool in the early detection of fungal infections.

  11. Assessment of Aspergillus fumigatus in guinea pig bronchoalveolar lavages and pulmonary tissue by culture and realtime polymerase chain reaction studies.

    Science.gov (United States)

    Hooper, Dennis G; Bolton, Vincent E; Sutton, John S; Guilford, Frederick T; Straus, David C; Najvar, Laura K; Wiederhold, Nathan P; Kirkpatrick, William R; Patterson, Thomas F

    2012-01-01

    In this study we pursued a diagnostic target in Aspergillus fumigatus (AF) by using qualitative Realtime PCR combined with proprietary DNA primers and a hydrolysis probe specific for this fungal target. Qualitative Realtime PCR is a diagnostic tool that utilizes Realtime PCR technology and detects the presence or absence target specific DNA within a predetermined detection range. Respiratory tissue and fluids from experimentally infected guinea pigs were tested by extracting DNA from the samples which were amplified and detected using AF specific DNA primers and probe. This study included qualitative evaluations of all specimens for the presence of the DNA of AF. The findings in the tissues after AF infection were compared to the numbers of spores in aerosolized samples used to inoculate the animals. Results demonstrated that the specific probe and primer set could detect the presence or absence of AF DNA in the sample. The qualitative detection limit of the assay ranged from 6 × 10(4) copies to 6 copies. Since blood cultures are rarely positive for Aspergillosis, our data indicate that qualitative Realtime PCR, in combination with the appropriate DNA primers and probe can serve as an effective diagnostic tool in the early detection of fungal infections.

  12. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: a case study and review of the literature.

    Science.gov (United States)

    Camps, Simone M T; van der Linden, Jan W M; Li, Yi; Kuijper, Ed J; van Dissel, Jaap T; Verweij, Paul E; Melchers, Willem J G

    2012-01-01

    Nine consecutive isogenic Aspergillus fumigatus isolates cultured from a patient with aspergilloma were investigated for azole resistance. The first cultured isolate showed a wild-type phenotype, but four azole-resistant phenotypes were observed in the subsequent eight isolates. Four mutations were found in the cyp51A gene of these isolates, leading to the substitutions A9T, G54E, P216L, and F219I. Only G54 substitutions were previously proved to be associated with azole resistance. Using a Cyp51A homology model and recombination experiments in which the mutations were introduced into a susceptible isolate, we show that the substitutions at codons P216 and F219 were both associated with resistance to itraconazole and posaconazole. A9T was also present in the wild-type isolate and thus considered a Cyp51A polymorphism. Isolates harboring F219I evolved further into a pan-azole-resistant phenotype, indicating an additional acquisition of a non-Cyp51A-mediated resistance mechanism. Review of the literature showed that in patients who develop azole resistance during therapy, multiple resistance mechanisms commonly emerge. Furthermore, the median time between the last cultured wild-type isolate and the first azole-resistant isolate was 4 months (range, 3 weeks to 23 months), indicating a rapid induction of resistance.

  13. Metabolites with Insecticidal Activity from Aspergillus fumigatus JRJ111048 Isolated from Mangrove Plant Acrostichum specioum Endemic to Hainan Island

    Directory of Open Access Journals (Sweden)

    Zhikai Guo

    2017-12-01

    Full Text Available Fungi residing in mangroves are considered to be a bank of novel bioactive natural products. In the screening for bioactive metabolites from mangrove-derived fungi, the ethyl acetate extract of the fermentation broth of Aspergillus fumigatus JRJ111048, a fungus isolated from the leaves of the mangrove plant Acrostichum specioum endemic to Hainan island, was found to possess insecticidal activity against Spodoptera litura. Bioactivity-guided isolation lead to the discovery of seven metabolites 1–7, including one new anhydride derivative aspergide (1, one new lipid amide 11-methyl-11-hydroxyldodecanoic acid amide (2, and five known compounds; α-ethyl glucoside (3, spiculisporic acid B (4, spiculisporic acid C (5, spiculisporic acid (6, and secospiculisporic acid B (7. Their structures were established by NMR spectroscopic and MS analyses, and by comparison of previously reported data. Insecticidal activity against S. litura and antifungal activity of these compounds were investigated. As a result, the new compound 1 showed potent insecticidal activity against newly hatched larvae of S. litura, and compound 4 displayed weak antifungal activity against Candida albicans.

  14. Fumigaclavine C from a Marine-Derived Fungus Aspergillus Fumigatus Induces Apoptosis in MCF-7 Breast Cancer Cells

    Science.gov (United States)

    Li, Yong-Xin; Himaya, S.W.A.; Dewapriya, Pradeep; Zhang, Chen; Kim, Se-Kwon

    2013-01-01

    Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer. PMID:24351905

  15. Incidence of Cyp51 A key mutations in Aspergillus fumigatus-a study on primary clinical samples of immunocompromised patients in the period of 1995-2013.

    Directory of Open Access Journals (Sweden)

    Birgit Spiess

    Full Text Available As the incidence of azole resistance in Aspergillus fumigatus is rising and the diagnosis of invasive aspergillosis (IA in immunocompromised patients is rarely based on positive culture yield, we screened our Aspergillus DNA sample collection for the occurrence of azole resistance mediating cyp51 A key mutations. Using two established, a modified and a novel polymerase chain reaction (PCR assays followed by DNA sequence analysis to detect the most frequent mutations in the A. fumigatus cyp51 A gene conferring azole resistance (TR34 (tandem repeat, L98H and M220 alterations. We analyzed two itraconazole and voriconazole and two multi-azole resistant clinical isolates and screened 181 DNA aliquots derived from clinical samples (blood, bronchoalveolar lavage (BAL, biopsies, cerebrospinal fluid (CSF of 155 immunocompromised patients of our Aspergillus DNA sample collection, previously tested positive for Aspergillus DNA and collected between 1995 and 2013. Using a novel PCR assay for the detection of the cyp51 A 46 bp tandem repeat (TR46 directly from clinical samples, we found the alteration in a TR46/Y121F/T289A positive clinical isolate. Fifty stored DNA aliquots from clinical samples were TR46 negative. DNA sequence analysis revealed a single L98H mutation in 2010, two times the L98H alteration combined with TR34 in 2011 and 2012 and a so far unknown N90K mutation in 1998. In addition, four clinical isolates were tested positive for the TR34/L98H combination in the year 2012. We consider our assay of epidemiological relevance to detect A. fumigatus azole resistance in culture-negative clinical samples of immunocompromised patients; a prospective study is ongoing.

  16. AVALIAÇÃO DE FONTES DE CARBONO PARA A PRODUÇÃO DE INIBIDOR DE CRESCIMENTO DE Aspergillus fumigatus USP2 por Corynebacterium sp.

    Directory of Open Access Journals (Sweden)

    Gabrielle Fernanda Zimmer

    2013-07-01

    Full Text Available O aumento significativo na incidência de infecções fúngicas invasivas e a resistência natural de agentes etiológicos a antifúngicos existentes têm motivado a constante pesquisa por novos agentes antifúngicos nos ultimos anos. Neste sentido, foi selcionada uma cepa de Corynebacterium sp. com potencial antagonista frente à Aspergilus fumigatus USP2. A cepa foi cultivada em fase submersa e em fase sólida, avaliando-se a variação das fontes de glicose, sacarose e glicerol em presença de peptona, bem como o meio sintético Czapek. Os caldos de cultivo submerso foram utilizados para o ensaio de antagonismo microbiano com o fungo Aspergillus fumigatus USP2. Os resultados apontam que o cultivo em fase sólida utilizando glicose como fonte de carbono apresenta maior potencial inibitório da cepa de Corynebacterium sp. sobre o fungo Aspergillus fumigatus USP2.

  17. Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets.

    Science.gov (United States)

    Jin, Xianchun; Ning, Yu

    2013-11-15

    In the present study, alkaline pretreatment was applied for the enhanced laccase production from rice straw. Various process parameters including sodium hydroxide concentration, pH and fermentation temperature were optimized via response surface methodology (RSM) with a Box-Behnken design (BBD). Through regression analysis, it was found that laccase activity was well fitted by a quadratic polynomial equation (R(2)=0.998, Adj R(2)=0.995), and the fermentation temperature was the most significant factor influencing laccase activity. The optimized process conditions found were NaOH concentration of 0.39 mol L(-1), pH 3.12 and temperature 25.43 °C, under which laccase activity reached 142,198 ± 3586 U L(-1). Further studies were carried out to probe different dyes decolorization ability of laccase produced by Aspergillus fumigatus, A. fumigatus pellets and whole fermentation broth (WFB) using sodium hydroxide pretreated rice straw as sole carbon source. Results showed that pure laccase demonstrate limited decolorization ability to all the studied dyes, while crude laccase, A. fumigatus pellets and WFB exhibit significant decolorization ability to all the studied dyes with WFB being the most excellent one. Effectiveness of degradation was confirmed by uv-vis and phytotoxicity studies, which indicated that A. fumigatus transformed the dyes into non-toxic metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Overlapping and Distinct Roles of Aspergillus fumigatus UDP-glucose 4-Epimerases in Galactose Metabolism and the Synthesis of Galactose-containing Cell Wall Polysaccharides*

    Science.gov (United States)

    Lee, Mark J.; Gravelat, Fabrice N.; Cerone, Robert P.; Baptista, Stefanie D.; Campoli, Paolo V.; Choe, Se-In; Kravtsov, Ilia; Vinogradov, Evgeny; Creuzenet, Carole; Liu, Hong; Berghuis, Albert M.; Latgé, Jean-Paul; Filler, Scott G.; Fontaine, Thierry; Sheppard, Donald C.

    2014-01-01

    The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis. PMID:24257745

  19. Intra- and inter-individual variability of Aspergillus fumigatus reactive T-cell frequencies in healthy volunteers in dependency of mould exposure in residential and working environment.

    Science.gov (United States)

    Wurster, Sebastian; Weis, Philipp; Page, Lukas; Helm, Johanna; Lazariotou, Maria; Einsele, Hermann; Ullmann, Andrew J

    2017-10-01

    Invasive aspergillosis remains a deadly disease in immunocompromised patients, whereas the combination of an exaggerated immune response and continuous exposure lead to various hyperinflammatory diseases. This pilot study aimed to gain an overview of the intra- and inter-individual variability in Aspergillus fumigatus reactive T-helper cells in healthy adults and the correlation with environmental mould exposure. In this flow cytometric study, the frequencies of CD154 + A. fumigatus reactive T cells were evaluated in 70 healthy volunteers. All subjects completed a standardised questionnaire addressing their mould exposure. Subjects with intensive mould exposure in their professional or residential surrounding demonstrated considerably higher mean frequencies of A. fumigatus reactive T-helper and T-memory cells. Comparative evaluation of multiple measurements over time demonstrated relatively conserved reactive T-cell frequencies in the absence of major changes to the exposure profile, whereas those frequently exposed in professional environment or with changes to their risk score demonstrated a marked dependency of antigen reactive T-cell frequencies on recent mould exposure. This pilot study was the first to provide data on the intra-individual variability in A. fumigatus reactive T-cell frequencies and its linkage to mould encounter. Fungus reactive T cells are to be considered a valued tool for the assessment of environmental mould exposure. © 2017 Blackwell Verlag GmbH.

  20. Biochemical Stability and Molecular Dynamic Characterization of Aspergillus fumigatus Cystathionine γ-Lyase in Response to Various Reaction Effectors

    KAUST Repository

    El-Sayed, Ashraf S.A.

    2015-08-11

    Cystathionine γ-lyase (CGL) is a key enzyme in the methionine-cysteine cycle in all living organisms forming cysteine, α-ketobutyrate and ammonia via homocysteine and cystathionine intermediates. Although, human and plant CGLs have been extensively studied at the molecular and mechanistic levels, there has been little work on the molecular and catalytic properties of fungal CGL. Herein, we studied in detail for the first time the molecular and catalytic stability of Aspergillus fumigatus CGL, since conformational instability, inactivation and structural antigenicity are the main limitations of the PLP-dependent enzymes on various therapeutic uses. We examined these properties in response to buffer compositions, stabilizing and destabilizing agents using Differential Scanning Fluorometery (DSF), steady state and gel-based fluorescence of the intrinsic hydrophobic core, stability of internal aldimine linkage and catalytic properties. The activity of the recombinant A. fumigatus CGL was 13.8 U/mg. The melting temperature (Tm) of CGL in potassium phosphate buffer (pH 7.0-8.0) was 73.3 °C, with ∼3 °C upshifting in MES and sodium phosphate buffers (pH 7.0). The conformational thermal stability was increased in potassium phosphate, sodium phosphate and MES buffers, in contrast to Tris-HCl, HEPES (pH 7.0) and CAPS (pH 9.0-10.0). The thermal stability and activity of CGL was slightly increased in the presence of trehalose and glycerol that might be due to hydration of the enzyme backbone, unlike the denaturing effect of GdmCl and urea. Modification of surface CGL glutamic and aspartic acids had no significant effect on the enzyme conformational and catalytic stability. Molecular modeling and dynamics simulations unveil the high conformational stability of the overall scaffold of CGL with high flexibility at the non-structural regions. CGL structure has eight buried Trp residues, which are reoriented to the enzyme surface and get exposed to the solvent under

  1. Crystal Structure of the New Investigational Drug Candidate VT-1598 in Complex with Aspergillus fumigatus Sterol 14α-Demethylase Provides Insights into Its Broad-Spectrum Antifungal Activity

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Garvey, Edward P.; Hoekstra, William J.; Yates, Christopher M.; Wawrzak, Zdzislaw; Rachakonda, Girish; Villalta, Fernando; Lepesheva, Galina I.

    2017-05-01

    ABSTRACT

    Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungusAspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatusCYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis ofA. fumigatusCYP51/voriconazole andCandida albicansCYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using twoA. fumigatusstrains (strains 32820 and 1022) displayed a direct

  2. Identification of ten KB425796-A congeners from Paenibacillus sp. 530603 using an antifungal assay against Aspergillus fumigatus in combination with micafungin.

    Science.gov (United States)

    Kai, Hirohito; Yamashita, Midori; Takase, Shigehiro; Hashimoto, Michizane; Muramatsu, Hideyuki; Nakamura, Ikuko; Yoshikawa, Koji; Kanasaki, Ryuichi; Ezaki, Masami; Nitta, Kumiko; Watanabe, Masato; Inamura, Noriaki; Fujie, Akihiko

    2013-08-01

    The discovery and characterization of natural congeners is one approach for understanding the relationship between chemical structure and biological function. We recently isolated the novel antifungal metabolite KB425796-A produced by the recently isolated bacterium Paenibacillus sp. 530603. On the basis of morphological changes of Aspergillus fumigatus induced by KB425796-A in combination with micafungin, we developed a highly sensitive screening method for the specific detection of KB425796-A congeners. Using this method, we isolated ten congeners of KB425796-A, named KB425796-B, -C, -D, -E, -F, -G, -H, -I, -J and -K, which exhibited diverse antifungal potencies against A. fumigatus. One of the most potent congeners, KB425796-C, had antifungal activities against several micafungin-resistant infectious fungi. KB425796-C can be a potential drug candidate for treating micafungin-resistant fungal infections.

  3. Essential pathway identification: from in silico analysis to potential antifungal targets in Aspergillus fumigatus

    DEFF Research Database (Denmark)

    Thykær, Jette; Andersen, Mikael Rørdam; Baker, S. E.

    2009-01-01

    Computational metabolic flux modeling has been a great aid for both understanding and manipulating microbial metabolism. A previously developed metabolic flux model for Aspergillus niger, an economically important biotechnology fungus known for protein and organic acid production, is comprised...... of 1190 biochemically unique reactions that are associated with 871 open reading frames. Through a systematic in silico deletion of single metabolic reactions using this model, several essential metabolic pathways were identified for A. niger. A total of 138 reactions were identified as being essential...... biochemical reactions during growth on a minimal glucose medium. The majority of the reactions grouped into essential biochemical pathways covering cell wall biosynthesis, amino acid biosynthesis, energy metabolism and purine and pyrimidine metabolism. Based on the A. niger open reading frames associated...

  4. Gene expression profiles of human dendritic cells interacting with Aspergillus fumigatus in a bilayer model of the alveolar epithelium/endothelium interface.

    Directory of Open Access Journals (Sweden)

    Charles Oliver Morton

    Full Text Available The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549 and endothelium (human pulmonary artery epithelial cells, HPAEC on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC, monocyte-derived DC (moDC and myeloid DC (mDC, were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.

  5. Purification, biochemical characterization and structural modelling of alkali-stable β-1,4-xylan xylanohydrolase from Aspergillus fumigatus R1 isolated from soil.

    Science.gov (United States)

    Deshmukh, Rehan Ahmed; Jagtap, Sharmili; Mandal, Madan Kumar; Mandal, Suraj Kumar

    2016-02-04

    Aspergillus fumigatus R1 produced xylanase under submerged fermentation which degrades the complex hemicelluloses contained in agricultural substrates. Xylanases have gained considerable attention because of their tremendous applications in industries. The purpose of our study was to purify xylanase and study its biochemical properties. We have predicted the secondary structure of purified xylanase and evaluated its active site residues and substrate binding sites based on the global and local structural similarity. Various microorganisms were isolated from Puducherry soil and screened by Congo-red test. The best isolate was identified to be Aspergillus fumigatus R1. The production kinetics showed the highest xylanase production (208 IU/ml) by this organism in 96 h using 1 % rice bran as the only carbon source. The purification of extracellular xylanase was carried out by fractional ammonium sulphate precipitation (30-55 %), followed by extensive dialysis and Bio-Gel P-60 Gel-filtration chromatography. The enzyme was purified 58.10 folds with a specific activity of 38196.22 IU/mg. The biochemical characterization of the pure enzyme was carried out for its optimum pH and temperature (5.0 and 50(0)C), pH and temperature stability, molecular mass (Mr) (24.5 kDa) and pI (6.29). The complete sequence of protein was obtained by mass spectrometry analysis. Apparent Km and Vmax values of the xylanase for birchwood xylan were 11.66 mg/ml and 87.6 μmol min(-1) mg(-1) respectively. Purified xylanase was analyzed by mass-spectrometry which revealed 2 unique peptides. Xylanase under current study showed significant production using agricultural residues and a broad range of pH stability in the alkaline region. Xylanase produced by Aspergillus fumigatus R1 could serve as the enzyme of choice in industries.

  6. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist.

    Directory of Open Access Journals (Sweden)

    Mark S Gresnigt

    2014-03-01

    Full Text Available The galactosaminogalactan (GAG is a cell wall component of Aspergillus fumigatus that has potent anti-inflammatory effects in mice. However, the mechanisms responsible for the anti-inflammatory property of GAG remain to be elucidated. In the present study we used in vitro PBMC stimulation assays to demonstrate, that GAG inhibits proinflammatory T-helper (Th1 and Th17 cytokine production in human PBMCs by inducing Interleukin-1 receptor antagonist (IL-1Ra, a potent anti-inflammatory cytokine that blocks IL-1 signalling. GAG cannot suppress human T-helper cytokine production in the presence of neutralizing antibodies against IL-1Ra. In a mouse model of invasive aspergillosis, GAG induces IL-1Ra in vivo, and the increased susceptibility to invasive aspergillosis in the presence of GAG in wild type mice is not observed in mice deficient for IL-1Ra. Additionally, we demonstrate that the capacity of GAG to induce IL-1Ra could also be used for treatment of inflammatory diseases, as GAG was able to reduce severity of an experimental model of allergic aspergillosis, and in a murine DSS-induced colitis model. In the setting of invasive aspergillosis, GAG has a significant immunomodulatory function by inducing IL-1Ra and notably IL-1Ra knockout mice are completely protected to invasive pulmonary aspergillosis. This opens new treatment strategies that target IL-1Ra in the setting of acute invasive fungal infection. However, the observation that GAG can also protect mice from allergy and colitis makes GAG or a derivative structure of GAG a potential treatment compound for IL-1 driven inflammatory diseases.

  7. Extracción y caracterización de antígeno micelial de Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Bernarda Cuadrado

    1995-06-01

    Full Text Available Este estudio presenta la estandarización y caracterización antigénica de un extracto micelial de Aspergillus fumigatus, con el fin de utilizarlo posteriormente en pruebas diagnósticas de aspergilosis pulmonar. Para la evaluación del antígeno micelial, se emplearon técnicas de doble inmunodifusión (DD, contra inmunoelectroforesis (CIE+ ID y enzimoinmuno ensayo (ELISA, comparando sus resultados con un antígeno de referencia. La concentración de proteínas y carbohidratos del antígeno estudiado fue de 8.800pglmL y 2.452 pg/mL respectivamente, muy similares a los encontrados en el antígeno de referencia. Los antígenos analizados presentaron bandas de identidad total y parcial en la DD. No hubo bandas de precipitinas al enfrentar ambos antígenos con 20 sueros negativos, utilizando las pruebas de DD y CIE+ID. En la ClE+lD se presentaron precipitinas en los lados anódico y catódico de ambos antígenos. El punto de corte determinado en la prueba de ELlSA para el antígeno del estudio fué de 0,352, con un intervalo de confianza del 95%. Es posible concluir que el antígeno micelial estudiado puede ser empleado en pruebas serológicas diagnósticas.

  8. Aspergillus fumigatus spore proteomics and genetics reveal that VeA represses DefA-mediated DNA damage response.

    Science.gov (United States)

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young; Heo, In-Beom; Kim, Young Hwan; Yu, Jae-Hyuk

    2016-10-04

    Aspergillus fumigatus reproduces and infects host by forming a high number of small asexual spores (conidia). The velvet proteins are global transcriptional regulators governing the complex process of conidiogenesis in this fungus. Here, to further understand the velvet-mediated regulation, we carried out comparative proteomic analyses of conidia of wild type (WT) and three velvet mutants (ΔveA, ΔvelB and ΔvosA). Cluster analysis of 184 protein spots showing at least 1.5-fold differential accumulation between WT and mutants reveal the clustering of WT- ΔveA and ΔvelB-ΔvosA. Among 43 proteins identified by Nano-LC-ESI-MS/MS, 23 including several heat shock proteins showed more than two-fold reduction in both the ∆velB and ∆vosA conidia. On the contrary, three proteins exhibited more than five-fold increase in ∆veA only, including the putative RNA polymerase II degradation factor DefA. The deletion of defA resulted in a reduced number of conidia and restricted colony growth. In addition, the defA deletion mutant conidia showed hypersensitivity against the DNA damaging agents NQO and MMS, while the ΔveA mutant conidia were more resistant against to NQO. Taken together, we propose that VeA controls protein level of DefA in conidia, which are dormant and equipped with multiple layers of protection against environmental cues. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cloning and characterization of F3PYC gene encoding pyruvate carboxylase in Aspergillus flavus strain (F3).

    Science.gov (United States)

    Qayyum, Sadia; Khan, Ibrar; Bhatti, Zulfiqar Ahmad; Peng, Changsheng

    2017-08-01

    Pyruvate carboxylase is a major enzyme for biosynthesis of organic acids like; citric acid, fumeric acid, and L-malic acid. These organic acids play very important role for biological remediation of heavy metals. In this study, gene walking method was used to clone and characterize pyruvate carboxylase gene (F3PYC) from heavy metal resistant indigenous fungal isolate Aspergillus flavus (F3). 3579 bp of an open reading frame which encodes 1193 amino acid protein (isoelectric point: 6.10) with a calculated molecular weight of 131.2008 kDa was characterized. Deduced protein showed 90-95% similarity to those deduced from PYC gene from different fungal strains including; Aspergillus parasiticus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus clavatus, and Aspergillus niger. Protein generated from the PYC gene was a homotetramer (α4) and having four potential N-linked glycosylation sites and had no signal peptide. Amongst most possible N-glycosylation sites were -N-S-S-I- at 36 amino acid, -N-G-T-V- at 237 amino acid, N-G-S-S- at 517 amino acid, and N-T-S-R- at 1111 amino acid, with several functions have been proposed for the carbohydrate moiety such as thermal stability, pH, and temperature optima for activity and stabilization of the three-dimensional structure. Hence, cloning of F3PYC gene from A. flavus has important biotechnological applications.

  10. Phosphate solubilizing ability of two Arctic Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Shiv Mohan Singh,

    2011-06-01

    Full Text Available Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP solubilizing ability in Pikovskaya's medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 µg ml–1, while Aspergillus niger strain-2 solubilized 262 µg ml–1 from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

  11. Aspergillus fumigatus devoid of cell wall β-1,3-glucan is viable, massively sheds galactomannan and is killed by septum formation inhibitors.

    Science.gov (United States)

    Dichtl, Karl; Samantaray, Sweta; Aimanianda, Vishukumar; Zhu, Zhaojun; Prévost, Marie-Christine; Latgé, Jean-Paul; Ebel, Frank; Wagener, Johannes

    2015-02-01

    Echinocandins inhibit β-1,3-glucan synthesis and are one of the few antimycotic drug classes effective against Aspergillus spp. In this study, we characterized the β-1,3-glucan synthase Fks1 of Aspergillus fumigatus, the putative target of echinocandins. Data obtained with a conditional mutant suggest that fks1 is not essential. In agreement, we successfully constructed a viable Δfks1 deletion mutant. Lack of Fks1 results in characteristic growth phenotypes similar to wild type treated with echinocandins and an increased susceptibility to calcofluor white and sodium dodecyl sulfate. In agreement with Fks1 being the only β-1,3-glucan synthase in A. fumigatus, the cell wall is devoid of β-1,3-glucan. This is accompanied by a compensatory increase of chitin and galactosaminogalactan and a significant decrease in cell wall galactomannan due to a massively enhanced galactomannan shedding. Our data furthermore suggest that inhibition of hyphal septation can overcome the limitations of echinocandin therapy. Compounds inhibiting septum formation boosted the antifungal activity of caspofungin. Thus, development of clinically applicable inhibitors of septum formation is a promising strategy to improve existing antifungal therapy. © 2014 John Wiley & Sons Ltd.

  12. Aflatoxin B 1 producing potential of Aspergillus flavus strains ...

    African Journals Online (AJOL)

    Aflatoxin B 1 (AFB1) producing potential of different strains of Aspergillus flavus, isolated from 1,200 stored rice grains collected from 43 locations in 20 rice growing states in India was investigated. Eighty-five strains of A. flavus were isolated from the discolored rice grains and tested for their AFB1 producing potential on ...

  13. Characterization of the T-cell-mediated immune response against the Aspergillus fumigatus proteins Crf1 and catalase 1 in healthy individuals.

    Science.gov (United States)

    Jolink, Hetty; Meijssen, Isabelle C; Hagedoorn, Renate S; Arentshorst, Mark; Drijfhout, Jan W; Mulder, Arend; Claas, Frans H J; van Dissel, Jaap T; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2013-09-01

    Invasive aspergillosis is a serious infectious complication after allogeneic stem cell transplantation. One of the strategies to improve the management of aspergillosis is the adoptive transfer of antigen-specific T cells, the success of which depends on the development of a broad repertoire of antigen-specific T cells. In this study, we identified CD4+ T cells specific for the Aspergillus proteins Crf1 and catalase 1 in 18 of 24 healthy donors by intracellular staining for interferon γ and CD154. Crf1- and catalase 1-specific T cells were selected on the basis of CD137 expression and underwent single-cell expansion. Aspergillus-specific T-cell clones mainly exhibited a T-helper cell 1 phenotype and recognized a broad variety of T-cell epitopes. Five novel Crf1 epitopes, 2 previously described Crf1 epitopes, and 30 novel catalase 1 epitopes were identified. Ultimately, by using overlapping peptides of Aspergillus fumigatus proteins, Aspergillus-specific T-cell lines that have a broad specificity and favorable cytokine profile and are suitable for adoptive T-cell therapy can be generated in vitro.

  14. Prevalence, mechanisms and genetic relatedness of the human pathogenic fungus Aspergillus fumigatus exhibiting resistance to medical azoles in the environment of Taiwan.

    Science.gov (United States)

    Wang, Hsuan-Chen; Huang, Jui-Chang; Lin, Yong-Hong; Chen, Yu-Hsin; Hsieh, Ming-I; Choi, Pui-Ching; Lo, Hsiu-Jung; Liu, Wei-Lun; Hsu, Ching-Shan; Shih, Hsin-I; Wu, Chi-Jung; Chen, Yee-Chun

    2018-01-01

    Emerging azole resistance in Aspergillus fumigatus poses a serious threat to human health. This nationwide surveillance study investigated the prevalence and molecular characteristics of azole-resistant A. fumigatus environmental isolates in Taiwan, an island country with increasing use of azole fungicides. Of the 2760 air and soil samples screened from 2014 to 2016, 451 A. fumigatus isolates were recovered from 266 samples and 34 isolates from 29 samples displayed resistance to medical azoles (itraconazole, voriconazole or posaconazole). The resistance prevalence was 10.9% and 7.5% in A. fumigatus-positive samples and isolates respectively. Most (29, 85.3%) azole-resistant isolates harboured TR 34 /L98H mutations, which were widely distributed, clustered genetically with clinical isolates, and had growth rates that were similar to those of the wild-type isolates. Microsatellite genotyping revealed both the global spread of the TR 34 /L98H isolates and the occurrence of TR 34 /L98H/S297T/F495I isolates belonging to local microsatellite genotypes. AfuMDR3 and atrF, two efflux transporter genes, were constitutively upregulated in two individual resistant isolates without cyp51A mutations, highlighting their potential roles in azole resistance. These results emphasize the need for periodic environmental surveillance at the molecular level in regions in which azole fungicides are applied, and agricultural fungicide management strategies that generate less selective pressure should be investigated. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. [Biological safety of the molluscicidal ingredient from Aspergillus fumigatus SL-30 isolated from rhizosphere of Phytolacca acinosa].

    Science.gov (United States)

    Guo, Dan-Zhao; Chen, Jun

    2012-12-30

    To study biological safety of the molluscicidal ingredient (MI, a kind of diketopiperazines) in the exocellular broth of Aspergillus fumigatus SL-30' which was isolated from the rhizosphere of Phytolacca acinosa. The MI was prepared in concentrations ranging from 0.01 to 0.60 mg/L, at the same time molluscicidal activity against Oncomelannia hupensis was tested by using immersion method, and the LC50 in the case of immersion time for 24, 48 and 72 h was calculated. Acute toxicity of the MI with concentration ranging from 0.5 to 4.0 mg/L on Brachydanio rerio, Macrobrachium nippoensis and Rana limnochris was performed by standard laboratory procedure, and mortality rate of the tested animals with treated time of 24, 48 and 72 h was recorded. Effect of the MI on Eisenia fetida was tested using natural soil procedure with the dose of 1 and 10 mg/kg, and the poisoning performance and mortality in the 7th day and 14th day were recorded. Inhibition of the MI at 10 mg/kg on respiration of soil microorganisms was determined by sealed alkaline direct absorption method, and the released amount of CO2 (mg/100 g) in the 2nd, 5th, 7th, 10th, 12th and 15th day was determined. Molluscicidal activity of the MI against Oncomelania hupensis was shown with LC50 0.101, 0.062, and 0.022 mg/L in 24, 48 and 72 h, respectively. Mortality rate of Brachydanio rerio, Macrobrachium nippoensis and Rana limnochris all increased with the increase of MI concentration, and the LC50 of each kind of tested animals was recorded as follows: 1.941, 1.755 and 1.219 mg/L for Brachydanio rerio, 3.170, 2.720 and 2.419 mg/L for Macrobrachium nippoensis, 2.109, 1.751 and 1288 mg/L for Rana limnochris in 24, 48 and 72 h, respectively. The LC50 of MI on Eisenia fetida was >10.0 mg/kg. The inhibition rate of MI was less than 50% with a concentration of 10 mg/kg in 15 days. The MI shows molluscicidal activity on Oncomelania hupensis with much lower toxicity on Brachydanio rerio, Macrobrachium nippoensis and Rana

  16. Chromosomal duplication strains of Aspergillus nidulans and their instability

    International Nuclear Information System (INIS)

    Azevedo, J.L. de; Almeida Okino, L.M. de

    1981-01-01

    Strains of Aspergillus nidulans with chromosomal duplication were obtained after gamma irradiation followed by crossing of the translocated strains with normal strains. From 20 analysed colonies, 12 have shown translocations induced by irradiation. Segregants from four of these translocation strains crossed to normal strains have shown to be unstable although presenting normal morphology. Two segregants were genetically analysed. The first one has shown a duplication of part of linkage groups VIII and the second one presented a duplication of a segment of linkage group V. These new duplication strains in A. nidulans open new perspectives of a more detailed study of the instability phenomenon in this fungus. (Author) [pt

  17. Cellulase production by wild strains of Aspergillus niger, Penicillium ...

    African Journals Online (AJOL)

    Waste cellulosic materials (corncob, sawdust and sugarcane pulp) and crystalline cellulose induced cellulase production in wild strains of Aspergillus niger, Penicillium chrysogenum and Trichoderma harzianum isolated from a wood-waste dump in Lagos, Nigeria. Cellulose-supplemented media gave the maximum ...

  18. Ochratoxin A production by strains of Aspergillus niger var. niger.

    Science.gov (United States)

    Abarca, M L; Bragulat, M R; Castellá, G; Cabañes, F J

    1994-01-01

    In a survey of the occurrence of ochratoxin A (OA)-positive strains isolated from feedstuffs, two of the 19 isolates of Aspergillus niger var. niger that were studied produced OA in 2% yeast extract-15% sucrose broth and in corn cultures. This is the first report of production of OA by this species. PMID:8074536

  19. ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence.

    Directory of Open Access Journals (Sweden)

    Dawoon Chung

    2014-11-01

    Full Text Available The Aspergillus fumigatus sterol regulatory element binding protein (SREBP SrbA belongs to the basic Helix-Loop-Helix (bHLH family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA. How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.

  20. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds.

    Science.gov (United States)

    Perl, Thorsten; Jünger, Melanie; Vautz, Wolfgang; Nolte, Jürgen; Kuhns, Martin; Borg-von Zepelin, Margarete; Quintel, Michael

    2011-11-01

    Volatile metabolites of Aspergillus fumigatus and Candida species can be detected by gas chromatography/mass spectrometry (GC/MS). A multi-capillary column - ion mobility spectrometer (MCC-IMS) was used in this study to assess volatile organic compounds (VOCs) in the headspace above A. fumigatus and the four Candida species Candida albicans, Candida parapsilosis, Candida glabrata and Candida tropicalis in an innovative approach, validated for A. fumigatus and C. albicans by GC/MS analyses. For the detection of VOCs, a special stainless steel measurement chamber for the microbial cultures was used. The gas outlet was either attached to MCC-IMS or to adsorption tubes (Tenax GR) for GC/MS measurements. Isoamyl alcohol, cyclohexanone, 3-octanone and phenethylalcohol can be described as discriminating substances by means of GC/MS. With MCC-IMS, the results for 3-octanone and phenethylalcohol are concordant and additionally to GC/MS, ethanol and two further compounds (p_0642_1/p_683_1 and p_705_3) can be described. Isoamyl alcohol and cyclohexanone were not properly detectable with MCC-IMS. The major advantage of the MCC-IMS system is the feasibility of rapid analysis of complex gas mixtures without pre-concentration or preparation of samples and regardless of water vapour content in an online setup. Discrimination of fungi on genus level of the investigated germs by volatile metabolic profile and therefore detection of VOC is feasible. However, a further discrimination on species level for Candida species was not possible. © 2011 Blackwell Verlag GmbH.

  1. Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes.

    Directory of Open Access Journals (Sweden)

    Sara Mohebbi

    Full Text Available Hyperspectral imaging (HSI is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.

  2. Caspofungin Treatment of Aspergillus fumigatus Results in ChsG-Dependent Upregulation of Chitin Synthesis and the Formation of Chitin-Rich Microcolonies

    Science.gov (United States)

    Walker, Louise A.; Lee, Keunsook K.; Munro, Carol A.

    2015-01-01

    Treatment of Aspergillus fumigatus with echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2 and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca2+-calcineurin signaling pathways. A. fumigatus mutants with the chs gene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsG mutant was hypersensitive to caspofungin, and all other ΔAfchs mutants tested remained capable of increasing their chitin content in response to treatment with CaCl2 and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchs mutants tested, with the exception of the ΔAfchsG mutant, which remained sensitive to caspofungin. In vitro exposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was again AfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. These in vitro data demonstrate that A. fumigatus has the potential to survive echinocandin treatment in vivo by AfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections. PMID:26169407

  3. Fed-batch production of the hydrophobins RodA and RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    Objectives: Aspergillus fumigatus expresses the hydrophobins RodA and RodB on the surface of its conidia. RodA is known to be important for the pathogenesis of the fungus, but the role of RodB is unknown. The aim was to produce recombinant RodA and RodB for further characterication. Methods....... The expression of the RodA and RodB genes was first studied in culture flasks in buffered complex methanol medium as protein production was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Hydrophobins were purified using His-select Nickel Affinity gel...

  4. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus.

    Science.gov (United States)

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L; Armstrong-James, Darius; Espeso, Eduardo A; Read, Nick D; Nierman, William C; Bignell, Elaine M

    2017-12-01

    Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca 2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  5. Significant structural change in both O- and N-linked carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under different culture conditions.

    Science.gov (United States)

    Kudoh, Atsushi; Okawa, Yoshio; Shibata, Nobuyuki

    2015-01-01

    Invasive aspergillosis is an important cause of morbidity and mortality in immunocompromised patients. Diagnosis of this infection frequently employs detection of the circulating galactomannan in the patient serum using enzyme immunoassay (EIA), a highly sensitive and specific system. Although there are many structural studies of the galactomannan of Aspergillus fumigatus, some inconsistencies are present in these results. In this study, to clarify the relationship between the growth conditions and structure of the galactomannans, we cultured A. fumigatus using two distinct yeast/fungal cultivation media, i.e. the yeast extract-peptone-dextrose (YPD) medium and yeast nitrogen base (YNB) medium. Galactomannans prepared from the resulting culture supernatants were structurally characterized by (1)H and (13)C nuclear magnetic resonance, methylation analysis, acetolysis and α-mannosidase degradation. These assays revealed that the galactomannan from the YPD cultivation had short β-1,5-linked galactofuranose (Galf) oligosaccharide chains in both the O- and N-linked carbohydrate moieties, while the galactomannan from the YNB cultivation incorporated long Galf oligosaccharide chains. The galactomannans derived from the two culture conditions significantly differed in reactivity based on the EIA diagnostic system. We also demonstrated the presence of a novel Galf-containing branched oligosaccharide in the O-linked moiety. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Purification and Characterization of Extracellular enzyme from Aspergillus fumigatus and Its Application on a pennisetum sp for enhanced glucose production

    Directory of Open Access Journals (Sweden)

    Sonali Mohapatra

    2017-12-01

    Full Text Available Aspergillus species are saprophytic fungi widely distributed in nature and are associated with a number of human diseases. The present study was investigated for production of extracellular cellulase from Aspergillus fumigatus which could be potentially used for degradation of cellulose in lignocellulosic biomass for bioethanol production. In the present work, A. fumigatus were grown in fungal basal medium and preserved at 30 °C for 72 h. The cellulase enzyme was filtered (using Whatman filter paper, precipitated (using ammonium sulphate, dialysed and then purified on a Sepharose 6B ion exchange column. The cellulase enzyme showed a purification of 0.4 fold and the molecular weight was determined as 100 kDa by SDS-PAGE. The optimum pH, temperature, incubation time of the enzyme was determined to be pH 7.0, 35 °C and 24 h respectively. The presence of metal ion Mn2+, followed by Ca2+ and Co2+ was found to increase the cellulase activity. Notably, the cellulase activity was not significantly affected in the presence of additives like EDTA, and Triton X-100 and β-mercaptoethanol. Response surface methodology was used to design optimisation experiments for saccharification of lignocellulosic biomass (hybrid napier grass and the response i.e. glucose yield was considered as the product. The glucose yield was considerably increased from 101.4 mg/g to 856.5 mg/g in the optimised conditions of 35°C, pH 5.2 with substrate concentration (ultrasono assisted alkali pretreated biomass of 3.5 g, with enzyme concentration of 3 ml was incubated for 24 h. Further, the statistical analysis using ANNOVA demonstrated a p- value of less than 0.005 and the R2 value of 90.18.

  7. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (LBNL); (Missouri); (VPI)

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  8. Comparative studies on pectinases obtained from Aspergillus ...

    African Journals Online (AJOL)

    Comparative studies on pectinases obtained from Aspergillus fumigatus and Aspergillus niger in submerged fermentation system using pectin extracted from mango, orange and pineapple peels as carbon sources.

  9. Analysis of performance of a PCR-based assay to detect DNA of Aspergillus fumigatus in whole blood and serum: a comparative study with clinical samples.

    Science.gov (United States)

    Bernal-Martínez, Leticia; Gago, Sara; Buitrago, María J; Gomez-Lopez, Alicia; Rodríguez-Tudela, Juan L; Cuenca-Estrella, Manuel

    2011-10-01

    The performance of a real-time PCR-based assay was retrospectively analyzed (according to European Organization for Research and Treatment of Cancer/Mycosis Study Group criteria) in the samples of patients with invasive aspergillosis. A total of 711 serial samples (356 whole-blood and 355 serum samples) from 38 adult patients were analyzed. The Aspergillus fumigatus PCR assay results were positive for 89 of 356 (25%) whole-blood samples and 90 of 355 (25.35%) serum samples. Positive PCR results were seen in 29 of 31 (93.5%) patients for which serum was analyzed and in 31 of 33 (93.9%) cases with whole-blood specimens. Both blood and serum samples were available in 26 cases, and significant differences were not observed in this subgroup of cases. The average number of threshold cycles (C(T)) for positive blood samples was 37.6, and the average C(T) for serum was 37.4. The DNA concentration ranged between 2 and 50 fg per μl of sample, with average DNA concentrations of 10.2 and 11.7 fg in positive blood and serum samples, respectively (P > 0.01). The performance of this PCR-based quantitative assay was similar for both serum and blood samples. We recommend serum samples as the most convenient hematological sample to use for Aspergillus DNA quantification when serial determinations are done.

  10. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 on Aflatoxins Production

    Directory of Open Access Journals (Sweden)

    Fernando Bernardo

    2008-03-01

    Full Text Available Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied concerning its toxicity for animals and humans; they are able to induce liver cancer and caused a large range of adverse effects on living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Moulds growth is conditioned by many ecological factors, including biotic one’s. Hazard characterization models for Aflatoxins in crops must take in consideration the biotic interaction that moulds establish between them on their growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species, with a competent strain (Aspergillus parasiticus ATCC 15517 using an in vitro production model. The laboratorial model concerns to a natural matrix (humidified cracked corn, in which each wild strain challenged the producer strain for Aflatoxins production. Cultures were incubated at 28ºC for 12 days and sampled at 8th and 12th. Aflatoxins detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonist effects on the Aflatoxin biosynthesis. Productivity increases were particularly evident at 8th day of incubation with wild strains of A. flavipes (+ 70.4 % , A. versicolor (+ 54.9 % and A. flavus 3 (+ 62.6 %. Antagonist effects were found with A. niger (- 69.5% , A. fumigatus (- 47.6 % and A. terreus (- 47.6 % at 12th day. The increasable effects were more evident at 8th of incubation and the decrease was more patent at the 12th day. Results show that the development of Aspergilla strains

  11. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    Science.gov (United States)

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  12. (HN1) strain of Aspergillus niger

    African Journals Online (AJOL)

    login123

    2016-09-26

    Sep 26, 2016 ... Tween-20, Tween-80, Tributyrin, Triton-X-100 and glucose were used to investigate their effect on extracellular lipase production by both LPF-5 and HN1 strain. These carbon sources were added individually to the production medium at a constant concentration. (1%, w/v) by replacing the original carbon ...

  13. Determination of some properties of free and immobilized urease from aspergillus fumigatus and its application in urea assay

    International Nuclear Information System (INIS)

    Tetiker, A.T.; Ertan, F.

    2016-01-01

    Urease enzyme was extracted from Apergillus fumigatus and immobilized in calcium alginate beads. The immobilization efficiency was calculated as 82.5 %. Optimum pH and temperature for free and immobilized enzymes were found to be 7.0 and 40 degree C, respectively. The immobilized urease had a better Km value but, catalytic efficiencies (kcat/Km) were very similar. Immobilized enzyme maintained 44% of its initial activity after 5 repeated use of enzyme. It was found that storage stability of immobilized enzyme was better than that of the free enzyme. Immobilized urease enzyme was used for the determination of urea amounts in animal feed. (author)

  14. Diagnóstico de ABPA em pacientes portadores de fibrose cística: utilidade clínica da pesquisa de IgE específica contra alérgenos recombinantes do Aspergillus fumigatus ABPA diagnosis in cystic fibrosis patients: the clinical utility of IgE specific to recombinant Aspergillus fumigatus allergens

    Directory of Open Access Journals (Sweden)

    Marina B. Almeida

    2006-06-01

    Full Text Available OBJETIVO: A aspergilose broncopulmonar alérgica (ABPA é um fator complicador da fibrose cística que pode determinar uma combinação devastadora na evolução da doença pulmonar. A sobreposição de sinais e sintomas das duas enfermidades dificulta o diagnóstico, mesmo aplicando critérios padronizados. O objetivo deste trabalho foi identificar, em grupo de portadores de fibrose cística, os casos de ABPA através da detecção de IgE específica contra os alérgenos recombinantes do Aspergillus fumigatus e confrontar esse método com os critérios preconizados pela Cystic Fibrosis Foundation. MÉTODOS: Cinqüenta e quatro pacientes de 2 a 20 anos, com características que poderiam estar isoladamente presentes na ABPA, foram avaliados sistematicamente, incluindo: dados clínicos, tomografia computadorizada de tórax, teste cutâneo de hipersensibilidade imediata para A. fumigatus; dosagem de IgE sérica total, RAST para A. fumigatus, e IgE sérica específica para alérgenos recombinantes r Asp f1, f2, f3, f4 e f6. RESULTADOS: Foram elegíveis para o estudo 39 pacientes. Destes, 32 foram investigados. Houve sensibilização ao A. fumigatus em 34%. Ambos os métodos, o critério da Cystic Fibrosis Foundation e a pesquisa de IgE específica contra antígenos recombinantes, determinaram três casos de ABPA; entretanto, o diagnóstico foi concordante em apenas dois pacientes. CONCLUSÃO: A detecção de IgE específica contra antígenos recombinantes do A. fumigatus foi ferramenta útil para detecção precoce da sensibilização e diagnóstico de ABPA. No entanto, a confirmação diagnóstica não pôde ser desvinculada da condição clínica, e sua utilização para diagnóstico, detecção de recidivas e critério de cura ainda requer estudos longitudinais, envolvendo maior número de pacientes.OBJECTIVE: Allergic bronchopulmonary aspergillosis (ABPA is a complicating factor of cystic fibrosis which can result in a devastating combination as

  15. Strain improvement of Aspergillus niger for enhanced lipase production.

    Science.gov (United States)

    Sandana Mala, John Geraldine; Kamini, Numbi R.; Puvanakrishnan, Rengarajulu

    2001-08-01

    The enhancement of lipase production from Aspergillus niger was attempted by ultraviolet (UV) and nitrous acid mutagenesis, and the mutants were selected on media containing bile salts. Nitrous acid mutants exhibited increased efficiency for lipase production when compared with UV mutants in submerged fermentation. The hyperproducing UV and nitrous acid mutants were further subjected to a second step of mutagenesis to devise an economical and ecofriendly technique for lipase production by the effective use of hydrocarbons. One percent kerosene was found to be optimal for lipase production, and one of the mutant strains NAII exhibited 2.53 times more increased lipase activity than the parental strain did. This investigation indicates a possible role for the A. niger mutant strains in the biodegradation of oil-polluted environments for the development of ecofriendly technologies.

  16. Genetic relationships among strains of the Aspergillus niger aggregate

    DEFF Research Database (Denmark)

    Ferracin, L.M.; Frisvad, Jens Christian; Taniwaki, M.H.

    2009-01-01

    We analyzed the genetic relationships between 51 fungal isolates previously identified as A. niger aggregate, obtained from dried fruit samples from worldwide origin and 7 A. tubingensis obtained from Brazilian coffee beans samples. Greater fungal diversity was found in black sultanas. Aspergillus...... an association between extrolite patterns and molecular clustering is speculated. A. tubingensis were the second most frequent species and this species were clearly subdivided into two groups. The finding of two groups for A. tubingensis strains could not yet explain the contradictions found in the literature...

  17. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld

    2016-01-01

    that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds...... of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species....

  18. Combination of Voriconazole and Anidulafungin for Treatment of Triazole-Resistant Aspergillus fumigatus in an In Vitro Model of Invasive Pulmonary Aspergillosis

    Science.gov (United States)

    Jeans, Adam R.; Howard, Susan J.; Al-Nakeeb, Zaid; Goodwin, Joanne; Gregson, Lea; Warn, Peter A.

    2012-01-01

    Voriconazole is a first-line agent for the treatment of invasive pulmonary aspergillosis. Isolates with elevated voriconazole MICs are increasingly being seen, and the optimal treatment regimen is not defined. We investigated whether the combination of voriconazole with anidulafungin may be beneficial for the treatment of A. fumigatus strains with elevated voriconazole MICs. We used an in vitro model of the human alveolus to define the exposure-response relationships for a wild-type strain (voriconazole MIC, 0.5 mg/liter) and strains with defined molecular mechanisms of triazole resistance (MICs, 4 to 16 mg/liter). All strains had anidulafungin minimum effective concentrations (MECs) of 0.0078 mg/liter. Exposure-response relationships were estimated using galactomannan as a biomarker. Concentrations of voriconazole and anidulafungin were measured using high-performance liquid chromatography (HPLC). The interaction of voriconazole and anidulafungin was described using the Greco model. Fungal growth was progressively inhibited with higher drug exposures of voriconazole. Strains with elevated voriconazole MICs required proportionally greater voriconazole exposures to achieve a comparable antifungal effect. Galactomannan concentrations were only marginally reduced by anidulafungin monotherapy. An additive effect between voriconazole and anidulafungin was apparent. In conclusion, the addition of anidulafungin does not markedly alter the exposure-response relationship of voriconazole. A rise in serum galactomannan during combination therapy with voriconazole and anidulafungin should be interpreted as treatment failure and not attributed to a paradoxical reaction related to echinocandin treatment. PMID:22825124

  19. Uptake and efflux kinetics, and intracellular activity of voriconazole against Aspergillus fumigatus in human pulmonary epithelial cells: a new application for the prophylaxis and early treatment of invasive pulmonary aspergillosis.

    Science.gov (United States)

    Wang, Taotao; Yang, Qianting; Chen, Lu; Li, Ying; Meng, Ti; Wang, Yan; Zhang, Tao; Lei, Jin'e; Xing, Jianfeng; Dong, Yalin

    2017-06-01

    Invasive pulmonary aspergillosis (IPA), most caused by Aspergillus fumigatus, is a serious life-threatening infection in immunocompromised patients. Voriconazole is used to prevent and treat IPA. However, little is known about the pharmacological characteristics of voriconazole in pulmonary epithelial cells, which are the target site for the prophylaxis and early treatment of IPA. The aim of the study was to evaluate the kinetics and activity of voriconazole against A. fumigatus in A549 cells. High-performance liquid chromatography/tandem mass spectrometry and time-kill method were used to study the cellular pharmacokinetic and pharmacodynamics of voriconazole. Voriconazole exerted a concentration-dependent toxic effect on A549 cells and could penetrate into cells, reaching plateau concentrations of 1.14 ± 0.64, 3.72 ± 1.38 and 6.36 ± 0.95 ng/mg protein after A549 cells were exposed to voriconazole at extracellular concentrations of 2, 8 and 16 mg/L for 2 h, respectively. The efflux of voriconazole was rapid, with a half-life of 10.2 min. Voriconazole can decrease the A. fumigatus conidia invade cells, and the number of viable A. fumigatus conidia in cells can be decreased 2.1- to 20.6-fold when A549 cells were cultured in medium containing voriconazole. After 24-h incubation, 75.6% and 80.5% of intracellular A. fumigatus were killed when extracellular voriconazole concentration was 8 and 16 mg/L, respectively. This study illustrated a new application for the prophylaxis and early treatment of IPA from the cellular pharmacokinetics and pharmacodynamics and emphasized the importance of monitoring concentrations of voriconazole in epithelial lining fluid in immunocompromised patients receiving voriconazole therapy. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  20. Comparison of Two Molecular Assays for Detection and Characterization of Aspergillus fumigatus Triazole Resistance and Cyp51A Mutations in Clinical Isolates and Primary Clinical Samples of Immunocompromised Patients

    OpenAIRE

    Patricia Postina; Julian Skladny; Tobias Boch; Oliver A. Cornely; Oliver A. Cornely; Axel Hamprecht; Peter-Michael Rath; Jörg Steinmann; Oliver Bader; Thomas Miethke; Anne Dietz; Natalia Merker; Wolf-Karsten Hofmann; Dieter Buchheidt; Birgit Spiess

    2018-01-01

    In hematological patients, the incidence of invasive aspergillosis (IA) caused by azole resistant Aspergillus fumigatus (ARAf) is rising. As the diagnosis of IA is rarely based on positive culture in this group of patients, molecular detection of resistance mutations directly from clinical samples is crucial. In addition to the in-house azole resistance ARAf polymerase chain reaction (PCR) assays detecting the frequent mutation combinations TR34/L98H, TR46/Y121F/T289A, and M220 in the Aspergi...

  1. Comparison of Two Molecular Assays for Detection and Characterization of Aspergillus fumigatus Triazole Resistance and Cyp51A Mutations in Clinical Isolates and Primary Clinical Samples of Immunocompromised Patients

    Directory of Open Access Journals (Sweden)

    Patricia Postina

    2018-03-01

    Full Text Available In hematological patients, the incidence of invasive aspergillosis (IA caused by azole resistant Aspergillus fumigatus (ARAf is rising. As the diagnosis of IA is rarely based on positive culture in this group of patients, molecular detection of resistance mutations directly from clinical samples is crucial. In addition to the in-house azole resistance ARAf polymerase chain reaction (PCR assays detecting the frequent mutation combinations TR34/L98H, TR46/Y121F/T289A, and M220 in the Aspergillus fumigatus (A. fumigatus Cyp51A gene by subsequent DNA sequence analysis, we investigated in parallel the commercially available AsperGenius® real time PCR system in detecting the Cyp51A alterations TR34/L98H and Y121F/T289A directly from 52 clinical samples (15 biopsies, 22 bronchoalveolar lavage (BAL, 15 cerebrospinal fluid (CSF samples and ARAf isolates (n = 3 of immunocompromised patients. We analyzed DNA aliquots and compared both methods concerning amplification and detection of Aspergillus DNA and Cyp51A alterations. As positive control for the feasibility of our novel Y121F and T289A PCR assays, we used two A. fumigatus isolates with the TR46/Y121F/T289A mutation combination isolated from hematological patients with known Cyp51A alterations and a lung biopsy sample of a patient with acute myeloid leukemia (AML. The rate of positive ARAf PCR results plus successful sequencing using the ARAf PCR assays was 61% in biopsies, 29% in CSF, 67% in BAL samples and 100% in isolates. In comparison the amount of positive PCRs using the AsperGenius® assays was 47% in biopsies, 42% in CSF, 59% in BAL samples and 100% in isolates. Altogether 17 Cyp51A alterations were detected using our ARAf PCRs plus DNA sequencing and therefrom 10 alterations also by the AsperGenius® system. The comparative evaluation of our data revealed that our conventional PCR assays are more sensitive in detecting ARAf in BAL and biopsy samples, whereby differences were not significant

  2. Complement Component 3C3 and C3a Receptor Are Required in Chitin-Dependent Allergic Sensitization to Aspergillus fumigatus but Dispensable in Chitin-Induced Innate Allergic Inflammation

    Science.gov (United States)

    Roy, René M.; Paes, Hugo C.; Nanjappa, Som G.; Sorkness, Ron; Gasper, David; Sterkel, Alana; Wüthrich, Marcel; Klein, Bruce S.

    2013-01-01

    ABSTRACT Levels of the anaphylatoxin C3a are increased in patients with asthma compared with those in nonasthmatics and increase further still during asthma exacerbations. However, the role of C3a during sensitization to allergen is poorly understood. Sensitization to fungal allergens, such as Aspergillus fumigatus, is a strong risk factor for the development of asthma. Exposure to chitin, a structural polysaccharide of the fungal cell wall, induces innate allergic inflammation and may promote sensitization to fungal allergens. Here, we found that coincubation of chitin with serum or intratracheal administration of chitin in mice resulted in the generation of C3a. We established a model of chitin-dependent sensitization to soluble Aspergillus antigens to test the contribution of complement to these events. C3−/− and C3aR−/− mice were protected from chitin-dependent sensitization to Aspergillus and had reduced lung eosinophilia and type 2 cytokines and serum IgE. In contrast, complement-deficient mice were not protected against chitin-induced innate allergic inflammation. In sensitized mice, plasmacytoid dendritic cells from complement-deficient animals acquired a tolerogenic profile associated with enhanced regulatory T cell responses and suppressed Th2 and Th17 responses specific for Aspergillus. Thus, chitin induces the generation of C3a in the lung, and chitin-dependent allergic sensitization to Aspergillus requires C3aR signaling, which suppresses regulatory dendritic cells and T cells and induces allergy-promoting T cells. PMID:23549917

  3. Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.

    Science.gov (United States)

    Heerd, Doreen; Tari, Canan; Fernández-Lahore, Marcelo

    2014-09-01

    Strain improvement is a powerful tool in commercial development of microbial fermentation processes. Strains of Aspergillus sojae which were previously identified as polygalacturonase producers were subjected to the cost-effective mutagenesis and selection method, the so-called random screening. Physical (ultraviolet irradiation at 254 nm) and chemical mutagens (N-methyl-N'-nitro-N-nitrosoguanidine) were used in the development and implementation of a classical mutation and selection strategy for the improved production of pectic acid-degrading enzymes. Three mutation cycles of both mutagenic treatments and also the combination of them were performed to generate mutants descending from A. sojae ATCC 20235 and mutants of A. sojae CBS 100928. Pectinolytic enzyme production of the mutants was compared to their wild types in submerged and solid-state fermentation. Comparing both strains, higher pectinase activity was obtained by A. sojae ATCC 20235 and mutants thereof. The highest polygalacturonase activity (1,087.2 ± 151.9 U/g) in solid-state culture was obtained by mutant M3, which was 1.7 times increased in comparison to the wild strain, A. sojae ATCC 20235. Additional, further mutation of mutant M3 for two more cycles of treatment by UV irradiation generated mutant DH56 with the highest polygalacturonase activity (98.8 ± 8.7 U/mL) in submerged culture. This corresponded to 2.4-fold enhanced polygalacturonase production in comparison to the wild strain. The results of this study indicated the development of a classical mutation and selection strategy as a promising tool to improve pectinolytic enzyme production by both fungal strains.

  4. Pharmacodynamics of the Orotomides against Aspergillus fumigatus: New Opportunities for Treatment of Multidrug-Resistant Fungal Disease

    Directory of Open Access Journals (Sweden)

    William W. Hope

    2017-08-01

    Full Text Available F901318 is an antifungal agent with a novel mechanism of action and potent activity against Aspergillus spp. An understanding of the pharmacodynamics (PD of F901318 is required for selection of effective regimens for study in phase II and III clinical trials. Neutropenic murine and rabbit models of invasive pulmonary aspergillosis were used. The primary PD endpoint was serum galactomannan. The relationships between drug exposure and the impacts of dose fractionation on galactomannan, survival, and histopathology were determined. The results were benchmarked against a clinically relevant exposure of posaconazole. In the murine model, administration of a total daily dose of 24 mg/kg of body weight produced consistently better responses with increasingly fractionated regimens. The ratio of the minimum total plasma concentration/MIC (Cmin/MIC was the PD index that best linked drug exposure with observed effect. An average Cmin (mg/liter and Cmin/MIC of 0.3 and 9.1, respectively, resulted in antifungal effects equivalent to the effect of posaconazole at the upper boundary of its expected human exposures. This pattern was confirmed in a rabbit model, where Cmin and Cmin/MIC targets of 0.1 and 3.3, respectively, produced effects previously reported for expected human exposures of isavuconazole. These targets were independent of triazole susceptibility. The pattern of maximal effect evident with these drug exposure targets was also apparent when survival and histopathological clearance were used as study endpoints. F901318 exhibits time-dependent antifungal activity. The PD targets can now be used to select regimens for phase II and III clinical trials.

  5. ESTUDIO IN VITRO DE LA CAPACIDAD DE GERMINACIÓN DE Aspergillus fumigatus EN LOS MATERIALES DE LENTES DE CONTACTO BLANDOS Y EFICACIA DE LAS SOLUCIONES MULTIPROPÓSITO CONTRA ESTE MICROORGANISMO

    Directory of Open Access Journals (Sweden)

    C. Parra-Giraldo

    2007-12-01

    Full Text Available Use of soft contact lenses medicated as well as cosmetic is routine. In spite of its comfort, they have a highprobability of being contaminated with microorganisms and must be regularly disinfected for itspreservation. Aspergillus fumigatus is a cosmopolitan fungus, and is frequently associated with micosislike keratitis. In this study capacity of A. fumigatus to proliferate in five materials of lenses: three ofhidrogel (Alphafilcon A, Omafilcon A, Polymacon and two of hidrogel silicone (Lotrafilcon and BalafilconA, was evaluated. It was found that fungus can grow in Balafilcon A in greater proportion, and it wassmaller in Polymacon. In addition, disinfection capacity of five multipurpose solutions was evaluated,which differ from others because of antimicrobial component. Multipurpose solutions showed to have afungistatic effect, except solution with hydrogen peroxide that displayed a fungicidal effect. Solutionswith Trimetropim did not show any effect on the microorganism. Also, disinfectant capacity of materialspreviously infected with A. fumigatus was evaluated for each solution. In this case, solution with hydrogenperoxide showed to be the most effective.

  6. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  7. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom...

  8. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus Atividade antifúngica in vitro e os efeitos citotóxicos de óleos essenciais e extratos de plantas medicinais e aromáticas contra Candida krusei e Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Julieth Correa-Royero

    2010-11-01

    Full Text Available The plants are usually used in traditional medicine as antimicrobial agents and their essential oils and extracts have been known to possess antifungal activity. The aim of this study was to evaluate in vitro the activity of 32 essential oils and 29 extracts against C. krusei and A. fumigatus as well as the cytotoxic effect on Vero cells. Time-kill curve and interaction between antifungals and the most active sample against C. krusei, was also evaluated. The oils from C. ambrosioides and the extract of M. cucullata showed antifungal activity against C. krusei (GM-MIC 7.82 and 31.25 µg/mL, respectively. L. citriodora was actives against C. krusei and A. fumigates (GM-MIC = 99.21 µg/mL and 62.5 µg/mL respectively. Time-kill assays done with C. ambrosioides oil showed fungicidal activity at 4x MIC. The interaction of C. ambrosioides oil with itraconazole and amphotericin B was tested following the chequerboard technique. No interaction was detected for the combination of C. ambrosioides oil with amphotericin B and itraconazole (FICI range = 1.03-1.06 and 1.03-1.00, respectively. Cytotoxicity assays for all samples were carried out with MTT. Only the oil from Hedyosmun sp. and L. dulcis were cytotoxic.As plantas são geralmente utilizadas na medicina tradicional como agentes antimicrobianos e seus óleos essenciais e extratos foram conhecidos por possuir atividade antifúngica. O objetivo deste estudo foi avaliar in vitro a atividade de 32 óleos essenciais e 29 extratos contra Candida krusei e Aspergillus fumigatus, bem como o efeito citotóxico em células Vero. A curva do tempo-morte e a interação entre antifúngicos e Chenopodium ambrosioidese do extrato de Myrcia cucullata mostraram atividade antifúngica contra C. krusei (geometric means of the minimal inhibitory concentration [GM-MIC] 7,82 e 31,25 µg/mL, respectivamente. Lippia citriodora foi ativa contra C. krusei e A. fumigatus (GM-CIM = 99,21 µg/mL e 62,5 µg/mL, respectivamente. Os

  9. Performance of Molecular Approaches for Aspergillus Detection and Azole Resistance Surveillance in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Hélène Guegan

    2018-03-01

    Full Text Available Aspergillus fumigatus triazole resistance is an emerging concern for treating chronically infected/colonized patients. This study sought to evaluate the performance of PCR assays to detect Aspergillus fungi together with azole resistance in sputum samples from cystic fibrosis (CF patients. In total, 119 sputum samples from 87 CF patients were prospectively processed for Aspergillus detection by means of mycological culture and four qPCR assays, 2 in-house methods and two commercial multiplex real-time PCR assays simultaneously detecting Aspergillus and the most relevant cyp51A gene mutations (MycoGENIE® and AsperGenius®. Azole susceptibility of A. fumigatus isolates was assessed using Etest® method and cyp51A gene mutation were characterized by sequencing. The overall rate of Aspergillus detection with the four qPCR assays ranged from 47.9 to 57.1%, contrasting with 42/119 (35.3% positive cultures with A. fumigatus. The high sensitivity of PCR on sputum could then contribute to more effective grading of Aspergillus disease in CF patients. Five out of 41 isolated strains (12.2% exhibited azole-resistant MIC patterns, three of which harbored cyp51A mutations and only 1/3 with the sequence TR34/L98H. Combined with culture, PCR assay achieved high sensitivity Aspergillus screening in CF samples. However, cyp51A targeting was only moderately effective for azole resistance monitoring, while Aspergillus resistance remains of great concern.

  10. Use of aflatoxin-producing ability medium to distinguish aflatoxin-producing strains of Aspergillus flavus.

    OpenAIRE

    Wicklow, D T; Shotwell, O L; Adams, G L

    1981-01-01

    Aflatoxin-producing ability medium was tested for its ability to distinguish aflatoxin-positive from aflatoxin-negative strains of Aspergillus flavus in naturally occurring populations from corn at harvest. All of the aflatoxin-positive strains and some of the aflatoxin-negative strains produced aflatoxins when cultured on cracked corn. Although the data indicate that aflatoxin-producing ability medium is not entirely reliable in distinguishing potential aflatoxin-producing strains of A. flav...

  11. Analytical modeling and numerical optimization of the biosurfactants production in solid-state fermentation by Aspergillus fumigatus - doi: 10.4025/actascitechnol.v36i1.17818

    Directory of Open Access Journals (Sweden)

    Gabriel Castiglioni

    2014-01-01

    Full Text Available This is an experimental, analytical and numerical study to optimize the biosurfactants production in solid-state fermentation of a medium containing rice straw and minced rice bran inoculated with Aspergillus fumigatus. The goal of this work was to analytically model the biosurfactants production in solid-state fermentation into a column fixed bed bioreactor. The Least-Squares Method was used to adjust the emulsification activity experimental values to a quadratic function semi-empirical model. Control variables were nutritional conditions, the fermentation time and the aeration. The mathematical model is validated against experimental results and then used to predict the maximum emulsification activity for different nutritional conditions and aerations. Based on the semi-empirical model the maximum emulsification activity with no additional hydrocarbon sources was 8.16 UE·g-1 for 112 hours. When diesel oil was used the predicted maximum emulsification activity was 8.10 UE·g-1 for 108 hours.

  12. Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations

    DEFF Research Database (Denmark)

    Spohr, Anders Bendsen; Carlsen, Morten; Nielsen, Jens Bredal

    1997-01-01

    Three alpha-amylase producing strains of Aspergillus oryzae used for recombinant protein production have been studied with respect to growth and protein production. By comparing the three strains with respect to morphology and protein production it is shown that a morphological mutant with a more...... dense mycelium is more efficient in producing alpha-amylase....

  13. Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene.

    Science.gov (United States)

    Takahashi, Tadashi; Chang, Perng-Kuang; Matsushima, Kenichiro; Yu, Jiujiang; Abe, Keietsu; Bhatnagar, Deepak; Cleveland, Thomas E; Koyama, Yasuji

    2002-08-01

    Aspergillus sojae belongs to the Aspergillus section Flavi but does not produce aflatoxins. The functionality of the A. sojae aflR gene (aflRs) was examined by transforming it into an DeltaaflR strain of A. parasiticus, derived from a nitrate-nonutilizing, versicolorin A (VERA)-accumulating strain. The A. parasiticus aflR gene (aflRp) transformants produced VERA, but the aflRs transformants did not. Even when aflRs was placed under the control of the amylase gene (amyB) promoter of Aspergillus oryzae, the amy(p)::aflRs transformants did not produce VERA. A chimeric construct containing the aflRs promoter plus the aflRs N- and aflRp C-terminal coding regions could restore VERA production, but a construct containing the aflRp promoter plus the aflRp N- and aflRs C-terminal coding regions could not. These results show that the A. sojae aflR promoter is functional in A. parasiticus and that the HAHA motif does not affect the function of the resulting hybrid AflR. We conclude that the lack of aflatoxin production by A. sojae can be attributed, at least partially, to the premature termination defect in aflRs, which deletes the C-terminal transcription activation domain that is critical for the expression of aflatoxin biosynthetic genes.

  14. Contaminação por Aspergillus flavus e A. fumigatus em sementes de girassol (Helianthus annuus utilizados na alimentação de psitacídeos

    Directory of Open Access Journals (Sweden)

    Alexsandro Machado Conceição

    2010-04-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2010v23n2p145 Amplamente difundido na alimentação de psitacídeos em razão do preço baixo, elevada palatabilidade, e por razões culturais, o Helianthus annuus, conhecido como girassol, vem se mostrando importante na clínica aviária em decorrência do excesso de calorias, e da alta incidência na contaminação por alguns fungos, principalmente do gênero Aspergillus, especificamente A. flavus e A. fumigatus. O objetivo deste estudo foi avaliar a contaminação por Aspegillus ssp. em sementes de girassol destinada à alimentação de psitacídeos comercializadas em Aracaju, estado de Sergipe. As análises foram realizadas no Laboratório de Microbiologia, do Hospital Veterinário Dr. Vicente Borreli, na Faculdade Pio Décimo. Avaliaram-se quatro amostras de sementes de girassol, sendo uma comercializada no mercado público municipal, de forma granel e três marcas comerciais, envasadas e de diferentes hipermercados, processadas segundo Forsythe (2002. De acordo com a pesquisa realizada, foi possível observar um elevado desenvolvimento de A. flavus e A. fumigatus nas sementes de girassol. Esta contaminação pode estar relacionada a vários fatores: colheita e fases de secagem, beneficiamento e armazenamento do grão inadequado. Além disso, é importante destacar a necessidade de que haja um melhor armazenamento de grãos, com controle de temperatura e umidade relativa, visando reduzir a possibilidade de contaminação por Aspergillus spp. que causa prejuízos na alimentação de psitacídeos, e de outras espécies animais.

  15. Volatile compounds of Aspergillus strains with different abilities to produce ochratoxin A.

    Science.gov (United States)

    Jeleń, Henryk H; Grabarkiewicz-Szczesna, Jadwiga

    2005-03-09

    Volatile compounds emitted by Aspergillus strains having different abilities to produce ochratoxin A were investigated. Thirteen strains of Aspergillus ochraceus, three belonging to the A. ochraceus group, and eight other species of Aspergillus were examined for their abilities to produce volatile compounds and ochratoxin A on a wheat grain medium. The profiles of volatile compounds, analyzed using SPME, in all A. ochraceus strains, regardless of their toxeginicity, were similar and comprised mainly of 1-octen-3-ol, 3-octanone, 3-octanol, 3-methyl-1-butanol, 1-octene, and limonene. The prevailing compound was always 1-octen-3-ol. Mellein, which forms part of the ochratoxin A molecule, was found in both toxigenic and nontoxigenic strains. Volatile compounds produced by other Aspergillus strains were similar to those of A. ochraceus. Incubation temperatures (20, 24, and 27 degrees C) and water content in the medium (20, 30, and 40%) influenced both volatile compounds formation and ochratoxin A biosynthesis efficiency, although conditions providing the maximum amount of volatiles were different from those providing the maximum amount of ochratoxin A. The pattern of volatiles produced by toxigenic A. ochraceus strains does not facilitate their differentiation from nontoxigenic strains.

  16. Biomarkers of Aspergillus spores: Strain typing and protein identification

    Czech Academy of Sciences Publication Activity Database

    Šulc, Miroslav; Pešlová, Kateřina; Žabka, Martin; Hajdúch, M.; Havlíček, Vladimír

    2009-01-01

    Roč. 280, 1-3 (2009), s. 162-168 ISSN 1387-3806 R&D Projects: GA MŠk LC07017; GA ČR GP203/05/P575 Institutional research plan: CEZ:AV0Z50200510 Keywords : aspergillus * spore * protein Subject RIV: EE - Microbiology, Virology Impact factor: 2.117, year: 2009

  17. Glucoamylase production by a newly isolated strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Sinkar, V.P.; Lewis, N.F.

    1982-01-01

    Glucoamylase production by Aspergillus niger 57 was studied in complex and synthetic media under stationary vs. submerged conditions. Stationary cultivation resulted in significantly greater yields than did submerged culture. Crude enzyme activity was optimum at 60 degrees and pH 4.0.

  18. A Saccharomyces cerevisiae Wine Strain Inhibits Growth and Decreases Ochratoxin A Biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus

    Directory of Open Access Journals (Sweden)

    Marilena Budroni

    2012-12-01

    Full Text Available The aim of this study was to select wine yeast strains as biocontrol agents against fungal contaminants responsible for the accumulation of ochratoxin A (OTA in grape and wine and to dissect the mechanism of OTA detoxification by a Saccharomyces cerevisiae strain (DISAABA1182, which had previously been reported to reduce OTA in a synthetic must. All of the yeast strains tested displayed an ability to inhibit the growth of Aspergillus carbonarius both in vivo and in vitro and addition of culture filtrates from the tested isolates led to complete inhibition of OTA production. S. cerevisiae DISAABA1182 was selected and further tested for its capacity to inhibit OTA production and pks (polyketide synthase transcription in A. carbonarius and Aspergillus ochraceus in vitro. In order to dissect the mechanism of OTA detoxification, each of these two fungi was co-cultured with living yeast cells exposed to yeast crude or to autoclaved supernatant: S. cerevisiae DISAABA1182 was found to inhibit mycelial growth and OTA production in both Aspergilli when co-cultured in the OTA-inducing YES medium. Moreover, a decrease in pks transcription was observed in the presence of living cells of S. cerevisiae DISAABA1182 or its supernatant, while no effects were observed on transcription of either of the constitutively expressed calmodulin and β-tubulin genes. This suggests that transcriptional regulation of OTA biosynthetic genes takes place during the interaction between DISAABA1182 and OTA-producing Aspergilli.

  19. Influence of gamma-rays and some cultural conditions on the enhancement of cellulase production by some fungal strains isolated from cellulosic wastes

    International Nuclear Information System (INIS)

    Aziz, N.H.; Abo-State, M.A.; Girigs, A.M.P.; Youssef, Kh.A.; El-Mahalawy, A.A.

    2010-01-01

    In the present study, out of 51 fungal strains isolated from the cellulosic wastes, only 19 were CMCase-producers. Aspergillus, Fusarium and Penicillium were the most common fungal genera isolated from the cellulosic wastes. Fusarium neoceras, Aspergillus fumigatus and Fusarium oxysporium produced CMCase activity than Trichoderma viride. Out of 23 gamma-irradiated survivors from A.fumigatus and F. neoceras showing CMCase production, only two mutant strains A.fumigatus 8G-2 and F. neoceras 4G-2 produced the highest levels of CMCase than the parent strains. The results indicated that the maximum level of of CMCase activity was produced by A.fumigatus and F. neoceras strains under optiminizing conditions.

  20. Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation

    Science.gov (United States)

    Gajendiran, A.; Subramani, S.; Abraham, J.

    2017-11-01

    Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.

  1. Use of Epidemiological Cutoff Values To Examine 9-Year Trends in Susceptibility of Aspergillus Species to the Triazoles▿

    Science.gov (United States)

    Pfaller, M.; Boyken, L.; Hollis, R.; Kroeger, J.; Messer, S.; Tendolkar, S.; Diekema, D.

    2011-01-01

    In the absence of clinical breakpoints, epidemiological cutoff values (ECVs) have been established to distinguish wild-type (WT) isolates of Aspergillus spp. from those that may harbor resistance mutations. Recently, the CLSI has developed ECVs for triazoles (itraconazole, posaconazole, and voriconazole) and common Aspergillus species. We applied the triazole ECVs to 1,789 Aspergillus isolates collected from 63 centers worldwide from 2001 to 2009 to determine the frequency of non-WT strains of each species. Temporal trends were evaluated for Aspergillus fumigatus and Aspergillus flavus over the 9-year period for each drug. The collection included 1,312 isolates of A. fumigatus, 235 of A. flavus, 162 of Aspergillus niger, 64 of Aspergillus terreus, and 15 of Aspergillus versicolor. Using the ECVs, the percentages of non-WT isolates for itraconazole, posaconazole, and voriconazole, respectively, were as follows: A. fumigatus (2.0%, 3.5%, and 1.4%), A. flavus (0.8%, 5.1%, and 1.7%), A. niger (17.3%, 3.7%, and 0.6%), A. terreus (0.0%, 1.6%, and 3.2%), and A. versicolor (6.3%, 0.0%, and 0.0%). Among 49 Aspergillus isolates for which itraconazole MICs were >2 μg/ml, the posaconazole and voriconazole MICs were greater than the ECVs for 14 and 12 isolates, respectively. The percentages of isolates for which MICs were greater than the ECVs ranged from 1.1 to 5.7% for posaconazole, 0.0 to 1.6% for voriconazole, and 0.7 to 4.0% for itraconazole. There was no consistent trend toward decreased susceptibility for any triazole and A. fumigatus or A. flavus over time. Decreased susceptibility among Aspergillus spp. was observed for each of the extended-spectrum triazoles and varied by species over the 9-year study period. PMID:21123534

  2. Induction, isolation, and characterization of aspergillus niger mutant strains producing elevated levels of beta-galactosidase.

    OpenAIRE

    Nevalainen, K M

    1981-01-01

    An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization.

  3. Genetic relationships among strains of the Aspergillus niger aggregate

    DEFF Research Database (Denmark)

    Ferracin, L.M.; Frisvad, Jens Christian; Taniwaki, M.H.

    2009-01-01

    We analyzed the genetic relationships between 51 fungal isolates previously identified as A. niger aggregate, obtained from dried fruit samples from worldwide origin and 7 A. tubingensis obtained from Brazilian coffee beans samples. Greater fungal diversity was found in black sultanas. Aspergillus...... niger sensu stricto was the most prevalent species. It was found in all fruit substrates of all geographical origins. Based on Random Amplification of Polymorphic DNA (RAPD) and beta-tubulin sequences data two groups of A. niger were found. In spite of the small number of isolates from Group IV...

  4. Dose optimization of voriconazole/anidulafungin combination against Aspergillus fumigatus using an in vitro pharmacokinetic/pharmacodynamic model and response surface analysis: clinical implications for azole-resistant aspergillosis.

    Science.gov (United States)

    Siopi, Maria; Siafakas, Nikolaos; Vourli, Sophia; Mouton, Johan W; Zerva, Loukia; Meletiadis, Joseph

    2016-11-01

    Combination therapy of voriconazole with an echinocandin is often employed in order to increase the efficacy of voriconazole monotherapy. Four clinical Aspergillus fumigatus isolates with different in vitro susceptibilities to voriconazole (MIC 0.125-2 mg/L) and anidulafungin (MEC 0.008-0.016 mg/L) were tested in an in vitro pharmacokinetic/pharmacodynamic model simulating human serum concentrations of standard dosages of voriconazole and anidulafungin. Fungal growth was assessed using galactomannan production and quantitative PCR. Drug concentrations were determined with bioassays. Pharmacodynamic interactions were assessed using Bliss independence analysis (BI) and Loewe additivity-based canonical mixture response-surface non-linear regression analysis (LA). Probability of target attainment (PTA) was estimated with Monte Carlo analysis for different doses of anidulafungin (25, 50 and 100 mg) and azole resistance rates (5%-25%). Synergy [BI 51% (8%-80%), LA 0.63 (0.38-0.79)] was found at low anidulafungin (fC max /MEC voriconazole (fAUC/MIC voriconazole MIC distributions with high (>10%) resistance rates. PTAs for isolates with voriconazole MICs of 1, 2 and 4 mg/L was 78%, 12% and 0% with voriconazole monotherapy and 96%-100%, 68%-82% and 9%-20% with combination therapy, respectively. Optimal activity was associated with a voriconazole tC min /MIC ratio of 1.5 for monotherapy and 0.75 for combination therapy. The present study indicated that the combination of voriconazole with low-dose anidulafungin may increase the efficacy and reduce the cost and potential toxicity of antifungal therapy, particularly against azole-resistant A. fumigatus isolates and in patients with subtherapeutic serum levels. This hypothesis warrants further in vivo verification. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Detection of Aspergillus flavus and A. fumigatus in Bronchoalveolar Lavage Specimens of Hematopoietic Stem Cell Transplants and Hematological Malignancies Patients by Real-Time Polymerase Chain Reaction, Nested PCR and Mycological Assays

    Science.gov (United States)

    Zarrinfar, Hossein; Mirhendi, Hossein; Fata, Abdolmajid; Khodadadi, Hossein; Kordbacheh, Parivash

    2015-01-01

    Background: Pulmonary aspergillosis (PA) is one of the most serious complications in immunocompromised patients, in particular among hematopoietic stem cell transplants (HSCT) and patients with hematological malignancies. Objectives: The current study aimed to evaluate the incidence of PA and utility of molecular methods in HSCT and patients with hematological malignancies, four methods including direct examination, culture, nested polymerase chain reaction (PCR) and real-time PCR were performed on bronchoalveolar lavage (BAL) specimens in Tehran, Iran. Patients and Methods: During 16 months, 46 BAL specimens were obtained from individuals with allogeneic HSCT (n = 18) and patients with hematological malignancies (n = 28). Direct wet mounts with 20% potassium hydroxide (KOH) and culture on mycological media were performed. The molecular detection of Aspergillus fumigatus and A. flavus was done by amplifying the conserved sequences of internal transcribed spacer 1 (ITS1) ribosomal DNA by nested-PCR and the β-tubulin gene by TaqMan real-time PCR. Results: Seven (15.2%) out of 46 specimens were positive in direct examination and showed branched septate hyphae; 11 (23.9%) had positive culture including eight (72.7%) A. flavus and three (27.3%) A. fumigatus; 22 (47.8%) had positive nested-PCR and eight (17.4%) had positive real-time PCR. The incidence of invasive pulmonary aspergillosis (IPA) in these patients included proven IPA in 1 (2.2%), probable IPA in 10 (21.7%), possible IPA in 19 (41.3%) and not IPA in 16 cases (34.8%). Conclusions: The incidence of IPA in allogeneic HSCT and patients with hematological malignancies was relatively high and A. flavus was the most common cause of PA. As molecular methods had higher sensitivity, it may be useful as screening methods in HSCT and patients with hematological malignancies, or to determine when empirical antifungal therapy can be withheld. PMID:25763133

  6. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species

    Directory of Open Access Journals (Sweden)

    Kim-Chung Lee

    2015-06-01

    Full Text Available Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu–Glu–Leu–Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxybenzoic acid and (sulfooxybenzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxybenzoic acid possesses a structure similar to those of aspirin [2-(acetoxybenzoic acid] and salicylic acid (2-hydroxybenzoic acid. Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu–Glu–Leu–Glu, hydroxy-(sulfooxybenzoic acid and (sulfooxybenzoic acid are virulent factors of the pathogenic Aspergillus species.

  7. Fumonisin and Ochratoxin Production in Industrial Aspergillus niger Strains

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Larsen, Thomas Ostenfeld; Thrane, Ulf

    2011-01-01

    %, 33% and 26% respectively. Some of the most frequently used strains in industry NRRL 337, 3112 and 3122 produced both toxins and several strains used for citric acid production were among the best producers of fumonisins in pure agar culture. Most strains used for other biotechnological processes also...... produced fumonisins. Strains optimized through random mutagenesis usually maintained their mycotoxin production capability. Toxigenic strains were also able to produce the toxins on media suggested for citric acid production with most of the toxins found in the biomass, thereby questioning the use...

  8. eNose technology can detect and classify human pathogenic molds in vitro: a proof-of-concept study of Aspergillus fumigatus and Rhizopus oryzae

    NARCIS (Netherlands)

    de Heer, K.; Vonk, S. I.; Kok, M.; Kolader, M.; Zwinderman, A. H.; van Oers, M. H. J.; Sterk, P. J.; Visser, C. E.

    2016-01-01

    Invasive pulmonary mold disease (IPMD) is often fatal in neutropenic patients. This is because IPMD is difficult to diagnose timely, especially when non-Aspergillus molds are the causative agent, as they are usually not associated with a positive galactomannan assay. In 2013 we showed that exhaled

  9. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on differe...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  10. MULTISTEP MUTAGENIC STRAIN IMPROVEMENT IN ASPERGILLUS CARBONARIUS TO ENHANCE PECTINASE PRODUCTION POTENTIAL

    OpenAIRE

    Sabika Akbar; R. Gyana Prasuna; Rasheeda Khanam

    2013-01-01

    Pectinase is one of the most important commercially synthesised enzyme having its application in several industrial sectors like food and beverages, fruit clarifications etc. A.carbonarius has the capacity to produce Exo-pectinase 50 U/ml by submerged fermentation process as per the previous study. The present study describes the improvement of previously identified fungal strain Aspergillus carbonarius for enhancement of pectinase production by inducing mutations using physical and chemical ...

  11. Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes

    OpenAIRE

    Crespo Sempere, Ana; López Pérez, Mario; Martínez-Culebras, Pedro V.; González-Candelas, Luis

    2011-01-01

    An enhanced green fluorescent protein has been used to tag an OTA-producing strain of Aspergillus carbonarius (W04-40) isolated from naturally infected grape berries. Transformation of the fungus was mediated by Agrobacterium tumefaciens. The most efficient transformation occurred when the co-cultivation was done with 104 conidia due to higher frequency of resistance colonies (894 per 104 conidia) and lower background obtained. To confirm the presence of the hph gene in hygromycin resistant c...

  12. Methanol utilization by a strain of Aspergillus niger: influence on the synthesis and activity of pectinases.

    Science.gov (United States)

    Maldonado, M C; Strasser de Saad, A M; Callieri, D A

    1993-03-01

    During the production of pectinases by a strain of Aspergillus niger isolated from rotten lemons, methanol was liberated into the medium due to the cleavage of the pectin molecule used as the carbon source. The methanol was subsequently consumed by the microorganism but neither the synthesis nor the activity of pectinesterase and polygalacturonase was affected. Although not studied in detail, the mechanism involved in the utilization of methanol is similar to that described for methylotrophic yeasts.

  13. A quick method for testing recessive lethal damage with a diploid strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Morpurgo, G.; Puppo, S.; Gualandi, G.; Conti, L.

    1978-01-01

    A simple method capable of detecting recessive lethal damage in a diploid strain of Aspergillus nidulans is described. The method scores the recessive lethals on the 1st, the 3rd and the 5th chromosomes, which represent about 40% of the total map of A. nidulans. Two examples of induced lethals, with ultraviolet irradiation and methyl methanesulfonate are shown. The frequency of lethals may reach 36% of the total population with UV irradiation. (Auth.)

  14. [Aspergillus species in hospital environments with pediatric patients in critical condition].

    Science.gov (United States)

    Fernández, Mariana; Cattana, María; Rojas, Florencia; Sosa, María de Los Ángeles; Aguirre, Clarisa; Vergara, Marta; Giusiano, Gustavo

    2014-01-01

    Aspergillus is a group of opportunistic fungi that cause infections, with high morbimortality in immunosuppressed patients. Aspergillus fumigatus is the most frequent species in these infections, although the incidence of other species has increased in the last few years. To evaluate the air fungal load and the diversity of Aspergillus species in hospitals with pediatric patients in critical condition. The Intensive Care Unit and Burns Unit of a pediatric hospital were sampled every 15 days during the autumn and spring seasons. The air samples were collected with SAS Super 100(®) and the surface samples were collected by swab method. The UFC/m(3) counts found exceeded the acceptable levels. The UFC/m(3) and the diversity of Aspergillus species found in the Intensive Care Unit were higher than those found in the Burns Unit. The fungal load and the diversity of species within the units were higher than those in control environments. The use of both methods -SAS and swab- allowed the detection of a higher diversity of species, with 96 strains of Aspergillus being isolated and 12 species identified. The outstanding findings were Aspergillus sydowii, Aspergillus niger, Aspergillus flavus, Aspergillus terreus and Aspergillus parasiticus, due to their high frequency. Aspergillus fumigatus, considered unacceptable in indoor environments, was isolated in both units. Aspergillus was present with high frequency in these units. Several species are of interest in public health for being potential pathogenic agents. Air control and monitoring are essential in the prevention of these infections. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Gastón Ezequiel Ortiz

    2016-01-01

    Full Text Available A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (Ea, quotient energy (Q10, Km, and Vmax were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively.

  16. Produção e padronização dos antígenos de Paracoccidioides brasiliensis (Pb, Histoplasma capsulatum (Hc e Aspergillus fumigatus (Af para uso no imunodiagnóstico: comparação entre as técnicas de imunodifusão e imunoeletroosmoforese Production and standardization of Paracoccidioides brasiliensis, Histoplasm capsulatum and Aspergillus fumigatus antigens to be used in immunodiagnosis: comparison between immunodiffusion and immunoelectrophoresis technics

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Ferreira-da-Cruz

    1985-09-01

    Full Text Available Foram produzidos antígenos solúveis de P. brasiliensis, H. capsulatum e A. fumigatus e padronizados nas técnicas de imunodifusão dupla (IDD e imunoeletroosmoforese (IEOF. A especificidade dos antígenos foi testada utilizando-se 96 soros de pacientes com paracoccidioidomicose, histoplasmose, aspergilose, candidíase sistêmica, esporotricose, tuberculose, neoplasia pulmonar, leishmaniose tegumentar e visceral e em 18 indivíduos sadios. Na IDD, a especificidade foi de 100% usando-se como critério de positividade linhas de precipitação com identidade total com soro de referência. Entretanto na IEOF, a especificidade variou de acordo com o antígeno testado, sendo observadas reações cruzadas com antígeno de P. brasiliensis frente a soros de pacientes com histoplasmose (16,7% e leishmaniose tegumentar (10% e com antígeno de H. capsulatum frente a soros de pacientes com paracoccidioidomicose (31,8% e leishmaniose tegumentar (10%. Ambas as técnicas mostraram a mesma sensibilidade para o sorodiagnóstico de paracoccidioidomicose, histoplasmose e aspergilose, respectivamente 100%, 83,3% e 100%. A grande sensibilidade e especificidade da IDD observadas nos soros desses pacientes, aliadas à fácil reprodutibilidade e baixo custo, fazem esta técnica muito apropriada como procedimento de rotina, para a triagem de pacientes sintomáticos respiratórios.Soluble antigens (Ag from Paracoccidioides brasiliensis, Histoplasma capsulatum and Aspergillus fumigatus were prepared and standardized by double immunodiffusion (DID and immunoelectroosmophoresis (IEOP. No difference in sensitivity was observed between the two techniques; 100% of standard patient sera were positive with P. brasiliensis and A. fumigatus Ag and 83.3% were positive with H. capsulatum Ag. The specificity of the tests was verified testing 96 sera from patients with paracoccidioidomycosis, histoplasmosis, systemic candidiasis, sporotrichosis, tuberculosis, lung cancer, visceral or

  17. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains.

    Science.gov (United States)

    Tominaga, Mihoko; Lee, Yun-Hae; Hayashi, Risa; Suzuki, Yuji; Yamada, Osamu; Sakamoto, Kazutoshi; Gotoh, Kuniyasu; Akita, Osamu

    2006-01-01

    To help assess the potential for aflatoxin production by Aspergillus oryzae, the structure of an aflatoxin biosynthesis gene homolog cluster in A. oryzae RIB 40 was analyzed. Although most genes in the corresponding cluster exhibited from 97 to 99% similarity to those of Aspergillus flavus, three genes shared 93% similarity or less. A 257-bp deletion in the aflT region, a frameshift mutation in norA, and a base pair substitution in verA were found in A. oryzae RIB 40. In the aflR promoter, two substitutions were found in one of the three putative AreA binding sites and in the FacB binding site. PCR primers were designed to amplify homologs of aflT, nor-1, aflR, norA, avnA, verB, and vbs and were used to detect these genes in 210 A. oryzae strains. Based on the PCR results, the A. oryzae RIB strains were classified into three groups, although most of them fell into two of the groups. Group 1, in which amplification of all seven genes was confirmed, contained 122 RIB strains (58.1% of examined strains), including RIB 40. Seventy-seven strains (36.7%) belonged to group 2, characterized by having only vbs, verB, and avnA in half of the cluster. Although slight expression of aflR was detected by reverse transcription-PCR in some group 1 strains, including RIB 40, other genes (avnA, vbs, verB, and omtA) related to aflatoxin production were not detected. aflR was not detected in group 2 strains by Southern analysis.

  18. Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Carlsen, Morten; Nielsen, Jens Bredal

    1999-01-01

    Two alpha-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the alpha-amylase gene, were characterized,vith respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition...

  19. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom......The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations...... and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted...... in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon...

  20. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68

    DEFF Research Database (Denmark)

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse

    2014-01-01

    chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103...... 13C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able...

  1. Process optimization for a potent wild and mutant strain of aspergillus niger for biosynthesis of amyloglucosidase

    International Nuclear Information System (INIS)

    Malik, S.; Haq, I.U.; Iftikhar, T.

    2011-01-01

    The present study is concerned with the selection of a potent strain of Aspergillus niger and optimization of the cultural conditions for the biosynthesis of amyloglucosidase. The cultural conditions were optimized for the enzyme production. Twenty percent (50/250ml flask) was found to be optimum volume of the medium. Optimum temperature was 30 deg. C after 72 h of incubation, with the initial pH of the medium 5.0. 2% Starch with 1% glucose as an additional carbon source gave maximum amyloglucosidase production Addition of 0.3% ammonium sulphate in the fermentation medium increased the enzyme production while 2% spore inoculum showed best amyloglucosidase production. (author)

  2. New multi-marker strains and complementing genes for Aspergillus nidulans molecular biology.

    Science.gov (United States)

    Dohn, James W; Grubbs, Alexander W; Oakley, C Elizabeth; Oakley, Berl R

    2018-02-01

    Technical advances in Aspergillus nidulans enable relatively easy deletion of genomic sequences, insertion of sequences into the genome and alteration of genomic sequences. To extend the power of this system we wished to create strains with several selectable markers in a common genetic background to facilitate multiple, sequential transformations. We have developed an approach, using the recycling of the pyrG selectable marker, that has allowed us to create new deletions of the biA, pabaA, choA, and lysB genes. We have deleted these genes in a strain that carries the commonly used pyrG89, riboB2, and pyroA4 mutations as well as a deletion of the sterigmatocystin gene cluster and a deletion of the nkuA gene, which greatly reduces heterologous integration of transforming sequences. The new deletions are fully, easily and cheaply supplementable. We have created a strain that carries seven selectable markers as well as strains that carry subsets of these markers. We have identified the homologous genes from Aspergillus terreus, cloned them and used them as selectable markers to transform our new strains. The newly created strains transform well and the new deletion alleles appear to be complemented fully by the A. terreus genes. In addition, we have used deep sequencing data to determine the sequence alterations of the venerable and frequently used pyrG89, riboB2 and pyroA4 alleles and we have reannotated the choA gene. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Potential of Chitinolytic Serratia marcescens Strain JPP1 for Biological Control of Aspergillus parasiticus and Aflatoxin

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2013-01-01

    Full Text Available Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1, and aflO (dmtA genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95% and subsequent aflatoxin production (antiaflatoxigenic ratio >98%. An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  4. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin.

    Science.gov (United States)

    Wang, Kai; Yan, Pei-Sheng; Cao, Li-Xin; Ding, Qing-Long; Shao, Chi; Zhao, Teng-Fei

    2013-01-01

    Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1), and aflO (dmtA) genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95%) and subsequent aflatoxin production (antiaflatoxigenic ratio >98%). An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  5. Improvement of xylanase production by a parasexual cross between Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Octavio Loera

    2003-03-01

    Full Text Available A diploid strain (D4 isolated via parasexual recombination between two Aspergillus niger xylanase overproducing mutants was characterised in terms of enzyme production and catabolite repression by glucose. This strain increased xylanase production (607 nkat/ml, which was nearly 100% higher than titers achieved by the wild type strain (305 nkat/ml and 28% higher than the best mutant used to induce parasexual cycle. Diploid D4 was also less sensitive to carbon catabolite repression by glucose, since xylanolytic activity was detected under conditions normally repressing production by the wild type strain. No decrease in maximal xylanase levels was observed in the presence of glucose for diploid D4.Um cepa diplóide (D4 isolada por combinação parasexual entre dois Aspergillus niger, mutantes superprodutores de xylanase foi caracterizado através da produção de (607 nkat/ml e repressão catabólica por glicose. Essa cepa aumenta a produção de xylanase em mais de 100% em comparação com uma cepa selvagem (305 nkat/ml e 28% superior do que o melhor mutante usado para induzir o ciclo parasexual. A cepa diplóide D4 foi também menos sensível a repressão catabólica pela glicose, sendo que a atividade xylanolitica foi detectada sob condições normalmente de produção repressiva pela cepa selvagem. Não foi observado um decréscimo na produção máxima de xylanase em presença de glicose para o diplóide D4.

  6. What can comparative genomics tell us about species concepts in the genus Aspergillus?

    Energy Technology Data Exchange (ETDEWEB)

    Rokas, Antonis; payne, gary; Federova, Natalie D.; Baker, Scott E.; Machida, Masa; yu, Jiujiang; georgianna, D. R.; Dean, Ralph A.; Bhatnagar, Deepak; Cleveland, T. E.; Wortman, Jennifer R.; Maiti, R.; Joardar, V.; Amedeo, Paolo; Denning, David W.; Nierman, William C.

    2007-12-15

    Understanding the nature of species" boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species.

  7. Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection

    NARCIS (Netherlands)

    A.C.A.P. Leenders (Alexander); A.F. van Belkum (Alex); M.D. Behrendt (Myra); A. Luijendijk (Ad); H.A. Verbrugh (Henri)

    1999-01-01

    textabstractAfter five patients were diagnosed with nosocomial invasive aspergillosis caused by Aspergillus fumigatus and A. flavus, a 14-month surveillance program for pathogenic and nonpathogenic fungal conidia in the air within and outside the University Hospital in

  8. Metabolomic Tools to Assess the Chemistry and Bioactivity of Endophytic Aspergillus Strain.

    Science.gov (United States)

    Tawfike, Ahmed F; Tate, Rothwelle; Abbott, Gráinne; Young, Louise; Viegelmann, Christina; Schumacher, Marc; Diederich, Marc; Edrada-Ebel, RuAngelie

    2017-10-01

    Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology that may find applications as pharmaceutical and agrochemical drugs. In this study, a combination of metabolomics and bioactivity-guided approaches were employed to isolate secondary metabolites with cytotoxicity against cancer cells from an endophytic Aspergillus aculeatus. The endophyte was isolated from the Egyptian medicinal plant Terminalia laxiflora and identified using molecular biological methods. Metabolomics and dereplication studies were accomplished by utilizing the MZmine software coupled with the universal Dictionary of Natural Products database. Metabolic profiling, with aid of multivariate data analysis, was performed at different stages of the growth curve to choose the optimized method suitable for up-scaling. The optimized culture method yielded a crude extract abundant with biologically-active secondary metabolites. Crude extracts were fractionated using different high-throughput chromatographic techniques. Purified compounds were identified by HR-ESI-MS, 1D- and 2D-NMR. This study introduced a new method of dereplication utilizing both high-resolution mass spectrometry and NMR spectroscopy. The metabolites were putatively identified by applying a chemotaxonomic filter. We also present a short review on the diverse chemistry of terrestrial endophytic strains of Aspergillus, which has become a part of our dereplication work and this will be of wide interest to those working in this field. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  9. Biochemical properties of Cu/Zn-superoxide dismutase from fungal strain Aspergillus niger 26

    Science.gov (United States)

    Dolashki, Aleksandar; Abrashev, Radoslav; Stevanovic, Stefan; Stefanova, Lilyana; Ali, Syed Abid; Velkova, Ludmila; Hristova, Rumyana; Angelova, Maria; Voelter, Wolfgang; Devreese, Bart; Van Beeumen, Jozef; Dolashka-Angelova, Pavlina

    2008-12-01

    The fungal strain Aspergillus niger produces two superoxide dismutases, Cu/Zn-SOD and Mn-SOD. The primary structure of the Cu/Zn-SOD has been determined by Edman degradation of peptide fragments derived from proteolytic digests. A single chain of the protein, consisting of 153 amino acid residues, reveals a very high degree of structural homology with the amino acid sequences of other Aspergillus Cu/Zn-SODs. The molecular mass of ANSOD, measured by MALDI-MS and ESI-MS, and calculated by its amino acid sequence, was determined to be 15 821 Da. Only one Trp residue, at position 32, and one disulfide bridge were identified. However, neither a Tyr residue nor a carbohydrate chain occupying an N-linkage site (-Asn-Ile-Thr-) were found. Studies on the temperature and pH dependence of fluorescence, and on the temperature dependence of CD spectroscopic properties, confirmed that the enzyme is very stable, which can be explained by the stabilising effect of the disulfide bridge. The enzyme retains about 53% of its activity after incubation for a period of 30 min at 60 °C, and 15% at 85 °C.

  10. Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains.

    Science.gov (United States)

    Papanikolaou, S; Dimou, A; Fakas, S; Diamantopoulou, P; Philippoussis, A; Galiotou-Panayotou, M; Aggelis, G

    2011-05-01

    In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid-rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Carbon-limited cultures were performed on waste oil, added in the growth medium at 15g l(-1) , and high biomass quantities were produced (up to c.18g l(-1) , conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml(-1) being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l(-1) . Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high-added-value products.   Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added-value compounds. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  11. Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed

    OpenAIRE

    Nierman, William C.; Yu, Jiujiang; Fedorova-Abrams, Natalie D.; Losada, Liliana; Cleveland, Thomas E.; Bhatnagar, Deepak; Bennett, Joan W.; Dean, Ralph; Payne, Gary A.

    2015-01-01

    Aflatoxin contamination of food and livestock feed results in significant annual crop losses internationally. Aspergillus flavus is the major fungus responsible for this loss. Additionally, A.?flavus is the second leading cause of aspergillosis in immunocompromised human patients. Here, we report the genome sequence of strain NRRL 3357.

  12. Transcriptome of Aspergillus flavus aswA (AFLA_085170) deletion strain related to sclerotial development and production of secondary metabolites

    Science.gov (United States)

    Aspergillus flavus produces many secondary metabolites including aflatoxins. Besides conidia, the fungus uses sclerotia as another type of propagule. We obtained transcriptomes from four growth conditions of the aswA mutant, a strain impaired in sclerotial development and production of sclerotium-sp...

  13. Evaluation of recycled bioplastic pellets and a sprayable formulation for application of an Aspergillus flavus biocontrol strain

    Science.gov (United States)

    Biocontrol of Aspergillus flavus using inoculated bioplastic granules has been proven to be effective under laboratory and field conditions. In the present study, the use of low-density pellets from recycled bioplastic as a biocontrol strain carrier was evaluated. Applying recycled bioplastic pell...

  14. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Beyer, Michael; Nielsen, Jens

    2000-01-01

    The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5-6.0, the specific glucoamylase productivity and the specific...

  15. Efficient gene replacements in ku70 disruption strain of Aspergillus chevalieri var. intermedius

    Directory of Open Access Journals (Sweden)

    Qingqing Huang

    2017-01-01

    Full Text Available Aspergillus chevalieri var. intermedius is a dominant filamentous fungal species in Fuzhuan tea and is associated with the quality and health benefits of this tea. The sexual or asexual reproduction of this fungus depends on the osmotic pressure of the tea. Efforts to enhance the beneficial effects of A. chevalieri var. intermedius are hampered by difficulties in disrupting its genes. To address this issue, we identified the A. chevalieri var. intermedius homolog (Acku70 of human Ku70 and generated an Acku70 disruption strain (ΔAcku70, aiming to improve the gene replacement efficiency. ΔAcku70 grew at a slightly lower rate in vitro than the wild-type strain; however, the two strains exhibited similar sensitivity to temperature, osmotic pressure and the effects of ethyl methane sulphonate and H2O2. The replacement efficiency of veA and flbA dramatically increased in ΔAcku70 compared to that in the wild type. The efficiency of flbA replacement increased from 2.6% to 80%, whereas the frequency of veA disruption increased from 15.2% to 83.9% and from 30.8% to 86.8%. Thus, ΔAcku70 is suitable for use as a type strain for large-scale functional genomic analysis of A. chevalieri var. intermedius.

  16. Optimization, purification and characterization of pectinases from pectinolytic strain, Aspergillus foetidus MTCC 10559.

    Science.gov (United States)

    Kumar, Sunil; Jain, Narender K; Sharma, Kailash C; Paswan, Ranjeet; Mishra, Brijesh K; Srinivasan, Ramakrishnan; Mandhania, Shiwani

    2015-03-01

    A strain (MPUAT-2), isolated from coconut hull and identified as Aspergillus foetidus MTCC 10559, was used for pectinase production. Optimum pectinase production was obtained at pH 8.0 and temperature 35 degrees C under static conditions in submerged fermentation after 5 days of incubation. Orange peel, a byproduct of fruit industry, was used as a sole carbon source (3% w/v) to produce high pectinase, thus making the process cost effective. The culture filtrate was analyzed for pectin methyl esterase (PME) and endopolygalacturonase (endo-PG) enzymes. The enzymes, PME and endo-PG were purified using ammonium sulphate precipitation and molecular exclusion chromatography (Sephadex G-75) with corresponding recovery of 39.3 and 44.3%. The partially purified enzymes were also characterized for their kinetic properties.

  17. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  18. Molecular Detection of Aflatoxin Producing Strains of Aspergillus Flavus from Peanut (Arachis Hypogaea

    Directory of Open Access Journals (Sweden)

    Adeela Hussain

    2015-02-01

    Full Text Available Aflatoxins are the potential carcinogens produced as secondary metabolites by Aspergillus flavus. They have the ability to contaminate large number of food which ultimately affect the human population. Malt extract agar was selected for the growth of control stains of fungus. The aim of the study was to develop a reliable and quick method for the detection of aflatoxin producing strains in peanuts by using molecular approaches. Total 80 samples of infected peanuts were collected from four different cities of Punjab and checked for their aflatoxin contamination. For aflatoxin detection, three target genes nor1, ver1 and aflR were selected which was involved in the aflatoxin biosynthesis. In all examined cases, 24 out of 80 (30% samples successfully amplified all three genes indicating aflatoxigenic activity. Discrimination between aflatoxigenic and non-aflatoxigenic strains were also determined on the basis of amplification of these three target DNA fragments. In this study, it was also demonstrated that only specific strains were able to produce the aflatoxin contamination in peanuts.

  19. Different action of MMS and EMS in UV-sensitive strains of Aspergillus nidulans.

    Science.gov (United States)

    Babudri, N; Politi, M G

    1989-05-01

    The repair of methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) damages has been investigated in the fungus Aspergillus nidulans. 4 UV-sensitive mutants, namely uvsB, uvsD, uvsF and uvsH have been tested for their sensitivity and mutability to the above-mentioned agents. The results obtained show that: (1) uvsB and uvsD mutants are no more sensitive than the wild-type strain to the lethal action of EMS. In contrast, they are more sensitive to MMS; (2) uvsF and uvsH mutants are more sensitive than the wild type to EMS at 37 degrees C but not at 20 degrees C. However, they are more sensitive than the wild type to MMS at 37 degrees C as well as at 20 degrees C; (3) the mutation frequencies after treatment with either MMS or EMS plotted against survival are not altered in the UV-sensitive strains compared to the wild-type strain. From these data it may be concluded that the repair of lethal lesions induced by ethylating and methylating agents is under the control of different pathways. Furthermore the mutants tested are not involved in the mutagenic process.

  20. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.

    Science.gov (United States)

    Xiao, Chunqiao; Wu, Xiaoyan; Chi, Ruan

    2015-05-01

    High-phosphorus iron ore is traditionally dephosphorized by chemical process with inorganic acids. However, this process is not recommended nowadays because of its high cost and consequent environmental pollution. With the current tendency for development of a low-cost and eco-friendly process, dephosphorization of high-phosphorus iron ore through microbial process with three different sources of Aspergillus niger strains was studied in this study. Results show that the three strains of A. niger could grow well in the broth, and effectively remove phosphate from high-phosphorus iron ore during the experiments. Meanwhile, the total iron in the broth was also increased. Acidification of the broth seemed to be the major mechanism for the dephosphorization by these strains. High-pressure liquid chromatography analysis indicated that various organic acids were secreted in the broth, which caused a significant drop of the broth pH. Scanning electron microscopy of ore residues revealed that the high-phosphorus iron ore was obviously destroyed by the actions of these strains. Ore residues by energy-dispersive X-ray microanalysis and Fourier transform infrared spectroscopy indicated that the phosphate was obviously removed from the high-phosphorus iron ore. The optimization of the dephosphorization by these strains was also investigated, and the maximum percentages of phosphate removal were recorded at temperature 27-30 °C, initial pH 5.0-6.5, particle size 0.07-0.1 mm, and pulp density of 2-3% (w/v), respectively. The fungus A. niger was found to have good potential for the dephosphorization of high-phosphorus iron ore, and this microbial process seems to be economic and effective in the future industrial application.

  1. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins

    Directory of Open Access Journals (Sweden)

    Andong eGong

    2015-10-01

    Full Text Available Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these pests is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production in the field and during storage.

  2. Diversity in secondary metabolites including mycotoxins from strains of aspergillus section nigri isolated from raw cashew nuts from benin, west africa

    NARCIS (Netherlands)

    Lamboni, Yendouban; Nielsen, Kristian F.; Linnemann, Anita R.; Gezgin, Yué Ksel; Hell, Kerstin; Nout, Rob; Smid, Eddy J.; Tamo, Manuele; Boekel, van M.A.J.S.; Hoof, Jakob Blñsbjerg; Frisvad, Jens Christian

    2016-01-01

    In a previous study, raw cashew kernels were assayed for the fungal contamination focusin on strains belonging to the genus Aspergillus and on aflatoxins producers. These sample showed high contamination with Aspergillus section Nigri species and absence o aflatoxins. To investigate the diversity

  3. Volatiles Mediated Interactions Between Aspergillus oryzae Strains Modulate Morphological Transition and Exometabolomes

    Directory of Open Access Journals (Sweden)

    Digar Singh

    2018-04-01

    Full Text Available Notwithstanding its mitosporic nature, an improbable morpho-transformation state i. e., sclerotial development (SD, is vaguely known in Aspergillus oryzae. Nevertheless an intriguing phenomenon governing mold's development and stress response, the effects of exogenous factors engendering SD, especially the volatile organic compounds (VOCs mediated interactions (VMI pervasive in microbial niches have largely remained unexplored. Herein, we examined the effects of intra-species VMI on SD in A. oryzae RIB 40, followed by comprehensive analyses of associated growth rates, pH alterations, biochemical phenotypes, and exometabolomes. We cultivated A. oryzae RIB 40 (S1VMI: KACC 44967 opposite a non-SD partner strain, A. oryzae (S2: KCCM 60345, conditioning VMI in a specially designed “twin plate assembly.” Notably, SD in S1VMI was delayed relative to its non-conditioned control (S1 cultivated without partner strain (S2 in twin plate. Selectively evaluating A. oryzae RIB 40 (S1VMI vs. S1 for altered phenotypes concomitant to SD, we observed a marked disparity for corresponding growth rates (S1VMI < S17days, media pH (S1VMI > S17days, and biochemical characteristics viz., protease (S1VMI > S17days, amylase (S1VMI > nS13–7days, and antioxidants (S1VMI > S17days levels. The partial least squares—discriminant analysis (PLS-DA of gas chromatography—time of flight—mass spectrometry (GC-TOF-MS datasets for primary metabolites exhibited a clustered pattern (PLS1, 22.04%; PLS2, 11.36%, with 7 days incubated S1VMI extracts showed higher abundance of amino acids, sugars, and sugar alcohols with lower organic acids and fatty acids levels, relative to S1. Intriguingly, the higher amino acid and sugar alcohol levels were positively correlated with antioxidant activity, likely impeding SD in S1VMI. Further, the PLS-DA (PLS1, 18.11%; PLS2, 15.02% based on liquid chromatography—mass spectrometry (LC-MS datasets exhibited a notable disparity for post-SD (9

  4. Effect of irradiation on protease production by a Philippine strain of Aspergillus oryzae (ahlburg) cohn

    International Nuclear Information System (INIS)

    Anglo, P.G.

    1974-03-01

    The Philippine strain of Aspergillus oryzae (ahlburg) cohn. was exposed to ultraviolet rays and ionizing radiation from cobalt-60 for the purpose of obtaining possible mutants or resistant strains which produce powerful proteolytic enzymes. Out of 58 isolates, only 3 gave significant proteolytic values (PV) high enough to merit further investigation. The isolates, G-10, G-110, and 23-110, were picked from plates exposed to gamma rays from cobalt-60. Optimum incubation temperature for these isolates for highest percentage of active protease was 24 0 -27 0 C. The isolates were found capable of producing active protease from the second day of incubation up to the fifth day, whereas the activity of the parent strain was retained the fourth day only. The isolates showed maximum digestive ability at 25 0 -55 0 C, giving proteolytic values of 833. The pH activity curves showed that the enzyme produced by the irradiated isolates G-10 and G-110 were very active at pH 9.0-10.0, and isolate 23-110 at pH 6.0-10.0. The parent strain revealed two pH optima, one at pH 7.5-8.5 and the other at pH 9.0-9.5. Crude enzyme powder gave activities comparable to alkalase and maxatase, commercial proteolytic enzymes imported from Belgium and Netherlands being used as component of laundry detergents by some manufacturing companies in the Philippines. The results obtained give valuable information for the commercial application of the enzyme. Since the organism can produce high yields of protease from copra meal, a by-product of the coconut industry, commerical feasibility may be envisioned in the near future

  5. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    Directory of Open Access Journals (Sweden)

    J. C. F. Queiroz

    2007-01-01

    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  6. Inhibition of Aspergillus parasiticus and cancer cells by marine actinomycete strains

    Science.gov (United States)

    Li, Ping; Yan, Peisheng

    2014-12-01

    Ten actinomycete strains isolated from the Yellow Sea off China's coasts were identified as belonging to two genera by 16S rDNA phylogenetic analysis: Streptomyces and Nocardiopsis. Six Streptomyces strains (MA10, 2SHXF01-3, MA35, MA05-2, MA05-2-1 and MA08-1) and one Nocardiopsis strain (MA03) were predicted to have the potential to produce aromatic polyketides based on the analysis of the KSα (ketoacyl-synthase) gene in the type II PKS (polyketides synthase) gene cluster. Four strains (MA03, MA01, MA10 and MA05-2) exhibited significant inhibitory effects on mycelia growth (inhibition rate >50%) and subsequent aflatoxin production (inhibition rate >75%) of the mutant aflatoxigenic Aspergillus parasiticus NFRI-95. The ethyl acetate extracts of the broth of these four strains displayed significant inhibitory effects on mycelia growth, and the IC50 values were calculated (MA03: 0.275 mg mL-1, MA01: 0.106 mg mL-1, MA10: 1.345 mg mL-1 and MA05-2: 1.362 mg mL-1). Five strains (2SHXF01-3, MA03, MA05-2, MA01 and MA08-1) were selected based on their high cytotoxic activities. The ethyl acetate extract of the Nocardiopsis strain MA03 was particularly noted for its high antitumor activity against human carcinomas of the cervix (HeLa), lung (A549), kidney (Caki-1) and liver (HepG2) (IC50: 2.890, 1.981, 3.032 and 2.603 μg mL-1, respectively). The extract also remarkably inhibited colony formation of HeLa cells at an extremely low concentration (0.5 μg mL-1). This study highlights that marine-derived actinomycetes are a huge resource of compounds for the biological control of aflatoxin contamination and the development of novel drugs for human carcinomas.

  7. Isolation of culturable mycobiota from agricultural soils and determination of tolerance to glyphosate of nontoxigenic Aspergillus section Flavi strains.

    Science.gov (United States)

    Carranza, Cecilia S; Barberis, Carla L; Chiacchiera, Stella M; Dalcero, Ana María; Magnoli, Carina E

    2016-01-01

    Glyphosate-based herbicides are extensively used in Argentina's agricultural system to control undesirable weeds. This study was conducted to evaluate the culturable mycobiota [colony forming units (CFU) g(-1) and frequency of fungal genera or species] from an agricultural field exposed to pesticides. In addition, we evaluated the tolerance of A. oryzae and nontoxigenic A. flavus strains to high concentrations (100 to 500 mM - 17,000 to 84,500 ppm) of a glyphosate commercial formulation. The analysis of the mycobiota showed that the frequency of the main fungal genera varied according to the analyzed sampling period. Aspergillus spp. or Aspergillus section Flavi strains were isolated from 20 to 100% of the soil samples. Sterilia spp. were also observed throughout the sampling (50 to 100%). Aspergillus section Flavi tolerance assays showed that all of the tested strains were able to develop at the highest glyphosate concentration tested regardless of the water availability conditions. In general, significant reductions in growth rates were observed with increasing concentrations of the herbicide. However, a complete inhibition of fungal growth was not observed with the concentrations assayed. This study contributes to the knowledge of culturable mycobiota from agricultural soils exposed to pesticides and provides evidence on the effective growth ability of A. oryzae and nontoxigenic A. flavus strains exposed to high glyphosate concentrations in vitro.

  8. Enzymic hydrolysis of xylans. I. A high xylanase and beta-xylosidase producing strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, D.

    1981-01-01

    Aspergillus niger, strain 110.42 (CBS) was selected as a producer of high xylanolytic activities. The time course of xylanase and beta-xylosidase production as well as the effect of pH and temperature on the activity of these enzymes were studied. High-performance liquid chromatography analysis of the enzymic degradation of arabinoxylan showed a nearly complete conversion to pentose sugars. Aspects of using crude xylanase preparations for enzymic saccharification of xylans are discussed.

  9. Antifungal Susceptibility Testing of Aspergillus spp. by Using a Composite Correlation Index (CCI)-Based Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method Appears To Not Offer Benefit over Traditional Broth Microdilution Testing.

    Science.gov (United States)

    Gitman, Melissa R; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid; Kus, Julianne V

    2017-07-01

    Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. © Crown copyright 2017.

  10. Production of xylanases by an Aspergillus niger strain in wastes grain

    Directory of Open Access Journals (Sweden)

    Simone Cristine Izidoro

    2014-08-01

    Full Text Available Many fungi are used in order to extract products from their metabolism through bioprocesses capable of minimizing adverse effects caused by agro-industrial wastes in the environment. The aim of this study was to evaluate the xylanase production by an Aspergillus niger strain, using agro-industrial wastes as substrate. Brewer’s spent grain was the best inducer of xylanase activity. Higher levels of xylanase were obtained when the fungus was grown in liquid Vogel medium, pH 5.0, at 30ºC, during 5 days. The temperature for optimum activity was 50ºC and optimum pH 5.0. The enzyme was stable at 50ºC, with a half-life of 240 min. High pH stability was verified from pH 4.5 to 7.0. These characteristics exhibited by A. niger xylanase turn this enzyme attractive for some industrial applications, such as in feed and food industries. Additionally, the use of brewer’s spent grain, an abundantly available and low-cost residue, as substrate for xylanase production can not only add value and decrease the amount of this waste, but also reduce xylanase production cost.

  11. Biosynthesis, purification and characterization of endoglucanase from a xylanase producing strain Aspergillus niger B03

    Directory of Open Access Journals (Sweden)

    Georgi Todorov Dobrev

    2012-03-01

    Full Text Available An extracellular endoglucanase was isolated from the culture liquid of xylanase producing strain Aspergillus niger B03. The enzyme was purified to a homogenous form, using consecutive ultrafiltration, anion exchange chromatography, and gel filtration. Endoglucanase was a monomer protein with a molecular weight of 26,900 Da determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 28,800 Da determined by gel filtration. The optimal pH and temperature values for the enzyme action were 3.5 and 65ºC respectively. Endoglucanase was stable at 40ºC, pH 3.0 for 210 min. The substrate specificity of the enzyme was determined with carboxymethyl cellulose, filter paper, and different glycosides. Endoglucanase displayed maximum activity in the case of carboxymethyl cellulose, with a Km value of 21.01 mg/mL. The substrate specificity and the pattern of substrate degradation suggested that the enzyme is an endoglucanase. Endoglucanase showed a synergism with endoxylanase in corn cobs hydrolysis.

  12. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an -L-Rhamnosidase of enological interest

    NARCIS (Netherlands)

    Manzanares, P.; Orejas, M.; Vicente Gil, J.; Graaff, de L.H.; Visser, J.; Ramon, D.

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an alpha-L-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain

  13. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.

    Science.gov (United States)

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse; Khoomrung, Sakda; Brown, Stephen; Berry, Alan; Nielsen, Jens

    2014-04-01

    Malic acid is a C₄ dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C₄ dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103a-68, was presented which overexpressed pyruvate carboxylase, malate dehydrogenase, and a malic acid transporter. In this work, we report a detailed characterization of this strain including detailed rates and yields under malic acid production conditions. Furthermore, transcript levels of the genes of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))⁻¹ h⁻¹ and with a yield of 1.49 mol mol⁻¹. Intracellular fluxes were obtained using ¹³C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able to efficiently metabolize pentoses and hexoses to produce malic acid at high titers, rates, and yields.

  14. Aspergillus endocarditis in a native valve after amphotericin B treatment.

    Science.gov (United States)

    Kotanidou, Anastasia N; Zakynthinos, Epaminonthas; Andrianakis, Ilias; Zervakis, Dimitrios; Kokotsakis, Ioannis; Argyrakos, Theodoros; Argiropoulou, Athina; Margariti, Georgia; Douzinas, Emmanuel

    2004-10-01

    Systemic infection with Aspergillus fumigatus is an opportunistic disease that affects mainly immunocompromised hosts and is associated with a high mortality rate. We report a case of A. fumigatus endocarditis after an episode of thrombotic thrombocytopenic purpura. Diagnosis was established after sudden rupture of posterior papillary muscle of the normal native mitral valve. Soon after mitral valve replacement, Aspergillus endocarditis recurred, associated with multiple peripheral emboli, which necessitated a second operation.

  15. Strain improvement and optimization for β-glucosidase production in Aspergillus niger by low-energy N+ implantation

    International Nuclear Information System (INIS)

    Diao Jinshan; Wang Li; Chen Zhen; Liu Hui; Nie Guangjun; Zheng Zhiming

    2010-01-01

    Low-energy N + implantation was employed to mutate Aspergillus niger Au to enhance productivity of β-glucosidase. Effects of N + on strains, survival and mutation rate were studied. After several rounds of implantation, activity of β-glucosidase of the final mutant Au 0847 reached 13.75 U/mL, which is higher by 106.8% than that of original strain Au, and its heritability was stabilized. Activity of β-glucosidase of Au 0847 reached 30.53 U/mL after further fermentation condition optimization. (authors)

  16. The potential of Aspergillus fumigatus and Aspergillus niger in ...

    African Journals Online (AJOL)

    SARAH

    2015-10-31

    Oct 31, 2015 ... ABSTRACT. Objectives: Bioaccumulation of heavy metals by fungi has been a major focus of most bioremediation studies owing to the excellent metal binding properties of the fungal cell wall. The capability of fungi isolated from sediments of the Chemu Lagoon to bioaccumulate heavy metals in lagoon ...

  17. Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of Aspergillus flavus Isolated from Brazil Nuts.

    Science.gov (United States)

    Baquião, Arianne Costa; Rodriges, Aline Guedes; Lopes, Evandro Luiz; Tralamazza, Sabina Moser; Zorzete, Patricia; Correa, Benedito

    2016-08-01

    The aims of the present study were to monitor the production of aflatoxin B1 (AFB1) and mycelial growth, and to evaluate the expression of genes directly and indirectly involved in the biosynthesis of aflatoxins by Aspergillus flavus isolated from Brazil nuts. Six previously identified A. flavus strains were grown on coconut agar at 25°C for up to 10 days. Mycotoxins were separated by high-performance liquid chromatography and fungal growth was measured daily using the diametric mycelial growth rate. Transcriptional analysis was performed by real-time polymerase chain reaction (PCR) after 2 and 7 d of incubation using specific primers (aflR, aflD, aflP, lipase, metalloprotease, and LaeA). Three (50%) of the six A. flavus isolates produced AFB1 (ICB-1, ICB-12, and ICB-54) and three (50%) were not aflatoxigenic (ICB-141, ICB-161, and ICB-198). Aflatoxin production was observed from d 2 of incubation (1.5 ng/g for ICB-54) and increased gradually with time of incubation until d 10 (15,803.6 ng/g for ICB-54). Almost all A. flavus isolates exhibited a similar gene expression pattern after 2 d of incubation (p > 0.10). After 7 d of incubation, the LaeA (p aflatoxin production in A. flavus and that overexpression of aflR could affect the transcriptional and aflatoxigenic pattern (ICB-54). Elucidation of the molecular mechanisms that regulate the secondary metabolism of toxigenic fungi may permit the rational silencing of the genes involved and consequently the programmed inhibition of aflatoxin production. Knowledge of the conditions, under which aflatoxin genes are expressed, should contribute to the development of innovative and more cost-effective strategies to reduce and prevent aflatoxin contamination in Brazil nuts.

  18. Variability among strains of Aspergillus section Nigri with capacity to degrade tannic acid isolated from extreme environments.

    Science.gov (United States)

    Lara-Victoriano, F; Veana, F; Hernández-Castillo, F D; Aguilar, C N; Reyes-Valdés, M H; Rodríguez-Herrera, R

    2017-01-01

    Tannins are polyphenolic compounds that cause astringent flavor and turbidity in food. Tannase is an enzyme that catalyzes the hydrolysis of tannins and is used in food industry. This study was conducted to determine the genetic variability and the tannase alleles variation in fungal strains isolated from soil and plants at five extreme areas of Coahuila, México. Two screening assays under 1 and 20 % of tannic acid were performed, with the isolations. In these assays, it was possible to identify 756 and 128 fungal strains, respectively. The major fungal variability was observed in "Cuatro Ciénegas" with 26 strains. The microorganisms were distributed in 11 groups, which correspond to Aspergillus section Nigri. AN7 and AN1 groups showed the major number of isolates from "Paila" and "Cuatro Ciénegas" locations, respectively. In the last location, the major diversity and specific richness were found. But in "Ojo Caliente," tannase allele conservations were observed.

  19. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    Ye Hui; Ma Jingming; Feng Chun; Cheng Ying; Zhu Suwen; Cheng Beijiu

    2009-01-01

    In the process of the fermentation of steroid C 11 α-hydroxylgenation strain Aspergillus flavus AF-ANo208, a red pigment is derived, which will affect the isolation and purification of the target product. Low energy ion beam implantation is a new tool for breeding excellent mutant strains. In this study, the ion beam implantation experiments were performed by infusing two different ions: argon ion (Ar + ) and nitrogen ion (N + ). The results showed that the optimal ion implantation was N + with an optimum dose of 2.08 x 10 15 ions/cm 2 , with which the mutant strain AF-ANm16 that produced no red pigment was obtained. The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation, which could be utilized in industrial fermentation. The differences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA (RAPD). The results indicated that the frequency of variation was 7.00%, which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation. (ion beam bioengineering)

  20. Relationship of Quantity of Citric Acid and Protein Content of Mycelia during Citric Acid Production by Three Strains of Aspergillus niger

    International Nuclear Information System (INIS)

    Abdullah-Al-Mahin; Alamgir Z. Chowdhury; Rehana Begum

    2006-01-01

    The amount of protein in the surface grown mycelia of three strains of Aspergillus niger (CA16,79/20 and 318) was found to decrease with the increase of citric acid production in sucrose based fermentation medium. Throughout the study period of 6 to 10 days of fermentation, highest amount of citric acid was produced by Aspergillus niger 318 although the amount of protein in mycelia was lowest for this strain. On the other hand, lowest amount of citric acid was produced by the strain CA 16 which in tern produced highest amount of mycelial protein. Aspergillus niger 79/20 produced both intermediate level of protein and citric acid. The Protein was estimated by three commonly used methods namely: Kjeldahl, Biuret and Lowry methods. Kjeldahl and Lowry method gave the highest and lowest results respectively for protein determination in all cases.(authors)

  1. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus.

    Science.gov (United States)

    Prathumpai, Wai; Flitter, Simon J; McIntyre, Mhairi; Nielsen, Jens

    2004-11-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y(xp total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7+/-0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3+/-0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60+/-0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10+/-0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.

  2. Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds.

    Science.gov (United States)

    Starzyńska-Janiszewska, Anna; Stodolak, Bożena; Wikiera, Agnieszka

    2015-01-01

    Tempeh is a food product obtained from legumes by means of solid-state fermentation with Rhizopus sp. Our previous research proved that mixed-culture inoculum may also be successfully applied. The objective of present research was to study the proteolytic activity of R. microsporus var. chinensis and A. oryzae during tempeh-type fermentation of grass pea seeds, and the effect of inoculum composition on the protein level and in vitro protein bioavailability in products. Fermentation substrate were soaked and cooked grass pea seeds. Material was mixed with single- or mixed-culture inoculum, and incubated in perforated plastic bags at 30°C for 32 hrs. In the products, the proteolytic activity (pH 3, 5 and 7), glucosamine, total protein and free amino acids levels, as well as protein in vitro bioavailability and degree of protein hydrolysis were obtained. The significant correlation was found between glucosamine content and proteolytic activity in grass pea seeds fermented with Rhizopus or Aspergillus. The activities of Rhizopus proteases were higher than Aspergillus ones, which corresponded with the degree of seed protein hydrolysis. Both strains showed the highest activity of protease at pH 3. Tempeh made with pure culture of Rhizopus had 37% protein of 69% in-vitro bioavailability. Mixed-culture fermentation improved nutritional parameters of products only when the dose of Aspergillus spores in the inoculum was equal and lower than that of Rhizopus. This process resulted in higher in-vitro bioavailability of protein, slightly more efficient protein hydrolysis and higher level of free amino acids, as compared to standard tempeh. The activity of A. oryzae in tempeh-type fermentation is beneficial as long as it does not dominate the activity and/or growth of Rhizopus strain.

  3. Evaluation of Aspergillus PCR Protocols for Testing Serum Specimens

    NARCIS (Netherlands)

    White, P.L.; Mengoli, C.; Bretagne, S.; Cuenca-Estrella, M.; Finnstrom, N.; Klingspor, L.; Melchers, W.J.G.; McCulloch, E.; Barnes, R.A.; Donnelly, J.P.; Loeffler, J.

    2011-01-01

    A panel of human serum samples spiked with various amounts of Aspergillus fumigatus genomic DNA was distributed to 23 centers within the European Aspergillus PCR Initiative to determine analytical performance of PCR. Information regarding specific methodological components and PCR performance was

  4. Mutagenic strain improvement of aspergillus niger (MBL-1511) and optimization of cultural conditions for boosted lipolytic potential through submerged fermentation

    International Nuclear Information System (INIS)

    Sidra, A.; Aftikhar, T.

    2016-01-01

    In present study an isolated hyper producer of Aspergillus niger (MBL-1511) was treated for sodium azide mutagenesis. Results showed 147.27 % enhanced extracellular lipase activity after 150 minutes of sodium azide treatment. Wild and mutant hyper lipase producer strains were exploited to submerged fermentation (SmF). Brassica meal as an additive agro waste product to the basal medium was optimized. Experimental conditions optima were 10% inoculum size, 30 degree C temperature, 96 h rate of fermentation and pH 6 for maximum lipases production. Molasses and Ammonium nitrate were optimized as the best carbon and nitrogen sources (0.6% and 0.4%) w/v respectively and sunflower oil 1% (v/v) as better inducer. Finally, an effective mutant (MBL-1511SA-4(150 min)) having of 176.10% enhanced extracellular lipases production over wild (MBL-1511) strain was acquired. (author)

  5. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin.

    Science.gov (United States)

    Mora-Lugo, Rodrigo; Madrigal, Marvin; Yelemane, Vikas; Fernandez-Lahore, Marcelo

    2015-11-01

    The biotechnological value of Aspergillus sojae ATCC 20235 (A. sojae) for production of pectinases in solid-state fermentation (SSF) has been demonstrated recently. However, a common drawback of fungal solid-state cultures is the poor diffusion of oxygen into the fungi that limits its growth and biological productivity. The bacterial Vitreoscilla hemoglobin (VHb) has favored the metabolism and productivities of various bacterial and yeast strains besides alleviating hypoxic conditions of its native host, but the use of VHb in filamentous fungi still remains poor explored. Based on the known effects of VHb, this study assessed its applicability to improve A. sojae performance in SSF. The VHb gene (vgb) under control of the constitutive Aspergillus nidulants gpdA promoter was introduced into the genome of A. sojae by Agrobacterium-mediated transformation. Successful fungal transformants were identified by fluorescence microscopy and polymerase chain reaction (PCR) analyses. In solid-state cultures, the content of protease, exo-polygalacturonase (exo-PG), and exo-polymethylgalacturonase (exo-PMG) of the transformed fungus (A. sojae vgb+) improved were 26, 60, and 44 % higher, respectively, in comparison to its parental strain (A. sojae wt). Similarly, biomass content was also 1.3 times higher in the transformant strain. No significant difference was observed in endo-polygalacturonase (endo-PG) content between both fungal strains, suggesting dissimilar effects of VHb towards different enzymatic productions. Overall, our results show that biomass, protease, and exo-pectinase content of A. sojae in SSF can be improved by transformation with VHb.

  6. Volatile metabolites associated with one aflatoxigenic and one nontoxigenic Aspergillus flavus strain grown on two different substrates

    Directory of Open Access Journals (Sweden)

    Z. Jurjevic

    2009-01-01

    Full Text Available Aflatoxigenic and non-toxigenic Aspergillus flavus strains were grown on corn and on peanut substrates. Microbial volatile organic compounds (MVOCS were collected by trapping headspace volatiles using thermal desorption tubes (TDT packed with Tenax® TA and Carbotrap™ B. Samples were collected at various fungal growth stages. Trapped compounds were thermally desorbed from the adsorbent tubes, separated by gas chromatography, and identified by mass spectrometry. The fungal stage did not have many differences in the MVOCs but the concentrations of some volatiles changed over time depending on the substrate. Volatiles that were associated with both the aflatoxigenic A. flavus strain and the nontoxigenic strain on both substrates included: ethanol, 1-propanol, butanal, 2-methyl-1-propanol, 3-methylfuran, ethyl acetate, 1-butanol, 3-methylbutanal, 3-methyl-1-butanol, propanoic acid-2-methyl-ethyl-ester, 2-methyl-1-butanol, 1-pentanol, 2-pentanol, 3-methyl-3-buten-1-ol, benzaldehyde, 3-octanone, 2-ethyl-1-hexanol and octane. Volatiles that were associated only with the aflatoxigenic A. flavus strain included: dimethyl disulfide and nonanal. Volatiles that were associated only with the nontoxigenic A. fl avus strain included: hexanal, 1-hexanol, 1-octene-3-ol, 1-octen-3-one and 2-pentyl furan.

  7. Occurrence of Aflatoxins and Aflatoxin-Producing Strains of Aspergillus spp. in Soybeans 1

    Science.gov (United States)

    Bean, George A.; Schillinger, John A.; Klarman, William L.

    1972-01-01

    Above average rainfall in Maryland during August, September, and October 1971 resulted in heavy mold growth in soybeans while still in the field. Of 28 samples of soybean seed, aflatoxins were found in 14, 2 of which had been used in poultry feed. Aflatoxins were identified by thin-layer chromatography, spectrophotometry, and chicken embryo bioassay. Aspergillus spp. were isolated from 11 samples, and 5 of these isolates produced aflatoxins when grown in liquid culture. PMID:4673021

  8. HIGH LEVEL PRODUCTION OF THERMOSTABLE β-XYLANASE, CMC-ASE AND -GLUCOSIDASE BY AN ASPERGILLUS FUMIGATUS (FRESENIUS ALBINO MUTANT STRAIN

    Directory of Open Access Journals (Sweden)

    N SARADOUNI

    1999-12-01

    b-glucosidase activity was maximal at 65°C (43 U/ml , CMC-ase  and b-xylanase enzymes were active in a large pH spectrum (3.0 to 8.0 and showed high thermostability at 60°C and above, especially for CMC-ase.

  9. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi).

    Science.gov (United States)

    Aoki, Kenji; Matsubara, Sayaka; Umeda, Mayo; Tachibanac, Shusaku; Doi, Mikiharu; Takenaka, Shinji

    2013-04-01

    Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito. © 2012 Society of Chemical Industry.

  10. Aspergillus triggers phenazine production in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib

    Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen, commonly infecting cystic fibrosis (CF) patients. Aspergilli, especially Aspergillus fumigatus, are also frequently isolated from CF patients. Our aim was to examine the possible interaction between P. aeruginosa and different...... in the contact area of A. niger, A. flavus, A. oryzae, but not A. fumigatus. In addition, other metabolites with UV chromophores similar to the phenazines were only found in the contact zone between Aspergillus and Pseudomonas. No change in secondary metabolite profiles were seen for the Aspergilli, when...... comparing with or without the presence of Pseudomonas. Conclusion: All Aspergilli tested, with the exception of A. fumigatus, triggered the upregulation of phenazine-1-carboxamide and phenazine-1-carboxylic acid production by P. aeruginosa. Surprisingly no changes in secondary metabolite profiles were...

  11. Chemometric Analysis of the Volatile Compounds Generated by Aspergillus carbonarius Strains Isolated from Grapes and Dried Vine Fruits

    Directory of Open Access Journals (Sweden)

    Zhan Cheng

    2018-02-01

    Full Text Available Ochratoxin A (OTA contamination in grape production is an important problem worldwide. Microbial volatile organic compounds (MVOCs have been demonstrated as useful tools to identify different toxigenic strains. In this study, Aspergillus carbonarius strains were classified into two groups, moderate toxigenic strains (MT and high toxigenic strains (HT, according to OTA-forming ability. The MVOCs were analyzed by GC-MS and the data processing was based on untargeted profiling using XCMS Online software. Orthogonal projection to latent structures discriminant analysis (OPLS-DA was performed using extract ion chromatogram GC-MS datasets. For contrast, quantitative analysis was also performed. Results demonstrated that the performance of the OPLS-DA model of untargeted profiling was better than the quantitative method. Potential markers were successfully discovered by variable importance on projection (VIP and t-test. (E-2-octen-1-ol, octanal, 1-octen-3-one, styrene, limonene, methyl-2-phenylacetate and 3 unknown compounds were selected as potential markers for the MT group. Cuparene, (Z-thujopsene, methyl octanoate and 1 unknown compound were identified as potential markers for the HT groups. Finally, the selected markers were used to construct a supported vector machine classification (SVM-C model to check classification ability. The models showed good performance with the accuracy of cross-validation and test prediction of 87.93% and 92.00%, respectively.

  12. Characterisation of Aspergillus niger prolyl aminopeptidase

    NARCIS (Netherlands)

    Basten, E.J.W.; Moers, A.P.H.A.; Ooyen, van A.J.J.; Schaap, P.J.

    2005-01-01

    We have cloned a gene (papA) that encodes a prolyl aminopeptidase from Aspergillus niger. Homologous genes are present in the genomes of the Eurotiales A. nidulans, A. fumigatus and Talaromyces emersonii, but the gene is not present in the genome of the yeast Saccharomyces cerevisiae. Cell extracts

  13. [Survival Strategies of Aspergillus in the Human Body].

    Science.gov (United States)

    Tashiro, Masato; Izumikawa, Koichi

    2017-01-01

     The human body is a hostile environment for Aspergillus species, which originally live outside the human body. There are lots of elimination mechanisms against Aspergillus inhaled into the human body, such as high body temperature, soluble lung components, mucociliary clearance mechanism, or responses of phagocytes. Aspergillus fumigatus, which is the primary causative agent of human infections among the human pathogenic species of Aspergillus, defend itself from the hostile human body environment by various mechanisms, such as thermotolerance, mycotoxin production, and characteristic morphological features. Here we review mechanisms of defense in Aspergillus against elimination from the human body.

  14. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation

    Science.gov (United States)

    Miranda-Miranda, Estefan; Sánchez-Reyes, Ayixón; Cuervo-Soto, Laura; Aceves-Zamudio, Denise; Atriztán-Hernández, Karina; Morales-Herrera, Catalina; Rodríguez-Hernández, Rocío; Folch-Mallol, Jorge

    2014-01-01

    A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications. PMID:25162614

  15. Genetic and phenotypic diversity of naturally isolated wild strains of Aspergillus niger with hyper glucose oxidase production

    Directory of Open Access Journals (Sweden)

    MAHMOUD EL-HARIRI

    2015-12-01

    Full Text Available Glucose oxidase (GOx is the basic stone for many of biological industry worldwide. The improvement of GOx production basically depends on selection of hyper producer strain of Aspergillus niger. Selective isolation and screening for natural hyper producer strains of A. niger and sequence analysis of the GOD gene, which is responsible for production of the enzyme, are very effective approaches to investigate the naturally modified strains of A. niger with hyper productive capacity of GOx enzyme. The aims of the current study were selective isolation of naturally hyper GOx producing strains of A. niger and evaluation of their GOx activities under optimized parameters in the laboratory. Five wild Egyptian isolates of A. niger were screened for GOx and catalase activity using two types of modified basal liquid media. The GOx activity was evaluated by high throughout liquid phase system. The isolates showed a variable activity for GOx production ranged from 0 to 28.7 U.ml-1. One isolate coded Strain 7 was negative GOx producer on Vogel's broth medium in comparison to other isolates, while its GOx activity on Cazpek Dox was considered as positive (7.28 U.ml-1. It was concluded that GOx production is affected by three controllable factors – the basal media components, time of incubation, and the strain with its adaption to the media components‎. Also, the catalase activity was tested and it was produced with a different degree of variability, which may be reflected on GOx stability. GOD genes of these wild variant of A. niger were cloned and sequenced to determine intraspecies diversity of GOD between the wild variants. The comparison of isolated wild variants to other reference hyper GOx producer strains of A. niger was performed to determine if the GOD sequence analysis of these strains can be distinguished based on their GOx activity. This is the first report for isolation and detection of naturally A. niger hyper GOx-producer strains with

  16. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp.

    Science.gov (United States)

    Khan, Mohd Sajjad Ahmad; Ahmad, Iqbal; Cameotra, Swaranjit Singh

    2014-01-01

    Emergence of drug-resistant strains has demanded for alternative means of combating fungal infections. Oils of Carum copticum and Thymus vulgaris have long been used in ethnomedicine for ailments of various fungal infections. Since their activity has not been reported in particular against drug-resistant fungi, this study was aimed to evaluate the effects of oils of C. copticum and T. vulgaris on the growth and virulence of drug-resistant strains of Aspergillus spp. and Trichophyton rubrum. The gas chromatography-mass spectrometry analysis revealed thymol constituting 44.71% and 22.82% of T. vulgaris and C. copticum, respectively. Inhibition of mycelial growth by essential oils was recorded in the order of thymol > T. vulgaris > C. copticum against the tested strains. RBC lysis assay showed no tested oils to be toxic even up to concentration two folds higher than their respective MFCs. Thymol exhibited highest synergy in combination with fluconazole against Aspergillus fumigatus MTCC2550 (FICI value 0.187) and T. rubrum IOA9 (0.156) as determined by checkerboard method. Thymol and T. vulgaris essential oil were equally effective against both the macro and arthroconidia growth (MIC 72 μg/mL). A > 80% reduction in elastase activity was recorded for A. fumigatus MTCC2550 by C. copticum, T. vulgaris oils and thymol. The effectiveness of these oils against arthroconidia and synergistic interaction of thymol and T. vulgaris with fluconazole can be exploited to potentiate the antifungal effects of fluconazole against drug-resistant strains of T. rubrum and Aspergillus spp.

  17. Analysis of heterologous protein production in defined recombinant Aspergillus awamori strains.

    Science.gov (United States)

    Gouka, R J; Punt, P J; Hessing, J G; van den Hondel, C A

    1996-06-01

    A study was carried out to obtain more insight into the parameters that determine the secretion of heterologous proteins from filamentous fungi. A strategy was chosen in which the mRNA levels and protein levels of a number of heterologous genes of different origins were compared. All genes were under control of the Aspergillus awamori 1,4-beta-endoxylanase A (exlA) expression signals and were integrated in a single copy at the A. awamori pyrG locus. A Northern (RNA) analysis showed that large differences occurred in the steady-state mRNA levels obtained with the various genes; those levels varied from high values for genes of fungal origin (A. awamori 1,4-beta-endoxylanase A, Aspergillus niger glucoamylase, and Thermomyces lanuginosa lipase) to low values for genes of nonfungal origin (human interleukin 6 and Cyamopsis tetragonoloba [guar] alpha-galactosidase). With the C. tetragonoloba alpha-galactosidase wild-type gene full-length mRNA was even undetectable. Surprisingly, small amounts of full-length mRNA could be detected when a C. tetragonoloba alpha-galactosidase gene with an optimized Saccharomyces cerevisiae codon preference was expressed. In all cases except human interleukin 6, the protein levels corresponded to the amounts expected on basis of the mRNA levels. For human interleukin 6, very low protein levels were observed, whereas relatively high steady-state mRNA levels were obtained. Our data suggest that intracellular protein degradation is the most likely explanation for the low levels of secreted human interleukin 6.

  18. In vitro activity of disinfectants against Aspergillus spp

    Directory of Open Access Journals (Sweden)

    A.S. Mattei

    2013-01-01

    Full Text Available Fungi of the Aspergillus genus are widespread and contaminate the environment. Thousands of conidia are released from each phialide and dispersed in the air every day. These fungi are considered important mycose-causing agents in hospitals. Due to this, research to determine prevalent fungi from the Aspergillus genus in hospital environments, and an adequate disinfection program in these areas is are needed. This study evaluated the susceptibility of Aspergillus spp. isolated from a veterinary environment against four disinfectants. Successive dilutions of disinfectants (log2 were used according to CLSI M38-A2 microdilution technique adapted to chemical agents against 18 isolates of this genus. After 72 hours of incubation, the Minimum Inhibiting Concentration and Minimum Fungicidal Concentration capable of inhibiting 50% and 90% of the isolates were determined. Chlorexidine-cetrimine, benzalconium chloride and a chlorophenol derivative proved to be effective against all isolates with a lower MIC than that suggested by the manufacturer, except for the A. flavus strain. Sodium hypochlorite was ineffective against three A. fumigatus, three A. flavus and one A. niger isolate. These results demonstrated that all studied disinfectants were effective against environmental isolates, with the exception of sodium hypochlorite, which showed lower effectiveness.

  19. Gene encoding a novel invertase from a xerophilic Aspergillus niger strain and production of the enzyme in Pichia pastoris.

    Science.gov (United States)

    Veana, Fabiola; Fuentes-Garibay, José Antonio; Aguilar, Cristóbal Noé; Rodríguez-Herrera, Raúl; Guerrero-Olazarán, Martha; Viader-Salvadó, José María

    2014-09-01

    β-Fructofuranosidases or invertases (EC 3.2.1.26) are enzymes that are widely used in the food industry, where fructose is preferred over sucrose, because it is sweeter and does not crystallize easily. Since Aspergillus niger GH1, an xerophilic fungus from the Mexican semi-desert, has been reported to be an invertase producer, and because of the need for new enzymes with biotechnological applications, in this work, we describe the gene and amino acid sequence of the invertase from A. niger GH1, and the use of a synthetic gene to produce the enzyme in the methylotrophic yeast Pichia pastoris. In addition, the produced invertase was characterized biochemically. The sequence of the invertase gene had a length of 1770 bp without introns, encodes a protein of 589 amino acids, and presented an identity of 93% and 97% with invertases from Aspergillus kawachi IFO 4308 and A. niger B60, respectively. A 4.2 L culture with the constructed recombinant P. pastoris strain showed an extracellular and periplasmic invertase production at 72 h induction of 498 and 3776 invertase units (U), respectively, which corresponds to 1018 U/L of culture medium. The invertase produced had an optimum pH of 5.0, optimum temperature of 60 °C, and specific activity of 3389 U/mg protein, and after storage for 96 h at 4 °C showed 93.7% of its activity. This invertase could be suitable for producing inverted sugar used in the food industry. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Leaf application of a sprayable bioplastic-based formulation of biocontrol Aspergillus flavus strains for reduction of aflatoxins in corn.

    Science.gov (United States)

    Accinelli, Cesare; Abbas, Hamed K; Vicari, Alberto; Shier, W Thomas

    2016-08-01

    Applying non-aflatoxin-producing Aspergillus flavus isolates to the soil has been shown to be effective in reducing aflatoxin levels in harvested crops, including peanuts, cotton and corn. The aim of this study was to evaluate the possibility of controlling aflatoxin contamination using a novel sprayable formulation consisting of a partially gelatinized starch-based bioplastic dispersion embedded with spores of biocontrol A. flavus strains, which is applied to the leaf surfaces of corn plants. The formulation was shown to be adherent, resulting in colonization of leaf surfaces with the biocontrol strain of A. flavus, and to reduce aflatoxin contamination of harvested kernels by up to 80% in Northern Italy and by up to 89% in the Mississippi Delta. The percentage of aflatoxin-producing isolates in the soil reservoir under leaf-treated corn was not significantly changed, even when the soil was amended with additional A. flavus as a model of changes to the soil reservoir that occur in no-till agriculture. This study indicated that it is not necessary to treat the soil reservoir in order to achieve effective biocontrol of aflatoxin contamination in kernel corn. Spraying this novel bioplastic-based formulation to leaves can be an effective alternative in the biocontrol of A. flavus in corn. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger.

    Science.gov (United States)

    Kuivanen, Joosu; Dantas, Hugo; Mojzita, Dominik; Mallmann, Edgar; Biz, Alessandra; Krieger, Nadia; Mitchell, David; Richard, Peter

    2014-01-01

    Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared.

  2. The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species.

    Science.gov (United States)

    Basková, Lenka; Landlinger, Christine; Preuner, Sandra; Lion, Thomas

    2007-09-01

    In view of the growing incidence and the high mortality of invasive aspergillosis and candidiasis, adequate diagnostic techniques permitting timely onset of treatment are of paramount importance. More than 90 % of all invasive fungal infections in immunocompromised individuals can be attributed to Candida and Aspergillus species. To date, standardized techniques permitting rapid, sensitive and, no less importantly, economic screening for the clinically most relevant fungi are lacking. In the present report, a real-time quantitative PCR assay, developed for the detection of the most common pathogenic Candida and Aspergillus species, is described. The single-reaction PCR assay targets a judiciously selected region of the 28S subunit of the fungal rDNA gene. The unique design of the universal primer/probe system, including a pan-Aspergillus and pan-Candida (Pan-AC) hydrolysis probe, facilitates the detection of numerous Aspergillus species (e.g. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus versicolor and Aspergillus nidulans) and Candida species (e.g. Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Candida kefyr, Candida guilliermondii, Candida lusitaniae and Candida dubliniensis). The assay permits highly reproducible detection of 10 fg fungal DNA, which corresponds to a fraction of a fungal genome, and facilitates accurate quantification of fungal load across a range of at least five logs. Upon standardization of the technique using cultured fungal strains, the applicability in the clinical setting was assessed by investigating a series of clinical specimens from patients with documented fungal infections (n=17). The Pan-AC assay provides an attractive and economic approach to the screening and monitoring of invasive aspergillosis and candidiasis, which is readily applicable to routine clinical diagnosis.

  3. Molecular phylogeny and phenotypic variability of clinical and environmental strains of Aspergillus flavus.

    Science.gov (United States)

    Gonçalves, Sarah S; Cano, Josep F; Stchigel, Alberto M; Melo, Analy S; Godoy-Martinez, Patricio C; Correa, Benedito; Guarro, Josep

    2012-11-01

    Aspergillus flavus is the second most common cause of aspergillosis infection in immunocompromised patients and is responsible for the production of aflatoxins. Little is known about the population structure of A. flavus, although recent molecular and phenotypic data seem to demonstrate that different genetic lineages exist within this species. The aim of this study was to carry out a morphological, physiological, and molecular analysis of a set of clinical and environmental isolates to determine whether this variability is due to species divergence or intraspecific diversity, and to assess whether the clinical isolates form a separate group. The amdS and omtA genes were more phylogenetically informative than the other tested genes and their combined analysis inferred three main clades, with no clear distinction between clinical and environmental isolates. No important morphological and physiological differences were found between the members of the different clades, with the exception of the assimilation of d-glucosamine, which differentiates the members of the clade II from the others. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Volatile metabolites associated with one aflatoxigenic and one nontoxigenic Aspergillus flavus strain grown on two different substrates

    OpenAIRE

    Z. Jurjevic; G.C. Rains; D.M. Wilson; W.J. Lewis

    2009-01-01

    Aflatoxigenic and non-toxigenic Aspergillus flavus strains were grown on corn and on peanut substrates. Microbial volatile organic compounds (MVOCS) were collected by trapping headspace volatiles using thermal desorption tubes (TDT) packed with Tenax® TA and Carbotrap™ B. Samples were collected at various fungal growth stages. Trapped compounds were thermally desorbed from the adsorbent tubes, separated by gas chromatography, and identified by mass spectrometry. The fungal stage did not have ...

  5. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus.

    Science.gov (United States)

    Accinelli, Cesare; Saccà, M Ludovica; Abbas, Hamed K; Zablotowicz, Robert M; Wilkinson, Jeffery R

    2009-09-01

    Previous research demonstrated that aflatoxin contamination in corn is reduced by field application of wheat grains pre-inoculated with the non-aflatoxigenic Aspergillus flavus strain NRRL 30797. To facilitate field applications of this biocontrol isolate, a series of laboratory studies were conducted on the reliability and efficiency of replacing wheat grains with the novel bioplastic formulation Mater-Bi to serve as a carrier matrix to formulate this fungus. Mater-Bi granules were inoculated with a conidial suspension of NRRL 30797 to achieve a final cell density of approximately log 7 conidia/granule. Incubation of 20-g soil samples receiving a single Mater-Bi granule for 60-days resulted in log 4.2-5.3 propagules of A. flavus/g soil in microbiologically active and sterilized soil, respectively. Increasing the number of granules had no effect on the degree of soil colonization by the biocontrol fungus. In addition to the maintenance of rapid vegetative growth and colonization of soil samples, the bioplastic formulation was highly stable, indicating that Mater-Bi is a suitable substitute for biocontrol applications of A. flavus NRRL 30797.

  6. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus.

    Science.gov (United States)

    Huang, Xuenian; Liang, Yajing; Yang, Yong; Lu, Xuefeng

    2017-07-01

    Monacolin J is a key precursor for the synthesis of simvastatin (Zocor), an important drug for treating hypercholesterolemia. Industrially, monacolin J is manufactured through alkaline hydrolysis of lovastatin, a fungal polyketide produced by Aspergillus terreus. Multistep chemical processes for the conversion of lovastatin to simvastatin are laborious, cost expensive and environmentally unfriendly. A biocatalysis process for monacolin J conversion to simvastatin has been developed. However, direct bioproduction of monacolin J has not yet been achieved. Here, we identified a lovastatin hydrolase from Penicillium chrysogenum, which displays a 232-fold higher catalytic efficiency for the in vitro hydrolysis of lovastatin compared to a previously patented hydrolase, but no activity for simvastatin. Furthermore, we showed that an industrial A. terreus strain heterologously expressing this lovastatin hydrolase can produce monacolin J through single-step fermentation with high efficiency, approximately 95% of the biosynthesized lovastatin was hydrolyzed to monacolin J. Our results demonstrate a simple and green technical route for the production of monacolin J, which makes complete bioproduction of the cholesterol-lowering drug simvastatin feasible and promising. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    International Nuclear Information System (INIS)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-01-01

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function

  8. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment

    Directory of Open Access Journals (Sweden)

    Matheus Sanita Lima

    2016-04-01

    Full Text Available Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60 % - 80 % of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA, GH11 endo-1,4-xylanase (XlnA, GH43 endo-1,5-arabinanase (AbnA and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA. This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  9. A Case Report on Aspergillus lentulus Pneumonia

    Directory of Open Access Journals (Sweden)

    Muharrem Cidem

    2013-12-01

    Full Text Available Background: Aspergillus lentulus was described as a new species in 2005 but it was isolated from Turkey for the first time. Case report: A. lentulus was isolated as the cause of pneumonia from a patient who had renal transplantation 4 months ago. The patient received immunosuppressive treatment after transplantation. A. lentulus was isolated from his sputum as an agent in pneumonia developed 4 months after the transplantation. Leukocytes, blastospores, and hyphae were seen in both Gram- and Giemsa-stained smears of the sputum. The isolate was identified by using the Maren A. Klich algorithm and molecular methods and confirmed by the reference laboratory of the CBS Fungal Biodiversity Centre (The Netherlands. In the susceptibility tests of the isolate, minimal inhibitory concentrations for amphotericin B, voriconazole, posaconazole, and caspofungin were found to be 0.5 µg/mL, 0.25 µg/mL, 0.125 µg/mL, and 0.25 µg/mL, respectively. The patient recovered with voriconazole treatment (2x200 mg/day. Conclusion: The use of the molecular tests is important for identification of A. lentulus strains because they are very easily confused with A.fumigatus strains according to phenotypic characteristics.

  10. In vivo and in vitro control activity of plant essential oils against three strains of Aspergillus niger.

    Science.gov (United States)

    Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar

    2017-09-01

    Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.

  11. Deracemization of (RS-1-[(4-MethylselanylPhenyl]Ethanol and (RS-1-[(4-EthylselanylPhenyl]Ethanol by Strains of Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes Assis

    2007-01-01

    Full Text Available The fungal strains Aspergillus terreus URM 3371 and A. terreus CCT 4083, isolated in Brazil, catalysed the deracemization of (RS-1-[(4-methylselanylphenyl]ethanol (1 and (RS-1-[(4-ethylselanylphenyl]ethanol (2. Different mass of whole fungal cells (1–5 g, pH values (4 and 7, biotransformation temperature (20 and 32 °C and additives (ethanol, butanol, propanol and cyclohexanol were employed in attempt to improve product yield and selectivity. The A. terreus strain URM 3371 transformed (RS-1 into (+-(R-1 with high enantiomeric excess (e.e.≥98 %, good conversion (≥98 % and acceptable yield (53 %.

  12. Suppression of Aspergillus by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib

    Objectives: Cystic fibrosis patients are commonly infected by Pseudomonas aeruginosa, but Aspergilli are also frequently isolated. Our aim was to examine the possible interaction between P. aeruginosa and different Aspergillus. Methods: A suspension of 106 fungal spores/ml was streaked onto WATM......, here among 2-heptyl-3-hydroxy-4-quinolone (PQS). An unidentified green pseudomonas compound was also observed. Interestingly the P. aeruginosa mutant rpoN was unable to suppress A. fumigatus, but suppressed A. flavus, A. oryzae and A. niger. However several other P. aeruginosa mutants suppressed A....... fumigatus including flif, pilA, lasR, PVDA, PQSC and rhlA mutants indicating that phenazines may be involved in the suppressed growth of A. fumigatus. All pseudomonas mutants suppressed A. oryzae, A. niger and A. flavus. Conclusions: An increase in phenazine production by P. aeruginosa may contribute...

  13. Performance of Molecular Approaches for Aspergillus Detection and Azole Resistance Surveillance in Cystic Fibrosis

    OpenAIRE

    Hélène Guegan; Sylviane Chevrier; Chantal Belleguic; Eric Deneuville; Florence Robert-Gangneux; Florence Robert-Gangneux; Jean-Pierre Gangneux; Jean-Pierre Gangneux

    2018-01-01

    Aspergillus fumigatus triazole resistance is an emerging concern for treating chronically infected/colonized patients. This study sought to evaluate the performance of PCR assays to detect Aspergillus fungi together with azole resistance in sputum samples from cystic fibrosis (CF) patients. In total, 119 sputum samples from 87 CF patients were prospectively processed for Aspergillus detection by means of mycological culture and four qPCR assays, 2 in-house methods and two commercial multiplex...

  14. Influence of gamma irradiation on natural mycoflora of poultry feed and effect on morphology, physiology and genetic of strains Aspergillus spp

    International Nuclear Information System (INIS)

    Ribeiro, Jessika Mara Martins

    2008-01-01

    Maize flour samples, soy crumb and feed were collected directly from the production line of a poultry farm in Avelar, RJ, and exposed to doses of 0,3.5, 0,8 and 15 kGy of gamma irradiation. Counting, isolation and identification of the contaminant mycoflora were performed before and after irradiation. The radiosensitivity of strains of reference of Aspergillus spp. was determined in CYA medium and in corn for doses ranging from 0 to 8 kGy. Comparison between the morphologies of control and irradiated strains were performed by using macroscopy, optical microscopy and transmission electron microscopy. Toxigenic profile determination and genetic evaluation by RAPD were also carried out. Higher doses have been found to reduce the number of active colonies, causing elimination of the mycoflora at 8 kGy. A larger radiosensitivity of yeasts was observed in comparison with filamentous fungi. A significant reduction in fungi population occurred at 3.5 kGy to levels below the limit that ensures the hygienic quality of ingredients and poultry feeds. The residual mycoflora was found to decrease with post-irradiation time and included mostly Cladosporium spp., Curvularia spp., Fusarium spp. and Aspergillus spp. and sterility of mycelium prevented further identification of the surviving species of Aspergillus spp. Differences in radioresistance were found among species of Aspergillus and the highest tolerance to radiation was observed for A. parasiticus. Initial morphologic changes were found to be more severe during the first isolation after irradiation than in later ones, with the fungi gradually recovering their normal growth rate. Ultrastructural changes in the irradiated strains were observed mostly in the plasmatic membrane and membranous organelles of nuclei and mitochondria. An increase in the rate of production of toxins by the irradiated strains has been found, however no significant alterations have been observed in their genotypes. Such findings apparently indicate

  15. Method for measuring postantifungal effect in Aspergillus species.

    NARCIS (Netherlands)

    Vitale, R.G.; Mouton, J.W.; Afeltra, J.; Meis, J.F.G.M.; Verweij, P.E.

    2002-01-01

    An in vitro method for determination of postantifungal effect (PAFE) in molds was developed by using three isolates each of Aspergillus fumigatus, A. flavus, A. terreus, A. nidulans, and A. ustus. MICs of amphotericin B and itraconazole were determined by using National Committee for Clinical

  16. Genomic Diversity in the Genus of Aspergillus

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo

    Aspergillus is a highly important genus of saprotrophic filamentous fungi. It is a very diverse genus that is inextricably intertwined with human a↵airs on a daily basis, holding species relevant to plant and human pathology, enzyme and bulk chemistry production, food and beverage biotechnology......, and scientific model organisms. The phenotypic diversity in this genus is extraordinary and identifying the genetic basis for this diversity has great potential for academia and industry. When the genomic era began for Aspergillus in 2005 with the genome sequences of A. nidulans, A. oryzae and A. fumigatus...

  17. ASPERGILLUS NIGER ASPERGILLUS NIGER

    African Journals Online (AJOL)

    eobe

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of activity of Aspergillus niger for the purpose of improved citric acid production from ...

  18. ASPERGILLUS NIGER ASPERGILLUS NIGER

    African Journals Online (AJOL)

    User

    CITRIC ACID PRODUCTION FROM DILUTE ACID HYDROLYSED CORN STARCH USING ASPERGILLUS NIGER. , N. A. Amenaghawon ..... “The effect of the sugar source on citric acid production by. Aspergillusniger”. Applied. Microbiology and Biotechnology, Vol. 19, Number 6,. 1984, pp. 393-397. [25]. Xu, D.B., Madrid ...

  19. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations.

    Science.gov (United States)

    Chang, Perng-Kuang; Abbas, Hamed K; Weaver, Mark A; Ehrlich, Kenneth C; Scharfenstein, Leslie L; Cotty, Peter J

    2012-03-15

    Contamination of corn, cotton, peanuts and tree nuts by aflatoxins is a severe economic burden for growers. A current biocontrol strategy is to use non-aflatoxigenic Aspergillus flavus strains to competitively exclude field toxigenic Aspergillus species. A. flavus K49 does not produce aflatoxins and cyclopiazonic acid (CPA) and is currently being tested in corn-growing fields in Mississippi. We found that its lack of production of aflatoxins and CPA resulted from single nucleotide mutations in the polyketide synthase gene and hybrid polyketide-nonribosomal peptide synthase gene, respectively. Furthermore, based on single nucleotide polymorphisms of the aflatoxin biosynthesis omtA gene and the CPA biosynthesis dmaT gene, we conclude that K49, AF36 and previously characterized TX9-8 form a biocontrol group. These isolates appear to be derived from recombinants of typical large and small sclerotial morphotype strains. This finding provides an easy way to select future biocontrol strains from the reservoir of non-aflatoxigenic populations in agricultural fields. Published by Elsevier B.V.

  20. Specific detection of Aspergillus fumigatus in sputum sample of ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    -590. Loeffler J, Hebart H, Sepe S, Schumcher U, Klingebiel T, Einsele H. (1998). Detection of PCR-amplified fungal DNA by using a PCR-. ELISA system. Med. Mycol. 36: 275-279. Logan PM, Primack SL, Miller RR, Muller NL ...

  1. Filamentous Fungal Human Pathogens from Food Emphasising Aspergillus, Fusarium and Mucor.

    Science.gov (United States)

    Paterson, R Russell M; Lima, Nelson

    2017-08-02

    Disease caused by filamentous fungal human pathogens (FFHP) is increasing. These organisms cause severe mycoses in immunosuppressed individuals, such as those: (a) with AIDS; (b) having undergone transplantation; and/or (c) undergoing chemotherapy. Immunocompetent people can become infected. Some FFHP are isolated from foods which may be fomites. However, the information concerning particular species on specific food is large, dispersed and difficult to obtain. Reports of filamentous fungi from food/crops and causing human disease are frequently only available in the literature of food mycology/plant pathology and medical mycology, respectively: it is seldom cross-referenced. Aspergillus contains some species with strains that are the most dangerous FFHP, with Aspergillus fumigatus causing the most serious diseases. Fusarium and Mucor also contain species of high importance and approximately 15 other genera are involved. A checklist and database of FFHP species isolated from food is presented herein with emphasis on Aspergillus , Fusarium and Mucor in summary tables to increase awareness of the connection between food and FFHP. Metadata on all FFHP is provided in a large supplementary table for updating and revision when necessary. Previous names of fungi have been revised to reflect current valid usage whenever appropriate. The information will form a foundation for future research and taxonomic revisions in the field. The paper will be highly useful for medical practitioners, food mycologists, fungal taxonomists, patients, regulators and food producers interested in reducing infectious diseases and producing high quality food.

  2. Diversity in Secondary Metabolites Including Mycotoxins from Strains of Aspergillus Section Nigri Isolated from Raw Cashew Nuts from Benin, West Africa.

    Science.gov (United States)

    Lamboni, Yendouban; Nielsen, Kristian F; Linnemann, Anita R; Gezgin, Yüksel; Hell, Kerstin; Nout, Martinus J R; Smid, Eddy J; Tamo, Manuele; van Boekel, Martinus A J S; Hoof, Jakob Blæsbjerg; Frisvad, Jens Christian

    2016-01-01

    In a previous study, raw cashew kernels were assayed for the fungal contamination focusing on strains belonging to the genus Aspergillus and on aflatoxins producers. These samples showed high contamination with Aspergillus section Nigri species and absence of aflatoxins. To investigate the diversity of secondary metabolites, including mycotoxins, the species of A. section Nigri may produce and thus threaten to contaminate the raw cashew kernels, 150 strains were isolated from cashew samples and assayed for their production of secondary metabolites using liquid chromatography high resolution mass spectrometry (LC-HRMS). Seven species of black Aspergilli were isolated based on morphological and chemical identification: A. tubingensis (44%), A. niger (32%), A. brasiliensis (10%), A. carbonarius (8.7%), A. luchuensis (2.7%), A. aculeatus (2%) and A. aculeatinus (0.7%). From these, 45 metabolites and their isomers were identified. Aurasperone and pyranonigrin A, produced by all species excluding A. aculeatus and A. aculeatinus, were most prevalent and were encountered in 146 (97.3%) and 145 (95.7%) isolates, respectively. Three mycotoxins groups were detected: fumonisins (B2 and B4) (2.7%) ochratoxin A (13.3%), and secalonic acids (2%), indicating that these mycotoxins could occur in raw cashew nuts. Thirty strains of black Aspergilli were randomly sampled for verification of species identity based on sequences of β-tubulin and calmodulin genes. Among them, 27 isolates were positive to the primers used and 11 were identified as A. niger, 7 as A. tubingensis, 6 as A. carbonarius, 2 as A. luchuensis and 1 as A. welwitschiae confirming the species names as based on morphology and chemical features. These strains clustered in 5 clades in A. section Nigri. Chemical profile clustering also showed also 5 groups confirming the species specific metabolites production.

  3. Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures

    Science.gov (United States)

    Abrão, Flávia Oliveira; Pessoa, Moisés Sena; dos Santos, Vera Lúcia; de Freitas Júnior, Luiz Fernando; Barros, Katharina de Oliveira; Hughes, Alice Ferreira da Silva; Silva, Thiago Dias; Rodriguez, Norberto Mário

    2017-01-01

    Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase) activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA) at 48 h was significantly higher other periods (P < 0.05). Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77) and xylanase (3.13 ±.091) than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively). Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets. PMID:28850605

  4. Notable fibrolytic enzyme production by Aspergillus spp. isolates from the gastrointestinal tract of beef cattle fed in lignified pastures.

    Directory of Open Access Journals (Sweden)

    Flávia Oliveira Abrão

    Full Text Available Fungi have the ability to degrade vegetal cell wall carbohydrates, and their presence in the digestive tract of ruminants can minimize the effects of lignified forage on ruminal fermentation. Here, we evaluated enzyme production by Aspergillus spp. isolates from the digestive tracts of cattle grazed in tropical pastures during the dry season. Filamentous fungi were isolated from rumen and feces by culture in cellulose-based medium. Ninety fungal strains were isolated and identified by rDNA sequence analysis, microculture, or both. Aspergillus terreus was the most frequently isolated species, followed by Aspergillus fumigatus. The isolates were characterized with respect to their cellulolytic, xylanolytic, and lignolytic activity through qualitative evaluation in culture medium containing a specific corresponding carbon source. Carboxymethyl cellulase (CMCase activity was quantified by the reducing sugar method. In the avicel and xilan degradation test, the enzyme activity (EA at 48 h was significantly higher other periods (P < 0.05. Intra- and inter-specific differences in EA were verified, and high levels of phenoloxidases, which are crucial for lignin degradation, were observed in 28.9% of the isolates. Aspergillus terreus showed significantly higher EA for avicelase (3.96 ±1.77 and xylanase (3.13 ±.091 than the other Aspergillus species at 48 h of incubation. Isolates AT13 and AF69 showed the highest CMCase specific activity (54.84 and 33.03 U mg-1 protein, respectively. Selected Aspergillus spp. isolates produced remarkable levels of enzymes involved in vegetal cell wall degradation, suggesting their potential as antimicrobial additives or probiotics in ruminant diets.

  5. mutant of Aspergillus niger

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... enzyme glucose oxidase production from mutagenization of A. niger, resistant to a range of ... strain, forward from Department of Microbiology, was used and maintained on potato dextrose agar (PDA) slants, .... (1993). Induction of glucose oxidase, catalase and lactonase in. Aspergillus niger. Curr. Genet.

  6. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels

    Directory of Open Access Journals (Sweden)

    Zuzana eHruska

    2014-03-01

    Full Text Available A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70, labeled with green fluorescent protein (GFP, in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36 to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays. Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (up to 73% suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.

  7. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability

    Directory of Open Access Journals (Sweden)

    Joardar Vinita

    2012-12-01

    Full Text Available Abstract Background The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Results Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus, A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum. The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25–36 Kb among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus, contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. Conclusions The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent

  8. Application of a modified culture medium for the simultaneous counting of molds and yeasts and detection of aflatoxigenic strains of Aspergillus flavus and Aspergillus parasiticus.

    Science.gov (United States)

    Jaimez, J; Fente, C A; Franco, C M; Cepeda, A; Vázquez, B I

    2003-02-01

    Molds and yeasts from 91 samples of feed and raw materials used in feed formulation were enumerated on a new culture medium to which a beta cyclodextrin (beta-W7M 1.8-cyclodextrin) had been added. This medium was compared with other media normally used in laboratories for the routine analysis of fungi, such as Sabouraud agar, malt agar supplemented with 2% dextrose, and potato dextrose agar. When a t test for paired data (0.05 significance level, 95% confidence interval) was applied, no statistically significant differences between the results obtained with the new culture medium and those obtained with the other media used to enumerate molds and yeasts were found. For the evaluation of contamination due to aflatoxin for all of the samples, Sabouraud agar and yeast extract agar, both supplemented with 0.3% beta-W7M 1.8-cyclodextrin, and APA (aflatoxin-producing ability) medium were used. Aflatoxin was detected in 21% of the feed samples and in 23% of the raw-material samples analyzed, with maximal amounts of 2.8 and 6.0 microg of aflatoxin B1 per kg, respectively, being detected. In any case, the aflatoxin contents found exceeded the legally stipulated limits. The t test for paired data (0.05 significance level, 95% confidence interval) did not show statistically significant differences between the results obtained with the different culture media used for the detection of aflatoxins. The advantage of the new medium developed (Sabouraud agar with 0.3% beta-W7M 1.8-cyclodextrin) is that it allows simultaneous fungal enumeration and determination (under UV light) of the presence of aflatoxin-producing strains without prior isolation and culture procedures involving expensive and/or complex specific media and thus saves work, time, and money.

  9. Aspergillus niger contains the cryptic phylogenetic species A. awamori

    DEFF Research Database (Denmark)

    Perrone, Giancarlo; Stea, Gaetano; Epifani, Filomena

    2011-01-01

    Aspergillus section Nigri is an important group of species for food and medical mycology, and biotechnology. The Aspergillus niger ‘aggregate’ represents its most complicated taxonomic subgroup containing eight morphologically indistinguishable taxa: A. niger, Aspergillus tubingensis, Aspergillus...... acidus, Aspergillus brasiliensis, Aspergillus costaricaensis, Aspergillus lacticoffeatus, Aspergillus piperis, and Aspergillus vadensis. Aspergillus awamori, first described by Nakazawa, has been compared taxonomically with other black aspergilli and recently it has been treated as a synonym of A. niger....... Phylogenetic analyses of sequences generated from portions of three genes coding for the proteins β-tubulin (benA), calmodulin (CaM), and the translation elongation factor-1 alpha (TEF-1α) of a population of A. niger strains isolated from grapes in Europe revealed the presence of a cryptic phylogenetic species...

  10. Variabilidade de produção de aflatoxinas por linhagens de Aspergillus flavus em diferentes tempos de manutenção Aflatoxin production variability by Aspergillus flavus strains after different storage times

    Directory of Open Access Journals (Sweden)

    M.H. Taniwaki

    1993-05-01

    Full Text Available O presente trabalho fui realizado com a finalidade de se estudar a produção de aflatoxinas por linhagens de A. flavus, recém isoladas, em diferentes tempos de manutenção, a fim de contribuir para um melhor entendimento do mecanismo de variação na produção de aflatoxinas. Para isso, foram utilizadas três linhagens de A. flavus produtoras de aflatoxinas, classificadas como: a grande produtora; b média produtora e c baixa produtora. Neste experimento, que se estendeu por 280 dias, os fungos foram estudados em dois métodos de preservação: mantido em óleo mineral, no meio Czapeck, e repicado periodicamente em meio Czapeck modificado. A análise da produção de aflatoxinas foi efetuada de 30 em 30 dias. A quantificação da toxina foi feita por cromatografía em camada delgada, pela técnica de avaliação visual, de diluição até extinção. Foi constatada uma variação na produção de toxina em todas as linhagens, contudo elas não perderam suas características originais.Aflatoxin production by strains recently isolated of Aspergillus flavus was studied, after different storage times understand the mechanisms of possible variations in aflatoxin production. Three A. flavus aflatoxin producing strains were utilized, classified as: a high producer; b medium producer and c low producer. The experiment lasted 280 days and the moulds were studied by two preservation methods: oil covered slants on Czapeck's medium and periodic transfer on Czapeck's modified medium. Quantification of the aflatoxin produced was made at 30 day intervals, on thin-layer chromatography and visual determination by the dilution-to-extinction technique. The production of aflatoxin by all strains varied but they did not lose their initial characteristics. Microscopic examinations revealed thickened zones and hifal enlargements over some globous structures that may be related to aflatoxin production sites.

  11. Biological Control of Aflatoxin Contamination in U.S. Crops and the Use of Bioplastic Formulations of Aspergillus flavus Biocontrol Strains To Optimize Application Strategies.

    Science.gov (United States)

    Abbas, Hamed K; Accinelli, Cesare; Shier, W Thomas

    2017-08-23

    Aflatoxin contamination has a major economic impact on crop production in the southern United States. Reduction of aflatoxin contamination in harvested crops has been achieved by applying nonaflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their numbers at the site of application. Currently, the standard method for applying biocontrol A. flavus strains to soil is using a nutrient-supplying carrier (e.g., pearled barley for Afla-Guard). Granules of Bioplastic (partially acetylated corn starch) have been investigated as an alternative nutritive carrier for biocontrol agents. Bioplastic granules have also been used to prepare a sprayable biocontrol formulation that gives effective reduction of aflatoxin contamination in harvested corn kernels with application of much smaller amounts to leaves later in the growing season. The ultimate goal of biocontrol research is to produce biocontrol systems that can be applied to crops only when long-range weather forecasting indicates they will be needed.

  12. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2.

    Science.gov (United States)

    Li, Xiaolong; Luo, Lijin; Yang, Jinshui; Li, Baozhen; Yuan, Hongli

    2015-03-01

    Mechanisms for solubilization of different types of phosphates and activation of immobilized phosphates in different types of soils by an efficient fungal strain An2 were explored and evaluated in this study. An2 was isolated from a Chinese cabbage rhizosphere soil and identified as Aspergillus niger. It could fast release up to 1722, 2066, and 2356 mg L(-1) of soluble phosphorus (P) from 1 % Ca3(PO4)2, Mg3(PO4)2, and AlPO4 (Ca-P, Mg-P, and Al-P) and 215 and 179 mg L(-1) from 0.5 % FePO4 and rock phosphate (Fe-P and RP), respectively. HPLC assay demonstrated that An2 mainly secreted oxalic acid to solubilize Ca-P, Mg-P, Al-P, and Fe-P whereas secreted tartaric acid to solubilize RP. Furthermore, An2 could tolerate salinity up to 4 % NaCl without impairing its phosphate-solubilizing ability. The simulation experiments validated that An2 was able to effectively activate immobilized phosphates in general calcareous, acidic, as well as saline-alkali soils with high total P content. This study shows new insights into the mechanisms for microbial solubilization of different types of phosphates and supports the future application of strain An2 in different types of soils to effectively activate P for plants.

  13. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi C.; Frisvad, Jens C.

    2018-01-01

    to determine phylogeny and genetic diversity, showing that each presented genome contains 15–27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens......, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM....... campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics...

  14. Septic arthritis due to tubercular and Aspergillus co-infection

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2016-01-01

    Full Text Available Aspergillus septic arthritis is a rare and serious medical and surgical problem. It occurs mainly in immunocompromised patients. Aspergillus fumigatus is the most common causative organism followed by Aspergillus flavus. The most common site affected is knee followed by shoulder, ankle, wrist, hip and sacroiliac joint. Debridement and voriconazole are primary treatment of articular aspergilosis. To the best of our knowledge, there are no reported cases of co-infection of tuberculosis (TB and Aspergillus infecting joints. We report a case of co-infection of TB and A. flavus of hip and knee of a 60-year-old male, with type 2 diabetes mellitus. He was treated with debridement, intravenous voriconazole, and antitubercular drugs.

  15. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    OpenAIRE

    Zomorodian, Kamiar; Pourshahid, Seyedmohammad; Sadatsharifi, Arman; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in ...

  16. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis:

    DEFF Research Database (Denmark)

    Mortensen, Klaus Leth; Jensen, Rasmus Hare; Johansen, Helle Krogh

    2011-01-01

    Respiratory tract colonization by molds in patients with cystic fibrosis (CF) were analyzed, with particular focus on the frequency, genotype, and underlying mechanism of azole resistance among Aspergillus fumigatus isolates. Clinical and demographic data were also analyzed. A total of 3,336 resp...

  17. Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity

    NARCIS (Netherlands)

    Akoumianaki, T.; Kyrmizi, I.; Valsecchi, I.; Gresnigt, M.S.; Samonis, G.; Drakos, E.; Boumpas, D.; Muszkieta, L.; Prevost, M.C.; Kontoyiannis, D.P.; Chavakis, T.; Netea, M.G.; Veerdonk, F.L. van de; Brakhage, A.A.; El-Benna, J.; Beauvais, A.; Latge, J.P.; Chamilos, G.

    2016-01-01

    Concealing pathogen-associated molecular patterns (PAMPs) is a principal strategy used by fungi to avoid immune recognition. Surface exposure of PAMPs during germination can leave the pathogen vulnerable. Accordingly, beta-glucan surface exposure during Aspergillus fumigatus germination activates an

  18. Aspergillus mulundensis sp. nov., a new species for the fungus producing the antifungal echinocandin lipopeptides, mulundocandins

    DEFF Research Database (Denmark)

    Bills, Gerald F.; Yue, Qun; Chen, Li

    2016-01-01

    The invalidly published name Aspergillus sydowii var. mulundensis was proposed for a strain of Aspergillus that produced new echinocandin metabolites designated as the mulundocadins. Reinvestigation of this strain (Y-30462=DSMZ 5745) using phylogenetic, morphological, and metabolic data indicated...

  19. Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-γ-pyrone.

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yi Ming; Meyer, Kristen M; Praseuth, Michael; Baker, Scott E; Bruno, Kenneth S; Wang, Clay C

    2010-12-06

    The genome sequencing of the fungus Aspergillus niger, an industrial workhorse, uncovered a large cache of genes encoding enzymes thought to be involved in the production of secondary metabolites yet to be identified. Identification and structural characterization of many of these predicted secondary metabolites are hampered by their low concentration relative to the known A. niger metabolites such as the naphtho-γ-pyrone family of polyketides. We deleted a nonreducing PKS gene in A. niger strain ATCC 11414, a daughter strain of A. niger ATCC strain 1015 whose genome was sequenced by the DOE Joint Genome Institute. This PKS encoding gene is a predicted ortholog of alb1 from Aspergillus fumigatus which is responsible for production of YWA1, a precursor of fungal DHN melanin. Our results show that the A. niger alb1 PKS is responsible for the production of the polyketide precursor for DHN melanin biosynthesis. Deletion of alb1 elimnates the production of major metabolites, naphtho-γ-pyrones. The generation of an A. niger strain devoid of naphtho-γ-pyrones will greatly facilitate the elucidation of cryptic biosynthetic pathways in this organism.

  20. Intraspecific aflatoxin inhibition in Aspergillus flavus is thigmoregulated, independent of vegetative compatibility group and is strain dependent.

    Directory of Open Access Journals (Sweden)

    Changwei Huang

    Full Text Available Biological control of preharvest aflatoxin contamination by atoxigenic stains of Aspergillus flavus has been demonstrated in several crops. The assumption is that some form of competition suppresses the fungus's ability to infect or produce aflatoxin when challenged. Intraspecific aflatoxin inhibition was demonstrated by others. This work investigates the mechanistic basis of that phenomenon. A toxigenic and atoxigenic isolate of A. flavus which exhibited intraspecific aflatoxin inhibition when grown together in suspended disc culture were not inhibited when grown in a filter insert-plate well system separated by a .4 or 3 µm membrane. Toxigenic and atoxigenic conidial mixtures (50∶50 placed on both sides of these filters restored inhibition. There was ∼50% inhibition when a 12 µm pore size filter was used. Conidial and mycelial diameters were in the 3.5-7.0 µm range and could pass through the 12 µm filter. Larger pore sizes in the initially separated system restored aflatoxin inhibition. This suggests isolates must come into physical contact with one another. This negates a role for nutrient competition or for soluble diffusible signals or antibiotics in aflatoxin inhibition. The toxigenic isolate was maximally sensitive to inhibition during the first 24 hrs of growth while the atoxigenic isolate was always inhibition competent. The atoxigenic isolate when grown with a green fluorescent protein (GFP toxigenic isolate failed to inhibit aflatoxin indicating that there is specificity in the touch inhibiton. Several atoxigenic isolates were found which inhibited the GFP isolate. These results suggest that an unknown signaling pathway is initiated in the toxigenic isolate by physical interaction with an appropriate atoxigenic isolate in the first 24 hrs which prevents or down-regulates normal expression of aflatoxin after 3-5 days growth. We suspect thigmo-downregulation of aflatoxin synthesis is the mechanistic basis of intraspecific

  1. Aspergillus uvarum sp. nov., an uniseriate black Aspergillus species isolated from grapes in Europe

    DEFF Research Database (Denmark)

    Perrone, Giancarlo; Varga, János; Susca, Antonia

    2008-01-01

    A novel species, Aspergillus uvarum sp. nov., is described within Aspergillus section Nigri. This species can be distinguished from other black aspergilli based on internal transcribed spacers (ITS), beta-tubulin and calmodulin gene sequences, by AFLP analysis and by extrolite profiles. Aspergill...... atypical strains of Aspergillus aculeatus, CBS 114.80 and CBS 620.78, and was isolated from grape berries in Portugal, Italy, France, Israel, Greece and Spain. The type strain of Aspergillus uvarum sp. nov. is IMI 388523(T)=CBS 127591(T)= ITEM 4834(T)= IBT26606(T)....

  2. Infectious keratitis caused by Aspergillus tubingensis

    NARCIS (Netherlands)

    Kredics, L.; Varga, J.; Kocsube, S.; Rajaraman, R.; Raghavan, A.; Doczi, I.; Bhaskar, M.; Nemeth, T.M.; Antal, Z.; Venkatapathy, N.; Vagvolgyi, C.; Samson, R.A.; Chockaiya, M.; Palanisamy, M.

    2009-01-01

    PURPOSE: To report 2 cases of keratomycosis caused by Aspergillus tubingensis. METHODS: The therapeutic courses were recorded for 2 male patients, 52 and 78 years old, with fungal keratitis caused by black Aspergillus strains. Morphological examination of the isolates was carried out on malt extract

  3. Response surface methodology for production, characterization and application of solvent, salt and alkali-tolerant alkaline protease from isolated fungal strain Aspergillus niger WA 2017.

    Science.gov (United States)

    Abdel Wahab, Walaa A; Ahmed, Samia A

    2018-04-17

    Isolated strain Aspergillus niger WA 2017 was selected as potential protease producer and was identified on the basis of 18S rDNA gene homology. Optimization of protease production conditions was performed using statistical methodology. The most significant factors were identified by Plackett-Burman design (PB) and were optimized by central composite design (CCD). The enzyme production was increased by 3.6-fold with statistically optimized medium when compared to the basal medium. Based on the protease activity, 25-50% ethanol fraction exhibited the highest specific activity. The partially purified enzyme showed its highest activity (4.7-fold) after 10 min incubation at pH 10.0 and 60 °C. The enzyme was stable over a wide range of pH (7-11) and salt concentration (up to 20%). Kinetic parameters Michaelis constant (K m ) and maximum velocity (V max ) were calculated at varying casein concentrations. Additionally, thermal stability of the enzyme was substantially improved by NaCl. The enzyme showed excellent stability and compatibility in presence of organic solvents and detergents retaining 115.3 and 114.5% of its activity in presence of ethanol and Tide, respectively at 40 °C for 1 h. The results revealed that the produced enzyme was able to recover silver from used X-ray film under optimized condition using statistical methodology (CCD). Copyright © 2017. Published by Elsevier B.V.

  4. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    Science.gov (United States)

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  5. Molecular identification and amphotericin B susceptibility testing of clinical isolates of Aspergillus from 11 hospitals in Korea.

    Science.gov (United States)

    Heo, Min Seok; Shin, Jong Hee; Choi, Min Ji; Park, Yeon Joon; Lee, Hye Soo; Koo, Sun Hoe; Lee, Won Gil; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook

    2015-11-01

    We investigated the species distribution and amphotericin B (AMB) susceptibility of Korean clinical Aspergillus isolates by using two Etests and the CLSI broth microdilution method. A total of 136 Aspergillus isolates obtained from 11 university hospitals were identified by sequencing the internal transcribed spacer (ITS) and β-tubulin genomic regions. Minimal inhibitory concentrations (MICs) of AMB were determined in Etests using Mueller-Hinton agar (Etest-MH) and RPMI agar (Etest-RPG), and categorical agreement with the CLSI method was assessed by using epidemiological cutoff values. ITS sequencing identified the following six Aspergillus species complexes: Aspergillus fumigatus (42.6% of the isolates), A. niger (23.5%), A. flavus (17.6%), A. terreus (11.0%), A. versicolor (4.4%), and A. ustus (0.7%). Cryptic species identifiable by β-tubulin sequencing accounted for 25.7% (35/136) of the isolates. Of all 136 isolates, 36 (26.5%) had AMB MICs of ≥2 μg/mL by the CLSI method. The categorical agreement of Etest-RPG with the CLSI method was 98% for the A. fumigatus, A. niger, and A. versicolor complexes, 87% for the A. terreus complex, and 37.5% for the A. flavus complex. That of Etest-MH was ≤75% for the A. niger, A. flavus, A. terreus, and A. versicolor complexes but was higher for the A. fumigatus complex (98.3%). Aspergillus species other than A. fumigatus constitute about 60% of clinical Aspergillus isolates, and reduced AMB susceptibility is common among clinical isolates of Aspergillus in Korea. Molecular identification and AMB susceptibility testing by Etest-RPG may be useful for characterizing Aspergillus isolates of clinical relevance.

  6. Production and Preliminary Characterization of Alkaline Protease from Aspergillus flavus and Aspergillus terreus

    OpenAIRE

    Chellapandi, P.

    2010-01-01

    Proteases are being an industrial candidate, which are widely used in food, bakery, and beverage and detergent industry. In leather industry, alkaline proteases are exhibiting a prominent role in unhairing and bating processes. An extensive use of filamentous fungi, especially Aspergillus species has been studied elaborately. Although, the significant application of alkaline protease produced from these strains in leather industry is being limited. Aspergillus flavus and Aspergillus terreus f...

  7. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms

    NARCIS (Netherlands)

    Petrik, M.; Haas, H. de; Laverman, P.; Schrettl, M.; Franssen, G.M.; Blatzer, M.; Decristoforo, C.

    2014-01-01

    (68)Ga-triacetylfusarinine C ((68)Ga-TAFC) and (68)Ga-ferrioxamine E ((68)Ga-FOXE) showed excellent targeting properties in Aspergillus fumigatus rat infection model. Here, we report on the comparison of specificity towards different microorganisms and human lung cancer cells (H1299).The in vitro

  8. Case report of a new pathogenic variant of Aspergillus fumigates isolated from Hipposideros cervinus (Chiroptera: Hipposideridae in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    S.S.J. Seelan

    2009-03-01

    Full Text Available First record of new Aspergillus fumigatus variant (UNIMAS F009 was reported from the ears of bats at Kubah National Park, Borneo, Malaysia. Morphological characterization of this isolate showed some differences in terms of their growth rate, colony color, size of conidia and pigmentation on different media.

  9. Influence of gamma irradiation on natural mycoflora of poultry feed and effect on morphology, physiology and genetic of strains Aspergillus spp;Influencia da radiacao gama sobre a micobiota natural de racao avicola e seu efeito sobre a morfologia, fisiologia e genetica de cepas de referencia de Aspergillus spp.

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Jessika Mara Martins

    2008-07-01

    Maize flour samples, soy crumb and feed were collected directly from the production line of a poultry farm in Avelar, RJ, and exposed to doses of 0,3.5, 0,8 and 15 kGy of gamma irradiation. Counting, isolation and identification of the contaminant mycoflora were performed before and after irradiation. The radiosensitivity of strains of reference of Aspergillus spp. was determined in CYA medium and in corn for doses ranging from 0 to 8 kGy. Comparison between the morphologies of control and irradiated strains were performed by using macroscopy, optical microscopy and transmission electron microscopy. Toxigenic profile determination and genetic evaluation by RAPD were also carried out. Higher doses have been found to reduce the number of active colonies, causing elimination of the mycoflora at 8 kGy. A larger radiosensitivity of yeasts was observed in comparison with filamentous fungi. A significant reduction in fungi population occurred at 3.5 kGy to levels below the limit that ensures the hygienic quality of ingredients and poultry feeds. The residual mycoflora was found to decrease with post-irradiation time and included mostly Cladosporium spp., Curvularia spp., Fusarium spp. and Aspergillus spp. and sterility of mycelium prevented further identification of the surviving species of Aspergillus spp. Differences in radioresistance were found among species of Aspergillus and the highest tolerance to radiation was observed for A. parasiticus. Initial morphologic changes were found to be more severe during the first isolation after irradiation than in later ones, with the fungi gradually recovering their normal growth rate. Ultrastructural changes in the irradiated strains were observed mostly in the plasmatic membrane and membranous organelles of nuclei and mitochondria. An increase in the rate of production of toxins by the irradiated strains has been found, however no significant alterations have been observed in their genotypes. Such findings apparently indicate

  10. Screening and Molecular Identification of New Microbial Strains for Production of Enzymes of Biotechnological Interest

    Directory of Open Access Journals (Sweden)

    Imen Ghazala

    Full Text Available ABSTRACT: This research focused on isolation, identification and characterization of new strains of fungi and bacteria, which were able to produce extracellular xylanase, mannanase, pectinase and α-amylase. Fungi isolates were identified on the basis of analyses of 18S gene sequencing and internal transcribed spacer region. The closest phylogenetic neighbors according to 18S gene sequence and ITS region data for the two isolates M1 and SE were Aspergillus fumigatus and Aspergillus sydowii, respectively. I4 was identified as Bacillus mojavensis on the basis of the 16S rRNA gene sequencing and biochemical properties. The enzyme production was evaluated by cultivating the isolated microorganisms in liquid-state bioprocess using wheat bran as carbon source. Two fungi (M1, and SE and one bacterium (I4 strains were found to be xylanase producer, and several were proven to be outstanding producers of microbial xylanase. The strains producing xylanase secreted variable amounts of starch-debranching enzymes and produced low level β-mannan-degrading enzyme systems. The bacterium strain was found to be capable of producing pectinolytic enzymes on wheat bran at high level. Some of the strains have good potential for use as sources of important industrial enzymes.

  11. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R

    2007-01-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives...

  12. Variability in Galactomannan detection by platelia Aspergillus EIA™ according to the Aspergillus species

    Directory of Open Access Journals (Sweden)

    Melissa Orzechowski Xavier

    2013-06-01

    Full Text Available Here we investigate the extent to which different Aspergillus species release galactomannan (GM in vitro. Marked variability was observed in GM reactivity between and within Aspergillus species, with A. terreus strains showing the highest GM indexes. The in vivo significance of these findings remains to be determined.

  13. Growth Modeling of Aspergillus niger Strains Isolated from Citrus Fruit as a Function of Temperature on a Synthetic Medium from Lime (Citrus latifolia T.) Pericarp.

    Science.gov (United States)

    Sandoval-Contreras, T; Marín, S; Villarruel-López, A; Gschaedler, A; Garrido-Sánchez, L; Ascencio, F

    2017-07-01

    Molds are responsible for postharvest spoilage of citrus fruits. The objective of this study was to evaluate the effect of temperature on growth rate and the time to visible growth of Aspergillus niger strains isolated from citrus fruits. The growth of these strains was studied on agar lime medium (AL) at different temperatures, and growth rate was estimated using the Baranyi and Roberts model (Int. J. Food Microbiol. 23:277-294, 1994). The Rosso et al. cardinal model with inflexion (L. Rosso, J. R. Lobry, S. Bajard, and J. P. Flandrois, J. Theor. Biol. 162:447-463, 1993) was used as a secondary model to describe the effect of temperature on growth rate and the lag phase. We hypothesized that the same model could be used to calculate the time for the mycelium to become visible (t v ) by substituting the lag phase (1/λ and 1/λ opt ) with the time to visible colony (1/t v -opt and 1/t v ), respectively, in the Rosso et al. High variability was observed at suboptimal conditions. Extremes of temperature of growth for A. niger seem to have a normal variability. For the growth rate and time t v , the model was satisfactorily compared with results of previous studies. An external validation was performed in lime fruits; the bias and accuracy factors were 1.3 and 1.5, respectively, for growth rate and 0.24 and 3.72, respectively, for the appearance time. The discrepancy may be due to the influence of external factors. A. niger grows significantly more slowly on lime fruit than in culture medium, probably because the nutrients are more easily available in medium than in fruits, where the peel consistency may be a physical barrier. These findings will help researchers understand the postharvest behavior of mold on lime fruits, host-pathogen interactions, and environmental conditions infecting fruit and also help them develop guidelines for future work in the field of predictive mycology to improve models for control of postharvest fungi.

  14. The role of thiol species in the hypertolerance of Aspergillus sp. P37 to arsenic.

    NARCIS (Netherlands)

    Canovas, D.; Vooijs, H.; Schat, H.; De Lorenzo, V.

    2004-01-01

    Aspergillus sp. P37 is an arsenate-hypertolerant fungus isolated from a river in Spain with a long history of contamination with metals. This strain is able to grow in the presence of 0.2 M arsenate, i.e. 20-fold higher than the reference strain, Aspergillus nidulans TS1. Although Aspergillus sp.

  15. Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards.

    Science.gov (United States)

    Gniadek, Agnieszka; Krzyściak, Paweł; Twarużek, Magdalena; Macura, Anna B

    2017-03-30

    The basic care requirement for patients with weakened immune systems is to create the environment where the risk of mycosis is reduced to a minimum. Between 2007 and 2013 air samples were collected from various wards of a number of hospitals in Kraków, Poland, by means of the collision method using MAS-100 Iso MH Microbial Air Sampler (Merck Millipore, Germany). The air mycobiota contained several species of fungi, and almost 1/3 of it was made up of the species of the Aspergillus genus. Sixty-one strains of species other than A. fumigatus were selected for the research purposes, namely: 28 strains of A. ochraceus, 22 strains of A. niger and 11 strains of A. flavus species. Selected fungi underwent a cytotoxicity evaluation with the application of the MTT colorimetric assay (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide). The assay assesses cell viability by means of reducing the yellow tetrazolium salt to insoluble formazan. A semi-quantitative scale for cytotoxicity grading was adopted: low cytotoxic effect (+) with half maximal inhibitory concentration (IC50) for values ranging from 31.251 cm2/ml to 7.813 cm2/ml, medium cytotoxic effect (++) for values ranging from 3.906 cm2/ml to 0.977 cm2/ml and the high one (+++) for values ranging from 0.488 cm2/ml to 0.061 cm2/ml. The absence of cytotoxicity was determined when the IC50 values was at ≥ 50. For 48 samples the analyzed fungi displayed the cytotoxic effect with A. ochraceus in 26 out of 28 cases, with 11 strains displaying the high cytotoxic effect. The lowest cytotoxicity was displayed by fungi of A. niger in 13 out of 22 cases, and the major fungi of A. flavus species were toxic (9 out of 11 cases). A half of the fungi displayed the low cytotoxic effect. On the basis of the comparison of average cytotoxicity levels it was determined that there were significant differences in the levels of cytotoxicity of the analyzed fungi. However, such statement may not provide grounds for a definite

  16. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure.

    Science.gov (United States)

    Ilavenil, Soundharrajan; Park, Hyung Soo; Vijayakumar, Mayakrishnan; Arasu, Mariadhas Valan; Kim, Da Hye; Ravikumar, Sivanesan; Choi, Ki Choon

    2015-01-01

    The aim of the study was to isolate and characterize the lactic acid bacteria (LAB) from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh) activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  17. Probiotic Potential of Lactobacillus Strains with Antifungal Activity Isolated from Animal Manure

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-01-01

    Full Text Available The aim of the study was to isolate and characterize the lactic acid bacteria (LAB from animal manure. Among the thirty LAB strains, four strains, namely, KCC-25, KCC-26, KCC-27, and KCC-28, showed good cell growth and antifungal activity and were selected for further characterization. Biochemical and physiology properties of strains confirmed that the strains are related to the Lactobacillus sp.; further, the 16S rRNA sequencing confirmed 99.99% sequence similarity towards Lactobacillus plantarum. The strains exhibited susceptibility against commonly used antibiotics with negative hemolytic property. Strains KCC-25, KCC-26, KCC-27, and KCC-28 showed strong antifungal activity against Aspergillus fumigatus, Penicillium chrysogenum, Penicillium roqueforti, Botrytis elliptica, and Fusarium oxysporum, respectively. Fermentation studies noted that the strains were able to produce significant amount of lactic, acetic, and succinic acids. Further, the production of extracellular proteolytic and glycolytic enzymes, survival under low pH, bile salts, and gastric juice together with positive bile salt hydrolase (Bsh activity, cholesterol lowering, cell surface hydrophobicity, and aggregation properties were the strains advantages. Thus, KCC-25, KCC-26, KCC-27, and KCC-28 could have the survival ability in the harsh condition of the digestive system in the gastrointestinal tract. In conclusion, novel L. plantarum KCC-25, KCC-26, KCC-27, and KCC-28 could be considered as potential antimicrobial probiotic strains.

  18. Stimulation with lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae maximizes cross-reactivity of anti-fungal T cells.

    Science.gov (United States)

    Deo, Shivashni S; Virassamy, Balaji; Halliday, Catriona; Clancy, Leighton; Chen, Sharon; Meyer, Wieland; Sorrell, Tania C; Gottlieb, David J

    2016-01-01

    Invasive fungal diseases caused by filamentous fungi and yeasts are significant causes of morbidity and mortality in immunosuppressed hematology patients. We previously published a method to expand Aspergillus fumigatus-specific T cells for clinical cell therapy. In the present study, we investigated expansion of T cells specific for other fungal pathogens and creation of a broadly reactive panfungal T-cell product. Fungal strains selected were those frequently observed in the clinical hematology setting and included Aspergillus, Candida, Fusarium, Rhizopus and Lomentospora/Scedosporium. Four T-cell cultures specific to each fungus were established. We selected lysates of Aspergillus terreus, Candida krusei and Rhizopus oryzae to expand panfungal T cells. Allelic restriction of anti-fungal activity was determined through the use of specific major histocompatibility complex class II-blocking antibodies. Individual T-cell cultures specific to each fungus could be expanded in vitro, generating predominantly CD4(+) T cells of which 8% to 20% were fungus-specific. We successfully expanded panfungal T cells from the peripheral blood (n = 8) and granulocyte-colony-stimulating factor-primed stem cell products (n = 3) of normal donors by using a combination of lysates from Aspergillus terreus, Candida krusei and Rhizopus oryzae. Anti-fungal activity was mediated through human leukocyte antigen (HLA)-DR alleles and was maintained when antigen-presenting cells from partially HLA-DRB1-matched donors were used to stimulate T cells. We demonstrate a method to manufacture panfungal T-cell products with specificity against a range of clinical fungal pathogens by use of the blood and stem cells of healthy donors as the starting material. The safety and efficacy of these products will need to be tested clinically. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2016-01-01

    Full Text Available Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM. There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity.

  20. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    Science.gov (United States)

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  1. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species.

    Science.gov (United States)

    Zomorodian, Kamiar; Pourshahid, Seyedmohammad; Sadatsharifi, Arman; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity.

  2. Isolation and characterization of a native strain of Aspergillus niger ZRS14 with capability of high resistance to zinc and its supernatant application towards extracellular synthesis of zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Morahem Ashengroph

    2013-01-01

    Full Text Available Introduction: Zinc oxide nanoparticles have quite a few applications in the fields of biology, optics, mechanics, magnetism, energy, hygiene and medicine. Due to serious problems associated with physiochemical synthesis of ZnO nanoparticles, including environmental pollution, complicated and costly processes, there is a growing need to develop a simple biological procedure for synthesis of nanoparticles to achieve the monodisperse-sized particles with a higher purity, low energy consumption and a cleaner environment. We conducted this investigation to screen and isolate native fungi strains capable of high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles using fungal secretions as biological catalysts.Materials and methods: 15 different strains of fungi were isolated from soil samples collected from lead and zinc mines of Angoran-Zanjan using conventional enrichment process and characterized initially based on macroscopic and microscopic characteristics and colony morphology. The intrinsic tolerance of the isolated strains to zinc toxic metal was measured in the synthetic and complex media using the agar dilution method. The supernatants of isolated fungi were incubated with zinc acetate solution in a shaker incubator for 72h; then, the strain that was able to synthesis ZnO nanoparticle was identified. The ZnO nanoparticles formation was investigated by using spectroscopic techniques and microscopic observations.Results: Among the 15 isolated strains, the strain ZRS14 had highest zinc metal tolerance ability and was selected and identified as Aspergillus niger strain ZRS14 (GenBank accession number KF414527 based on morphological and molecular phylogenetic analysis. For synthesis of ZnO nanoparticles by isolated A. niger ZRS14, fungal cell-free filtrate of the strain was collected and incubated in the presence of zinc acetate solution at a final concentration of 250 mg/l zinc metal ion at 28º C for

  3. Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis

    Science.gov (United States)

    Person, A. K.; Chudgar, S. M.; Norton, B. L.; Tong, B. C.; Stout, J. E.

    2010-01-01

    Infections due to Aspergillus species cause significant morbidity and mortality. Most are attributed to Aspergillus fumigatus, followed by Aspergillus flavus and Aspergillus terreus. Aspergillus niger is a mould that is rarely reported as a cause of pneumonia. A 72-year-old female with chronic obstructive pulmonary disease and temporal arteritis being treated with steroids long term presented with haemoptysis and pleuritic chest pain. Chest radiography revealed areas of heterogeneous consolidation with cavitation in the right upper lobe of the lung. Induced bacterial sputum cultures, and acid-fast smears and cultures were negative. Fungal sputum cultures grew A. niger. The patient clinically improved on a combination therapy of empiric antibacterials and voriconazole, followed by voriconazole monotherapy. After 4 weeks of voriconazole therapy, however, repeat chest computed tomography scanning showed a significant progression of the infection and near-complete necrosis of the right upper lobe of the lung. Serum voriconazole levels were low–normal (1.0 μg ml−1, normal range for the assay 0.5–6.0 μg ml−1). A. niger was again recovered from bronchoalveolar lavage specimens. A right upper lobectomy was performed, and lung tissue cultures grew A. niger. Furthermore, the lung histopathology showed acute and organizing pneumonia, fungal hyphae and oxalate crystallosis, confirming the diagnosis of invasive A. niger infection. A. niger, unlike A. fumigatus and A. flavus, is less commonly considered a cause of invasive aspergillosis (IA). The finding of calcium oxalate crystals in histopathology specimens is classic for A. niger infection and can be helpful in making a diagnosis even in the absence of conidia. Therapeutic drug monitoring may be useful in optimizing the treatment of IA given the wide variations in the oral bioavailability of voriconazole. PMID:20299503

  4. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  5. Iatrogenic aspergillus infection of the central nervous system in a pregnant woman

    Directory of Open Access Journals (Sweden)

    Lokuhetty Menaka

    2009-07-01

    Full Text Available A healthy postnatal woman succumbed to fulminant iatrogenic Aspergillus infection of the central nervous system, following accidental inoculation into the subarachnoid space at spinal anesthesia, during an outbreak of Aspergillus meningitis in Sri Lanka. Autopsy revealed extensive Aspergillus meningitis and culture confirmed Aspergillus fumigatus. The thalamic parenchyma in the brain was invaded by fungal hyphae producing necrotizing angitis with thrombosis, thalamic infarcts and fungal abscesses. The directional growth of fungal hyphae from the extra-luminal side of blood vessels towards the lumen favored extension from the brain parenchyma over hematogenous spread. The spinal parenchyma was resistant to fungal invasion in spite of the heavy growth within the spinal meninges and initial inoculation at spinal level. Modulation of the immune response in pregnancy with depression of selective aspects of cell-mediated immunity probably contributed to rapid spread within the subarachnoid space, to involve the brain parenchyma leading to clinical deterioration and death.

  6. Evolutionary relationships in Aspergillus section Fumigati inferred from partial beta-tubulin and hydrophobin sequences

    DEFF Research Database (Denmark)

    Geiser, D.M.; Frisvad, Jens Christian; Taylor, J.W.

    1998-01-01

    Members of Aspergillus section Fumigati are important animal pathogens and food contaminants. There is considerable variation among the 16 currently recognized species in this section, particularly in their mating systems: five are known to be strictly mitosporic, nine are homothallic, and two ar....... fischeri was identified as the closest known meiotic relative to the cosmopolitan species most often implicated in human aspergillosis, A. fumigatus.......Members of Aspergillus section Fumigati are important animal pathogens and food contaminants. There is considerable variation among the 16 currently recognized species in this section, particularly in their mating systems: five are known to be strictly mitosporic, nine are homothallic, and two...... are heterothallic. Phylogenetic relationships were inferred among members of Aspergillus section Fumigati based on partial DNA sequences from the benA beta-tubulin and rodA hydrophobin genes. Aspergillus clavatus was chosen as an outgroup. The two gene regions provided nearly equal numbers of phylogenetically...

  7. Enhanced lipase production by mutation induced Aspergillus ...

    African Journals Online (AJOL)

    ... the HNO2 mutant (AHN3) and 217% higher than the UV mutant (AUV3) and 276% higher lipase activity than the parent strain. The results indicated that UV, HNO2 and NTG treatment were effective physical and chemical mutagenic agents for strain improvement of Aspergillus japonicus for enhanced lipase productivity.

  8. Aspergillus section Fumigati – Epidemiological trends - A perspective from a National Reference Laboratory

    OpenAIRE

    Sabino, Raquel; Simões, Helena; Francisco, Mariana; Viegas, Carla; Toscano, Cristina; Batista, JuditeTeresa; Ferreira, Teresa; Veríssimo, Cristina

    2017-01-01

    Poster abstract publicado em: Mycoses. 2017;60(Suppl. S2):131-132. Disponível em:http://onlinelibrary.wiley.com/doi/10.1111/myc.12675/epdf Objectives: Aspergillus fumigatus is the most frequent agent of aspergilosis and reports on infections caused by this species or its siblings are becoming more frequent, together with the increasing number of at risk patients. Nowadays, due to the rising concerns on emerging antifungal resistance, the epidemiological surveillance for clinical and enviro...

  9. Taxonomic novelties in Aspergillus section Fumigati: A-tasmanicus sp nov., induction of sexual state in A-turcosus and overview of related species

    Czech Academy of Sciences Publication Activity Database

    Hubka, Vít; Dudová, Z.; Kubátová, A.; Frisvad, J.C.; Yaguchi, T.; Horie, K.; Jurjević, Ž.; Hong, S.B.; Kolařík, Miroslav

    2017-01-01

    Roč. 303, č. 6 (2017), s. 787-806 ISSN 0378-2697 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Aspergillus fumigatus * Mating experiments * Multigene phylogeny Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.239, year: 2016

  10. Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway

    NARCIS (Netherlands)

    Becker, K. L.; Aimanianda, V.; Wang, X.; Gresnigt, M. S.; Ammerdorffer, A.; Jacobs, C. W.; Gazendam, R. P.; Joosten, L. A. B.; Netea, M. G.; Latgé, J. P.; van de Veerdonk, F. L.

    2016-01-01

    Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly

  11. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis

    Science.gov (United States)

    Mishra, Vineet Kumar; Passari, Ajit Kumar; Chandra, Preeti; Leo, Vincent Vineeth; Kumar, Brijesh; Uthandi, Sivakumar; Thankappan, Sugitha; Gupta, Vijai Kumar

    2017-01-01

    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α). Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites. PMID:29049321

  12. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis.

    Science.gov (United States)

    Mishra, Vineet Kumar; Passari, Ajit Kumar; Chandra, Preeti; Leo, Vincent Vineeth; Kumar, Brijesh; Uthandi, Sivakumar; Thankappan, Sugitha; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2017-01-01

    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α). Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.

  13. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis.

    Directory of Open Access Journals (Sweden)

    Vineet Kumar Mishra

    Full Text Available Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA, 28S ribosomal RNA (28S rRNA and translation elongation factor 1- alpha (EF 1α. Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS and non ribosomal peptide synthetase (NRPS genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.

  14. Simple and highly discriminatory VNTR-based multiplex PCR for tracing sources of Aspergillus flavus isolates.

    Directory of Open Access Journals (Sweden)

    Dong Ying Wang

    Full Text Available Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8 of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.

  15. Isolation of Aspergillus species from Nasal Cavity and Bedroom of Healthy Volunteers and Patients with Allergic Rhinitis in Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Samaneh Eidi

    2014-12-01

    Full Text Available Background: The purpose of this study was to investigate the presence, frequency and comparison of Aspergillus spp. in nasal cavity and bedroom of healthy volunteers and patients with allergic rhinitis. Materials and Methods: In this cross-sectional study, a group of patients with allergic rhinitis (N=50 were selected based on positive skin prick test. Healthy volunteers were chosen to be in the comparison group by matching in age, gender, and no history of respiratory system disease. Samples from nasal cavity and different parts of bedroom were collected and cultured. Cultured Aspergillus spp. was identified by standard mycological techniques. Results: The most common species isolated from all samples of healthy volunteers was A. flavus (88%, followed by A. niger (76% and A. fumigatus (74%. A. flavus (56% was the predominant species isolated from all samples of patients, followed by A. niger (34% and A. fumigatus (6%. Conclusion: A. flavus was the most prevalent species of Aspergillus both healthy volunteers and patients. The presence of Aspergillus in homes does not necessarily imply a cause and effect relationship with illness, but we speculate that A. flavus may be a major source of aeroallergens along with A. niger and A. fumigatus; and should alert physicians and healthcare professionals to do more vigorous environmental testing.

  16. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species

    Directory of Open Access Journals (Sweden)

    P Das

    2017-01-01

    Full Text Available Purpose: Standardization of Aspergillus polymerase chain reaction (PCR poses two technical challenges (a standardization of DNA extraction, (b optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Materials and Methods: Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR, the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, gene and calmodulin gene (for Aspergillus niger. Results: Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. Conclusion: The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  17. Standardization of a two-step real-time polymerase chain reaction based method for species-specific detection of medically important Aspergillus species.

    Science.gov (United States)

    Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A

    2017-01-01

    Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.

  18. screening and improvement of local isolates of aspergillus niger

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The study involved the screening of fourteen isolates of Aspergillus niger for citric acid production from glucose. The study was aimed at screening and improving local strains of Aspergillus niger with potential for citric acid production. All the isolates screened produced varying amounts of citric acid, the highest ...

  19. The Inhibition of aflatoxin production from Aspergillus parasiticus ...

    African Journals Online (AJOL)

    The inhibition of Aflatoxin production from Aspergillus parasiticus strain NRRL 2999 was investigated using ethanol extracts of Aframommon danielli flower at concentrations of 250ìg/g, 500ìg/g, 750ìg/g and 1000ìg/g with whole wheat bread as a substrate. Aspergillus parasiticus grew abundantly on whole wheat bread; ...

  20. Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta......-xylosidases. The beta-xylosidase activities of the A. brasiliensis and A. niger strains had similar temperature and pH optima at 75 degrees C and pH 5 and retained 62% and 99%, respectively, of these activities over 1 h at 60 degrees C. At 75 degrees C, these values were 38 and 44%, respectively. Whereas A. niger...

  1. Interference of Griseofulvin with the Segregation of Chromosomes at Mitosis in Diploid Aspergillus nidulans

    Science.gov (United States)

    Kappas, A.; Georgopoulos, S. G.

    1974-01-01

    Low concentrations of the antibiotic griseofulvin were found to cause increased frequencies of somatic segregation due to chromosome nondisjunction in a diploid strain of Aspergillus nidulans. PMID:4600705

  2. Biodiversity of species of Aspergillus section Fumigati in semi-desert soils in Argentina.

    Science.gov (United States)

    Giusiano, Gustavo E; Piontelli, Eduardo; Fernández, Mariana S; Mangiaterra, Magdalena L; Cattana, María E; Kocsubé, Sándor; Varga, János

    The distribution of Aspergillus species in soil has been widely studied all over the world. The aim of this study was the phenotypic and genotypic characterization of species Aspergillus belonging to section Fumigati present in soils from two Argentinian semi-desert areas having different geological conditions. Altogether, 23 isolates belonging to Aspergillus section Fumigati were recovered and identified using a polyphasic approach including phenotypic and molecular identifications. Aspergillus fumigatus sensu stricto and Aspergillus fumigatiaffinis had the highest frequency, of occurrence while isolates closely related to Aspergillus udagawae and Aspergillus felis were rarely observed. A. fumigatiaffinis and isolates closer to A. udagawae were isolated for the first time from Argentinian soils and this is the first report on the occurrence of species belonging to the A. felis clade in South America. Recent scientific interests in biodiversity, as well as the increasing importance of aspergilli as causative agents of human and animal diseases increase the need to understand the diversity and occurrence of these fungi in nature. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Induction of innate immunity by Apergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan

    DEFF Research Database (Denmark)

    Dubey, L. K.; Moeller, J. B.; Schlosser, A.

    2014-01-01

    presented together as a composite PAMP. We also showed that these cell wall polysaccharides induced chitin-specific IgM in mouse serum. Our in vivo and in vitro data indicate that chitin and beta-glucan play important roles in activating innate immunity when presented as composite cell wall PAMPs. (C) 2013...... that Aspergillus fumigatus alkali-insoluble cell wall fragments (AIF), composed of chitin linked covalently to beta-glucan, induced enhanced immune responses when compared with individual cell wall polysaccharides. Intranasal administration of AIF induced eosinophil and neutrophil recruitment, chitinase activity...

  4. Aspergillus species isolated from mangrove forests in Borneo Island, Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    J.S.S. Seelan

    2009-06-01

    Full Text Available A study on the occurrence of Aspergillus spp. on selected mangrove forests in Sarawak was conducted to find out their diversity and distribution. Samples were obtained from mangrove soils and leaf litters at different locations, i.e. Sematan, Lundu, Kampung Bako, Bako in Sarawak. Soil and leaf litter samples were taken randomly at different locations with five replicates from each area. A total of 138 isolates of Aspergillus species were obtained from the soil and leaf litter samples by using direct plating and Warcup method. Based on both macroscopic and microscopic observations, using an identification key, individual isolates were classified within the genus Aspergillus, belonging to three subgenera, four sections and five species. The fungi isolates were identified as A. terreus, A. flavipes, A. carneus, A. fumigatus and A. clavatus. The most frequent isolated species was A. flavipes (63.04%, followed by A. fumigatus (16.7%, A. terreus (13.04%, A. carneus (5.8% and A. clavatus (1.44%. All of the isolated Aspergillus species grew well on MEA and CYA at 25°C. A. carneus produced reddish sclerotia on MEA after seven days and this could be used as an important characteristic in this species identification. A. clavatus from mangrove soil in Kampung Bako has shown long conidiophores (ranging from 3-5 cm with swollen hyphal structures, while A. clavatus from Sematan area has shorter conidiophores (ranging from 2.5-3.5 cm on MEA.

  5. High fungal spore burden with predominance of Aspergillus in hospital air of a tertiary care hospital in Chandigarh

    Directory of Open Access Journals (Sweden)

    S M Rudramurthy

    2016-01-01

    Full Text Available The prevalence of fungal spores in the hospital air is essential to understand the hospital-acquired fungal infections. Air conditioners (ACs used in hospitals may either reduce spores in air or be colonised by fungi and aid in its dissemination. The present study was conducted to assess the fungal spore burden in AC and non-AC areas. We found a high fungal spore count in air irrespective of whether the area was AC or non-AC. The most predominant species isolated were Aspergillus flavus and Aspergillus fumigatus. Such high concentrations of pathogenic fungi in air may predispose individuals to develop disease.

  6. GLUCOSIDASE GENE FROM ASPERGILLUS NIGER F321

    African Journals Online (AJOL)

    Richard Auta

    Enzyme Assay, Cloning and Sequencing of Novel β-Glucosidase Gene From. Aspergillus Niger F321 (Unidentified Nigerian Strain) β-glucosidases are essential components of the cellulase system and are important in the complete enzymatic breakdown of cellulose to glucose. The catalysis of cellobiose is important since.

  7. Structure-activity relationships among antifungal nylon-3 polymers: identification of materials active against drug-resistant strains of Candida albicans.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Falk, Shaun P; Mowery, Brendan P; Karlsson, Amy J; Weisblum, Bernard; Palecek, Sean P; Masters, Kristyn S; Gellman, Samuel H

    2014-03-19

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure-activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic-hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus.

  8. Structure–Activity Relationships among Antifungal Nylon-3 Polymers: Identification of Materials Active against Drug-Resistant Strains of Candida albicans

    Science.gov (United States)

    2015-01-01

    Fungal infections are a major challenge to human health that is heightened by pathogen resistance to current therapeutic agents. Previously, we were inspired by host-defense peptides to develop nylon-3 polymers (poly-β-peptides) that are toxic toward the fungal pathogen Candida albicans but exert little effect on mammalian cells. Based on subsequent analysis of structure–activity relationships among antifungal nylon-3 polymers, we have now identified readily prepared cationic homopolymers active against strains of C. albicans that are resistant to the antifungal drugs fluconazole and amphotericin B. These nylon-3 polymers are nonhemolytic. In addition, we have identified cationic–hydrophobic copolymers that are highly active against a second fungal pathogen, Cryptococcus neoformans, and moderately active against a third pathogen, Aspergillus fumigatus. PMID:24606327

  9. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    International Nuclear Information System (INIS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Caru, M.; Dalcero, A.; Rosa, C.A.R.

    2011-01-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  10. Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils.

    Science.gov (United States)

    Carranza, Cecilia S; Barberis, Carla L; Chiacchiera, Stella M; Magnoli, Carina E

    2014-01-01

    This investigation was undertake to determine the effect of glyphosate, chlorpyrifos and atrazine on the lag phase and growth rate of nonochratoxigenic A. niger aggregate strains growing on soil extract medium at -0.70, -2.78 and -7.06 MPa. Under certain conditions, the glyphosate concentrations used significantly increased micelial growth as compared to control. An increase of about 30% was observed for strain AN 251 using 5 and 20 mg L(-1) of glyphosate at -2.78 MPa. The strains behaved differently in the presence of the insecticide chlorpyrifos. A significant decrease in growth rate, compared to control, was observed for all strains except AN 251 at -2.78 MPa with 5 mg L(-1). This strain showed a significant increase in growth rate. With regard to atrazine, significant differences were observed only under some conditions compared to control. An increase in growth rate was observed for strain AN 251 at -2.78 MPa with 5 and 10 mg L(-1) of atrazine. By comparison, a reduction of 25% in growth rate was observed at -7.06 MPa and higher atrazine concentrations. This study shows that glyphosate, chlorpyrifos and atrazine affect the growth parameters of nonochratoxigenic A. niger aggregate strains under in vitro conditions.

  11. Efficient kinetic resolution of (RS)-1-phenylethanol by a mycelium-bound lipase from a wild-type Aspergillus oryzae strain.

    Science.gov (United States)

    Yan, Hong-De; Wang, Zhao; Qian, Jun-Qing

    2017-03-01

    A mycelium-bound lipase from Aspergillus oryzae (AOL) exhibited excellent enantioselectivity for kinetic resolution of (RS)-1-phenylethanol ((RS)-1-PE) in organic solvent. The various reaction parameters affecting the conversion and enantioselectivity were studied, including type of acyl donor, solvent, molar ratio, temperature, enzyme amount, and substrate concentration. The optimum reaction conditions were found to be transesterification with vinyl acetate at 30 °C in methyl tert-butyl ether with a vinyl acetate: (RS)-1-PE molar ratio of 1:1 and an enzyme concentration of 60 g/L. At the optimum reaction conditions, the conversion could reach above 46% with >99% enantiomeric excess of the product, (R)-1-phenylethyl acetate, when the substrate concentration was below 1.4 M. The enzyme displayed an excellent enantioselectivity with an E-value of >200 and a strong tolerance for high substrate concentration of up to 1.8 M. Those results indicated that AOL was a promising biocatalyst in the kinetic resolution of (RS)-1-PE. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  12. Isolation, identification, and characterization of an Aspergillus niger bioflocculant-producing strain using potato starch wastewater as nutrilite and its application.

    Science.gov (United States)

    Pu, Shengyan; Ma, Hui; Deng, Daili; Xue, Shengyang; Zhu, Rongxin; Zhou, Yan; Xiong, Xingying

    2018-01-01

    A bioflocculant (MBFA18) was produced by Aspergillus niger (A18) using potato starch wastewater (PSW) as nutrients. The cultivation processes and flocculating treatment for PSW purification were systematically studied. The flocculating rate of the MBFA 18 achieved 90.06% (kaolin clay) under the optimal cultivation condition (PSW with 5950 mg/L COD, 20 g/L glucose, 0.2 g/L urea and without phosphorus source addition and pH adjustment). Furthermore, effects of flocculant dosage, initial pH, coagulant aid (CaCl2) addition and sedimentation time on the PSW treatment were discussed and studied in detail. The optimum flocculation treatment conditions were determined according to the treatment efficiency, cost and flocculation conditions. During the PSW treatment, 2 mL/L bioflocculant (1.89 g/L) dosage and 0.5 mol/L coagulant aid addition were applied without pH adjustment and 91.15% COD and 60.22% turbidity removal rate could be achieved within 20 min. The comparative study between the bioflocculant and conventional chemical flocculants showed excellent flocculating efficiency of MBFA 18 with lower cost (4.7 yuan/t), which indicated that the bioflocculant MBFA 18 produced in PSW substrate has a great potential to be an alternative flocculant in PSW treatment.

  13. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside Rb1 to ginsenosides Rg3

    Directory of Open Access Journals (Sweden)

    Kyung Hoon Chang

    2014-01-01

    Full Text Available The transformation of ginsenoside Rb1 into a specific minor ginsenoside using Aspergillus niger KCCM 11239, as well as the identification of the transformed products and the pathway via thin layer chromatography and high performance liquid chromatography were evaluated to develop a new biologically active material. The conversion of ginsenoside Rb1 generated Rd, Rg3, Rh2, and compound K although the reaction rates were low due to the low concentration. In enzymatic conversion, all of the ginsenoside Rb1 was converted to ginsenoside Rd and ginsenoside Rg3 after 24 h of incubation. The crude enzyme (β-glucosidase from A. niger KCCM 11239 hydrolyzed the β-(1→6-glucosidic linkage at the C-20 of ginsenoside Rb1 to generate ginsenoside Rd and ginsenoside Rg3. Our experimental demonstration showing that A. niger KCCM 11239 produces the ginsenoside-hydrolyzing β-glucosidase reflects the feasibility of developing a specific bioconversion process to obtain active minor ginsenosides.

  14. Antifungal compounds from cultures of dairy propionibacteria type strains.

    Science.gov (United States)

    Lind, Helena; Sjögren, Jörgen; Gohil, Suresh; Kenne, Lennart; Schnürer, Johan; Broberg, Anders

    2007-06-01

    Antifungal compounds from cultures of five type strains of dairy propionibacteria, as well as from the cultivation medium, were studied. Cell-free supernatants and medium were fractionated by C(18) solid phase extraction. The aqueous 95% acetonitrile fractions were analyzed by GC-MS or subjected to reversed-phase HPLC, to identify, quantify or isolate antifungal substances. The resulting HPLC fractions were screened for antifungal activity against the mold Aspergillus fumigatus and the yeast Rhodotorula mucilaginosa. Active fractions were further separated by HPLC and the structures of the compounds were determined by spectroscopic and chromatographic methods. All five strains produced 3-phenyllactic acid, at concentrations ranging from 1.0 microg mL(-1) (Propionibacterium freudenreichii ssp. shermanii) to 15.1 microg mL(-1) (Propionibacterium thoenii), and at L/D -ratios ranging from 2 : 3 (Propionibacterium acidipropionici) to 9 : 1 (Propionibacterium freudenreichii). A number of active compounds found in cultures of propionibacteria were also present in noninoculated growth medium: two antifungal diketopiperazines, cyclo(L-Phe-L-Pro) and cyclo(L-Ile-L-Pro), and seven antifungal linear peptides. Three of the linear peptides corresponded to sequences found in the medium component casein, suggesting their origin from this component, whereas the diketopiperazines were suggested to be formed from medium peptides by heat treatment.

  15. Effect of cinnamomum zeylanicum blume essential oil on the rowth and morphogenesis of some potentially pathogenic Aspergillus species Efeito do óleo essencial de Cinnamomum zeylanicum Blume sobre o crescimento e morfogênese de algumas espécies de Aspergillus potencialmente patogênicas

    Directory of Open Access Journals (Sweden)

    Egberto Santos Carmo

    2008-03-01

    Full Text Available Cinnamomum zeylanicum Blume is known for a wide range of medicinal properties. This study aimed to assess the interference of C. zeylanicum essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. The essential oil presented strong antifungal effect causing the growth inhibition of the assayed strains and development of large growth inhibition zones. MIC50 and MIC90 values were 40 and 80 µL/mL, respectively. 80, 40 and 20 µL/mL of the oil strongly inhibited the radial mycelial growth of A. niger, A. flavus and A. fumigatus along 14 days. 80 and 40 µL/mL of the oil caused a 100% inhibition of the fungal spore germination. Main morphological changes observed under light microscopy provided by the essential oil in the fungal strains were decreased conidiation, leakage of cytoplasm, loss of pigmentation and disrupted cell structure indicating fungal wall degeneration. It is concluded that C. zeylanicum essential oil could be known as potential antifungal compound, particularly, to protect against the growth of Aspergillus species.Cinnamomum zeylanicum Blume é uma planta conhecida por apresentar ampla variedade de propriedades medicinais. Portanto, este estudo teve por objetivo avaliar a interferência do óleo essencial C. zeylanicum sobre o crescimento e morfogênese de algumas espécies de Aspergillus potencialmente patogênicas. O óleo essencial testado apresentou potente efeito antifúngico demonstrado pela visualização de grandes zonas de inibição de crescimento de todas as linhagens testadas. Os valores de CIM50 e de CIM90 foram 40 e 80 µL/mL, respectivamente. Nas concentrações de 80, 40 e 20 µL/mL o óleo demonstrou um potente efeito fumigante, inibindo o crescimento micelial radial de A. niger, A. flavus e A. fumigatus ao longo de 14 dias de exposição. A 80 e 40 µL/mL o óleo essencial promoveu inibição de 100% da germinação de esporos, das três espécies de Aspergillus citadas

  16. The Role of Interleukin-1 Family Members in the Host Defence Against Aspergillus fumigatus

    NARCIS (Netherlands)

    Gresnigt, M.S.; Veerdonk, F.L. van de

    2014-01-01

    The interleukin (IL)-1 family consists of 11 members, which all play significant roles in regulating inflammatory responses in the host. IL-1alpha and IL-1beta exert potent pro-inflammatory effects and are key players in the recruitment of neutrophils to the site of inflammation. Protective

  17. Fed-batch production of hydrophobin RodB from Aspergillus fumigatus in host Pichia pastoris

    DEFF Research Database (Denmark)

    Pedersen, Mona Højgaard; Borodina, Irina; Frisvad, Jens Christian

    was dependent on the methanol-induced AOX1 promoter. Later production was scaled up to a 2 L fed-batch fermentor. Protein production was analyzed by SDS-PAGE, coomassie and silver-stained, as well as western blotting using an anti-his detection antibody. RodB was purified using His-select Nickel Affinity gel....... The emulsifying property of rRodB was investigated using olive oil stained with Sudan black suspended in tris-buffer. The stability of oil micelles were studied by light microscopy. Results: Protein bands of expected size were detected by SDS-PAGE and western blotting in both the fermentation broth and excess...

  18. RETRACTED: Effect of Aspergillus Fumigatus sensitization and colonization on lung function and airways inflammation in asthma

    Directory of Open Access Journals (Sweden)

    Ahmed E. Mansour

    2012-10-01

    This article has been retracted at the request of the Editor-in-Chief upon the conclusion of the Editorial Board Committee, which has confirmed that this article has been plagiarized. The content of this article has been originally published in the American Journal of Respiratory and Critical Care Medicine, Vol. 182, No. 11 (2010, pp. 1362–1368. DOI:10.1164/rccm.201001-0087OC

  19. Aspergillus in endodontic infection near the maxillary sinus

    Directory of Open Access Journals (Sweden)

    Cinthya Cristina Gomes

    2015-10-01

    Full Text Available ABSTRACT INTRODUCTION: Diseases of the maxillary sinus have been associated with dental roots near the maxillary sinus that have undergone endodontic treatment. OBJECTIVE: To investigate the presence of filamentous fungi in patients with dental roots near the maxillary sinus who had apical periodontitis treated endodontically, and to alert practitioners that this could be a possible avenue of contamination of the sinus in patients who develop maxillary sinus infection. METHODS: Cross-sectional study in 60 palatal roots of the first maxillary molars near the maxillary sinus, that underwent endodontic treatment for apical periodontitis. After removal of the filling material, dentin shavings were collected and placed in test tubes containing Sabouraud dextrose agar and chloramphenicol. The phenotype was determined by macroscopic and microscopic examination of the colonies. For polymerase chain reaction, the primers ITS-5 and ITS-4 were used. The sequences obtained were compared with those deposited at GenBank using the Basic Local Alignment Search Tool program. RESULTS: Filamentous fungi were isolated from 6 of 60 canals (10%:Aspergillus niger (6.7%, Aspergillus versicolor (1.6%, and Aspergillus fumigatus(1.6%. CONCLUSION: Root canals near the maxillary sinus with endodontic treatment and apical periodontitis may exhibit positive cultures for filamentous fungi. Interested professionals should be alert, because these microorganisms have pathogenic characteristics that can cause disease of odontogenic origin in the maxillary sinus.

  20. Determining the analytical specificity of PCR-based assays for the diagnosis of IA: What is Aspergillus?

    Science.gov (United States)

    Morton, C Oliver; White, P Lewis; Barnes, Rosemary A; Klingspor, Lena; Cuenca-Estrella, Manuel; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem; Mengoli, Carlo; Caliendo, Angela M; Cogliati, Massimo; Debets-Ossenkopp, Yvette; Gorton, Rebecca; Hagen, Ferry; Halliday, Catriona; Hamal, Petr; Harvey-Wood, Kathleen; Jaton, Katia; Johnson, Gemma; Kidd, Sarah; Lengerova, Martina; Lass-Florl, Cornelia; Linton, Chris; Millon, Laurence; Morrissey, C Orla; Paholcsek, Melinda; Talento, Alida Fe; Ruhnke, Markus; Willinger, Birgit; Donnelly, J Peter; Loeffler, Juergen

    2017-06-01

    A wide array of PCR tests has been developed to aid the diagnosis of invasive aspergillosis (IA), providing technical diversity but limiting standardisation and acceptance. Methodological recommendations for testing blood samples using PCR exist, based on achieving optimal assay sensitivity to help exclude IA. Conversely, when testing more invasive samples (BAL, biopsy, CSF) emphasis is placed on confirming disease, so analytical specificity is paramount. This multicenter study examined the analytical specificity of PCR methods for detecting IA by blind testing a panel of DNA extracted from a various fungal species to explore the range of Aspergillus species that could be detected, but also potential cross reactivity with other fungal species. Positivity rates were calculated and regression analysis was performed to determine any associations between technical specifications and performance. The accuracy of Aspergillus genus specific assays was 71.8%, significantly greater (P < .0001) than assays specific for individual Aspergillus species (47.2%). For genus specific assays the most often missed species were A. lentulus (25.0%), A. versicolor (24.1%), A. terreus (16.1%), A. flavus (15.2%), A. niger (13.4%), and A. fumigatus (6.2%). There was a significant positive association between accuracy and using an Aspergillus genus PCR assay targeting the rRNA genes (P = .0011). Conversely, there was a significant association between rRNA PCR targets and false positivity (P = .0032). To conclude current Aspergillus PCR assays are better suited for detecting A. fumigatus, with inferior detection of most other Aspergillus species. The use of an Aspergillus genus specific PCR assay targeting the rRNA genes is preferential. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Pharmacokinetic/pharmacodynamic analysis of voriconazole against Candida spp. and Aspergillus spp. in children, adolescents and adults by Monte Carlo simulation.

    Science.gov (United States)

    Xu, Gaoqi; Zhu, Liqin; Ge, Tingyue; Liao, Shasha; Li, Na; Qi, Fang

    2016-06-01

    The objective of this study was to investigate the cumulative fraction of response of various voriconazole dosing regimens against six Candida and six Aspergillus spp. in immunocompromised children, immunocompromised adolescents, and adults. Using pharmacokinetic parameters and pharmacodynamic data, 5000-subject Monte Carlo simulations (MCSs) were conducted to evaluate the ability of simulated dosing strategies in terms of fAUC/MIC targets of voriconazole. According to the results of the MCSs, current voriconazole dosage regimens were all effective for children, adolescents and adults against Candida albicans, Candida parapsilosis and Candida orthopsilosis. For adults, dosing regimens of 4 mg/kg intravenous every 12 h (q12h) and 300 mg orally q12h were sufficient to treat fungal infections by six Candida spp. (C. albicans, C. parapsilosis, Candida tropicalis, Candida glabrata, Candida krusei and C. orthopsilosis) and five Aspergillus spp. (Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Aspergillus niger and Aspergillus nidulans). However, high doses should be recommended for children and adolescents in order to achieve better clinical efficacy against A. fumigatus and A. nidulans. The current voriconazole dosage regimens were all ineffective against A. niger for children and adolescents. All voriconazole dosage regimens were not optimal against Aspergillus versicolor. This is the first study to evaluate clinical therapy of various voriconazole dosing regimens against Candida and Aspergillus spp. infections in children, adolescents and adults using MCS. The pharmacokinetic/pharmacodynamic-based dosing strategy provided a theoretical rationale for identifying optimal voriconazole dosage regimens in children, adolescents and adults in order to maximise clinical response and minimise the probability of exposure-related toxicity. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Intra and extracellular nuclease production by Aspergillus niger and Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ferreira Adlane V. B.

    1998-01-01

    Full Text Available Intra and extracellular nuclease production by strains of Aspergillus niger and Aspergillus nidulans was estimated using a modified DNAse test agar and cell-free extract assays. Differences in the production of nucleases by A. niger and A. nidulans were observed. These observations suggest that the DNAse test agar can be helpful for a quick screening for some types of nucleases in filamentous fungi. The assays using cell-free extracts can also be useful for initial characterization of other types of nucleases.

  3. A rare presentation of aspergillus infection as empyema thoracis

    Science.gov (United States)

    Goel, Manoj K; Juneja, Deven; Jain, Satinder K; Chaudhuri, Saikiran; Kumar, Ajay

    2010-01-01

    A 57-year-old diabetic and hypertensive man presented with a short history of fever, dry cough and right side chest pain. A chest radiograph showed right pleural based homogenous shadow in middle and lower zones with obliteration of right costo-phrenic angle suggestive of right side effusion. Aspiration of pleural fluid revealed frank pus for which inter-costal tube drainage was performed. Due to persistence of empyema, the patient was subjected to thoracoscopy. Thoracoscopy showed multiloculated empyema. Thoracoscopic pleural biopsy and fluid showed septate fungal hyphae. Thoracotomy and parietal pleurectomy, with resection of part of right lower lobe, was carried out. Pleural fluid, pleural and lung tissue culture grew Aspergillus fumigatus. The patient showed good recovery with voriconazole after thoracotomy. PMID:20539768

  4. Production and partial purification of glucoamylase from Aspergillus ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... Glucoamylase is an enzyme that hydrolyses 1,4α and 1,6β-glucosidic linkages in polysaccharides yielding glucose. Aspergillus niger