WorldWideScience

Sample records for aspergillus flavus aflatoxins

  1. Use of aflatoxin-producing ability medium to distinguish aflatoxin-producing strains of Aspergillus flavus.

    OpenAIRE

    1981-01-01

    Aflatoxin-producing ability medium was tested for its ability to distinguish aflatoxin-positive from aflatoxin-negative strains of Aspergillus flavus in naturally occurring populations from corn at harvest. All of the aflatoxin-positive strains and some of the aflatoxin-negative strains produced aflatoxins when cultured on cracked corn. Although the data indicate that aflatoxin-producing ability medium is not entirely reliable in distinguishing potential aflatoxin-producing strains of A. flav...

  2. Atoxigenic Aspergillus flavus endemic to Italy for biocontrol of aflatoxins in maize

    Science.gov (United States)

    Effective biological control of aflatoxin­producing Aspergillus flavus with atoxigenic members of that species requires suitable A. flavus well adapted to and resident in target agroecosystems. Eighteen atoxigenic isolates of A. flavus endemic in Italy were compared for ability to reduce aflatoxin c...

  3. Degeneration of aflatoxin gene cluster in Aspergillus flavus from Africa and North America

    Science.gov (United States)

    Aspergillus flavus is the primary causal agent of food and feed contamination with the toxic fungal metabolites aflatoxins. Aflatoxin-producing potential of A. flavus is known to vary among isolates. The genes involved in aflatoxin biosynthesis are clustered together and the order of genes within th...

  4. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus

    OpenAIRE

    Renata Hadad Esper; Edlayne eGonçalez; Marcia Ortiz Mayo Marques; Roberto Carlos Felicio; Joana D'arc Felicio

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with ...

  5. Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus.

    Science.gov (United States)

    Nogueira, Juliana H C; Gonçalez, Edlayne; Galleti, Silvia R; Facanali, Roseane; Marques, Márcia O M; Felício, Joana D

    2010-01-31

    Aflatoxin B(1) (AFB(1)) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oil of Ageratum conyzoides, on the mycelial growth and aflatoxin B(1) production by Aspergillus flavus were studied. Cultures were incubated in yeast extract-sucrose (YES) broth for days at 25 degrees C at the following different concentrations of the essential oil (from 0.0 to 30mug/mL). The essential oil inhibited fungal growth to different extents depending on the concentration, and completely inhibited aflatoxin production at concentrations above 0.10microg/mL. The analysis of the oil by GC/MS showed that its main components are precocene II (46.35%), precocene I (42.78%), cumarine (5.01%) and Trans-caryophyllene (3.02%). Comparison by transmission electron microscopy of the fungal cells, control and those incubated with different concentrations of essential oil, showed ultra-structural changes which were concentration dependent of the essential oil of A. conyzoides. Such ultra-structural changes were more evident in the endomembrane system, affecting mainly the mitochondria. Degradation was also observed in both surrounding fibrils. The ability to inhibit aflatoxin production as a new biological activity of A.conyzoides L. indicates that it may be considered as a useful tool for a better understanding of the complex pathway of aflatoxin biosynthesis.

  6. Reduction of aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in interaction with Streptomyces.

    Science.gov (United States)

    Verheecke, C; Liboz, T; Anson, P; Diaz, R; Mathieu, F

    2015-05-01

    The aim of this study is to investigate aflatoxin gene expression during Streptomyces-Aspergillus interaction. Aflatoxins are carcinogenic compounds produced mainly by Aspergillus flavus and Aspergillus parasiticus. A previous study has shown that Streptomyces-A. flavus interaction can reduce aflatoxin content in vitro. Here, we first validated this same effect in the interaction with A. parasiticus. Moreover, we showed that growth reduction and aflatoxin content were correlated in A. parasiticus but not in A. flavus. Secondly, we investigated the mechanisms of action by reverse-transcriptase quantitative PCR. As microbial interaction can lead to variations in expression of household genes, the most stable [act1, βtub (and cox5 for A. parasiticus)] were chosen using geNorm software. To shed light on the mechanisms involved, we studied during the interaction the expression of five genes (aflD, aflM, aflP, aflR and aflS). Overall, the results of aflatoxin gene expression showed that Streptomyces repressed gene expression to a greater level in A. parasiticus than in A. flavus. Expression of aflR and aflS was generally repressed in both Aspergillus species. Expression of aflM was repressed and was correlated with aflatoxin B1 content. The results suggest that aflM expression could be a potential aflatoxin indicator in Streptomyces species interactions. Therefore, we demonstrate that Streptomyces can reduce aflatoxin production by both Aspergillus species and that this effect can be correlated with the repression of aflM expression.

  7. RNA interference reduces aflatoxin accumulation by Aspergillus flavus in peanut seeds

    Science.gov (United States)

    Aflatoxins are among the most powerful carcinogens in nature. They are produced by the fungal pathogen Aspergillus flavus Link and other Aspergillus species. Aflatoxins accumulate in many crops, including rice, wheat, oats, pecans, pistachios, soybean, cassava, almonds, peanuts, beans, corn and cot...

  8. Effect of irradiation on aflatoxin production by Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi; Jintana Bunnak; Guzman, Z.M. de; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1991-10-01

    The effects of repeated exposure to gamma irradiation on Aspergillus flavus var. columnaris S46 was studied in terms of the development of increased radioresistance and mutations. Original D{sub 10} value was obtained as 0.22 kGy and increased a little after 6 times exposure at a dose of 0.8 kGy. Mutation ratios such as morphological changes and aflatoxin production were not remarkably changed even after 6 times exposure. A little stimulation of production of aflatoxin B{sub 1} occurred by irradiation of spores of strains S46, E11 and E14 at 0.4 and 0.6 kGy in Synthetic Low Salts broth after incubation for 10 days at 25degC. The levels of aflatoxin B{sub 1} was also increased 13 to 40% by incubation of irradiated spores of S46 strain at 1 kGy on autoclaved polished rice, black pepper and red pepper. However, these stimulation effects were not Observed after infection of these cultivates of irradiated sores to fresh media. (author).

  9. Modelling Aspergillus flavus growth and aflatoxins production in pistachio nuts.

    Science.gov (United States)

    Marín, Sonia; Ramos, Antonio J; Sanchis, V

    2012-12-01

    Aflatoxins (AFs) are the main contaminants in pistachio nuts. AFs production in pistachio has been attributed to Aspergillus flavus. The aim of this study was to apply existing models to predict growth and AFs production by an A. flavus isolated from pistachios as a function of moisture content and storage temperature of pistachios in order to test their usefulness and complementarities. A full factorial design was used: the moisture content levels assayed were 10, 15, 20, 25 and 30% and incubation temperatures were 10, 15, 20, 25, 30, 37 and 42 °C. Both kinetic and probability models were built to predict growth of the strain under the assayed conditions. Among the assayed models, cardinal ones gave a good quality fit for radial growth rate data. Moreover, the progressive approach, which was developed based on a reduced number of experimental points led to an improved prediction in the validation step. This is quite significant as may allow for improved experimental designs, less costly than full factorial ones. Probability model proved to be concordant in 91% of the calibration set observations. Even though the validation set included conditions around the growth/no-growth interface, there was a 100% agreement in the predictions from the data set (n = 16, cut off = 0.5) after 60 days. Similarly, the probability for AF presence was rightly predicted in 89% of the cases. According to our results EC maximum aflatoxin levels would be surpassed in a period as short as 1 month if pistachio nuts reach 20 °C, unless %mc is ≤10%.

  10. Efficacy of water dispersible formulations of biocontrol strains of Aspergillus flavus for aflatoxin management in corn

    Science.gov (United States)

    Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, no WDG treatment provided s...

  11. Evaluation of antifungal activity of Pittosporum undulatum L. essential oil against Aspergillus flavus and aflatoxin production

    OpenAIRE

    Medeiros,Rosane Tamara da Silva; Gonçalez, Edlayne; Felicio,Roberto Carlos; Felicio,Joana D'Arc

    2011-01-01

    The presence of mycotoxins as a result of fungal attack can occur before, after and during the harvest and storage operations on agricultural crops and food commodities. Considering the inhibitory property of essential plant oils on the mycelial development of fungi and the importance of Aspergillus flavus, the main producer of aflatoxins, this research was designed to evaluate the toxicity of essential oil from Pittosporum undulatum against A. flavus. The essential oils were obtained from P....

  12. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates.

    Science.gov (United States)

    Chang, Perng-Kuang; Horn, Bruce W; Dorner, Joe W

    2005-11-01

    Aspergillus flavus populations are genetically diverse. Isolates that produce either, neither, or both aflatoxins and cyclopiazonic acid (CPA) are present in the field. We investigated defects in the aflatoxin gene cluster in 38 nonaflatoxigenic A. flavus isolates collected from southern United States. PCR assays using aflatoxin-gene-specific primers grouped these isolates into eight (A-H) deletion patterns. Patterns C, E, G, and H, which contain 40 kb deletions, were examined for their sequence breakpoints. Pattern C has one breakpoint in the cypA 3' untranslated region (UTR) and another in the verA coding region. Pattern E has a breakpoint in the amdA coding region and another in the ver1 5'UTR. Pattern G contains a deletion identical to the one found in pattern C and has another deletion that extends from the cypA coding region to one end of the chromosome as suggested by the presence of telomeric sequence repeats, CCCTAATGTTGA. Pattern H has a deletion of the entire aflatoxin gene cluster from the hexA coding region in the sugar utilization gene cluster to the telomeric region. Thus, deletions in the aflatoxin gene cluster among A. flavus isolates are not rare, and the patterns appear to be diverse. Genetic drift may be a driving force that is responsible for the loss of the entire aflatoxin gene cluster in nonaflatoxigenic A. flavus isolates when aflatoxins have lost their adaptive value in nature.

  13. Enhanced aflatoxin production by aspergillus parasiticus and aspergillus flavus after low dose gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1992-09-01

    Spores of Aspergillus parasiticus IFO 30179 and A. flavus var. columnaris S46 were irradiated at 0.05, 0.2 and 0.4 kGy in the synthetic low salts (SL) broth, and the effect on aflatoxin production was examined after 10 days incubation at 30 or 25degC. In these two strains, irradiation of spores at 0.05 kGy resulted in higher B1 or G1 production than the non-irradiated controles. However, spores of the both strains irradiated at 0.2 or 0.4 kGy produced less aflatoxins than non-irradiated controles. In the SL broth, apparent stimulation by low dose irradiation was slight, and these enhanced effects were not observed after reinfection to fresh SL broth. In the case of food samples, the levels of aflatoxin B[sub 1] and G[sub 1] with A. parasiticus were increased from 15 to 90% by incubation of irradiated spores at 1 kGy in autoclaved polished rice, black pepper, white pepper and red pepper. These enhancement would be induced by change of composition in each substrates. Mutations of fungi induced by irradiation is not effective for enhancement of aflatoxin production. (author).

  14. Inhibitory activity of compounds isolated from Polymnia sonchifolia on aflatoxin production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Pak Adriana

    2006-01-01

    Full Text Available Polymnia sonchifolia, commonly known as ";yacon";, was originally cultivated at Andes moutains in South America. Recently, the specie attracted worldwide attention because of its wide range of uses, for example in the control of diabetes melitus, besides the antifungal and pesticidal compounds were found in the leaves. This study describes the identification of two flavonoids: 3', 5, 7 trihydroxy-3, 4'-dimethoxyflavone (compound 1 and 3', 4', 5- trihydroxy-7-methoxy flavanone (compound 2 and two sesquiterpenes lactones: enhydrin (compound 3 and a mixture of enhydrin and uvedalin (compound 4 isolated from Polymnia sonchifolia leaves and their effects on the aflatoxin production by Aspergillus flavus. The identification of the compounds were achieved by ¹H and 13C NMR. All compounds were tested in different concentration, to evaluate the growth of Aspergillus flavus culture and the production of aflatoxin. The compound 1, at the concentration 15 mug/mL, inhibited 25% of the aflatoxin B1 production (p<0.01. The compound 4 inhibited 34% and 76% of the fungal growth and AFB1 production respectively. These results show that Polymnia sonchifolia can be used for the development of agents to control aflatoxin B1 production by Aspergillus flavus.

  15. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations

    Science.gov (United States)

    Ehrlich, Kenneth C.

    2014-01-01

    Aspergillus flavus is a diverse assemblage of strains that include aflatoxin-producing and non-toxigenic strains with cosmopolitan distribution. The most promising strategy currently being used to reduce preharvest contamination of crops with aflatoxin is to introduce non-aflatoxin (biocontrol) A. flavus into the crop environment. Whether or not introduction of biocontrol strains into agricultural fields is enough to reduce aflatoxin contamination to levels required for acceptance of the contaminated food as fit for consumption is still unknown. There is no question that biocontrol strains are able to reduce the size of the populations of aflatoxin-producing strains but the available data suggests that at most only a four- to five-fold reduction in aflatoxin contamination is achieved. There are many challenges facing this strategy that are both short term and long term. First, the population biology of A. flavus is not well understood due in part to A. flavus’s diversity, its ability to form heterokaryotic reproductive forms, and its unknown ability to survive for prolonged periods after application. Second, biocontrol strains must be selected that are suitable for the environment, the type of crop, and the soil into which they will be introduced. Third, there is a need to guard against inadvertent introduction of A. flavus strains that could impose an additional burden on food safety and food quality, and fourth, with global warming and resultant changes in the soil nutrients and concomitant microbiome populations, the biocontrol strategy must be sufficiently flexible to adapt to such changes. Understanding genetic variation within strains of A. flavus is important for developing a robust biocontrol strategy and it is unlikely that a “one size fits all” strategy will work for preharvest aflatoxin reduction. PMID:24575088

  16. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus.

    Science.gov (United States)

    Esper, Renata H; Gonçalez, Edlayne; Marques, Marcia O M; Felicio, Roberto C; Felicio, Joana D

    2014-01-01

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 10(5) spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans.

  17. Seed-Derived Ethylene Facilitates Colonization but Not Aflatoxin Production by Aspergillus flavus in Maize

    Science.gov (United States)

    Wang, Shi; Park, Yong-Soon; Yang, Yang; Borrego, Eli J.; Isakeit, Tom; Gao, Xiquan; Kolomiets, Michael V.

    2017-01-01

    Ethylene (ET) emitted by plant tissues has been broadly reported to play important roles in plant development, response to environmental stresses and defense against certain pathogens. Recent evidence obtained from using in vitro fungal cultures exposed to ET suggested that exogenous ET may regulate the production of aflatoxin by Aspergilli. However, the function of endogenous, seed-derived ET has not been explored. In this study, we found that the maize lipoxygenase lox3 mutant, previously reported to be susceptible to Aspergillus spp., emitted greater levels of ET upon A. flavus infection, suggesting the potential involvement of endogenous ET in the susceptibility of maize to A. flavus. Supporting this idea, both colonization and conidiation of A. flavus were reduced in wild-type (WT) kernels treated with AgNO3, an ET synthesis inhibitor. There was no ET emission from non-viable kernels colonized by A. flavus, suggesting that living seed but not the fungus itself was the primary source of ET released upon infection with A. flavus. The kernels of acs2 and acs6, two ET biosynthetic mutants carrying Mutator transposons in the ACC synthase genes, ACS2 and ACS6, respectively, displayed enhanced seed colonization and conidiation, but not the levels of aflatoxin, upon infection with A. flavus. Surprisingly, both acs2 and acs6 mutant kernels emitted greater levels of ET in response to infection by A. flavus as compared with WT seed. The increased ET in single mutants was found to be due to overexpression of functional ACS genes in response to A. flavus infection. Collectively, these findings suggested that ET emitted by infected seed facilitates colonization by A. flavus but not aflatoxin production.

  18. THE EFFECT OF PHYTIC ACID, ZINC AND SOYBEAN EXTRACT ON THE GROWTH AND AFLATOXIN B1 PRODUCTION BY Aspergillus flavus

    OpenAIRE

    Sardjono, Sardjono

    2012-01-01

    It has been reported that aflatoxin contamination in soybean was relatively low, but it was not guaranteed that soybean products is free from aflatoxin contamination. Naturally, soybean containing phytic acid and it bound zinc and protein. Zinc (Zn) is an important mineral for aflatoxin biosynthesis. Previous research indicated that some soybean products such as kecap was contaminated by aflatoxin. It might be Aspergillus flavus involved during kecap fermentation and it produced phytase for p...

  19. The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity

    Science.gov (United States)

    Lan, Huahui; Sun, Ruilin; Fan, Kun; Yang, Kunlong; Zhang, Feng; Nie, Xin Y.; Wang, Xiunai; Zhuang, Zhenhong; Wang, Shihua

    2016-01-01

    Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage. Deletion of AflgcnE inhibited the growth of A. flavus and decreased the hydrophobicity of the cell surface. The ΔAflgcnE mutant exhibited a lack of asexual sporulation and was unable to generate sclerotia. Additionally, AflgcnE was required to maintain cell wall integrity and genotoxic stress responses. Importantly, the ΔAflgcnE mutant did not produce aflatoxins, which was consistent with a significant down-regulation of aflatoxin gene expression levels. Furthermore, our data revealed that AflgcnE is a pathogenicity factor required for colonizing maize seeds. In summary, we revealed that A. flavus AflGcnE is crucial for morphological development, aflatoxin biosynthesis, stress responses, and pathogenicity. Our findings help clarify the functional divergence of GcnE orthologs, and may provide a possible target for controlling A. flavus infections of agriculturally important crops. PMID:27625637

  20. The master transcription factor mtfA governs aflatoxin production, morphological development, and pathogenicity in the fungus Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus produces a variety of toxic secondary metabolites, among them the aflatoxins (AFs) are the most well-known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing economically important crops contaminating them with AFs. Molecu...

  1. Genetic isolation among sympatric vegetative compatibility groups of the aflatoxin-producing fungus Aspergillus flavus.

    Science.gov (United States)

    Grubisha, L C; Cotty, P J

    2010-01-01

    Aspergillus flavus, a fungal pathogen of animals and both wild and economically important plants, is most recognized for producing aflatoxin, a cancer-causing secondary metabolite that contaminates food and animal feed globally. Aspergillus flavus has two self/nonself recognition systems, a sexual compatibility system and a vegetative incompatibility system, and both play a role in directing gene flow in populations. Aspergillus flavus reproduces clonally in wild and agricultural settings, but whether a cryptic sexual stage exists in nature is currently unknown. We investigated the distribution of genetic variation in 243 samples collected over 4 years from three common vegetative compatibility groups (VCGs) in Arizona and Texas from cotton using 24 microsatellite loci and the mating type locus (MAT) to assess population structure and potential gene flow among A. flavus VCGs in sympatric populations. All isolates within a VCG had the same mating type with OD02 having MAT1-2 and both CG136 and MR17 having MAT1-1. Our results support the hypothesis that these three A. flavus VCGs are genetically isolated. We found high levels of genetic differentiation and no evidence of gene flow between VCGs, including VCGs of opposite mating-type. Our results suggest that these VCGs diverged before domestication of agricultural hosts (>10,000 yr bp).

  2. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus

    Science.gov (United States)

    Yang, Kunlong; Qin, Qiuping; Liu, Yinghang; Zhang, Limei; Liang, Linlin; Lan, Huahui; Chen, Chihao; You, Yunchao; Zhang, Feng; Wang, Shihua

    2016-01-01

    Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus. PMID:28066725

  3. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    Science.gov (United States)

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past.

  4. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link.

    Science.gov (United States)

    Kohiyama, Cássia Yumie; Yamamoto Ribeiro, Milene Mayumi; Mossini, Simone Aparecida Galerani; Bando, Erika; Bomfim, Natália da Silva; Nerilo, Samuel Botião; Rocha, Gustavo Henrique Oliveira; Grespan, Renata; Mikcha, Jane Martha Graton; Machinski, Miguel

    2015-04-15

    The antifungal and antiaflatoxigenic properties of Thymus vulgaris essential oil (TEO) were evaluated upon Aspergillus flavus "in vitro". Suspension containing 10(6) of A. flavus were cultivated with TEO in concentrations ranging from 50 to 500 μg/mL. TEO reached minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) at 250 μg/mL. Inhibition of ergosterol biosynthesis was detected at a concentration of 100 μg/mL of TEO. Morphological evaluation performed by both light microscopy and scanning electron microscopy showed that antifungal activity of TEO could be detected starting at a concentration of 50 μg/mL and the fungicide effect at a concentration of 250 μg/mL. TEO completely inhibited production of both B1 and B2 aflatoxins (AFB1 and AFB2) at a concentration of 150 μg/mL. This way, fungal biomass development and aflatoxin production were dependent on TEO concentration. Therefore, TEO was capable of controlling the growth of A. flavus and its production of aflatoxins.

  5. Survey of Thymus migricus essential oil on aflatoxin inhibition in Aspergillus flavus.

    Science.gov (United States)

    Alizadeh, Alireza; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Sedaghat, Narges

    2010-01-01

    Essential oil components as result of non host disease resistance of plants have high capability to introduce as alternative of chemical pesticides. Thymus migricus essential oil was selected to investigation of its antifungal activity on survival and growth of Aspergillus flavus. For obtain essential oil first Leaves and flowers of Th. migricus collected then dried. The Essential oil was extracted by means of hydro-distillation and afterwards GC-MS analysis was performed to identify their components. The main constituents that resulted were Thymol (44.9%), Geraniol (10.8%), gamma-Terpinene (10.3%), Citronellol (8.5%) and p-Cymene (7.2%). EC50 and MIC (Minimum Inhibitory Concentration) of Th. migricus oil against A. flavus was 324.42 microl/l and 451.62 microl/l, respectively. Whereas EC50 and MIC for chemical thiabendazol was 650 microl/l and 1635 microl/l, respectively. The EC50 and MIC concentrations of Th. migricus oil in antifungal activity examination were used in aflatoxin inhibition test. Result of HPTLC measurement showed that both of concentrations inhibit aflatoxin production completely compares to control with 7.63 ppm aflatoxin production. In other word, Th. migricus oil can suppress aflatoxin production in concentrations lower than EC50 for mycelium growth.

  6. Effect of climate change on Aspergillus flavus and aflatoxin B1 production

    Directory of Open Access Journals (Sweden)

    Angel eMedina

    2014-07-01

    Full Text Available This review considers the available information on the potential impact of key environmental factors and their interactions on the molecular ecology, growth and aflatoxin production by Aspergillus flavus in vitro and in maize grain. The recent studies which have been carried out to examine the impact of water activity x temperature on aflatoxin biosynthesis and phenotypic aflatoxin production are examined. These have shown that there is a direct relationship between the relative expression of key regulatory and structural genes under different environmental conditions which correlate directly with aflatoxin B1 production. A model has been developed to integrate the relative expression of 10 biosynthetic genes in the pathway, growth and aflatoxin B1 (AFB1 production which was validated under elevated temperature and water stress conditions. The effect of interacting conditions of aw x temperature x elevated CO2 (2x and 3x existing levels are detailed for the first time. This suggests that while such interacting environmental conditions have little effect on growth they do have a significant impact on aflatoxin biosynthetic gene expression (structural aflD and regulatory aflR genes and can significantly stimulate the production of AFB1. While the individual factors alone have an impact, it is the combined effect of these three abiotic factors which have an impact on mycotoxin production. This approach provides data which is necessary to help predict the real impacts of climate change on mycotoxigenic fungi.

  7. Molecular Detection of Aflatoxin Producing Strains of Aspergillus Flavus from Peanut (Arachis Hypogaea

    Directory of Open Access Journals (Sweden)

    Adeela Hussain

    2015-02-01

    Full Text Available Aflatoxins are the potential carcinogens produced as secondary metabolites by Aspergillus flavus. They have the ability to contaminate large number of food which ultimately affect the human population. Malt extract agar was selected for the growth of control stains of fungus. The aim of the study was to develop a reliable and quick method for the detection of aflatoxin producing strains in peanuts by using molecular approaches. Total 80 samples of infected peanuts were collected from four different cities of Punjab and checked for their aflatoxin contamination. For aflatoxin detection, three target genes nor1, ver1 and aflR were selected which was involved in the aflatoxin biosynthesis. In all examined cases, 24 out of 80 (30% samples successfully amplified all three genes indicating aflatoxigenic activity. Discrimination between aflatoxigenic and non-aflatoxigenic strains were also determined on the basis of amplification of these three target DNA fragments. In this study, it was also demonstrated that only specific strains were able to produce the aflatoxin contamination in peanuts.

  8. POTENTIAL OF ESSENTIAL OILS FOR PROTECTION OF GRAINS CONTAMINATED BY AFLATOXIN PRODUCED BY Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Renata Hadad Esper

    2014-06-01

    Full Text Available Aflatoxin B1 (AFB1 is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto and Origanum vulgare (oregano on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean treated with Ageratum conyzoides (mentrasto and Origanum vulgare (oregano essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3×105 spores/ mL in 60 g of grains (corn and soybeans after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans.

  9. Aspergillus flavus growth and aflatoxin production as influenced by total lipid content during growth and development of cottonseed

    Science.gov (United States)

    Aspergillus flavus infects several food and feed crops such as corn, cotton, peanuts and tree nut crops and contaminates the seed with carcinogenic aflatoxins. These susceptible crops contain rich reserves of lipids and fatty acids. The nature of relationship between lipids and the ability of the f...

  10. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus

    Science.gov (United States)

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins and as a result, threaten human health, food security, and farmers’ income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the...

  11. Effects of Nutrients in Substrates of Different Grains on Aflatoxin B1 Production by Aspergillus flavus

    Science.gov (United States)

    Liu, Jie; Sun, Lvhui; Zhang, Niya; Zhang, Jiacai; Guo, Jiao; Li, Chong; Rajput, Shahid Ali; Qi, Desheng

    2016-01-01

    The current study was to better understand the potential factors affecting aflatoxin B1 (AFB1) accumulation varies between different grains. The nutrient composition and contents of defatted substrates were determined; additionally, according to the nutrient content of the substrates, the effects of starch, soluble sugars, amino acids, and trace elements on AFB1 production and mycelial growth in Czapek-Dox medium were examined. These results verified that removal of lipids from ground substrates significantly reduced the substrate's potential for AFB1 production by Aspergillus flavus. Maltose, glucose, sucrose, arginine, glutamic acid, aspartic acid, and zinc significantly induced AFB1 production up to 1.7- to 26.6-fold. And stachyose more significantly promoted A. flavus growth than the other nutrients. Thus, this study demonstrated that, combined with the nutrients content of grains, in addition to lipids, sucrose, stachyose, glutamic acid, and zinc might play key roles in various grains that are differentially infected by A. flavus. Particularly, two new nutrients (arginine and stachyose) of the grains we found significantly stimulate AFB1 production and A. flavus growth, respectively. The results provide new concepts for antifungal methods to protect food and animal feed from AFB1 contamination. PMID:27294129

  12. Effects of Nutrients in Substrates of Different Grains on Aflatoxin B1 Production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-01-01

    Full Text Available The current study was to better understand the potential factors affecting aflatoxin B1 (AFB1 accumulation varies between different grains. The nutrient composition and contents of defatted substrates were determined; additionally, according to the nutrient content of the substrates, the effects of starch, soluble sugars, amino acids, and trace elements on AFB1 production and mycelial growth in Czapek-Dox medium were examined. These results verified that removal of lipids from ground substrates significantly reduced the substrate’s potential for AFB1 production by Aspergillus flavus. Maltose, glucose, sucrose, arginine, glutamic acid, aspartic acid, and zinc significantly induced AFB1 production up to 1.7- to 26.6-fold. And stachyose more significantly promoted A. flavus growth than the other nutrients. Thus, this study demonstrated that, combined with the nutrients content of grains, in addition to lipids, sucrose, stachyose, glutamic acid, and zinc might play key roles in various grains that are differentially infected by A. flavus. Particularly, two new nutrients (arginine and stachyose of the grains we found significantly stimulate AFB1 production and A. flavus growth, respectively. The results provide new concepts for antifungal methods to protect food and animal feed from AFB1 contamination.

  13. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  14. Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production.

    Science.gov (United States)

    Chitarrini, G; Nobili, C; Pinzari, F; Antonini, A; De Rossi, P; Del Fiore, A; Procacci, S; Tolaini, V; Scala, V; Scarpari, M; Reverberi, M

    2014-10-17

    Buckwheat (Fagopyrum spp.) is a "pseudo-cereal" of great interest in the production of healthy foods since its flour, derived from achenes, is enriched with bioactive compounds and, due to the absence of gluten, may be used in composition of celiac diets. Amongst buckwheat species, F. tataricum achenes possess a larger amount of the antioxidant flavenol rutin than the common buckwheat F. esculentum. Ongoing climate change may favor plant susceptibility to the attack by pathogenic, often mycotoxigenic, fungi with consequent increase of mycotoxins in previously unexploited feeds and foodstuffs. In particular, Aspergillus flavus, under suitable environmental conditions such as those currently occurring in Italy, may produce aflatoxin B1 (AFB1), the most carcinogenic compound of fungal origin which is classified by IARC as Category 1. In this study, the viable achenes of two buckwheat species, F. tataricum (var. Golden) and F. esculentum (var. Aelita) were inoculated with an AFB1-producing A. flavus NRRL 3357 to analyze their relative performances against fungal invasion and toxin contamination. Notably, we sought the existence of a correlation between the amount of tocols/flavonols in the achenes of buckwheat, infected and non-infected with A. flavus, and to analyze the ability of the pathogen to grow and produce toxin during achene infection. Results suggest that achenes of F. tataricum, the best producer of antioxidant compounds in this study, are less susceptible to A. flavus infection and consequently, but not proportionally, to mycotoxin contamination compared with F. esculentum. Moreover, rutin-derived quercetin appears to be more efficient in inhibiting aflatoxin biosynthesis than the parent compound.

  15. Studies on the control of fungal contamination and aflatoxin production by Aspergillus flavus Link in a cereal grain by comb. treatment of heat and irradiation.

    NARCIS (Netherlands)

    Odamtten, G.T.

    1986-01-01

    Traditional storage of maize in tropical countries such as Ghana results in the rapid development of numerous fungi, including potential mycotoxin producers such as Aspergillus flavus (aflatoxins), A. ochraceus (ochratoxins, penicillic acid), Fusarium moniliforme (moniliformin), Paecilomyces varioti

  16. Occurrence of aflatoxins in mahua (Madhuca indica Gmel.) seeds: synergistic effect of plant extracts on inhibition of Aspergillus flavus growth and aflatoxin production.

    Science.gov (United States)

    Sidhu, O P; Chandra, Harish; Behl, H M

    2009-04-01

    Occurrence of aflatoxin in Madhuca indica Gmel. seeds was determined by competitive ELISA. Eighty percent of mahua seed samples were found to be contaminated with aflatoxin. Total aflatoxin content ranged from 115.35 to 400.54ppb whereas the concentration of AFB(1) was in the range of 86.43 to 382.45ppb. Mahua oil was extracted by cold press expeller and analysed for contamination of aflatoxin in both the oil and cake samples. Total aflatoxin and aflatoxin B(1) were 220.66 and 201.57ppb in oil as compared to that in cake samples where it was 87.55 and 74.35ppb, respectively. Various individual and combined plant extracts were evaluated for their efficacy against growth of Aspergillus flavus and aflatoxin production in vitro. Combination of botanicals were found to be more effective in controlling fungal growth and aflatoxin production than individual extracts. Results of the present study suggests that synergistic effect of plant extracts can be used for control of fungal growth and aflatoxin production. These natural plant products may successfully replace synthetic chemicals and provide an alternative method to protect mahua as well as other agricultural commodities of nutritional significance from toxigenic fungi such as A. flavus and aflatoxin production.

  17. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus.

    Science.gov (United States)

    Kong, Qing; Chi, Chen; Yu, Jiujiang; Shan, Shihua; Li, Qiyu; Li, Qianting; Guan, Bin; Nierman, William C; Bennett, Joan W

    2014-06-01

    Aspergillus flavus is one of the major moulds that colonize peanut in the field and during storage. The impact to human and animal health, and to the economy in agriculture and commerce, is significant since this mold produces the most potent known natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect in inhibiting aflatoxin formation in A. flavus through down-regulating aflatoxin pathway gene expression as demonstrated by gene chip analysis. Aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98 %) inhibited by co-cultivation with B. megaterium. Growth was also reduced. Using expression studies, we identified the fungal genes down-regulated by co-cultivation with B. megaterium across the entire fungal genome and specifically within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX). Modulating the expression of these genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was significantly down-regulated during co-cultivation. We present a model showing a hypothesis of the regulatory mechanism of aflatoxin production suppression by AflS and AflR through B. megaterium co-cultivation.

  18. Effect of Plectranthus glandulosus and Ocimum gratissimum Essential Oils on Growth of Aspergillus flavus and Aflatoxin B1 Production

    Directory of Open Access Journals (Sweden)

    Mbofung, CMF.

    2008-01-01

    Full Text Available Essential oils of Ocimum gratissimum and Plectranthus glandulosus leaves were extracted by steam distillation and analysed by GC-MS, and their effects on growth and aflatoxin B1 production by Aspergillus flavus were tested at five levels (i.e 200, 400, 600, 800 and 1000 mg/l using SMKY agar medium. The main components of O. gratissimum were thymol (47.7% and -terpinene (14.3% whereas those of P. glandulosus were represented by -terpinene (30.8% and terpinolene (25.2%. After 8 days of incubation on essential oil-supplemented medium, growth of A. flavus was totally inhibited by 800 mg/l of O. gratissimum essential oil and by 1000 mg/l of P. glandulosus essential oil. The effect of essential oils on aflatoxin B1 synthesis was evaluated in SMKY broth. The medium supplemented with different essential oil concentrations, was inoculated with A. flavus mycelium and incubated at 25 °C. At 2, 4, 6 and 8 days, aflatoxin B1 concentrations in the supernatant were estimated using Enzyme Linked Immuno-Sorbent Assay (ELISA. Results showed that aflatoxin B1 synthesis was inhibited by 1000 mg/l of both essential oils of O. gratissimum and P. glandulosus after 8 days of incubation. Results obtained in the present study indicate the possibility of exploiting O. gratissimum and P. glandulosus essential oils in the fight against strains of A. flavus responsible for biodeterioration of stored food products.

  19. Construction and preliminary evaluation of an Aspergillus flavus reporter gene construct as a potential tool for screening aflatoxin resistance.

    Science.gov (United States)

    Brown, Robert L; Brown-Jenco, Carmen S; Bhatnagar, Deepak; Payne, Gary A

    2003-10-01

    Effective preharvest strategies to eliminate aflatoxin accumulation in crops are not presently available. The molecular biology of aflatoxin biosynthesis has been extensively studied, and genetic and molecular tools such as reporter gene systems for the measurement of fungal growth have been developed. A reporter construct containing the Aspergillus flavus beta-tubulin gene promoter fused to Escherichia coli beta-glucuronidase (GUS) has been shown to be a reliable tool for the indirect measurement of fungal growth in maize kernels. Since cost-saving alternative methods for the direct measurement of aflatoxin levels are needed to facilitate more widespread field and laboratory screening of maize lines, a new reporter gene construct involving the promoter region of the omtA gene of the aflatoxin biosynthetic pathway was constructed and tested. Expression of GUS activity by this construct (omtA::GUS) was correlated with aflatoxin accumulation in culture. In the fungal transformant GAP26-1, which harbors this construct, aflatoxin production and GUS expression on sucrose-containing medium showed the same temporal pattern of toxin induction. Furthermore, GUS expression by GAP26-1 was shown to be associated with aflatoxin accumulation in maize kernels inoculated with this strain. Our results suggest that this and other reporter gene pathway promoter constructs may provide superior alternatives to direct aflatoxin quantification with respect to time, labor, and materials for the screening of maize lines for resistance to aflatoxin accumulation.

  20. Effect of inoculum concentrations of Aspergillus flavus and A. parasiticus on aflatoxin accumulation and kernel infection in resistant and susceptible maize hybrids

    Science.gov (United States)

    Over a three year period, we compared aflatoxin accumulation and kernel infection in maize hybrids inoculated with six inoculum concentrations of Aspergillus flavus isolate NRRL 3357 or A. parasiticus isolate NRRL 6111 which is a norsolorinic acid producer. Aflatoxin resistant and susceptible mai...

  1. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.

    Science.gov (United States)

    Yin, Hsin-Bai; Chen, Chi-Hung; Kollanoor-Johny, Anup; Darre, Michael J; Venkitanarayanan, Kumar

    2015-09-01

    Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed.

  2. Nanocapsular Dispersion of Cinnamaldehyde for Enhanced Inhibitory Activity against Aflatoxin Production by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hongbo Li

    2015-04-01

    Full Text Available Cinnamaldehyde (CA is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.

  3. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation.

    Directory of Open Access Journals (Sweden)

    Rowena Y Kelley

    Full Text Available BACKGROUND: Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. RESULTS: Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86 in contrast to two susceptible maize inbred lines (Va35 and B73 by microarray analysis. Principal component analysis (PCA was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. CONCLUSION: Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines

  4. Utilization of waste fruit-peels to inhibit aflatoxins synthesis by Aspergillus flavus: a biotreatment of rice for safer storage.

    Science.gov (United States)

    Naseer, R; Sultana, Bushra; Khan, M Z; Naseer, D; Nigam, Poonam

    2014-11-01

    Antifungal activity in lemon and pomegranate peels was considerable against Aspergillus flavus, higher in pomegranate (DIZ 37mm; MIC 135μg/mL). Powdered peels (5, 10, 20% w/w) were mixed in inoculated rice. The inhibitory effect on fungal-growth and production of aflatoxins by A. flavus was investigated at storage conditions - temperature (25, 30°C) and moisture (18%, 21%) for 9months. The maximum total aflatoxins accumulated at 30°C, 21% moisture and at 25°C, 18% moisture were 265.09 and 163.45ng/g, respectively in control. Addition of pomegranate-peels inhibited aflatoxins production to 100% during four month-storage of rice at 25°C and 18% moisture, while lemon-peels showed similar inhibitory effect for 3months at same conditions. However a linear correlation was observed in aflatoxins level with temperature and moisture. Studies showed that both fruit-wastes are potent preventer of aflatoxin production in rice, useful for a safer and longer storage of rice.

  5. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.

    Science.gov (United States)

    Liang, Dandan; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Xiao; Wang, Limin; Hua, Huijuan; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2015-12-01

    In order to reveal the inhibitory effects of cinnamaldehyde, citral, and eugenol on aflatoxin biosynthesis, the expression levels of 5 key aflatoxin biosynthetic genes were evaluated by real-time PCR. Aspergillus flavus growth and AFB1 production were completely inhibited by 0.80 mmol/L of cinnamaldehyde and 2.80 mmol/L of citral. However, at lower concentration, cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L) significantly reduced AFB1 production with inhibition rate of 68.9%, 95.4%, and 41.8%, respectively, while no effect on fungal growth. Real-time PCR showed that the expressions of aflR, aflT, aflD, aflM, and aflP were down-regulated by cinnamaldehyde (0.40 mmol/L), eugenol (0.80 mmol/L), and citral (0.56 mmol/L). In the presence of cinnamaldehyde, AflM was highly down-regulated (average of 5963 folds), followed by aflP, aflR, aflD, and aflT with the average folds of 55, 18, 6.5, and 5.8, respectively. With 0.80 mmol/L of eugenol, aflP was highly down-regulated (average of 2061-folds), followed by aflM, aflR, aflD, and aflT with average of 138-, 15-, 5.2-, and 4.8-folds reduction, respectively. With 0.56 mmol/L of citral, aflT was completely inhibited, followed by aflM, aflP, aflR, and aflD with average of 257-, 29-, 3.5-, and 2.5-folds reduction, respectively. These results suggest that the reduction in AFB1 production by cinnamaldehyde, eugenol, and citral at low concentration may be due to the down-regulations of the transcription level of aflatoxin biosynthetic genes. Cinnamaldehyde and eugenol may be employed successfully as a good candidate in controlling of toxigenic fungi and subsequently contamination with aflatoxins in practice.

  6. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina.

    Science.gov (United States)

    Alaniz Zanon, María Silvina; Barros, Germán Gustavo; Chulze, Sofía Noemí

    2016-08-16

    Biological control is one of the most promising strategies for preventing aflatoxin contamination in peanuts at field stage. A population of 46 native Aspergillus flavus nonaflatoxin producers were analysed based on phenotypic, physiological and genetic characteristics. Thirty-three isolates were characterized as L strain morphotype, 3 isolates as S strain morphotype, and 10 isolates did not produce sclerotia. Only 11 of 46 non-aflatoxigenic isolates did not produce cyclopiazonic acid. The vegetative compatibility group (VCG) diversity index for the population was 0.37. For field trials we selected the non-aflatoxigenic A. flavus AR27, AR100G and AFCHG2 strains. The efficacy of single and mixed inocula as potential biocontrol agents in Northern Argentina was evaluated through a 2-year study (2014-2015). During the 2014 peanut growing season, most of the treatments reduced the incidence of aflatoxigenic strains in both soil and peanut kernel samples, and no aflatoxin was detected in kernels. During the 2015 growing season, there was a reduction of aflatoxigenic strains in kernel samples from the plots treated with the potential biocontrol agents. Reductions of aflatoxin contamination between 78.36% and 89.55% were observed in treated plots in comparison with the un-inoculated control plots. This study provides the first data on aflatoxin biocontrol based on competitive exclusion in the peanut growing region of Northern Argentina, and proposes bioproducts with potential use as biocontrol agents.

  7. Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese.

    Science.gov (United States)

    Gandomi, Hassan; Misaghi, Ali; Basti, Afshin Akhondzadeh; Bokaei, Saeed; Khosravi, Alireza; Abbasifar, Arash; Javan, Ashkan Jebelli

    2009-10-01

    The effect of Zataria multiflora Boiss. essential oil (EO) against growth, spore production and aflatoxin formation by Aspergillus flavus ATCC 15546 was investigated in synthetic media as well as Iranian ultra-filtered white cheese in brine. EO effectively inhibited radial growth and spore production on potato dextrose agar (PDA) in a dose-dependent manner. At 200 ppm, the radial growth and sporulation reduced by 79.4% and 92.5%, respectively. The growth was completely prevented at EO400 ppm on PDA, and minimum fungicidal concentration (MFC) of the oil was estimated at 1000 ppm. The oil also significantly suppressed mycelial growth and aflatoxin synthesis in broth medium at all concentrations tested (Paflatoxin accumulation reduced by 90% and 99.4%, respectively. The EO at all concentrations tested, had an inhibitory effect against radial fungal growth and aflatoxin production by A. flavus in cheese. However, no concentration of EO examined was able to completely inhibit the growth and aflatoxin production in cheese. The results suggested the potential substitution of the antifungal chemicals by this EO as a natural inhibitor to control the growth of molds in foods such as cheese.

  8. Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus.

    Science.gov (United States)

    Singh, Priyanka; Shukla, Ravindra; Kumar, Ashok; Prakash, Bhanu; Singh, Shubhra; Dubey, Nawal Kishore

    2010-09-01

    Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B(1) production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B(1) production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B(1) production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B(1) suppressors in post-harvest processing of herbal samples.

  9. Effect of Plectranthus glandulosus and Ocimum gratissimum Essential Oils on Growth of Aspergillus flavus and Aflatoxin B1 Production

    OpenAIRE

    Mbofung, CMF.; Etoa, FX.; Tadsadjieu, NL.; Ngassoum, MB.

    2008-01-01

    Essential oils of Ocimum gratissimum and Plectranthus glandulosus leaves were extracted by steam distillation and analysed by GC-MS, and their effects on growth and aflatoxin B1 production by Aspergillus flavus were tested at five levels (i.e 200, 400, 600, 800 and 1000 mg/l) using SMKY agar medium. The main components of O. gratissimum were thymol (47.7%) and -terpinene (14.3%) whereas those of P. glandulosus were represented by -terpinene (30.8%) and terpinolene (25.2%). After 8 days of inc...

  10. Effect of sexual recombination on population diversity in aflatoxin production by Aspergillus flavus and evidence for cryptic heterokaryosis.

    Science.gov (United States)

    Olarte, Rodrigo A; Horn, Bruce W; Dorner, Joe W; Monacell, James T; Singh, Rakhi; Stone, Eric A; Carbone, Ignazio

    2012-03-01

    Aspergillus flavus is the major producer of carcinogenic aflatoxins (AFs) in crops worldwide. Natural populations of A. flavus show tremendous variation in AF production, some of which can be attributed to environmental conditions, differential regulation of the AF biosynthetic pathway and deletions or loss-of-function mutations in the AF gene cluster. Understanding the evolutionary processes that generate genetic diversity in A. flavus may also explain quantitative differences in aflatoxigenicity. Several population studies using multilocus genealogical approaches provide indirect evidence of recombination in the genome and specifically in the AF gene cluster. More recently, A. flavus has been shown to be functionally heterothallic and capable of sexual reproduction in laboratory crosses. In the present study, we characterize the progeny from nine A. flavus crosses using toxin phenotype assays, DNA sequence-based markers and array comparative genome hybridization. We show high AF heritability linked to genetic variation in the AF gene cluster, as well as recombination through the independent assortment of chromosomes and through crossing over within the AF cluster that coincides with inferred recombination blocks and hotspots in natural populations. Moreover, the vertical transmission of cryptic alleles indicates that while an A. flavus deletion strain is predominantly homokaryotic, it may harbour AF cluster genes at a low copy number. Results from experimental matings indicate that sexual recombination is driving genetic and functional hyperdiversity in A. flavus. The results of this study have significant implications for managing AF contamination of crops and for improving biocontrol strategies using nonaflatoxigenic strains of A. flavus.

  11. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops.

    Science.gov (United States)

    Bhatnagar-Mathur, Pooja; Sunkara, Sowmini; Bhatnagar-Panwar, Madhurima; Waliyar, Farid; Sharma, Kiran Kumar

    2015-05-01

    Aflatoxins are toxic, carcinogenic, mutagenic, teratogenic and immunosuppressive byproducts of Aspergillus spp. that contaminate a wide range of crops such as maize, peanut, and cotton. Aflatoxin not only affects crop production but renders the produce unfit for consumption and harmful to human and livestock health, with stringent threshold limits of acceptability. In many crops, breeding for resistance is not a reliable option because of the limited availability of genotypes with durable resistance to Aspergillus. Understanding the fungal/crop/environment interactions involved in aflatoxin contamination is therefore essential in designing measures for its prevention and control. For a sustainable solution to aflatoxin contamination, research must be focused on identifying and improving knowledge of host-plant resistance factors to aflatoxin accumulation. Current advances in genetic transformation, proteomics, RNAi technology, and marker-assisted selection offer great potential in minimizing pre-harvest aflatoxin contamination in cultivated crop species. Moreover, developing effective phenotyping strategies for transgenic as well as precision breeding of resistance genes into commercial varieties is critical. While appropriate storage practices can generally minimize post-harvest aflatoxin contamination in crops, the use of biotechnology to interrupt the probability of pre-harvest infection and contamination has the potential to provide sustainable solution.

  12. Use of functional genomics to assess the climate change impact on Aspergillus flavus and aflatoxin production

    Science.gov (United States)

    Aspergillus flavus is an opportunistic pathogenic fungus that infects several crops of agricultural importance, among them, corn, cotton, and peanuts. Once established as a pathogen the fungus may secrete secondary metabolites commonly known as mycotoxins, that if consumed by humans or animals may r...

  13. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production.

    Science.gov (United States)

    Sindhu, S; Chempakam, B; Leela, N K; Suseela Bhai, R

    2011-05-01

    Turmeric is well known for a wide range of medicinal properties. Essential oil of turmeric leaves (Curcuma longa L.) were evaluated at varying concentrations of 0.01, 0.05, 0.1, 0.5, 0.75, 1.0 and 1.5% (v/v) in Yeast Extract Sucrose (YES) broth inoculated with spore suspension of Aspergillus flavus of 10(6)conidia/ml. These were evaluated for their potential in the control of aflatoxigenic fungus A. flavus and aflatoxin production. Turmeric leaf oil exhibited 95.3% and 100% inhibition of toxin production respectively at 1.0% and 1.5%. The extent of inhibition of fungal growth and aflatoxin production was dependent on the concentration of essential oil used. The oil exhibited significant inhibition of fungal growth as well as aflatoxins B(1) and G(1) production. The LD(50) and LD(90) were also determined. GC-MS analysis of the oil showed α-phellandrene, p-cymene and terpinolene as the major components in turmeric leaf oil. The possibility of using these phytochemical components as bio-preservatives for storage of spices is discussed.

  14. Effects of Cymbopogon citratus L. essential oil on the growth, morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain.

    Science.gov (United States)

    Helal, G A; Sarhan, M M; Abu Shahla, A N K; Abou El-Khair, E K

    2007-02-01

    The mycelial growth of Aspergillus flavus Link was completely inhibited using 1.5 (microl/ml or 2.0 (microl/ml of Cymbopogon citratus essential oil applied by fumigation or contact method in Czapek's liquid medium, respectively. This oil was found also to be fungicidal at the same concentrations. The sublethal doses 1.0 and 1.5 (microl/ml inhibited about 65% of fungal growth after five days of incubation and delayed conidiation as compared with the control. Microscopic observations using Light Microscope (LM), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) were carried out to determine the ultra structural modifications of A. flavus hyphae after treatment with C. citratus essential oil. The hyphal diameter decreased and hyphal wall appeared as precipitates and disappeared in some regions. This oil also caused plasma membrane disruption and mitochondrial structure disorganization. Moreover, Ca(+2), K(+) and Mg(+2) leakages increased from the fumigated mycelium and its total lipid content decreased, while the saturated and unsaturated fatty acids increased. One of the most important results obtained during this study was the ability of C. citratus essential oil at its sublethal dose to completely inhibit aflatoxin B(1) production from A. flavus. These findings increase the possibility of exploiting C. citratus essential oil as an effective inhibitor of biodegradation and storage contaminating fungi and also in fruit juice preservation.

  15. Genome-Wide Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Identifies Candidate Gene Signatures in Response to Aflatoxin Producing Fungus Aspergillus flavus.

    Science.gov (United States)

    Bedre, Renesh; Rajasekaran, Kanniah; Mangu, Venkata Ramanarao; Sanchez Timm, Luis Eduardo; Bhatnagar, Deepak; Baisakh, Niranjan

    2015-01-01

    Aflatoxins are toxic and potent carcinogenic metabolites produced from the fungi Aspergillus flavus and A. parasiticus. Aflatoxins can contaminate cottonseed under conducive preharvest and postharvest conditions. United States federal regulations restrict the use of aflatoxin contaminated cottonseed at >20 ppb for animal feed. Several strategies have been proposed for controlling aflatoxin contamination, and much success has been achieved by the application of an atoxigenic strain of A. flavus in cotton, peanut and maize fields. Development of cultivars resistant to aflatoxin through overexpression of resistance associated genes and/or knocking down aflatoxin biosynthesis of A. flavus will be an effective strategy for controlling aflatoxin contamination in cotton. In this study, genome-wide transcriptome profiling was performed to identify differentially expressed genes in response to infection with both toxigenic and atoxigenic strains of A. flavus on cotton (Gossypium hirsutum L.) pericarp and seed. The genes involved in antifungal response, oxidative burst, transcription factors, defense signaling pathways and stress response were highly differentially expressed in pericarp and seed tissues in response to A. flavus infection. The cell-wall modifying genes and genes involved in the production of antimicrobial substances were more active in pericarp as compared to seed. The genes involved in auxin and cytokinin signaling were also induced. Most of the genes involved in defense response in cotton were highly induced in pericarp than in seed. The global gene expression analysis in response to fungal invasion in cotton will serve as a source for identifying biomarkers for breeding, potential candidate genes for transgenic manipulation, and will help in understanding complex plant-fungal interaction for future downstream research.

  16. Genetic Analysis of the Aspergillus flavus Vegetative Compatibility Group to Which a Biological Control Agent That Limits Aflatoxin Contamination in U.S. Crops Belongs.

    Science.gov (United States)

    Grubisha, Lisa C; Cotty, Peter J

    2015-09-01

    Some filamentous fungi in Aspergillus section Flavi produce carcinogenic secondary compounds called aflatoxins. Aflatoxin contamination is routinely managed in commercial agriculture with strains of Aspergillus flavus that do not produce aflatoxins. These non-aflatoxin-producing strains competitively exclude aflatoxin producers and reshape fungal communities so that strains with the aflatoxin-producing phenotype are less frequent. This study evaluated the genetic variation within naturally occurring atoxigenic A. flavus strains from the endemic vegetative compatibility group (VCG) YV36. AF36 is a strain of VCG YV36 and was the first fungus used in agriculture for aflatoxin management. Genetic analyses based on mating-type loci, 21 microsatellite loci, and a single nucleotide polymorphism (SNP) in the aflC gene were applied to a set of 237 YV36 isolates collected from 1990 through 2005 from desert legumes and untreated fields and from fields previously treated with AF36 across the southern United States. One haplotype dominated across time and space. No recombination with strains belonging to VCGs other than YV36 was detected. All YV36 isolates carried the SNP in aflC that prevents aflatoxin biosynthesis and the mat1-2 idiomorph at the mating-type locus. These results suggest that VCG YV36 has a clonal population structure maintained across both time and space. These results demonstrate the genetic stability of atoxigenic strains belonging to a broadly distributed endemic VCG in both untreated populations and populations where the short-term frequency of VCG YV36 has increased due to applications of a strain used to competitively exclude aflatoxin producers. This work supports the hypothesis that strains of this VCG are not involved in routine genetic exchange with aflatoxin-producing strains.

  17. Evaluation of antifungal activity of aqueous extracts of some medicinal plants against Aspergillus flavus, pistachio aflatoxin producing fungus in vitro

    Directory of Open Access Journals (Sweden)

    Sahar Omidpanah

    2015-01-01

    Full Text Available Background: Contamination with aflatoxin, by Aspergillus flavus, is one the major challenges in agriculture and food industry. Preparation of organic products using natural components is widely considered these days. Aims: In this study, effects of aqueous extracts of five medicinal herbs, including thyme, senna, mentha, basil, and safflower on the growth of the A. flavus were investigated. Mterials and Methods: The extracts with different concentrations (200-800 µg/mL and polyethylene glycol with the equal osmotic potential of plant extracts were added to the potato dextrose agar medium to evaluate fungus growth after 7 days using agar dilution method. Benomyl, a fungicide, was used as a positive standard. The tests were performed in triplicate, and the mean diameters of fungus growth were calculated as well. Results and Conclusion: All concentrations of the plants extracts significantly inhibited the fungus growth in comparison with each other and control treatments, while the extracts of thyme and safflower manifested the most effective prohibition compared to benomyl with minimum inhibitory concentration of 200 and 400 µg/mL, respectively.

  18. INHIBITION OF AFLATOXIN PRODUTION BY ASPERGILLUS FLAVUS USING LOW LEVEL Y - IRRADIATION

    Directory of Open Access Journals (Sweden)

    F

    1981-05-01

    Full Text Available Effects o f s e l ected l ow l evel doses of y - Rad iation (100-400 K rad on t he abi l ity o f toxin strain o f Asperg i l l us flavus t o survive and pr oduce a f latox in in c ul t ure med ium and p is tachio nuts hav e been s tudied . A reduction of 60 per c e nt in growth and spore production by Asperg i l l us flavus in c u l ture me di um was observed after treatment wi th 100 K rad of y - Radiation ."nIn spore inoculated pistachio nuts , 100 K rad o f y Radi a tion reduced the a f la toxin B l and G l nroduction by 75% aft er e i ght week s s t orage per iod . The afla toxin prod~ ction ability by Aspergillus f lavus on pistachio nuts was affectively eliminated by t he treatment o f spore inoculated pist achio nuts wi th 200 K rad of y-Radiation , although very l itt le growth coul d be detected after eight weeks ' storage of 40 0 K rad y-irradiated pistachio nuts.  

  19. Production of aflatoxins by Aspergillus flavus and of fumonisins by Fusarium species isolated from Brazilian sorghum Avaliação da toxigenidade das cepas de Aspergillus flavus e Fusarium spp. isoladas de amostras de sorgo

    Directory of Open Access Journals (Sweden)

    Josefa B. da Silva

    2004-09-01

    Full Text Available Fifty-nine Aspergillus flavus and 35 Fusarium verticillioides strains, isolated from freshly harvested (10 and stored (130 Brazilian sorghum samples, were tested regarding their ability to produce aflatoxins (coconut milk agar and fumonisins (rice culture, respectively. Aflatoxins B1 and B2 were detected by TLC, and fumonisins B1 and B2 were analyzed by HPLC. Thirty-eight (64.4% A. flavus strains produced detectable levels of aflatoxins at concentrations ranging from 12.00 to 3282.50 µg/kg (AFB1 + AFB2, while thirty two (91% F. verticillioides strains produced FB1 at concentrations ranging from 0.12 to 5.38 µg/g. Two F. proliferatum strains produced low fumonisin levels. The toxigenic potential of A. flavus (64.4% and F. verticillioides (91.5% strains observed in sorghum samples indicates that rigorous control should be directed at the storage conditions of these products to minimize contamination with toxigenic deteriorating fungi, preventing further hazard to human and animal health.A produção de aflatoxinas por 59 cepas de Aspergillus flavus e fumonisinas por 35 cepas de Fusarium verticillioides isoladas de amostras de grãos de sorgo recém colhido (10 amostras e armazenado (130 amostras, foram avaliadas. A detecção de aflatoxinas (AFB1 e AFB2 foi efetuada por Cromatografia em Camada Delgada (CCD e fumonisinas (FB1 e FB2 foram analisadas por Cromatografia Líquida de Alta Eficiência (CLAE. Os resultados demonstram a produção de AFB1 e AFB2 em 38 cepas (64,4% de A. flavus cujos níveis variaram de 12,00 a 3282,50 µg/kg. Referente às cepas de F. verticillioides, 32 (91% produziram FB1, nas concentrações de 0,12 a 5,38 µg/g. Baixos níveis de fumonisinas foram detectados em 2 cepas de F. proliferatum. A constatação da potencialidade toxígena das cepas de A. flavus (64,4% e de F. verticillioides (91,5% nesta investigação, revelam a importância da pesquisa de aflatoxinas e fumonisinas nas amostras de sorgo. Diante disto

  20. Variabilidade de produção de aflatoxinas por linhagens de Aspergillus flavus em diferentes tempos de manutenção Aflatoxin production variability by Aspergillus flavus strains after different storage times

    Directory of Open Access Journals (Sweden)

    M.H. Taniwaki

    1993-05-01

    Full Text Available O presente trabalho fui realizado com a finalidade de se estudar a produção de aflatoxinas por linhagens de A. flavus, recém isoladas, em diferentes tempos de manutenção, a fim de contribuir para um melhor entendimento do mecanismo de variação na produção de aflatoxinas. Para isso, foram utilizadas três linhagens de A. flavus produtoras de aflatoxinas, classificadas como: a grande produtora; b média produtora e c baixa produtora. Neste experimento, que se estendeu por 280 dias, os fungos foram estudados em dois métodos de preservação: mantido em óleo mineral, no meio Czapeck, e repicado periodicamente em meio Czapeck modificado. A análise da produção de aflatoxinas foi efetuada de 30 em 30 dias. A quantificação da toxina foi feita por cromatografía em camada delgada, pela técnica de avaliação visual, de diluição até extinção. Foi constatada uma variação na produção de toxina em todas as linhagens, contudo elas não perderam suas características originais.Aflatoxin production by strains recently isolated of Aspergillus flavus was studied, after different storage times understand the mechanisms of possible variations in aflatoxin production. Three A. flavus aflatoxin producing strains were utilized, classified as: a high producer; b medium producer and c low producer. The experiment lasted 280 days and the moulds were studied by two preservation methods: oil covered slants on Czapeck's medium and periodic transfer on Czapeck's modified medium. Quantification of the aflatoxin produced was made at 30 day intervals, on thin-layer chromatography and visual determination by the dilution-to-extinction technique. The production of aflatoxin by all strains varied but they did not lose their initial characteristics. Microscopic examinations revealed thickened zones and hifal enlargements over some globous structures that may be related to aflatoxin production sites.

  1. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.

    Science.gov (United States)

    Chang, Perng-Kuang; Hua, Sui Sheng T; Sarreal, Siov Bouy L; Li, Robert W

    2015-09-24

    The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE), is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL) using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO) analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine) were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids OPEN ACCESS Toxins 2015, 7 3888 were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in

  2. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Perng-Kuang Chang

    2015-09-01

    Full Text Available The saprophytic soil fungus Aspergillus flavus infects crops and produces aflatoxin. Pichia anomala, which is a biocontrol yeast and produces the major volatile 2-phenylethanol (2-PE, is able to reduce growth of A. flavus and aflatoxin production when applied onto pistachio trees. High levels of 2-PE are lethal to A. flavus and other fungi. However, at low levels, the underlying mechanism of 2-PE to inhibit aflatoxin production remains unclear. In this study, we characterized the temporal transcriptome response of A. flavus to 2-PE at a subinhibitory level (1 μL/mL using RNA-Seq technology and bioinformatics tools. The treatment during the entire 72 h experimental period resulted in 131 of the total A. flavus 13,485 genes to be significantly impacted, of which 82 genes exhibited decreased expression. They included those encoding conidiation proteins and involved in cyclopiazonic acid biosynthesis. All genes in the aflatoxin gene cluster were also significantly decreased during the first 48 h treatment. Gene Ontology (GO analyses showed that biological processes with GO terms related to catabolism of propionate and branched-chain amino acids (valine, leucine and isoleucine were significantly enriched in the down-regulated gene group, while those associated with ribosome biogenesis, translation, and biosynthesis of α-amino acids were over-represented among the up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed that metabolic pathways negatively impacted among the down-regulated genes parallel to those active at 30 °C, a condition conducive to aflatoxin biosynthesis. In contrast, metabolic pathways positively related to the up-regulated gene group resembled those at 37 °C, which favors rapid fungal growth and is inhibitory to aflatoxin biosynthesis. The results showed that 2-PE at a low level stimulated active growth of A. flavus but concomitantly rendered decreased activities in branched-chain amino

  3. Interaction between maize seed and Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus is an opportunistic fungal pathogen that colonizes maize seeds and contaminates them with aflatoxin. The fungus is localized in the endosperm and aleurone. To investigate the plant microbe interaction, we conducted histological and molecular studies to characterize the internal co...

  4. Evaluation of viability of Aspergillus flavus and aflatoxins degradation in irradiated samples of maize Avaliação da viabilidade de Aspergillus flavus e degradação de aflatoxinas em amostras de milho irradiadas

    Directory of Open Access Journals (Sweden)

    Simone Aquino

    2005-12-01

    Full Text Available One of the currently most important fungi in stored grains is Aspergillus flavus, which produce aflatoxins. This fungus can grow on diverse substrates and represents a serious public health and animal nutritional problem. Therefore, the study of techniques that can be applied to the control of aflatoxins is of great importance. The objective of the present study was to determine the effects of gamma radiation on the growth of Aspergillus flavus Link and on degradation of aflatoxin B1 and B2 (AFB1 and AFB2 at a relative humidity of 97 99% and a water activity (Aw of 0.88-0.94. Samples of corn grains were irradiated using a cobalt 60 source emitting gamma rays at doses of 2, 5 and 10 kGy. Irradiation was found to be effective in reducing the number colony-forming units of A. flavus, per gram, in the corn samples analyzed. In addition, the fluorescent viability test (fluorescein diacetate and ethidium bromide revealed a decrease in the number of viable cells with increasing irradiation doses and three different fluorescence patterns. Furthermore, irradiation induced a partial reduction in AFB1 and AFB2 levels at the doses of 2 and 5 kGy, whereas complete degradation of aflatoxins was observed in the assay employing 10 kGy.Um dos fungos mais importantes atualmente em grãos armazenados é o Aspergillus flavus, o qual produz aflatoxinas. Este fungo pode crescer em diversos substratos e representa uma séria preocupação em saúde pública e nutrição animal. Portanto, o estudo de técnicas que possam ser aplicadas no controle das aflatoxinas é de grande importância. Assim sendo, o objetivo do presente trabalho foi estudar os efeitos da radiação gama no crescimento de Aspergillus flavus Link e na degradação das aflatoxinas B1 e B2, (AFB1 e AFB2 em umidade relativa (UR de 97-99% e atividade de água (Aa de 0,88-0,94. Amostras de grãos de milho foram irradiadas, utilizando-se uma fonte de Cobalto 60, emissora de raios gama, com as doses de 2; 5

  5. A Public Platform for the Verification of the Phenotypic Effect of Candidate Genes for Resistance to Aflatoxin Accumulation and Aspergillus flavus Infection in Maize

    Directory of Open Access Journals (Sweden)

    Xueyan Shan

    2011-06-01

    Full Text Available A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel and SNP genotyping in the population(s for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.

  6. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

    Science.gov (United States)

    Farzaneh, Mohsen; Shi, Zhi-Qi; Ahmadzadeh, Masoud; Hu, Liang-Bin; Ghassempour, Alireza

    2016-01-01

    In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1), caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC) method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut. PMID:27298596

  7. Inhibition of the Aspergillus flavus Growth and Aflatoxin B1 Contamination on Pistachio Nut by Fengycin and Surfactin-Producing Bacillus subtilis UTBSP1

    Directory of Open Access Journals (Sweden)

    Mohsen Farzaneh

    2016-06-01

    Full Text Available In this study, the treatment of pistachio nuts by Bacillus subtilis UTBSP1, a promising isolate to degrade aflatoxin B1 (AFB1, caused to reduce the growth of Aspergillus flavus R5 and AFB1 content on pistachio nuts. Fluorescence probes revealed that the cell free supernatant fluid from UTBSP1 affects spore viability considerably. Using high-performance liquid chromatographic (HPLC method, 10 fractions were separated and collected from methanol extract of cell free supernatant fluid. Two fractions showed inhibition zones against A. flavus. Mass spectrometric analysis of the both antifungal fractions revealed a high similarity between these anti-A. flavus compounds and cyclic-lipopeptides of surfactin, and fengycin families. Coproduction of surfactin and fengycin acted in a synergistic manner and consequently caused a strong antifungal activity against A. flavus R5. There was a positive significant correlation between the reduction of A. flavus growth and the reduction of AFB1 contamination on pistachio nut by UTBSP1. The results indicated that fengycin and surfactin-producing B. subtilis UTBSP1 can potentially reduce A. flavus growth and AFB1 content in pistachio nut.

  8. Effects of temperature, water activity and incubation time on fungal growth and aflatoxin B1 production by toxinogenic Aspergillus flavus isolates on sorghum seeds.

    Science.gov (United States)

    Lahouar, Amani; Marin, Sonia; Crespo-Sempere, Ana; Saïd, Salem; Sanchis, Vicente

    2016-01-01

    Sorghum, which is consumed in Tunisia as human food, suffers from severe colonization by several toxigenic fungi and contamination by mycotoxins. The Tunisian climate is characterized by high temperature and humidity that stimulates mold proliferation and mycotoxin accumulation in foodstuffs. This study investigated the effects of temperature (15, 25 and 37°C), water activity (aw, between 0.85 and 0.99) and incubation time (7, 14, 21 and 28 d) on fungal growth and aflatoxin B1 (AFB1) production by three Aspergillus flavus isolates (8, 10 and 14) inoculated on sorghum grains. The Baranyi model was applied to identify the limits of growth and mycotoxin production. Maximum diameter growth rates were observed at 0.99 a(w) at 37°C for two of the isolates. The minimum aw needed for mycelial growth was 0.91 at 25 and 37°C. At 15°C, only isolate 8 grew at 0.99 a(w). Aflatoxin B1 accumulation could be avoided by storing sorghum at low water activity levels (≤0.91 a(w)). Aflatoxin production was not observed at 15°C. This is the first work on the effects of water activity and temperature on A. flavus growth and AFB1 production by A. flavus isolates on sorghum grains.

  9. An attempt to model the probability of growth and aflatoxin B1 production of Aspergillus flavus under non-isothermal conditions in pistachio nuts.

    Science.gov (United States)

    Aldars-García, Laila; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2015-10-01

    Human exposure to aflatoxins in foods is of great concern. The aim of this work was to use predictive mycology as a strategy to mitigate the aflatoxin burden in pistachio nuts postharvest. The probability of growth and aflatoxin B1 (AFB1) production of aflatoxigenic Aspergillus flavus, isolated from pistachio nuts, under static and non-isothermal conditions was studied. Four theoretical temperature scenarios, including temperature levels observed in pistachio nuts during shipping and storage, were used. Two types of inoculum were included: a cocktail of 25 A. flavus isolates and a single isolate inoculum. Initial water activity was adjusted to 0.87. Logistic models, with temperature and time as explanatory variables, were fitted to the probability of growth and AFB1 production under a constant temperature. Subsequently, they were used to predict probabilities under non-isothermal scenarios, with levels of concordance from 90 to 100% in most of the cases. Furthermore, the presence of AFB1 in pistachio nuts could be correctly predicted in 70-81 % of the cases from a growth model developed in pistachio nuts, and in 67-81% of the cases from an AFB1 model developed in pistachio agar. The information obtained in the present work could be used by producers and processors to predict the time for AFB1 production by A. flavus on pistachio nuts during transport and storage.

  10. Efficacy of Mentha spicata essential oil in suppression of Aspergillus flavus and aflatoxin contamination in chickpea with particular emphasis to mode of antifungal action.

    Science.gov (United States)

    Kedia, Akash; Dwivedy, Abhishek Kumar; Jha, Dhruva Kumar; Dubey, Nawal Kishore

    2016-05-01

    The present study reports in vivo antifungal and antiaflatoxigenic efficacy of Mentha spicata essential oil (EO) against toxigenic Aspergillus flavus strain LHP(C)-D6 in chickpea food system up to 12 months of storage. In addition, the mode of antifungal action of EO was also determined to understand the mechanism of fungal growth inhibition. The in vivo study with different concentrations of M. spicata EO showed dose-dependent decrease in fungal colony count as well as aflatoxin B1 concentration. The EO caused >50% protection in inoculated sets and >70% protection in uninoculated sets of chickpea food system against A. flavus at 1.0 μL mL(-1) air concentration. However, at the same concentration, EO caused 100% inhibition to aflatoxin B1 production in both sets when analyzed through high-performance liquid chromatography (HPLC). The antifungal target of EO in fumigated cells of A. flavus was found to be the plasma membrane when analyzed through electron microscopic observations and ions leakage test. The EO fumigated chickpea seeds showed 100% seed germination and seedling growth after 12 months of storage. Based on these observations, M. spicata EO can be recommended as plant-based preservative for safe protection of food commodities during storage conditions against fungal and most importantly mycotoxin contaminations.

  11. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus.

    Science.gov (United States)

    Atehnkeng, Joseph; Donner, Matthias; Ojiambo, Peter S; Ikotun, Babatunde; Augusto, Joao; Cotty, Peter J; Bandyopadhyay, Ranajit

    2016-01-01

    Maize infected by aflatoxin-producing Aspergillus flavus may become contaminated with aflatoxins, and as a result, threaten human health, food security and farmers' income in developing countries where maize is a staple. Environmental distribution and genetic diversity of A. flavus can influence the effectiveness of atoxigenic isolates in mitigating aflatoxin contamination. However, such information has not been used to facilitate selection and deployment of atoxigenic isolates. A total of 35 isolates of A. flavus isolated from maize samples collected from three agro-ecological zones of Nigeria were used in this study. Ecophysiological characteristics, distribution and genetic diversity of the isolates were determined to identify vegetative compatibility groups (VCGs). The generated data were used to inform selection and deployment of native atoxigenic isolates to mitigate aflatoxin contamination in maize. In co-inoculation with toxigenic isolates, atoxigenic isolates reduced aflatoxin contamination in grain by > 96%. A total of 25 VCGs were inferred from the collected isolates based on complementation tests involving nitrate non-utilizing (nit(-)) mutants. To determine genetic diversity and distribution of VCGs across agro-ecological zones, 832 nit(-) mutants from 52 locations in 11 administrative districts were paired with one self-complementary nitrate auxotroph tester-pair for each VCG. Atoxigenic VCGs accounted for 81.1% of the 153 positive complementations recorded. Genetic diversity of VCGs was highest in the derived savannah agro-ecological zone (H = 2.61) compared with the southern Guinea savannah (H = 1.90) and northern Guinea savannah (H = 0.94) zones. Genetic richness (H = 2.60) and evenness (E5  = 0.96) of VCGs were high across all agro-ecological zones. Ten VCGs (40%) had members restricted to the original location of isolation, whereas 15 VCGs (60%) had members located between the original source of isolation and a distance

  12. 76 FR 16297 - Aspergillus flavus

    Science.gov (United States)

    2011-03-23

    ..., lawns, or buildings (residential and other indoor uses). A. Dietary Exposure 1. Food. Current uses of... emergence). Once applied to corn and after exposure to moisture, Aspergillus flavus AF36 germinates,...

  13. Molecular mechanisms of Aspergillus flavus secondary metabolism and development.

    Science.gov (United States)

    Amare, Meareg G; Keller, Nancy P

    2014-05-01

    The plant and human opportunistic fungus Aspergillus flavus is recognized for the production of the carcinogen aflatoxin. Although many reviews focus on the wealth of information known about aflatoxin biosynthesis, few articles describe other genes and molecules important for A. flavus development or secondary metabolism. Here we compile the most recent work on A. flavus secondary metabolite clusters, environmental response mechanisms (stress response pathways, quorum sensing and G protein signaling pathways) and the function of the transcriptional regulatory unit known as the Velvet Complex. A comparison to other Aspergilli reveals conservation in several pathways affecting fungal development and metabolism.

  14. Occurrence of toxigenic Aspergillus flavus in commercial Bulgur wheat

    Directory of Open Access Journals (Sweden)

    Carla Bertechini FARIA

    Full Text Available Abstract Aflatoxins are mutagenic, carcinogenic, and teratogenic mycotoxins. The objective of this work was to study the presence of aflatoxigenic Aspergillus in commercial Bulgur wheat in the city of Maringá, Paraná, Brazil. Thirty samples of commercial Bulgur wheat, acquired in the period of August 2011 to January 2012, were evaluated. The enumeration analysis showed that samples had up to 273.3 CFU of molds and 133.3 CFU of aflatoxigenic Aspergillus per gram of wheat. Forty-two monosporic isolates were obtained and identified as Aspergillus flavus. The isolates were analyzed regarding their aflatoxigenic potential by culture in coconut milk agar; hydroxide vapor exposure; chromatography; and polymerase chain reaction (PCR targeting genes that code enzymes of the aflatoxins synthesis pathway. Some of the isolates were confirmed to be aflatoxin producers and several of them presented a genetic profile of aflatoxin synthesis. The obtained results demonstrated that Bulgur wheat A. flavus contamination is concerning.

  15. Aflatoxin production in six peanut (Arachis hypogaea L.) genotypes infected with Aspergillus flavus and Aspergillus parasiticus, isolated from peanut production areas of Cordoba, Argentina.

    Science.gov (United States)

    Asis, Ramon; Barrionuevo, Damian L; Giorda, Laura M; Nores, Maria L; Aldao, Mario A

    2005-11-16

    Aflatoxin contamination is one of the main factors affecting peanut seed quality. One of the strategies to decrease the risk of peanut aflatoxin contamination is the use of genotypes with resistance to Aspergillus infection. This laboratory study reports the resistance to Aspergillus infection and aflatoxin contamination of six peanut genotypes inoculated with 21 Aspergillus isolates obtained from the peanut production region of Cordoba, Argentina. The resistance was investigated in the seed coat and cotyledons of three resistant genotypes (J11, PI 337394, and PI 337409) and three breeding lines (Manfredi 68, Colorado Irradiado, and Florman INTA) developed at the Instituto Nacional de Tecnologia Agropecuaria (INTA), Manfredi Experimental Station, Cordoba, Argentina. Resistance to fungal colonization and aflatoxin contamination was found to be associated with seed coat integrity in the PI 337394, PI 337409, and J11 genotypes, whereas the INTA breeding lines such as Colorado Irradiado showed a moderate resistance and the Manfredi 68 and Florman INTA genotypes the least resistance. Furthermore, another type of resistance associated with cotyledons was found only in the PI 337394 genotype.

  16. Regulation of aflatoxin biosynthesis and branched-chain amino acids metabolism in Aspergillus flavus by 2-phenylethanol reveal biocontrol mechanism of Pichia anomala

    Science.gov (United States)

    Pichia anomala WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of A. flavus. Using the SPME-GC/MS analysis we identified that the volatile, 2-phenylethanol (2-PE) produced by this yeast and demonstrated that the compound inhibited aflatoxin production. W...

  17. Activity of the aqueous extract from Polymnia sonchifolia leaves on growth and production of aflatoxin B1 by Aspergillus flavus Atividade do extrato aquoso de folhas de Polymnia sonchifolia no crescimento e produção de aflatoxina B1 por Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Marina M. Pinto

    2001-06-01

    Full Text Available The aqueous extract from Polymnia sonchifolia leaves (AE was tested for inhibitory activity on aflatoxin B1(AFB1 production and growth of Aspergillus flavus. The cytotoxicity of AE on Vero cells was also performed. Suspensions of A. flavus spores were inoculated into 50 mL of YES medium together with different concentrations of the AE. The aflatoxin B1 was extracted, analyzed by thin layer chromatography and quantified by photodensitometry. All the concentrations of AE induced inhibition of AFB1 production. The aqueous extract showed in vitro cytotoxicity to Vero cells only at concentrations above 500 µg/mL.Neste trabalho verificou-se a atividade do extrato aquoso de folhas de Polymnia sonchifolia no crescimento e na produção de aflatoxinas B1 por Aspergillus flavus. Suspensões de esporos de A. flavus foram inoculadas em 50 mL de meio de YES com diferentes concentrações do extrato aquoso. A aflatoxina B1 foi extraída e analisada por cromatografia de camada delgada e quantificada por fotodensitometria. Todas as concentrações testadas inibiram a produção de aflatoxina B1. O extrato aquoso apresentou citotoxicidade em células Vero somente em concentrações acima de 500 µg/mL.

  18. RNA interference-mediated control of Aspergillus flavus in maize

    Science.gov (United States)

    Introduction: Aflatoxigenic Aspergillus flavus is a frequent contaminant of agricultural commodities such as corn, peanut, tree nuts and cottonseed. Ingestion of foods, especially corn, contaminated with aflatoxins has been implicated in acute toxicoses while chronic, low-level exposure can lead to...

  19. Enhanced diversity and aflatoxigenicity in interspecific hybrids of Aspergillus flavus and Aspergillus parasiticus.

    Science.gov (United States)

    Olarte, Rodrigo A; Worthington, Carolyn J; Horn, Bruce W; Moore, Geromy G; Singh, Rakhi; Monacell, James T; Dorner, Joe W; Stone, Eric A; Xie, De-Yu; Carbone, Ignazio

    2015-04-01

    Aspergillus flavus and A. parasiticus are the two most important aflatoxin-producing fungi responsible for the contamination of agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O-methylsterigmatocystin, but not CPA. Only four of forty-five attempted interspecific crosses between opposite mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important fungi.

  20. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates.

    Science.gov (United States)

    Chang, Perng-Kuang; Ehrlich, Kenneth C; Hua, Sui-Sheng T

    2006-04-25

    Aspergillus flavus is the main etiological agent for aflatoxin contamination of crops. Its close relative, A. oryzae, does not produce aflatoxins and has been widely used to produce fermented foods. We compared the phylogeny of A. oryzae isolates and L- and S-type sclerotial isolates of A. flavus using single nucleotide polymorphisms in the omtA gene in the aflatoxin biosynthesis gene cluster and deletions in and distal to the norB-cypA intergenic region as phylogenetic signals. Aflatoxin-producing ability and sclerotial size also were weighted in the analysis. Like A. flavus, the A. oryzae isolates form a polyphyletic assemblage. A. oryzae isolates in one clade strikingly resemble an A. flavus subgroup of atoxigenic L-type isolates. All toxigenic S-type isolates closely resemble another subgroup of atoxigenic L-type isolates. Because atoxigenic S-type isolates are extremely rare, we hypothesize that loss of aflatoxin production in S-type isolates may occur concomitantly with a change to L-type sclerotia. All toxigenic L-type isolates, unlike A. oryzae, have a 1.0 kb deletion in the norB-cypA region. Although A. oryzae isolates, like S-type, have a 1.5 kb deletion in the norB-cypA region, none were cladally related to S-type A. flavus isolates. Our results show that A. flavus populations are genetically diverse. A. oryzae isolates may descend from certain atoxigenic L-type A. flavus isolates.

  1. Aspergillus flavus Genomic Data Mining Provides Clues for Its Use in Producing Biobased Products

    Science.gov (United States)

    Aspergillus flavus is notorious for its ability to produce aflatoxins. It is also an opportunistic pathogen that infects plants, animals and human beings. The ability to survive in the natural environment, living on plant tissues (leaves or stalks), live or dead insects make A. flavus a ubiquitous...

  2. Inhibitory effect of the essential oil of Curcuma longa L. and curcumin on aflatoxin production by Aspergillus flavus Link.

    Science.gov (United States)

    Ferreira, Flavio Dias; Kemmelmeier, Carlos; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Mallmann, Carlos Augusto; Janeiro, Vanderly; Ferreira, Francine Maery Dias; Mossini, Simone Aparecida Galerani; Silva, Expedito Leite; Machinski, Miguel

    2013-01-15

    Aflatoxins are highly toxic, mutagenic, teratogenic and carcinogenic mycotoxins. Consumption of aflatoxin-contaminated food and commodities poses serious hazards to the health of humans and animals. Turmeric, Curcuma longa L., is a native plant of Southeast Asia and has antimicrobial, antioxidant and antifungal properties. This paper reports the antiaflatoxigenic activities of the essential oil of C. longa and curcumin. The medium tests were prepared with the oil of C. longa, and the curcumin standard at concentrations varied from 0.01% to 5.0%. All doses of the essential oil of the plant and the curcumin standard interfered with mycotoxin production. Both the essential oil and curcumin significantly inhibited the production of aflatoxins; the 0.5% level had a greater than 96% inhibitory effect. The levels of aflatoxin B(1) (AFB(1)) production were 1.0 and 42.7 μg/mL, respectively, for the samples treated with the essential oil of C. longa L. and curcumin at a concentration of 0.5%.

  3. Comparative transcriptome analysis of Aspergillus flavus isolates under different oxidative stresses and culture media

    Science.gov (United States)

    Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...

  4. Evaluation of antifungal activity of Pittosporum undulatum L. essential oil against Aspergillus flavus and aflatoxin production Avaliação da atividade antifúngica do óleo essencial de Pittosporum undulatum L. em Aspergillus flavus e produção de aflatoxina

    Directory of Open Access Journals (Sweden)

    Rosane Tamara da Silva Medeiros

    2011-02-01

    Full Text Available The presence of mycotoxins as a result of fungal attack can occur before, after and during the harvest and storage operations on agricultural crops and food commodities. Considering the inhibitory property of essential plant oils on the mycelial development of fungi and the importance of Aspergillus flavus, the main producer of aflatoxins, this research was designed to evaluate the toxicity of essential oil from Pittosporum undulatum against A. flavus. The essential oils were obtained from P. undulatum leaves, collected in different months and analyzed by GC/MS. The oils were rich in hydrocarbon, monoterpenes and sesquiterpenes and it was observed a significant variation on the chemical composition of the essential oil of leaves at different months. Besides, the essential oils were tested against fungal growth and the results showed different spectrum of inhibition on A. flavus. However, the essential oils inhibited the aflatoxin B1 production.A presença de micotoxinas como resultado do ataque fúngico pode ocorrer antes, após e durante a colheita e também no armazenamento de grãos e alimentos. Considerando as propriedades inibitórias dos óleos essenciais de plantas no desenvolvimento do micélio dos fungos e a importâncias do Aspergillus flavus, principal produtor de aflatoxinas, relatou-se neste trabalho, a atividade tóxica do óleo essencial do Pittosporum undulatum em cultura de A. flavus. Os óleos essenciais de P. undulatum foram obtidos a partir de folhas coletadas em diferentes meses e analisado por CG/EM. Os óleos se mostraram ricos em hidrocarbonetos, monoterpenos e sesquiterpenos e foi observada uma significante variação na composição química destes óleos nos diferentes meses de coleta. Os óleos essenciais mostraram diferentes espectros de inibição do crescimento de A. flavus, porém todos foram capazes de inibir a produção de aflatoxina B1.

  5. Aflatoxin-producing Aspergillus spp. and aflatoxin levels in stored cassava chips as affected by processing practices

    DEFF Research Database (Denmark)

    Essono, G.; Ayodele, M.; Akoa, A.

    2009-01-01

    two months and contaminated by a wide array of harmful microbes. In order to assess persistence of toxigenic fungi in cassava chips, aflatoxin-producing fungi (Aspergillus flavus, Aspergillus nomius, and Aspergillus parasiticus) and aflatoxins were contrasted at regular intervals in home......-stored cassava chips collected in two locations of southern Cameroon throughout a two-month monitoring period. Three hundred and forty-six isolates of aflatoxin-producing fungi were found to be associated with all samples. A. flavus contaminated more samples in both types of chips (267 isolates in 53 samples...

  6. Effect of gamma radiation on the growth of Aspergillus Flavus aflatoxins producer and on the use of polymerase chain reaction technique (PCR) in samples of maize grains artificially inoculated; Efeitos da radiacao gama no crescimento de Aspergillus flavus produtor de aflatoxinas e no emprego da tecnica da Reacao em Cadeia da Polimerase (RCP) em amostras de graos de milho inoculadas artificialmente

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Simone

    2003-07-01

    The aim of this present study was to verify the effects of gamma radiation on the growth of Aspergillus flavus Link aflatoxins producer; to demonstrate the application of Polymerase Chain Reaction (PCR) technique in the diagnostic of A. Flavus, as well to verify the effect of radiation in the profile of DNA bands. Twenty samples of grains maize with 200 g each were individually irradiated with 20 kGy, to eliminate the microbial contamination. In following, the samples were inoculated with an toxigenic A. flavus (1x10{sup 6} spores/ml), incubated for 15 days at 25 deg C with a relative humidity of around 97,5% and irradiated with 0, 2; 5 and 10 kGy. The samples, 5 to each dose of irradiation, were individually analyzed for the number of fungal cells, water activity, viability test (fluorescein diacetate and ethidium bromide), PCR and aflatoxins (AFB) detection. The results showed that the doses used were effective in reducing the number of Colony Forming Units (CFU/g) mainly the doses of 5 and 10 kGy. In addition, the viability test showed a decrease of viable cells with increase of irradiation doses. The reduction of AFB{sub 1} and AFB-2, was more efficient with the use of 2 kGy in comparison with the dose of 5 kGy, while the dose of 10 kGy, degraded the aflatoxins. Thereby, it was observed that AFB2 showed to be more radiosensitive. The use of PCR technique showed the presence of DNA bands, in all samples. (author)

  7. Effects of essential oils on the growth and aflatoxin production of Aspergillus Flavus and Aspergillus Parasiticus%植物挥发油对黄曲霉毒素产生菌及其毒素合成的影响

    Institute of Scientific and Technical Information of China (English)

    李红玲; 高微微

    2012-01-01

    黄曲霉毒素(AFT)是由黄曲霉(Aspergillus flavus)和寄生曲霉(Aspergillus parasiticus)等曲霉属真菌产生的次生代谢产物,具有致畸、致癌、致突变等作用.AFT污染多种粮食作物及食品,其极强的毒性严重威胁到人体健康.寻找各种黄曲霉毒素抑制剂已成为国内外研究的热点.部分抗生素类药物及化学杀菌剂虽然具有较强的抗黄曲霉作用,但鉴于其毒副作用较明显,使用范围非常有限.近二十年来,人们开始从天然产物中寻找毒副作用低、易降解并且安全性高的黄曲霉抑制剂.本文对天然植物挥发油及其单体成分抑制黄曲霉和寄生曲霉生长并抑制AFT合成,以及在粮食、食品及其包装等方面的应用情况进行综述,为进一步研究植物挥发油类成分的抑菌机制和产品开发提供参考.%Aflatoxins (AFTs), a group of toxic secondary metabolites, are produced by species of Aspergilli, especially Aspergillus flavus and Aspergillus parasiticus. AFTs have been proved to be potent carcinogens, mutagens, and steratogens. The contamination of AFTs in cereal and foods brings a significant health problem due to their strong toxicity. Developing antiaflatoxigenic inhibitors has become a research hotspot. Some antibiotics and chemical fungicides were effective Aspergilli inhibitor, but were not widely used because of their obvious toxic and adverse effects. In recent two decades, some natural antiaflatoxigenic inhibitors with lower side effects and easy degradation have been discovered. This paper summarized reports about anti-aspergilli and antiaflatoxigenic activities of plant essential oils, their constituents and relevant application. This information may provide reference for further research on the antimicrobial mechanisms of plants volatile oils and product development.

  8. Understanding Nonaflatoxigenicity of Aspergillus sojae: A Windfall of Aflatoxin Biosynthesis Research

    Science.gov (United States)

    Aspergillus section Flavi includes aflatoxin-producing and nonproducing fungi. A. sojae is unable to produce aflatoxins and is generally recognized as safe for food fermentation. However, because of its taxonomical relatedness to aflatoxin-producing A. parasiticus and A. flavus, it is necessary to...

  9. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields.

    Science.gov (United States)

    Sebők, Flóra; Dobolyi, Csaba; Zágoni, Dóra; Risa, Anita; Krifaton, Csilla; Hartman, Mátyás; Cserháti, Mátyás; Szoboszlay, Sándor; Kriszt, Balázs

    2016-12-01

    Due to the climate change, aflatoxigenic Aspergillus species and strains have appeared in several European countries, contaminating different agricultural commodities with aflatoxin. Our aim was to screen the presence of aflatoxigenic fungi in maize fields throughout the seven geographic regions of Hungary. Fungi belonging to Aspergillus section Flavi were isolated in the ratio of 26.9% and 42.3% from soil and maize samples in 2013, and these ratios decreased to 16.1% and 34.7% in 2014. Based on morphological characteristics and the sequence analysis of the partial calmodulin gene, all isolates proved to be Aspergillus flavus, except four strains, which were identified as Aspergillus parasiticus. About half of the A. flavus strains and all the A. parasiticus strains were able to synthesize aflatoxins. Aflatoxigenic Aspergillus strains were isolated from all the seven regions of Hungary. A. parasiticus strains were found in the soil of the regions Southern Great Plain and Southern Transdanubia and in a maize sample of the region Western Transdanubia. In spite of the fact that aflatoxins have rarely been detected in feeds and foods in Hungary, aflatoxigenic A. flavus and A. parasiticus strains are present in the maize culture throughout Hungary posing a potential threat to food safety.

  10. rmtA, encoding a putative anginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  11. CONTROL OF AFLATOXIGENIC Aspergillus flavus IN PEANUTS USING NONAFLATOXIGENIC A. flavus, A. niger and Trichoderma harzianum

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    2003-01-01

    Full Text Available The effects of nontoxigenic Aspergillus flavus, A. niger and Trichoderma harzianum inoculated into planting media on toxigenic A. flavus infection and its aflatoxin production in peanut kernels at harvest were investigated together with (1 the moisture content of planting media before peanut planting, at the time of inflorescence, and at harvest, (2 the population of aflatoxigenic and nonaflatoxigenic A. flavus, A. niger and T. harzianum in peanut planting media before peanut planting, at the time of inflorescence, and at harvest, (3 the moisture content of peanut kernels at harvest, and (4 toxigenic A. flavus invasion in peanut plant parts (r oots, stems, petioles, leaves and flowers at the time of inflorescence. The fungal isolates were inoculated into planting media at the same time with the planting of peanut seeds. Peanut plants were grown under glasshouse conditions. Treated planting media were inoculated with the combined use of (1 toxigenic and nontoxigenic A. flavus, (2 toxigenic A. flavus and A. niger, and (3 toxigenic A. flavus and T. harzianum. Planting media inoculated only with each fungal isolat e and uninoculated planting media were used as controls. Two watering treatments of peanut plants were carried out, i.e. watering un til harvest and not watering for 15 days before harvest. The populations of the fungal isolates in the planting media and peanut kernels were determined using dilution method followed by pour plate method; the percentages of toxigenic A. flavus and test fungal colonizations in peanut plant parts were de termined using plating method; the moisture content of planting media and peanut kernels were determined using oven method; the aflatoxin content of peanut kernels was determined using Thin Layer Chromatography method. The results indicated that at the time of harvest the decr ease in moisture contents of planting media not watered for 15 days before harvest was higher than those watered until harvest. The

  12. Impact of bacterial biocontrol agents on aflatoxin biosynthetic genes, aflD and aflR expression, and phenotypic aflatoxin B₁ production by Aspergillus flavus under different environmental and nutritional regimes.

    Science.gov (United States)

    Al-Saad, Labeed A; Al-Badran, Adnan I; Al-Jumayli, Sami A; Magan, Naresh; Rodríguez, Alicia

    2016-01-18

    The objectives of this study were to examine the efficacy of four bacterial antagonists against Aspergillus flavus using 50:50 ratio of bacterial cells/conidia for the control of aflatoxin B1 (AFB1) production on two different nutritional matrices, nutrient and maize-based media at different water availabilities (0.98, 0.94 water activity (aw) on nutrient medium; 0.995, 0.98 aw on maize meal agar medium) at 35°C. The indicators of efficacy used were the relative expression of one structural and regulatory gene in the biosynthetic pathway (aflD and aflR respectively) and the production of AFB1. These studies showed that some of the bacterial species could significantly inhibit the relative expression of the aflD and aflR genes at both 0.98 and 0.94 aw on nutrient agar. On maize-based media some of the bacterial antagonists reduced the activity of both genes at 0.94 aw and some at 0.995 aw. However, the results for AFB1 production were not consistent with the effects on gene expression. Some bacterial species stimulated AFB1 production on both nutrient and maize-based media regardless of aw. However, some bacterial treatments did inhibit AFB1 production significantly when compared to the control. Overall, this study suggests that temporal studies are required on the biosynthetic genes under different environmental and nutritional conditions to evaluate the potential of antagonists to control AFB1.

  13. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    Science.gov (United States)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  14. Proteomic profile of Aspergillus flavus in response to water activity.

    Science.gov (United States)

    Zhang, Feng; Zhong, Hong; Han, Xiaoyun; Guo, Zhenni; Yang, Weiqiang; Liu, Yongfeng; Yang, Kunlong; Zhuang, Zhenhong; Wang, Shihua

    2015-03-01

    Aspergillus flavus, a common contaminant of crops and stored grains, can produce aflatoxins that are harmful to humans and other animals. Water activity (aw) is one of the key factors influencing both fungal growth and mycotoxin production. In this study, we used the isobaric tagging for relative and absolute quantitation (iTRAQ) technique to investigate the effect of aw on the proteomic profile of A. flavus. A total of 3566 proteins were identified, of which 837 were differentially expressed in response to variations in aw. Among these 837 proteins, 403 were over-expressed at 0.99 aw, whereas 434 proteins were over-expressed at 0.93 aw. According to Gene Ontology (GO) analysis, the secretion of extracellular hydrolases increased as aw was raised, suggesting that extracellular hydrolases may play a critical role in induction of aflatoxin biosynthesis. On the basis of Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categorizations, we identified an exportin protein, KapK, that may down-regulate aflatoxin biosynthesis by changing the location of NirA. Finally, we considered the role of two osmotic stress-related proteins (Sln1 and Glo1) in the Hog1 pathway and investigated the expression patterns of proteins related to aflatoxin biosynthesis. The data uncovered in this study are critical for understanding the effect of water stress on toxin production and for the development of strategies to control toxin contamination of agricultural products.

  15. Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts

    DEFF Research Database (Denmark)

    Pildain, M.B.; Frisvad, Jens Christian; Vaamonde, G.

    2008-01-01

    Two novel species from Aspergillus section Flavi from different species of Arachis (peanuts) in Argentina are described as Aspergillus arachidicola sp. nov. and Aspergillus minisclerotigenes sp. nov. Their novel taxonomic status was determined using a polyphasic taxonomic approach with phenotypic...... (morphology and extrolite profiles) and molecular (beta-tubulin and calmodulin gene sequences) characters. A. minisclerotigenes resembles Aspergillus flavus and Aspergillus parvisclerotigenus in producing aflatoxins B-1 and B-2, cyclopiazonic acid, kojic acid and aspergillic acid, but in addition it produces...... and parasiticolide, and some strains produce aspergillic acid. The type strain of A. arachidicola is CBS 117610(T) =IBT 25020(T) and that of A. minisclerotigenes is CBS 117635(T) =IBT 27196(T). The Mycobank accession numbers for Aspergillus minisclerotigenes sp. nov. and Aspergillus arachidicola sp. nov...

  16. Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards

    Science.gov (United States)

    The atoxigenic strain Aspergillus flavus AF36, which has been extensively used as a biocontrol agent in commercial corn and cotton fields to reduce aflatoxin contamination, was applied in research pistachio orchards from 2002 to 2005 and in commercial pistachio orchards from 2008 to 2011. AF36 was a...

  17. Managing and Monitoring of Aspergillus flavus in Corn Using Bioplastic-based Formulation

    Science.gov (United States)

    In this study, we evaluated the feasibility of bioplastic-based formulations for delivering a non-aflatoxigenic strain of Aspergillus flavus and for monitoring Aspergilli with the final objective of controlling aflatoxin contamination in corn. Field application of inoculated bioplastic granules show...

  18. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress and future perspectives

    Science.gov (United States)

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus and A. parasiticus results in the contamination with carcinogenic mycotoxins known as aflatoxins leading to economic losses as well as a potential health threat to human. The interactio...

  19. Efficacy of Some Essential Oils Against Aspergillus flavus with Special Reference to Lippia alba Oil an Inhibitor of Fungal Proliferation and Aflatoxin B1 Production in Green Gram Seeds during Storage.

    Science.gov (United States)

    Pandey, Abhay K; Sonker, Nivedita; Singh, Pooja

    2016-04-01

    During mycofloral analysis of green gram (Vigna radiata (L.) R. Wilczek) seed samples taken from different grocery stores by agar and standard blotter paper methods, 5 fungal species were identified, of which Aspergillus flavus exhibited higher relative frequency (75.20% to 80.60%) and was found to produce aflatoxin B1 . On screening of 11 plant essential oils against this mycotoxigenic fungi, Lippia alba essential oil was found to be most effective and showed absolute inhibition of mycelia growth at 0.28 μL/mL. The oil of L. alba was fungistatic and fungicidal at 0.14 and 0.28 μL/mL, respectively. Oil had broad range of fungitoxicity at its MIC value and was absolutely inhibited the AFB1 production level at 2.0 μL/mL. Chemical analysis of this oil revealed geranial (36.9%) and neral (29.3%) as major components followed by myrcene (18.6%). Application of a dose of 80 μL/0.25 L air of Lippia oil in the storage system significantly inhibited the fungal proliferation and aflatoxin production without affecting the seed germination rate. By the virtue of fungicidal, antiaflatoxigenic nature and potent efficacy in storage food system, L. alba oil can be commercialized as botanical fungicide for the protection of green gram seeds during storage.

  20. Screening a Strain of Aspergillus niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B1

    OpenAIRE

    Wei Zhang; Beibei Xue; Mengmeng Li; Yang Mu; Zhihui Chen; Jianping Li; Anshan Shan

    2014-01-01

    Aflatoxin B1, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B1 after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis ...

  1. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana.

    Science.gov (United States)

    Perrone, Giancarlo; Haidukowski, Miriam; Stea, Gaetano; Epifani, Filomena; Bandyopadhyay, Ranajit; Leslie, John F; Logrieco, Antonio

    2014-08-01

    Aflatoxins are highly toxic carcinogens that contaminate crops worldwide. Previous studies conducted in Nigeria and Ghana found high concentrations of aflatoxins in pre- and post-harvest maize. However, little information is available on the population structure of Aspergillus Sect. Flavi in West Africa. We determined the incidence of Aspergillus Sect. Flavi and the level of aflatoxin contamination in 91 maize samples from farms and markets in Nigeria and Ghana. Aspergillus spp. were recovered from 61/91 maize samples and aflatoxins B1 and/or B2 occurred in 36/91 samples. Three samples from the farms also contained aflatoxin G1 and/or G2. Farm samples were more highly contaminated than were samples from the market, in terms of both the percentage of the samples contaminated and the level of mycotoxin contamination. One-hundred-and-thirty-five strains representative of the 1163 strains collected were identified by using a multilocus sequence analysis of portions of the genes encoding calmodulin, β-tubulin and actin, and evaluated for aflatoxin production. Of the 135 strains, there were 110 - Aspergillus flavus, 20 - Aspergillus tamarii, 2 - Aspergillus wentii, 2 - Aspergillus flavofurcatus, and 1 - Aspergillus parvisclerotigenus. Twenty-five of the A. flavus strains and the A. parvisclerotigenus strain were the only strains that produced aflatoxins. The higher contamination of the farm than the market samples suggests that the aflatoxin exposure of rural farmers is even higher than previously estimated based on reported contamination of market samples. The relative infrequency of the A. flavus SBG strains, producing small sclerotia and high levels of both aflatoxins (B and G), suggests that long-term chronic exposure to this mycotoxin are a much higher health risk in West Africa than is the acute toxicity due to very highly contaminated maize in east Africa.

  2. Characterization of the Far Transcription Factor Family in Aspergillus flavus

    Science.gov (United States)

    Luo, Xingyu; Affeldt, Katharyn J.; Keller, Nancy P.

    2016-01-01

    Metabolism of fatty acids is a critical requirement for the pathogenesis of oil seed pathogens including the fungus Aspergillus flavus. Previous studies have correlated decreased ability to grow on fatty acids with reduced virulence of this fungus on host seed. Two fatty acid metabolism regulatory transcription factors, FarA and FarB, have been described in other filamentous fungi. Unexpectedly, we find A. flavus possesses three Far homologs, FarA, FarB, and FarC, with FarA and FarC showing a greater protein similarity to each other than FarB. farA and farB are located in regions of colinearity in all Aspergillus spp. sequenced to date, whereas farC is limited to a subset of species where it is inserted in an otherwise colinear region in Aspergillus genomes. Deletion and overexpression (OE) of farA and farB, but not farC, yielded mutants with aberrant growth patterns on specific fatty acids as well as altered expression of genes involved in fatty acid metabolism. Marked differences included significant growth defects of both ∆farA and ∆farB on medium-chain fatty acids and decreased growth of OE::farA on unsaturated fatty acids. Loss of farA diminished expression of mitochondrial β-oxidation genes whereas OE::farA inhibited expression of genes involved in unsaturated fatty acid catabolism. FarA also positively regulated the desaturase genes required to generate polyunsaturated fatty acids. Aflatoxin production on toxin-inducing media was significantly decreased in the ∆farB mutant and increased in the OE::farB mutant, with gene expression data supporting a role for FarB in tying β-oxidation processes with aflatoxin accumulation. PMID:27534569

  3. Lipids in Aspergillus flavus-maize interaction

    Directory of Open Access Journals (Sweden)

    Massimo eReverberi

    2014-02-01

    Full Text Available In sSome filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition of the host that and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also involved produced in by the host during defense reactions, are able to induce sporulation and to modulate regulate the biosynthesis of mycotoxins in numerous several pathogenic fungi, apparently replacing the endogenous ones. In A. flavus, the oxylipins play a crucial role as signals for the regulation regulatingof the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia.To investigate the involvement of the an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion; Aflox1 encodes for a manganese lipoxygenase.A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA. The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.

  4. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  5. 黑曲霉对黄曲霉生长、产毒及黄曲霉毒素B1的影响%Influence of Aspergillus niger on growth of Aspergillus flavus and aflatoxin B1

    Institute of Scientific and Technical Information of China (English)

    徐丹; 孙秀兰; 李永仙; 杨振东; 王洪新

    2011-01-01

    目的 研究黑曲霉对黄曲霉生长、产毒的抑制作用及对AFB1的降解作用.方法 将黑曲霉分别与黄曲霉、AFB1共同培养,定期测定培养液pH、菌丝体干重、黄曲霉孢子数、AFB1含量.结果 黑曲霉与黄曲霉混合培养时,黄曲霉孢子数、AFB1含量均比单独培养的低,2组之间差异有统计学意义 (P<0.05),抑制率达到68.06%~91.52%;加入黑曲霉后,AFB1含量降低,实验组与对照组之间差异有统计学意义 (P<0.05),降解率为46.19%.结论 黑曲霉既能抑制黄曲霉生长、产毒,又能降解AFB1.%Objective To study the influence of Aspergillus niger on the growth of Aspergillusflavus and degrada-tion of AFB1. Method Aspergillus niger was co-cultured with Aspergillus flavu s and AFB1, respectively; pH, dry weight of mycelium, spores of Aspergillus flavus and content of AFB1 were determined every 3 days. Result Compared with the control group, the number of Aspergillusflavus spores and content of AFB1 were much less in competitive situation. There was a significant difference between the two groups (P <0.05 ) and the rate of inhibition was 68.06% to 91.52%; more-over, AFB1 was reduced when Aspergillus niger was inoculated, with is a significant difference between the two groups (P < 0.05 ), and the rate of degradation was 46.19%. Conclusion Aspergillus niger not only can inhibit the growth of Aspergil-lus flavus and production of AFB1, but also degrade AFB1.

  6. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B₁.

    Science.gov (United States)

    Zhang, Wei; Xue, Beibei; Li, Mengmeng; Mu, Yang; Chen, Zhihui; Li, Jianping; Shan, Anshan

    2014-11-13

    Aflatoxin B₁, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1) was able to degrade aflatoxin B₁ after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B₁ after 48 h of fermentation in nutrient broth (NB). Optimization of fermentation conditions for aflatoxin B₁ degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B₁ was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B₁ degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B₁ degradation by the supernatant were examined. Results indicated that aflatoxin B₁ degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  7. rtfA, a putative RNA-Pol II transcription elongation factor, is necessary for normal morphological and chemical development in Aspergillus flavus

    Science.gov (United States)

    The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in S. cerevisiae and rtfA in A. nidulans. Interestingly, rtfA has multiple ...

  8. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J. [Departamento de Microbiologia e Inmunologia Veterinaria, Universidad Federal Rural de Rio de Janeiro (UFRRJ) (Brazil); Cavaglieri, L., E-mail: lcavaglieri@arnet.com.a [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Vital, H. [Centro Tecnologico do Exercito (CTEx), Secao de Defesa Nuclear, Rio de Janeiro (Brazil); Cristofolini, A.; Merkis, C. [Departamento de Microscopia Electronica, Universidad Nacional de Rio Cuarto. Ruta 36 km 601 (5800) Rio Cuarto (Argentina); Astoreca, A. [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Orlando, J.; Caru, M. [Departamento de Ciencias Ecologicas, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Dalcero, A. [Departamento de Microbiologia e Inmunologia, Universidad Nacional de Rio Cuarto (UNRC), Rio Cuarto, Cordoba (Argentina); Member of Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CIC-CONICET) (Argentina); Rosa, C.A.R. [Departamento de Microbiologia e Inmunologia Veterinaria, Universidad Federal Rural de Rio de Janeiro (UFRRJ) (Brazil); Member of Consejo Nacional de Pesquisas (CNPq) (Brazil)

    2011-05-15

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B{sub 1} and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  9. Identification and quantification of a toxigenic and non-toxigenic Aspergillus flavus strain in contaminated maize using quantitative real-time PCR

    Science.gov (United States)

    Aflatoxins, which are produced by the fungus Aspergillus flavus, are toxic to humans, livestock, and pets. The value of maize (Zea mays) grain is markedly reduced when contaminated with aflatoxin. Plant resistance and biological control using non-toxin producing strains are considered effective st...

  10. Aplicação de biofungicidas no controle do fungo Aspergillus flavus L. em amendoim (Arachis hypogaea)

    OpenAIRE

    Gorayeb, Teresa Cristina Castilho [UNESP

    2015-01-01

    This study aims to evaluate the technical feasibility of the application of biofungicides extracted from plants in the processing of peanut (Arachis hypogaea L.), with the objective of reducing infestation by fungus Aspergillus flavus L., and consequent contamination by aflatoxin, a chemical hazard. Firstly, we studied the fungal and aflatoxin contamination for the 2011/12, 2012/13, and 2013/14 crops, during the Runner IAC 886 peanut pods' harvesting and post-harvesting stages, in the region ...

  11. Scleral buckle infection with aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bouhaimed Manal

    2008-01-01

    Full Text Available Purpose: To present a case of scleral buckle infection with Aspergillus flavus in a tertiary eye center in Saudi Arabia. Methods: A retrospective case report of a 28-year-old Saudi male who presented with a six-month history of conjunctival injection and discharge from the left eye which had undergone uncomplicated conventional retinal detachment surgery, at the King Khaled Eye Specialist Hospital in Riyadh, Saudi Arabia, in the form of cryopexy, subretinal fluid drainage and scleral buckle (grooved segmental sponge and circumferential band with sleeve for a macula on retinal detachment four years earlier. A diagnosis of infected extruded scleral buckle was made and the buckle was removed. Results: The infected scleral buckle was removed under local anesthesia with administration of sub-conjunctival irrigation of 50 mg solution of Vancomycin, and sub-conjunctival injection of 25mg of Vancomycin. Post operative microbiological studies revealed infection with silver staining of moderate Aspergillus flavus hyphae. Visual acuity of the left eye improved from 20/200 before surgery to 20/60 in the two years follow-up visit. Conclusion: This case report indicates the importance of considering infection with multiple organisms - including fungal ones - in cases of scleral buckle infections in our population.

  12. The Metabolic Responses of Aspergillus flavus to N-Acetylcysteine, Ascorbate, and H2O2

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Aflatoxin, the secondary metabolite of Aspergillus flavus and A. Parasiticus, is the most toxic product in nature. In this study, N-acetylcysteine (NAC), ascorbate, and H2O2 were used to ascertain their effects on fungal metabolic esponse of A. Flavus. The results demonstrated that NAC did not affect fungal growth, but inhibited the aflatoxin B1 production, with the concomitant sporulation reduction. NAC increased the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG), hut decreased the activity of glutathione reductase (GR). Ascorbate had similar effect on fungal growth, sporulation,and GR activity, but GSH/GSSG and total glutathione (tGSH, including GSH and GSSG) were significantly increased. H2O2 at high concentration (5 mM) inhibited fungal growth, but the aflatoxin production was increased. At the same time, it reduced GR activity and enhanced tGSH. Though reductive agents had different effects on GSH metabolism, reductive conditions inhibited aflatoxin production and sporulation without any effect on fungal growth. The results in this report confirmed that the relationship between oxidative stress and aflatoxin production is theoretically important in controlling aflatoxin contamination.

  13. Polymerase chain reaction-mediated characterization of molds belonging to the Aspergillus flavus group and detection of Aspergillus parasiticus in peanut kernels by a multiplex polymerase chain reaction.

    Science.gov (United States)

    Chen, Ruey-Shyang; Tsay, Jwu-Guh; Huang, Yu-Fen; Chiou, Robin Y Y

    2002-05-01

    The Aspergillus flavus group covers species of A. flavus and Aspergillus parasiticus as aflatoxin producers and Aspergillus oryzae and Aspergillus sojae as koji molds. Genetic similarity among these species is high, and aflatoxin production of a culture may be affected by cultivation conditions and substrate composition. Therefore, a polymerase chain reaction (PCR)-mediated method of detecting the aflatoxin-synthesizing genes to indicate the degree of risk a genotype has of being a phenotypic producer was demonstrated. In this study, 19 strains of the A. flavus group, including A. flavus, A. parasiticus, A. oryzae, A. sojae, and one Aspergillus niger, were subjected to PCR testing in an attempt to detect four genes, encoding for norsolorinic acid reductase (nor-1), versicolorin A dehydrogenase (ver-1), sterigmatocystin O-methyltransferase (omt-1), and a regulatory protein (apa-2), involved in aflatoxin biosynthesis. Concurrently, the strains were cultivated in yeast-malt (YM) broth for aflatoxin detection. Fifteen strains were shown to possess the four target DNA fragments. With regard to aflatoxigenicity, all seven aflatoxigenic strains possessed the four DNA fragments, and five strains bearing less than the four DNA fragments did not produce aflatoxin. When peanut kernels were artificially contaminated with A. parasiticus and A. niger for 7 days, the contaminant DNA was extractable from a piece of cotyledon (ca. 100 mg), and when subjected to multiplex PCR testing using the four pairs of primers coding for the above genes, they were successfully detected. The target DNA fragments were detected in the kernels infected with A. parasiticus, and none was detected in the sound (uninoculated) kernels or in the kernels infected with A. niger.

  14. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress, and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake C. Fountain; Baozhu Guo; Pawan Khera; Liming Yang; Spurthi N. Nayak; Brian T. Scully; Robert D. Lee; Zhi-Yuan Chen; Robert C. Kemerait; Rajeev K. Varshney

    2015-01-01

    The colonization of maize (Zea mays L.) and peanut (Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species (ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A. flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  15. Resistance to Aspergillus flavus in maize and peanut:Molecular biology, breeding, environmental stress,and future perspectives

    Institute of Scientific and Technical Information of China (English)

    Jake; C.Fountain; Pawan; Khera; Liming; Yang; Spurthi; N.Nayak; Brian; T.Scully; Robert; D.Lee; Zhi-Yuan; Chen; Robert; C.Kemerait; Rajeev; K.Varshney; Baozhu; Guo

    2015-01-01

    The colonization of maize(Zea mays L.) and peanut(Arachis hypogaea L.) by the fungal pathogen Aspergillus flavus results in the contamination of kernels with carcinogenic mycotoxins known as aflatoxins leading to economic losses and potential health threats to humans. The regulation of aflatoxin biosynthesis in various Aspergillus spp. has been extensively studied, and has been shown to be related to oxidative stress responses. Given that environmental stresses such as drought and heat stress result in the accumulation of reactive oxygen species(ROS) within host plant tissues, host-derived ROS may play an important role in cross-kingdom communication between host plants and A. flavus. Recent technological advances in plant breeding have provided the tools necessary to study and apply knowledge derived from metabolomic, proteomic, and transcriptomic studies in the context of productive breeding populations. Here, we review the current understanding of the potential roles of environmental stress, ROS, and aflatoxin in the interaction between A.flavus and its host plants, and the current status in molecular breeding and marker discovery for resistance to A. flavus colonization and aflatoxin contamination in maize and peanut. We will also propose future directions and a working model for continuing research efforts linking environmental stress tolerance and aflatoxin contamination resistance in maize and peanut.

  16. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    OpenAIRE

    Flávio Dias Ferreira; Simone Aparecida Galerani Mossini; Francine Maery Dias Ferreira; Carla Cristina Arrotéia; Christiane Luciana da Costa; Celso Vataru Nakamura; Miguel Machinski Junior

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to...

  17. Aspergillus flavus myositis in a patient after liver transplantation.

    NARCIS (Netherlands)

    Li, D.M.; Xiu, D.R.; Li, R.Y.; Samson, R.A.; de Hoog, G.S.; Wang, D.L.

    2008-01-01

    We describe the first case of Aspergillus myositis caused by Aspergillus flavus in a liver transplant patient. The patient was a 43-year-old man who underwent liver transplantation because of end-stage hepatic cirrhosis. He experienced pain in his left calf two months after the operation. Nodules wi

  18. Screening a Strain of Aspergillus niger and Optimization of Fermentation Conditions for Degradation of Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-11-01

    Full Text Available Aflatoxin B1, a type of highly toxic mycotoxin produced by some species belonging to the Aspergillus genus, such as Aspergillus flavus and Aspergillus parasiticus, is widely distributed in feed matrices. Here, coumarin was used as the sole carbon source to screen microorganism strains that were isolated from types of feed ingredients. Only one isolate (ND-1 was able to degrade aflatoxin B1 after screening. ND-1 isolate, identified as a strain of Aspergillus niger using phylogenetic analysis on the basis of 18S rDNA, could remove 26.3% of aflatoxin B1 after 48 h of fermentation in nutrient broth (NB. Optimization of fermentation conditions for aflatoxin B1 degradation by selected Aspergillus niger was also performed. These results showed that 58.2% of aflatoxin B1 was degraded after 24 h of culture under the optimal fermentation conditions. The aflatoxin B1 degradation activity of Aspergillus niger supernatant was significantly stronger than cells and cell extracts. Furthermore, effects of temperature, heat treatment, pH, and metal ions on aflatoxin B1 degradation by the supernatant were examined. Results indicated that aflatoxin B1 degradation of Aspergillus niger is enzymatic and this process occurs in the extracellular environment.

  19. Molecular characterisation of Aspergillus flavus isolates from peanut fields in India using AFLP

    Directory of Open Access Journals (Sweden)

    Diwakar Singh

    2015-09-01

    Full Text Available Aflatoxin contamination of peanut, due to infection by Aspergillus flavus, is a major problem of rain-fed agriculture in India. In the present study, molecular characterisation of 187 Aspergillus flavus isolates, which were sampled from the peanut fields of Gujarat state in India, was performed using AFLP markers. On a pooled cluster analysis, the markers could successfully discriminate among the ‘A’, ‘B’ and ‘G’ group A. flavus isolates. PCoA analysis also showed equivalent results to the cluster analysis. Most of the isolates from one district could be clustered together, which indicated genetic similarity among the isolates. Further, a lot of genetic variability was observed within a district and within a group. The results of AMOVA test revealed that the variance within a population (84% was more than that between two populations (16%. The isolates, when tested by indirect competitive ELISA, showed about 68.5% of them to be atoxigenic. Composite analysis between the aflatoxin production and AFLP data was found to be ineffective in separating the isolate types by aflatoxigenicity. Certain unique fragments, with respect to individual isolates, were also identified that may be used for development of SCAR marker to aid in rapid and precise identification of isolates.

  20. Host-Induced Gene Silencing (HIGS) of aflatoxin synthesis genes in peanut and maize: use of RNA interference and genetic diversity of Aspergillus

    Science.gov (United States)

    Approximately 4.5 billion people are chronically exposed to aflatoxins, these are powerful carcinogens produced by Aspergillus flavus and A. parasiticus. High levels of aflatoxins in crops result in approximately 100 million metric tons of cereals, ¬nuts, root crops and other agricultural products ...

  1. Comparison of Expression of Secondary Metabolite Biosynthesis Cluster Genes in Aspergillus flavus, A. parasiticus, and A. oryzae

    Directory of Open Access Journals (Sweden)

    Kenneth C. Ehrlich

    2014-06-01

    Full Text Available Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  2. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae.

    Science.gov (United States)

    Ehrlich, Kenneth C; Mack, Brian M

    2014-06-23

    Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.

  3. 40 CFR 180.1206 - Aspergillus flavus AF36; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aspergillus flavus AF36; exemption... FOOD Exemptions From Tolerances § 180.1206 Aspergillus flavus AF36; exemption from the requirement of a... pesticide Aspergillus flavus AF36 in or on cotton, gin byproducts; cotton, hulls; cotton, meal;...

  4. 40 CFR 180.1254 - Aspergillus flavus NRRL 21882; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aspergillus flavus NRRL 21882... RESIDUES IN FOOD Exemptions From Tolerances § 180.1254 Aspergillus flavus NRRL 21882; exemption from the... of Aspergillus flavus NRRL 21882 on peanut; peanut, hay; peanut, meal; and peanut, refined oil....

  5. 7 CFR 983.4 - Aflatoxin.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Aflatoxin. 983.4 Section 983.4 Agriculture Regulations... NEW MEXICO Definitions § 983.4 Aflatoxin. Aflatoxin is one of a group of mycotoxins produced by the molds Aspergillus flavus and Aspergillus parasiticus. Aflatoxins are naturally occurring...

  6. Menadione-Induced Oxidative Stress Re-Shapes the Oxylipin Profile of Aspergillus flavus and Its Lifestyle

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2015-10-01

    Full Text Available Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile to transcriptional analysis (RNA-seq. There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies.

  7. The inhibitory effects of Curcuma longa L. essential oil and curcumin on Aspergillus flavus link growth and morphology.

    Science.gov (United States)

    Dias Ferreira, Flávio; Mossini, Simone Aparecida Galerani; Dias Ferreira, Francine Maery; Arrotéia, Carla Cristina; da Costa, Christiane Luciana; Nakamura, Celso Vataru; Machinski, Miguel

    2013-01-01

    The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%), α -turmerone (23.5%) and β -turmerone (22.7%). The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01-0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM) of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  8. The Inhibitory Effects of Curcuma longa L. Essential Oil and Curcumin on Aspergillus flavus Link Growth and Morphology

    Directory of Open Access Journals (Sweden)

    Flávio Dias Ferreira

    2013-01-01

    Full Text Available The essential oil from Curcuma longa L. was analysed by GC/MS. The major components of the oil were ar-turmerone (33.2%, α-turmerone (23.5% and β-turmerone (22.7%. The antifungal activities of the oil were studied with regard to Aspergillus flavus growth inhibition and altered morphology, as preliminary studies indicated that the essential oil from C. longa inhibited Aspergillus flavus Link aflatoxin production. The concentration of essential oil in the culture media ranged from 0.01% to 5.0% v/v, and the concentration of curcumin was 0.01–0.5% v/v. The effects on sporulation, spore viability, and fungal morphology were determined. The essential oil exhibited stronger antifungal activity than curcumin on A. flavus. The essential oil reduced the fungal growth in a concentration-dependent manner. A. flavus growth rate was reduced by C. longa essential oil at 0.10%, and this inhibition effect was more efficient in concentrations above 0.50%. Germination and sporulation were 100% inhibited in 0.5% oil. Scanning electron microscopy (SEM of A. flavus exposed to oil showed damage to hyphae membranes and conidiophores. Because the fungus is a plant pathogen and aflatoxin producer, C. longa essential oil may be used in the management of host plants.

  9. Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS

    Science.gov (United States)

    Uka, Valdet; Moore, Geromy G.; Arroyo-Manzanares, Natalia; Nebija, Dashnor; De Saeger, Sarah; Diana Di Mavungu, José

    2017-01-01

    Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem. PMID:28098779

  10. Radiosensitivity of toxigenic Aspergillus isolated from spices and destruction of aflatoxins by gamma-irradiation

    Science.gov (United States)

    Kume, Tamikazu; Ito, Hitoshi; Soedarman, Harsono; Ishigaki, Isao

    Radiosensitivities of Aspergillus flavus var columnaris isolated from spices were investigated. The D10 values and induction doses were 267-293 Gy and 75-165 Gy in wet conditions, respectively. In dry conditions, the survival curves were exponential and D10 values were 538-600 Gy. The survival curves of standard strain of A. parasiticus IFO 30179 were similar both in wet and dry conditions. The necessary dose of 8 kGy for the destruction of these toxigenic Aspergillus was calculated from these values. Two of 11 strains of A. flavus var columnaris produced aflatoxins and the content of B 1 was especially high. In the study of irradiation effect on aflatoxins produced on polished rice, aflatoxins G 1 and B 1 were more radiosensitive than G 2 and B 2. However, these aflatoxins were very stable to radiation and the dose required for destruction was found to be more than 500 kGy. It is therfore concluded that the decontamination of molds by irradiation is necessary prior to their production of aflatoxins.

  11. Radiosensitivity of toxigenic Aspergillus isolated from spices and destruction of aflatoxins by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Ito, Hitoshi; Ishigaki, Isao (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Soedarman, Harsono (National Atomic Energy Agency, Jakarta (Indonesia). Centre for the Application of Isotopes and Radiation)

    1989-01-01

    Radiosensitivities of Aspergillus flavus var columnaris isolated from spices were investigated. The D{sub 10} values and induction doses were 267-293 Gy and 75-165 Gy in wet conditions, respectively. In dry conditions, the survival curves were exponential and D{sub 10} values were 538-600 Gy. The survival curves of standard strain of A. parasiticus IFO 30179 were similar both in wet and dry conditions. The necessary dose of 8 kGy for the destruction of these toxigenic Aspergillus was calculated from these values. Two of 11 strains of A. flavus var columnaris produced aflatoxins and the content of B{sub 1} was especially high. In the study of irradiation effect on aflatoxins produced on polished rice, aflatoxins G{sub 1} and B{sub 1} were more radiosensitive than G{sub 2} and B{sub 2}. However, these aflatoxins were very stable to radiation and the dose required for destruction was found to be more than 500 kGy. It is therefore concluded that the decontamination of molds by irradiation is necessary prior to their production of aflatoxins.

  12. Identification of novel metabolites from Aspergillus flavus by high resolution and multiple stage mass spectrometry.

    Science.gov (United States)

    Malysheva, Svetlana V; Arroyo-Manzanares, Natalia; Cary, Jeffrey W; Ehrlich, Kenneth C; Vanden Bussche, Julie; Vanhaecke, Lynn; Bhatnagar, Deepak; Di Mavungu, José Diana; De Saeger, Sarah

    2014-01-01

    The filamentous fungus Aspergillus flavus is one of the most important species in the Aspergillus genus and is distributed worldwide as a prevalent aflatoxin-producing food and feed contaminant. A. flavus contains more than 55 gene clusters that are predicted to encode proteins involved in secondary metabolite production. One of these, cluster 27, contains a polyketide synthase (pks27) gene that encodes a protein that is highly homologous to the aflatoxin cluster PKS. Comparative metabolomics, using ultra-high performance liquid chromatography (UHPLC) coupled to high resolution Orbitrap mass spectrometry (MS) was used to detect metabolites differentially expressed in the A. flavus wild-type and ∆pks27 mutant strains. Metabolite profiling was aided by a statistical differential analysis of MS data using SIEVE software. This differential analysis combined with accurate mass data from the Orbitrap and ion trap multiple stage MS allowed four metabolites to be identified that were produced only by the wild-type culture. These included asparasone A (358 Da), an anthraquinone pigment, and related anthraquinones with masses of 316, 340 and 374 Da. These latter three compounds had similar fragmentation patterns to that of asparasone A. The 316 Da anthraquinone is particularly interesting because it is most likely formed by incorporation of seven malonyl-CoA units rather than the eight units required for the formation of asparasone A. The 340 and 374 Da metabolites are the dehydration and an oxy-derivative of asparasone A, respectively. Asparasone A was also identified in extracts from several other Aspergillus species.

  13. Corn-Soybean Rotation Systems in the Mississippi Delta: Implications on Mycotoxin Contamination and Soil Populations of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Hamed K. Abbas

    2012-01-01

    Full Text Available The effect of corn-soybean rotation on mycotoxin contamination in corn (Zea mays L. and soybean (Glycine max L. Merrill. grains has not been fully evaluated. Therefore, this research investigated the effect of corn-soybean rotation on aflatoxin and fumonisin contamination in respective grains. The results showed that aflatoxin levels in soybean averaged 2.3, <0.5, 0.6, and 6.8 ng/g in 2005, 2006, 2007, and 2008, while corn aflatoxin levels were 16.7, 37.1, 2.4, and 54.8 ng/g, respectively. Aspergillus flavus colonization was significantly greater (P≤0.05 in corn (log 1.9, 2.9, and 4.0 cfu/g compared to soybean (<1.3, 2.6, and 2.7 cfu/g in 2005, 2007, and 2008, respectively. Aflatoxigenic A. flavus isolates were more frequent in corn than in soybean in all four years. Higher fumonisin levels were found in corn (0.2 to 3.6 μg/g than in soybean (<0.2 μg/g. Rotating soybean with corn reduces the potential for aflatoxin contamination in corn by reducing A. flavus propagules in soil and grain and reducing aflatoxigenic A. flavus colonization. These results demonstrated that soybean grain is less susceptible to aflatoxin contamination compared to corn due to a lower level of colonization by A. flavus with a greater occurrence of non-aflatoxigenic isolates.

  14. Identification of Aspergillus species in Central Europe able to produce G-type aflatoxins.

    Science.gov (United States)

    Baranyi, Nikolett; Despot, Daniela Jakšić; Palágyi, Andrea; Kiss, Noémi; Kocsubé, Sándor; Szekeres, András; Kecskeméti, Anita; Bencsik, Ottó; Vágvölgyi, Csaba; Klarić, Maja Šegvić; Varga, János

    2015-09-01

    The occurrence of potential aflatoxin producing fungi was examined in various agricultural products and indoor air in Central European countries including Hungary, Serbia and Croatia. For species identification, both morphological and sequence based methods were applied. Aspergillus flavus was detected in several samples including maize, cheese, nuts, spices and indoor air, and several isolates were able to produce aflatoxins. Besides, three other species of Aspergillus section Flavi, A. nomius, A. pseudonomius and A. parasiticus were also isolated from cheese, maize and indoor air, respectively. This is the first report on the occurrence of A. nomius and A. pseudonomius in Central Europe. All A. nomius, A. pseudonomius and A. parasiticus isolates were able to produce aflatoxins B1, B2, G1 and G2. The A. nomius isolate came from cheese produced very high amounts of aflatoxins (above 1 mg ml⁻¹). All A. nomius, A. pseudonomius and A. parasiticus isolates produced much higher amounts of aflatoxin G1 then aflatoxin B1. Further studies are in progress to examine the occurrence of producers of these highly carcinogenic mycotoxins in agricultural products and indoor air in Central Europe.

  15. Toxicidade de óleos essenciais de alho e casca de canela contra fungos do grupo Aspergillus flavus Evaluation of essential oils from Allium sativum and Cinnamomum zeilanicum and their toxicity against fungi of the Aspergillus flavus group

    Directory of Open Access Journals (Sweden)

    Elson de C. Viegas

    2005-12-01

    Full Text Available Diante da propriedade inibitória de óleos essenciais vegetais sobre o desenvolvimento micelial de fungos e da importância das espécies do grupo Aspergillus flavus, que apresentam potencial para síntese de aflatoxina, este trabalho teve como objetivo avaliar in vitro a toxicidade de óleos essenciais vegetais contra fungos do grupo A. flavus, isolados a partir da cultura do amendoim. Inicialmente, foi avaliada a toxicidade de oito óleos essenciais vegetais no desenvolvimento micelial de dois isolados do grupo A. flavus, em comparação ao fungicida sintético benomyl. Em seguida, foi avaliada a toxicidade dos óleos de casca de canela (Cinnamomum zeilanicum Breym. e de bulbilho de alho (Allium sativum L. contra 37 isolados do grupo A. flavus, durante 12 meses. A maior inibição do desenvolvimento micelial de A. flavus foi obtida com o emprego dos óleos essenciais de casca de canela e de bulbilho de alho, e o efeito inibitório variou com o isolado testado.Considering the inhibitory property of essential plant oils on the mycelial development of fungi, and the importance of Aspergillus flavus-like fungi which may produce aflatoxins, this research was designed to evaluate the toxicity of essential oils against fungi belonging to the group A. flavus isolated from peanut crops. The toxicity of eight essential oils against two isolates of A. Flavuslike fungi was evaluated in comparison to the synthetic fungicide benomyl. The toxicity of Cinnamomum zeilanicum Breym. and Allium sativum L. essential oils was also evaluated against 37 fungal isolates for a period of 12 months. The highest inhibition of the mycelial development of A. flavus was obtained with cinnamon and garlic essential oils. The inhibitory effect on growth was variable according to the fungal isolate.

  16. The activity of galanga (Alpinia galanga) rhizome extract against the growth of filamentous fungi Aspergillus spp. that produce aflatoxin and Fusarium moniliforme

    OpenAIRE

    NOOR SOESANTI HANDAJANI; TJAHJADI PURWOKO,

    2008-01-01

    Galanga (Alpinia galanga L.) rhizome was known to inhibit the growth of pathogenic fungi. The antifungal substances of galangal rhizome were found from their volatile oil. The objectives of this experiment were to study the ethanol extract of galangal rhizome against the growth of filamentous fungi Fusarium moniliforme, Aspergillus flavus, Aspergillus terreus, and Aspergillus niger that produce mycotoxin, especially aflatoxin, based on biomass and colony area and to determinate minimum growth...

  17. Larval Preference and Performance of Amyelois transitella (Navel Orangeworm, Lepidoptera: Pyralidae) in Relation to the Fungus Aspergillus flavus.

    Science.gov (United States)

    Ampt, Eline A; Bush, Daniel S; Siegel, Joel P; Berenbaum, May R

    2016-02-01

    The navel orangeworm, Amyelois transitella (Walker), is a polyphagous pest of California nut crops and is responsible for extensive losses in the United States. It directly damages crops by feeding and contaminating nuts with frass and webbing and vectors saprophytic fungi that infect crops. The navel orangeworm is commonly associated with Aspergillus species, including the toxigenic Aspergillus flavus, which causes crop loss by producing carcinogens, including aflatoxin B1. This lepidopteran-fungus association is the most economically serious pest complex in Central Valley orchards, and evidence indicates that this relationship is mutualistic. We assessed preference and performance of navel orangeworm larvae associated with A. flavus in behavioral bioassays in which neonates were allowed to orient within arenas to media with or without fungal tissue, and performance bioassays in which larvae were reared with and without A. flavus on potato dextrose agar (PDA) and a semidefined almond PDA diet to evaluate effects on development and pupal weight. Navel orangeworm larvae were attracted to A. flavus and developed faster in its presence, indicating a nutritional benefit to the caterpillars. Larvae reached pupation ∼33% faster on diet containing A. flavus, and pupal weights were ∼18% higher for males and ∼13% higher for females on this diet. Our findings indicate that A. flavus plays an important role in larval orientation and development on infected hosts. The preference-performance relationship between navel orangeworms and Aspergillus flavus is consistent with a facultative mutualism that has broad implications for pest management efforts and basic understanding of Lepidoptera-plant interactions.

  18. Atypical Aspergillus parasiticus isolates from pistachio with aflR gene nucleotide insertion identical to Aspergillus sojae

    Science.gov (United States)

    Aflatoxins are the most toxic and carcinogenic secondary metabolites produced primarily by the filamentous fungi Aspergillus flavus and Aspergillus parasiticus. The toxins cause devastating economic losses because of strict regulations on distribution of contaminated products. Aspergillus sojae are...

  19. Primary cutaneous aspergillosis due to Aspergillus flavus: a case report

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang-qiang; LI Li; ZHU Min; ZHANG Chao-ying; WANG Jia-jun

    2005-01-01

    @@ Infections caused by opportunistic organisms which have been known as etiologic agents of disease become more and more frequent.Aspergillus spp. is one of the agents. Fungi of aspergillus genus are widely distributed in nature, particularly in the soil and in the decomposed vegetation. They are frequent opportunist pathogens in immunocompromised patients. The most frequent causative organisms that cause cutaneous aspergillosis are A.fumigatus and A.flavus.1-3 In this report, we present a case of primary cutaneous aspergillosis manifested by ulceration of the shank due to A. flavus. The patient had no deficiency of immunological status and severe disease associated with fungal infection. Excellent response was shown to anti-fungal therapy.

  20. Isolation and Identification of Aspergillus Flavus Strains and Analysis of Toxin - Producing Ability%黄曲霉菌株的分离、鉴定及产毒能力分析

    Institute of Scientific and Technical Information of China (English)

    杨生瑞; 屈凌波; 孙长坡; 沈晗; 沈瑾; 伍松陵

    2012-01-01

    Several Aspergillus flavus strains were isolated from moldy grain, then were identified by spore morphological and Molecular Biological Identification. The toxin - producing ability of strains were detected and analyzed by HPL?after fermentation. The results showed that experimental isolated strain were Aspergillus flavus and contains toxigenic key gene of afl; the toxin - producing ability was very different between these Aspergillus flavus strains. Aspergillus flavus 3. 4408 produce the hightest aflatoxin while Aspergillus flavus HDWS only produces a little. Even more, Aspergillus flavus 3.2572 could not produce aflatoxin under the same condition; Among aflatoxin -producing strains, some of the strains produce aflatoxin AFB1, AFB2, AFG1, AFG2 ,Aspergilius flavus HDWH only produces aflatoxin AFB1, AFB2.%对几株从发霉粮食中分离出的黄曲霉菌菌株进行形态学和分子生物学鉴定,并进行发酵培养和产毒能力的HPLC测定.结果表明:试验分离菌株均为黄曲霉菌株且含有黄曲霉毒素产生的关键基因aflR;黄曲霉菌株之间产毒能力差异巨大:黄曲霉菌株3.4408产毒量最高,黄曲霉菌株HDWS产毒量最低,黄曲霉菌株3.2572甚至不产生黄曲霉毒素;产生黄曲霉毒素菌株中部分黄曲霉菌株产生4种黄曲霉毒素AFB1、AFB2、AFG1、AFG2,黄曲霉菌株HDWH只产生黄曲霉毒素AFB1、AFB2.

  1. Using Predictions Based on Geostatistics to Monitor Trends in Aspergillus flavus Strain Composition.

    Science.gov (United States)

    Orum, T V; Bigelow, D M; Cotty, P J; Nelson, M R

    1999-09-01

    ABSTRACT Aspergillus flavus is a soil-inhabiting fungus that frequently produces aflatoxins, potent carcinogens, in cottonseed and other seed crops. A. flavus S strain isolates, characterized on the basis of sclerotial morphology, are highly toxigenic. Spatial and temporal characteristics of the percentage of the A. flavus isolates that are S strain (S strain incidence) were used to predict patterns across areas of more than 30 km(2). Spatial autocorrelation in S strain incidence in Yuma County, AZ, was shown to extend beyond field boundaries to adjacent fields. Variograms revealed both short-range (2 to 6 km) and long-range (20 to 30 km) spatial structure in S strain incidence. S strain incidence at 36 locations sampled in July 1997 was predicted with a high correlation between expected and observed values (R = 0.85, P = 0.0001) by kriging data from July 1995 and July 1996. S strain incidence at locations sampled in October 1997 and March 1998 was markedly less than predicted by kriging data from the same months in prior years. Temporal analysis of four locations repeatedly sampled from April 1995 through July 1998 also indicated a major reduction in S strain incidence in the Texas Hill area after July 1997. Surface maps generated by kriging point data indicated a similarity in the spatial pattern of S strain incidence among all sampling dates despite temporal changes in the overall S strain incidence. Geostatistics provided useful descriptions of variability in S strain incidence over space and time.

  2. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    Science.gov (United States)

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

  3. Toxigenic potentiality of Aspergillus flavus and Aspergillus parasiticus strains isolated from black pepper assessed by an LC-MS/MS based multi-mycotoxin method.

    Science.gov (United States)

    Yogendrarajah, Pratheeba; Devlieghere, Frank; Njumbe Ediage, Emmanuel; Jacxsens, Liesbeth; De Meulenaer, Bruno; De Saeger, Sarah

    2015-12-01

    A liquid chromatography triple quadrupole tandem mass spectrometry method was developed and validated to determine mycotoxins, produced by fungal isolates grown on malt extract agar (MEA). All twenty metabolites produced by different fungal species were extracted using acetonitrile/1% formic acid. The developed method was applied to assess the toxigenic potentiality of Aspergillus flavus (n = 11) and Aspergillus parasiticus (n = 6) strains isolated from black peppers (Piper nigrum L.) following their growth at 22, 30 and 37 °C. Highest mean radial colony growth rates were observed at 30 °C for A. flavus (5.21 ± 0.68 mm/day) and A. parasiticus (4.97 ± 0.33 mm/day). All of the A. flavus isolates produced aflatoxin B1 and O-methyl sterigmatocystin (OMST) while 91% produced aflatoxin B2 (AFB2) and 82% of them produced sterigmatocystin (STERIG) at 30 °C. Except one, all the A. parasiticus isolates produced all the four aflatoxins, STERIG and OMST at 30 °C. Remarkably high AFB1 was produced by some A. flavus isolates at 22 °C (max 16-40 mg/kg). Production of mycotoxins followed a different trend than that of growth rate of both species. Notable correlations were found between different secondary metabolites of both species; R(2) 0.87 between AFB1 and AFB2 production. Occurrence of OMST could be used as a predictor for AFB1 production.

  4. The activity of galanga (Alpinia galanga rhizome extract against the growth of filamentous fungi Aspergillus spp. that produce aflatoxin and Fusarium moniliforme

    Directory of Open Access Journals (Sweden)

    NOOR SOESANTI HANDAJANI

    2008-07-01

    Full Text Available Galanga (Alpinia galanga L. rhizome was known to inhibit the growth of pathogenic fungi. The antifungal substances of galangal rhizome were found from their volatile oil. The objectives of this experiment were to study the ethanol extract of galangal rhizome against the growth of filamentous fungi Fusarium moniliforme, Aspergillus flavus, Aspergillus terreus, and Aspergillus niger that produce mycotoxin, especially aflatoxin, based on biomass and colony area and to determinate minimum growth inhibitory concentration the extract of galangal rhizome. The extract of galangal rhizome was significant (p<0.05 effective against biomass of F. moniliforme and A. flavus. The extract of galangal rhizome however was significant (p<0.05 effective against colony area of F. moniliforme, A. flavus and A. niger. The minimum growth inhibitory concentration of extracts galangal rhizome against the growth of A. flavus, F. moniliforme and A. niger were 816, 1,682, and 3,366 mg/L repectively.

  5. NO对黄曲霉产毒的影响研究%Effect of NO on aftatoxin production of Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    张永帅; 王淼焱; 孙俊良; 梁新红; 张婷

    2014-01-01

    The effects of different concentrations of NO donor SNP and NO scavenger cPTIO on aflatoxin production of Aspergillus flavus was weinvestigated in this study.The results showed that:SNP is added in the process of A. flavus training can lead to NO increase in the number of quantity,reduce the amount of aflatoxin toxin-producing,A. flavus NO amount reduced and leading to A. flavus toxin-producing quantity increase when adding NO scavenger cPTIO,Aspergillus flavus producing aflatoxin is 0.87 μg/mL,lower than when no added (including 16.35μg/mL) and add the SNP A. flavus NO fluorescence value is significantly increased when the amount of addition of SNP is 0.200 mmol.NO to A. flavus toxin-producing has certain inhibitory effect.%研究了不同浓度NO供体SNP和NO清除剂cPTIO对黄曲霉菌产毒的影响.结果表明:在黄曲霉培养过程中添加SNP能导致黄曲霉菌体内NO量增多,产毒量减少;当添加NO清除剂cPTIO时黄曲霉菌体内NO量降低,产毒量增加.SNP浓度为0.200 mmol/L时,黄曲霉产黄曲霉毒素的量为0.87μg/mL,比不添加时降低了16.35μg/mL,而且添加SNP的黄曲霉菌体NO荧光值明显增高.说明NO对黄曲霉产毒有一定的抑制作用.

  6. Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels

    Directory of Open Access Journals (Sweden)

    Andrea L Dolezal

    2014-07-01

    Full Text Available Maize kernels are susceptible to infection by the opportunistic pathogen Aspergillus flavus. Infection results in reduction of grain quality and contamination of kernels with the highly carcinogenic mycotoxin, aflatoxin. To understanding host response to infection by the fungus, transcription of approximately 9,000 maize genes were monitored during the host-pathogen interaction with a custom designed Affymetrix GeneChip® DNA array. More than 1,000 maize genes were found differentially expressed at a fold change of 2 or greater. This included the up regulation of defense related genes and signaling pathways. Transcriptional changes also were observed in primary metabolism genes. Starch biosynthetic genes were down regulated during infection, while genes encoding maize hydrolytic enzymes, presumably involved in the degradation of host reserves, were up regulated. These data indicate that infection of the maize kernel by A. flavus induced metabolic changes in the kernel, including the production of a defense response, as well as a disruption in kernel development.

  7. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

    Science.gov (United States)

    Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua

    2017-04-01

    The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent.

  8. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.

    Science.gov (United States)

    Chang, Perng-Kuang; Scharfenstein, Leslie L; Mack, Brian; Yu, Jiujiang; Ehrlich, Kenneth C

    2014-07-01

    Aspergillus flavus is a ubiquitous saprophyte and is capable of producing many secondary metabolites including the carcinogenic aflatoxins. The A. flavus population that produces small sclerotia (S strain) has been implicated as the culprit for persistent aflatoxin contamination in field crops. We investigated how the plant volatile decanal, a C10 fatty aldehyde, affected the growth and development of the S strain A. flavus. Decanal treatment yielded fluffy variants lacking sclerotia and conidia and exhibiting a dosage-dependent radial colony growth. We used RNA-Seq analysis to examine transcriptomic changes caused by decanal and after removal of decanal. Mature sclerotia contained only 80% of the total transcripts detected in all samples in comparison to 94% for the decanal treated culture. Gene ontology (GO) analysis showed that decanal treatment increased expression of genes involved in oxidoreductase activity, cellular carbohydrate metabolism, alcohol metabolism and aflatoxin biosynthesis. The treatment affected cellular components associated with cell wall, and gene expression of glucanases, α-amylases, pectinesterase and peptidase required for its biosynthesis was increased. After decanal was removed, the culture resumed sclerotial production. Moreover, its GO terms significantly overlapped with those of the untreated culture; five of the enriched molecular functions, oxidoreductase activity, monooxygenase activity, electron carrier activity, heme binding, and iron binding were found in the untreated culture. The GO term of cellular component enriched was mainly integral protein constituents of the membrane. The results suggested that decanal halted development at the vegetative state rendering the fungus unable to produce conidia and sclerotia. The induced fluffy phenotype could be related to lower transcript abundance of flbB, flbD, and flbE but not to veA expression. Increased abundance of the laeA transcript in the treated culture correlated with early

  9. Nutritional changes in powdered red pepper upon in vitro infection of Aspergillus flavus

    Science.gov (United States)

    Tripathi, Smita; Mishra, H.N.

    2009-01-01

    Quantitative losses in various biochemical constituents like capsaicin, carotenes, ascorbic acid, polyphenols, mineral matter, sugars (soluble and insoluble), protein and fat were estimated after the successful growth of Aspergillus flavus for 30 days on powdered red pepper. The fungal biomass was measured by ergosterol content and Aflatoxin B1 by HPLC. Amongst the various nutritional constituents evaluated for nutritional losses and changes the highest nutritional loss was reported in total carotenoids (88.55%) followed by total sugars (85.5%). The protein content of the infected sample increased from 18.01% to 23%. The nutritional profile of chilli powder (Capsicum annum var. sannam L.) shows highest share of total soluble sugars (32.89%) and fiber content (21.05%), followed by protein (18.01%) and fat (13.32%) making it an ideal solid- substrate for mould growth. At the end of incubation the fungal biomass was 192. 25 mg / 100 gram powder, total plate count 17.5 X 10 4 CFU/g and Aflatoxin B1 content was 30.06 μg / kg. PMID:24031333

  10. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem.

    Science.gov (United States)

    Arias, Renée S; Dang, Phat M; Sobolev, Victor S

    2015-12-21

    The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p ≤ 0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng · g(-1) of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng · g(-1). This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other

  11. Antibiotic Extraction as a Recent Biocontrol Method for Aspergillus Niger andAspergillus Flavus Fungi in Ancient Egyptian mural paintings

    Science.gov (United States)

    Hemdan, R. Elmitwalli; Fatma, Helmi M.; Rizk, Mohammed A.; Hagrassy, Abeer F.

    Biodeterioration of mural paintings by Aspergillus niger and Aspergillus flavus Fungi has been proved in different mural paintings in Egypt nowadays. Several researches have studied the effect of fungi on mural paintings, the mechanism of interaction and methods of control. But none of these researches gives us the solution without causing a side effect. In this paper, for the first time, a recent treatment by antibiotic "6 penthyl α pyrone phenol" was applied as a successful technique for elimination of Aspergillus niger and Aspergillus flavus. On the other hand, it is favorable for cleaning Surfaces of Murals executed by tembera technique from the fungi metabolism which caused a black pigments on surfaces.

  12. Interaction of Wild Strains of Aspergilla with Aspergillus parasiticus ATCC15517 and Aflatoxin Production †

    Science.gov (United States)

    Martins, H. Marina; Almeida, Inês; Marques, Marta; Bernardo, Fernando

    2008-01-01

    Aflatoxins are secondary metabolites produced by some competent mould strains of Aspergillus flavus, A. parasiticus and A. nomius. These compounds have been extensively studied with regards to their toxicity for animals and humans; they are able to induce liver cancer and may cause a wide range of adverse effects in living organisms. Aflatoxins are found as natural contaminants of food and feed; the main line of the strategy to control them is based on the prevention of the mould growth in raw vegetable or during its storage and monitoring of each crop batch. Mould growth is conditioned by many ecological factors, including biotic ones. Hazard characterization models for aflatoxins in crops must take into consideration biotic interactions between moulds and their potential effects on growth development. The aim of this work is to study the effect of the biotic interaction of 14 different wild strains of Aspergilla (different species), with a competent strain (Aspergillus parasiticus ATCC 15517) using an in vitro production model. The laboratory model used was a natural matrix (humidified cracked corn), on which each wild strain challenged the aflatoxin production of a producer strain. Cultures were incubated at 28°C for 12 days and sampled at the 8th and 12th. Aflatoxin detection and quantification was performed by HPLC using a procedure with a MRPL = 1 μg/kg. Results of those interactive cultures revealed both synergic and antagonistic effects on aflatoxin biosynthesis. Productivity increases were particularly evident on the 8th day of incubation with wild strains of A. flavipes (+ 70.4 %), A. versicolor (+ 54.9 %) and A. flavus 3 (+ 62.6 %). Antagonistic effects were found with A. niger (− 69.5%), A. fumigatus (− 47.6 %) and A. terreus (− 47.6 %) on the 12th day. The increased effects were more evident on the 8th of incubation and the decreases were more patent on the 12th day. Results show that the development of Aspergilla strains concomitantly with

  13. Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus.

    Science.gov (United States)

    Aljuboori, Ahmad H Rajab; Idris, Azni; Al-joubory, Hamid Hussain Rijab; Uemura, Yoshimitsu; Ibn Abubakar, B S U

    2015-03-01

    In this study, the flocculation behavior and mechanism of a cation-independent bioflocculant IH-7 produced by Aspergillus flavus were investigated. Results showed 91.6% was the lowest flocculating rate recorded by IH-7 (0.5 mg L(-1)) at pH range 4-8. Moreover, IH-7 showed better flocculation performance than polyaluminum chloride (PAC) at a wide range of flocculant concentration (0.06-25 mg L(-1)), temperature (5-45 °C) and salinity (10-60% w/w). The current study found that cation addition did not significantly enhance the flocculating rate and IH-7 is a positively charged bioflocculant. These findings suggest that charge neutralization is the main flocculation mechanism of IH-7 bioflocculant. IH-7 was significantly used to flocculate different types of suspended solids such as activated carbons, kaolin clays, soil solids and yeast cells.

  14. Keratitis by Aspergillus flavus infection after cataract surgery

    Directory of Open Access Journals (Sweden)

    João Luiz Pacini Costa

    Full Text Available ABSTRACT We report a case of keratis infection after cataract phacoemulsification with intraocular lens implantation in a 65-year-old female patient. The patient initially underwent cataract surgery on the right eye. Intraocular inflammation appeared on the second post-operative day and was initially treated as Toxic Anterior Segment Syndrome (TASS. The inflammation was reduced and vision improved initially but very aggressive and progressive keratitis destroyed the cornea due to the delay in correct diagnosis. Aspergillus flavus was isolated from a biopsy.The infection was treated with antifungal agents and loss of the eye was avoided by total corneal transplantation associated with Gundersen conjunctiva cover. To restore the lost vision, a second penetrating corneal graft with removal of the conjunctiva cover was performed 17 months later. The final best-corrected vision was 20/40 but prognosis for long-term graft survival is poor.

  15. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance.

    Directory of Open Access Journals (Sweden)

    Bruce W Horn

    Full Text Available Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.

  16. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance.

    Science.gov (United States)

    Horn, Bruce W; Gell, Richard M; Singh, Rakhi; Sorensen, Ronald B; Carbone, Ignazio

    2016-01-01

    Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.

  17. rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.

    Science.gov (United States)

    Lohmar, Jessica M; Harris-Coward, Pamela Y; Cary, Jeffrey W; Dhingra, Sourabh; Calvo, Ana M

    2016-06-01

    The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in Saccharomyces cerevisiae and rtfA in Aspergillus nidulans. Interestingly, rtfA has multiple cellular roles in this mycotoxin-producing fungus. In this study, we show that rtfA regulates conidiation. The rtfA deletion mutant presented smaller conidiophores with significantly reduced conidial production compared to the wild-type strain. The absence of rtfA also resulted in a significant decrease or lack of sclerotial production under conditions that allowed abundant production of these resistance structures in the wild type. Importantly, the deletion of rtfA notably reduced the production of aflatoxin B1, indicating that rtfA is a regulator of mycotoxin biosynthesis in A. flavus. In addition, the deletion rtfA also altered the production of several unknown secondary metabolites indicating a broader regulatory scope. Furthermore, our study revealed that rtfA controls the expression of the global regulators veA and laeA, which further influence morphogenesis and secondary metabolism in A. flavus.

  18. The effect of humidity after gamma-irradiation on aflatoxin B-1 production of A.flavus in ground nutmeg and peanut

    Energy Technology Data Exchange (ETDEWEB)

    Hilmy, N.; Chosdu, R. [Center for the Application of Isotopes and Radiation, Jakarta (Indonesia); Matsuyama, A. [Tokyo University of Agriculture (Japan). Nodai Research Inst.

    1995-10-01

    The effect of humidity of 75 up to 97% after irradiation on radiosensitivity and aflatoxin B1 production of Aspergillus flavus isolated from Indonesian nutmeg were examined. Irradiation doses used were 0;0.5;1 and 3 kGy. Mould free ground nutmeg and peanut were used as the growth media, and about 10{sup 8} of spores were used to contaminate each of the media. Aflatoxin productions were measured after having incubated 3 days up to 5 months under humidity of 91 and 97%. Prior to HPLC analysis, aflatoxin was cleaned-up using an immunoaffinity column. The results were: (1) A. flavus indicated no or almost no growth under RH of 85% or less. (2) Under 91-97% RH, growth of mycelium and toxin production were inhibited more or less by irradiation up to 1 kGy, although the effectiveness of irradiation varied with different RH and media during postirradiation incubation. (3) By 3 kGy or more, both mycelium growth and toxin production of the mould were found to be completely inhibited. (4) The production of aflatoxin in nutmeg began after having incubated for 25 and 45 days and in peanut for 3 and 6 days under 97 and 91% RH, respectively. (Author).

  19. Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism

    Science.gov (United States)

    The availability of a representative gene ontology (GO) database is a prerequisite for a successful functional genomics study. Using online Blast2GO resources we constructed a GO database of Aspergillus flavus. Of the predicted total 13,485 A. flavus genes 8,987 were annotated with GO terms. The mea...

  20. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites.

    NARCIS (Netherlands)

    Rudramurthy, S.M.; Valk, H.A. de; Chakrabarti, A.; Meis, J.F.G.M.; Klaassen, C.H.

    2011-01-01

    BACKGROUND: Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the mo

  1. Occurrence of Aspergillus spp. and aflatoxin B1 in Malaysian foods used for human consumption.

    Science.gov (United States)

    Reddy, Kasa R N; Farhana, Nazira I; Salleh, Baharuddin

    2011-05-01

    Malaysian population widely consumes the cereal-based foods, oilseeds, nuts, and spices in their daily diet. Mycotoxigenic fungi are well known to invade food products under storage conditions and produce mycotoxins that have threat to human and animal health. Therefore, determining toxigenic fungi and aflatoxin B(1) (AFB1) in foods used for human consumption is of prime importance to develop suitable management strategies and to minimize risk. Ninety-five food products marketed in Penang, Malaysia were randomly collected from different supermarkets and were analyzed for presence of Aspergillus spp. by agar plate assay and AFB1 by enzyme-linked immunosorbent assay (ELISA). A. flavus was the dominant fungi in all foods followed by A. niger. Fifty-five A. flavus strains were tested for their ability to produce aflatoxins on rice grain substrate. Thirty-six (65.4%) strains out of 55 produced AFB1 ranging from 1700 to 4400 μg/kg and 17 strains (31%) produced AFB2 ranging from 620 to 1670 μg/kg. Natural occurrence of AFB1 could be detected in 72.6% food products ranging from 0.54 to 15.33 μg/kg with a mean of 1.95 μg/kg. Maximum AFB1 levels were detected in peanut products ranging from 1.47 to 15.33 μg/kg. AFB1 levels detected in all food products were below the Malaysian permissible limits (<35 μg/kg). Aspergillus spp. and AFB1 was not detected in any cookies tested. Although this survey was not comprehensive, it provides valuable information on aflatoxin levels in foods marketed in Malaysia.

  2. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance.

  3. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus.

    Science.gov (United States)

    Accinelli, Cesare; Saccà, M Ludovica; Abbas, Hamed K; Zablotowicz, Robert M; Wilkinson, Jeffery R

    2009-09-01

    Previous research demonstrated that aflatoxin contamination in corn is reduced by field application of wheat grains pre-inoculated with the non-aflatoxigenic Aspergillus flavus strain NRRL 30797. To facilitate field applications of this biocontrol isolate, a series of laboratory studies were conducted on the reliability and efficiency of replacing wheat grains with the novel bioplastic formulation Mater-Bi to serve as a carrier matrix to formulate this fungus. Mater-Bi granules were inoculated with a conidial suspension of NRRL 30797 to achieve a final cell density of approximately log 7 conidia/granule. Incubation of 20-g soil samples receiving a single Mater-Bi granule for 60-days resulted in log 4.2-5.3 propagules of A. flavus/g soil in microbiologically active and sterilized soil, respectively. Increasing the number of granules had no effect on the degree of soil colonization by the biocontrol fungus. In addition to the maintenance of rapid vegetative growth and colonization of soil samples, the bioplastic formulation was highly stable, indicating that Mater-Bi is a suitable substitute for biocontrol applications of A. flavus NRRL 30797.

  4. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.

    Science.gov (United States)

    Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P

    2016-07-01

    In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.

  5. Characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates from pistachio.

    Science.gov (United States)

    Hua, Sui Sheng T; McAlpin, Cesaria E; Chang, Perng-Kuang; Sarreal, Siov Bouy L

    2012-02-01

    Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.

  6. Effect of Zataria multiflora Boiss. essential oil on colony morphology and ultrastructure of Aspergillus flavus.

    Science.gov (United States)

    Gandomi, Hassan; Misaghi, Ali; Basti, Afshin Akhondzadeh; Hamedi, Hassan; Shirvani, Zahra Ramezani

    2011-09-01

    The mode of inhibitory action of Zataria multiflora Boiss. essential oil (EO) on the fungus, Aspergillus flavus, was studied by colony morphology examination, light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The EO at concentrations used in this study suppressed the size of the colony as well as sporulation. SEM of mycelia treated with given concentrations of EO showed morphological alterations ranging from loss of turgidity and uniformity of mycelia at low concentrations of EO to evident destruction of the hyphae at higher concentration of EO. Semi-thin sections of mycelia exposed to different concentrations of EO were analysed by light microscopy and revealed that the major change at level as low as 50 ppm of EO was limited to vacuolisation of cytoplasm resulting in cell swelling, while at higher concentrations, detachment of the cell membrane from the cell wall, deformation of mycelia and shedding the cytoplasm from the cell were the main alterations. These damages were well documented by TEM, which showed that the main sites of action of EO were the plasma membrane and cell wall. In conclusion, morphological and structural changes observed in this study may be one of the mechanisms involved in growth inhibition of the fungi and reducing aflatoxin production.

  7. Effect of Carum copticum essential oil on growth and aflatoxin formation by Aspergillus strains.

    Science.gov (United States)

    Kazemi, M

    2015-01-01

    The objectives of this study were to determine the antiaflatoxin B1 activity in vitro of the essential oil (EO) extracted from the seeds of Carum copticum and to evaluate its antifungal activity in vivo as a potential food preservative. The C. copticum EO exhibited noticeable inhibition on dry mycelium and synthesis of aflatoxin B1 (AFB1) by Aspergillus flavus, completely inhibiting AFB1 production at 4 μL/mL. C. copticum EOs showed the lowest percentages of decayed cherry tomatoes for all fungi compared with the control at 100 μL/mL with values of 5.01 ± 67% for A. flavus and 5.98 ± 54% for Aspergillus niger. The results indicated that the percentage of infected fruits is significantly (p oil at 100 μL/mL concentration showed the highest inhibition of fungal infection with a value of 80.45% compared with the control. Thus, the EO of dill could be used to control food spoilage and as a potential source of food preservative.

  8. Single corn kernel aflatoxin B1 extraction and analysis method

    Science.gov (United States)

    Aflatoxins are highly carcinogenic compounds produced by the fungus Aspergillus flavus. Aspergillus flavus is a phytopathogenic fungus that commonly infects crops such as cotton, peanuts, and maize. The goal was to design an effective sample preparation method and analysis for the extraction of afla...

  9. Decontamination of Aspergillus flavus and Aspergillus parasiticus spores on hazelnuts via atmospheric pressure fluidized bed plasma reactor.

    Science.gov (United States)

    Dasan, Beyhan Gunaydin; Mutlu, Mehmet; Boyaci, Ismail Hakki

    2016-01-04

    In this study, an atmospheric pressure fluidized bed plasma (APFBP) system was designed and its decontamination effect on aflatoxigenic fungi (Aspergillus flavus and Aspergillus parasiticus) on the surface of hazelnuts was investigated. Hazelnuts were artificially contaminated with A. flavus and A. parasiticus and then were treated with dry air plasma for up to 5min in the APFBP system at various plasma parameters. Significant reductions of 4.50 log (cfu/g) in A. flavus and 4.19 log (cfu/g) in A. parasiticus were achieved after 5min treatments at 100% V - 25kHz (655W) by using dry air as the plasma forming gas. The decontamination effect of APFBP on A. flavus and A. parasiticus spores inoculated on hazelnuts was increased with the applied reference voltage and the frequency. No change or slight reductions were observed in A. flavus and A. parasiticus load during the storage of plasma treated hazelnuts whereas on the control samples fungi continued to grow under storage conditions (30days at 25°C). Temperature change on hazelnut surfaces in the range between 35 and 90°C was monitored with a thermal camera, and it was demonstrated that the temperature increase taking place during plasma treatment did not have a lethal effect on A. flavus and A. parasiticus spores. The damage caused by APFBP treatment on Aspergillus spp. spores was also observed by scanning electron microscopy.

  10. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    Science.gov (United States)

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  11. Effects of gamma radiation and electron beam on samples of the Brazil nuts artificially inoculated with Aspergillus flavus; Efeitos da radiacao gama e feixe de eletrons sobre amostras de castanhas-do-Brasil inoculadas artificialmente com Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Ednei Assuncao Antunes

    2012-07-01

    The high level of contamination by aflatoxin produced by fungi in lots of Brazil nuts and the strict control by importing countries in relation to the levels of toxins in food, European Union countries decided in 2003 by the return of these lots products from Brazil. Despite the economic loss represented by contamination by toxigenic fungi in Brazil nuts, a major product of extractive Northern of Brazil, studies are still preliminary as the control of contamination aflatoxigenic fungal using methods such as gamma radiation (G.R) and mainly, electron beam (E.B). These facts motivated this research, which aimed to evaluate the effects of gamma radiation and application of electron beam in samples of Brazil nut artificially inoculated with Aspergillus flavus. This goal, we were studied 50 samples of the Brazil nut previously inoculated with spores of A. flavus and subsequently incubated at 30 °C in relative humidity controlled at 93%. After incubation, period of 15 days, the average water activity of the samples was 0.80, the samples were divided into 5 groups that received the following doses of radiation: control (0 kGy), 5 and 10 kGy 5 E.B and G.R. The mycobiota was performed by serial dilution, plated on surface using potato dextrose agar. The results demonstrated that treatment with E.B using a dose of 5 kGy and 10 kGy resulted in reduced growth of A. flavus in 74% (37/50) and 94% (47/50) of samples. The samples treated with G.R at the dose of 5 kGy and 10 kGy no fungal growth occurred in 92% (46/50) 100% (50/50) of. The study of aflatoxins showed that doses of E.B of 5 kGy and 10 kGy reduced levels of AFB1 at 53.32% and 65.66% respectively. The application of gamma rays at doses of 5 and 10 kGy reduced levels of toxins in 70.61% and 84.15% respectively. This result may be attributed to higher penetrability of gamma radiation. Sensory analysis showed greater acceptance of the judges for the samples irradiated with E.B and G.R at the dose of 10 kGy. We concluded

  12. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels

    Directory of Open Access Journals (Sweden)

    Zuzana eHruska

    2014-03-01

    Full Text Available A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70, labeled with green fluorescent protein (GFP, in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36 to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays. Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (up to 73% suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.

  13. The chemical heritage of Aspergillus flavus in A. oryzae RIB 40

    DEFF Research Database (Denmark)

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj

    Aspergillus oryzae is a very important species in biotechnology and has been used for centuries in traditional Asian fermentation. The RIB40 strain is particularly interesting as it was one of the first genome sequenced Aspergilli together with A. flavus, a prominent food and feed contaminant...... with indications to specific genetic changes. Several new metabolites and changes in biosynthetic routes have been found in A. oryzae, indicating subtle changes in the genomic heritage from A. flavus....

  14. Inactivation of Aspergillus flavus in drinking water after treatment with UV irradiation followed by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Al-Gabr, Hamid Mohammad [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Zheng, Tianling [State Key Laboratory of Environmental Sciences, and Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Yu, Xin, E-mail: xyu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2013-10-01

    The disinfection process for inactivating microorganisms at drinking water treatment plants is aimed for safety of drinking water for humans from a microorganism, such as bacteria, viruses, algae, fungi by using chlorination, ozonation, UV irradiation, etc. In the present study, a combination of two disinfectants, UV irradiation followed by chlorination, was evaluated for inactivating Aspergillus flavus under low contact time and low dosage of UV irradiation. The results indicated an inverse correlation between the inactivation of A. flavus by using UV irradiation only or chlorination alone. By using UV radiation, the 2 log{sub 10} control of A. flavus was achieved after 30 s of irradiation, while chlorination was observed to be more effective than UV, where the 2 log was achieved at chlorine concentration of 0.5, 1, 2 and 3 mg/l, in contact time of 60, 5, 1 and 1 min, respectively. However, combined use (UV irradiation followed by chlorination) was more effective than using either UV or chlorination alone; 5 s UV irradiation followed by chlorination produced 4 log{sub 10} reduction of A. flavus at chlorine concentrations of 2 and 3 mg/l under a contact time of 15 min. The results indicated that efficiency of UV irradiation improves when followed by chlorination at low concentrations. - Highlights: • As a disinfectant, chlorine is more effective than UV in inactivating Aspergillus flavus. • As a combined method, UV irradiation followed by chlorination shows high efficiency. • UV irradiation can improve effectiveness of chlorination in reducing Aspergillus flavus.

  15. Effect of γ-radiation on the production of aflatoxin B1 by Aspergillus parasiticus in raisins (Vitis vinifera L.)

    Science.gov (United States)

    Kanapitsas, Alexandros; Batrinou, Anthimia; Aravantinos, Athanasios; Markaki, Panagiota

    2015-01-01

    Aflatoxin B1 (AFB1) mostly produced by Aspergillus flavus and Aspergillus parasiticus, is an extremely toxic and carcinogenic metabolite. The effect of gamma irradiation at dose of 10 kGy on the production of aflatoxin B1 (AFB1) inoculated by Aspergillus parasiticus in raisins (Vitis vinifera L.) and on AFB1 in contaminated samples, was investigated. Values of the amount of aflatoxin B1 produced on the 12th day of incubation, after irradiation, showed that gamma radiation exposure at 10 kGy decreased AFB1 production at 65% compared with the non-irradiated sample, on the same day. The application of 10 kGy gamma radiation directly on 100 ng of AFB1 which were spiked in raisins resulted in ~29% reduction of AFB1. According to the risk assessment analysis the Provisional Maximum Tolerable Daily Intake (PMTDI) of 1.0 ng AFB1 kg-1bw, indicates that consumers are less exposed to AFB1 from the irradiated raisins.

  16. Polyamines as modulators of microcycle conidiation in Aspergillus flavus.

    Science.gov (United States)

    Khurana, N; Saxena, R K; Gupta, R; Rajam, M V

    1996-03-01

    Since polyamines (PAs) play a potential role in the regulation of growth and developmental processes in a wide variety of organisms, we have examined the influence of the PAs putrescine (Put) and spermidine (Spd) and the PA biosynthetic inhibitors alpha-difluoromethylornithine (DFMO), alpha-difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and cyclohexylamine (CHA), singly and in combinations on microcycle conidiation (MC) in Aspergillus flavus. The exogenous application of the diamine Put (concentrations ranging from 0.1 to 5 mM) caused a sharp decline of MC in a dose-dependent fashion, but induced vegetative growth. However, the triamine Spd (0.1-5 mM) had a minimal effect on MC and induced a shift from MC to normal condition. PA inhibitors, especially DFMO, MGBG and CHA, produced greater inhibition of MC and complete inhibition of MC was observed at 5 mM of these inhibitors. DFMA even at 5 mM had only a weak inhibitory effect on MC. DFMO also inhibited conidial germination and germ tube growth. MGBG and CHA, while having an inhibitory effect on MC, induced vegetative growth. The inhibitory effect of PA inhibitors was partially reversed by exogenous Put or Spd, with Spd being more effective than Put. The analysis of free PA levels during various phases of MC revealed that undifferentiated spores contained a high Put/Spd ratio and there was a dramatic decrease in Put/Spd ratio before and during microcycle conidiophore maturity. The change in spermine titres could not be detected. These observations imply that Put is essential for vegetative growth, while Spd is involved in MC, and that a low Put/Spd ratio seems to be important for spore differentiation to MC.

  17. Evaluation of antifungal activity of essential oils against potentially mycotoxigenic Aspergillus flavus and Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Fernanda C. da Silva

    2012-10-01

    Full Text Available The antifungal activity of essential oils of fennel (Foeniculum vulgare Mill., Apiaceae, ginger (Zingiber officinale Roscoe, Zingiberaceae, mint (Mentha piperita L., Lamiaceae and thyme (Thymus vulgaris L., Lamiaceae was evaluated against mycotoxin producers Aspergillus flavus and A. parasiticus. High Resolution Gas Chromatography was applied to analyze chemical constituents of essential oils. The effect of different concentrations of essential oils was determined by solid medium diffusion assay. Mycelial growth and sporulation were determined for each essential oil at the concentrations established by solid medium diffusion assay. At the fifth, seventh and ninth days the mycelial diameter (Ø mm and spore production were also determined. FUN-1 staining was performed to assess cell viability after broth macrodilution assay. Trans-anethole, zingiberene, menthol and thymol are the major component of essential oils of fennel, ginger, mint and thyme, respectively. The effective concentrations for fennel, ginger, mint and thyme were 50, 80, 50 and 50% (oil/DMSO; v/v, respectively. The four essential oils analysed in this study showed antifungal effect. Additionally, FUN-1 staining showed to be a suitable method to evaluate cell viability of potential mycotoxigenic fungi A. flavus and A. parasiticus after treatment with essential oils.

  18. A preliminary study on the occurrence of Aspergillus spp. and aflatoxin B1 in imported wheat and barley in Penang, Malaysia.

    Science.gov (United States)

    Reddy, K R N; Salleh, Baharuddin

    2010-11-01

    Thirty samples consisting of wheat (15) and barley (15) were collected from different markets in Penang, Malaysia, originating from India and Thailand, respectively. All samples were analyzed for occurrence of Aspergillus spp. and aflatoxin B1 (AFB1). Aspergillus flavus was dominant in all samples followed by A. niger. AFB1 could be detected in three wheat samples ranging from 0.42 to 1.89 μg/kg and one barley sample had 0.58 μg/kg of AFB1. The AFB1 levels in all the samples were below the Malaysian regulatory limits (Penang, Malaysia.

  19. Local isolate of Saccharomyces cerevisiae as biocompetitive agent of Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Eni Kusumaningtyas

    2006-12-01

    Full Text Available Aspergillus flavus is a toxigenic fungus that contaminates feed and influences the animal health. Saccharomyces cerevisiae can be used as a biocompetitive agent to control the contamination. The ability of local isolate of S. cerevisiae as a biocompetitive agent for A. flavus was evaluated. A. flavus (30ml was swept on Sabouraud dextrose agar (SDA, while S. cerevisiae was swept on its left and right. Plates were incubated at 28oC for nine days. Lytic activity of S. cerevisiae was detected by pouring its suspension on the centre of the cross streaks of A. flavus. Plates were incubated at 28oC for five days. Growth inhibition of A. flavus by S. cerevisiae was determined by mixing the two fungi on Potato dextrose broth and incubated at 28oC for 24 hours. Total colony of A. flavus were then observed at incubation time of 2, 4, 6 and 24 hours by pour plates method on the SDA plates and incubated on 28oC for two days. Growth of hyphae of A. flavus sweep were inhibited with the swept of S. cerevisiae. The width of A. flavus colony treated with S. cerevisiae is narrower (3,02 cm than that of control ( 4,60 cm. The growth of A. flavus was also inhibited on the centre of cross streak where the S. cerevisiae poured. S. cerevisiae gradually reduced the colony number of A. flavus in the mixed culture of broth fungi ie. 14 x 103 CFU/ml while colony number of control is 80 x 103 CFU/ml. Results showed that S. cerevisiae could be used as biocompetitive agent of A. flavus.

  20. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review.

    Science.gov (United States)

    Leong, Yin-Hui; Latiff, Aishah A; Ahmad, Nurul Izzah; Rosma, Ahmad

    2012-05-01

    Aflatoxins are highly toxic secondary fungal metabolites mainly produced by Aspergillus flavus and A. parasiticus. Human exposure to aflatoxins may result directly from ingestion of contaminated foods, or indirectly from consumption of foods from animals previously exposed to aflatoxins in feeds. This paper focuses on exposure measurement of aflatoxins and aflatoxin metabolites in various human body fluids. Research on different metabolites present in blood, urine, breast milk, and other human fluids or tissues including their detection techniques is reviewed. The association between dietary intake of aflatoxins and biomarker measurement is also highlighted. Finally, aspects related to the differences between aflatoxin determination in food versus the biomarker approach are discussed.

  1. Microsatellite typing of Aspergillus flavus from clinical and environmental avian isolates

    OpenAIRE

    2013-01-01

    Aspergillosis is one of the most common causes of death in captive birds. Aspergillus fumigatus accounts for approximately 95 % of aspergillosis cases and Aspergillus flavus is the second most frequent organism associated with avian infections. In the present study, the fungi were grown from avian clinical samples (post-mortem lung material) and environmental samples (eggs, food and litter). Microsatellite markers were used to type seven clinical avian isolates and 22 environmental isolates o...

  2. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  3. Seventeen years of subcutaneous infection by Aspergillus flavus; eumycetoma confirmed by immunohistochemistry

    NARCIS (Netherlands)

    Ahmed, Sarah A; Abbas, Manal A; Jouvion, Gregory; Al-Hatmi, Abdullah M S; de Hoog, G Sybren; Kolecka, Anna; Mahgoub, El Sheikh

    2015-01-01

    Chronic subcutaneous infections caused by Aspergillus species are considered to be extremely rare. Because these fungi are among the most common laboratory contaminants, their role as eumycetoma causative agents is difficult to ascertain. Here, we report the first case of A. flavus eumycetoma confir

  4. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    DEFF Research Database (Denmark)

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence...... in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15...... alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus....

  5. Biological control of aflatoxin contamination of crops

    Institute of Scientific and Technical Information of China (English)

    Yan-ni YIN; Lei-yan YAN; Jin-hua JIANG; Zhong-hua MA

    2008-01-01

    Aflatoxins produced primarily by two closely related fungi, Aspergillus flavus and Aspergillus parasiticus, are mutagenic and carcinogenic in animals and humans. Of many approaches investigated to manage aflatoxin contamination, biological control method has shown great promise. Numerous organisms, including bacteria, yeasts and nontoxigenic fungal strains of A.flavus and A. parasiticus, have been tested for their ability in controlling aflatoxin contamination. Great successes in reducing aflatoxin contamination have been achieved by application of nontoxigenic strains of A. flavus and A. parasiticus in fields of cotton, peanut, maize and pistachio. The nontoxigenic strains applied to soil occupy the same niches as the natural occurring toxigenic strains. They, therefore, are capable of competing and displacing toxigenic strains. In this paper, we review recent development in biological control of aflatoxin contamination.

  6. Genomic sequences of Aspergillus flavus accessions in Georgia USA

    Data.gov (United States)

    US Agency for International Development — The data was produced as part of the Feed the Future Innovation Lab for Collaborative Research on Peanut Productivity and Aflatoxin Control (the Peanut &...

  7. Genetic diversity of environmental Aspergillus flavus strains in the state of São Paulo, Brazil by random amplified polymorphic DNA

    Directory of Open Access Journals (Sweden)

    Alexandre Lourenço

    2007-09-01

    Full Text Available Aspergillus flavus is a very important toxigenic fungus that produces aflatoxins, a group of extremely toxic substances to man and animals. Toxigenic fungi can grow in feed crops, such as maize, peanuts, and soybeans, being thus of high concern for public health. There are toxigenic and non-toxigenic A. flavus variants, but the necessary conditions for expressing the toxigenic potential are not fully understood. Therefore, we have studied total-DNA polymorphism from toxigenic and non toxigenic A. flavus strains isolated from maize crops and soil at two geographic locations, 300 km apart, in the Southeast region of Brazil. Total DNA from each A. flavus isolate was extracted and subjected to polymerase chain reaction amplification with five randomic primers through the RAPD (random amplified polymorphic DNA technique. Phenetic and cladistic analyses of the data, based on bootstrap analyses, led us to conclude that RAPD was not suitable to discriminate toxigenic from non toxigenic strains. But the present results support the use of RAPD for strain characterization, especially for preliminary evaluation over extensive collections.

  8. Laboratory screening of a peanut recombinant inbred line population for aflatoxin resistance

    Science.gov (United States)

    Aflatoxin is considered to be serious impediment for crop production in the Southern US resulting from infection by Aspergillus flavus. Aflatoxin contamination is a health concern. To date, the only successful methods of remediating aflatoxin contamination include proper storage conditions for har...

  9. Mycobiota and identification of aflatoxin gene cluster in marketed spices in West Africa

    DEFF Research Database (Denmark)

    Gnonlonfin, G. J. B.; Adjovi, Y. C.; Tokpo, A. F.

    2013-01-01

    of Aspergillus were dominant on all marketed dried and milled spices irrespective of country. Gene characterization and amplification analysis showed that most of the Aspergillus flavus isolates possess the cluster genes for aflatoxin production. Aflatoxin B1 assessment by Thin Layer Chromatography showed...

  10. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi

    DEFF Research Database (Denmark)

    Varga, J.; Frisvad, Jens Christian; Samson, R. A.

    2011-01-01

    Aspergillus subgenus Circumdati section Flavi includes species with usually biseriate conidial heads, in shades of yellow-green to brown, and dark sclerotia. Several species assigned to this section are either important mycotoxin producers including aflatoxins, cyclopiazonic acid, ochratoxins...... and extrolite profiles. Aspergillus pseudocaelatus is represented by a single isolate collected from Arachis burkartii leaf in Argentina, is closely related to the non-aflatoxin producing A. caelatus, and produces aflatoxins B & G, cyclopiazonic acid and kojic acid, while A. pseudonomius was isolated from...... insects and soil in the USA. This species is related to A. nomius, and produces aflatoxin B-1 (but not G-type aflatoxins), chrysogine and kojic acid. In order to prove the aflatoxin producing abilities of the isolates, phylogenetic analysis of three genes taking part in aflatoxin biosynthesis, including...

  11. Nutritional changes in powdered red pepper upon in vitro infection of Aspergillus flavus Alterações nutricionais em pimenta vermelha em pó após infecção in vitro com Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Smita Tripathi

    2009-03-01

    Full Text Available Quantitative losses in various biochemical constituents like capsaicin, carotenes, ascorbic acid, polyphenols, mineral matter, sugars (soluble and insoluble, protein and fat were estimated after the successful growth of Aspergillus flavus for 30 days on powdered red pepper. The fungal biomass was measured by ergosterol content and Aflatoxin B1 by HPLC. Amongst the various nutritional constituents evaluated for nutritional losses and changes the highest nutritional loss was reported in total carotenoids (88.55% followed by total sugars (85.5%. The protein content of the infected sample increased from 18.01% to 23%. The nutritional profile of chilli powder (Capsicum annum var. sannam L. shows highest share of total soluble sugars (32.89% and fiber content (21.05%, followed by protein (18.01% and fat (13.32% making it an ideal solid - substrate for mould growth. At the end of incubation the fungal biomass was 192. 25 mg / 100 gram powder, total plate count 17.5 X 10 4 CFU/g and Aflatoxin B1 content was 30.06 µg / kg.Foram avaliadas as perdas de vários constituintes bioquímicos como capsaicina, carotenos, acido ascórbico, polifenóis, matéria orgânica, açucares (solúveis e insolúveis, proteína e gordura em pimenta vermelha em pó após a multiplicação de Aspergillus flavus por 30 dias. A biomassa fúngica foi mensurada pelo conteúdo de ergosterol e aflatoxina por HPLC. Entre os vários constituintes avaliados, a maior perda foi a de carotenóides totais (88,55%, seguido de açucares totais (85,5%. O conteúdo protéico da amostra infectada aumentou de 18,01% para 23%. O perfil nutricional da pimenta em pó (Capsicum annum var. sannam L. indica alto teor de açucares totais (32,89% e fibras (21,05%, seguido de proteína (18,01% e gordura (13,32%, tornando-a um substrato ideal para crescimento de fungos. Ao final dos 30 dias, a biomassa fúngica foi 192,25 mg/100g, a contagem total em placas foi 17,5 x 10(4 CFU/g e o conteúdo de

  12. Unravelling the diversity of the cyclopiazonic acid family of mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS

    Science.gov (United States)

    Cyclopiazonic acid (a-cyclopiazonic acid, a-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures, approximately 40 years ago, its contribution to the...

  13. Involvement of the nadA gene in formation of G-group aflatoxins in Aspergillus parasiticus.

    Science.gov (United States)

    Cai, Jingjing; Zeng, Hongmei; Shima, Yoko; Hatabayashi, Hidemi; Nakagawa, Hiroyuki; Ito, Yasuhiro; Adachi, Yoshikazu; Nakajima, Hiromitsu; Yabe, Kimiko

    2008-07-01

    The nadA gene is present at the end of the aflatoxin gene cluster in the genome of Aspergillus parasiticus as well as in Aspergillus flavus. RT-PCR analyses showed that the nadA gene was expressed in an aflatoxin-inducible YES medium, but not in an aflatoxin-non-inducible YEP medium. The nadA gene was not expressed in the aflR gene-deletion mutant, irrespective of the culture medium used. To clarify the nadA gene's function, we disrupted the gene in aflatoxigenic A. parasiticus. The four nadA-deletion mutants that were isolated commonly accumulated a novel yellow-fluorescent pigment (named NADA) in mycelia as well as in culture medium. When the mutants and the wild-type strain were cultured for 3 days in YES medium, the mutants each produced about 50% of the amounts of G-group aflatoxins that the wild-type strain produced. In contrast, the amounts of B-group aflatoxins did not significantly differ between the mutants and the wild-type strain. The NADA pigment was so unstable that it could non-enzymatically change to aflatoxin G(1) (AFG(1)). LC-MS measurement showed that the molecular mass of NADA was 360, which is 32 higher than that of AFG(1). We previously reported that at least one cytosol enzyme, together with two other microsome enzymes, is necessary for the formation of AFG(1) from O-methylsterigmatocystin (OMST) in the cell-free system of A. parasiticus. The present study confirmed that the cytosol fraction of the wild-type A.parasiticus strain significantly enhanced the AFG(1) formation from OMST, whereas the cytosol fraction of the nadA-deletion mutant did not show the same activity. Furthermore, the cytosol fraction of the wild-type strain showed the enzyme activity catalyzing the reaction from NADA to AFG(1), which required NADPH or NADH, indicating that NADA is a precursor of AFG(1); in contrast, the cytosol fraction of the nadA-deletion mutant did not show the same enzyme activity. These results demonstrated that the NadA protein is the cytosol enzyme

  14. 几种多糖对黄曲霉菌生长及产毒的抑制作用%Inhibitory Effect of Several Polysaccharides on Growth and Toxin Production of Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    李红波; 胡梁斌; 王淼焱; 孙俊良

    2011-01-01

    研究了香菇多糖、海带多糖、石耳素等10余种多糖对黄曲霉生长及产毒的抑制作用,发现海带多糖、香菇纤维素、马铃薯直链淀粉、A型大豆多糖能够明显降低黄曲霉菌丝产量;同时海带多粮、香菇纤维素、马铃薯直链淀粉、香菇多糖、绿豆多糖抑制了黄曲霉菌产毒,其中海带多糖、马铃薯直链淀粉、香菇纤维素、香菇多糖能够明显降低黄曲霉菌菌丝产毒能力.%The inhibitory effects of more than 10 polysaccharides on the growth and toxin production of Aspergillus flavus were studied.It was found that Laminaria polysaccharide, Lentinus edodes cellulose, potato amylose and A - type soybean polysaccharide could significantly reduce the mycelium yield of Aspergillus flavus, while Laminaria polysaccharide, Lentinus edodes cellulose, potato amylase, Lentinus edodes polysaccharide and mungbean polysaccharide could inhibit the aflatoxin production, of which Laminaria polysaccharide, Lentinus edodes cellulose, potato amylase and Lentinus edodes polysaccharide could obviously reduce the aflatoxin - producing capability of Aspergillus flavus.

  15. Antifungal activity of extracts of Rosmarinus officinalis and Thymus vulgaris against Aspergillus flavus and A. ochraceus.

    Science.gov (United States)

    Centeno, S; Calvo, M A; Adelantado, C; Figueroa, S

    2010-05-01

    The antifungal activity of ethanolic extracts of Rosmarinus officinalis and Thymus vulgaris were tested against strains of Aspergillus flavus and A. ochraceus, since these two species are common contaminants of cereals and grains and are able to produce and accumulate mycotoxins. The methodology used is based on measuring the inhibition halos produced by discs impregnated with the extracts and establishing their Minimum Inhibitory Concentration (MIC) as well as the Minimum Fungicide Concentration (MFC). The results obtained suggest that the assayed extracts affect the proper development of A. flavus and A. ochraceus; leading to a lower MIC (1200 ppm) and MFC (2400 ppm) for T. vulgaris extract against A. ochraceus than against A. flavus. The results show, that the extracts of Rosmarinus officinalis and Thymus vulgaris used at low concentrations could have significant potential for the biological control of fungi in foodstuffs.

  16. Mycotoxin production and predictive modelling kinetics on the growth of Aspergillus flavus and Aspergillus parasiticus isolates in whole black peppercorns (Piper nigrum L).

    Science.gov (United States)

    Yogendrarajah, Pratheeba; Vermeulen, An; Jacxsens, Liesbeth; Mavromichali, Evangelia; De Saeger, Sarah; De Meulenaer, Bruno; Devlieghere, Frank

    2016-07-02

    The growth and mycotoxin production of three Aspergillus flavus isolates and an Aspergillus parasiticus isolate were studied in whole black peppercorns (Piper nigrum L.) using a full factorial design with seven water activity (aw) (0.826-0.984) levels and three temperatures (22, 30 and 37°C). Growth rates and lag phases were estimated using linear regression. Diverse secondary models were assessed for their ability to describe the radial growth rate as a function of individual and combined effect of aw and temperature. Optimum radial growth rate ranged from 0.75±0.04 to 2.65±0.02mm/day for A. flavus and 1.77±0.10 to 2.50±0.10mm/day for A. parasiticus based on the Rosso cardinal estimations. Despite the growth failure of some isolates at marginal conditions, all the studied models showed good performance to predict the growth rates. Validation of the models was performed on independently derived data. The bias factors (0.73-1.03), accuracy factors (0.97-1.36) and root mean square error (0.050-0.278) show that the examined models are conservative predictors of the colony growth rate of both fungal species in black peppers. The Rosso cardinal model can be recommended to describe the individual aw effect while the extended Gibson model was the best model for describing the combined effect of aw and temperature on the growth rate of both fungal species in peppercorns. Temperature optimum ranged from 30 to 33°C, while aw optimum was 0.87-0.92 as estimated by multi-factorial cardinal model for both species. The estimated minimum temperature and aw for A. flavus and A. parasiticus for growth were 11-16°C and 0.73-0.76, respectively, hence, achieving these conditions should be considered during storage to prevent the growth of these mycotoxigenic fungal species in black peppercorns. Following the growth study, production of mycotoxins (aflatoxins B1, B2, G1, G2, sterigmatocystin and O-methyl sterigmatocystin (OMST)) was quantified using LC-MS/MS. Very small

  17. Microsatellite typing of Aspergillus flavus from clinical and environmental avian isolates.

    Science.gov (United States)

    Hadrich, Inès; Drira, Inès; Neji, Sourour; Mahfoud, Nedia; Ranque, Stéphane; Makni, Fattouma; Ayadi, Ali

    2013-01-01

    Aspergillosis is one of the most common causes of death in captive birds. Aspergillus fumigatus accounts for approximately 95 % of aspergillosis cases and Aspergillus flavus is the second most frequent organism associated with avian infections. In the present study, the fungi were grown from avian clinical samples (post-mortem lung material) and environmental samples (eggs, food and litter). Microsatellite markers were used to type seven clinical avian isolates and 22 environmental isolates of A. flavus. A. flavus was the only species (28 % prevalence) detected in the avian clinical isolates, whereas this species ranked third (19 %) after members of the genera Penicillium (39 %) and Cladosporium (21 %) in the environmental samples. Upon microsatellite analysis, five to eight distinct alleles were detected for each marker. The marker with the highest discriminatory power had eight alleles and a 0.852 D value. The combination of all six markers yielded a 0.991 D value with 25 distinct genotypes. One clinical avian isolate (lung biopsy) and one environmental isolate (egg) shared the same genotype. Microsatellite typing of A. flavus grown from avian and environmental samples displayed an excellent discriminatory power and 100 % reproducibility. This study showed a clustering of clinical and environmental isolates, which were clearly separated. Based upon these results, aspergillosis in birds may be induced by a great diversity of isolates.

  18. Trailing or paradoxical growth of Aspergillus flavus exposed to caspofungin is independent of genotype.

    Science.gov (United States)

    Hadrich, Inès; Neji, Sourour; Makni, Fattouma; Ayadi, Ali; Elloumi, Moez; Ranque, Stéphane

    2014-12-01

    There are limited data on in vitro susceptibility testing of echinocandins against Aspergillus species. The objective of this study was to describe the phenotypes of Aspergillus flavus observed on exposure to caspofungin in vitro and to test whether these phenotypes were associated with A. flavus genotypes. The caspofungin MICs of 37 A. flavus clinical isolates collected from 14 patients with invasive aspergillosis were determined using Etest assays. Caspofungin MICs ranged from 0.012 to 0.064 mg l(-1); the modal MIC was 0.023 mg l(-1) and the MIC₅₀ and MIC₉₀ were 0.032 and 0.064 mg l(-1), respectively. A clear end point was noted in 24 (65 %) isolates, whereas seven (19 %) displayed a trailing effect and six (16 %) showed paradoxical growth when exposed to caspofungin. In these A. flavus isolates, the absence of a significant population structure or genetic differentiation indicated that trailing or paradoxical growth phenotypes were independent of microsatellite genotype.

  19. Effects of Citral on Aspergillus flavus Spores by Quasi-elastic Light Scattering and Multiplex Microanalysis Techniques

    Institute of Scientific and Technical Information of China (English)

    Man LUO; Li-Ke JIANG; Yao-Xiong HUANG; Ming XIAO; Bo LI; Guo-Lin ZOU

    2004-01-01

    Citral refined from Litsea cubeba oil has been found to have a strong influence on fungi,especially Aspergillus flavus. Multiplex microanalysis and quasi-elastic light scattering techniques were applied to study the effects of citral on Aspergillus flavus spores from the levels of membrane, organelle and intracellular macromolecule. It was found that citral injured the wall and the membrane of A. flavus spore,resulting in decrease of its elasticity. After entering the cell, citral not only influenced the genetic expression of mitochondrion reduplication and its morphology, but also changed the aggregation of protein-like macromolecules. As a result, cells, organelles and macromolecules lost their normal structures and functions,eventually leading to the loss of germination ability of A. flavus spores. Since Litsea cubeba oil as food additive and antifungal agent is safe and less poisonous, it is important to elucidate the inhibitory mechanisms of Litsea cubeba oil on the germination ability ofA. flavus spore.

  20. Characterization of Iranian nonaflatoxigenic strains of Aspergillus flavus based on microsatellite-primed PCR.

    Science.gov (United States)

    Houshyarfard, Mahmoud; Rouhani, Hamid; Falahati-Rastegar, Mahrokh; Malekzadeh-Shafaroudi, Saeid; Mahdikhani-Moghaddam, Esmat

    2015-01-01

    Out of fifty-two Iranian nonaflatoxigenic strains of Aspergillus flavus,collected from various substrates (soil and kernel) and sources (peanut, corn and pistachio), fifteen representatives were selected according to their different geographical origins (six provinces: Guilan and Golestan, Ardebil, Fars, Kerman and Semnan) and vegetative compatibility groups (VCGs, IR1 to IR15) for microsatellite-primed PCR analysis. Two inter-simple sequence repeat (ISSR) primers AFMPP and AFM13 were used to determine polymorphism and the relationship among strain isolates. A. flavus isolates were identified by their morphologies and their identities were confirmed by PCR amplification using the specific primer pair ITS1 and ITS4. The results revealed variations in the percentages of polymorphisms. In the ISSR analysis, primers AFMPP and AFM13 generated a total of 18 and 23 amplicons among the fungal strains, out of which 12 (66.7%) and 22 (95.7%) were polymorphic, respectively. Cluster analysis of the ISSR data was carried out using 1 D DNA gel image analysis. The two dendrograms obtained through these markers showed six different clusterings of testing nonaflatoxigenic A. flavus L strains, but we noticed that some clusters were different in some cases. The microsatellite-primed PCR data revealed that the Iranian nonaflatoxigenic isolates of A. flavus were not clustered according to their origins and sources. This study is the first to characterize Iranian nonaflatoxigenic isolates of A. flavus using ISSR markers.

  1. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Palumbo, Jeffrey D; O'Keeffe, Teresa L; Abbas, Hamed K

    2007-07-01

    Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid coculture against A. flavus and on agar media against A. flavus and F. verticillioides. We identified 221 strains that inhibited growth of both fungi. These bacteria were further differentiated by their production of extracellular enzymes that hydrolyzed chitin and yeast cell walls and by production of antifungal metabolites. Based on molecular and nutritional identification of the bacterial strains, the most prevalent genera isolated from rhizosphere samples were Burkholderia and Pseudomonas, and the most prevalent genera isolated from nonrhizosphere soil were Pseudomonas and Bacillus. Less prevalent genera included Stenotrophomonas, Agrobacterium, Variovorax, Wautersia, and several genera of coryneform and enteric bacteria. In quantitative coculture assays, strains of P. chlororaphis and P. fluorescens consistently inhibited growth of A. flavus and F. verticillioides in different media. These results demonstrate the potential for developing individual biocontrol agents for simultaneous control of the mycotoxigenic A. flavus and F. verticillioides.

  2. Characterization of Iranian Nonaflatoxigenic Strains of Aspergillus flavus Based on Microsatellite-primed PCR

    Directory of Open Access Journals (Sweden)

    Mahmoud Houshyarfard

    2015-03-01

    Full Text Available Out of fifty-two Iranian nonaflatoxigenic strains of Aspergillus flavus, which were collected from various substrates (soil and kernel and sources (peanut, corn and pistachio, fifteen representatives were selected according to their different geographical origins (six provinces: Guilan and Golestan, Ardebil, Fars, Kerman and Semnan and vegetative compatibility groups (VCGs, IR1 to IR15 for microsatellite-primed PCR analysis. Two inter-simple sequence repeat (ISSR primers AFMPP and AFM13 were used to determine the polymorphism and the relationship among strain isolates. The A. flavus isolates were identified by their morphologies and their identities were confirmed by PCR amplification using the specific primer pair ITS1 and ITS4. The results revealed variations in the percentages of polymorphisms. In ISSR analysis, primers AFMPP and AFM13 generated a total of 18 and 23 amplicons among the fungal strains, which 12 (66.7% and 22 (95.7% were polymorphic, respectively. Cluster analysis of ISSR data was carried out by using 1 D DNA gel image analysis. The two dendrograms obtained through these markers showed six different clustering of testing nonaflatoxigenic A. flavus L strains, but we noted that some clusters were different in some cases. The microsatellite-primed PCR data revealed that the Iranian nonaflatoxigenic isolates of A. flavus were not clustered based on their origins and sources. This study is the first to characterize Iranian nonaflatoxigenic isolates of A. flavus using ISSR markers.

  3. Phenotypic differentiation of species from Aspergillus section Flavi on neutral red desiccated coconut agar

    DEFF Research Database (Denmark)

    Atanda, O. O.; Adetunji, M. C.; Ezekiel, C. N.

    2014-01-01

    /intensity of fluorescence and aflatoxin production were assessed. The isolates included 10 Aspergillus minisclerotigenes strains, 11 non-aflatoxigenic Aspergillus flavus L strains, 29 aflatoxigenic A. flavus L strains and 20 strains each of Aspergillus parasiticus and Aspergillus parvisclerotigenus. The NRDCA medium......In order to facilitate easy and rapid identification of aflatoxin-producing Aspergillus species, the phenotypic traits of Aspergillus section Flavi isolates were examined on neutral red desiccated coconut agar (NRDCA). Phenotype variations in colony morphology and the relationship between colour...... isolates produced aflatoxins in the culture medium in varying quantities. Plates of aflatoxigenic A. flavus L strains fluoresced bluish purple/lavender around the colony on the obverse and pastel blue on the reverse side due to aflatoxin B production while those of A. minisclerotigenes, A. parasiticus...

  4. High resolution genotyping of clinical Aspergillus flavus isolates from India using microsatellites.

    Directory of Open Access Journals (Sweden)

    Shivaprakash M Rudramurthy

    Full Text Available BACKGROUND: Worldwide, Aspergillus flavus is the second leading cause of allergic, invasive and colonizing fungal diseases in humans. However, it is the most common species causing fungal rhinosinusitis and eye infections in tropical countries. Despite the growing challenges due to A. flavus, the molecular epidemiology of this fungus has not been well studied. We evaluated the use of microsatellites for high resolution genotyping of A. flavus from India and a possible connection between clinical presentation and genotype of the involved isolate. METHODOLOGY/PRINCIPAL FINDINGS: A panel of nine microsatellite markers were selected from the genome of A. flavus NRRL 3357. These markers were used to type 162 clinical isolates of A. flavus. All nine markers proved to be polymorphic displaying up to 33 alleles per marker. Thirteen isolates proved to be a mixture of different genotypes. Among the 149 pure isolates, 124 different genotypes could be recognized. The discriminatory power (D for the individual markers ranged from 0.657 to 0.954. The D value of the panel of nine markers combined was 0.997. The multiplex multicolor approach was instrumental in rapid typing of a large number of isolates. There was no correlation between genotype and the clinical presentation of the infection. CONCLUSIONS/SIGNIFICANCE: There is a large genotypic diversity in clinical A. flavus isolates from India. The presence of more than one genotype in clinical samples illustrates the possibility that persons may be colonized by multiple genotypes and that any isolate from a clinical specimen is not necessarily the one actually causing infection. Microsatellites are excellent typing targets for discriminating between A. flavus isolates from various origins.

  5. 普洱茶发酵过程中外源接种黄曲霉产毒研究%Research on Aspergillus flavus Toxin-producing in Pu′er Tea Fermentation

    Institute of Scientific and Technical Information of China (English)

    李亚莉; 康冠宏; 杨丽源; 祝红昆; 李治滢; 周红杰

    2014-01-01

    以云南大叶种晒青茶为原料,接种产毒黄曲霉进行模拟普洱茶发酵试验,并在发酵结束时通过LC-MS/MS 法对茶样进行黄曲霉毒素检测,研究普洱茶发酵过程中黄曲霉的生长及产毒情况。结果表明,在普洱茶发酵过程中,接种的黄曲霉能在茶叶中生长繁殖,初期生长较快,但随发酵时间的延长,黄曲霉在茶叶中的生长明显受到抑制,其数量逐渐下降。发酵终止时,未在茶样中检测出黄曲霉毒素。%For the purpose of studying the Aspergillus flavus growth and toxin production in Pu′er tea fermentation, the Yunnan large-leaves solar-drying green tea was used as the raw material to fermentate by inoculating toxigenic Aspergillus flavus fungus in Pu′er tea. Aflatoxin was tested by LC-MS/MS method at the end of tea samples fermentation. The results showed that during the tea fermentation, Aspergillus flavus growth was observed in the initial fermentation. However, with the extension of Pu′er tea fermentation time, Aspergillus flavus growth were inhibited in the late fermentation, the number decreased gradually, while the end of fermentation, the aflatoxin was not detected in tea samples.

  6. Dillapiol and Apiol as specific inhibitors of the biosynthesis of aflatoxin G1 in Aspergillus parasiticus.

    Science.gov (United States)

    Razzaghi-Abyaneh, Mehdi; Yoshinari, Tomoya; Shams-Ghahfarokhi, Masoomeh; Rezaee, Mohammad-Bagher; Nagasawa, Hiromichi; Sakuda, Shohei

    2007-09-01

    Dillapiol was isolated from the essential oil of dill as a specific inhibitor of aflatoxin G1 production. It inhibited aflatoxin G1 production by Aspergillus parasiticus with an IC50 value of 0.15 microM without inhibiting aflatoxin B1 production or fungal growth. Apiol and myristicin, congeners of dillapiol, showed similar activity with IC50 values of 0.24 and 3.5 microM, respectively.

  7. Action of phosphine on production of aflatoxins by various Aspergillus strains isolated from foodstuffs.

    Science.gov (United States)

    Leitao, J; de Saint-Blanquat, G; Bailly, J R

    1987-01-01

    Phosphine is a food fumigant, used until now as an insecticide and rodenticide. The present work researches the action of phosphine treatment on growth and aflatoxin production of 23 Aspergillus strains. Production of aflatoxins B1, B2, G1, and G2 decreased in almost all cases by a ratio of 10 to 100. Phosphine treatment therefore seems favorable to prevent growth of various Aspergillus strains, in the context of keeping food safe. PMID:3426212

  8. Genome Sequences of Eight Aspergillus flavus spp. and One A. parasiticus sp., Isolated From Peanut Seeds in Georgia

    Science.gov (United States)

    Aspergillus flavus and A. parasiticus fungi, carcinogen-mycotoxins producers, infect peanut seeds, causing considerable impact on both human health and the economy. Here we report 9 genome sequences of Aspergillus spp. isolated from peanut seeds. The information obtained will allow conducting biodiv...

  9. Cryptic Sexuality Influences Aflatoxigenicity in Aspergillus parasiticus and A. flavus

    Science.gov (United States)

    Ascomycetous fungi of the genus Aspergillus comprise a wide variety of species of biotechnological importance as well as pathogens and toxin producers. Recent studies report A. fumigatus to be heterothallic and possibly undergoing sexual reproduction. We therefore investigated whether compatible mat...

  10. Association between Aflatoxin M1 and Liver Disease in HBV/HCV Infected Persons in Ghana

    OpenAIRE

    2016-01-01

    Aflatoxins are produced by the fungi Aspergillus flavus and Aspergillus parasiticus and are common food contaminants in tropical developing countries. Extensive aflatoxin consumption has been shown to be highly associated with liver disease. A case-control study was conducted to determine the association between aflatoxin and liver disease in Kumasi, Ghana. A questionnaire was administered to examine socio-demographic characteristics and food storage and consumption practices, and urine sampl...

  11. Rapid detection of Aspergillus flavus in rice using biofunctionalized carbon nanotube field effect transistors.

    Science.gov (United States)

    Villamizar, Raquel A; Maroto, Alicia; Rius, F Xavier

    2011-01-01

    In the present study, we have used carbon nanotube field effect transistors (FET) that have been functionalized with protein G and IgG to detect Aspergillus flavus in contaminated milled rice. The adsorbed protein G on the carbon nanotubes walls enables the IgG anti-Aspergillus antibodies to be well oriented and therefore to display full antigen binding capacity for fungal antigens. A solution of Tween 20 and gelatine was used as an effective blocking agent to prevent the non-specific binding of the antibodies and other moulds and also to protect the transducer against the interferences present in the rice samples. Our FET devices were able to detect at least 10 μg/g of A. flavus in only 30 min. To evaluate the selectivity of our biosensors, Fusarium oxysporum and Penicillium chrysogenum were tested as potential competing moulds for A. flavus. We have proved that our devices are highly selective tools for detecting mycotoxigenic moulds at low concentrations in real samples.

  12. In Vitro Susceptibility of Aflatoxigenic and Non-aflatoxigenic Aspergillus flavus Strains to Conventional Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Mahmoud Mahmoudi

    2012-12-01

    Full Text Available Presently appearance of resistance to antifungal agents among Aspergillus species is dramatically increasing. The objective of this study was to look at the in vitro activities of antifungal drugs against Iranian clinical (from nail, bronchoalveolar lavage, paranasal sinus isolated A. flavus strains. The susceptibility of 45 aflatoxigenic and non-aflatoxigenic Aspergillus flavus strains were evaluated to six antifungal agents (caspofungin, itraconazole, amphotericin B, ketoconazole, fluconazole, nystatin using CLSI M38-A2 broth microdilution method. The results indicated that 57.1%, 28.6% of aflatoxigenic and 25.8%, 6.5% of non-aflatoxigenic isolates were susceptible to caspofungin, amphotericin B respectively. All isolates but one aflatoxigenic strain were sensitive to ketoconazole. All 45 strains showed to be resistant to nystatin. Also 64.28%, 92.9% of aflatoxigenic and 64.51%, 100% of non-aflatoxigenic isolates were resistant to fluconazole and itraconazole in ranking order. There was no statistically significant difference between the susceptibilities of aflatoxigenic and non-aflatoxigenic strains of A. flavus to tested antifungal agents

  13. Transcriptional Profiles Uncover Aspergillus flavus-Induced Resistance in Maize Kernels

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Chen

    2011-06-01

    Full Text Available Aflatoxin contamination caused by the opportunistic pathogen A. flavus is a major concern in maize production prior to harvest and through storage. Previous studies have highlighted the constitutive production of proteins involved in maize kernel resistance against A. flavus’ infection. However, little is known about induced resistance nor about defense gene expression and regulation in kernels. In this study, maize oligonucleotide arrays and a pair of closely-related maize lines varying in aflatoxin accumulation were used to reveal the gene expression network in imbibed mature kernels in response to A. flavus’ challenge. Inoculated kernels were incubated 72 h via the laboratory-based Kernel Screening Assay (KSA, which highlights kernel responses to fungal challenge. Gene expression profiling detected 6955 genes in resistant and 6565 genes in susceptible controls; 214 genes induced in resistant and 2159 genes induced in susceptible inoculated kernels. Defense related and regulation related genes were identified in both treatments. Comparisons between the resistant and susceptible lines indicate differences in the gene expression network which may enhance our understanding of the maize-A. flavus interaction.

  14. Influence of herbicide glyphosate on growth and aflatoxin B1 production by Aspergillus section Flavi strains isolated from soil on in vitro assay.

    Science.gov (United States)

    Barberis, Carla L; Carranza, Cecilia S; Chiacchiera, Stella M; Magnoli, Carina E

    2013-01-01

    The effect of six glyphosate concentrations on growth rate and aflatoxin B1 (AFB1) production by Aspergillus section Flavi strains under different water activity (aW) on maize-based medium was investigated. In general, the lag phase decreased as glyphosate concentration increased and all the strains showed the same behavior at the different conditions tested. The glyphosate increased significantly the growth of all Aspergillus section Flavi strains in different percentages with respect to control depending on pesticide concentration. At 5.0 and 10 mM this fact was more evident; however significant differences between both concentrations were not observed in most strains. Aflatoxin B1 production did not show noticeable differences among different pesticide concentrations assayed at all aW in both strains. This study has shown that these Aspergillus flavus and A. parasiticus strains are able to grow effectively and produce aflatoxins in high nutrient status media over a range of glyphosate concentrations under different water activity conditions.

  15. Survey of Aspergillus and Aflatoxin in Groundnuts (Arachis hypogaea L.) and Groundnut Cake in Eastern Ethiopia

    Science.gov (United States)

    Groundnut (Arachis hypogaea L.) is an important cash and food crop in eastern Ethiopia. The lack of awareness and data on Aspergillus and aflatoxin contamination of groundnut and groundnut food products in the area are lacking. Therefore, this study was conducted to: i) assess major Aspergillus spec...

  16. Occurrence of aflatoxins and aflatoxin-producing Aspergillus spp. associated with groundnut production in subsistence farming systems in South Africa

    NARCIS (Netherlands)

    Ncube, E.; Flett, B.C.; Waalwijk, C.; Viljoen, A.

    2010-01-01

    Abstract: Author: Ncube, E. Flett, B.C. Waalwijk, C. Viljoen, A. Vol 27 Issue 2 Publication: 2010 Page: 195-198 : Aflatoxins are carcinogenic mycotoxins produced by Aspergillus spp. in groundnut kernels. Forty-six groundnut samples were collected from subsistence farmers in three provinces of South

  17. Aspergillus flavus: A potential Bioremediator for oil contaminated soils

    Directory of Open Access Journals (Sweden)

    Y.Avasn Maruthi

    2013-02-01

    Full Text Available Biodegradation is cost-effective, environmentally friendly treatment for oily contaminated sites by the use of microorganisms. In this study, laboratory experiments were conducted to establish the performance of fungal isolates in degradation of organic compounds contained in soils contaminated with petrol and diesel. As a result of the laboratory screening, two natural fungal strains capable of degrading total organic carbons (TOC were prepared from isolates enriched from the oil contaminated sites. Experiments were conducted in Erlenmeyer flasks under aerobic conditions, with TOC removal percentage varied from 0.7 to 32% depending on strains type and concentration. Strains Phanerocheate chrysosporium and Aspergillus niger exhibited the highest TOC removal percentage of 32 and 21%, respectively, before nutrient addition. TOC removal rate was enhanced after addition of nutrients to incubated flasks. The highest TOC reduction (45% was estimated after addition of combination of nitrogen, phosphorus and sulphur to Phanerocheate chrysosporium strains. Results of experimental work carried out elucidate that the fungi like Phanerocheate chrysosporium and Aspergillus niger were capabled of producing enzymes at a faster rate to decompose the substrate hydrocarbon and released more CO2 and hence these potential fungi can be utilized effectively as agents of biodegradation in waste recycling process and Bioremediation of oil contaminated sites.

  18. 植酸对黄曲霉菌(Aspergillus flavus)糖化力的影响%Effects of Phytic Acid on Saccharification of Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    汪志君; 夏艳秋; 方维明; 朱强

    2003-01-01

    该文通过添加不同浓度的植酸于黄曲霉菌(Aspergillus flavus)培养基中,用不同添加方式,于不同生长时刻测定黄曲霉菌糖化力,研究植酸对黄曲霉菌糖化力的影响.结果表明加入植酸后黄曲霉菌糖化力均有很大提高,可为工业生产带来可观的经济效益.植酸最佳作用浓度范围是0.20%~0.25%,发酵24h糖化力最大可提高44.32%.

  19. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  20. Degradation of polyurethane by Aspergillus flavus (ITCC 6051) isolated from soil.

    Science.gov (United States)

    Mathur, Garima; Prasad, Ramasare

    2012-07-01

    The present study deals with the isolation of fungi from soil with the ability to degrade polyurethane (PU). A pure fungal isolate was analyzed for its ability to utilize PU as a sole carbon source in shaking culture for 30 days. Incubation of PU with Aspergillus flavus resulted in 60.6% reduction in weight of PU. The scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR) results showed certain changes on the surface of PU film and formation of some new intermediate products after polymer breakdown. Thermogravimetric curves showed changes between the thermal behavior of the samples that were inoculated with A. flavus and control. FTIR spectra showed detectable changes in control and incubated samples, suggesting that degradation occurs, with the decreased intensity of band at 1,715 cm(-1), corresponding to ester linkages. We have identified an extracellular esterase activity which might be responsible for the polyurethanolytic activity.

  1. 75 FR 9596 - Notice of Filing of a Pesticide Petition for Residues of a Aspergillus flavus AF36 on Corn Food...

    Science.gov (United States)

    2010-03-03

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Notice of Filing of a Pesticide Petition for Residues of a Aspergillus flavus AF36 on Corn Food... residues of the antifungal ] agent, Aspergillus flavus AF36, in or on corn food and feed commodities....

  2. Toxicity, analgesic and sedative potential of crude extract of soil-borne phytopathogenic fungi Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2016-11-01

    Full Text Available Background: Aspergillus flavus is one of the most abundant mold present around the world. The present study was conducted to investigate the acute toxicity, analgesic and sedative effect of the crude extract obtained from soil borne fungi A. flavus. Methods: The fungi was isolated from soil samples and identified morphologically and microscopically. The growth condition i.e. media, temperature, pH, and incubation period were optimized. In these optimized growth condition, A. flavus was grown in batch culture in shaking incubator. Crude contents were extracted by using ethyl acetate solvent. Crude secondary metabolites were screened for acute toxicity, analgesic and sedative effect. Results: Upon completion of the experiment, blood was collected from the tail vein of albino mice, and different haematological tests were conducted. White blood cells counts displayed a slight increase (10.6× 109/L above their normal range (0.8–6.8 × 109/L, which may be due to the increment in the number of lymphocytes or granulocytes. However, the percentage of lymphocytes was much lower (17.7%, while the percentage of the granulocytes was higher (61.4% than its normal range (8.6–38.9%. A reduction in the mean number of writhing in the different test groups was caused by the application of the crude ethyl acetate extract through the i.p. route at different doses (50, 100, and 150 mg/kg body weight. The results of our investigation showed the EtOAc extract of A. flavus can cause a significant sedative effect in open field. Conclusion: It was concluded from the present study that the A. flavus has the potential to produce bioactive metabolites which have analgesic and sedative effect.

  3. ZnS semiconductor quantum dots production by an endophytic fungus Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Uddandarao, Priyanka, E-mail: uddandaraopriyanka@gmail.com; B, Raj Mohan, E-mail: rajmohanbala@gmail.com

    2016-05-15

    Graphical abstract: - Highlights: • Endophytic fungus Aspergillus flavus isolated from a medicinal plant Nothapodytes foetida was used for the synthesis of quantum dots. • Morris-Weber kinetic model and Lagergren's pseudo-first-order rate equation were used to study the biosorption kinetics. • Polycrystalline ZnS quantum dots of 18 nm and 58.9 nm from TEM and DLS, respectively. - Abstract: The development of reliable and eco-friendly processes for the synthesis of metal sulphide quantum dots has been considered as a major challenge in the field of nanotechnology. In the present study, polycrystalline ZnS quantum dots were synthesized from an endophytic fungus Aspergillus flavus. It is noteworthy that apart from being rich sources of bioactive compounds, endophytic fungus also has the ability to mediate the synthesis of nanoparticles. TEM and DLS revealed the formation of spherical particles with an average diameter of about 18 nm and 58.9 nm, respectively. The ZnS quantum dots were further characterized using SEM, EDAX, XRD, UV–visible spectroscopy and FTIR. The obtained results confirmed the synthesis of polycrystalline ZnS quantum dots and these quantum dots are used for studying ROS activity. In addition this paper explains kinetics of metal sorption to study the role of biosorption in synthesis of quantum dots by applying Morris-Weber kinetic model. Since Aspergillus flavus is isolated from a medicinal plant Nothapodytes foetida, quantum dots synthesized from this fungus may have great potential in broad environmental and medical applications.

  4. Hydrophobic Effect of Amphiphilic Derivatives of Chitosan on the Antifungal Activity against Aspergillus flavus and Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Vera Ap. de Oliveira Tiera

    2013-04-01

    Full Text Available Low molecular weight amphiphilic derivatives of chitosan were synthesized, characterized and their antifungal activities against Aspergillus flavus and Aspergillus parasiticus were tested. The derivatives were synthesized using as starting material a deacetylated chitosan sample in a two step process: the reaction with propyltrimethyl-ammonium bromide (Pr, followed by reductive amination with dodecyl aldehyde. Aiming to evaluate the effect of the hydrophobic modification of the derivatives on the antifungal activity against the pathogens, the degree of substitution (DS1 by Pr groups was kept constant and the proportion of dodecyl (Dod groups was varied from 7 to 29% (DS2. The derivatives were characterized by 1H-NMR and FTIR and their antifungal activities against the pathogens were tested by the radial growth of the colony and minimum inhibitory concentration (MIC methods. The derivatives substituted with only Pr groups exhibited modest inhibition against A. flavus and A. parasiticus, like that obtained with deacetylated chitosan. Results revealed that the amphiphilic derivatives grafted with Dod groups exhibited increasing inhibition indexes, depending on polymer concentration and hydrophobic content. At 0.6 g/L, all amphiphilic derivatives having from 7.0 to 29% of Dod groups completely inhibited fungal growth and the MIC values were found to decrease from 4.0 g/L for deacetylated chitosan to 0.25–0.50 g/L for the derivatives. These new derivatives open up the possibility of new applications and avenues to develop effective biofungicides based on chitosan.

  5. Biotransformation of chalcones by the endophytic fungus Aspergillus flavus isolated from Paspalum maritimum trin

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Marivaldo J.C.; Nunes, Fatima M.; Bitencourt, Heriberto R.; Borges, Fabio C.; Guilhon, Giselle M.S.P.; Arruda, Mara S.P.; Marinho, Andrey M. R.; Santos, Alberdan S.; Alves, Claudio N.; Santos, Lourivaldo S., E-mail: lss@ufpa.b [Universidade Federal do Para (IQ/FEQ/UFPA), Belem, PA (Brazil). Inst. de Tecnologia. Faculdade de Engenharia Quimica; Brasil, Davi S.B. [Universidade Federal do Para (PPGQ/IQ/UFPA), Belem, PA (Brazil). Inst. de Quimica. Programa de Pos-Graduacao em Quimica

    2011-07-01

    The fungus Aspergillus flavus isolated as endophytic of the plant Paspalum maritimum Trin. was evaluated for its potential application in biotransformation reactions. The compounds chalcone (1), 3,4,5-trimethoxychalcone (2) and 2,3,4,4'-tetramethoxy chalcone (3) were biotransformed, respectively, in dihydrochalcone (4), 3,4,5-trimethoxydihydrochalcone (5) and 2,3,4,4'-tetramethoxydihydrochalcone (6). The structures were elucidated by spectroscopic methods including 1D and 2D NMR techniques, and MS analysis. The dihydrochalcones 5 and 6 are new compounds. (author)

  6. Aflatoxin contamination of corn under different agro-environmental conditions and biocontrol applications

    Science.gov (United States)

    Biological control of the fungus Aspergillus flavus has been shown to be effective in reducing aflatoxin contamination in corn. This study compared field application of a bioplastic-based formulation for delivering atoxigenic A. flavus isolates in Northern Italy and the Mississippi Delta. RESULTS:...

  7. Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224 as biological controls for Aspergillus flavus strains.

    Science.gov (United States)

    Bueno, Dante J; Silva, Julio O; Oliver, Guillermo; González, Silvia N

    2006-10-01

    The effect of two species of lactobacilli, Lactobacillus casei CRL 431 and Lactobacillus rhamnosus CRL 1224, on growth of different Aspergillus flavus strains was determined. A. flavus strains (Ap, TR2, or CF80) were grown in LAPTg broth at 37 degrees C for 7 days as a single culture and in association with L. casei CRL 431 or L. rhamnosus CRL 1224 at initial inoculum ratios of 1:1, 1:10, and 1:100. In most cases, the mixed cultures had a lower fungal growth and a lower pH than the control cultures. Mycelial dry weight was reduced to 73 and 85% using L. casei CRL 431 and L. rhamnosus CRL 1224, respectively. The pH decrease in mixed cultures when the fungal mycelial dry weight is reduced may play an important role in inhibition. The number of viable bacteria was variably affected by fungal growth. These results indicate that L. casei CRL 431 and L. rhamnosus CRL 1224 may be useful as potential biocontrol agent against A. flavus.

  8. INFLUENCE OF ENVIRONMENTAL FACTORS ON THE GROWTH OF BUILDING DETERIORATING FUNGI: ASPERGILLUS FLAVUS AND PENICILLIUM CHRYSOGENUM

    Directory of Open Access Journals (Sweden)

    Padma Singh* and Mamta Chauhan

    2013-01-01

    Full Text Available The performance of whole building depends on many factors: structure, coating, environment, climate, type of use, service etc. Fungi are essential for the survival of our global ecology but they may pose a significant threat to the health of occupants when they grow in our buildings. The most important factor that affect microbial growth on buildings materials are temperature, moisture and nutrients. The moisture conditions connected with temperature and exposure time are the most important factor for the development of biological problems and damage in buildings. In vitro studies were conducted on the effect of temperature, pH levels and moisture on the growth of Aspergillus flavus and Penicillium chrysogenum. Maximum growth was observed on pH level 6 and 7 against A. flavus and P. chrysogenum respectively after 12 days. The most suitable temperature for the growth of A. flavus and P. chrysogenum was observed on 25°C and 30°C respectively. The fungus showed maximum growth at 90% relative humidity.

  9. Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius

    DEFF Research Database (Denmark)

    Massi, Fernanda Pelisson; Cameiro Vieira, Maria Lucia; Sartori, Daniele

    2014-01-01

    The exploitation of the Brazil nut is one of the most important activities of the extractive communities of the Amazon rainforest. However, its commercialization can be affected by the presence of aflatoxins produced by fungi, namely Aspergillus section Flavi. In the present study, we investigate...... in Brazil nuts of A. pseudonomius. The G-type aflatoxins and the mycotoxin tenuazonic acid are reported here for the first time in A. pseudonomius....

  10. Aspergillus flavus induces granulomatous cerebral aspergillosis in mice with display of distinct cytokine profile.

    Science.gov (United States)

    Anand, R; Shankar, J; Tiwary, B N; Singh, A P

    2015-04-01

    Aspergillus flavus is one of the leading Aspergillus spp. resulting in invasive aspergillosis of central nervous system (CNS) in human beings. Immunological status in aspergillosis of central nervous system remains elusive in case of both immunocompetent and immunocompromised patients. Since cytokines are the major mediators of host response, evaluation of disease pathology along with cytokine profile in brain may provide snapshots of neuro-immunological response. An intravenous model of A. flavus infection was utilized to determine the pathogenicity of infection and cytokine profile in the brain of male BALB/c mice. Enumeration of colony forming units and histopathological analyses were performed on the brain tissue at distinct time periods. The kinetics of cytokines (TNF-α, IFN-γ, IL-12/IL-23p40, IL-6, IL-23, IL-17A and IL-4) was evaluated at 6, 12, 24, 48, 72 and 96h post infection (hPI) in brain homogenates using murine cytokine specific enzyme linked immunosorbent assay. Histological analysis exhibited the hyphae with leukocyte infiltrations leading to formation of granulomata along with ischemia and pyknosis of neurons in the brain of infected mice. Diseased mice displayed increased secretion of IFN-γ, IL-12p40 and IL-6 with a concomitant reduction in the secretion of Th2 cytokine IL-4, and Th17 promoting cytokine, IL-23 during the late phase of infection. A.flavus induced inflammatory granulomatous cerebral aspergillosis in mice, characterized by a marked increase in the Th1 cytokines and neurons undergoing necrosis. A marked increase in necrosis of neurons with concurrent inflammatory responses might have led to the host mortality during late phase of infection.

  11. Evaluation of African-bred maize germplasm lines for resistance to aflatoxin accumulation

    Science.gov (United States)

    Aflatoxins, produced by the fungus Aspergillus flavus, contaminate maize grain and threatens human food and feed safety. Plant resistance is considered the best strategy for reducing aflatoxin accumulation. Six maize germplasm lines, TZAR101-TZAR106, were released by the IITA-SRRC maize breeding col...

  12. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale

    Science.gov (United States)

    The worldwide costs associated with aflatoxin monitoring and crop losses are in the hundreds of millions of dollars. Aflatoxins also account for considerable health risks, even in countries where food contamination is regulated. Aspergillus flavus and A. parasiticus are the most common agents of af...

  13. Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa.

    Science.gov (United States)

    Iheanacho, Henry E; Njobeh, Patrick B; Dutton, Francis M; Steenkamp, Paul A; Steenkamp, Lucia; Mthombeni, Julian Q; Daru, Barnabas H; Makun, Anthony H

    2014-12-01

    Isolation of filamentous species of two Aspergillum genera from compound feeds produced in South Africa, and subsequent extraction of their individual DNA in this study, presents a simple but rapid molecular procedure for high through-put analysis of the individual morphological forms. DNA was successfully isolated from the Aspergillus spp. from agar cultures by use of a commercial kit. Agarose gel electrophoresis fractionation of the fungi DNA, showed distinct bands. The DNA extracted by this procedure appears to be relatively pure with a ratio absorbance at 260 and 280 nm. However, the overall morphological and molecular data indicated that 67.5 and 51.1% of feed samples were found to be contaminated with Aspergillus flavus and Aspergillus parasiticus, respectively, with poultry feed having the highest contamination mean level of 5.7 × 105 CFU/g when compared to cattle (mean: 4.0 × 106 CFU/g), pig (mean: 2.7 × 104 CFU/g) and horse (1.0 × 102 CFU) feed. This technique presents a readily achievable, easy to use method in the extraction of filamentous fungal DNA and it's identification. Hence serves as an important tool towards molecular study of these organisms for routine analysis check in monitoring and improving compound feed quality against fungal contamination.

  14. Evaluation of recycled bioplastic pellets and a sprayable formulation for application of an Aspergillus flavus biocontrol strain

    Science.gov (United States)

    Biocontrol of Aspergillus flavus using inoculated bioplastic granules has been proven to be effective under laboratory and field conditions. In the present study, the use of low-density pellets from recycled bioplastic as a biocontrol strain carrier was evaluated. Applying recycled bioplastic pell...

  15. Spinal osteomyelitis due to Aspergillus flavus in a child: a rare complication after haematopoietic stem cell transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Beluffi, Giampiero [Fondazione IRCCS Policlinico ' S.Matteo' , Section of Paediatric Radiology, Department of Radiodiagnosis, Pavia PV (Italy); Bernardo, Maria E.; Locatelli, Franco [University of Pavia, Fondazione IRCCS Policlinico ' S.Matteo' , Department of Paediatric Haematology/Oncology, Pavia (Italy); Meloni, Giulia [University of Pavia, Fondazione IRCCS Policlinico ' S.Matteo' , Institute of Radiology, Pavia (Italy); Spinazzola, Angelo [Fondazione IRCCS Policlinico ' S.Matteo' , Section of Paediatric Radiology, Department of Radiodiagnosis, Pavia PV (Italy); Ospedale Maggiore, Crema CR (Italy)

    2008-06-15

    We report the case of a child affected by acute myeloid leukaemia who was treated with allogeneic haematopoietic stem cell transplantation and developed cervicothoracic spinal osteomyelitis due to Aspergillus flavus. The diagnosis was difficult on a clinical basis, but made possible by conventional radiography and MRI. (orig.)

  16. Occurrence of toxigenic Aspergillus spp. and aflatoxins in selected food commodities of Asian origin sourced in the West of Scotland.

    Science.gov (United States)

    Ruadrew, Sayan; Craft, John; Aidoo, Kofi

    2013-05-01

    The occurrence of Aspergillus moulds and aflatoxins in 12 commercially-available dried foods of Asian origin were examined. All food samples, except green beans and three types of dried fruit, contained multiple genera of moulds of which Aspergillus (55%) was the most frequently detected. Penicillium (15%), Rhizopus (11%), Mucor (3%), Monascus (1%), Eurotium (1%) and unidentified (14%) were also observed. The occurrence of aflatoxigenic moulds, however, did not correspond with the occurrence of aflatoxins in foods. Aflatoxigenic Aspergillus spp. (39 isolates) were recovered from long grain rice, fragrant rice, peanuts, black beans and black pepper. The predominant Aspergillus species was A. parasiticus (61%) while Aspergillus oryzae (3%), Aspergillus utus (5%), Aspergillus niger (5%), Aspergillus ochraceus (3%) and unidentified (23%) were also observed. Long grain rice, fragrant rice, peanuts, black beans and black pepper were positive for Aspergillus but contained undetectable aflatoxins. In contrast, Jasmine brown rice and crushed chilli contained 14.7 and 11.4μg/kg of total aflatoxins, respectively, in the absence of Aspergillus so aflatoxigenic Aspergillus was present at some stage of food production. The results from this study emphasise the need for stricter control measures in reducing occurrence of aflatoxins in foods for export and domestic use.

  17. Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment.

    Science.gov (United States)

    Suhem, Kitiya; Matan, Narumol; Nisoa, Mudtorlep; Matan, Nirundorn

    2013-02-01

    This study aimed to optimize the operating parameters of cold atmospheric plasma treatment to inhibit the growth of Aspergillus flavus on agar media and brown rice cereal bars. The effects of argon plasma jet treatment on the growth of A. flavus on malt extract agar (MEA) at powers of 20 W and 40 W with exposure times at 5, 15 and 25 min were studied using response surface methodology (RSM) with a central composite face-centered (CCF) design. Multiple regression analysis indicated that plasma treatment at 40 W for 25 min is most effective for inhibiting growth of A. flavus on the agar medium. On brown rice cereal bars, plasma powered at 40 W for 20 min was capable of giving protection against A. flavus growth for up to 20 days under storage conditions of 25°C and 100% RH. These results demonstrated the potential of cold atmospheric plasma jet treatment to control mold growth on various food products.

  18. Development of a Nested-PCR detection for Bspergillus flavus Based on Aflatoxins Gene aflP%基于毒素编码基因aflp的黄曲霉菌nested-PCR检测

    Institute of Scientific and Technical Information of China (English)

    刘裴清; 蔡茂强; 李本金; 陈庆河; 翁启勇

    2015-01-01

    黄曲霉Aspergillusflavus 产生的黄曲霉毒素是一类毒性极强的物质,严重威胁到人类健康和经济发展,因此建立一套快速、准确、灵敏的黄曲霉检测方法就显得极为迫切。通过以aflP (GenBank:FN398191)为分子靶标,比较黄曲霉菌近缘种aflp的基因序列,以特异性序列为靶标设计2对PCR引物aflP-1-F/aflP-1-R和aflP-2-F/aflP-1-R,由此建立的PCR检测体系对7种黄曲霉菌、5种其他的曲霉菌、21种其他真菌 cDNA 进行扩增,结果只有在7种黄曲霉菌株中扩增出211 bp 的特异性条带,而其余参试菌株均无扩增产物。巢式PCR能使其检测灵敏度达到10 fg,检测灵敏度提高100倍。该检测体系能从人工接种和自然发病的花生和玉米样品中扩增到211 bp的特异片段,实现对黄曲霉菌的快速可靠检测。%Aspergillus flavus is a devastating pathogen for human health and economic development,for the aflatoxins produced by A. flavus has strong toxicity for humans and animals. Therefore,to establish a rapid, accurate and sensitivity detection system for A. flavus,we developed a nested polymerase chain reaction (PCR) based on the aflP (GenBank:FN398191 )gene. In the present study,aflP was used as a molecular target, alignment of the aflP region sequences with other sequences belonging to Aspergillus species closely related to A. flavus and other fungi was used to identify conserved and differing regions,and then two pairs of PCR primers (aflP-1-F/aflP-1-R and aflP-2-F/aflP-1-R)were developed. For specificity testing,DNA extracted from 7 A. flavus,5 different Aspergillus spp. and 21 other fungi were used,and our results showed that a 211bp of specific band can be amplified only in aflatoxins produced A. flavus strains. A nested PCR procedure using aflP-1-F/aflP-1-R as the first-round primers and the followed using aflP-2-F/aflP-1-R increased the detection sensitivity 100- fold to 10 fg. Furthermore,the afl

  19. In vitro susceptibility of 188 clinical and environmental isolates of Aspergillus flavus for the new triazole isavuconazole and seven other antifungal drugs

    NARCIS (Netherlands)

    Shivaprakash, M.R.; Geertsen, E.; Chakrabarti, A.; Mouton, J.W.; Meis, J.F.G.M.

    2011-01-01

    Recently isavuconazole, an experimental triazole agent, was found to be active against Aspergillus species. As Aspergillus flavus is the second-most common Aspergillus species isolated from human infection and the fungus has not been widely tested against the drug, we studied a large collection of c

  20. Effect of dietary intervention on the performance and biochemical indices of broilers challenged with Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    S. A. Bolu,

    2011-05-01

    Full Text Available A study was conducted to determine the effects of dietary interventions of vitamins A, C, methionine and lysine singly and their combination on broilers challenged with Aspergillus flavus. The interventions were Vitamins A and C (A+C, methionine and lysine (METH+LYS and their combination (A+C+METH+LYS. The experiment which was conducted for 8 weeks employed a completely randomized design. Feed intake, weight gain, nutrient retention and feed conversion efficiency were significantly influenced (P<0.05 by dietary supplementation of the Aspergillus challenged birds. Highest feed intake (42.81 g/bird/day was observe for Aspergillus challenged birds supplemented with A+C+METH+LYS which compared favourably with the positive control birds (42.48 g/bird/day. The lowest feed intake was observed for the negative control birds (Aspergillus challenged without dietary intervention. Weight gain was highest for the positive control bird (20.14 g/bird/day. This value was similar to the value obtained for Aspergillus challenged birds supplemented with A+C+METH+LYS. Lowest weight gain was observed in the negative control birds (12.44 g/bird/day. These birds also recorded significantly (P<0.05 lowest feed conversion efficiency (3.09. Haematological and serum indices showed no significant differences, however, higher lymphocytes values were observed in challenged birds with dietary intervention. As a general immune modulator, vitamins A and C with lysine and methionine may be an attractive alternative to the on-farm use of vaccines in poultry in the management of aspergillosis.

  1. Aflatoxin Accumulation in a Maize Diallel Cross

    Directory of Open Access Journals (Sweden)

    W. Paul Williams

    2015-06-01

    Full Text Available Aflatoxins, produced by the fungus Aspergillus flavus, occur naturally in maize. Contamination of maize grain with aflatoxin is a major food and feed safety problem and greatly reduces the value of the grain. Plant resistance is generally considered a highly desirable approach to reduction or elimination of aflatoxin in maize grain. In this investigation, a diallel cross was produced by crossing 10 inbred lines with varying degrees of resistance to aflatoxin accumulation in all possible combinations. Three lines that previously developed and released as sources of resistance to aflatoxin accumulation were included as parents. The 10 parental inbred lines and the 45 single crosses making up the diallel cross were evaluated for aflatoxin accumulation in field tests conducted in 2013 and 2014. Plants were inoculated with an A. flavus spore suspension seven days after silk emergence. Ears were harvested approximately 60 days later and concentration of aflatoxin in the grain determined. Parental inbred lines Mp717, Mp313E, and Mp719 exhibited low levels (3–12 ng/g of aflatoxin accumulation. In the diallel analysis, both general and specific combining ability were significant sources of variation in the inheritance of resistance to aflatoxin accumulation. General combining ability effects for reduced aflatoxin accumulation were greatest for Mp494, Mp719, and Mp717. These lines should be especially useful in breeding for resistance to aflatoxin accumulation. Breeding strategies, such as reciprocal recurrent selection, would be appropriate.

  2. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

    Science.gov (United States)

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B1, B2, G1 and G2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB1, B2, G1 and G2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species. PMID:28077976

  3. Aflatoxin and Ochratoxin Production by Aspergillus Species Under Ex Vivo Conditions

    Science.gov (United States)

    Aspergillus species are increasingly important human pathogens. It is not known whether toxic metabolites of many of these pathogenic species can act as virulence factors in aspergillosis. We examined isolates of aflatoxin and ochratoxin-producing species for toxin production in ‘near human’ condit...

  4. Efficacy of probiotic bacteria in reducing Aspergillus parasiticus aflatoxin production and hepatic cytotoxicity in vitro

    Science.gov (United States)

    Aspergillus parasiticus produces highly hepatocarcinogenic aflatoxins (AF) in grains, which are used as poultry feed ingredients. Contamination of poultry feed with AF is a major concern to the poultry industry due to serious economic losses stemming from poor performance and diminished egg hatchabi...

  5. Biosynthesis of fat in surface culture of a local strain of Aspergillus flavus.

    Science.gov (United States)

    Selim, M S; Attah, N K

    1979-01-01

    An Aspergillus flavus strain isolated from Egyptian soil produced fat in appreciable amounts. General evidence for the operation of the tricarboxylic acid cycle in this organism has been ascertained by the detection of citric, malic and fumaric acids in the metabolized culture solution. Maximum fat yield was attained after seven days of incubation. The lower intial pH value of the media favoured the fat obtained from the felts and raised its acid value. When the felts were sterilized in their acidic metabolism solutions increased the acid values of the fats over those of fats extracted from felts sterilized in distilled water. The felts autoclaved for the longest time produced the highest yields of fat with the highest free acidity. The employment of calcium carbonate in the nutrient solutions raised appreciably the acid values of the fats and suppressed the other metabolic activities.

  6. Control of Aspergillus flavus in maize with plant essential oils and their components.

    Science.gov (United States)

    Montes-Belmont, R; Carvajal, M

    1998-05-01

    The effects of 11 plant essential oils for maize kernel protection against Aspergillus flavus were studied. Tests were conducted to determine optimal levels of dosages for maize protection, effects of combinations of essential oils, and residual effects and toxicity of essential oils to maize plants. Principal constituents of eight essential oils were tested for ability to protect maize kernels. Essential oils of Cinnamomum zeylanicum (cinnamon), Mentha piperita (peppermint), Ocimum basilicum (basil), Origanum vulgare (origanum), Teloxys ambrosioides (the flavoring herb epazote), Syzygium aromaticum (clove), and Thymus vulgaris (thyme) caused a total inhibition of fungal development on maize kernels. Thymol and o-methoxycinnamaldehyde significantly reduced maize grain contamination. The optimal dosage for protection of maize varied from 3 to 8%. Combinations of C. zeylanicum with the remaining oils gave efficient control. A residual effect of C. zeylanicum was detected after 4 weeks of kernel treatment. No phytotoxic effect on germination and corn growth was detected with any of these oils.

  7. Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field

    Science.gov (United States)

    Two important mycotoxins, aflatoxin and fumonisin, are among the most potent naturally occurring carcinogens, contaminating maize (Zea mays L.) and affecting the crop yield and quality. Resistance of maize to pre-harvest mycotoxin contamination, specifically aflatoxin produced by Aspergillus flavus ...

  8. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor.

    Science.gov (United States)

    Battat, E; Peleg, Y; Bercovitz, A; Rokem, J S; Goldberg, I

    1991-05-01

    Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.

  9. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers

    Science.gov (United States)

    Sohbatzadeh, F.; Mirzanejhad, S.; Shokri, H.; Nikpour, M.

    2016-06-01

    The main objective of this study is to investigate the inactivation efficacy of cold streamers in a sealed package on pathogenic fungi Aspergillus flavus ( A. flavus) spores that artificially contaminated pistachio surface. To produce penetrating cold streamers, electric power supply was adapted to deposit adequate power into the package. The plasma streamers were generated by an alternating high voltage with carrier frequency of 12.5 kHz which was suppressed by a modulated pulsed signal at frequency of 110 Hz. The plasma exposition time was varied from 8 to 18 min to show the effect of the plasma treatment on fungal clearance while the electrode and sample remained at room temperature. This proved a positive effect of the cold streamers treatment on fungal clearance. Benefits of deactivation of fungal spores by streamers inside the package include no heating, short treatment time and adaptability to existing processes. Given its ability to ensure the safety and longevity of food products, this technology has great potential for utilization in food packaging and processing industry. In this study, moisture and pH changes of pistachio samples after plasma streamers treatment were also investigated.

  10. Enterococcus raffinosus sinusitis post-Aspergillus flavus paranasal infection, in a patient with myelodysplastic syndrome: report of a case and concise review of pertinent literature.

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Favaro, Marco; Masciarelli, Gioviana; Astolfi, Daniela; Balbinot, Andrea; Bianco, Azaira; Mauti, Alessandro; Dianetti, Janet; Fontana, Carla; D'Amario, Claudio; D'Antonio, Domenico

    2010-03-01

    A case of Enterococcus raffinosus nosocomial sinusitis which appeared to complicate a previous Aspergillus flavus paranasal infection is presented. This uncommon enterococcal species is rarely responsible for human diseases, and has never previously been associated with sinusitis.

  11. Aspergillus flavus genetic diversity of corn fields treated with non-toxigenic strain afla-guard in the southern U.S

    Science.gov (United States)

    Aspergillus flavus genetic diversity of corn fields treated with the non-toxigenic strain Afla-Guard (NRRL 21882) was determined for 384 A. flavus isolates from 14 locations within 6 states in the southern U.S. ELISA test has determined low levels of toxigenic strains (only 91 positive). Nearly hal...

  12. APPLICATION OF ULTRASOUND TO CONTROL OF ASPERGILLUS FLAVUS IN COSMETICS = APLICAÇÃO DE ULTRASSOM NO CONTROLE DE ASPERGILLUS FLAVUS EM COSMÉTICOS

    Directory of Open Access Journals (Sweden)

    Kassima Timoni Góes-Campanha

    2011-01-01

    Full Text Available The effect of ultrasound on organic compounds in living tissue and are often related to the cavitation’ phenomenon, a term used to describe the formation of cavities or bubbles in a liquid medium containing varying amounts of gas or vapor that are dissolved in the middle. In medicine it is suggested that ultrasound of high intensity is able to cause some reduction in certain infectious agents and microbiology, mechanisms of inactivation of cells appear to be associated with cavitation. Due to the high power of fungal contamination of cosmetics, it is important to develop new techniques to preserve it to rapid fungi deterioration and subsequent consumer health hazard. On the present work it was probed the efficiency of ultrasound in decreasing the growth of Aspergillus flavus in cosmetic.Thus contaminated samples with the above mentioned fungus, were irradiated at constant temperature (25 oC and power (600W/cm2, for a variety of time exposure: 0 (control, 12, 16, and 20 minutes. The ultrasound generator model VCX- 600 was utilized.It was possible to show that the use of ultrasound is efficient in decreasing the growth of microrganisms and thus preserve cosmetic which went from 35,000 CFU/mL to 50 CFU/mL. Ultrasound is a excellent biocide agent in preparation and preservation of emulsion-type cosmetics. Twenty minutes of continuous irradiation yelded an almost complete depletion of microrganisms. = Devido ao alto poder de contaminação dos cosméticos por fungos, é de grande importância o desenvolvimento de novas técnicas para preservação desses, uma vez que a contaminação microbiológica pode, além de causar a deterioração do produto, apresentar danos à saúde do consumidor. Procurou-se, então, nesse trabalho, determinar a eficácia do ultrassom na diminuição do crescimento do fungo Aspergillus flavus em cosméticos. Para isso, amostras de cosméticos contaminados com o fungo foram irradiadas em equipamento gerador de ultrassom

  13. Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment

    OpenAIRE

    2010-01-01

    Background Hepatocellular carcinoma (HCC), or liver cancer, is the third leading cause of cancer deaths worldwide, with prevalence 16–32 times higher in developing countries than in developed countries. Aflatoxin, a contaminant produced by the fungi Aspergillus flavus and Aspergillus parasiticus in maize and nuts, is a known human liver carcinogen. Objectives We sought to determine the global burden of HCC attributable to aflatoxin exposure. Methods We conducted a quantitative cancer risk ass...

  14. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus.

    Science.gov (United States)

    Gupta, Saurabh; Bector, Shruti

    2013-05-01

    Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.

  15. Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus Avaliação da atividade antifúngica de extrato fenólico de Spirulina platensis contra Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Michele Moraes de Souza

    2011-12-01

    Full Text Available The production of safe food has stimulated the search for natural substances that possess antifungal activity. The indirect methods of estimating fungal biomass are based on the measurement of glucosamine, ergosterol and protein - typical compounds produced during the development of biomass. The aim of the study was to assess the effect of the phenolic extract from Spirulina platensis on the production of structural compounds in Aspergillus flavus, in order to identify its action on fungal inhibition. The Spirulina platensis methanolic extracts presented 1.15 mg phenolic compound/g Spirulina platensis, which showed an antifungal effect against Aspergillus flavus, inhibiting the glucosamine production up to 56%. Therefore, it may be employed as natural defense when food protection is necessary.A produção de alimentos seguros tem estimulado a busca por substâncias naturais que possuem atividade antifúngica. Os métodos indiretos de estimativa de biomassa fúngica são baseados na medição de glucosamina, ergosterol e proteína - compostos típicos produzidos durante o desenvolvimento da biomassa. Neste estudo, objetivou-se avaliar o efeito do extrato fenólico de Spirulina platensis na produção de componentes estruturais em Aspergillus flavus, a fim de identificar seu mecanismo de ação dos fenóis na inibição fúngica. O extrato metanólico de Spirulina platensis apresentou 1,15 mg de compostos fenólicos/g Spirulina platensis, apresentando um efeito antifúngico contra Aspergillus flavus, inibindo a produção de glucosamina em até 56%. Portanto, pode ser empregado como antifúngico natural quando for necessária a proteção de alimentos.

  16. Brazil nuts are subject to infection with B and G aflatoxin-producing fungus, Aspergillus pseudonomius.

    Science.gov (United States)

    Massi, Fernanda Pelisson; Vieira, Maria Lúcia Carneiro; Sartori, Daniele; Penha, Rafael Elias Silva; de Freitas Munhoz, Carla; Ferreira, Josué Maldonado; Iamanaka, Beatriz Thie; Taniwaki, Marta Hiromi; Frisvad, Jens C; Fungaro, Maria Helena Pelegrinelli

    2014-09-01

    The exploitation of the Brazil nut is one of the most important activities of the extractive communities of the Amazon rainforest. However, its commercialization can be affected by the presence of aflatoxins produced by fungi, namely Aspergillus section Flavi. In the present study, we investigated a collection of Aspergillus nomius strains isolated from Brazil nuts using different approaches, including morphological characters, RAPD and AFLP profiles, partial β-tubulin and calmodulin nucleotide sequences, aflatoxin patterns, as well as tolerance to low water activity in cultured media. Results showed that most of the isolates do belong to A. nomius species, but a few were re-identified as Aspergillus pseudonomius, a very recently described species. The results of the analyses of molecular variance, as well as the high pairwise FST values between A. nomius and A. pseudonomius suggested the isolation between these two species and the inexistence of gene flow. Fixed interspecific nucleotide polymorphisms at β-tubulin and calmodulin loci are presented. All A. pseudonomius strains analyzed produced aflatoxins AFB1, AFB2, AFG1 and AFG2. This study contains the first-ever report on the occurrence in Brazil nuts of A. pseudonomius. The G-type aflatoxins and the mycotoxin tenuazonic acid are reported here for the first time in A. pseudonomius.

  17. Cowpeas as growth substrate do not support the production of aflatoxinby Aspergillus sp

    DEFF Research Database (Denmark)

    Houssou, P.A.; Schnidt-Heydt, M.; Geisen, R.

    2008-01-01

    A number of 21 Aspergillus sp. strains isolated from cowpeas from Benin (Africa) were characterizedby RAPD methodology. Seven of these strains grouped with A. flavus in the dendrogram generated with the RAPD data. Only three were able to produce aflatoxin in significant amounts. Twelve other...... isolates grouped with A. parasiticus. All of these strains except 3 produced aflatoxin. Two additional strains neither fit with the A. flavus group, nor the A. parasiticus group according to their RAPD pattern. Both did not produce aflatoxin in measurable amounts. Generally the aflatoxin positive strains...

  18. Identification of Aspergillus (A. flavus and A. niger) Allergens and Heterogeneity of Allergic Patients' IgE Response.

    Science.gov (United States)

    Vermani, Maansi; Vijayan, Vannan Kandi; Agarwal, Mahendra Kumar

    2015-08-01

    Aspergillus species (A. flavus and A. niger) are important sources of inhalant allergens. Current diagnostic modalities employ crude Aspergillus extracts which only indicate the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients' IgE response to them. Skin prick tests were performed on 300 patients of bronchial asthma and/or allergic rhinitis and 20 healthy volunteers. Allergen specific IgE in patients' sera was estimated by enzyme allergosorbent test (EAST). Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients'IgE response to them. Positive cutaneous responses were observed in 17% and 14.7% of patients with A. flavus and A. niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A. niger extract, major allergens being 49, 55.4 and 81.5 kDa. Twelve proteins bound patients' IgE in A. flavus extract, three being major allergens (13.3, 34 and 37 kDa). The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients. These results gave evidence of heterogeneity of patients' IgE response to major/minor Aspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis) and may improve allergen-specific immunotherapy.

  19. Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function

    Science.gov (United States)

    Lee, Robert J.; Workman, Alan D.; Carey, Ryan M.; Chen, Bei; Rosen, Phillip L.; Doghramji, Laurel; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Cohen, Noam A.

    2016-01-01

    Aflatoxins are mycotoxins secreted by Aspergillus flavus, which can colonize the respiratory tract and cause fungal rhinosinusitis or bronchopulmonary aspergillosis. A. flavus is the second leading cause of invasive aspergillosis worldwide. Because many respiratory pathogens secrete toxins to impair mucociliary immunity, we examined the effects of acute exposure to aflatoxins on airway cell physiology. Using air-liquid interface cultures of primary human sinonasal and bronchial cells, we imaged ciliary beat frequency (CBF), intracellular calcium, and nitric oxide (NO). Exposure to aflatoxins (0.1 to 10 μM; 5 to 10 minutes) reduced baseline (~6–12%) and agonist-stimulated CBF. Conditioned media (CM) from A. fumigatus, A. niger, and A. flavus cultures also reduced CBF by ~10% after 60 min exposure, but effects were blocked by an anti-aflatoxin antibody only with A. flavus CM. CBF reduction required protein kinase C but was not associated with changes in calcium or NO. However, AFB2 reduced NO production by ~50% during stimulation of the ciliary-localized T2R38 receptor. Using a fluorescent reporter construct expressed in A549 cells, we directly observed activation of PKC activity by AFB2. Aflatoxins secreted by respiratory A. flavus may impair motile and chemosensory functions of airway cilia, contributing to pathogenesis of fungal airway diseases. PMID:27623953

  20. Aflatoxins, hepatocellular carcinoma and public health.

    Science.gov (United States)

    Magnussen, Arvin; Parsi, Mansour A

    2013-03-14

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, primarily affecting populations in the developing countries. Aflatoxin, a food contaminant produced by the fungi Aspergillus flavus and Aspergillus parasiticus, is a known human carcinogen that has been shown to be a causative agent in the pathogenesis of HCC. Aflatoxin can affect a wide range of food commodities including corns, oilseeds, spices, and tree nuts as well as milk, meat, and dried fruit. Many factors affect the growth of Aspergillus fungi and the level of aflatoxin contamination in food. Drought stress is one of the factors that increase susceptibility of plants to Aspergillus and thus aflatoxin contamination. A recent drought is thought to be responsible for finding of trace amounts of aflatoxin in some of the corn harvested in the United States. Although it's too soon to know whether aflatoxin will be a significant problem, since United States is the world's largest corn producer and exporter, this has raised alarm bells. Strict regulations and testing of finished foods and feeds in the United States should prevent a major health scare, and prevent human exposure to deleterious levels of aflatoxin. Unfortunately, such regulations and testing are not in place in many countries. The purpose of this editorial is to summarize the current knowledge on association of aflatoxin and HCC, encourage future research and draw attention to this global public health issue.

  1. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus.

    Science.gov (United States)

    Yahyaraeyat, R; Khosravi, A R; Shahbazzadeh, D; Khalaj, V

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC) for aflatoxinB1 (AFB1), aflatoxinB2 (AFB2), aflatoxinG1 (AFG1), aflatoxinG2 (AFG2) and aflatoxin total (AFTotal) production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm) on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm) nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  2. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    R. Yahyaraeyat

    2013-01-01

    Full Text Available This study aims at evaluating the effects of Zataria multiflora (Z. multiflora essential oil (EO on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus ATCC56775 grown in yeast extract sucrose (YES broth medium treated with Z. multiflora EO were subjected to reverse transcription-polymerase chain reaction (RT-PCR. Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial dry weight of samples were measured and all the media were assayed by high-pressure liquid chromatography (HPLC for aflatoxinB1 (AFB1, aflatoxinB2 (AFB2, aflatoxinG1 (AFG1, aflatoxinG2 (AFG2 and aflatoxin total (AFTotal production. The results showed that mycelial dry weight and aflatoxin production reduce in the presence of Z. multiflora EO (100 ppm on day 5 of growth. It was found that the expression of nor-1, ver-1, omt-A and aflR genes was correlated with the ability of fungus to produce aflatoxins on day 5 in YES medium. RT-PCR showed that in the presence of Z.multiflora EO (100 ppm nor-1, ver-1 and omtA genes expression was reduced. It seems that toxin production inhibitory effects of Z. multiflora EO on day 5 may be at the transcription level and this herb may cause reduction in aflatoxin biosynthesis pathway genes activity.

  3. Septic arthritis of the temporomandibular joint caused by Aspergillus flavus infection as a complication of otitis externa.

    Science.gov (United States)

    Varghese, Lalee; Chacko, Rabin; Varghese, George M; Job, Anand

    2015-03-01

    Septic arthritis of the temporomandibular joint (TMJ) is a very rare complication of otitis externa that can lead to ankylosis and destruction of the joint. We report the case of a 74-year-old man who developed aspergillosis of the TMJ following otitis externa. To the best of our knowledge, this is the first reported case of TMJ septic arthritis secondary to otitis externa caused by Aspergillus flavus. The patient was successfully managed with condylectomy, debridement, and drug treatment with voriconazole.

  4. Mitigation of aflatoxin contamination in maize kernels is related to the metabolic alternation of reactive oxygen and nitrogen species by relative humidity

    Science.gov (United States)

    Environmental factors have been shown to be linked to exacerbated infection of maize kernels by Aspergillus flavus and subsequent aflatoxin contamination. Kernel resistance to aflatoxin contamination is associated with kernel water content and relative humidity during in vitro assays examining aflat...

  5. PCR detection of aflatoxin producing fungi and its limitations.

    Science.gov (United States)

    Levin, Robert E

    2012-05-01

    Unlike bacterial toxins that are primarily peptides and are therefore encoded by a single gene, fungal toxins such as the aflatoxins are multi-ring structures and therefore require a sequence of structural genes for their biological synthesis. There is therefore no specific PCR for any one of the four biologically produced aflatoxins. Unfortunately, the structural genes presently in use for PCR detection of aflatoxin producing fungi are also involved in the synthesis of other fungal toxins such as sterigmatocystin by Aspergillus versicolor and Aspergillus nidulans and therefore lack absolute specificity for aflatoxin producing fungi (Table 1). In addition, the genomic presence of several structural genes involved in aflatoxin biosynthesis does not guarantee the production of aflatoxin by all isolates of Aspergillus flavus and Aspergillus parasiticus. The most widely used DNA target regions for discriminating Aspergillus species are those of the rDNA complex, mainly the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) and the variable regions in the 5'-end of the 28S rRNA gene. Since these sequence regions are unrelated to the structural genes involved in aflatoxin biosynthesis there successful amplification can be used for species identification but do not confirm aflatoxin production. This review therefore presents the various approaches and limitations in the use of the PCR in attempting to detect aflatoxin producing fungi.

  6. Pharmacodynamics of voriconazole against wild-type and azole-resistant aspergillus flavus isolates in a nonneutropenic murine model of disseminated aspergillosis

    NARCIS (Netherlands)

    S.M. Rudramurthy; S. Seyedmousavi (Seyedmojtaba); Dhaliwal, M. (Manpreet); A. Chakrabarti; J.F. Meis (Jacques F.); J.W. Mouton (Johan)

    2016-01-01

    textabstractInvasive aspergillosis (IA) due to Aspergillus flavus is associated with high mortality. Although voriconazole (VRC) is widely recommended as the first-line treatment for IA, emergence of azole resistance in Aspergillus spp. is translating to treatment failure. We evaluated the efficacy

  7. Distribution of aflatoxigenic Aspergillus section Flavi in commercial poultry feed in Nigeria.

    Science.gov (United States)

    Ezekiel, C N; Atehnkeng, J; Odebode, A C; Bandyopadhyay, R

    2014-10-17

    The distribution and aflatoxigenicity of Aspergillus section Flavi isolates in 58 commercial poultry feed samples obtained from 17 states in five agro-ecological zones (AEZs) in Nigeria were determined in order to assess the safety of the feeds with respect to aflatoxin-producing fungi. Correlation was also performed for incidence of species, aflatoxin-producing ability of isolates in vitro, and aflatoxin (AFB1) concentrations in the feed. A total of 1006 Aspergillus section Flavi isolates were obtained from 87.9% of the feed samples and identified as Aspergillus flavus, unnamed taxon SBG, Aspergillus parasiticus and Aspergillus tamarii. A. flavus was the most prevalent (91.8%) of the isolates obtained from the feed in the AEZs while A. parasiticus had the lowest incidence (0.1%) and was isolated only from a layer mash sample collected from the DS zone. About 29% of the Aspergillus isolates produced aflatoxins in maize grains at concentrations up to 440,500μg/kg B and 341,000μg/kgG aflatoxins. The incidence of toxigenic isolates was highest (44.4%) in chick mash and lowest (19.9%) in grower mash. The population of A. flavus in the feed had positive (r=0.50) but non significant (p>0.05) correlations with proportion of toxigenic isolates obtained from the feed while SBG had significant (pAspergillus species and consequently, aflatoxins. This is a potential threat to the poultry industry and requires urgent intervention.

  8. The potential effects of Zataria multiflora Boiss essential oil on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes of toxigenic Aspergillus parasiticus

    OpenAIRE

    Yahyaraeyat, R.; Khosravi, A R; Shahbazzadeh, D.; V Khalaj

    2013-01-01

    This study aims at evaluating the effects of Zataria multiflora (Z. multiflora) essential oil (EO) on growth, aflatoxin production and transcription of aflatoxin biosynthesis pathway genes. Total RNAs of Aspergillus parasiticus (A.parasiticus) ATCC56775 grown in yeast extract sucrose (YES) broth medium treated with Z. multiflora EO were subjected to reverse transcription- polymerase chain reaction (RT-PCR). Specific primers of nor-1, ver-1, omt-A and aflR genes were used. In parallel mycelial...

  9. New Additive for Culture Media for Rapid Identification of Aflatoxin-Producing Aspergillus Strains

    Science.gov (United States)

    Fente, C. A.; Ordaz, J. Jaimez; Vázquez, B. I.; Franco, C. M.; Cepeda, A.

    2001-01-01

    A new reliable, fast, and simple method for the detection of aflatoxigenic Aspergillus strains, consisting of the addition of a cyclodextrin (a methylated β-cyclodextrin derivative) to common media used for testing mycotoxin production ability, was developed. We propose the use of this compound as an additive for fungal culture media to enhance the natural fluorescence of aflatoxins. The production of aflatoxins coincided with the presence of a bright blue or blue-green fluorescent area surrounding colonies when observed under long-wavelength (365-nm) UV light after 3 days of incubation at 28°C. The presence of aflatoxins was confirmed by extracting the medium with chloroform and examining the extracts by high-pressure liquid chromatography with fluorescence detection. PMID:11571194

  10. Evaluation of the mycoflora and aflatoxins from the pre-harvest to storage of peanuts: a case study

    OpenAIRE

    2014-01-01

    Aflatoxins are carcinogens produced by Aspergillus flavus, A. parasiticus and A. nomius. In the present study, peanut samples were collected at different phenological stages of the plant during the 2007/2008 and 2008/2009 seasons and from stored peanuts harvested in 2007/2008. The mycoflora and aflatoxins in the peanuts were evaluated. The results showed the presence of Fusarium spp., Macrophomina spp., Trichoderma spp., Aspergillus spp. and Cladosporium spp. during the period of peanut matur...

  11. Extracts of Agave americana inhibit aflatoxin production in Aspergillus parasiticus

    Science.gov (United States)

    Toxigenic fungi invade crops prior to harvest as well as during storage and produce harmful, even carcinogenic toxins such as aflatoxins. Since consumers demand safe commodities, and due to enhanced public awareness of the dangers of many synthetic fungicides, the importance of investigating alterna...

  12. ASPERGILLUS FLA VUS INFECTION AND AFLATOXIN CONTAMINATION IN PEANUTS AT VARIOUS STAGES OF THE DELIVERY CHAINS IN CIANJUR REGENCY, WEST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    2005-01-01

    Full Text Available A survey to obtain information on pre- and postharvest handling of peanuts at farmer, collector, wholesaler and retailer levels, including Aspergillus flavus infection and aflatoxin BI contamination of peanuts collected in Cianjur regency, West Java, was conducted during the harvest period of the wet season of February 2004. The moisture contents and physical qualities of the peanuts were also determined. Thirteen and 40 dry pod samples were collected randomly from 12 farmers and 23 co llectors, respectively. Seven dry kernel samples were also collected from collectors. Five and 45 dry kernel samples were collected randomly from 2 wholesalers and 45 retailers in traditional markets, resp ectively. Thus, a total of 110 dry peanut pod and kernel samples were collected. The results of interviews with farmers, collectors, wholes alers and retailers, and also the moisture contents and physical qualities of the peanuts arc described in this article. The percentages of samples infected by A. flavus were highest at the wholesaler as well as at retailer levels (100%, respectively, followed by those sampled at the collectors (85.0 and 85.7%, respectively, and farmers (84.6%. The mean percentage of infected kernels in infect ed samples of peanuts collected from retailers was the highest (87.6%, followed by those collected from wholesalers (72.4%, collectors in the form of kernels (23.3% and pods (17.7%, and farmers (15.2%. The range of aflatoxin BI contents in peanut samples collected from farmers (dry pods, collectors (dry pods, wholesalers (dry pods and kernels and retailers (dry kernels were < 3.6 -114.2, < 3.6 -2999.5 and < 3,6 - 34.1, < 3.6 - 6065.9, and < 3.6 - 6073.0 ppb, respectively. The highest aflatoxin B, contents at the wholesaler and retailer levels were 6065.9 ppb (in one sample and 6073.0 ppb (in one sample, respectively. The percentage of samples contaminated with more than 15 ppb of aflatoxin BI was the highest in peanuts collected from

  13. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-Tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Tam, Emily W T; Chen, Jonathan H K; Lau, Eunice C L; Ngan, Antonio H Y; Fung, Kitty S C; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2014-04-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability.

  14. Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties

    Indian Academy of Sciences (India)

    Ghassan M Sulaiman; Hiba T Hussien; Maysoon M N M Saleem

    2015-06-01

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour changes, UV–vis spectrum and X-ray diffraction (XRD) support the biosynthesis and characterization of silver nanoparticles. UV–vis spectral analysis showed silver surface plasmon resonance band at 420 nm. X-ray diffraction showed that the particles were crystalline with face-centred cubic structure at 45.05°, 65.45° and 78.65° and the size of the silver nanoparticles was 33.5 nm. The synthesized silver nanoparticles showed potent antimicrobial activity against various pathogens, including bacteria and fungi. Biosynthesized silver nanoparticles exhibited strong antioxidant activity as well as cytotoxicity against HL-60 cells in a dose–response relationship. The powerful bioactivity demonstrated by the synthesized silver nanoparticles leads towards the biomedical use as antioxidant, antibacterial and cytotoxic agents.

  15. Black gill disease of Pacific white leg shrimp (Litopenaeus vannamei by Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Dewangan

    2015-10-01

    Full Text Available Objective: To study the epidemiology of black gill disease in white leg shrimp which is a major problem being faced by the commercial shrimp farmers who are culturing Litopenaeus vannamei (L. vannamei in India. Methods: The normal and infected shrimps were collected from shrimp pond and the gill was preserved in appropriate preservative for histopathological examination and scanning electron microscope analysis. Pathogenic fungus was isolated from black gill of L. vannamei in potato dextrose agar medium. Morphological study and fungal strain identification were done by using light microscopy and scanning electron microscope. Fungal DNA was amplified by ITS4 and ITS5 primers and gene sequencing was done by Macrogen Inc., Korea. Phylogenetic tree was prepared by using MEGA 6 software. Results: Fungal spores and hyphae were observed both in internal and external gill surface of infected shrimps. Fungal spores were round in shape and mature sporangium was observed. The histopathology study showed clearly that infected gill was damaged by the fungi. Scanning electron microscopic study showed adherence of fungi in infected gill. Internal transcribed spacer gene sequencing revealed that it was caused by Aspergillus flavus. Conclusions: The outcome of the present study would help to know the cause of black gill disease and to understand the effect of pathogenic fungi in shrimp culture. This study will initiate researchers for work in field of treatment or prevention of black gill disease in commercial L. vannamei culture.

  16. Potential of Chitinolytic Serratia marcescens Strain JPP1 for Biological Control of Aspergillus parasiticus and Aflatoxin

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2013-01-01

    Full Text Available Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1, and aflO (dmtA genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95% and subsequent aflatoxin production (antiaflatoxigenic ratio >98%. An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  17. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin.

    Science.gov (United States)

    Wang, Kai; Yan, Pei-Sheng; Cao, Li-Xin; Ding, Qing-Long; Shao, Chi; Zhao, Teng-Fei

    2013-01-01

    Serratia marcescens strain JPP1 was isolated from peanut hulls in Huai'an city, Jiangsu Province, China. Its potential to inhibit the mycelial growth of Aspergillus parasiticus and the subsequent aflatoxin production was evaluated. The strain JPP1 could produce chitinase to degrade fungal cell walls, which was the main mechanism of strain JPP1 for biocontrol. Scanning electron microscopy of fungi treated with the crude chitinase revealed abnormal morphological changes. While the strain was grown in the peanut hulls-based medium, the chitinase activity reached 7.39 units. RT-PCR analysis showed that the crude chitinase repressed the transcription of genes involved in the aflatoxin gene cluster, such as aflR, aflC (pksL1), and aflO (dmtA) genes. By visual agar plate assay and tip culture method, the strain JPP1 exhibited remarkable inhibitory effect on mycelia growth (antifungal ratio >95%) and subsequent aflatoxin production (antiaflatoxigenic ratio >98%). An in vitro assay with seed coating agent of bacterial suspension showed that strain JPP1 effectively reduced fungal growth and subsequent aflatoxin production on peanut seeds, and its antagonistic effect was superior to the common agricultural fungicide of carbendazim. These characteristics suggest that S. marcescens JPP1 strain could potentially be utilized for the biological control of phytopathogenic fungi and aflatoxin in Chinese peanut main producing areas.

  18. Identification of Aspergillus (A flavus and A niger Allergens and Heterogeneity of Allergic Patients’ IgE Response

    Directory of Open Access Journals (Sweden)

    Maansi Vermani

    2015-10-01

    Full Text Available Aspergillus species (A flavus and A niger are important sources of inhalant allergens. Current  diagnostic  modalities  employ  crude  Aspergillus  extracts  which  only  indicate  the source to which the patient has been sensitized, without identifying the number and type of allergens in crude extracts. We report a study on the identification of major and minor allergens of the two common airborne Aspergillus species and heterogeneity of patients’ IgE response to them.Skin prick tests were performed on 300 patients of bronchial asthma and/or allergicrhinitis and 20 healthy volunteers. Allergen specific IgE in patients’ sera was estimated by enzyme allergosorbent test (EAST. Immunoblots were performed to identify major/minor allergens of Aspergillus extracts and to study heterogeneity of patients’ IgE response to them.Positive cutaneous responses were observed in 17% and 14.7% of patients with A flavusand A niger extracts, respectively. Corresponding EAST positivity was 69.2% and 68.7%. In immunoblots, 5 allergenic proteins were identified in A niger extract, major allergens being49, 55.4 and 81.5 kDa. Twelve proteins bound patients’ IgE in A flavus extract, three being major allergens (13.3, 34 and 37 kDa. The position and slopes of EAST binding and inhibition curves obtained with individual sera varied from patient to patient. The number and molecular weight of IgE-binding proteins in both the Aspergillus extracts varied among patients.These results gave evidence of heterogeneity of patients’ IgE response to major/minorAspergillus allergens. This approach will be helpful to identify disease eliciting molecules in the individual patients (component resolved diagnosis and may improve allergen-specific immunotherapy.

  19. Efficacy of two chemical coagulants and three different filtration media on removal of Aspergillus flavus from surface water.

    Science.gov (United States)

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-02-01

    Aquatic fungi are common in various aqueous environments and play potentially crucial roles in nutrient and carbon cycling as well as interacting with other organisms. Species of Aspergillus are the most common fungi that occur in water. The present study was undertaken to elucidate the efficacy of two coagulants, aluminum sulfate and ferric chloride, used at different concentrations to treat drinking water, in removing Aspergillus flavus, as well as testing three different filtration media: sand, activated carbon, and ceramic granules, for their removal of fungi from water. The results revealed that both coagulants were effective in removing fungi and decreasing the turbidity of drinking water, and turbidity decreased with increasing coagulant concentration. Also, at the highest concentration of the coagulants, A. flavus was decreased by 99.6% in the treated water. Among ceramic granules, activated carbon, and sand used as media for water filtration, the sand and activated carbon filters were more effective in removing A. flavus than ceramic granules while simultaneously decreasing the turbidity levels in the test water samples. Post-treatment total organic carbon (TOC) and total nitrogen (TN) concentrations in the experimental water did not decrease; on the contrary, TN concentrations increased with the increasing dosage of coagulants. The filtration process had no effect in reducing TOC and TN in tested water.

  20. Characterization of a fungistatic substance produced by Aspergillus flavus isolated from soil and its significance in nature.

    Science.gov (United States)

    Chen, Yen-Ting; Lin, Mei-Ju; Yang, Ching-Hui; Ko, Wen-Hsiung

    2011-10-01

    A fungus capable of using vegetable tissues for multiplication in soil was isolated and identified as Aspergillus flavus based on morphological characteristics and sequence similarity of ITS and 28S. When grown in liquid medium prepared from the same vegetable tissues used in soil amendment, the isolate of A. flavus produced a substance capable of preventing disease development of black leaf spot of mustard cabbage caused by Alternaria brassicicola and inhibiting the germination of A. brassicicola conidia. The inhibitory substance was fungistatic, and was very stable under high temperature and high or low pH value. It was soluble in ethanol or methanol, moderately soluble in water, and insoluble in acetone, ethyl acetate or ether. The inhibitor is not a protein and has no charges on its molecule. This is the first discovery of the production of a fungistatic substance by this deleterious fungus. Results from this study suggest the possession of a strong competitive saprophytic ability by A. flavus, which in turn may explain the widespread occurrence of this fungus in soils. Production of a fungistatic substance when A. flavus was grown in medium prepared from vegetable tissues suggests the importance of antibiotic production in its competitive saprophytic colonization of organic matters in soils.

  1. In vitro activity of isavuconazole against 208 Aspergillus flavus isolates in comparison with 7 other antifungal agents: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing

    NARCIS (Netherlands)

    Rudramurthy, S.M.; Chakrabarti, A.; Geertsen, E.; Mouton, J.W.; Meis, J.F.G.M.

    2011-01-01

    Aspergillus flavus is the second most common species causing invasive aspergillosis after A. fumigatus. In certain countries like India, Sudan, and Saudi Arabia, A. flavus is most frequently isolated from patients with fungal rhinosinusitis and endophthalmitis. A. flavus exhibit an increased resista

  2. Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue.

    Science.gov (United States)

    Abellana, M; Sanchis, V; Ramos, A J

    2001-12-30

    This study compared the effect of temperature and water activity and their interactions on the rate of mycelial growth of Penicillium aurantiogriseum, P. chrysogenum, P. corylophilum and Aspergillus flavus on a sponge cake analogue. As expected, growth rates showed dependence on a(w), and temperature. However, no significant differences were observed in the growth rates of different isolates. The minimum a(w) values for growth of the Penicillium spp. was 0.85-0.90. A. flavus was able to grow at 0.90 a(w) when the temperature was above 15 degrees C. This study has shown that fungal growth by these species on a sponge cake analogue, with a composition similar to usual bakery products, is prevented if the a(w) is kept at < 0.85.

  3. Control of Aspergillus flavus Growth in Tomato Paste by Cinnamomum zeylanicum and Origanum vulgare L. Essential Oils

    Directory of Open Access Journals (Sweden)

    F Kalantary

    2014-05-01

    Full Text Available This study was conducted to evaluate the antifungal activities of cinnamon (Cinnamomum zeylanicum and oregano (Origanum vulgare L. essential oils against Aspergillus flavus in culture media and tomato paste. The chemical compositions of the essential oils were determined by Gas Chromatography-Mass Spectroscopy (GC-MS. Trans- cinnamaldehyde was found to be the main constituent of Cinnamomum zeylanicum essential oil (CZEO, followed by methyl eugenol, δ- cadinene and γ- cadinene. The major components of Origanum vulgare L. essential oil (OVEO were limonene, caryophyllene oxide, α-ionone, germacrene– D, γ- terpinene, β- pinene and terpinene-4-ol. For evaluating antifungal activities of CZEO and OVEO, A. flavus PTCC: 5006, was inoculated in Sabouraud Dextrose Broth (SDB and tomato paste, then 0, 50, 100, 200, 300, 400, 500 and 600 ppm of essential oils were added to each sample and incubated at 25±0.5oC for 30 and 60 days, respectively. The antifungal activity was measured by Agar Dilution method. The EOs at all tested concentrations had inhibitory effect against A. flavus growth. 200 ppm of CZEO and 500 ppm of OVEO completely inhibited A. flavus growth in culture media, while in tomato paste 300 ppm of CZEO and 200 ppm of OVEO had the same effect. Test panel evaluations were carried out in tomato ketchup base and samples with 100 and 200 ppm CZEO were accepted by panelists. The results may suggest the potential replacement of antifungal chemicals by CZEO as natural inhibitor to control A. flavus growth in tomato paste.

  4. Efeito de óleos essenciais sobre o crescimento e produção de aflatoxinas por Aspergillus flavus

    OpenAIRE

    Alessandra Marcon Gasperini

    2014-01-01

    Resumo: O fungo Aspergillus flavus é responsável pela degradação de alimentos, além de produzir aflatoxinas que são reconhecidas como potentes carcinógenos. Atualmente, frente ao aumento acelerado de cepas resistentes aos antifúngicos sintéticos e à pressão dos consumidores pela substituição destes por produtos naturais, a busca de novos antimicrobianos a partir de óleos essenciais (OE) tem se tornado uma opção promissora. Neste contexto, o objetivo deste trabalho foi avaliar a capacidade de ...

  5. Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy

    Directory of Open Access Journals (Sweden)

    Uyar Guliz

    2007-07-01

    Full Text Available Abstract Background Endophthalmitis is the inflammatory response to invasion of the eye with bacteria or fungi. The incidence of endophthalmitis after cataract surgery varies between 0.072–0.13 percent. Treatment of endophthalmitis with fungal etiology is difficult. Case Presentation Case 1: A 71-year old male diabetic patient developed postoperative endophthalmitis due to Aspergillus flavus. The patient was treated with topical amphotericin B ophthalmic solution, intravenous (IV liposomal amphotericin-B and caspofungin following vitrectomy. Case 2: A 72-year old male cachectic patient developed postoperative endophthalmitis due to Scopulariopsis spp. The patient was treated with topical and IV voriconazole and caspofungin. Conclusion Aspergillus spp. are responsible of postoperative fungal endophthalmitis. Endophthalmitis caused by Scopulariopsis spp. is a very rare condition. The two cases were successfully treated with local and systemic antifungal therapy.

  6. Aspergillus flavus F52菌株鉴定及不同碳源对曲酸产量的影响%Identification of a kojic-acid producing Aspergillus flavus F52

    Institute of Scientific and Technical Information of China (English)

    魏少鹏; 徐楠; 姬志勤

    2014-01-01

    [目的]探明豇豆内生真菌F52的分类地位及不同碳源对曲酸产量的影响.[方法]采用形态观察及ITS序列分析对豇豆内生真菌F52进行分类鉴定;通过重结晶获得曲酸高纯度产物,采用核磁共振波谱、高分辨质谱及红外光谱对其进行结构鉴定;采用高效液相色谱检测不同碳源对曲酸产量的影响.[结果]该曲酸产生菌为黄曲霉Aspergillus flavus F52;葡萄糖与蔗糖组成的复合碳源曲酸产量最高,乳糖的存在不利于曲酸的生成;该菌株发酵液中曲酸含量可达24.44 g/L.[结论]Aspergillus flavus F52是一株具有产业化开发价值的曲酸高产菌株.

  7. Study on Control Technology of Pollution Mulching Peanut by Aspergillus flavus%地膜覆盖花生黄曲霉污染的防治研究

    Institute of Scientific and Technical Information of China (English)

    周伟; 徐久飞; 杜献明

    2015-01-01

    采用单因素完全随机试验设计,通过地膜覆盖和裸露种植的方法,对不同试验地块土壤样本菌相、花生生长期土层温度等生长条件进行测定分析。结果表明,不同地块土壤中含黄曲霉菌数量不同,且不同地块菌株数量存在显著差异;不含产毒菌株的地块,覆膜种植对花生污染黄曲霉毒素的影响不显著;含产毒菌株的地块,覆膜种植对花生污染黄曲霉毒素的影响较大,且产毒菌株越多,受黄曲霉毒素污染越重。从果针下扎到收获期间,覆膜种植土层温度高于裸露种植是导致覆膜种植花生黄曲霉毒素污染加重的重要因素。实际生产中可采取综合防治技术以达到降低黄曲霉毒素污染的目的。%A single-factor completely randomized experimental design was used in this study. Through plastic film mulching and bare planting on different experimental plots, growth conditions such as soil sample bacterial phase, soil temperature in peanut growth period were determined and an-alyzed.The results showed that the number of Aspergillus flavus with different plots in soil was dif-ferent, and the number of strains showed significant difference.In the absence of toxigenic strain plots, effects of plastic film mulching cultivation on peanut aflatoxin contamination were not signifi-cant.On the contrary, in containing strains plots, effects of plastic film mulching cultivation on pea-nut aflatoxin contamination were significant.And the more the number of toxigenic strains, the more serious contamination conducted by aflatoxin.This study suggests that, the soil temperature under plastic film mulching cultivation was higher than under bare cultivation during the period from pegging to harvest.This is also the important factor leading to the more serious contamination by aflatoxin un-der plastic film mulching cultivation.In the actual production, we can adopt comprehensive prevention and control technology

  8. Use of selected essential oils to control aflatoxin contaminated stored cashew and detection of aflatoxin biosynthesis gene.

    Science.gov (United States)

    Abd El-Aziz, Abeer R M; Mahmoud, Mohamed A; Al-Othman, Monira R; Al-Gahtani, Munirah F

    2015-01-01

    Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm), which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary) were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC). The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method.

  9. Use of Selected Essential Oils to Control Aflatoxin Contaminated Stored Cashew and Detection of Aflatoxin Biosynthesis Gene

    Directory of Open Access Journals (Sweden)

    Abeer R. M. Abd El-Aziz

    2015-01-01

    Full Text Available Aspergillus spp. associated with cashew from the regions of Riyadh, Dammam, and Abha were isolated and three different culture media were used to qualitatively measure aflatoxin production by Aspergillus via UV light (365 nm, which was expressed as positive or negative. The obtained data showed that six isolates of A. flavus and four isolates of A. parasiticus were positive for aflatoxin production, while all isolates of A. niger were negative. Five commercially essential oils (thyme, garlic, cinnamon, mint, and rosemary were tested to determine their influence on growth and aflatoxin production in A. flavus and A. parasiticus by performing high-performance liquid chromatography (HPLC. The results showed that the tested essential oils caused highly significant inhibition of fungal growth and aflatoxin production in A. flavus and A. parasiticus. The extent of the inhibition of fungal growth and aflatoxin production was dependent on the type and concentration of essential oils applied. The results indicate that cinnamon and thyme oils show strong antimicrobial potential. PCR was used with four sets of primer pairs for nor-1, omt-1, ver-1, and aflR genes, enclosed in the aflatoxin biosynthetic pathway. The interpretation of the results revealed that PCR is a rapid and sensitive method.

  10. Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts.

    Science.gov (United States)

    Chen, Ran; Ma, Fei; Li, Pei-Wu; Zhang, Wen; Ding, Xiao-Xia; Zhang, Qi; Li, Min; Wang, Yan-Ru; Xu, Bao-Cheng

    2014-03-01

    Aflatoxins are a group of secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus with carcinogenicity, teratogenicity, and mutagenicity. Aflatoxins may be found in a wide range of agri-products, especially in grains, oilseeds, corns, and peanuts. In this study, the conditions for detoxifying peanuts by ozonation were optimised. Aflatoxins in peanuts at moisture content of 5% (w/w) were sensitive to ozone and easily degraded when reacted with 6.0mg/l of ozone for 30min at room temperature. The detoxification rates of the total aflatoxins and aflatoxin B1 (AFB1) were 65.8% and 65.9%, respectively. The quality of peanut samples was also evaluated in this research. No significant differences (P>0.05) were found in the polyphenols, resveratrol, acid value (AV), and peroxide value (PV) between treated and untreated samples. The results suggested that ozonation was a promising method for aflatoxin detoxification in peanuts.

  11. Effects of Pistacia atlantica subsp. kurdica on Growth and Aflatoxin Production by Aspergillus parasiticus

    Science.gov (United States)

    Khodavaisy, Sadegh; Rezaie, Sassan; Noorbakhsh, Fatemeh; Baghdadi, Elham; Sharifynia, Somayeh; Aala, Farzad

    2016-01-01

    Background Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. Objectives In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. Materials and Methods In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. Results The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. Conclusions Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture. PMID:27800127

  12. PENGARUH PENYIMPANAN KACANG TANAH DI RUMAHTANGGA TERHADAP KANDUNGAN AFLATOXIN

    Directory of Open Access Journals (Sweden)

    Muhilal Muhilal

    2012-11-01

    Full Text Available Pengaruh penjimpanan katjang tanah dirumah tangga terhadap kandungan aflatoxin. (The aflatoxin contents of home-stored peanuts. To determine the limit of storage time of peanut at homes to prevent contamination by aflatoxin, samples of peanut were stored at homes in urban and rural communities. It was found that peanut started to contain aflatoxin in the tenth week, and by the 14th week the content had exceeded the safe level of 30 ppb. Drying peanut to eight per cent water content then storing them in tins with waxed covers may prevent aflatoxin contami­nation for 20 weeks. Aflatoxin ialah racun yang dihasilkan oleh cendawan Aspergillus flavus (1 yang banyak terdapat pada bahan makanan yang bercendawan. Bahaya toxin ini ialah dapat mengakibatkan kerusakan hati yang biasanya disusul oleh kematian dalam waktu singkat. Bila racun ini terkonsumsi dalam jumlah sedikit tetapi dalam waktu lama, akibat yang khas ialah kanker hati primer (2.

  13. Effects of hydrogen peroxide on different toxigenic and atoxigenic isolates of Aspergillus flavus

    Science.gov (United States)

    Drought stress in the field has been shown to exacerbate aflatoxin contamination of maize and peanut. Drought and heat stress also produce reactive oxygen species (ROS) in plant tissues. Given the potential correlation between ROS and exacerbated aflatoxin production under drought and heat stress, t...

  14. New Perspectives for the Application of Bioplastic Materials in the Biocontrol of Aspergillus flavus in Corn

    Science.gov (United States)

    Mycotoxins are secondary metabolities produced by certain filamentous fungi that can contaminate a large variety of agricultural commodities before and after harvest. Among different mycotoxins, aflatoxins and especially aflatoxin B1 are of particular concern because they are potent natural carcino...

  15. Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, candida albicans and Aspergillus flavus.

    Science.gov (United States)

    Padhiar, Jigita; Das, Arijit; Bhattacharya, Sourav

    2011-11-15

    The present study was aimed at optimization, production and partial purification of lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus. Various nutritional and physical parameters affecting lipase production such as carbon and nitrogen supplements, pH, temperature, agitation speed and incubation time were studied. Refined sunflower oil (1% v/v) and tryptone at a pH of 6.2 favored maximum lipase production in Pseudomonas at 30 degrees C and 150 rpm, when incubated for 5 days. In C. albicans refined sunflower oil (3% v/v) and peptone resulted in maximum lipase production at pH 5.2, 30 degrees C and 150 rpm, when incubated for 5 days. In A. flavus coconut oil (3% v/v) and peptone yielded maximum lipase at pH 6.2, 37 degrees C, 200 rpm after an incubation period of 5 days. The lipases were partially purified by ammonium sulphate precipitation and dialysis. In P. aeruginosa enzyme activity of the dialyzed fraction was found to be 400 U mL-' and for C. albicans 410 U mL(-1). The dialysed lipase fraction from A. flavus demonstrated an activity of 460 U mL(-1). The apparent molecular weights of the dialyzed lipases were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The dialyzed lipase fraction obtained from P. aeruginosa revealed molecular weights of 47, 49 and 51 kDa, whereas, lipases from C. albicans and A. flavus demonstrated 3 bands (16.5, 27 and 51 kDa) and one band (47 kDa), respectively. These extracellular lipases may find wide industrial applications.

  16. Isolation of methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula alba and aflatoxin production inhibitory activities of its related compounds.

    Science.gov (United States)

    Jermnak, Usuma; Yoshinari, Tomoya; Sugiyama, Yasumasa; Tsuyuki, Rie; Nagasawa, Hiromichi; Sakuda, Shohei

    2012-02-15

    Methyl syringate was isolated from the essential oil of Betula alba as an aflatoxin production inhibitor. It inhibited aflatoxin production of Aspergillus parasiticus and Aspergillus flavus with IC(50) values of 0.9 and 0.8 mM, respectively, without significantly inhibiting fungal growth. Methyl syringate reduced mRNA levels of genes (aflR, pksA, and omtB) [corrected] encoding proteins required for aflatoxin biosynthesis. Methyl gallate, methyl 3,4,5-trimethoxybenzoate, and methyl 3-O-methylgallate inhibited both aflatoxin production and fungal growth of A. parasiticus and A. flavus. However, their acids and syringic acid did not inhibit aflatoxin production and growth of A. parasiticus significantly, although gallic acid inhibited aflatoxin production of A. flavus with selectivity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of methyl syringate was much weaker than that of gallic acid. These results showed that methyl syringate has a unique inhibitory activity toward aflatoxin production with a different mode of action from that of gallic acid.

  17. SVM-based feature extraction and classification of aflatoxin contaminated corn using fluorescence hyperspectral data

    Science.gov (United States)

    Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...

  18. 杜仲抗真菌肽对黄曲霉的抑制作用%Effect of Eucommia Antifungal Peptide Against Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    刘世会; 赵德刚

    2008-01-01

    Using paper-disc agar-diffusion method,the activity of Eucommia antifungal peptide 3(EAFP3) against Aspergillus flavus were investigated.The results indicated that EAFP3 could effectively inhibit A.flavus.The minimum inhibition concentration (MIC) was 125 μg/mL.%用纸片琼脂扩散法,研究了杜仲抗真菌肽EAFP3对黄曲霉(Aspergillus flavus)的抗真菌活性.研究结果表明,EAFP3对黄曲霉有明显抑制作用,最小抑菌浓度为125 μg/mL.

  19. Evaluation of the mycoflora and aflatoxins from the pre-harvest to storage of peanuts: a case study doi: 10.4025/actasciagron.v36i1.16972

    OpenAIRE

    2014-01-01

    Aflatoxins are carcinogens produced by Aspergillus flavus, A. parasiticus and A. nomius. In the present study, peanut samples were collected at different phenological stages of the plant during the 2007/2008 and 2008/2009 seasons and from stored peanuts harvested in 2007/2008. The mycoflora and aflatoxins in the peanuts were evaluated. The results showed the presence of Fusarium spp., Macrophomina spp., Trichoderma spp., Aspergillus spp. and Cladosporium spp. during the period of peanut matur...

  20. Detection of Aflatoxin in Zea mays L. from Indian Markets by Competitive ELISA

    Directory of Open Access Journals (Sweden)

    Harish Chandra Jyotsana Bahuguna and Ajay Singh

    2013-05-01

    Full Text Available Aflatoxins are a family of related bisfuranocoumarin compounds produced by fungi Aspergillus flavus and A. parasiticus. It has been reported that out of the known strains of A. flavus and A. parasiticus, only about one-half produce toxins. In present study the occurrence of total aflatoxin contamination in Indian maize samples collected from local market of Lucknow city were investigated by competitive ELISA technique. The result showed that the fungal count ranges from 1.0 × 102 to 3.6 × 106 cfu/gm. However; no significant correlation could be established within fungal count and the aflatoxin level. Total aflatoxin content ranges from 9.0 to 250 ppb. However 7 samples do not have any trace of total aflatoxin level.

  1. Effect of gamma radiation in peanuts for inhibition of Aspergillus flavus and nutritional composition; Irradiacao gama em amendoim para controle de Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.F.; Silva, E.B. da, E-mail: lauryfrancis@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Oliveira, I.S. [Universidade Federal de Pernambuco (CAV/UFPE), Vitoria de Santo Antao, PE (Brazil). Centro Academico de Vitoria

    2013-08-15

    Care in food storage, controlling humidity and temperature, prevents fungal diseases in peanuts and the development of filamentous fungi in food and feed, which can result in the production of toxins known as mycotoxins. Ionizing radiation is a preventive method of food security, promoting inhibition of buds, delayed maturation, reduction of microbial load, elimination of pathogenic microorganisms, sterilization and disinfection in grains, cereals, fruits and spices. This work aimed to evaluate the effects of gamma radiation on the growth inhibition of aflatoxigenic fungi and on nutritional composition in peanut. Samples were collected directly from the producer (Petrolandia) and Supply Central of Pernambuco (CEASA-PE), and then grains inside / outside pods were packed and subjected to irradiation at doses of 6, 9, 12 and 15 kGy. Fungal growth and nutritional composition of the samples before and after irradiation were analyzed and statistical analysis using the Mann-Whitney-Wilcoxon. The results showed that the samples originated from CEASA-PE had the highest rates of contamination. The radiation was effective in the inhibition of aflatoxigenic fungi, achieving to eliminate the action of fungi, regardless of dose. Only one non-irradiated sample, originated from CEASA-PE, showed positive production of aflatoxins in the middle LCA. No significant difference in the values of the nutritional composition, with increasing radiation dose. The irradiation was shown to be an effective process for preserving peanuts, because it prevents the growth of fungi, particularly aflatoxin producer, making it safer for consumption, without changing its nutritional composition. (author)

  2. 姜黄挥发油脂质体制备及其抗黄曲霉菌评价研究%Preparation of Turmeric Essential Oil Liposome and Research on Its Anti-Aspergillus flavus Efficacy

    Institute of Scientific and Technical Information of China (English)

    胡一晨; 孔维军; 杨美华

    2015-01-01

    目的:研究及评价姜黄挥发油的纳米脂质体系,以用于抑制黄曲霉菌生长及产毒,为纳米抗菌剂研究和开发奠定基础。方法:以安全性好的卵磷脂、胆固醇为膜材,采用乙醇注入结合超声乳化法,采用单因素考察与正交设计结合的方法优选姜黄挥发油脂质体制备工艺,并对所得脂质体进行理化表征和抗黄曲霉菌作用的评价。结果:采用卵磷脂与胆固醇比例10∶1,加药量与脂质比例1∶5,乙醇滴加速度1 mL/min,超声5 min,制备所得姜黄挥发油脂质体包封率、粒径分布、稳定性均较好。采用2 mL 脂质体/25 mL 培养基浓度,与黄曲霉菌共培养10 d,可完全抑制霉菌生长和黄曲霉毒素的产生。结论:将姜黄挥发油制备成纳米脂质体,既增加其体系稳定性和均一性,又保证了其抗黄曲霉菌性效,具有极大开发前景。%Objective:To develop the nano-liposomal system of turmeric essential oil for inhibiting Aspergillus flavus growth and aflatoxin generation.Methods:The stabilized and bio-safe liposomes loading turmeric essential oil were prepared by the ethanol injection-ultrasonic emulsification method with lecithin and cholesterol as excipients.Based on the combination of single factor screening and orthogonal design,liposomes were obtained by means of the optimized technology.Subsequently,following with the physicochemical characterization,the anti-Aspergillus flavus activity of liposomes were evaluated.Results:With the ratio of leci-thin and cholesterol(1 0∶1 ,weight ratio),ratio of feeding drug and excipient(1 :5,weight ratio),1 mL/min of the ethyl alcohol adding speed and along with ultrasonic emulsification for 5 min,liposomes were prepared,exhibiting high encapsulation efficiency, suitable size distribution,and good storage stability.Particularly,after incubation with 2 mL essential oil liposome per 25 mL cul-ture medium for 1 0d,almost 1 00% of

  3. Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus.

    Science.gov (United States)

    Razzaghi-Abyaneh, Mehdi; Shams-Ghahfarokhi, Masoomeh; Yoshinari, Tomoya; Rezaee, Mohammad-Bagher; Jaimand, Kamkar; Nagasawa, Hiromichi; Sakuda, Shohei

    2008-04-30

    In an effort to screen the essential oils of some Iranian medicinal plants for novel aflatoxin (AF) inhibitors, Satureja hortensis L. was found as a potent inhibitor of aflatoxins B1 (AFB1) and G1(AFG1) production by Aspergillus parasiticus NRRL 2999. Fungal growth was also inhibited in a dose-dependent manner. Separation of the plant inhibitory substance(s) was achieved using initial fractionation of its effective part (leaf essential oil; LEO) by silica gel column chromatography and further separation by reverse phase-high performance liquid chromatography (RP-HPLC). These substances were finally identified as carvacrol and thymol, based on the interpretation of 1H and 13C NMR spectra. Microbioassay (MBA) on cell culture microplates contained potato-dextrose broth (PDB) medium (4 days at 28 degrees C) and subsequent analysis of cultures with HPLC technique revealed that both carvacrol and thymol were able to effectively inhibit fungal growth, AFB1 and AFG1 production in a dose-dependent manner at all two-fold concentrations from 0.041 to 1.32 mM. The IC50 values for growth inhibition were calculated as 0.79 and 0.86 mM for carvacrol and thymol, while for AFB1 and AFG1, it was reported as 0.50 and 0.06 mM for carvacrol and 0.69 and 0.55 mM for thymol. The results obtained in this study clearly show a new biological activity for S. hortensis L. as strong inhibition of aflatoxin production by A. parasiticus. Carvacrol and thymol, the effective constituents of S. hortensis L., may be useful to control aflatoxin contamination of susceptible crops in the field.

  4. The potential inhibitory effect of cuminum cyminum, ziziphora clinopodioides and nigella sativa essential oils on the growth of Aspergillus fumigatus and Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    A.R Khosravi

    2011-03-01

    Full Text Available The goals of this study were to evaluate the effectiveness of Cuminum cyminum, Ziziphora clinopodioides and Nigella sativa essential oils to inhibit the growth of Aspergillus fumigatus and A. flavus and to evoke ultrastructural changes. The fungi were cultured into RPMI 1640 media in the presence of oils at concentrations of 8, 6, 5, 4, 3, 2, 1.5, 1.25, 1, 0.75 and 0.5 mg/ml in broth microdilution and 2, 1.5, 1 and 0.5 mg/ml in broth macrodilution methods with shaking for 48 h at 28ºC. Conidial and mycelial samples exposed to 0.25, 0.5, 1, 1.5 and 2 mg essential oils/ml for 5 days in 2% yeast extract granulated plus 15% Saccharose media were processed for transmission electron microscopy (TEM. Based on broth dilution methods, C. cyminum and to a lesser extent Z. clinopodioides oils exhibited the strongest activity against A. fumigatus and A. flavus with MIC90 ranging from 0.25 to 1.5 mg/ml, while the oil from N. sativa exhibited relatively moderate activity against two above fungi with MIC90 ranging from 1.5 to 2 mg/ml. The main changes observed by TEM were in the cell wall, plasma membrane and membranous organelles; in particular, in the nuclei and mitochondria. These modifications in fungal structure were associated with the interference of the essential oils with the enzymes responsible for cell wall synthesis, which disturbed normal growth. Moreover, the essential oils caused high vacuolation of the cytoplasm, detachment of fibrillar layer of cell wall, plasma membrane disruption and disorganization of the nuclear and mitochondrial structures. Aspergillus fumigatus and A. flavus growth inhibition induced by these oils were found to be well-correlated with subsequent morphological changes of the fungi exposed to different fungistatic concentrations of the oils. Our results show the anti-Aspergillus activities of C. cyminum, Z. clinopodioides and N. sativa essential oils, which strengthens the potential use of these substances as anti

  5. Molecular detection of mycobiota and aflatoxin contamination of chili

    Directory of Open Access Journals (Sweden)

    Gherbawy Youssuf A.

    2015-01-01

    Full Text Available Capsicum annuum grows in warm areas. Pepper production conditions require the drying of fruits by sunlight. During the drying processes, the crop is exposed to contamination by microorganisms, especially fungi. In this article, the isolation of mycobiota from retail markets and food restaurants of Taif city was studied. Crushed chili showed a high fungal load compared to chili sauce and chili powder, while chili powder showed a high occurrence of total aflatoxins (AFs. Aspergillus, Eurotium and Penicillium were the most common genera isolated from chili samples. Thirty-four samples (out of 60 were naturally contaminated with AFs ranging from 20 to 200 ppb. The total aflatoxin potential of 35 isolates of A. flavus, A. parasiticus and A. tamarri were studied. Seventy percent of A. flavus isolates were aflatoxigenic. The frequencies of aflatoxin biosynthesis genes aflR, nor-1, ver-1 and omtA were studied in aflatoxigenic and non-aflatoxigenic isolates of Aspergillus species collected in this study. All aflatoxigenic isolates (21 and 1 non-aflatoxigenic isolate of A. flavus showed DNA fragments that correspond to the complete set of the targeted genes. In conclusion, the high co-occurrence of Aspergillus species capable of producing aflatoxins, particularly in chili samples, suggests the need for more efficient control during processing and storage to reduce fungal contamination.

  6. Nanoparticle-based immunosensors and immunoassays for aflatoxins.

    Science.gov (United States)

    Wang, Xu; Niessner, Reinhard; Tang, Dianping; Knopp, Dietmar

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety.

  7. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi.

    Science.gov (United States)

    Lee, Chao-Zong; Liou, Guey-Yuh; Yuan, Gwo-Fang

    2006-01-01

    Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus parasiticus, Aspergillus flavus, Aspergillus nomius and a few other species. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. Although Aspergillus oryzae and Aspergillus sojae, which are used in fermented foods and in ingredient manufacture, have no record of producing aflatoxin, they have been shown to possess an aflR gene. This study examined 34 strains of Aspergillus section Flavi. The aflR gene of 23 of these strains was successfully amplified and sequenced. No aflR PCR products were found in five A. sojae strains or six strains of A. oryzae. These PCR results suggested that the aflR gene is absent or significantly different in some A. sojae and A. oryzae strains. The sequenced aflR genes from the 23 positive strains had greater than 96.6 % similarity, which was particularly conserved in the zinc-finger DNA-binding domain. The aflR gene of A. sojae has two obvious characteristics: an extra CTCATG sequence fragment and a C to T transition that causes premature termination of AFLR protein synthesis. Differences between A. parasiticus/A. sojae and A. flavus/A. oryzae aflR genes were also identified. Some strains of A. flavus as well as A. flavus var. viridis, A. oryzae var. viridis and A. oryzae var. effuses have an A. oryzae-type aflR gene. For all strains with the A. oryzae-type aflR gene, there was no evidence of aflatoxin production. It is suggested that for safety reasons, the aflR gene could be examined to assess possible aflatoxin production by Aspergillus section Flavi strains.

  8. Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Gadzovska-Simic Sonja

    2012-01-01

    Full Text Available We investigated the production of phenylpropanoids (phenolic compounds, flavanols, flavonols and anthocyanins and naphtodianthrones (hypericins in elicited Hypericum perforatum L. cell suspensions. To determine whether secondary metabolite production could be enhanced, Hypericum cell suspensions were exposed to mycelia extract from the fungus Aspergillus flavus. Elicited Hypericum cell suspension cultures displayed reduced growth and viability and a modification of secondary metabolites production. Anthocyanins were only stimulated in fungal-elicited cell suspensions. Secondary metabolite production in elicited Hypericum cells revealed an antagonism between the flavonoid/naphtodianthrone and anthocyanin pathways. The data suggest a modification of the channeling of the phenylpropanoid compounds. Together, these results represent useful data for monitoring the channeling in different secondary metabolite pathways during the scaled-up production of naphtodianthrones for medicinal uses.

  9. Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates.

    Science.gov (United States)

    Giorni, Paola; Camardo Leggieri, Marco; Magan, Naresh; Battilani, Paola

    2012-06-01

    A key step in the infection cycle by Aspergillus flavus in maize is sporulation of sclerotia present in soil or in crop debris. However, little information is available on this critical and important phase. This study included experiments on artificial (Czapek Dox Agar (CZ)) and natural (maize stalks) substrates under different conditions of temperature (T; from 5 to 45 °C) and water activity (a(w); from 0.50 to 0.99) levels to quantify sporulation from sclerotia. The mean numbers of spores were higher on defined nutritional medium in vitro on CZ agar than on maize stalks (4.5×10(6) spores/sclerotium versus 4.2×10(4) spores/sclerotium) with production initiated after 6 and 24h, respectively. Surprisingly, the optimal temperature was found at 30-35 °C for CZ agar (9.23×10(6) spores/sclerotium) and to be 20-25 °C for maize stalks (6.26×10(4) spores/sclerotium). Water stress imposition only reduced sporulation at ≤0.90 a(w.) With more available water no significant differences were found between 0.90 and 0.99 a(w). This type of data is critical in the development of a mechanistic model to predict the infection cycle of A. flavus in maize in relation to meteorological conditions.

  10. In silico analysis of β-mannanases and β-mannosidase from Aspergillus flavus and Trichoderma virens UKM1

    Science.gov (United States)

    Yee, Chai Sin; Murad, Abdul Munir Abdul; Bakar, Farah Diba Abu

    2013-11-01

    A gene encoding an endo-β-1,4-mannanase from Trichoderma virens UKM1 (manTV) and Aspergillus flavus UKM1 (manAF) was analysed with bioinformatic tools. In addition, A. flavus NRRL 3357 genome database was screened for a β-mannosidase gene and analysed (mndA-AF). These three genes were analysed to understand their gene properties. manTV and manAF both consists of 1,332-bp and 1,386-bp nucleotides encoding 443 and 461 amino acid residues, respectively. Both the endo-β-1,4-mannanases belong to the glycosyl hydrolase family 5 and contain a carbohydrate-binding module family 1 (CBM1). On the other hand, mndA-AF which is a 2,745-bp gene encodes a protein sequence of 914 amino acid residues. This β-mannosidase belongs to the glycosyl hydrolase family 2. Predicted molecular weight of manTV, manAF and mndA-AF are 47.74 kDa, 49.71 kDa and 103 kDa, respectively. All three predicted protein sequences possessed signal peptide sequence and are highly conserved among other fungal β-mannanases and β-mannosidases.

  11. Detection of aflatoxin B1 (AFB1) in individual maize kernels using short wave infrared (SWIR) hyperspectral imaging

    Science.gov (United States)

    Short wave infrared hyperspectral imaging (SWIR) (1000-2500 nm) was used to detect aflatoxin B1 (AFB1) in individual maize kernels. A total of 120 kernels of four varieties (or 30 kernels per variety) that had been artificially inoculated with a toxigenic strain of Aspergillus flavus and harvested f...

  12. Aflatoxin-producing fungi in maize fields of Sonora Mexico at varying elevations: a three year study

    Science.gov (United States)

    Aflatoxin contamination of maize, a critical staple of billions, by Aspergillus flavus is a recurrent problem in the tropics and subtropics. Maize is produced across a broad range of elevations in the state of Sonora, Mexico. The current study evaluated the influence of elevation on the composition ...

  13. 大米中黄曲霉的微波杀菌工艺优化%Optimization of microwave sterilization process on Aspergillus flavus from rice

    Institute of Scientific and Technical Information of China (English)

    李科静; 徐艳阳; 关欢欢

    2015-01-01

    目的:探索微波处理对大米中黄曲霉的杀菌工艺条件。方法以黄曲霉孢子减少对数周期为检测指标,考察微波功率、微波时间和装载量对黄曲霉孢子减少对数周期的影响,在单因素试验的基础上,采用3因素3水平响应面法设计并优化微波杀菌工艺,建立相应的回归方程。结果微波杀菌最佳工艺条件为:微波功率231 W,微波时间32 s,装载量34 g,在此条件下黄曲霉孢子减少对数周期为3.496±0.069,实际值与理论值的相对误差为-9.97%。结论本研究获得了微波杀灭大米中黄曲霉的最佳工艺条件,应用微波技术可以作为粮食杀菌的一种有效手段。%Objective To explore effects of microwave sterilization on Aspergillus flavus from rice. Methods Effects of microwave power, microwave time, and loads of rice on log-periodic reduction of Aspergillus flavus spores were investigated and the log-periodic reduction of Aspergillus flavus spores was determined as an indicator. Based on the single-factor experiments, optimal microwave sterilization process was studied by response surface methodology and corresponding regression equation was established. Results Optimum sterilization conditions were as follows: microwave power of 231 W, microwave time of 32 s, and loads of rice of 34 g. Under these conditions, log-periodic reduction of Aspergillus flavus spores was 3.496±0.069, and relative error between determined and predicted value of log-periodic reduction of Aspergillus flavus spores was -9.97%. Conclusion The optimal sterilization conditions of microwave for Aspergillus flavus spores from rice were obtained, and the microwave technique can be an effective method for grains’ sterilization.

  14. Aflatoxins in foods

    Directory of Open Access Journals (Sweden)

    Amedeo Pietri

    2007-03-01

    Full Text Available Aflatoxins are mycotoxins produced by Aspergillus flavus and A. parasiticus. The aflatoxin group is comprised of aflatoxin B1 (AFB1, B2, G1 and G2. In addition, aflatoxin M1 (AFM1, a hydroxylated metabolite of AFB1, is excreted in the milk of dairy cows consuming an AFB1-contaminated ration. AFB1 has shown extreme acute and chronic toxicity and carcinogenic activity in animals; the acute toxicity of AFM1 is nearly equal to that of AFB1, but its potential carcinogenic hazard is about one order of magnitude less than that of AFB1. The International Agency for Research on Cancer classified AFB1 as a human carcinogen (group 1 and AFM1 as a possible carcinogen (group 2A. Recently, the possibility of a synergistic carcinogenic interaction between HBV chronic infection and dietary exposure to AFB1 arose from the observation of their co-existence in countries with high incidences of HCC and was confirmed by further experimental and epidemiological studies. However, the carcinogenic potency of AFB1 is considered much lower in populations where chronic hepatitis infections are rare. For the first time in 2003, significant problems arose in Italy, due to the aflatoxin contamination of maize. The summer was extremely hot and dry and A. flavus is very competitive under these conditions as the plants are stressed. Maize grain is normally utilized in the food supply for dairy cows and as such led to the severe and widespread contamination of milk with AFM1. In the following years (2004-2006, different climatic conditions as well as better compliance with guidelines by farmers, led to a dramatic reduction of the problem.

  15. [Effect of alcoholic extracts of wild plants on the inhibition of growth of Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium moniliforme and Fusarium poae moulds].

    Science.gov (United States)

    Tequida-Meneses, Martín; Cortez-Rocha, Mario; Rosas-Burgos, Ema Carina; López-Sandoval, Susana; Corrales-Maldonado, Consuelo

    2002-06-01

    Fungicidal activity of wild plants Larrea tridentata, Karwinskia humboldtiana, Ricinus communis, Eucalyptus globulus, Ambrosia ambrosioides, Nicotiana glauca, Ambrosia confertiflora, Datura discolor, Baccharis glutinosa, Proboscidea parviflora, Solanum rostratum, Jatropha cinerea, Salpianthus macrodonthus y Sarcostemma cynanchoides was evaluated against the moulds species Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium expansum, Fusarium poae y Fusarium moniliforme moulds species. Alcoholic extracts 6% (w/v) were prepared using six grams of dried plant powders (leaves and stems) and alcohol (70% ethanol or 70% methanol). A spore suspension (1x10(6); ufc/ml) of each mould was prepared by adding saline solution (0.85%) and 0.1% tween 80. The extracts were mixed with Czapeck yeast agar (CYA) at 45-50 degrees C in 1:10 relation on Petri dishes. Triplicate Petri dishes of each treatment and for each mould were centrally inoculated and three Petri dishes were used without treatment as controls. The inoculated dishes and controls were incubated at 25 +/- 2 degrees C for eight days. The incubated dishes were examined each 48 h and after the colony diameter (radial growth) was measured. Two mould species were controlled by L. tridentata, B. glutinosa and P. parviflora. Extracts of L. tridentata in methanol or ethanol at 41.5-100% inhibited all six species of moulds.

  16. Effect of contamination of diets with aflatoxins on growing ducks and chickens.

    Science.gov (United States)

    Ostrowski-Meissner, H T

    1983-08-01

    Growing Alabio ducks and White Leghorn chickens were used in a growth study in which diets containing either soybean meal (SBM), peanut meal (PNM) or fish meal (FM) as protein sources were contaminated with the fungus Aspergillus flavus providing the following aflatoxin levels: 0, 50, 100 and 200 micrograms aflatoxin B1 equivalent per kg ration. There were no differences in responses of growing ducks and chickens (at age of 28 days) to the various protein sources at the zero aflatoxin level. However diets contaminated with Aspergillus flavus and containing 50 micrograms/kg aflatoxin B1 equivalent or more significantly reduced body weight gain and utilisation of dietary protein in ducks as compared with chickens. The higher the aflatoxin content above 50 micrograms/kg the greater was the difference in performance between ducks and chickens. Dietary aflatoxins caused liver damage in ducks while no damage was recorded in chickens. Ducks fed diets containing SBM or PNM were more affected by the same concentration of aflatoxins than those fed diets with FM. When intensification of duck husbandry is envisaged, particularly in humid tropical regions, measures to avoid the deleterious ill effects of aflatoxins are needed.

  17. 医院空气中黄曲霉菌含量分析研究%Analysis of Air Concentration of Aspergillus Flavus in Hospital

    Institute of Scientific and Technical Information of China (English)

    索继江; 邢玉斌; 谢丽君; 杜明梅; 贾宁; 高岩; 邓春燕; 陈孟莉; 刘运喜

    2009-01-01

    目的 了解医院空气中黄曲霉菌污染程度和规律.方法 采用离心式空气微生物采样器和真菌培养的方法,在1年中不同季节分别选择1 d中不同的5个时段,对医院不同环境空气中黄曲霉菌进行采集、培养、计数和分析.结果 所有采样点在4个季度均采集到了黄曲霉菌株;6个环境区空气中黄曲霉菌含量不同,以门诊楼最高,平均达1238.9 CFU/m~3;其中内科楼各科室空气中黄曲霉菌含量各季节间差异有统计学意义(P0.05);同时内科与外环境空气中黄曲霉菌含量在冬、夏季差异有统计学意义(均P0.05).结论 医院环境中黄曲霉菌污染较严重,加强环境控制,预防曲霉菌属感染非常必要.%OBJECTIVE To study the degree and regular of Aspergillus flavus air contamination in hospital.METHODS Some ambient air of different environment in our hospital was taken 5 times in one day of four seasons one year by using centrifugal air sampler, and then cultivated (using eumycete cultural methods), counted and analyzed. RESULTS A. flavus strain was collected in all sampling points in four seasons. The concentration of Aspergillus flavus in six standort was diverse from each other, and the highest was the out-patient clinic with 1238. 9 CFU/m~2. The concentration of Aspergillus flavus in each division of Medical Department was significant difference during four seasons (P 0.05). The difference between internal medicine and external enviroment was significant between the first and the third season( P=0.022, P=0.039),but that of the second and the fouth season was not significant (P=0.022, P=0.624). CONCLUSIONS The contamination of Aspergillus flavus in hospital was severe. So it's necessary to prevent the Aspergillus flavus infection and enhance the environmental control of susceptible population.

  18. The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins

    Directory of Open Access Journals (Sweden)

    Andong eGong

    2015-10-01

    Full Text Available Aflatoxigenic Aspergillus fungi and associated aflatoxins are ubiquitous in the production and storage of food/feed commodities. Controlling these pests is a challenge. In this study, the Shewanella algae strain YM8 was found to produce volatiles that have strong antifungal activity against Aspergillus pathogens. Gas chromatography-mass spectrometry profiling revealed 15 volatile organic compounds (VOCs emitted from YM8, of which dimethyl trisulfide was the most abundant. We obtained authentic reference standards for six of the VOCs; these all significantly reduced mycelial growth and conidial germination in Aspergillus; dimethyl trisulfide and 2,4-bis(1,1-dimethylethyl-phenol showed the strongest inhibitory activity. YM8 completely inhibited Aspergillus growth and aflatoxin biosynthesis in maize and peanut samples stored at different water activity levels, and scanning electron microscopy revealed severely damaged conidia and a complete lack of mycelium development and conidiogenesis. YM8 also completely inhibited the growth of eight other agronomically important species of phytopathogenic fungi: A. parasiticus, A. niger, Alternaria alternate, Botrytis cinerea, Fusarium graminearum, Fusarium oxysporum, Monilinia fructicola, and Sclerotinia sclerotiorum. This study demonstrates the susceptibility of Aspergillus and other fungi to VOCs from marine bacteria and indicates a new strategy for effectively controlling these pathogens and the associated mycotoxin production in the field and during storage.

  19. Use of gamma irradiation to prevent aflatoxin B 1 production in smoked dried fish

    Science.gov (United States)

    Ogbadu, G. H.

    Smoked dried fish bought from the Nigerian market was inoculated with spores of barAspergillus flavus (U.I. 81) and irradiated with doses of 0.625, 1.25, 2.50 and 5.00 KGy gamma irradiation. The effect of aflatoxin B 1 production on subsequent incubation for 8 days as stationary cultures was measured. The amount of aflatoxin B 1 produced was found to decrease with increased gamma irradiation dose levels. While the non-irradiated control produced significantly (at 1% level) greater amounts of aflatoxin B 1 as compared to the treated cultures.

  20. Carryover of aflatoxin B/sub 1/ in contaminated substrate corn into Nigerian native beer

    Energy Technology Data Exchange (ETDEWEB)

    Okoye, Z.S.C.

    1986-10-01

    Aflatoxins, the toxic secondary metabolites of Aspergillus flavus and Asp. parasiticus, constitute a serious food contamination problem in Nigeria and have been detected in the blood of healthy rural blood donors and primary liver cancer patients from the Guinea savannah region where traditionally brewed cereal beer is popular. A recent survey of traditional breweries in the Jos metropolis has shown a high incidence of aflatoxin B/sub 1/ contamination of their products. The purpose of this study was to assess the efficiency of the traditional brewing in destroying aflatoxins in mould-infected substrate grains.

  1. [Applications of molecular biology techniques for the control of aflatoxin contamination].

    Science.gov (United States)

    Sanchis, V

    1993-02-01

    Aflatoxins are mycotoxins produced by species of Aspergillus flavus group. These toxins have received increased attention from the food industry and the general public because they shown a high toxicity against humans and animal. Different methods are applying to control the aflatoxin contamination. But these conventional methods do not seem to resolve the problem. So, new methods using techniques in biotechnology are now being developed: a) Inhibit the biosynthetic and secretory process responsible for aflatoxin contamination. b) Using biocompetitive agents that replace aflatoxigenic strains with non aflatoxigenic strains in the field. c) Using genetic engineering techniques to incorporate antifungal genes into specific plant species.

  2. Perillaldehyde, a Promising Antifungal Agent Used in Food Preservation, Triggers Apoptosis through a Metacaspase-Dependent Pathway in Aspergillus flavus.

    Science.gov (United States)

    Tian, Jun; Wang, Yanzhen; Lu, Zhaoqun; Sun, Chunhui; Zhang, Man; Zhu, Aihua; Peng, Xue

    2016-10-05

    In the present study, we provide detailed insights into perillaldehyde (PAE)'s mechanisms of action on Aspergillus flavus and offer evidence in favor of the induction of an apoptosis-like phenotype. Specifically, PAE's antifungal mode of action was investigated through the detection of mitochondrial membrane potential (MtΔψ) and phosphatidylserine (PS) exposure, as well as intracellular Ca(2+) level, reactive oxygen species accumulation, and metacaspase activation. This was done by way of fluorometry, measuring DNA fragmentation, and condensation by fluorescent microscopy. Furthermore, we searched for phenotypic changes characteristic of apoptosis by transmission electron microscopy and flow cytometry, determining the amount of cytochrome c released using Western blotting. Results indicated that cultivation of A. flavus in the presence of PAE caused depolarization of MtΔψ, rapid DNA condensation, large-scale DNA fragmentation, and an elevation of intracellular Ca(2+) level. The percentage of early apoptotic cells with exposure of PS were 27.4% and 48.7%, respectively, after 9 h incubations with 0.25 and 0.5 μL/mL of PAE. The percentage of stained cells with activated intracellular metacaspases exposed to PAE at concentrations of 0.25 and 0.5 μL/mL compared with control subjects were increased by 28.4 ± 3.25% and 37.9 ± 4.24%, respectively. The above results has revealed that PAE induces fungal apoptosis through a caspase-dependent mitochondrial pathway. In all, our findings provide a novel mechanism for exploring a possible antifungal agent used in food preservation.

  3. Effects of carbon, nitrogen and pH on the growth of Aspergillus parasiticus and aflatoxins production in water.

    Science.gov (United States)

    Al-Gabr, Hamid Moh; Ye, Chengsong; Zhang, Yongli; Khan, Sardar; Lin, Huirong; Zheng, Tianling

    2013-04-01

    Mycotoxins are considered as the most hazardous fungal metabolites for human, animals and plant health. Recently, more attention has been paid on the occurrence of this group of fungi in different water sources throughout the globe. In this study, Aspergillus parasiticus ATCC strain was used as representative strain producing aflatoxins in drinking water. This study aimed to investigate the activation of fungi in drinking water and their ability to produce aflatoxins (B1, B2, G1, and G2) in water under different ratios of C:N using different concentrations of total organic carbon (TOC) and total nitrogen (TN). Glucose and ammonium sulphate were used for changing the levels of TOC and TN in the selected water media. Similarly, the effects of different water pH levels from 4.5 to 8.2 on the growth of this group of fungi and aflatoxins production were also investigated. The results indicate that the growth of fungi was highest, at C:N ratio of 1:1 as compared to other selected ratios. Furthermore, the findings indicate that the pH levels 5.5-6.5 showed best growth of fungi as compared to other pH levels. Aflatoxin concentrations were measured in the water samples using HPLC technique, but selected fungi were not able to produce aflatoxins in water at applied concentrations of TOC and TN mimicking the ratios and concentrations present in the natural aquatic environment.

  4. Quantitative Determination of Aflatoxin by High Performance Liquid Chromatography in Wheat Silos in Golestan Province, North of Iran

    Science.gov (United States)

    NAMJOO, Mohadeseh; SALAMAT, Faezeh; RAJABLI, Niloofar; HAJIHOSEEINI, Reza; NIKNEJAD, Farhad; KOHSAR, Faramarz; JOSHAGHANI, Hamidreza

    2016-01-01

    Background: Aflatoxins are the most common mycotoxins that contaminate crops. They are produced by fungi such as Aspergillus flavus and Aspergillus parasiticus. Wheat (Tricitumaestivum) is one of the most important staple foods used in Iran, and the environmental conditions in the north of Iran are favorable to fungal growth. This study was designed in order to determine the aflatoxin concentration in wheat samples from silos in Golestan Province north of Iran. Methods: Samples were collected from three silos of Golestan province. First, aflatoxins were isolated using immunoaffinity chromatography. Then the aflatoxin concentrations were determined by High performance liquid chromatography (HPLC) method and fluorescence detector. Results: Ten out of 34 samples (29.4% of samples) were contaminated by aflatoxins.No concentration was found above permitted aflatoxin levels in Iran (15 ng/g). In one sample (2.9%), aflatoxin B1 was seen over the permissible limits in Iran. The highest level found in samples for total aflatoxin, aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 were 7.08 ng/g, 6.91 ng/g, 0.29 ng/g, 1.37 ng/g and 0.23 ng/g, respectively. No correlation was found between humidity levels in wheat samples contained aflatoxin and wheat samples without aflatoxin. Conclusion: Despite the total aflatoxins determined in samples were below the permissible limits in Iran, the 29% aflatoxin contamination rate can negatively affect health factors and it should not be neglected. So, it is predictable that if the storage duration of samples increases, the aflatoxin contamination levels will increase. PMID:27516997

  5. Moulds identification and detection of aflatoxin B1 on commercial codiments fermented of shrimp

    Directory of Open Access Journals (Sweden)

    NOOR SOESANTI HANDAJANI

    2006-07-01

    Full Text Available Indonesian tropical climate have an opportunity for fungi growth as Aspergillus flavus Link which can produce aflatoxin within foodstuffs, include condiment of fermented shrimp. Aflatoxin B1 is the dangerous agent having roles as carcinogenic, mutagenic and teratogenic. The aims of this research were known kinds of moulds and detection of aflatoxin B1 on commercial condiments fermented of shrimp. Two brands of commercial condiments fermented of shrimp were taken from traditional markets and supermarkets in Surakarta. Isolation was done by made suspension of sample in aquadets. Suspension on appropriate dilutions was grown on CDA (Czapek’s Dox Agar media with surface spread. The grown colonies were separated and grown on PDA (Potato Dextrose Agar slant media. Furthermore, isolates were cultured on CDA and MEA (Malt Extract Agar media. The grown colonies were microscopes and microscopes examined and identified. Existence of aflatoxin B1 was known by Commercial RIDA Screen ELISA Kit that could detect qualitatively and quantitatively with detection sensitive < 1.7 ppb. Moulds that could be isolated from condiments fermented of shrimp were: Aspergillus flavus Link, Aspergillus niger van Tieghem, Aspergillus wentii Wehmer, Aspergillus PU1 or Aspergillus PU2 and Penicillium citrinum Thom. There was aflatoxin B1 contaminated to 2 brands of commercial condiments fermented of shrimp that were examined. Traditional markets’ commercial condiments fermented of shrimp contained higher aflatoxin B1 than supermarkets’. The brands of commercial condiment of fermented shrimp which had better inner package quality contained lower aflatoxin B1 than the worst inner package quality of commercial condiments of fermented of shrimp.

  6. Inhibitory effects of Ephedra major Host on Aspergillus parasiticus growth and aflatoxin production.

    Science.gov (United States)

    Bagheri-Gavkosh, Shahrokh; Bigdeli, Mohsen; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2009-11-01

    This study was undertaken to evaluate the effect of Ephedra major Host, an important medicinal plant with various biological activities, on growth and aflatoxin (AF) production by Aspergillus parasiticus NRRL 2999. The fungus was cultured in yeast extract-sucrose (YES) broth, a conductive medium that supports AF production, in the presence of various concentrations of essential oil (EO), hexanic and methanolic extracts of plant aerial parts, fruits, and roots using microbioassay technique. After incubating for 96 h at 28 degrees C in static conditions, mycelial dry weight was determined as an index of fungal growth, and aflatoxin B(1) (AFB(1)) was measured using HPLC technique. Based on the obtained results, EO of plant aerial parts significantly inhibited fungal growth at the highest concentration of 1000 microg/ml without any obvious effect on AFB(1) production at all concentrations used. Among plant extracts tested, only methanolic extract of aerial parts and roots were found to inhibit fungal growth and AFB(1) production dose-dependently with an IC(50) value of 559.74 and 3.98 microg/ml for AFB(1), respectively. Based on the GC/MS data, the major components of E. major EO were bis (2-ethylhexyl) phthalate (42.48%), pentacosane (20.94%), docosane (14.64%), citronellol (5.15%), heptadecan (4.41%), cis-3-Hexen-1-ol benzoate (4.07%), and 7-Octen-2-ol (3.25%). With respect to the potent inhibition of fungal growth and AF production by E. major, this plant may be useful in protecting crops from both toxigenic fungal growth and AF contamination.

  7. Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Li, Changsheng; Han, Suoyi; Lopez-Baltazar, Javier; Zhang, Xinyou; Wang, Xingjun

    2016-01-01

    Lipoxygenase (LOX) genes are widely distributed in plants and play crucial roles in resistance to biotic and abiotic stress. Although they have been characterized in various plants, little is known about the evolution of legume LOX genes. In this study, we identified 122 full-length LOX genes in Arachis duranensis, Arachis ipaënsis, Cajanus cajan, Cicer arietinum, Glycine max, Lotus japonicus and Medicago truncatula. In total, 64 orthologous and 36 paralogous genes were identified. The full-length, polycystin-1, lipoxygenase, alpha-toxin (PLAT) and lipoxygenase domain sequences from orthologous and paralogous genes exhibited a signature of purifying selection. However, purifying selection influenced orthologues more than paralogues, indicating greater functional conservation of orthologues than paralogues. Neutrality and effective number of codons plot results showed that natural selection primarily shapes codon usage, except for C. arietinum, L. japonicas and M. truncatula LOX genes. GCG, ACG, UCG, CGG and CCG codons exhibited low relative synonymous codon usage (RSCU) values, while CCA, GGA, GCU, CUU and GUU had high RSCU values, indicating that the latter codons are strongly preferred. LOX expression patterns differed significantly between wild-type peanut and cultivated peanut infected with Aspergillus flavus, which could explain the divergent disease resistance of wild progenitor and cultivars. PMID:27731413

  8. The Breeding of a Pigment Mutant Strain of Steroid Hydroxylation Aspergillus Flavus by Low Energy Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    YE Hui; MA Jingming; FENG Chun; CHENG Ying; ZHU Suwen; CHENG Beijiu

    2009-01-01

    In the process of the fermentation of steroid C11α-hydroxylgenation strain Aspergillus flavus AF-ANo208.a red pigment is derived.which will affect the isolation and purification of the target product.Low energy ion beam implantation is a new tool for breeding excellent mutant strains.In this study,the ion beam implantation experiments were performed by infusing two different ions:argon ion(Ar+)and nitrogen ion(N+).The results showed that the optimal ion implantation was N+ with an optimum dose of 2.08×1015 ions/cm2.with which the mutant strain AF-ANml6 that produced no red pigment was obtained.The strain had high genetic stability and kept the strong capacity of C11α-hydroxylgenation,which could be utilized in industrial fermentation.The difierences between the original strain and the mutant strain at a molecular level were analyzed by randomly amplified polymorphic DNA(RAPD).The results indicated that the frequency of variation Was 7.00%,which would establish the basis of application investigation into the breeding of pigment mutant strains by low energy ion implantation.

  9. Clinical efficacy and tolerability of caspofungin in a renal transplant patient with Aspergillus flavus lung infection: case report.

    Science.gov (United States)

    Pasticci, M B; Barchiesi, F; Fallani, S; Palladino, N; Lapalorcia, L M; Gubbiotti, M; Cozzari, M; Novelli, A; Baldelli, F

    2006-10-01

    Organ transplant recipients are at increased risk for severe invasive aspergillosis, and amphotericin deoxycholate has been the standard treatment for many years. Currently, however, lipid formulations are preferred due to their few side effects. Also, a number of new antifungal drugs have been developed including new azoles and echinocandins. Caspofungin is the first of the echinocandin derivatives patented to treat patients with invasive aspergillosis who are refractory or intolerant to other therapies. A renal transplant patient on immunosuppressive treatment with chronic hepatitis B virus infection was admitted with fever, hemophthisis and lung consolidation, diagnosed to be probably caused by Aspergillus flavus. The patient developed cholestatic hepatitis most likely related to itraconazole. Clinical failure and in vitro itraconazole resistance of the isolate was also documented while the patient was receiving itraconazole at a reduced dosage. Caspofungin was administered once a day as ambulatory treatment and was well tolerated. Clinical improvement was observed after 6 weeks of treatment and no hepatic toxicity was documented. Caspofungin seems to be a potentially useful antifungal agent in renal transplant patients with invasive aspergillosis. Further evaluation of the efficacy of caspofungin is needed.

  10. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits.

    Science.gov (United States)

    de Souza, Evandro L; Sales, Camila V; de Oliveira, Carlos E V; Lopes, Laênia A A; da Conceição, Maria L; Berger, Lúcia R R; Stamford, Thayza C M

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage.

  11. Efficacy of a coating composed of chitosan from Mucor circinelloides and carvacrol to control Aspergillus flavus and the quality of cherry tomato fruits

    Science.gov (United States)

    de Souza, Evandro L.; Sales, Camila V.; de Oliveira, Carlos E. V.; Lopes, Laênia A. A.; da Conceição, Maria L.; Berger, Lúcia R. R.; Stamford, Thayza C. M.

    2015-01-01

    Cherry tomato (Lycopersicon esculentum Mill) fruits are susceptible to contamination by Aspergillus flavus, which may cause the development of fruit rot and significant postharvest losses. Currently there are significant drawbacks for the use of synthetic fungicides to control pathogenic fungi in tomato fruits, and it has increased the interest in exploring new alternatives to control the occurrence of fungal infections in these fruits. This study evaluated the efficacy of chitosan (CHI) from Mucor circinelloides in combination with carvacrol (CAR) in inhibiting A. flavus in laboratory media and as a coating on cherry tomato fruits (25°C, 12 days and 12°C, 24 days). During a period of storage, the effect of coatings composed of CHI and CAR on autochthonous microflora, as well as on some quality characteristics of the fruits such as weight loss, color, firmness, soluble solids, and titratable acidity was evaluated. CHI and CAR displayed MIC valuesof 7.5 mg/mL and 10 μL/mL, respectively, against A. flavus. The combined application of CHI (7.5 or 3.75 mg/mL) and CAR (5 or 2.5 μL/mL) strongly inhibited the mycelial growth and spore germination of A. flavus. The coating composed of CHI (3.75 mg/mL) and CAR (2.5 or 1.25 μL/mL) inhibited the growth of A. flavus in artificially contaminated fruits, as well as the native fungal microflora of the fruits stored at room or low temperature. The application of the tested coatings preserved the quality of cherry tomato fruits as measured by some physicochemical attributes. From this, composite coatings containing CHI and CAR offer a promising alternative to control postharvest infection caused by A. flavus or native fungal microflora in fresh cherry tomato fruits without negatively affecting their quality over storage. PMID:26257717

  12. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins

    Directory of Open Access Journals (Sweden)

    Ilenia Siciliano

    2016-04-01

    Full Text Available Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N2, 0.1% O2 and 1% O2, 21% O2, then power (400, 700, 1000, 1150 W and exposure time (1, 2, 4, and 12 min were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min, a reduction in the concentration of total aflatoxins and AFB1 of over 70% was obtained. Aflatoxins B1 and G1 were more sensitive to plasma treatments compared to aflatoxins B2 and G2, respectively. Under plasma treatment, aflatoxin B1 was more sensitive compared to aflatoxin G1. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics.

  13. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins.

    Science.gov (United States)

    Siciliano, Ilenia; Spadaro, Davide; Prelle, Ambra; Vallauri, Dario; Cavallero, Maria Chiara; Garibaldi, Angelo; Gullino, Maria Lodovica

    2016-04-26

    Aflatoxins, produced by Aspergillus flavus and A. parasiticus, can contaminate different foodstuffs, such as nuts. Cold atmospheric pressure plasma has the potential to be used for mycotoxin detoxification. In this study, the operating parameters of cold atmospheric pressure plasma were optimized to reduce the presence of aflatoxins on dehulled hazelnuts. First, the effect of different gases was tested (N₂, 0.1% O₂ and 1% O₂, 21% O₂), then power (400, 700, 1000, 1150 W) and exposure time (1, 2, 4, and 12 min) were optimized. In preliminary tests on aflatoxin standard solutions, this method allowed to obtain a complete detoxification using a high power for a few minutes. On hazelnuts, in similar conditions (1000 W, 12 min), a reduction in the concentration of total aflatoxins and AFB₁ of over 70% was obtained. Aflatoxins B₁ and G₁ were more sensitive to plasma treatments compared to aflatoxins B₂ and G₂, respectively. Under plasma treatment, aflatoxin B₁ was more sensitive compared to aflatoxin G₁. At the highest power, and for the longest time, the maximum temperature increment was 28.9 °C. Cold atmospheric plasma has the potential to be a promising method for aflatoxin detoxification on food, because it is effective and it could help to maintain the organoleptic characteristics.

  14. α--AMYLASES OF Aspergillus flavus var. oryzae AND Bacillus subtilis: THE SUBSTRATE SPECIFICITY AND RESISTANCE TO A NUMBER OF CHEMICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    K. V. Avdiyuk

    2013-06-01

    Full Text Available The ability of Aspergillus flavus var. oryzae 80428 and Bacillus subtilis 147 α-amylases to split different carbohydrate-containing substrates, such as maltose, sucrose, trehalose, dextrin, α- and β-cyclodextrin, amylose, amylopectin, glycogen, pullulan, soluble starch, insoluble starch, corn starch, wheat starch, dextran 500 has been studied. It was shown that investigated enzymes differ by substrate specificity. α-Amylase of A. flavus var. oryzae 80428 rapidly hydrolysed soluble potato and wheat starch, while the α-amylase of B. subtilis 147 — only wheat starch. Both enzymes don’t cleave maltose, α-cyclodextrin and dextran 500. A. flavus var. oryzae 80428 α-amylase display very small ability to hydrolyze pullulan, while α-amylase of B. subtilis 147 it does not act in general. The lowest values of Michaelis constant for both enzymes at splitting of glycogen have been obtained, indicating that enzymes have the greatest affinity to this substrate. The studies of influence of chemically active substances on activity of A. flavus var. oryzae 80428 and B. subtilis 147 ?-amylases show there are resistant to urea, deoxycholic acid, Tween-80, Triton X-100 and hydrogen peroxide. It’s indicate the enzymes tested may be competitive in compare with earlier described in literature enzymes. The obtained results give a possibility to propose in future usage these enzymes in different fields of industry, foremost in detergent industry.

  15. Inhibition of aflatoxin production and growth of Aspergillus parasiticus by Cuminum cyminum, Ziziphora clinopodioides, and Nigella sativa essential oils.

    Science.gov (United States)

    Khosravi, Ali Reza; Shokri, Hojjatollah; Minooeianhaghighi, Mohammadhassan

    2011-12-01

    Aflatoxins are highly toxic and carcinogenic metabolites produced by Aspergillus parasiticus on food and agricultural commodities. Natural products may control the production of aflatoxins. The aims of this study were to evaluate the effects of the essential oils (EOs) of Cuminum cyminum, Ziziphora clinopodioides, and Nigella sativa on growth and aflatoxins production by A. parasiticus. Minimal inhibitory concentrations (MICs) and minimal fungicidal concentrations (MFCs) of the EOs were determined and compared with each other. Determination of aflatoxins (AFB(1), AFB(2), AFG(1), and AFG(2)) was performed by immunoaffinity column extraction using reverse phase-high performance liquid chromatography. The major oil components were α-pinene (30%) in C. cyminum, pulegone (37%) in Z. clinopodioides, and trans-anthol (38.9%) in N. sativa oils. In broth microdilution method, C. cyminum oil exhibited the strongest activity (MIC(90): 1.6; MFC: 3.5 mg/mL), followed by Z. clinopodioides (MIC(90): 2.1; MFC: 5.5 mg/mL) and N. sativa (MIC(90): 2.75; MFC: 6.25 mg/mL) oils against A. parasiticus (pAflatoxin production was inhibited at 0.25 mg/mL of C. cyminum and Z. clinopodioides oils, of which that of C. cyminum was a stronger inhibitor. C. cyminum EO caused significant reductions in values of 94.2% for AFB(1), 100% for AFB(2), 98.9% for AFG(1), 100% for AFG(2), and 97.5% for total aflatoxin. It is concluded that the EOs of C. cyminum, Z. clinopodioides, and N. sativa could be used as natural inhibitors in foods at low concentrations to protect from fungal and toxin contaminations by A. parasiticus.

  16. Suppression of spore germination and aflatoxin biosynthesis in Aspergillus parasiticus during and after exposure to high levels of phosphine.

    Science.gov (United States)

    Antonacci, L; Salvat, A E; Faifer, G C; Godoy, H M

    1999-01-01

    Agar cultures of toxigenic Aspergillus parasiticus NRRL 2999 were exposed to phosphine (PH3), in levels ranging from 0 to 2000 ppm (vol/vol). It was found that with PH3 concentrations of 400 ppm or higher the growth of the fungus was totally arrested. When PH3 was vented and the agar plates were exposed to open air, 100% of the initial CFU developed into fully grown colonies after PH3 levels below 300 ppm, but at higher PH3 concentrations only 50% of the colonies developed. The same strain of A. parasiticus was inoculated into high moisture corn under conditions highly favorable for aflatoxin production, and it was exposed to a range of PH3 levels. After exposure to 500 ppm PH3, both fungal growth and aflatoxin synthesis resumed shortly after elimination of the toxic gas, but after exposure to PH3 levels of 1000 ppm and higher, the physical appearance of the contaminated corn was remarkably changed, showing reduced mycelial growth and almost complete absence of green pigmentation. In addition, aflatoxin synthesis was totally absent for the remainder of the experiment (20 days). These results strongly suggest that exposure to PH3 levels of 1000 ppm or higher could bring about persistent metabolic changes in surviving Aspergillus organisms.

  17. Survey of aflatoxins in Kashkineh: A traditional Iranian food

    Science.gov (United States)

    Mardani, M; Rezapour, S; Rezapour, P

    2011-01-01

    Background and Objectives Aflatoxins are mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus that can contaminate human and animal foods, including corn, wheat, rice, peanuts, and many other crops resulting in the illness or death of human and animal consumers. The aim of this study was to detect aflatoxin B1, B2, G1, G2 and total aflatoxin in Kashkineh, a traditional Iranian food. Materials and Methods This survey was conducted to detect aflatoxins on 41 samples of Kashkineh. The samples were randomly collected from traditional bazaars and supermarkets of Khorramabad city of Iran. The presence and quantity of aflatoxins was determined by high performance liquid chromatography (HPLC). Results The average concentrations of AFB1, AFB2, AFG1, and AFG2 in all samples and in a mixed sample of all samples were not detectable (ND). The only sample that showed aflatoxin contamination was sample number 29 of which the AFB1 concentration was 0.64 ng/g. Conclusion Although some people believe Kashkineh is carcinogenic due to toxins, this study showed kashkineh is not contaminated with aflatoxins. PMID:22347598

  18. Survey of Aflatoxins in Kashkineh: A traditional Iranian Food

    Directory of Open Access Journals (Sweden)

    P Rezapour

    2011-12-01

    Full Text Available Background and Objectives: Aflatoxins are mycotoxins produced by Aspergillus flavus and Aspergillus parasiticus that can contaminate human and animal foods, including corn, wheat, rice, peanuts, and many other crops resulting in the illness or death of human and animal consumers. The aim of this study was to detect aflatoxin B1, B2, G1, G2 and total aflatoxin in Kashkineh, a traditional Iranian food.Materials and Methods: This survey was conducted to detect aflatoxins on 41 samples of Kashkineh. The samples were randomly collected from traditional bazaars and supermarkets of Khorramabad city of Iran. The presence and quantity of aflatoxins was determined by high performance liquid chromatography (HPLC.Results: The average concentrations of AFB1, AFB2, AFG1, and AFG2 in all samples and in a mixed sample of all samples were not detectable (ND. The only sample that showed aflatoxin contamination was sample number 29 of which the AFB1 concentration was 0.64 ng/g.Conclusion: Although some people believe Kashkineh is carcinogenic due to toxins, this study showed kashkineh is not contaminated with aflatoxins.

  19. Sexuality generates diversity in the aflatoxin gene cluster: evidence on a global scale.

    Directory of Open Access Journals (Sweden)

    Geromy G Moore

    Full Text Available Aflatoxins are produced by Aspergillus flavus and A. parasiticus in oil-rich seed and grain crops and are a serious problem in agriculture, with aflatoxin B₁ being the most carcinogenic natural compound known. Sexual reproduction in these species occurs between individuals belonging to different vegetative compatibility groups (VCGs. We examined natural genetic variation in 758 isolates of A. flavus, A. parasiticus and A. minisclerotigenes sampled from single peanut fields in the United States (Georgia, Africa (Benin, Argentina (Córdoba, Australia (Queensland and India (Karnataka. Analysis of DNA sequence variation across multiple intergenic regions in the aflatoxin gene clusters of A. flavus, A. parasiticus and A. minisclerotigenes revealed significant linkage disequilibrium (LD organized into distinct blocks that are conserved across different localities, suggesting that genetic recombination is nonrandom and a global occurrence. To assess the contributions of asexual and sexual reproduction to fixation and maintenance of toxin chemotype diversity in populations from each locality/species, we tested the null hypothesis of an equal number of MAT1-1 and MAT1-2 mating-type individuals, which is indicative of a sexually recombining population. All samples were clone-corrected using multi-locus sequence typing which associates closely with VCG. For both A. flavus and A. parasiticus, when the proportions of MAT1-1 and MAT1-2 were significantly different, there was more extensive LD in the aflatoxin cluster and populations were fixed for specific toxin chemotype classes, either the non-aflatoxigenic class in A. flavus or the B₁-dominant and G₁-dominant classes in A. parasiticus. A mating type ratio close to 1∶1 in A. flavus, A. parasiticus and A. minisclerotigenes was associated with higher recombination rates in the aflatoxin cluster and less pronounced chemotype differences in populations. This work shows that the reproductive nature of

  20. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R

    2007-01-01

    Mold strains belonging to the species Aspergillus oryzae and Aspergillus sojae are highly valued as koji molds in the traditional preparation of fermented foods, such as miso, sake, and shoyu, and as protein production hosts in modern industrial processes. A. oryzae and A. sojae are relatives....... sojae strains. Separation of A. oryzae and A. sojae from A. flavus and A. parasiticus, respectively, is inconsistent, and both morphologic and molecular evidence support conspecificity. The high degree of identity is reflected by the divergent identification of reference cultures maintained in culture...... collections. As close relatives of aflatoxin-producing wild molds, koji molds possess an aflatoxin gene homolog cluster. Some strains identified as A. oryzae and A. sojae have been implicated in aflatoxin production. Identification of a strain as A. oryzae or A. sojae is no guarantee of its inability...

  1. The Prevalence of Aflatoxinogenic Aspergillus parasiticus in Jordan

    Directory of Open Access Journals (Sweden)

    Nisreen Al-Hmoud

    2012-01-01

    Full Text Available Aflatoxins are potent carcinogens and produced by almost all Aspergillus parasiticus isolates and about 35% of Aspergillus flavus isolates. Chemical methods are used for detection of aflatoxins in food and feed. These methods cannot detect aflatoxinogenic fungi in samples, which contain undetectable amounts of aflatoxins. The objective of this research work was to ascertain the importance of molecular and microbiological methods in detection of aflatoxinogenic fungus A. parasiticus in food and feed samples in Jordan. Specific media for the detection of aflatoxins showed the prevalence of A. parasiticus (6–22% in contaminated food and feed samples. HPLC method confirmed the presence of aflatoxins B1, B2, G1, and G2 in food sample contaminated with A. parasiticus. Primer set OmtBII-F and OmtBII-R amplified DNA fragment of 611 base pairs from genomic DNA of aflatoxinogenic A. parasiticus isolated from food and feed samples but could not amplify DNA fragment of nonaflatoxinogenic A. flavus. The results of this study showed the prevalence of aflatoxinogenic A. parasiticus in food and feed samples in Jordan and give further evidence of suitability of microbiological and molecular methods in detection of aflatoxins, which are reliable low-cost approach to determine food and feed biosafety.

  2. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    Science.gov (United States)

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives.

  3. Aflatoxins as a cause of hepatocellular carcinoma.

    Science.gov (United States)

    Kew, Michael C

    2013-09-01

    Aflatoxins, metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, are frequent contaminants of a number of staple foods, particularly maize and ground nuts, in subsistence farming communities in tropical and sub-tropical climates in sub-Saharan Africa, Eastern Asia and parts of South America. Contamination of foods occurs during growth and as a result of storage in deficient or inappropriate facilities. These toxins pose serious public health hazards, including the causation of hepatocellular carcinoma by aflatoxin B1. Exposure begins in utero and is life-long. The innocuous parent molecule of the fungus is converted by members of the cytochrome p450 family into mutagenic and carcinogenic intermediates. Aflatoxin-B1 is converted into aflatoxin B1-8,9 exo-epoxide, which is in turn converted into 8,9-dihydroxy-8-(N7) guanyl-9-hydroxy aflatoxin B1 adduct. This adduct is metabolized into aflatoxin B1 formaminopyrimidine adduct. These adducts are mutagenic and carcinogenic. In addition, an arginine to serine mutation at codon 249 of the p53 tumor suppressor gene is produced, abrogating the function of the tumor suppressor gene, and contributing to hepatocarcinogenesis. Aflatoxin B1 acts synergistically with hepatitis B virus in causing hepatocellular carcinoma. A number of interactions between the two carcinogens may be responsible for this action, including integration of hepatitis B virus x gene and its consequences, as well as interference with nucleotide excision repair, activation of p21waf1/cip1, generation of DNA mutations, and altered methylation of genes. But much remains to be learnt about the precise pathogenetic mechanisms responsible for aflatoxin B1-induced hepatocellular carcinoma as well as the interaction between the toxin and hepatitis B virus in causing the tumor.

  4. A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L. syn Senna tora (L. Roxb. seed extract

    Directory of Open Access Journals (Sweden)

    Garg Satyendra K

    2011-07-01

    Full Text Available Abstract Background Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, Cassia tora (Senna tora is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, Aspergillus flavus and Bacillus sp. proteases. Methods The crushed seeds of Cassia tora were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90% followed by dialysis and size exclusion chromatography (SEC. The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60% and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD and ANOVA were employed as statistical tools. Results The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P Aspergillus flavus and Bacillus sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml-1 seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD of protease

  5. Diversity of aflatoxin-producing fungi and their impact on food safety in sub-Saharan Africa.

    Science.gov (United States)

    Probst, C; Bandyopadhyay, R; Cotty, P J

    2014-03-17

    Crops frequently contaminated by aflatoxins are important sources of revenue and daily nourishment in many portions of sub-Saharan Africa. In recent years, reports have associated aflatoxins with diminished human health and export opportunities in many African Nations. Aflatoxins are highly carcinogenic metabolites mainly produced by members of Aspergillus sect. Flavi. The current study examined aflatoxin-producing fungi associated with maize grain intended for human consumption in 18 sub-Saharan African countries. 4469 Aspergillus sect. Flavi isolates were obtained from 339 samples. The majority (75%) of isolates belonged to the L strain morphotype of A. flavus. Minor percentages were A. tamarii (6%), A. parasiticus (1%), and isolates with S strain morphology (3%). No A. bombycis or A. nomius isolates were detected. Phylogenetic analyses of partial sequences of the nitrate reductase gene (niaD, 1.3kb) and the aflatoxin pathway transcription factor gene (aflR, 1.7kb) were used to verify isolate assignments into species and lineages. Phylogenetics resolved S strain isolates producing only B aflatoxins into two lineages fully supported by sizes of deletions in the gene region spanning the aflatoxin biosynthesis genes cypA (aflU) and norB (aflF). One lineage was the A. flavus S strain with either 0.9 or 1.5kb deletions. The second lineage, recently described from Kenya, has a 2.2kb deletion. Taxa with S strain morphology differed in distribution with strain SBG limited to West Africa and both A. minisclerotigenes and the new lineage from Kenya in Central and East Africa. African A. flavus L strain isolates formed a single clade with L strain isolates from other continents. The sampled maize frequently tested positive for aflatoxins (65%), fumonisins (81%), and deoxynivalenol (40%) indicating the presence of fungi capable of producing the respective toxins. Percentage of samples exceeding US limits for total aflatoxins (regulatory limit), fumonisins (advisory limit

  6. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition.

    Science.gov (United States)

    Mannaa, Mohamed; Kim, Ki Deok

    2016-06-01

    Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi.

  7. Microbe-Mediated Control of Mycotoxigenic Grain Fungi in Stored Rice with Focus on Aflatoxin Biodegradation and Biosynthesis Inhibition

    Science.gov (United States)

    Mannaa, Mohamed

    2016-01-01

    Rice contaminated with fungal species during storage is not only of poor quality and low economic value, but may also have harmful effects on human and animal health. The predominant fungal species isolated from rice grains during storage belong to the genera Aspergillus and Penicillium. Some of these fungal species produce mycotoxins; they are responsible for adverse health effects in humans and animals, particularly Aspergillus flavus, which produces the extremely carcinogenic aflatoxins. Not surprisingly, there have been numerous attempts to devise safety procedure for the control of such harmful fungi and production of mycotoxins, including aflatoxins. This review provides information about fungal and mycotoxin contamination of stored rice grains, and microbe-based (biological) strategies to control grain fungi and mycotoxins. The latter will include information regarding attempts undertaken for mycotoxin (especially aflatoxin) bio-detoxification and microbial interference with the aflatoxin-biosynthetic pathway in the toxin-producing fungi. PMID:27433116

  8. Susceptibility to aflatoxin contamination among maize landraces from Mexico.

    Science.gov (United States)

    Ortega-Beltran, Alejandro; Guerrero-Herrera, Manuel D J; Ortega-Corona, Alejandro; Vidal-Martinez, Victor A; Cotty, Peter J

    2014-09-01

    Maize, the critical staple food for billions of people, was domesticated in Mexico about 9,000 YBP. Today, a great array of maize landraces (MLRs) across rural Mexico is harbored in a living library that has been passed among generations since before the establishment of the modern state. MLRs have been selected over hundreds of generations by ethnic groups for adaptation to diverse environmental settings. The genetic diversity of MLRs in Mexico is an outstanding resource for development of maize cultivars with beneficial traits. Maize is frequently contaminated with aflatoxins by Aspergillus flavus, and resistance to accumulation of these potent carcinogens has been sought for over three decades. However, MLRs from Mexico have not been evaluated as potential sources of resistance. Variation in susceptibility to both A. flavus reproduction and aflatoxin contamination was evaluated on viable maize kernels in laboratory experiments that included 74 MLR accessions collected from 2006 to 2008 in the central west and northwest regions of Mexico. Resistant and susceptible MLR accessions were detected in both regions. The most resistant accessions accumulated over 99 % less aflatoxin B1 than did the commercial hybrid control Pioneer P33B50. Accessions supporting lower aflatoxin accumulation also supported reduced A. flavus sporulation. Sporulation on the MLRs was positively correlated with aflatoxin accumulation (R = 0.5336, P aflatoxin resistance. Results of the current study indicate that MLRs from Mexico are potentially important sources of aflatoxin resistance that may contribute to the breeding of commercially acceptable and safe maize hybrids and/or open pollinated cultivars for human and animal consumption.

  9. Inorganic composition determination and evaluation of the biological activity of Peperomia pellucida in the Aspergillus flavus growth; Estudo da composicao inorganica e avaliacao da atividade biologica de Peperomia pellucida no crescimento de Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Sussa, Fabio Vitorio

    2011-07-01

    oil, ethanolic and hexane extracts of Peperomia pellucida were tested for antifungal activity against Aspergillus flavus in vitro on Petri plates. The antifungal activity was based on the inhibition zone and IC{sub 50} values against the pathogen on Petri plates assays. Also, the essential oil chemical composition was determined by GC-MS. (author)

  10. Measurement and assessment of aflatoxin B1 and its producing molds in Iranian sausages and burgers

    Directory of Open Access Journals (Sweden)

    Siavash Maktabi

    2016-09-01

    Full Text Available Abstract Introduction: Aflatoxin B1 (AFB1 is one of the most well-known hepatocarcinogens in humans. Contamination of raw materials, used in the production of sausages and burgers, with aflatoxin producing molds can lead to increased level of aflatoxin in the final products and can impose hazards to human health. Unfortunately, aflatoxin is resistant to heating and freezing processes, etc. and can remain in these products untile consumption. Methods: During a six-month period, 45 sausage and 53 burger samples from valid brands across the country were randomly purchased from the stores. The samples were analyzed for AFB1 by ELISA technique. Meanwhile, the number of molds was calculated and aflatoxin producing molds were identified by direct and slide culture methods. Results: The findings showed that 2 susage samples (4.9% and 3 burger samples (6.3% were contaminated with >1 ng/g aflatoxin. Moreover, 4 burger samples (8.9% contaminated with mold included aspergillus flavus, aspergillus niger, mucor, and penicillium while, none of the susage samples showed mold contamination. Conclusion: The Iranian meat products had a relative aflatoxin B1 contamination during the study period, but the contamination rate was low and in allowable range. Standard hygienic preparation and packaging of meat products molds is recommended to reduce fungal contamination, especially aflatoxin-producing molds.

  11. Bioremediation of aflatoxins by some reference fungal strains.

    Science.gov (United States)

    El-Shiekh, Hussein H; Mahdy, Hesham M; El-Aaser, Mahmoud M

    2007-01-01

    Aspergillus parasiticus RCMB 002001 (2) producing four types of aflatoxins B1, B2, G1, and G2 was used in this study as an aflatoxin-producer. Penicillium griseofulvum, P. urticae, Paecilomyces lilacinus, Trichoderma viride, Candida utilis, Saccharomyces cerevisiae as well as a non-toxigenic strain of Aspergillus flavus were found to be able to exhibit growth on aflatoxin B1-containing medium up to a concentration of 500 ppb. It was also found that several fungal strains exhibited the growth in co-culture with A. parasiticus, natural aflatoxins producer, and were able to decreased the total aflatoxin concentration, resulting in the highest inhibition percentage of 67.2% by T viride, followed by P. lilacinus, P. griseofulvum, S. cerevisiae, C. utilis, P. urticae, Rhizopus nigricans and Mucor rouxii with total aflatoxin inhibition percentage of 53.9, 52.4, 52, 51.7, 44, 38.2 and 35.4%, respectively. The separation of bioremediation products using GC/MS revealed that the toxins were degraded into furan moieties.

  12. A study on Inhibitory Effects of Titanium Dioxide Nanoparticles and its Photocatalytic Type on Staphylococcus aureus, Escherichia coli and Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Elnaz Babaei

    2016-03-01

    Full Text Available Backgrounds and Objectives: Photocatalyst titanium dioxide nanoparticles can oxidize organic and inorganic compounds of microorganisms in aqueous solutions after exposure to UV light. In the present study, the inhibitory effect of titanium dioxide and its photocatalyst type on Aspergillus flavus, Escherichia coli and Staphylococcus aureus is investigated. Materials and Methods: Toxicogenic strains of Staphylococcus aureus, Escherichia coli and Aspergillus flavus were cultured in their selective media and two groups of samples both included three different concentrations of nanoparticles (0.1, 0.5 and 1 g l-1 and two control samples without any nanoparticles were considered. The first category of samples was placed on the shaker for 20 min, and the second category was irradiated by a UV lamp while shaking for 20, 40 and 60 min on a rotary shaker. Thereafter, they were cultured by using pour plate method in agar and after incubation the colonies were counted. Results and Conclusion: Based on obtained results the photocatalyst titanium dioxide had an inhibitory effect at concentration of 1 g l-1 at the highest timeframe (60 min. In addition, the test variables i.e. the type of bacteria, concentration of nanoparticles and time had a significant effect on the growth inhibition of microorganisms. Regarding the economic aspects of contamination control and its importance in dairy products, application of photocatalystic nanoparticles of titanium dioxide is recommended. 

  13. 一株黄曲霉拮抗细菌的分离筛选及鉴定%Isolation and identification of an antagonistic bacteria of Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    涂彩虹; 秦文; 胡欣洁; 李素清

    2011-01-01

    Four bacteria which had obvious antagonistic effect on Aspergillus flavus were screened from soil. The secondary metabolite of bacterium could inhibit the growth of Aspergillus flavus effectively and the rate of inhibitory was 63%.It had fungi stasis on many different kinds of pathogenic fungi and had broad-spectrum antibacterial activity also. With regard to morphological features, physiological and biochemical test,and 16S rDNA sequences analysis,the strain was identified. The results showed that the strain belonged to Bacillus subtilis.%通过稀释分离法从土壤中分离纯化出一株具有黄曲霉拮杭活性的菌株.该菌株的次生代谢产物具有抑制黄曲霉生长的效果,抑菌率可达63%.该菌对多种病原真菌抑制效果明显,具有广谱抑菌效果.根据形态学观察、生理生化反应和16S rDNA鉴定,该菌株为枯草芽孢杆菌.

  14. Monitoring of Aflatoxin contamination at market food chain in East Java

    Directory of Open Access Journals (Sweden)

    Agustina A. Rahmianna

    2015-08-01

    Full Text Available Peanut is a cheapest source of protein especially for developing countries communities and mostly it obtained from traditional markets. Earlier studies showed that aflatoxin incidence was relatively less at the farmer/trader levels while it is significantly higher at retail levels especially in traditional markets. Present study was conducted to understand the factors leading to the post-harvest building up of aflatoxin in peanuts sold in traditional market and in supermarket. This study was carried out at Pasuruan regency, East Java Province, Indonesia from March 2005 to June 2006. During study period peanut grains were collected from wholesalers, retailers and supermarkets at three months interval. In each sampling point, 2kg of grains was obtained and then was divided into eight parts for the analysis of parameters namely seed moisture content, physical quality, Aspergillus flavus infection and aflatoxin B1 contamination. The results showed that seed water contents at wholesalers, collectors, and retailers in traditional wet markets were almost lower than 10%. They were thus ‘safe’ from aflatoxin B1 contamination as seed moisture contents were below the aflatoxin risk zone. Time of sampling did not affect the level of aflatoxin B1 contamination. Under controlled condition generated from air-tight container, the influence of seed moisture content and A. flavus infection on aflatoxin production was significant.

  15. Characterization of small RNA populations in non-transgenic and aflatoxin-reducing-transformed peanut.

    Science.gov (United States)

    Power, Imana L; Dang, Phat M; Sobolev, Victor S; Orner, Valerie A; Powell, Joseph L; Lamb, Marshall C; Arias, Renee S

    2017-04-01

    Aflatoxin contamination is a major constraint in food production worldwide. In peanut (Arachis hypogaea L.), these toxic and carcinogenic aflatoxins are mainly produced by Aspergillus flavus Link and A. parasiticus Speare. The use of RNA interference (RNAi) is a promising method to reduce or prevent the accumulation of aflatoxin in peanut seed. In this study, we performed high-throughput sequencing of small RNA populations in a control line and in two transformed peanut lines that expressed an inverted repeat targeting five genes involved in the aflatoxin-biosynthesis pathway and that showed up to 100% less aflatoxin B1 than the controls. The objective was to determine the putative involvement of the small RNA populations in aflatoxin reduction. In total, 41 known microRNA (miRNA) families and many novel miRNAs were identified. Among those, 89 known and 10 novel miRNAs were differentially expressed in the transformed lines. We furthermore found two small interfering RNAs derived from the inverted repeat, and 39 sRNAs that mapped without mismatches to the genome of A. flavus and were present only in the transformed lines. This information will increase our understanding of the effectiveness of RNAi and enable the possible improvement of the RNAi technology for the control of aflatoxins.

  16. Relationships between in vivo and in vitro aflatoxin production: reliable prediction of fungal ability to contaminate maize with aflatoxins.

    Science.gov (United States)

    Probst, Claudia; Cotty, Peter J

    2012-04-01

    Aflatoxins are highly carcinogenic mycotoxins frequently produced by Aspergillus flavus. Contamination of maize with aflatoxins imposes both economic and health burdens in many regions. Identification of the most important etiologic agents of contamination is complicated by mixed infections and varying aflatoxin-producing potential of fungal species and individuals. In order to know the potential importance of an isolate to cause a contamination event, the ability of the isolate to produce aflatoxins on the living host must be determined. Aflatoxin production in vitro (synthetic and natural media) was contrasted with in vivo (viable maize kernels) in order to determine ability of in vitro techniques to predict the relative importance of causal agents to maize contamination events. Several media types and fermentation techniques (aerated, non-aerated, fermentation volume) were compared. There was no correlation between aflatoxin production in viable maize and production in any of the tested liquid fermentation media using any of the fermentation techniques. Isolates that produced aflatoxins on viable maize frequently failed to produce detectable (limit of detection=1ppb) aflatoxin concentrations in synthetic media. Aflatoxin production on autoclaved maize kernels was highly correlated with production on viable maize kernels. The results have important implications for researchers seeking to either identify causal agents of contamination events or characterize atoxigenic isolates for biological control.

  17. Aflatoxins: biosynthesis, occurrence, toxicity, and remedies.

    Science.gov (United States)

    Abrar, Muhammad; Anjum, Faqir Muhammad; Butt, Masood Sadiq; Pasha, Imran; Randhawa, Muhammad Atif; Saeed, Farhan; Waqas, Khalid

    2013-01-01

    Food contagion with aflatoxins is the modern concern and has received a great awareness during the last few decades. The intermittent incidence of these toxins in agricultural commodities has negative role on the economy of the affected regions where harvest and postharvest techniques for the prevention of mold growth, are seldom practiced. Aflatoxins are difuranocoumarin derivatives produced by a polyketide pathway by the fungus Aspergillus flavus and Aspergillus parasiticus via polyketide pathway which are highly hepatotoxic, hepatocarcinogenic, teratogenic, and mutagenic in nature and contaminate a wide variety of important agricultural commodities before, during, and after harvest in various environmental conditions. The production of aflatoxins in innate substrates depends upon the various factors, that is, type of substrate, fungal species, moisture contents of the substrate, minerals, humidity, temperature, and physical damage of the kernels. These toxins cause several ailments such as cancer, hepatitis, mutation abnormalities, and reproduction disorders. Minimization and inactivation of aflatoxins contaminants through proper crop management at farm level and with physical, chemical, and biological techniques are the limelight of the article.

  18. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract.

    Science.gov (United States)

    de Alencar Guimaraes, Nelciele Cavalieri; Sorgatto, Michele; Peixoto-Nogueira, Simone de Carvalho; Betini, Jorge Henrique Almeida; Zanoelo, Fabiana Fonseca; Marques, Maria Rita; de Moraes Polizeli, Maria de Lourdes Teixeira; Giannesi, Giovana C

    2013-01-01

    This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of incubation, and A. flavus had a half-life of more than 75 minutes. At 55°C, the xylanase produced by A. niger showed more stable than from A. flavus showing a half-life of more than 45 minutes. The xylanase activity of A. niger and A. flavus were somehow protected in the presence of glycerol 5% when compared to the control (without additives). On the biobleaching assay it was observed that the xylanase from A. flavus was more effective in comparison to A. niger. The kappa efficiency corresponded to 36.32 and 25.93, respectively. That is important to emphasize that the cellulase activity was either analyzed and significant levels were not detected, which explain why the viscosity was not significantly modified.

  19. Inhibitory effect of eugenol on aflatoxin B1 production in Aspergillus parasiticus by downregulating the expression of major genes in the toxin biosynthetic pathway.

    Science.gov (United States)

    Jahanshiri, Zahra; Shams-Ghahfarokhi, Masoomeh; Allameh, Abdolamir; Razzaghi-Abyaneh, Mehdi

    2015-07-01

    Aflatoxin contamination of grains and agro-products is a serious food safety issue and a significant economic concern worldwide. In the present study, the effects of eugenol on Aspergillus parasiticus growth and aflatoxin production were studied in relation to the expression of some essential genes involved in aflatoxin biosynthetic pathway. The fungus was cultured in presence of serial two-fold concentrations of eugenol (15.62-500 μg mL(-1)) for 3 days at 28 °C. Mycelia dry weight was determined as an index of fungal growth, while aflatoxin production was assessed by high performance liquid chromatography. The expression of aflatoxin biosynthetic genes including ver-1, nor-1, pksA, omtA and aflR were evaluated by real-time PCR. Eugenol strongly inhibited A. parasiticus growth in the range of 19.16-95.83 % in a dose-dependent manner. Aflatoxin B1 production was also inhibited by the compound in the range of 15.07-98.0 %. The expressions of ver-1, nor-1, pksA, omtA and aflR genes were significantly suppressed by eugenol at concentrations of 62.5 and 125 μg mL(-1). These results indicate that eugenol may be considered as a good candidate to control toxigenic fungal growth and the subsequent contamination of food, feed and agricultural commodities by carcinogenic aflatoxins.

  20. The induction of neoplastic lesions by aflatoxin-B1 in the Egyptian toad (Bufo regularis).

    Science.gov (United States)

    el-Mofty, M M; Sakr, S A

    1988-01-01

    The carcinogenic activity of aflatoxin-B1, the metabolic product of the mold Aspergillus flavus (a commonly occurring contaminant of groundnuts and other foodstuffs), was tested using the Egyptian toad (Bufo regularis). Injecting the toads with aflatoxin-B1 at a dose level of 0.01 mg/50 g body wt in 1 ml corn oil once a week for 15 weeks induced hepatocellular carcinomas in 19% of the experimental toads. Four toads developed tumors in the kidney due to metastases from the primary hepatocellular carcinomas.

  1. Occurrence of aflatoxin B1 in natural products

    Directory of Open Access Journals (Sweden)

    Guilherme Prado

    2012-12-01

    Full Text Available The media claims for the consumption of natural resource-based food have gradually increased in both developing and developed countries. The interest in the safety of these products is partially due to the possible presence of toxigenic fungi acting as mycotoxin producers, such as aflatoxins produced during the secondary metabolism of Aspergillus flavus, A. parasiticus and A. nomius. Aflatoxins, mainly aflatoxin B1, are directly associated with liver cancer in human beings. This paper is aimed at evaluating the presence of aflatoxin B1 in a few vegetable drugs, dried plant extracts and industrialized products traded in 2010 in the city of Belo Horizonte, State of Minas Gerais, Brazil. The method used for the quantification of aflatoxin B1 was based on extraction through acetone:water (85:15, immunoaffinity column purification followed by separation and detection in high efficiency liquid chromatography. Under the conditions of analysis, the Limits of Detection and Quantification were 0.6 µg kg-1 and 1.0 µg kg-1respectively. The complete sets of analyses were carried out in duplicate. Aflatoxin B1 was noticed in a single sample (< 1.0 µg kg-1. The results revealed low aflatoxin B1contamination in the products under analysis. However, it is required to establish a broad monitoring program in order to obtain additional data and check up on the actual extension of contamination.

  2. Aflatoxin-producing fungi in maize field soils from sea level to over 2000 masl: a three year study in Sonora, Mexico.

    Science.gov (United States)

    Ortega-Beltran, Alejandro; Jaime, Ramon; Cotty, Peter J

    2015-04-01

    Aflatoxins, highly toxic carcinogens produced by several members of Aspergillus section Flavi, contaminate crops in temperate zones. In the state of Sonora, Mexico, maize is cultivated from 0 to 2100 masl with diverse cultivation practices. This is typical of the nation. In order to design better sampling strategies across Mexico, aflatoxin-producing fungal communities associated with maize production during 2006, 2007, and 2008 in Sonora were investigated in four agro-ecological zones (AEZ) at varying elevation. Fungal communities were dominated by the Aspergillus flavus L strain morphotype (46%), but variation occurred between years and among AEZ. Several atoxigenic isolates with potential to be used as biocontrol agents for aflatoxin mitigation were detected in all AEZ. The characteristics of each AEZ had minimal influences on fungal community structure and should not be a major consideration for future sampling designs for Mexico. Insights into the dynamics and stability of aflatoxin-producing fungal communities across AEZ are discussed.

  3. Evaluation of ELISA screening test for detecting aflatoxin in biogenic dust samples

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.T.

    1996-05-01

    Aflatoxin is a carcinogenic chemical that is sometimes produced when agricultural commodities are infested by the fungi Aspergillus flavus and A. Parasiticus. Aflatoxin has been found to be present in air samples taken around persons handling materials likely to be contaminated. The purpose of this investigation was to demonstrate the feasibility of using an Enzyme Linked Immunosorbent Assay (ELISA) test kit that was developed to screen for aflatoxin in bulk agricultural commodities, to an air sample. Samples were taken from two environments likely to be contaminated with aflatoxin, a dairy farm feed mixing operation and a peanut bagging operation. The dust collected from these environments was considered to be biogenic, in that it originated primarily from biological materials.

  4. Expression Profiling of Non-Aflatoxigenic Aspergillus parasiticus Mutants Obtained by 5-Azacytosine Treatment or Serial Mycelial Transfer

    Directory of Open Access Journals (Sweden)

    Jiujiang Yu

    2011-08-01

    Full Text Available Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Previous studies found that repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced colonies with a fluffy phenotype and inability to produce aflatoxins. To understand how these treatments affect expression of genes involved in aflatoxin production and development, we carried out expressed sequence tag (EST-based microarray assays to identify genes in treated clones that are differentially expressed compared to the wild-type. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to encode membrane-bound proteins. Based on this result we hypothesize that the treatments cause changes in the structure of cellular and organelle membranes that prevent normal development and aflatoxin biosynthesis.

  5. Bioprocess and biotecnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract

    OpenAIRE

    de Alencar Guimaraes, Nelciele ; Sorgatto, Michele ; Nogueira, Simone de Peixoto; Betini, Jorge Henrique ; Zanoelo, Fabiana ; Marques, Maria ; Polizeli, Maria de Lourdes Teixeira de Moraes; Giannesi, Giovana C

    2013-01-01

    This study compares two xylanases produced by filamentous fungi such as A. niger and A. flavus using agroindustrial residues as substract and evaluated the effect of these enzymes on cellulose pulp biobleaching process. Wheat bran was the best carbon source for xylanase production by A. niger and A. flavus. The production of xylanase was 18 and 21% higher on wheat bran when we compare the xylanase production with xylan. At 50°C, the xylanase of A. niger retained over 85% activity with 2 h of ...

  6. Nanoparticle-based immunosensors and immunoassays for aflatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Niessner, Reinhard [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany); Tang, Dianping [Key Laboratory of Analysis and Detection for Food Safety, MOE & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany)

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. - Highlights: • Novel concepts and promising applications of nanoparticle-based immunological methods for the determination of aflatoxins. • Inclusion of most important nanomaterials and hybrid nanostructures. • Inclusion of electrochemical, optical and mass-sensitive biosensors as well as optical and immunochromatographic assays.

  7. Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1 accumulation by Aspergillus section Flavi.

    Science.gov (United States)

    Bluma, R; Amaiden, M R; Etcheverry, M

    2008-02-29

    The effect of essential oils, ethanolic and aqueous extract of 41 vegetable species on Aspergillus section Flavi growth was evaluated. The in vitro screen was a two-stage process. A wide-spectrum initial screen which identified promising antifungal plant extracts was carried out first. After that, identified extracts were studied in more detail by in vitro assays. A total of 96 plant extracts were screened. Essential oils were found to be the most effective extract controlling aflatoxigenic strains. Clove, mountain thyme, poleo and eucalyptus essential oils were selected to study their antifungal effect. Studies on percentage of germination, germ-tube elongation rate, growth rate, and aflatoxin B1 accumulation were carried out. Clove, mountain thyme and poleo essential oils showed the most antifungal effect under all growth parameters analyzed as well as aflatoxin B1 accumulation. Our results suggest that mountain thyme and poleo, which are native vegetal species of Argentina, and clove essential oils could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.

  8. Biomassa, proteína, colesterol e glicose extracelular de cinco isolados de Aspergillus flavus - doi: 10.5102/ucs.v3i2.557

    Directory of Open Access Journals (Sweden)

    Wencerly Ramos Rodrigues Jr.

    2008-04-01

    Full Text Available Fungos filamentosos são organismos importantes para a produção de enzimas, compostos químicos e farmacêuticos. O comportamento metabólico comparado dos fungos é importante para conhecer suas relações taxonômicas e seu potencial uso em microbiologia industrial. Cinco isolados de Aspergillus flavus foram analisados quanto à produção de biomassa, proteína total, colesterol e glicose em diferentes meios de cultura e temperatura. Poucas diferenças foram observadas. Alguns isolados foram capazes de produzir quantidades significativas de colesterol sob as condições utilizadas neste estudo.

  9. Genetic Control of the Resistance to Aspergillus flavus in Maize%玉米对黄曲霉菌抗性的遗传控制

    Institute of Scientific and Technical Information of China (English)

    邓德祥; 盖钧镒; 秦泰辰; 卞云龙; 印志同; 徐明良

    2000-01-01

    用7个玉米自交系进行完全双列杂交,对杂种F1进行自交,获得P1、P2、F1、F1、F2、F26个家系.对6个家系的种子用黄曲霉菌(Aspergillus flavus Link)接种.根据种子的感病程度,对抗性进行遗传分析.结果表明:玉米对黄曲霉菌的抗性遗传主要受2n核遗传体系控制,细胞质对抗性的遗传也有影响,但3n胚乳对抗性遗传影响甚微.

  10. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution.

    Science.gov (United States)

    Akar, Tamer; Tunali, Sibel

    2006-10-01

    The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.

  11. Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates.

    Science.gov (United States)

    Aloui, Hajer; Khwaldia, Khaoula; Licciardello, Fabio; Mazzaglia, Agata; Muratore, Giuseppe; Hamdi, Moktar; Restuccia, Cristina

    2014-01-17

    This study reports the efficacy of the combined application of chitosan (CH) and Locust Bean Gum (LBG) in combination with different citrus essential oils (EOs) to inhibit Aspergillus flavus in vitro and on artificially infected dates for a storage period of 12 days. The effect of these treatments on the fruits' sensory characteristics was evaluated to verify the complete absence of off-odours and off-flavours. Bergamot EO was the most effective in reducing mycelial growth, followed by bitter orange EO. Both bergamot and bitter orange oils significantly reduced conidial germination and a complete inhibition was obtained at concentrations higher than 2%. The mixtures based on CH-2% (v/v) bergamot EO or CH-2% (v/v) bitter orange EO proved to be the most effective coatings to reduce conidial germination resulting in an 87-90% inhibition compared with the control. In fruit decay assays coatings based on CH incorporating citrus oils were able to reduce fungal decay in the range of 52-62% at day 12. The study results and the complete absence of off-flavours and off-odours demonstrate the potential of CH coatings carrying citrus EOs at sub-inhibitory concentrations to control postharvest growth of A. flavus in dates.

  12. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  13. Metabolism of aflatoxin B-1 in cotton bolls

    Energy Technology Data Exchange (ETDEWEB)

    Mellon, J.E.; Lee, L.S. (Dept. of Agriculture, New Orleans, LA (USA))

    1989-04-01

    Aspergillus flavus is a fungus capable of producing the potent carcinogen aflatoxin (AFB-1) when it infects developing cotton seed. Although high levels of toxin can readily be isolated from internal tissues of infected seeds, very low toxin levels are observed in the fiber-linter matrix. In order to test the hypothesis that constituents associated with the lint of the host plant are metabolizing aflatoxin, {sup 14}C-AFB-1 was introduced into cotton bolls (30 days postanthesis). Other sets of bolls received inoculations of toxigenic or nontoxigenic strains of A. flavus plus exogenous {sup 14}C-AFB-1. In addition to the exogenously applied {sup 14}C-AFB-1, at least two new labelled metabolites were recovered from the test bolls. One of these metabolites was very polar and remained on the origin of the thin layer analysis system. Test bolls which received both A. flavus and AFB-1 produced significantly lower levels of this polar metabolite. Results indicated that some constituent(s) associated with cotton fiber may metabolize fungal-produced aflatoxin, rather than inhibit its formation.

  14. Vitality Stains and Real Time PCR Studies to Delineate the Interactions of Pichia anomala and Aspergillus flavus

    Science.gov (United States)

    The objectives of this study were to probe the effect of the yeast, P. anomala against A flavus by using real time RT-PCR technique and vitality fluorescent stains. Yeast and fungi were inoculated into a 250 ml-flask containing 50 ml potato dextrose broth (PDB) at yeast to fungus (Y : F) ratios of ...

  15. Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation.

    Science.gov (United States)

    Bluma, Romina V; Etcheverry, Miriam G

    2008-04-01

    The antifungal activity of Pimpinella anisum L. (anise), Pëumus boldus Mol (boldus), Hedeoma multiflora Benth (mountain thyme), Syzygium aromaticum L. (clove), and Lippia turbinate var. integrifolia (griseb) (poleo) essential oils (EOs) against Aspergillus section Flavi was evaluated in sterile maize grain under different water activity (a(w)) condition (0.982, 0.955, and 0.90). The effect of EOs added to maize grains on growth rate, lag phase, and aflatoxin B(1) (AFB(1)) accumulation of Aspergillus section Flavi were evaluated at different water activity conditions. The five EOs analyzed have been shown to influence lag phase and growth rate. Their efficacy depended mainly on the essential oil concentrations and substrate water activity conditions. All EOs showed significant impact on AFB(1) accumulation. This effect was closely dependent on the water activity, concentration, and incubation periods. Important reduction of AFB(1) accumulation was observed in the majority of EO treatments at 11 days of incubation. Boldus, poleo, and mountain thyme EO completely inhibited AFB(1) at 2000 and 3000 microg g(-1). Inhibition of AFB(1) accumulation was also observed when aflatoxigenic isolates grew with different concentration of EOs during 35 days.

  16. 不同萜类对黄曲霉菌抑制作用评价%Antifungal effect of seven terpenes against Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    梁海燕; 王国昌

    2012-01-01

    目的 评价7种萜类对黄曲霉Aspergillus flavus的抑菌活性,获得抑菌性能优良的化合物,为研制和开发新型黄曲霉杀菌剂提供科学依据.方法 采用气体扩散法研究7种萜类挥发物在1、2、4、8μL4个浓度下对黄曲霉菌丝生长和孢子萌发率的影响.结果 除了1 μL的金合欢烯、β-罗勒烯、α-蒎烯以外,其余处理均对黄曲霉菌丝生长有明显抑制活性(P<0.05);1、2、4μL的香叶烯、1μL的β-罗勒烯和1μL的松油烯对黄曲霉孢子萌发率无明显影响,其余处理条件下萜类对孢子萌发均有抑制作用(P<0.05);芳樟醇的抑菌活性最明显,在8μL的浓度下对菌丝生长和孢子萌发的抑制率分别达到75.93%和86.32%.结论 7种萜类化合物对黄曲霉菌有不同程度的抑制活性,其中芳樟醇的活性最高.%Objective To evaluate antifungal effects of 7 terpenes against Aspergillus flavus(A. flavus) and to provide basis for development of antimicrobial against A. flavus. Methods The anti-A. flavus effects of the terpenes were investigated at the concentrations of 1 μL, 2 μL, 4 μL,and 8 μL with gaseous diffusion methods. Results All treatments had inhibitory effect on hyphal growth, with the exception of 1 μL farnesen,l μL β-ocimene, and 1 μL α-pinene. Myrcene at the concentrations of 1 μL,2 μL and 4 μL, p-ocimene at 1 μL, and terpinene at 1 μL were lack of inhibition on spore germination. The terpenes at other concentrations could inhibit spore germination significantly. The antifungal effect of linalool was the strongest with an inhibitory rates on hyphal growth and spore germination of 76. 53% and 86. 32% at the concentration of 8 μl/L. Conclusion The results indicate that the seven terpenes could inhibit A. flavus at different extent,and the effects of linalool is the best.

  17. Potential roles of secondary metabolite production in environmental oxidative stress responses revealed in the Aspergillus flavus transcriptome

    Science.gov (United States)

    The contamination of agricultural crops with aflatoxins is exacerbated in the dry and hot season worldwide, and poses a serious food security concern, particularly in developing countries. Drought stress results in the accumulation of reactive oxygen species (ROS) in the tissues of plants. Previousl...

  18. Toxigenic Potential of Aspergillus Species Occurring on Maize Kernels from Two Agro-Ecological Zones in Kenya

    Directory of Open Access Journals (Sweden)

    Vesa Joutsjoki

    2012-10-01

    Full Text Available Two agro-ecological zones in Kenya were selected to compare the distribution in maize of Aspergillus spp. and their toxigenicity. These were Nandi County, which is the main maize growing region in the country but where no human aflatoxicoses have been reported, and Makueni County where most of the aflatoxicosis cases have occurred. Two hundred and fifty-five households were sampled in Nandi and 258 in Makueni, and Aspergillus was isolated from maize. Aspergillus flavus and A. parasiticus isolates were tested for the presence of aflD and aflQ genes. Positive strains were induced to produce aflatoxins on yeast extract sucrose and quantified using liquid chromatography-tandem mass spectrometry (LCMSMS. Aspergillus flavus was the most common contaminant, and the incidence of occurrence in Nandi and Makueni was not significantly different (82.33% and 73.26%, respectively. Toxigenic strains were more prevalent than non-toxigenic strains. All the toxigenic strains from Makueni were of the S-type while those from Nandi belonged to the l-type. Quantitative differences in aflatoxin production in vitro between isolates and between strains were detected with S strains producing relatively larger amounts of total aflatoxins, B toxins and lower values for G toxins. This was in accord with the frequent aflatoxicosis outbreaks in Makueni. However some L strains produced considerable amounts of B toxins. Given the widespread distribution of toxigenic strains in both regions, the risk of aflatoxin poisoning is high when favorable conditions for toxin production occur.

  19. Toxigenic potential of Aspergillus species occurring on maize kernels from two agro-ecological zones in Kenya.

    Science.gov (United States)

    Okoth, Sheila; Nyongesa, Beatrice; Ayugi, Vincent; Kang'ethe, Erastus; Korhonen, Hannu; Joutsjoki, Vesa

    2012-10-25

    Two agro-ecological zones in Kenya were selected to compare the distribution in maize of Aspergillus spp. and their toxigenicity. These were Nandi County, which is the main maize growing region in the country but where no human aflatoxicoses have been reported, and Makueni County where most of the aflatoxicosis cases have occurred. Two hundred and fifty-five households were sampled in Nandi and 258 in Makueni, and Aspergillus was isolated from maize. Aspergillus flavus and A. parasiticus isolates were tested for the presence of aflD and aflQ genes. Positive strains were induced to produce aflatoxins on yeast extract sucrose and quantified using liquid chromatography-tandem mass spectrometry (LCMSMS). Aspergillus flavus was the most common contaminant, and the incidence of occurrence in Nandi and Makueni was not significantly different (82.33% and 73.26%, respectively). Toxigenic strains were more prevalent than non-toxigenic strains. All the toxigenic strains from Makueni were of the S-type while those from Nandi belonged to the l-type. Quantitative differences in aflatoxin production in vitro between isolates and between strains were detected with S strains producing relatively larger amounts of total aflatoxins, B toxins and lower values for G toxins. This was in accord with the frequent aflatoxicosis outbreaks in Makueni. However some L strains produced considerable amounts of B toxins. Given the widespread distribution of toxigenic strains in both regions, the risk of aflatoxin poisoning is high when favorable conditions for toxin production occur.

  20. Mycoflora and aflatoxin/fumonisin production by fungal isolates from freshly harvested corn hybrids

    Directory of Open Access Journals (Sweden)

    Almeida Adriana P.

    2000-01-01

    Full Text Available The mycoflora of 3 hybrids of freshly harvested corn grains collected from three regions of the state of São Paulo, Brazil (Assis, Capão Bonito and Ribeirão Preto was investigated. A total of 66 samples were analyzed focusing on the influence of abiotic factors (moisture content, water activity, temperature and rainfall on both the prevalence of Aspergillus flavus and Fusarium moniliforme, and the ability of these genera isolates to produce aflatoxins and fumonisins, respectively. In the three surveyed regions, the fungal population comprised mainly Fusarium spp., Penicillium spp., Aspergillus spp. and 2 others filamentous fungal genera, which were isolated from corn kernels showing water activity of 0.30 to 0.99 and moisture content of 5.0% to 20.2%. Among the genera Fusarium and Aspergillus, the most frequent species were F. moniliforme and A. flavus, respectively. Concerning the toxigenic potential of F. moniliforme, all isolated strains (40 produced fumonisins at 20 mug/g to 2168 mug/g (FB1 and/or 10 mug/g to 380 mug/g (FB2. From the 10 A. flavus isolates, 6 strains (60.0% produced aflatoxins at 615 mug/kg to 30.750 mug/kg (AFB1 and/or 11 mug/kg to 22 mug/kg (AFB2.

  1. Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery

    Science.gov (United States)

    Ononye, Ambrose E.; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Cleveland, Thomas E.

    2009-05-01

    Aflatoxin is a mycotoxin predominantly produced by Aspergillus flavus and Aspergillus parasitiucus fungi that grow naturally in corn, peanuts and in a wide variety of other grain products. Corn, like other grains is used as food for human and feed for animal consumption. It is known that aflatoxin is carcinogenic; therefore, ingestion of corn infected with the toxin can lead to very serious health problems such as liver damage if the level of the contamination is high. The US Food and Drug Administration (FDA) has strict guidelines for permissible levels in the grain products for both humans and animals. The conventional approach used to determine these contamination levels is one of the destructive and invasive methods that require corn kernels to be ground and then chemically analyzed. Unfortunately, each of the analytical methods can take several hours depending on the quantity, to yield a result. The development of high spectral and spatial resolution imaging sensors has created an opportunity for hyperspectral image analysis to be employed for aflatoxin detection. However, this brings about a high dimensionality problem as a setback. In this paper, we propose a technique that automatically detects aflatoxin contaminated corn kernels by using dual-band imagery. The method exploits the fluorescence emission spectra from corn kernels captured under 365 nm ultra-violet light excitation. Our approach could lead to a non-destructive and non-invasive way of quantifying the levels of aflatoxin contamination. The preliminary results shown here, demonstrate the potential of our technique for aflatoxin detection.

  2. Mycobiota and Natural Incidence of Aflatoxins, Ochratoxin A, and Citrinin in Indian Spices Confirmed by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Punam Jeswal

    2015-01-01

    Full Text Available Nine different Indian spices (red chilli, black pepper, turmeric, coriander, cumin, fennel, caraway, fenugreek, and dry ginger commonly cultivated and highly used in India were analysed for natural occurrence of toxigenic mycoflora and aflatoxins (AFs, ochratoxin A (OTA, and citrinin (CTN contamination. Aspergillus flavus and Aspergillus niger were the most dominant species isolated from all types of spices. Red chilli samples were highly contaminated with aflatoxins (85.4% followed by dry ginger (77.7%. 56% Aspergillus flavus from red chilli and 45% Aspergillus ochraceus from black pepper were toxigenic and produced aflatoxins and ochratoxin A, respectively. Qualitative detection and quantitative detection of mycotoxins in spices were analyzed by ELISA and further confirmed by LC-MS/MS. Penicillium citrinum produced citrinin in red chilli, black pepper, coriander, cumin, fenugreek, and dry ginger samples. The highest amount of AFs was found in red chilli (219.6 ng/g, OTA was in black pepper (154.1 ng/g, and CTN was in dry ginger samples (85.1 ng/g. The results of this study suggest that the spices are susceptible substrate for growth of mycotoxigenic fungi and further mycotoxin production. This is the first report of natural occurrence of citrinin in black pepper and dry ginger from India.

  3. 花生黄曲霉抗性与糖原合成酶激酶-3的关系%Relationship between Peanut Aspergillus flavus Resistance and Glycogen Synthase Kinase-3

    Institute of Scientific and Technical Information of China (English)

    严海燕; 宗成志; 包文志; 单世华

    2011-01-01

    前期研究证明糖原合成酶激酶(GSK3β)在花生黄曲霉敏感品种中上调表达.本研究对花生黄曲霉抗性品种和易感品种发育种子表达的GSK3进行了生物信息学和定量PCR的分析验证.结果表明,在抗性品系中,GSK3β基因在小果时期上调表达.由于GSK3β是油菜类甾醇信号传导的负调控因子,在细胞延长中起着抑制作用.因此推测GSK3β在花生果实发育中是种子和果实大小的抑制因子,与黄曲霉抗性有间接或直接的关系.%It has been reported that Glycogen synthase kinase-3 was upregulated in peanut developing seed coat of Aspergillus flavus sensitive line. In this paper, we analyszed the expression differences of GSK3β gene in developing seeds between Aspergillus flavus resistant lines and susceptible lines with bioinformatic methods and QPCR-methods. The results indicated in early fruits stage, GSK3β gene was upregulated in Aspergillus flavus resistant lines. GSK3β is negative regulator for brassinosteroids,which inhibits cell elongation. Thus it's possible that GSK3β is a inhibitative factor in sizes of seeds and fruits in peanut development, direct or indirect related to the resistance to Aspergillus flavus.

  4. Detection of Expression Intensity of Aspergillus flavus Resistance Gene in Peanut Seed Capsule by Quantitative Real -Time PCR%荧光量PCR技术检测花生种皮抗黄曲霉基因表达强度

    Institute of Scientific and Technical Information of China (English)

    张廷婷; 李春娟; 闫彩霞; 孙兵; 郑奕雄; 单世华

    2012-01-01

    依据已获得的基因芯片和cDNA研究结果,筛选上调表达并且表达差异系数在5.0以上的花生种皮基因序列设计引物,采用SYBR Green Ⅰ实时荧光定量PCR法对上述基因进行相对定量分析,以验证基因芯片研究结果并为分离黄曲霉抗性相关基因奠定基础.结果表明:荧光定量PCR的结果与基因芯片的结果高度一致,目的基因在感病和抗病品种之间差异显著,其中BE87、AW03在抗病品种中相对表达量较高,可能在抵御黄曲霉侵染过程中发挥重要作用.%According to the research results of obtained gene chip and cDNA library, the primers were designed based on the gene sequences of peanut seed capsule which up - regulated expression and the differential expression coefficient more than 5.0. The relative quantitative analysis of these genes was carried out by SYBR Green I quantitative real - time PCR to identify the research results of gene chip and provide foundation for separating related genes resistant to Aspergillus flavus. The results showed that the quantitative real -time PCR results were consistent with the research results of gene chip on a high degree; there were significant differences between Aspergillus flavus resistant and susceptible varieties. Among which, BES1 and j4WD3 expressed more in Aspergillus flavus resistant varieties and maybe play an important role in defense from Aspergillus flavus infection.

  5. Surveillance of Aflatoxin and Microbiota Related to Brewer's Grain Destined for Swine Feed in Argentina

    Directory of Open Access Journals (Sweden)

    Gisela A. Gerbaldo

    2011-01-01

    Full Text Available Córdoba province in the center of Argentina is an important area of swine production. The use of industry by-product (brewer's grain as feedstuff for swine is a regular practice and increases animal performance on these animals production. The occurrence of aflatoxin contamination is global, causing severe problems especially in developing countries. No reports on aflatoxin B1 production, micoflora, and potential aflatoxin B1 producing microorganism from brewer's grain are available. The aims of this study were (1 to isolate the microbiota species from brewer's grain, (2 to determine aflatoxin B1 natural contamination levels, and (3 to determine the ability of Aspergillus section Flavi isolates to produce aflatoxins in vitro. Physical properties, total fungal counts, lactic acid bacteria, and fungal genera distribution were determined on this substrate. In 65% of the samples, fungal counts were higher than recommended by GMP, and lactic bacterium counts ranged from 1.9×105 to 4.4×109 CFU g−1. Aspergillus spp. prevailed over other fungal genera. Aspergillus flavus was the prevalent species followed by A. fumigatus. Aflatoxin B1 levels in the samples were higher than the recommended limits (20 ng g−1 for complementary feedstuffs. Several Aspergillus section Flavi strains were able to produce aflatoxin B1  in vitro. Inadequate storage conditions promote the proliferation of mycotoxin-producing fungal species. Regular monitoring of feeds is required in order to prevent chronic and acute toxic syndromes related to this kind of contamination.

  6. Biodiversity of Aspergillus species in some important agricultural products

    DEFF Research Database (Denmark)

    Perrone, Giancarlo; Susca, A.,; Cozzi, G.

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A....... flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different...... occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A...

  7. Perfil bioquímico do soro de frangos de corte alimentados com dieta suplementada com alfa-amilase de Cryptococcus flavus e Aspergillus niger HM2003 Biochemichal serum profile of broilers fed diets suplemented with alfa-amylase from Cryptococcus flavus and Aspergillus niger HM2003

    Directory of Open Access Journals (Sweden)

    Cibele Silva Minafra

    2010-12-01

    Full Text Available Avaliou-se o perfil bioquímico do soro de frangos de corte alimentados com a enzima α-amilase produzida por dois microrganismos. Produziram-se dois extratos, um com a-amilase obtida a partir de Cryptococcus flavus em meio de levedura comercial e outro com Aspergillus niger HM2003 em meio de proteína de soja e amido comercial, com atividade de 9,58 U/mL e 10,0 U/mL, respectivamente. Utilizaram-se 360 pintos de corte Cobb 500 de 1 dia de idade e com 49,72 ± 0,68 g de peso vivo inicial. As aves foram alojadas em baterias e foram criadas até os 21 dias de idade. Foram utilizados três dietas, cada uma com cinco repetições de 12 aves, em delineamento inteiramente casualizado. A primeira dieta (basal foi formulada sem adição de enzima e as outras duas receberam a suplementação de a-amilase produzida por cultivo de Cryptococcus flavus e Aspergillus niger HM2003. Dietas à base de milho e soja foram formuladas em duas fases: pré-inicial (1-7 dias e inicial (8-21 dias. Na fase pré-inicial, foram observados os seguintes valores médios para cálcio (6,90 e 5,99 mg/dL, proteína plasmática (2,0 e 2,50 g/dL e fosfatase alcalina (979,98 e 974,66 UI/L, respectivamente para Cryptococcus flavus e Aspergillus niger HM2003. A dieta acrescida de a-amilase obtida a partir de Aspergillus niger HM2003 determinou maior concentração sérica de fósforo. Na fase inicial, os resultados significativos relacionaram-se a potássio quando avaliadas dietas com adição de a-amilase pelas duas fontes. A incorporação das enzimas testadas não proporciona alterações metabólicas ou toxicidade nos animais.It was evaluated the biochemical serum profile of broilers fed rations supplemented with α-amylase produced by two microorganisms. Two extracts were produced, one was produced with a-amylase obtained from Cryptococcus flavus in a commercial yeast-based medium and the other with Aspergillus niger HM2003 produced in soybean protein and commercial starch medium

  8. Characterization of species of the Aspergillus section Nigri from corn field isolates co-infected with Aspergillus flavus/parasiticus species and the potential for ochratoxin A production.

    Science.gov (United States)

    Members of the Aspergillus section Nigri, known as black-spored aspergilli, can contaminate several substrates including maize. Although some species within the group can produce plant disease symptoms such as black mold in onions and maize ear rot, the main concern with A. niger aggregate contamina...

  9. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water.

    Science.gov (United States)

    Jardon-Xicotencatl, Samantha; Díaz-Torres, Roberto; Marroquín-Cardona, Alicia; Villarreal-Barajas, Tania; Méndez-Albores, Abraham

    2015-10-23

    Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and OPEN ACCESS Toxins 2015, 7 4295 genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize.

  10. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water

    Science.gov (United States)

    Jardon-Xicotencatl, Samantha; Díaz-Torres, Roberto; Marroquín-Cardona, Alicia; Villarreal-Barajas, Tania; Méndez-Albores, Abraham

    2015-01-01

    Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW) on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01) during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize. PMID:26512692

  11. Detoxification of Aflatoxin-Contaminated Maize by Neutral Electrolyzed Oxidizing Water

    Directory of Open Access Journals (Sweden)

    Samantha Jardon-Xicotencatl

    2015-10-01

    Full Text Available Aflatoxins, a group of extremely toxic mycotoxins produced by Aspergillus flavus, A. parasiticus and A. nomius, can occur as natural contaminants of certain agricultural commodities, particularly maize. These toxins have been shown to be hepatotoxic, carcinogenic, mutagenic and cause severe human and animal diseases. The effectiveness of neutral electrolyzed oxidizing water (NEW on aflatoxin detoxification was investigated in HepG2 cells using several validation methodologies such as the 3-(4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide assay, the induction of lipid peroxidation, the oxidative damage by means of glutathione modulation, the Ames test and the alkaline Comet assay. Our results showed that, after the aflatoxin-contaminated maize containing 360 ng/g was soaked in NEW (60 mg/L available chlorine, pH 7.01 during 15 min at room temperature, the aflatoxin content did not decrease as confirmed by the immunoaffinity column and ultra performance liquid chromatography methods. Aflatoxin fluorescence strength of detoxified samples was similar to untreated samples. However, aflatoxin-associated cytotoxicity and OPEN ACCESS Toxins 2015, 7 4295 genotoxicity effects were markedly reduced upon treatment. According to these results, NEW can be effectively used to detoxify aflatoxin-contaminated maize.

  12. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-06-01

    Full Text Available Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control.

  13. Inhibitory Activities of Alkyl Syringates and Related Compounds on Aflatoxin Production

    Science.gov (United States)

    Furukawa, Tomohiro; Iimura, Kurin; Kimura, Taichi; Yamamoto, Toshiyoshi; Sakuda, Shohei

    2016-01-01

    Inhibitors of aflatoxin production of aflatoxigenic fungi are useful for preventing aflatoxin contamination in crops. As methyl syringate weakly inhibits aflatoxin production, aflatoxin production inhibitory activities of additional alkyl syringates with alkyl chains from ethyl to octyl were examined. Inhibitory activity toward aflatoxin production of Aspergillus flavus became stronger as the length of the alkyl chains on the esters became longer. Pentyl, hexyl, heptyl, and octyl syringates showed strong activity at 0.05 mM. Heptyl and octyl parabens, and octyl gallate also inhibited aflatoxin production as strongly as octyl syringate. Alkyl parabens and alkyl gallates inhibit the complex II activity of the mitochondrial respiration chain; thus, whether alkyl syringates inhibit complex II activity was examined. Inhibitory activities of alkyl syringates toward complex II also became stronger as the length of the alkyl chains increased. The complex II inhibitory activity of octyl syringate was comparable to that of octyl paraben and octyl gallate. These results suggest that alkyl syringates, alkyl parabens, and alkyl gallates, including commonly used food additives, are useful for aflatoxin control. PMID:27338472

  14. Natural occurrence of aflatoxins in peanuts and peanut butter from Bulawayo, Zimbabwe.

    Science.gov (United States)

    Mupunga, I; Lebelo, S L; Mngqawa, P; Rheeder, J P; Katerere, D R

    2014-10-01

    Mycotoxins are toxic secondary metabolites produced by filamentous fungi that may contaminate food and pose a health risk, especially in developing countries, where there is a lack of food security and quality is subsumed by food insufficiency. Aflatoxins are the most toxic known mycotoxins and are a significant risk factor for liver and kidney cancer, teratogenicity, undernutrition, and micronutrient malabsorption in both humans and animals. The main aim of the study was to determine the extent of fungal and aflatoxin contamination in peanuts and peanut butter being sold in both the formal and informal markets in Bulawayo, Zimbabwe. Eighteen peanut samples and 11 peanut butter samples were purchased from retail shops and the informal market. Fungal contamination was determined using standard mycology culture methods, while aflatoxin contamination was determined using high-performance liquid chromatography-fluorescence detection. Four of the six peanut samples tested for fungal contamination were infected with Aspergillus flavus/parasiticus, ranging from 3 to 20% of the kernels examined, while 27% (3 of 11) of the peanut butter samples were infected with A. flavus/parasiticus. Ninety-one percent (10 of 11) of the peanut butter samples were contaminated with aflatoxins (mean, 75.66 ng/g, and range, 6.1 to 247 ng/g), and aflatoxin B1 was the most prevalent (mean, 51.0 ng/g, and range, 3.7 to 191 ng/g). Three of the 18 peanut samples were contaminated with aflatoxins (range, 6.6 to 622 ng/g). The commercial peanut butter samples had very high aflatoxin levels, and manufacturers should be sensitized to the detrimental effects of aflatoxins and measures to reduce contamination.

  15. Metabolism of L-malic acid accumulation in Aspergillus flavus%黄曲霉积累L-苹果酸代谢机制初探

    Institute of Scientific and Technical Information of China (English)

    郝夕祥; 刘建军; 赵祥颖; 田延军; 张家祥

    2011-01-01

    L-malic acid is a member of tricarboxylic acid cycle (TCA cycle) in organism, which has widespread applications in food, medical, daily chemical industry, etc. The paper preliminary introduced the metabolic mechanism of L-malic acid in Aspergillus flavus from the aspects of limiting oxygen fermentation, the addition of calcium carbonate, the inhibitor of enzyme in the TCA cycle, glyoxylate cycle and so on. It was concluded that CO2 fixing pathway was the main route accumulating L-malic acid.%L-苹果酸是生物体内三羧酸循环的成员之一,在食品、医药、日用化工等部门具有广泛的用途.文中从限氧发酵、碳酸钙的添加量、乙醛酸循环和TCA循环相应酶的抑制剂几个方面初步探讨黄曲霉积累L-苹果酸的代谢机制,得出CO2固定途径是积累L-苹果酸的主要途径.

  16. The screening and identification of Lactic acid bacteria against Aspergillus flavus%抑黄曲霉乳酸菌的筛选及菌种鉴定

    Institute of Scientific and Technical Information of China (English)

    郭艳萍; 盛海圆; 陈晓琳; 张明

    2010-01-01

    目的 筛选具有抑制黄曲霉(Aspergillus flavus)生长的乳酸菌.方法 以各地泡菜、实验室自制泡菜、豆浆渣以及新鲜猪肠、鸡肠道内容物为材料,采用牛津杯法筛选所需菌株.对筛选出的菌株进行生理生化及16S rRNA基因序列同源性分析.结果 分离得到756株乳酸菌,其中有6株菌株对黄曲霉的生长有明显的抑制作用.结论 实验获得的6株产酸菌,3株为植物乳杆菌(Lactobacillus plantarum),2株为消化乳杆菌(L.alimentarius),1株为亚利桑那乳杆菌(L.arizonenensis).

  17. 玉米种质对黄曲霉菌抗性的鉴定%Identification of maize germplasm resistant to Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    邓德祥; 盖钧镒; 卞云龙; 印志同; 王云翠; 王卫娟

    2002-01-01

    以145个玉米自交系作为试验材料,对其籽粒人工接种黄曲霉菌(Aspergillus flavus),根据籽粒的发病情况进行抗性鉴定.结果表明:(1)各玉米自交系对黄曲霉菌的抗性有极显著的差异,在145个自交系中,高抗的8份,中抗的72份,中感的57份,高感的8份;(2)对黄曲霉菌有较高抗性的自交系大多数来自于我国的南方地区;(3)通过辐射处理,对于提高抗性可能有较好的效果;(4)爆裂玉米具有较好的抗性;(5)不同致病菌株接种,抗性反应有差异.

  18. Degradation and Application of Aflatoxin B1 by Aspergillus Niger%黑曲霉对黄曲霉毒素B1的降解与应用研究

    Institute of Scientific and Technical Information of China (English)

    李冰; 董征英; 常维山

    2012-01-01

    试验利用黑曲霉对黄曲霉毒素B1进行了降解率、活性组分的确定、安全性及对饲料中降解黄曲霉毒素效果的研究。研究结果表明,黑曲霉对黄曲霉毒素B1的降解率达93.28%,其中黑曲霉的胞外粗提液对黄曲霉毒素B1的降解活性最高,证明黑曲霉对黄曲霉毒素B1的降解是一种生物化学反应,黑曲霉发酵液对饲料中的黄曲霉毒素B1具有很强的降解作用。小鼠的急性毒理学试验证明,试验用黑曲霉本身具有良好的安全性。%The determination of degradation efficiency and active components of aflatoxin B1 safety and the effect of degradation aflatoxin in feed about the screened aspergillus was researched in this experiment used aspergillus niger. The result showed that the degradation of aflatoxin B1 by aspergillus niger was 93.28%, the degrading efficiencies of aflatoxin B1 by exocellular coarse extraction liquid was highest, and this proved that the degration of aflatoxin B1 by aspergillus niger was a biological reaction. The degrading effect of aflatoxin B1 in feed by aspergillus fermented liquid was strong. A favorable safety of aspergillus niger was testified through the acute toxicology experiments in mice.

  19. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  20. Incidence, level, and behavior of aflatoxins during coffee bean roasting and decaffeination.

    Science.gov (United States)

    Soliman, K M

    2002-12-01

    Screening for aflatoxins (Afs), isolation and identification of Aspergillus flavus, and the effect of decaffeination and roasting on the level of contamination in coffee beans are studied. The percent frequency of A. flavus ranged between 4 and 80% in green coffee beans (GCB), whereas in ground roasted coffee beans (GRCB), it ranged between 1 and 71%. Aflatoxins were detected in 76.5 and 54.6% of the infected samples with averages of 4.28 and 2.85 microg/kg of GCB and GRCB, respectively. Roasting was demonstrated to lower the concentration of Afs in GCB. The Afs levels were reduced by approximately 42.2-55.9% depending on the type and temperature of roasting. The highest yields of Afs were detected in the decaffeinated green coffee beans (24.29 microg/kg) and roasted coffee beans (16.00 microg/kg). The growth of A. flavus in liquid medium containing 1 or 2% caffeine was reduced by 50%, and the level of aflatoxin in the medium was undetectable.

  1. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina.

    Science.gov (United States)

    Camiletti, Boris X; Asensio, Claudia M; Pecci, María de la Paz Giménez; Lucini, Enrique I

    2014-12-01

    The objective in this study was to evaluate the antifungal activity of essential oils from native and commercial aromatic plants grown in Argentina against corn postharvest fungi and to link the essential oil bioactivity with lipid oxidation and morphological changes in fungus cell membrane. Essential oil (EO) of oregano variety Mendocino (OMen), Cordobes (OCor), and Compacto (OCom), mint variety Inglesa (Mi), and Pehaujo (Mp), Suico (Sui); rosemary (Ro), and Aguaribay (Ag) were tested in vitro against 4 corn fungi: A. flavus (CCC116-83 and BXC01), P. oxalicum (083296), and P. minioluteum (BXC03). The minimum fungicidal concentration (MFC) and the minimum inhibitory concentration (MIC) were determined. The chemical profiles of the EOs were analyzed by GC-MS. Lipid oxidation in cell membrane of fungi was determined by hydroperoxides and related with essential oil antifungal activity. The major compounds were Thymol in OCor (18.66%), Omen (12.18%), and OCom (9.44%); menthol in Mi and Mp; verbenone in Sui; dehydroxy-isocalamendiol in Ag; and eucaliptol in Ro. OCor, Omen, and OCom showed the best antifungal activity. No antifungal activity was observed in Ag and Ro EO. The hydroperoxide value depended on the fungi (P fungi that produce mycotoxin in maize.

  2. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37 Produção e glucoamilase por Aspergillus flavus A1.1 e Thermomyces lanuginosus A13.37

    Directory of Open Access Journals (Sweden)

    Eleni Gomes

    2005-03-01

    Full Text Available Thirteen thermophilic fungal strains were isolated from agricultural soil, tubers and compost samples in tropical Brazil. Two strains were selected based on of their ability to produce considerable glucoamylase activity while growing in liquid medium at 45ºC with starch as the only carbon source. They were identified as Aspergillus flavus A1.1 and Thermomyces lanuginosus A 13.37 Tsiklinsky. The experiment to evaluate the effect of carbon source, temperature and initial pH of the medium on enzyme production was developed in a full factorial design (2x2x3. Enzyme productivity was influenced by the type of starch used as carbon source. Cassava starch showed to be a better substrate than corn starch for glucoamylase production by A. flavus but for T. lanuginosus the difference was not significant. Enzyme activities were determined using as substrates 0.3% soluble starch, 0.3% maltose or 0.3% of starch plus 0.1% maltose. The enzymes from A. flavus A1.1 hydrolyzed soluble starch preferentially but also exhibited a significant maltase activity. Moreover higher quantities of glucose were released when the substrate used was a mixture of starch and maltose, suggesting that this fungus produced two types of enzyme. In the case T. lanuginosus A 13.37, the substrate specificity test indicated that the enzyme released also hydrolyzed starch more efficiently than maltose, but there was no increase in the liberation of glucose when a mixture of starch and maltose was used as substrate, suggesting that only one type of enzyme was secreted. Glucoamylases produced from A. flavus A1.1 and T. lanuginous A.13-37 have high optimum temperature (65ºC and 70ºC and good thermostability in the absence of substrate (maintaining 50% of activity for 5 and 8 hours, respectively, at 60ºC and are stable over in a wide pH range. These new strains offer an attractive alternative source of enzymes for industrial starch processing.Entre 13 linhagens de fungos filamentosos

  3. Determination of aspergillus flavus toxin M1 in milk by resonance light scattering%共振光散射法检测牛奶中黄曲霉毒素M1

    Institute of Scientific and Technical Information of China (English)

    黄明元; 刘倩楠; 李兰芳

    2013-01-01

    目的:建立一种基于大分子物质环糊精的共振散射光色谱差异测定牛奶中残余黄曲霉毒素M1的新型检测方法.方法:β-环糊精与黄曲霉毒素M1结合后,不同浓度黄曲霉毒素M1与环糊精形成的包合物存在不同强度的共振散射光光谱,用共振瑞利散射光对黄曲霉毒素M1进行检测.结果:在波长为335 nm处共振光散射增强强度与黄曲霉毒素M1的浓度呈线性关系.在pH =4.0~5.0时,包合物形成的最佳温度为60℃,静置时间为1h,方法的检出限为0.38 ng/ml;线性范围为0ng/nd~8.0 ng/ml,线性相关系数r=0.992回收率为85%~ 108%.结论:本方法可简便,快速地测定牛奶中的黄曲霉毒素M1,结果可靠.%objective:A new method for determination of residual aspergillus flavus toxin M1 in milk was established based on macromolecular material cyclodextrin and resonance light scattering spectrum difference.Methods:After combination of beta cyclodextrin and aspergillus flavus toxin M1,clathrate formed by different concentrations of aspergillus flavus toxin M1 and cyclodextrin showed resonance scattering light spectrum had various intensity,then resonance rayleigh scattering light was used to detect aspergillus flavus toxin M1.Results:At the wavelength of 335 nm,the intensity of resonance light scattering was linear with concentration of aspergillus flavus toxin M1.When the pH value was 4.0 ~ 5.0,the optimum temperature of inclusion formation was 60 ℃ and the standing time was 1 h.The detection limit of the method was 0.38 ng/ml,the linear range was 0 ng/ml ~ 8.0 ng/ml with correlation coefficient of r =0.992 and recovery of 85 % ~ 108%.Conclusion:The method is simple and fast in determining aspergillus flavus toxin M1 in milk,with reliable results.

  4. Fungal contamination and determination of fumonisins and aflatoxins in commercial feeds intended for ornamental birds in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Queiroz, B; Pereyra, C M; Keller, K M; Almeida, T; Cavaglieri, L R; Magnoli, C E; da Rocha Rosa, C A

    2013-11-01

    The purposes of this study were to determine the distribution of total mycobiota, to determine the occurrence of Aspergillus spp., Penicillium spp. and Fusarium spp. and to detect and quantify fumonisin B1 and aflatoxin B1 in birds' feedstuffs. Sixty samples from different commercial feeds were collected. Analysis of the total mycobiota was performed and total fungal counts were expressed as CFU g(-1). The isolation frequency (%) and relative density (%) of fungal genera and species were determined. Mycotoxins determination was carried out using commercial ELISA kits. The 48% of standard, 31% of premium and only 9% of super premium feed samples were found above of recommended limit (1 × 10(4) CFU g(-1)). Aspergillus (82%), Cladosporium (50%) and Penicillium (42%) were the most frequently isolated genera. Aspergillus niger aggregate (35%), Aspergillus fumigatus (28%) and Aspergillus flavus (18%) had the highest relative densities. Contamination with fumonisins was detected in 95% of total samples with levels from 0·92 to 6·68 μg g(-1), and the aflatoxins contamination was found in 40% of total samples with levels between 1·2 and 9·02 μg kg(-1). Feed samples contaminated with fumonisins and aflatoxins are potentially toxic to birds.

  5. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    Science.gov (United States)

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra.

  6. REVIEW ON AFLATOXIN IN INDONESIAN FOOD- AND FEEDSTUFFS AND THEIR PRODUCTS

    Directory of Open Access Journals (Sweden)

    OKKY SETYAWATI DHARMAPUTRA

    2002-01-01

    Full Text Available Aflatoxin is a human carcinogen that could contaminate food- and feedstuffs, and hence is a major food qua lity problem throughout the world. Afiatoxi n is produced by certain strains of AspergillusJlavus and //. parasiticus. A number of studies have been carried out in Indonesia on atlatoxin contamination in Indonesian food- and feedstuffs and their products from 1990 up to present. They were maize, maize product, peanuts, soybean and soybean meal, black and white pepper, feed ingredients; chicken and duck feeds. Samples were collected from farmers, traders (middlemen, retailers (markets, supermarkets, exporters; poultry and duck community-based farms; and feed mi ll industries. High levels of aflatoxins were often found in maize, peanuts, chicken feed derived from markets, and duck feed. Low levels of aflatoxins were found in soybean meal and chicken feedstuff. Aflatoxins were not detected in soybean, black and white pepper. Other studies have also been carried out on the effect of carbondioxide (CO2, phosphine, black pepper extract and antagonistic fungi on aflatoxin production of A. flavus in vitro and the effect of airtight storage, phosphine, ammonium hydroxide, fermentation process, bag types, and phosphine in combination with different bag types on atlatoxin contents of maize, peanuts and soybean meal. Some of these methods reduced aflatoxin contents significantly

  7. Research of the inhibition activities effect of complex essential oil on Aspergillus flavus%复合精油对黄曲霉联合抑菌作用研究

    Institute of Scientific and Technical Information of China (English)

    曲春阳; 潘磊庆; 屠康; 杨立之

    2012-01-01

    The Diameter of Antibiotic Circle,Minimum Inhibition Concentration(MIC),Reduction Concentration(RC)and Fractional Inhibitory Concentration(FIC)of plant essential oils which used in single or combined were tested,and the fungicidal activities were evaluated by combined antiseptic evaluation method in order to find the best types and ratio of essential oils for inhibiting activities on Aspergillus flavus.The results indicated that garlic,cinnamon,clove and mint essential oils had strong inhibition activities on Aspergillus flavus.Combination of garlic and cinnamon essential oil showed surperimposed inhibition effects on Aspergillus flavus.The combined essential oil of garlic and cinnamon essential oil had the best inhibition effect on Aspergillus flavus when the volume ratio of them was 1:3.Therefore,this type of combined essential oil had a potential for the further applications as effective fungicidal components.%采用联合抑菌评价方法,通过测定植物精油抑菌圈直径、最低抑菌浓度(Minimum Inhibition Concentration,MIC)、最低生长下降浓度(Reduction Concentration,RC)、联合抑菌指数(Fractional Inhibitory Concentration,FIC),对植物精油单独及联合使用后的抑菌效果进行评价,筛选最佳抑制黄曲霉活性作用的复合精油种类及配比。结果表明:大蒜、肉桂、丁香、薄荷精油单独或复合使用均有较强抑制黄曲霉活性的作用。大蒜与肉桂精油联合抑菌评价为相加作用。当大蒜精油与肉桂精油复合体积比为1∶3时,复合精油具有最佳抑制黄曲霉活性的效果。因此,复合精油作为有效防霉保鲜成分具有良好的研发与应用前景。

  8. MicroCommentary: A New Role for Coenzyme F420 in Aflatoxin Reduction by Soil Mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E [ORNL

    2010-01-01

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxalamine 5 -phosphate oxidases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced deazaflavin to the electron-deficient ring systems of their substrates.

  9. Characterization of Aspergillus section Flavi isolated from organic Brazil nuts using a polyphasic approach.

    Science.gov (United States)

    Reis, T A; Baquião, A C; Atayde, D D; Grabarz, F; Corrêa, B

    2014-09-01

    Brazil nut (Bertholletia excelsa), an important non-timber forest product from Amazonia, is commercialized in worldwide markets. The main importers of this nut are North America and European countries, where the demand for organic products has grown to meet consumers concerned about food safety. Thus, the precise identification of toxigenic fungi is important because the Brazil nut is susceptible to colonization by these microorganisms. The present study aimed to characterize by polyphasic approach strains of Aspergillus section Flavi from organic Brazil nuts. The results showed Aspergillus flavus as the main species found (74.4%), followed by Aspergillus nomius (12.7%). The potential mycotoxigenic revealed that 80.0% of A. flavus were toxin producers, 14.3% of which produced only aflatoxin B (AFB), 22.85% of which produced only cyclopiazonic acid (CPA), and 42.85% produced both them. All strains of A. nomius were AFB and AFG producers and did not produce CPA. There is no consensus about what Aspergillus species predominates on Brazil nuts. Apparently, the origin, processing, transport and storage conditions of this commodity influence the species that are found. The understanding about population of fungi is essential for the development of viable strategies to control aflatoxins in organic Brazil nuts.

  10. Use of electron beam on aflatoxins degradation in coconut agar

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir D.; Nunes, Thaise C.F.; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: vrogovschi@ipen.br; Aquino, Simone; Goncalez, Edlayne [Instituto Biologico (IB-SP), Sao Paulo, SP (Brazil); Correa, Benedito [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Ciencias Biomedicas

    2009-07-01

    The fungi Aspergillus flavus are capable of producing toxic metabolites, such as aflatoxin, that is one of the most important human carcinogens, according to the 'International Agency for Research on Cancer'. The aim of this study was to compare the effect of electron beam irradiation on degradation of aflatoxin B1 present in laboratorial residues with a dose of 0 kGy and 5.0 kGy. The fungi were cultivated in potato dextrose agar (PDA) for 7 days and transferred to a coconut agar medium, incubated at a temperature of 25 deg C for 14 days to produce the laboratorial wastes (coconut agar) containing aflatoxins. The samples were conditioned in petri dish for radiation treatment of contaminated material and processed in the Electron Accelerator with 0 kGy and 5.0 kGy. Aflatoxin B{sub 1} was extracted with chloroform and separated on a thin layer chromatography plate (TLC) with chloroform: acetone (9:1). All the control and irradiated samples were analyzed in a Shimadzu Densitometer. The detection limit of this methodology is 0.1{mu}g kg{sup -1}. The results indicate that the irradiated samples had a reduction of 75.49 % in the analyzed dose. (author)

  11. Analysis of aflatoxins in nonalcoholic beer using liquid-liquid extraction and ultraperformance LC-MS/MS.

    Science.gov (United States)

    Khan, Mohammad R; Alothman, Zeid A; Ghfar, Ayman A; Wabaidur, Saikh M

    2013-02-01

    Aflatoxins AFB1, AFB2, AFG1, and AFG2 are toxic secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus and posses a potential threat to food safety. In the present work, liquid-liquid extraction and ultraperformance LC-MS/MS method has been applied for the determination of four naturally occurring aflatoxins AFB1, AFB2, AFG1, and AFG2 in nonalcoholic beer. Aflatoxins extraction from nonalcoholic beer was carried out using liquid-liquid extraction procedure. The effects of solvent-types were studied to obtain maximum recovery of the target analytes with minimum contamination. Among different solvents, the aflatoxins extraction was best achieved using ethyl acetate. The obtained recoveries were ranged from 85 to 96% with good quality parameters: LOD values between 0.001 and 0.003 ng/mL, linearity of the calibration curve (r(2) > 0.999), and repeatability (run-to-run) and reproducibility (day-to-day) precisions with RSDs lower than 5% (n = 5) achieved at 0.50 ng/mL concentration. The optimized liquid-liquid extraction in combination with ultraperformance LC-MS/MS was applied successfully to the analysis of AFB1, AFB2, AFG1, and AFG2 aflatoxins in 11 nonalcoholic beers and were detected up to 15.31 ng/L in some of the samples.

  12. Mycobiota and Aflatoxin B1 in Feed for Farmed Sea Bass (Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    Fernando Manuel d´Almeida Bernardo

    2011-02-01

    Full Text Available The safety characteristics of feed used in fish and crustacean aquaculture systems are an essential tool to assure the productivity of those animal exploitations. Safety of feed may be affected by different hazards, including biological and chemical groups. The aim of this preliminary study was to evaluate fungi contamination and the presence of aflatoxins in 87 samples of feed for sea bass, collected in Portugal. Molds were found in 35 samples (40.2% in levels ranging from 1 to 3.3 log10 CFU∙g−1. Six genera of molds were found. Aspergillus flavus was the most frequent, found in all positive samples, with a range from 2 to 3.2 log10 CFU∙g−1. Aspergillus niger was found in 34 samples (39.1%, ranging from 1 to 2.7 log10 CFU∙g−1. Aspergillus glaucus was found in 26 samples (29.9% with levels between 1 and 2.4 log10 CFU∙g−1. Penicillium spp. and Cladosporium spp. were both found in 25 samples (28.7%. Fusarium spp. was found in 22 samples (25.3%, ranging from 1 to 2.3 log10 CFU∙g−1. All feed samples were screened for aflatoxins using a HPLC technique, with a detection limit of 1.0 μg∙kg−1. All samples were aflatoxin negative.

  13. Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2011-06-01

    Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.

  14. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    Science.gov (United States)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  15. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E. (USDA, College Station, TX (USA)); Phillips, T.D. (Texas A M Univ., College Station (USA))

    1988-05-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  16. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E.; Phillips, I.D.

    1988-04-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B/sub 1/, B/sup 2/, G/sup 1/, and G/sup 2/, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  17. Inhibitory Effects of Seven Kinds of Green Leaf Volatiles on Aspergillus flavus%7种绿叶挥发物对黄曲霉的抑菌作用

    Institute of Scientific and Technical Information of China (English)

    梁海燕; 王国昌; 郎剑锋; 原庆霞; 孙玉凤

    2012-01-01

    Objective To understand the inhibitory effects of green leaf volatiles on Aspergillus flavus. Methods Among seven kinds of green leaf volatiles, their ability to inhibit A. flavus were compared at concentrations of 5 μl, 10 μl, 25 μl and 50 μl by the gaseous diffusion methods. Results The results showed that seven kinds of volatiles could inhibit hyphal growth at four concentrations. Except for 5 μl (Z)-3-hexene acetate, the tested volatiles inhibited spore germination rates significantly. It was noteworthy that the inhibition rates of (E)-2-hexenal on hyphal growth and spore germination were 100% at all tested concentrations. Conclusion The results suggest that seven kinds of tested green leaf volatiles can restrain A. flavus commonly. The inhibitory effect of (E)-2-hexenal is the best.%目的 研究7种绿叶挥发物对黄曲霉(Aspergillus flavus)的抑制作用,为开发黄曲霉杀菌剂提供科学依据.方法 比较(Z)-3-己烯醛、(Z)-3-己烯醇、(E)-2-己烯-1-醇、(E)-2-己烯乙酸酯、(Z)-3-己烯乙酸酯、(Z)-3-己烯丁酸酯7种挥发物在5、10、25、50μl加入量时对黄曲霉菌丝生长和孢子萌发率的影响.结果 在4种加入量时7种绿叶挥发物均对黄曲霉的菌丝生长有明显抑制作用(P<0.05).除5μl加入量的(Z)-3-已烯乙酸酯,其他试验条件下挥发物对孢子萌发率均有抑制作用(P<0.05).(E)-2-己烯醛在4个加入量时对菌丝生长和孢子萌发的抑制率均达到100%.结论 该7种绿叶挥发物均对黄曲霉菌丝生长和孢子萌发有抑制作用,抑制作用最强的为(E)-2-己烯醛.

  18. Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.

    Science.gov (United States)

    Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A

    2011-07-01

    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.

  19. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    Directory of Open Access Journals (Sweden)

    Alisa Huffaker

    2011-07-01

    Full Text Available Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs, and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil and piercing-sucking insects (i.e., the stink bugs and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also

  20. The association between exposure to aflatoxin, mutation in TP53, infection with hepatitis B virus, and occurrence of liver disease in a selected population in Hyderabad, India.

    Science.gov (United States)

    Anitha, S; Raghunadharao, D; Waliyar, F; Sudini, H; Parveen, M; Rao, Ratna; Kumar, P Lava

    2014-05-15

    Aflatoxin B1 is a carcinogen produced by Aspergillus flavus and a few related fungi that are often present in many food substances. It interacts synergistically with Hepatitis B or C virus (HBV, HBC) infection, thereby increasing the risk of hepatocellular carcinoma (HCC). The G to T transversion at the third position of codon 249 (AGG) of the TP53 gene, substituting arginine to serine, is the most common aflatoxin-induced mutation linked to HCC. This study examined mutations in TP53 by PCR-RFLP analysis and by measurement of an aflatoxin-albumin adduct as a biomarker for human exposure of aflatoxin B1 by indirect-competitive ELISA, in samples collected from healthy controls as well as patients with hepatitis in Hyderabad, Andhra Pradesh, India. A total of 238 blood samples were analyzed the presence of the G to T mutation. Eighteen of these samples were from HBV-positive subjects, 112 of these were from subjects who had HBV-induced liver cirrhosis, and 108 samples were taken from subjects without HBV infection or liver cirrhosis (control group). The G to T mutation was detected in 10 samples, 8 of which were from subjects positive to both HBV and aflatoxin-albumin adduct in blood (p=0.07); whilst two were from individuals who were HBV-negative, but positive for the aflatoxin-albumin adduct (p=0.14). The aflatoxin-albumin adduct was detected in 37 of 238 samples, 29 samples were from HBV-positive subjects and eight were from individuals who were positive for both HBV and the TP53 mutation (p=0.07). The concentration of aflatoxin-albumin adduct ranged from 2.5 to 667pg/mg albumin. Despite low incidence of the G to T mutation, its detection in subjects positive to aflatoxin-adducts is indicative of a strong association between the mutation and aflatoxin exposure in India.

  1. Association between Aflatoxin M1 and Liver Disease in HBV/HCV Infected Persons in Ghana

    Directory of Open Access Journals (Sweden)

    Clarrisa Afum

    2016-03-01

    Full Text Available Aflatoxins are produced by the fungi Aspergillus flavus and Aspergillus parasiticus and are common food contaminants in tropical developing countries. Extensive aflatoxin consumption has been shown to be highly associated with liver disease. A case-control study was conducted to determine the association between aflatoxin and liver disease in Kumasi, Ghana. A questionnaire was administered to examine socio-demographic characteristics and food storage and consumption practices, and urine samples were collected to measure levels of the aflatoxin metabolite (AFM1. Two hundred and seventy-six people participated in the study; 38 had liver disease (cases, 136 had neither hepatitis B/C nor liver disease (negative controls, and 102 were hepatitis B/C positive without liver cancer (positive controls. A much higher percent of participants in each group was male (76% of cases, 88% of negative controls and 65% of positive controls. Multivariate analysis showed that age was a significant predictor for being a case when cases were compared to negative controls. The odds of being a case was 70% less for participants aged 25–34 years (odds ratios (OR 0.30; 95% confidence interval (CI 0.10–0.88 compared to those ≥45 years. For cases; Akans were seven times more likely to have AFM1 levels below the median when compared to other ethnic groups (OR 7; CI 1.41–34.68. When cases were compared to positive controls, they were 2.29 times more likely to report awareness of aflatoxin contamination of groundnuts (95% CI 1.06–4.91. Cases were also two times more likely to report awareness of aflatoxin contamination of maize than all controls combined (95% CI 1.02–4.11. However, most cases reported that aflatoxin contamination does not cause sickness in humans. This shows that there is awareness of aflatoxin contamination without proper understanding of the serious potential adverse health impacts among these study participants. These findings indicate that

  2. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    Science.gov (United States)

    Zhang, Yu; Cui, Min; Zhang, Jimin; Zhang, Lei; Li, Chenliu; Kan, Xin; Sun, Qian; Deng, Dexiang; Yin, Zhitong

    2016-01-01

    Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus) is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs) associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS) and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs), and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM) on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs) in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD) and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS) of A. flavus resistance and a characterisation of the causal gene. PMID:27598199

  3. Confirmation and Fine Mapping of a Major QTL for Aflatoxin Resistance in Maize Using a Combination of Linkage and Association Mapping

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-09-01

    Full Text Available Maize grain contamination with aflatoxin from Aspergillus flavus (A. flavus is a serious health hazard to animals and humans. To map the quantitative trait loci (QTLs associated with resistance to A. flavus, we employed a powerful approach that differs from previous methods in one important way: it combines the advantages of the genome-wide association analysis (GWAS and traditional linkage mapping analysis. Linkage mapping was performed using 228 recombinant inbred lines (RILs, and a highly significant QTL that affected aflatoxin accumulation, qAA8, was mapped. This QTL spanned approximately 7 centi-Morgan (cM on chromosome 8. The confidence interval was too large for positional cloning of the causal gene. To refine this QTL, GWAS was performed with 558,629 single nucleotide polymorphisms (SNPs in an association population comprising 437 maize inbred lines. Twenty-five significantly associated SNPs were identified, most of which co-localised with qAA8 and explained 6.7% to 26.8% of the phenotypic variation observed. Based on the rapid linkage disequilibrium (LD and the high density of SNPs in the association population, qAA8 was further localised to a smaller genomic region of approximately 1500 bp. A high-resolution map of the qAA8 region will be useful towards a marker-assisted selection (MAS of A. flavus resistance and a characterisation of the causal gene.

  4. Establishment of Aspergillus flavus' growth predictive model in corn flour with different water contents%不同含水量玉米粉中黄曲霉的生长预测模型的构建

    Institute of Scientific and Technical Information of China (English)

    赵立; 赵希荣; 陈军; 周晓梅

    2010-01-01

    对玉米粉中黄曲霉(Aspergillus flavus,A.flavus)生长预测模型的构建进行了研究,建立了玉米粉中黄曲霉生长的一级和二级预测模型.结果表明:在20℃和28℃下黄曲霉的生长用Boltzmann和Logistic模型拟合效果都很好(R2达到0.9400).以Logistic一级模型拟合的参数(比生长速率)为基础建立二级平方根模型,R2值高于0.9200,可用于预测不同含水量玉米粉中黄曲霉的生长速率.此生长预测模型为玉米粉获得最佳贮藏条件以及玉米粉货架期的预测提供理论依据.

  5. Present and future directions of translational research on aflatoxin and hepatocellular carcinoma. A review.

    Science.gov (United States)

    Wogan, Gerald N; Kensler, Thomas W; Groopman, John D

    2012-01-01

    The aflatoxins were discovered in toxic peanut meal causing "turkey X" disease, which killed large numbers of turkey poults, ducklings and chicks in the UK in the early 1960s. Extracts of toxic feed induced the symptoms in experimental animals, and purified metabolites with properties identical to aflatoxins B(1) and G(1) (AFB(1) and AFG(1)) were isolated from Aspergillus flavus cultures. Structure elucidation of aflatoxin B(1) was accomplished and confirmed by total synthesis in 1963. AFB(1) is a potent liver carcinogen in rodents, non-human primates, fish and birds, operating through a genotoxic mechanism involving metabolic activation to an epoxide, formation of DNA adducts and, in humans, modification of the p53 gene. Aflatoxins are unique among environmental carcinogens, in that elucidation of their mechanisms of action combined with molecular epidemiology provides a foundation for quantitative risk assessment; extensive evidence confirms that contamination of the food supply by AFB(1) puts an exposed population at increased risk of developing hepatocellular carcinoma (HCC). Molecular biomarkers to quantify aflatoxin exposure in individuals were essential to link aflatoxin exposure with liver cancer risk. Biomarkers were validated in populations with high HCC incidence in China and The Gambia, West Africa; urinary AFB(1)-N (7)-Guanine excretion was linearly related to aflatoxin intake, and levels of aflatoxin-serum albumin adducts also reflected aflatoxin intake. Two major cohort studies employing aflatoxin biomarkers identified their causative role in HCC etiology. Results of a study in Shanghai men strongly support a causal relationship between HCC risk and the presence of biomarkers for aflatoxin and HBV infection, and also show that the two risk factors act synergistically. Subsequent cohort studies in Taiwan confirm these results. IARC classified aflatoxin as a Group 1 human carcinogen in 1993, based on sufficient evidence in humans and experimental

  6. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal

    Science.gov (United States)

    Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described, Aspergillus mottae, Aspergillus sergii and Aspergillus transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examining morphology, extrolites and molecular data was...

  7. POPULATION AND DYNAMIC ANALYSIS OF ASPERGILLUS FLAVUS AND OTHER FUNGI IN GROUNDNUT%花生黄曲霉与其他寄生真菌的种群及动态分析

    Institute of Scientific and Technical Information of China (English)

    杨文兰; 马桂珍

    2003-01-01

    对鲁花14,花育16,白沙,花37等四个花生品种不同生育时期籽仁、果壳、根部、果针等部位寄生真菌的种类进行了初步鉴定.共鉴定出8个真菌类型,其中黄曲霉菌(Aspergillus flavus Link)、镰刀菌(Fusarium spp.)、桑卷担菌(Helicobasidium mompa)、青霉菌(Penicillium spp.)、黑曲霉菌(Aspergillus niger)等为主要真菌.表现在不同品种各部位间分布广、带菌量高,持续时间长.其中,青霉菌在籽仁中的带菌率最高,镰刀菌在果针中的带菌率最高,桑卷担菌在根和果壳中的带菌率最高.不同品种的花生黄曲霉感染率有所差异.鲁花14的黄曲霉带菌率最低,花育16、白沙、花37的带菌率较高.

  8. Research progress on quorum sensing of Aspergilus flavus%黄曲霉群体感应研究进展

    Institute of Scientific and Technical Information of China (English)

    李彩艳; 梁志宏; 黄昆仑

    2015-01-01

    曲霉属真菌(Aspergillus)如黄曲霉、寄生曲霉侵染玉米、花生等富含油脂的作物种子后产生的黄曲霉毒素(aflatoxin)具有强致癌作用,严重威胁食品安全和人类健康。群体感应(quorum sensing, QS)曾经认为只存在于细菌中,但是在真菌中也存在 QS系统,菌体的形态建成和次级代谢产物的产生都与细胞的群体密度有关。黄曲霉拥有类似群体感应的机制,菌核到分生孢子的转换受细胞密度和脂肪氧合酶调控。氧脂素作为信号分子通过密度依赖机制可抑制或促进黄曲霉的生长及黄曲霉毒素的生物合成,本文综述了黄曲霉群体感应及信号通路的研究进展,旨在从群体感应的角度抑制黄曲霉毒素的产生,为微生物与食品安全的研究提供指导。%Aspergillus spp such as A. flavus and A. parasiticus can infect oil-rich crop seeds and subsequently lead to aflatoxin contamination, which has an important impact on economic loss and health risk. Although once thought to exist only in bacteria, QS systems are now well established in fungi. Recently it has been shown that A. flavus possesses a quorum-sensing-like mechanism, where a sclerotia-to-conidia transition is governed by cell density and lipoxygenase activity. Oxylipins can inhibit or stimulate fungal development and aflatoxin production via a density-dependent mechanism as a kind of signal .This paper reviewed the research progress on quorum sensing and signaling pathways of A. flavus and was aimed to inhibit the generation of aflatoxin from the perspective of quorum sensing, providing a guidance for the research of microorganism and food safety.

  9. 6种芳香族挥发性有机物对黄曲霉的抑菌作用%Inhibitory effects of six kinds of aromatic compounds on Aspergillus flavus

    Institute of Scientific and Technical Information of China (English)

    梁海燕; 王国昌; 秦雪峰; 吴利民

    2013-01-01

    Objective To understand the inhibitory effects of six kinds of aromatic compounds (benzyl alcohol,phenethyl alcohol,phenacetaldehyde,benzaldehyde,phenethyl butyrate, and phenyl acetate) on Aspergillus flavus. Methods The gaseous diffusion method was adopted. The A. flavus was exposed to 1,2,4 and 8 μl solution of six kinds of aromatic compounds respectively for 72 h at 28 ℃. Then, mycelial growth and spore production were measured. Results All treatments had inhibitory activities on mycelial growth significantly (P<0.05,P<0.01),with the exception of 1 μl benzaldehyde,l μl phenethyl butyrate, 1 μl and 2 μl phenyl acetate. Spore production did not reduce at 1 μl benzaldehyde, 1 Μl benzyl alcohol, 1 μl phenethyl alcohol, 1 μl and 2 μl phenethyl butyrate, 1 μl and 2 μl phenyl acetate,others were reduced significantly (P< 0.05,P<0.01). Conclusion These six kinds of aromatic compounds may inhibit A.flavus growth to some degree.%目的 研究6种芳香族挥发性有机物(苯甲醇、苯乙醇、苯乙醛、苯甲醛、丁酸苯乙酯、乙酸苯酯)对黄曲霉(Aspergillus flavus)的抑菌作用.方法 采用了气体扩散法,在28℃下把黄曲霉分别暴露于1、2、4、8μl的6种芳香族挥发性有机物原液72 h.测定黄曲霉菌丝生长和产孢量.结果 除了1μ1的苯甲醛、丁酸苯乙酯、乙酸苯酯和2μl乙酸苯酯外,其余处理对黄曲霉菌丝生长都有抑制作用,差异有统计学意义(P<0.05,P<0.01);1μl苯甲醛、苯甲醇、苯乙醇、丁酸苯乙酯、乙酸苯酯和2μl的丁酸苯乙酯、乙酸苯酯对产孢量无影响,其余处理条件对产孢量均有抑制作用,差异有统计学意义(P<0.05,P<0.01).结论 6种芳香族挥发性有机物对黄曲霉菌有不同程度的抑制作用.

  10. Effect of essential oils on Aspergillus spore germination, growth and mycotoxin production:a potential source of botanical food preservative

    Institute of Scientific and Technical Information of China (English)

    Negero Gemeda; Yimtubezinash Woldeamanuel; Daniel Asrat; Asfaw Debella

    2014-01-01

    Objective: To investigate effect of essential oils on Aspergillus spore germination, growth and mycotoxin production.Method: In vitro antifungal and antiaflatoxigenic activity of essential oils was carried out using poisoned food techniques, spore germination assay, agar dilution assay, and aflatoxin arresting assay on toxigenic strains of Aspergillus species.Results: Cymbopogon martinii, Foeniculum vulgare and Trachyspermum ammi (T. ammi) essential oils were tested against toxicogenic isolates of Aspergillus species. T. ammi oil showed highest antifungal activity. Absolute mycelial inhibition was recorded at 1 µl/mL by essential oils of T. ammi. The oil also showed, complete inhibition of spore germination at a concentration of 2 µl/mL. In addition, T. ammi oil showed significant antiaflatoxigenic potency by totally inhibiting aflatoxin production from Aspergillus niger and Aspergillus flavus at 0.5 and 0.75 µl/mL, respectively. Cymbopogon martinii, Foeniculum vulgare and T. ammi oils as antifungal were found superior over synthetic preservative. Moreover, a concentration of 5 336.297 µl/kg body weight was recorded for LC50 on mice indicating the low mammalian toxicity and strengthening its traditional reputations.Conclusions:In conclusion, the essential oils from T. ammi can be a potential source of safe natural food preservative for food commodities contamination by storage fungi.

  11. Diverse inhibitors of aflatoxin biosynthesis.

    Science.gov (United States)

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  12. Susceptibility breakpoints for amphotericin B and Aspergillus species in an in vitro pharmacokinetic-pharmacodynamic model simulating free-drug concentrations in human serum

    NARCIS (Netherlands)

    Elefanti, A.; Mouton, J.W.; Verweij, P.E.; Zerva, L.; Meletiadis, J.

    2014-01-01

    Although conventional amphotericin B was for many years the drug of choice and remains an important agent against invasive aspergillosis, reliable susceptibility breakpoints are lacking. Three clinical Aspergillus isolates (Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus) were tes

  13. [Aflatoxins--health risk factors].

    Science.gov (United States)

    Miliţă, Nicoleta Manuela; Mihăescu, Gr; Chifiriuc, Carmen

    2010-01-01

    Aflatoxins are secondary metabolites produced by a group of strains, mainly Aspergillus and Penicillium species. These mycotoxins are bifurano-coumarin derivatives group with four major products B1, B2, G1 and G2 according to blue or green fluorescence emitted in ultraviolet light and according to chromatographic separation. After metabolism of aflatoxin B1 and B2 in the mammalian body, result two metabolites M1 and M2 as hydroxylated derivatives of the parent compound. Aflatoxins have high carcinogenic potential, the most powerful carcinogens in different species of animals and humans. International Agency for Research on Cancer has classified aflatoxin B1 in Group I carcinogens. The target organ for aflatoxins is the liver. In chronic poisoning, aflatoxin is a risk to health, for a long term causing cancer (hepatocellular carcinoma), and in acute intoxications aflatoxin is lethal. This work purpose to discuss aflatoxins issue: the synthesis, absorption and elimination of aflatoxins, the toxicity mechanisms, and measures to limit the content of aflatoxins in food

  14. Movilidad de Aspergillus flavus link ex fries en mazorcas de cinco genotipos de maiz (Zea Mays L. empleando tres métodos de inoculación (ING

    Directory of Open Access Journals (Sweden)

    Néstor Villalobos

    2016-03-01

    Full Text Available Three inoculation techniques for evaluating reaction of corn to kernel infection by Aspergillus flavus were tested in the field of five different genotypes. Inoculations were made 20 days after midsilk stage, using 0.5 ml of 105 conidial suspensions. The methods were: a injection of small amounts of inoculum in each kernel of a vertical row (M1; b injection in the first well developed kernels around the top part of the ear (M2; c injection of inoculum in the kernels at the lower part of the ear, forming a semicircle (M3. Two weeks after inoculation ears were harvested, and kernels not wounded were separated according to its position to the inoculated kernels, then surface sterilized and planted on PDA, to determine the infection percentage. M1 and M2 were found very efficient because they produced higher infection levels. M1 is considered the best because it provided a larger number of kernels for assay and was easy to use. No statistical difference was found among genotypes.

  15. Influence of temperature and substrate conditions on the omt-1 gene expression of Aspergillus parasiticus in relation to its aflatoxin production.

    Science.gov (United States)

    Lozano-Ojalvo, Daniel; Rodríguez, Alicia; Bernáldez, Victoria; Córdoba, Juan J; Rodríguez, Mar

    2013-09-02

    Most strains of Aspergillus parasiticus are able to produce high concentrations of aflatoxin (AF) B1 and G1 which are among the most potent mutagenic, teratogenic, and carcinogenic mycotoxins. Molecular studies in relation to activity of secondary metabolite gene clusters are crucial to improving food safety. In the present work, reverse transcriptase quantitative PCR (RT-qPCR) was used to monitor the influence of temperature, substrates containing nitrogen and incubation time on the omt-1 gene expression in A. parasiticus. Phenotypic AFB1 and G1 production was also evaluated by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The results demonstrated that temperature (25°C and 30°C) influenced relative expression of omt-1 gene throughout the time (maximum at 25°C) while substrate composition was not affected by it. However, when effect of temperature and substrate was analyzed at each incubation time, significant effects were found. Optimal conditions for biosynthesis of AFB1 and AFG1 were similar, and they were related to changes in temperature and sodium nitrate. The highest AFB1 and G1 production levels were found at 25°C. However, lower AFB1 and G1 values were obtained when A. parasiticus grew on the substrate containing sodium nitrate and there was no production of these AFs at 37°C in any of the conditions tested. In addition, omt-1 gene expression was correlated to AFB1 and G1 syntheses at the different conditions. Use of temperature conditions and sodium nitrate concentrations which limit production of AFs holds potential for preventing AF from entering the food chain.

  16. Effects of aflatoxin on lymphoid cells of weanling rat.

    Science.gov (United States)

    Raisuddin; Singh, K P; Zaidi, S I; Saxena, A K; Ray, P K

    1990-08-01

    Aflatoxin (AF), the hepatocarcinogenic food contaminant produced by the Aspergillus flavus group of fungi, is known to interact with various vital processes, including the immune function. Effects of long-term treatment of three dose levels of aflatoxin B1 (AFB1) on lymphoid cells of weanling rats were studied. AFB1 treatment caused a reduction in body weight gain, significantly (P less than 0.01) at the 700 microgram level. There was also a significant decrease in the weight of spleen and thymus in AFB1-treated animals in comparison to control. Similarly, AFB1 depleted cell populations of thymus and bone marrow and WBC and RBC counts. There was a marked reduction in the population and phagocytic capacity of macrophages due to AFB1 administration at dose levels of 350 and 700 micrograms kg-1 body weight. Macromolecular synthesis of DNA, RNA and protein in macrophages was affected, as there was significant inhibition in the incorporation of [3H]-thymidine, [3H]-uridine and [3H]-leucine. The hampered functioning of macrophages may be due to the cytotoxic action of AFB1.

  17. Hepatitis infections, aflatoxin and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Pierre Hainaut

    2007-02-01

    Full Text Available

    The incidence rates of hepatocellular carcinoma (HCC show large geographic variations, globally reflecting the prevalence of two main aetiologic factors, hepatitis B (HBV and/or C (HCV virus infection and exposure to high levels of aflatoxin in the diet (Chen et al. 1997. The highest incidence rates are observed in regions where most of the population is exposed to both factors, such as in parts of eastern Asia and in sub-Saharan Africa (Parkin et al. 2001. These high incidences are consistent with the fact that HBV chronicity and exposure to aflatoxin have a multiplicative effect of risk for HCC. Depending on aetiology and geographic area, mutations in TP53 show striking differences in prevalence and pattern. In Europe and the US, where alcohol is a major risk factor in addition to viral infections, mutations occur in about 25% of HCC and show as much diversity in their type and codon position as in most other epithelial cancers. However, in high incidence areas such as Mozambique, Senegal, The Gambia (Africa and Qidong county (China, TP53 is mutated in over 50% of the cases and the vast majority of these mutations are a single missense, hotspot mutation at codon 249, AGG to AGT, resulting in the substitution of arginine into serine (249ser. This mutation is uncommon in regions where aflatoxin is not present at significant levels in the diet. In areas of intermediate exposure to aflatoxin, as for example in Thailand, the prevalence of the 249ser mutation is intermediate between high- and low-incidence areas. Thus, there is a dose-dependent relationship between exposure to aflatoxin, incidence of HCC and prevalence of 249ser mutation. Aflatoxins are toxic and carcinogenic metabolites produced by several varieties of molds, mainly Aspergillus flavus and Aspergillus parasiticum. These molds contaminate a wide range of traditional agricultural products in countries

  18. The use of powder and essential oil of Cymbopogon citratus against mould deterioration and aflatoxin contamination of "egusi" melon seeds.

    Science.gov (United States)

    Bankole, S A; Joda, A O; Ashidi, J S

    2005-01-01

    Experiments were carried out to determine the potential of using the powder and essential oil from dried ground leaves of Cymbopogon citratus (lemon grass) to control storage deterioration and aflatoxin contamination of melon seeds. Four mould species: Aspergillus flavus, A. niger, A. tamarii and Penicillium citrinum were inoculated in the form of conidia suspension (approx. 10(6) conidia per ml) unto shelled melon seeds. The powdered dry leaves and essential oil from lemon grass were mixed with the inoculated seeds at levels ranging from 1-10 g/100 g seeds and 0.1 to 1.0 ml/100 g seeds respectively. The ground leaves significantly reduced the extent of deterioration in melon seeds inoculated with different fungi compared to the untreated inoculated seeds. The essential oil at 0.1 and 0.25 ml/100 g seeds and ground leaves at 10 g/100 g seeds significantly reduced deterioration and aflatoxin production in shelled melon seeds inoculated with toxigenic A. flavus. At higher dosages (0.5 and 1.0 ml/100 g seeds), the essential oil completely prevented aflatoxin production. After 6 months in farmers' stores, unshelled melon seeds treated with 0.5 ml/ 100 g seeds of essential oil and 10 g/100 g seeds of powdered leaves of C. citratus had significantly lower proportion of visibly diseased seeds and Aspergillus spp. infestation levels and significantly higher seed germination compared to the untreated seeds. The oil content, free fatty acid and peroxide values in seeds protected with essential oil after 6 months did not significantly differ from the values in seeds before storage. The efficacy of the essential oil in preserving the quality of melon seeds in stores was statistically at par with that of fungicide (iprodione) treatment.

  19. Influência da calagem, da época de colheita e da secagem na incidência de fungos e aflatoxinas em grãos de amendoim armazenados Storage peanut kernels fungal contamination and aflatoxin as affected by liming, harvest time and drying

    Directory of Open Access Journals (Sweden)

    Claudia Antonia Vieira Rossetto

    2005-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a contaminação e o potencial para síntese de aflatoxinas pelos isolados do grupo Aspergillus flavus em grãos armazenados de amendoim (Arachis hypogaea L., que foram produzidos com distintos procedimentos de calagem, de colheita e de secagem. Para isto, foram avaliadas doze amostras de grãos de amendoim, cv. Botutatu, provenientes de plantas cultivadas em área que recebeu ou não a aplicação de calcário, colhidas aos 104, 114 e 124 dias após a semeadura e secas em condições ambientais e em estufa. Aos 12 e 18 meses de armazenamento, os grãos foram tratados com hipoclorito de sódio e incubados em BDA, a 20°C, por cinco dias. As espécies do grupo Aspergillus flavus foram identificadas após incubação em meio ADM. Posteriormente, o potencial toxígeno foi avaliado pelo método da cromatografia de camada delgada. A análise da freqüência de fungos revelou que os grãos de amendoim armazenados estavam contaminados por Aspergillus spp., Penicillium spp. e Fusarium spp. Os grãos de amendoim, provenientes da colheita antecipada, apresentaram maior contaminação pelo grupo Aspergillus flavus, sendo menor a proporção destes com potencial toxígeno.The objective of this work was to evaluate the effect of the storage on the potential of aflatoxin production by isolates from Aspergillus flavus group in peanut (Arachis hypogaea L.. These kernels were obtained from a field experiment with two areas (with or without lime, three times of harvest (104, 114 and 124 days after planting and two types of dryer conditions (ambient and chamber with forced air. After 12 and 18 months of storage, the kernels were treated with sodium hypochloride and incubated in a PDA at 20°C during five days. The isolates from Aspergillus flavus group were identified after incubation in ADM culture medium. The toxigenic potential was analyzed by thin layer chromatography. The genera detected were Aspergillus, Penicillium and

  20. Cancer risks posed by aflatoxin M1.

    Science.gov (United States)

    Hsieh, D P; Cullen, J M; Hsieh, L S; Shao, Y; Ruebner, B H

    1985-01-01

    The suspect milk-borne carcinogen, aflatoxin M1 (AFM), was produced and isolated from the rice culture of the fungus Aspergillus flavus NRRL3251 for confirmation and determination of the potency of its carcinogenicity in the male adult Fischer rat. The carcinogen was mixed into an agar-based, semisynthetic diet at 0, 0.5, 5, and 50 ppb (microgram/kg) and was fed to groups of animals continuously for 19-21 months. Aflatoxin B1 (AFB), of which AFM is a metabolite, at 50 ppb was used as a positive control. Hepatocarcinogenicity of AFM was detected at 50 ppb, but not at 5 or 0.5 ppb, with a potency of 2-10% that of AFB. A low incidence of intestinal adenocarcinomas was found in the AFM 50 ppb group, but not in any other groups. At 0.5 ppb, the action level enforced by the U.S.A. Food and Drug Administration, AFM induced no liver lesions in the rats but stimulated the animals' growth. On the average, the rats in the 0.5 ppb group weighed 11% (p less than 0.001) more than those in the control group. This increased growth was associated with increased feed intake. Based on the biological activity of AFM at the relevant low doses and the estimated level of human exposure to AFM through consumption of milk, the cancer risk posed by this contaminant for human adults is assessed to be very low. For infants, further studies are warranted because milk constitutes the major ingredient of the infant diet and because infant animals have been shown to be more sensitive to the carcinogenicity of AFB than adult animals.

  1. 7 CFR 93.11 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... established under the United States Department of Agriculture Marketing Agreement for Peanuts, 7 CFR part 998... molds Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius. The aflatoxin...

  2. Mycoflora and Aflatoxin levels of Left-over Harvest in some Farms, South West of Nigeria

    Directory of Open Access Journals (Sweden)

    Flora Oluwafemi

    2015-08-01

    Full Text Available More than ninety percent of the ruminant livestock in Nigeria lies in the hands of herders who keep them under extensive and semi-intensive management systems, whereby the animals rely only on natural pasture and crop residues for survival. In this work, the mycoflora and aflatoxin levels of ten farms were determined by sampling crop residues on farms grazed by cattle. Samples of the remains of farm harvest were surface-disinfected and cultured using standard microbiological techniques while aflatoxins in the left over harvest were determined using High Performance Liquid Chromatography (HPLC with fluorescence detection. Fungal counts in leftover harvest ranged from 1.2 x 106 to 3.8 x106cfu/g. Aspergillus flavus, A. terreus, A.parasiticus, Rhizopus sp and a yeast, Candida sp were most prevalent on all the investigated crop residues. Aflatoxin B1 (AFB1 on the crop residues ranged between 3.0 and 13.30 μg/Kg, while the levels of AFG1 were between 2.30 and 4.50 μg/Kg. Results of the present study is indicative that the accumulation of these doses of AFB1 can lead to transfer of AFB1 into cattle and subsequently into milk. So there is an urgent need to control the feeding pattern of cattle in order to protect the health of the consuming public.

  3. Drought Stress and Preharvest Aflatoxin Contamination in Agricultural Commodity: Genetics, Genomics and Proteomics

    Institute of Scientific and Technical Information of China (English)

    Baozhu Guo; Zhi-Yuan Chen; R. Dewey Lee; Brian T. Scully

    2008-01-01

    Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest afiatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently In different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic Improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are In agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses.

  4. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain.

    Science.gov (United States)

    Moghadam, Hediyeh Davoudi; Sani, Ali Mohamadi; Sangatash, Masoomeh Mehraban

    2016-03-01

    The aim of this study was to determine the antifungal effect of the essential oil obtained from Ziziphora clinopodioides L on two fungi species including Aspergillus flavus and Aspergillus parasiticus using microdilution method. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined for the essential oil at 10 different concentrations (i.e. 25,000, 12,500, 6250, 3125, 1562.5, 781.25, 390.625, 195.31, 97.65, and 48.82 µg/ml). Finally, the effect of the essential oil at six levels (6250, 3125, 1600, 800, 400, and 196 µg/ml) was investigated on the growth and activity of A. flavus and A. parasiticus, and also toxin production of these species in maize at 0.97 aw and 25°C after 29 days. Aflatoxin B1 (AFB1) content was assayed by enzyme linked immuno-sorbent assay technique. Results showed that essential oil of Z. clinopodioides was found more effective on A. parasiticus than A. flavus in both in vitro and in vivo conditions. Z. clinopodioides oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while it showed different activity against A. flavus and A. parasiticus with MFC values of 781.25 and 390.625 µg/ml respectively. Under storage condition in maize, AFB1 production was significantly (p essential oil of Z. clinopodioides had significant antifungal activity (p < 0.05); therefore, it can be used as an antifungal agent in the food and medicinal industries.

  5. LAMP-PCR detection of ochratoxigenic Aspergillus species collected from peanut kernel.

    Science.gov (United States)

    Al-Sheikh, H M

    2015-01-30

    Over the last decade, ochratoxin A (OTA) has been widely described and is ubiquitous in several agricultural products. Ochratoxins represent the second-most important mycotoxin group after aflatoxins. A total of 34 samples were surveyed from 3 locations, including Mecca, Madina, and Riyadh, Saudi Arabia, during 2012. Fungal contamination frequency was determined for surface-sterilized peanut seeds, which were seeded onto malt extract agar media. Aspergillus niger (35%), Aspergillus ochraceus (30%), and Aspergillus carbonarius (25%) were the most frequently observed Aspergillius species, while Aspergillus flavus and Aspergillus phoenicis isolates were only infrequently recovered and in small numbers (10%). OTA production was evaluated on yeast extract sucrose medium, which revealed that 57% of the isolates were A. niger and 60% of A. carbonarius isolates were OTA producers; 100% belonged to A. ochraceus. Only one isolate, morphologically identified as A. carbonarius, and 3 A. niger isolates unstably produced OTA. A polymerase chain reaction (PCR)-based identification and detection assay was used to identify A. ochraceus isolates. Using the primer sets OCRA1/OCRA2, 400-base pair PCR fragments were produced only when genomic DNA from A. ochraceus isolates was used. Recently, the loop-mediated isothermal amplification assay using recombinase polymerase amplification chemistry was used for A. carbonarius and A. niger DNA identification. As a non-gel-based technique, the amplification product was directly visualized in the reaction tube after adding calcein for naked-eye examination.

  6. Intracellular trehalose and sorbitol synergistically promoting cell viability of a biocontrol yeast, Pichia anomala, for aflatoxin reduction.

    Science.gov (United States)

    Hua, Sui Sheng T; Hernlem, Bradley J; Yokoyama, Wallace; Sarreal, Siov Bouy L

    2015-05-01

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 was discovered by a visual screening bioassay for its antagonism against Aspergillus flavus. The yeast was shown to significantly inhibit aflatoxin production and the growth of A. flavus. P. anomala is a potential biocontrol agent for reduction of aflatoxin in the food chain. Maintaining the viability of biocontrol agents in formulated products is a great challenge for commercial applications. Four media, NYG, NYGS, NYGT and NYGST are described which support good growth of yeast cells and were tested as storage formulations. Post growth supplement of 5 % trehalose to NYGST resulted in 83 % viable yeast cells after 12 months in cold storage. Intracellular sorbitol and trehalose concentrations were determined by HPLC analysis at the beginning of the storage and at the end of 12 month. Correlation of cell viability to both trehalose and sorbitol suggested a synergistic effect. Bonferroni (Dunn) t Test, Tukey's Studentized Range (HSD) Test and Duncan's Multiple Range Test, all showed that yeast cell viability in samples with both intracellular trehalose and sorbitol were significantly higher than those with either or none, at a 95 % confidence level. DiBAC4(5) and CFDA-AM were used as the membrane integrity fluorescent stains to create a two-color vital staining scheme with red and green fluorescence, respectively. Yeast cells stored in formulations NYG and NYGS with no detectable trehalose, displayed mostly red fluorescence. Yeast cells in NYGST+5T showed mostly green fluorescence.

  7. 黄曲霉的快速分子检测%Rapid Molecular Detection of Aspergillus f lavus

    Institute of Scientific and Technical Information of China (English)

    李本金; 尹容美; 邹雪玉; 王贤达; 陈庆河; 翁启勇

    2013-01-01

    Aspergillus flavus is a ubiquitous fungal pathogen in the worldwide . Early and accurate detection of A . flavus is essential to reduce the damage of Aflatoxins produced by A . flavus . Based on the difference of rDNA ITS sequences among A . flavus and other Aspergillus spp .,a pair of specific primers ,S1/X2 ,was designed in this study . The primer amplified a single 334 bp product from all isolates of A . flavus and that were not from other four Aspergillus species and 17 other fungi and bacteria isolates tested . The detection sensitivity was 280fg of genomic DNA . The PCR-based detection method developed here could also be used to detect A . flavus from naturally infected peanut or corn tissues .%黄曲霉 Aspergillus f lavus 是一种广泛存在的致病真菌,早期准确检测黄曲霉并加以控制是减少黄曲霉毒素产生的有效措施。本研究利用真菌通用引物 ITS1/ITS4扩增黄曲霉转录间隔区并进行克隆测序,通过序列比对,设计1对黄曲霉特异性引物 S1/X2,由此建立的 PCR 检测体系对包括黄曲霉在内的5种曲霉菌及其他17种不同的真菌、细菌基因组 DNA 进行扩增,结果只有不同来源的黄曲霉菌株能扩增出334 bp 的特异性条带,而其余参试菌株均无扩增产物,其检测灵敏度在 DNA 水平上可达到280 fg 。该检测体系能从自然发病的花生或玉米组织中扩增到334 bp 的特异片段,实现对黄曲霉的快速可靠检测。

  8. Harm and Detoxification Methods of Aflatoxin Toxin in Feed%饲料中黄曲霉毒素的危害及脱毒方法

    Institute of Scientific and Technical Information of China (English)

    杨忠诚; 刘镜; 龚铭; 龚俞

    2016-01-01

    Aflatoxin toxin is a kind of biological toxin produced by aspergillus flavus,and toxic to humans and animals,cause a great loss to the live ̄stock breeding industry. The contamination of aflatoxin in feed is seasonal and regional,southern summer high temperature and high humidity climate is very easy to occur feed aflatoxin contamination. In this paper, the harm of the livestock and poultry,the detection method of aflatoxin and the method of detoxification were summarized.%黄曲霉毒素是由黄曲霉菌产生的对人体和畜禽有毒的一类生物毒素,给畜牧养殖业造成了极大的损失。黄曲霉毒素对饲料的污染具有季节性和区域性,南方夏季高温高湿的气候极易发生饲料黄曲霉毒素污染。文章主要从黄曲霉毒素对畜禽的危害、黄曲霉毒素的检测方法及脱毒方法进行概述。

  9. Essential oil of Aegle marmelos as a safe plant-based antimicrobial against postharvest microbial infestations and aflatoxin contamination of food commodities.

    Science.gov (United States)

    Singh, Priyanka; Kumar, Ashok; Dubey, Nawal K; Gupta, Rajesh

    2009-08-01

    The essential oil of Aegle marmelos L. Correa (Rutaceae) showed strong fungitoxicity against some storage fungi-causing contamination of foodstuffs. The oil also showed efficacy as aflatoxin suppressor at 500 microL/L as it completely arrested the aflatoxin B(1) production by the toxigenic strains (Navjot 4NSt and Saktiman 3NSt) of Aspergillus flavus Link. Keeping in view the side effects of synthetic fungicides, A. marmelos oil may be recommended as an antimicrobial of plant origin to enhance the shelf life of stored food commodities by controlling the fungal growth as well as aflatoxin secretion. This is the 1st report on aflatoxin B(1) inhibitory nature of this oil. A. marmelos oil may be recommended as a novel plant-based antimicrobial in food protection over synthetic preservatives, most of which are reported to incite environmental problems because of their nonbiodegradable nature and side effects on mammals. The LD(50) of Aegle oil was found to be 23659.93 mg/kg body weight in mice (Mus musculus L.) when administered for acute oral toxicity showing nonmammalian toxicity of the oil. GC-MS analysis of the oil found DL-Limonene to be major component.

  10. Effect of powdered spice treatments on mycelial growth, sporulation and production of aflatoxins by toxigenic fungi Efeito de tratamentos com condimentos em pó sobre o crescimento micelial, esporulação e produção de aflatoxinas por fungos toxigênicos

    Directory of Open Access Journals (Sweden)

    Sára Maria Chalfoun

    2004-08-01

    Full Text Available The effect of ten powdered spice plants was evaluated at the concentration of 1, 2, 3 and 4% to observe the mycelial growth and sporulation of Aspergillus niger and Eurotium repens. The spices were added to the culture media PDA and CYA20S. Clove completely inhibited the mycelial growth of the tested fungi. The other spices: cinnamon, garlic, thyme, mint, anis, oregano and onion were, in a decreasing order, promising antifungals. Bay leaf and basil did not show a pronounced fungistatic effect. The antitoxigenic potential of the spices was tested against one aflatoxin-producing strain of AspergiIIus flavus. The spices were tested at the same concentrations previously mentioned and were added to the culture medium YES, appropriate for the production of those metabolites. Clove completely inhibited the mycelial growth of Aspergillus flavus. Cinnamon and anis totally inhibited the production of Bl and B2 aflatoxin. Both bay leaf and basil inhibited the synthesis of aflatoxin starting from the concentration of 2%. The other spices did not have a pronounced antiaflatoxigenic effect.O efeito de dez plantas condimentares em pó foi avaliado nas concentrações de 1, 2, 3 e 4%, para observar o desenvolvimento micelial e esporulação de Aspergillus niger e Eurotium repens. Os condimentos foram adicionados aos meios de cultura BDA e CYA 20S. O cravo inibiu completamente o desenvolvimento micelial dos fungos testados. Os outros condimentos: canela, alho, tomilho, menta, erva-doce, orégano e cebola foram, em ordem decrescente, antifúngicos promissores. Louro e manjericão não apresentaram um efeito fungistático pronunciado. O potencial antitoxigênico dos condimentos foi testado contra uma cepa de Aspergillus flavus, produtora de aflatoxina. Os condimentos foram testados nas mesmas concentrações previamente mencionadas e foram adicionados ao meio de cultura YES, apropriado para a produção daqueles metabólitos. O cravo inibiu completamente o

  11. Efficacy of corn silage inoculants on the fermentation quality under farm conditions and their influence on Aspergillus parasitucus, A. flavus and A. fumigatus determined by q-PCR.

    Science.gov (United States)

    Dogi, Cecilia A; Pellegrino, Matías; Poloni, Valeria; Poloni, Luis; Pereyra, Carina M; Sanabria, Analía; Pianzzola, María Julia; Dalcero, Ana; Cavaglieri, Lilia

    2015-01-01

    Laboratory-scale silos were prepared to evaluate the efficacy of two different lactic acid bacteria (LAB) on the fermentation quality and mycobiota of corn silage. Their influence on Aspergillus species' variability by using the q-PCR technique was studied. Silage inoculated with Lactobacillus rhamnosus RC007 or L. plantarum RC009 were compared with uninoculated silage. Silos were opened after 1, 7, 45, 90 and 120 days after ensiling. At the end of the ensiling period, silos were left open for 7 days to evaluate aerobic stability. Rapid lactic acid production and decline in pH values were seen in the early stages of fermentation in silage inoculated with L. rhamnosus RC007. After aerobic exposure, a significant decline in lactic acid content was observed in untreated and L. plantarum RC009-inoculated silages. Counts for yeasted and toxigenic fungus remained lower, after aerobic exposure, in L. rhamnosus RC007-inoculated silage, in comparison with L. plantarum RC009 and uninoculated silages. Comparing the influence exerted by both BAL, it was observed that L. rhamnosus RC007 was more efficient at inhibiting the three fungal species tested whose DNA concentrations, determined by q-PCR, oscillated near the initial value (pre-ensiling maize). The ability of L. rhamnosus RC007 to produce lactic acid rapidly and the decline in pH values in the early stages of the fermentation along with the reduction of yeast and mycotoxicogenic fungus after aerobic exposure shows its potential as a bio-control inoculant agent in animal feed.

  12. Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection

    NARCIS (Netherlands)

    A.C.A.P. Leenders (Alexander); A.F. van Belkum (Alex); M.D. Behrendt (Myra); A. Luijendijk (Ad); H.A. Verbrugh (Henri)

    1999-01-01

    textabstractAfter five patients were diagnosed with nosocomial invasive aspergillosis caused by Aspergillus fumigatus and A. flavus, a 14-month surveillance program for pathogenic and nonpathogenic fungal conidia in the air within and outside the University Hospital in

  13. Aspergillus species as mycotoxin producers in agricultural products in central Europe

    Directory of Open Access Journals (Sweden)

    Kočube Šandor

    2013-01-01

    Full Text Available Aspergillus species are able to produce a range of mycotoxins, includ­ing e.g. aflatoxins, ochratoxins, fumonisins and patulin. Aflatoxins are mainly produced by members of Aspergillus section Flavi, and they contaminate various agricultural products in several parts of the world. Several recent reports have indicated that aflatoxin-producing fungi and consequently aflatoxin contamination occur in agricultural commodities in a number of European countries which have not been faced with this problem before. Indeed, recent surveys have clarified that concentrations of aflatoxins in maize products and milk has been exceeding the EU limit in several regions of Central Europe including Serbia, Slovenia, Croatia, Northern Italy and Romania. However, aflatoxin contamination and aflatoxin-producing Aspergillus species have not been identified yet in maize in Hungary. We examined the presence of potential aflatoxin-producing Aspergilli in maize samples collected in southern parts of Hungary. Several A. flavus isolates were identified, and pre­liminary results indicated that some of the isolates were able to produce aflatoxins. Con­tamination of other agricultural products with aflatoxins can also pose problems in Central Europe due to global warming. Ochratoxin contamination of grapes and grape-derived products is usually caused by black Aspergilli, especially by A. carbonarius and A. niger, although these species have been rare in Central European vineyards due to climatic fac­tors. Ochratoxin contamination of other agricultural products including spices and cereals was also observed in the region. Besides, ochratoxin producing Aspergilli are frequently isolated from imported products including coffee beans, dried fruits and spices, and ochra­toxin contamination of these samples was also observed. Fumonisins are produced mainly by Fusarium species, and by the recently identified producers Aspergillus niger and A. awamori. We examined fumonisin

  14. Decolorization mechanism of molasses wastewater by Aspergillus flavus A5p1%黄曲霉A5p1脱色糖蜜酒精废水机理初探

    Institute of Scientific and Technical Information of China (English)

    贺锴; 何小慧; 李必金; 邹成; 覃益民; 李青云; 刘幽燕

    2014-01-01

    研究自行筛选的一株黄曲霉( Aspergillus flavus) A5p1(保藏号CGMCC.4292)对糖蜜酒精废水( MSW)的脱色机理.在外加蔗糖情况下菌株A5p1对MSW具有较好的脱色效果,脱色率由14%增高至58%;脱色进程与细胞生长基本同步.从培养液中检测出3种木质素过氧化物酶---漆酶( Lac)及两种胞外过氧化物酶即锰过氧化物酶( MnP )和不依赖锰的过氧化物酶( MiP )的酶活,但是水平不高,认为此3种酶不是主要的脱色机制.发现由各种代谢过程产生的总H2 O2生成速率与脱色率基本同步,同时在第4天达到最大值,随后下降;还原糖总消耗也在初期阶段较快.外加蔗糖后总H2 O2生成速率增加10倍,达到0.0027 mmol·min-1·mL-1.认为体系中脱色机制可能与产H2 O2的酶相关.紫外可见光谱分析和凝胶色谱分析表明脱色过程中有大分子物质降解.综上所述初步认为,黄曲霉A5p1脱色糖蜜酒精废水是一个受产H2 O2酶影响、复杂的生物降解过程.%The decolorization mechanism of molasses wastewater ( MSW) by Aspergillus flavus A5P1 ( CGMCC.4292) was studied in this article. With the addition of sucrose, strain A5P1 displayed a better decolorization activity, and the decolorization rate increased from 14% to 58%. The cell dry weight was synchronized with the change of decolorization rate. Three lignin peroxidases relevant to the biodecolorization were detected in the culture fluid, including laccase and two extracellular peroxidases, a manganese-independent peroxidase ( MiP ) and manganese peroxidase ( MnP ) , but, with low activity. It is deducted that these three enzymes did not play a leading role in the the MSW-decolorization by the strain. The total generation rate of H2 O2 from a variety of metabolic processes was found to be synchronous to the decolorization rate, both reaching maximum after 4 d and decreasing subsequently. The total

  15. Thermolysed and active yeast to reduce the toxicity of aflatoxin Formas termolisada e viva de leveduras na redução de toxicidade causada por aflatoxinas

    Directory of Open Access Journals (Sweden)

    Antonio Sampaio Baptista

    2002-06-01

    Full Text Available Aflatoxins are hepatotoxic metabolites produced by Aspergillus flavus and A. parasiticus on a number of agricultural commodities. This research was carried out to evaluate the ability of thermolysed and active Saccharomyces cerevisiae to attenuate liver damage caused by aflatoxin. Diets were prepared containing 0 aflatoxin; 400 mug kg-1 aflatoxin; 400 mug kg-1 aflatoxin plus 1% of dehydrated active yeast, and 400 mug kg-1 aflatoxin plus 1% of thermolysed yeast. A bioassay with Wistar rats was conducted for 28 days, and body organs were weighted and analyses of the liver tissue of the animals were performed. The relative weight of heart, kidneys and liver from animals submitted to the different treatments did not show any difference, and liver tissue of animals feeding on the aflatoxin-free diet was adopted as a toxicity-free pattern. Hepatic tissue of animals feeding on diets containing 400 mug kg-1 aflatoxin or the diet supplemented with 1% thermolysed yeast showed clear signs of toxicity and damage. Hepatic tissue of animals feeding on the diet containing 1% of dehydrated active yeast showed less toxicity signs and damage than those receiving the diet containing 400 mug kg-1 aflatoxin. Active, dehydrated yeast had the ability to reduce toxic effects caused by aflatoxin, but thermolysed yeast was not able to alleviate the effects of aflatoxin toxicity.As aflatoxinas são metabólitos hepatotóxicos produzidos por algumas linhagens de Aspergillus flavus, A. parasiticus e, eventualmente, por A. nomius sobre grande número de produtos agrícolas. Esta pesquisa foi conduzida para avaliar a capacidade de Saccharomyces cerevisiae, nas formas termolisada e desidratada viva, em reduzir os danos causados por aflatoxinas. Para tal, foi preparada uma dieta básica e desta se obtiveram quatro formulações: uma como controle; as demais contaminadas com aflatoxinas na concentração de 400 mig kg-1, sendo duas com posterior adição de 1% de leveduras, uma

  16. Effect of mint (Mentha piperita L. and caraway (Carum carvi L. on the growth of some toxigenic aspergillus species and aflatoxin B1 production

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2009-01-01

    Full Text Available An inhibitory effect of various concentrations (0.0, 0.5, 1.0, 1.5 and 2,0% of mint (Mentha piperita L. and caraway (Carvum carvi L. on the growth of A. fumigatus, A. flavus and A. ochraceus was examined during 10 days of cultivation in YES medium at temperature of 25°C. Mint showed stronger inhibitory effect than caraway. Total dry weight (g/l after 10 days of the growth of A. fumigatus in YES medium with 0.5% of mint decreased by about 95%, A. flavus by 97% and A. ochraceus by about 82%. Addition of higher concentrations of mint (1.0, 1.5 and 2.0% reduced the growth of all tested species. It was poor and hardly visible. pH values of the media increased with the increase of mint concentrations. A. fumigatus showed the highest sensitivity towards caraway and A. flavus the lowest. Total dry weight (g/l after 10 days of growth of A. fumigatus in medium with 0.5% of caraway decreased by about 72% in comparison to the control. In media with higher concentrations of caraway, its growth was found to be very poor. Concentration of 1.0% of caraway reduced A. flavus growth by 15% and of 1.5% by 92%, in regard to the control. In medium with 2.0% of caraway the growth of A. flavus was observed as poor and hardly visible. The growth of A. ochraceus in medium with 0.5% of caraway decreased by about 85% comparing with control and further decrease was noticed by the increase of concentrations. In medium with 1.5% of caraway a reduction of about 95% of growth was found and under 2.0% of caraway it was poor. pH of the media also increased with the increase of caraway concentrations. Applied concentrations of mint and caraway inhibited completely the production of AB1 by A. flavus.

  17. Survey of aflatoxins in tomato products Aflatoxinas em produtos de tomate

    Directory of Open Access Journals (Sweden)

    Lilian Regina Barros Mariutti

    2009-06-01

    Full Text Available Tomatoes are highly susceptible to fungi contamination in the field, during transportation, processing, and storage. Aspergillus flavus and Aspergillus parasiticus have been isolated from tomatoes and tomato products, and both fungi species can produce aflatoxin, mycotoxin with hepatotoxic, carcinogenic, teratogenic, and mutagenic effects on all animal species tested so far. In order to verify a possible aflatoxin contamination of tomato products commercialized in Brazil, 63 samples of tomato products (pulp, paste, purée, ketchup, dehydrated tomatoes, and dried tomatoes preserved in oil produced in 5 Brazilian states and 1 imported sample (ketchup, totalizing 29 brands, were analyzed by thin layer chromatography. The analytical method showed an average recovery of 86% for all aflatoxins at two spiking levels. The limits of detection for the aflatoxins B1, B2, G1, and G2 varied with the type of the product ranging from 2 to 7 µg/kg. Aflatoxins were not detected in any evaluated sample indicating that they did not pose a risk to human health since there was no invasion of raw materials by toxigenic fungi or no conditions for toxin production.Os tomates são frutos altamente susceptíveis à contaminação fúngica tanto no campo como durante o transporte, processamento e armazenamento. Aspergillus flavus e Aspergillus parasiticus têm sido isolados em tomate e em produtos de tomate e ambas as espécies são produtoras de aflatoxinas, potentes micotoxinas que apresentam efeitos hepatotóxicos, carcinogênicos, teratogênicos e mutagênicos para todas as espécies animais testadas até o momento. Para verificar a possível contaminação por estas micotoxinas em produtos de tomate comercializados no Brasil, amostras de 63 produtos de tomate (polpa, pasta, purê, catchup, tomate desidratado e tomate seco conservado em óleo provenientes de 5 Estados brasileiros e uma do exterior (catchup, compreendendo a 29 marcas, foram analisadas por

  18. Aspergillus parasiticus CrzA, Which Encodes a Calcineurin Response Zinc-Finger Protein, is Required for Aflatoxin Production Under Calcium Stress

    Science.gov (United States)

    Calcium has been reported to be required for aflatoxin production. Calcium, like cAMP, is a second messenger. Cacineurin, a calmodulin-dependent serine/threonine protein phosphatase, is an important component of the calcium signaling pathway. The control of calcineurin-dependent gene expression is v...

  19. Aflatoxin B1content in patients with hepatic diseases Aflatoxina B1 en pacientes con enfermedades hepáticas

    Directory of Open Access Journals (Sweden)

    Clara López

    2002-08-01

    Full Text Available Aflatoxins are toxic metabolites of some Aspergillus flavus, A. parasiticus and A. nomius strains that occur in many foods and feeds. There are four major natural occurring aflatoxins: B1, B2, G1 and G2. These toxins can cause illness in human beings and animals. Aflatoxin B1 is the most abundant and toxic member of the family, and it is also the most potent hepatocarcinogen known. In order to estimate the potential human health risk of AFB1, it is useful to measure blood concentration. The presence of aflatoxin B1 in patients was evaluated by high-performance liquid chromatography, in serum samples, obtained from 20 patient volunteers with hepatic disease. Out of the 20 patients, the presence of AFB1 was detected in only one of them, in a concentration of 0.47 ng/cm³. Nevertheless, this result should draw the attention of control organizations in Argentina to the need for a thorough food and feed inspection.Las aflatoxinas son metabolitos tóxicos producidos por cepas de Aspergillus flavus, A. parasiticus y A. nomius, presentes en alimentos y piensos. Las cuatro aflatoxinas principales son: aflatoxina B1, B2, G1 y G2. Dichas toxinas pueden causar enfermedades tanto en seres humanos como en animales. La aflatoxina B1 es la más abundante y la más tóxica del grupo y es también el más potente hepatocarcinógeno conocido. El objetivo de este trabajo fue detectar la presencia de aflatoxina B1 en sangre humana para estimar el riesgo potencial de la salud. La determinación de aflatoxina B1 fue realizada por cromatografía líquida de alto rendimiento, en suero de 20 pacientes voluntarios con enfermedades hepáticas. En sólo uno de estos pacientes se detectó la presencia de aflatoxina B1, en una concentración de 0.47ng/cm³. Estos resultados deberían ser tenidos en cuenta por los responsables de la vigilancia y control de los alimentos en la Argentina.

  20. Radiation degradation of biological waste (aflatoxins) produced in food laboratory; Degradacao por radiacao de residuos biologicos (aflatoxinas) produzidos em laboratorio de alimentos

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, Vladimir Dias

    2009-07-01

    Many filamentous fungi can produce secondary metabolites, called mycotoxins, which can be found in food and agricultural products. One of the main genera of myco toxigenic fungi related to the food chain is the Aspergillus spp. There are over 400 mycotoxins described in the literature, the most common the aflatoxins B1, B2, G1 and G2. The mycotoxins are commonly found in foods and are considered one of the most dangerous contaminants. The aflatoxin B1 is classified in group one by the International Agency of Research on Cancer. Aflatoxins resisting for more than one hour in autoclave making it necessary to other means of degradation of these toxins. This work aimed to observe the effects of gamma radiation of {sup 60}Co and electron beams in the degradation of aflatoxins and compare the damage caused on the morphology of the Aspergillus flavus. The fungus was grown on potato dextrose agar (PDA) for 10 days and was subsequently transferred to coconut agar medium, and maintained for 14 days at 25 degree C. After this step the coconut agar was ground to become a homogeneous pasty and was irradiated with doses of 2.5, 5.0, 10 and 20 kGy. The samples used in scanning electron microscopy were irradiated with doses of 0, 2.5, 5.0, 10 and 20 kGy with sources of {sup 60}Co and electron beams. Irradiation with electron accelerator showed a slightly higher degradation to gamma radiation, reducing 29.93 %, 34.50 %, 52.63 % and 72.30 % for doses of 2.5, 5.0, 10 and 20 kGy, respectively. The Scanning Electron Microscopy showed that doses of 2.5 to 10 kGy did not cause damage to the fungus, but with a dose of 20 kGy it can be observed fungal damage to structures. (author)

  1. [Exposure to aflatoxin B1 in experimental animals and its public health significance].

    Science.gov (United States)

    Guzmán de Peña, Doralinda

    2007-01-01

    The presence of AFB1 in human beings was detected in Mexico in 1996 both as a mutation of the gene p53 in hepatocellular carcinomas in Monterrey, Mexico, and as the adduct AFB1-lysine in serum from patients in Matamoros, Mexico in 2003. Aflatoxin B1 has been classified as a carcinogenic agent to humans by the International Agency for Research on Cancer. The compound is a natural contaminant produced by Aspergillus flavus and/or A. parasiticus when these fungi grow on different food products. At the molecular level, this review covers the carcinogenic, mutagenic and toxic properties of these mycotoxins and their risk to humans. It also gives insight into the causal relationship between aflatoxins and hepatocellular carcinoma. Information is provided about AFB1-formamidopyrimidine, which is a determinant of the carcinogenic and mutagenic capabilities. The results suggest that the Mexican population ingests food containing low amounts of AFB1. Analyses is presented of AFB1 toxicity, which is a consequence of the carcinogenic activity in liver cells.

  2. Detoxification of Aflatoxin B1 by Zygosaccharomyces rouxii with Solid State Fermentation in Peanut Meal

    Directory of Open Access Journals (Sweden)

    Guanghui Zhou

    2017-01-01

    Full Text Available Aflatoxins are highly carcinogenic, teratogenetic, and morbigenous secondary metabolites of Aspergillus flavus and A. parasiticus that can contaminate multiple staple foods, such as peanut, maize, and tree nuts. In this study, Zygosaccharomyces rouxii was screened out and identified from fermented soy paste—one kind of traditional Chinese food—to detoxify aflatoxin B1 (AFB1 by aerobic solid state fermentation in peanut meal. The optimal degradation condition was chosen from single factor experiment, and the most effective detoxification rate was about 97%. As for liquid fermentation, we tested the binding ability of Z. rouxii, and the highest binding rate reached was 74.3% (nonviable cells of Z. rouxii in phosphate-buffered saline (PBS. Moreover, the biotransformation of AFB1 through fermentation of Z. rouxii in peanut meal was further verified by liquid chromatography/mass spectrometry (LC/MS. According to TIC scan, after fermentation by Z. rouxii, the AFB1 in peanut meal was prominently degraded to the lowering peaks of AFB1. Additionally, m/s statistics demonstrated that AFB1 may be degraded to some new products whose structural properties may be different from AFB1, or the degradation products may be dissolved in the aqueous phase rather than the organic phase. As far as we know, this is the first report indicating that the safe strain of Z. rouxii has the ability to detoxify AFB1.

  3. 主要生态因子对贮藏玉米中黄曲霉生长影响的模拟%Simulation of effect of main ecological factors on radial growth of Aspergillus flavus during storage period of corn

    Institute of Scientific and Technical Information of China (English)

    岳晓禹; 李自刚; 郝修振; 徐军; 刘相东; 牛天贵

    2013-01-01

    为了模拟贮藏玉米中主要生态因子对黄曲霉生长的影响,利用Baranyi和Roberts函数拟合了玉米中黄曲霉的生长数据,得到了不同温度和水分活度下玉米中黄曲霉的生长动力学模型。应用一个二次多项式函数分别建立了描述水分活度(aw)和温度对菌落生长的组合影响的模型。对模型的有效性分别进行了验证,其偏离因子分别为0.896和0.963。精确因子都小于1.15。结果证明构建的二次多项式预测模型可以很好的预报aw和温度对黄曲霉生长的比生长速率和迟滞期的组合影响。得出的方程可以用于预测贮藏玉米中黄曲霉生长情况。%The safety of corn storage is related to food safety and human health. According to the predictive microbiology, the microorganism’s growth in stored corn can be quickly judged in advance by construction of a predictive microbiology model. It plays an important part in controlling the growth of pathogens and spoilage microorganisms in stored grain. It is of important theoretical and practical application value to realize the ecological storage of corn and ensure the security of corn storage. The radial growth of A. flavus on corn was studied in this article. The testing of four temperatures and four aw values was designed. A full factorial design of four temperatures (20, 25, 30, and 35℃) and four aw values (0.97, 0.91, 0.85, 0.81) was used to investigate the growth of A. flavus on corn. The colony growth curve of A. flavus on corn was determined. The objective of the present study was to develop validated models that describe the effect of the main ecological factors on the radial growth of Aspergillus flavus on corn. The growth data of A. flavus on corn under different temperatures and water activity were fitted by the Baranyi and Roberts functions. The corresponding growth kinetics models were built. The higher R2 (0.993-0.998) showed that these growth kinetics models can be a good

  4. 60Coγ射线对生理盐水和玉米中黄曲霉孢子的辐照效应研究%Irradiation effect of 60Co gamma ray on Aspergillus flavus spores in normal saline and maize

    Institute of Scientific and Technical Information of China (English)

    钟凯; 高翔; 计融

    2011-01-01

    目的 研究γ射线对黄曲霉孢子辐照效应.方法 两种介质中不同浓度黄曲霉孢子经不同剂量辐照后进行菌落计数,计算D值和理论最小杀灭剂量,并实验验证实际最小杀灭剂量.结果 生理盐水中高浓度孢子D值0.39kGy,最低杀灭剂量2.5kGy,低浓度孢子D值0.47kGy,最低杀灭剂量1.5kGy;玉米中高浓度孢子D值为0.67kGy,最低杀灭剂量3.0kGy,低浓度孢子D值为0.72kGy,最低杀灭剂量2.0kGy.结论 3.0kGy可用于粮食中黄曲霉的杀灭.%Objective To observe irradiation effect of gamma ray on Aspergillus flavus spores.Methods Aspergillus flavus spores of different concentration were prepared on two media and were exposed to gamma ray.D10 values and theoretical minimal sterilizing doses were calculated by colony counting results.Actual minimal sterilizing doses were verified according to theoretical dose.Results D10 value and minimal sterilizing dose of high concentration spore in normal saline were 0.39kGy and 2.5kGy.Those of low concentration spore in normal saline were 0.47kGy and 1.5kGy.D10 value and minimal sterilizing dose of high concentration spore in maize were 0.67kGy and 3.0kGy.Those of low concentration spore in maize were 0.72kGy and 2.0kGy.Conclusion 3.0kGy may be suitable for grain processing to sterilize Aspergillus flavus.

  5. A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR).

    Science.gov (United States)

    Bintvihok, Anong; Treebonmuang, Supitchaya; Srisakwattana, Kitiya; Nuanchun, Wisut; Patthanachai, Koranis; Usawang, Sungworn

    2016-01-01

    Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was 65°C. The optimized template and primer concentration were 1.5 μL (50 ng/μL) and 3 μL (10 μM/μL) respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at 88.0°C, 87.5°C, 83.5°C, and 89.5°C respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples.

  6. Variation in fungal microbiome (mycobiome) and aflatoxins during simulated storage of in-shell peanuts and peanut kernels

    Science.gov (United States)

    Xing, Fuguo; Ding, Ning; Liu, Xiao; Selvaraj, Jonathan Nimal; Wang, Limin; Zhou, Lu; Zhao, Yueju; Wang, Yan; Liu, Yang

    2016-01-01

    Internal transcribed spacer 2 (ITS2) sequencing was used to characterize the peanut mycobiome during 90 days storage at five conditions. The fungal diversity in in-shell peanuts was higher with 110 operational taxonomic units (OTUs) and 41 genera than peanut kernels (91 OTUs and 37 genera). This means that the micro-environment in shell is more suitable for maintaining fungal diversity. At 20–30 d, Rhizopus, Eurotium and Wallemia were predominant in in-shell peanuts. In peanut kernels, Rhizopus (>30%) and Eurotium (>20%) were predominant at 10–20 d and 30 d, respectively. The relative abundances of Rhizopus, Eurotium and Wallemia were higher than Aspergillus, because they were xerophilic and grew well on substrates with low water activity (aw). During growth, they released metabolic water, thereby favoring the growth of Aspergillus. Therefore, from 30 to 90 d, the relative abundance of Aspergillus increased while that of Rhizopus, Eurotium and Wallemia decreased. Principal Coordinate Analysis (PCoA) revealed that peanuts stored for 60–90 days and for 10–30 days clustered differently from each other. Due to low aw values (0.34–0.72) and low levels of A. flavus, nine of 51 samples were contaminated with aflatoxins. PMID:27180614

  7. Advances in the Development of Maize Resistance to Aflatoxin Contamination%玉米抗黄曲霉毒素污染的研究进展

    Institute of Scientific and Technical Information of China (English)

    陶芳; 程备久

    2012-01-01

    黄曲霉毒素污染是影响玉米食用安全的重要因素.筛选培育玉米抗性品种,从源头控制黄曲霉的侵染,是解决玉米田间及储存期黄曲霉污染的有效方法.对国内外玉米黄曲霉抗原种质的筛选鉴定、分子标记辅助选育及部分抗性机理等方面的研究进行了概述,并就目前存在的一些问题,探讨了我国玉米抗黄曲霉的研究方向.%Aflatoxins contamination significantly affects the food safety of maize industry. Development of afla-toxin - resistant commercial maize lines is probably the best and most widely explored strategy. This review will present information on the following areas;Identification of new sources of maize resistant germplasm; development resistance markers to aid in marker - assisted maize breeding and resistance mechanism study of maize against Aspergillus flavus. The problems in maize resistance to aflatoxin and further research efforts were discussed.

  8. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi

    2015-11-01

    Aspergillus biofilms were prepared from Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus via a 96-well plate-based method, and the combined antifungal activity of tacrolimus with azoles or amphotericin B against Aspergillus biofilms was investigated via a broth microdilution checkerboard technique system. Our results suggest that combinations of tacrolimus with voriconazole or amphotericin B have synergistic inhibitory activity against Aspergillus biofilms. However, combinations of tacrolimus with itraconazole or posaconazole exhibit no synergistic or antagonistic effects.

  9. Economic Risks of Aflatoxin Contamination in Marketing of Peanut in Benin

    Directory of Open Access Journals (Sweden)

    C. Bley N'dede

    2012-01-01

    Full Text Available Aflatoxin (AF is a human health, nutrition, and financial risk to many people in the developing world. AF contamination in peanut is caused by the fungi: Aspergillus flavus and Aspergillus parasiticus. AF is a potent carcinogenic toxin that also causes millions of dollars of financial losses to people in Africa. The fungus producing the AF can be reduced to an acceptable level by proper drying, sorting, storage, and cleaning of peanut. Government intervention and regulation can also encourage market participants to reduce AF contamination. In this paper, we examine the financial risk associated with sorting, and storing of peanut and peanut products along the marketing chain. Study results show that the prices paid for peanut, prices received, the costs of sorting and storage are dominant factors in reducing AF levels in peanut. Practices such as drying, sorting, and storing, however, pose financial risks to market traders of peanut. Unless government intervenes by requesting an AF-reduced peanut and provides assistance for market liberalization where market participants consider quality in trading decisions, suppliers of peanut will be reluctant to adopt AF-reducing techniques.

  10. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity.

    Science.gov (United States)

    Prakash, Bhanu; Shukla, Ravindra; Singh, Priyanka; Kumar, Ashok; Mishra, Prashant Kumar; Dubey, Nawal Kishore

    2010-08-15

    The study investigates fungal contamination in some dry fruits, spices and areca nut and evaluation of the essential oil (EO) of Piper betle var. magahi for its antifungal, antiaflatoxigenic and antioxidant properties. A total of 1651 fungal isolates belonging to 14 species were isolated from the samples and Aspergillus was recorded as the dominant genus with 6 species. Eleven aflatoxin B(1) (AFB(1)) producing strains of A. flavus were recorded from the samples. Eugenol (63.39%) and acetyleugenol (14.05%) were the major components of 32 constituents identified from the Piper betle EO through GC and GC-MS analysis. The minimum inhibitory concentration (MIC) of P. betle EO was found 0.7 microl/ml against A.flavus. The EO reduced AFB(1) production in a dose dependent manner and completely inhibited at 0.6 microl/ml. This is the first report on efficacy of P. betle EO as aflatoxin suppressor. EO also exhibited strong antioxidant potential as its IC(50) value (3.6 microg/ml) was close to that of ascorbic acid (3.2 microg/ml) and lower than that of the synthetic antioxidants such as butylated hydroxytouene (BHT) (7.4 microg/ml) and butylated hydroxyanisole (BHA) (4.5 microg/ml). P. betle EO thus exhibited special merits possessing antifungal, aflatoxin suppressive and antioxidant characters which are desirable for an ideal preservative. Hence, its application as a plant based food additive in protection and enhancement of shelf life of edible commodities during storage and processing is strongly recommended in view of the toxicological implications by synthetic preservatives.

  11. Preharvest Aflatoxin Contamination in Crops and Its Management%农作物收获前黄曲霉毒素污染与控制措施

    Institute of Scientific and Technical Information of China (English)

    王后苗; 廖伯寿

    2012-01-01

    黄曲霉毒素(aflatoxin,AFT)是曲霉属真菌产生的一大类生物毒素,是危及食品安全和人类健康的主要物质之一.农产品收获前黄曲霉毒素污染是热带、亚热带地区普遍存在的问题,其中在玉米、花生、棉籽、辣椒籽和一些木本坚果及其产品中尤为严重.国内外现有研究结果表明,多种因素可影响作物收获前黄曲霉毒素污染,其中干旱和高温的综合胁迫是最主要的环境因素.作物抗性对降低毒素污染具有重要作用.综合运用分子生物学及常规育种 技术改良作物品种对黄曲霉菌侵染或产毒的抗性以及对其他病虫害及干旱的抗(耐)性,是解决黄曲霉毒素污染问题的重要途径.作物生产过程中病虫害的防治和合理的田间管理是作物收获前黄曲霉毒素污染的有效防控措施.%Aflatoxin contamination caused by Aspergillus flavus and A. Parasiticus is considered as the most serious factor influencing food safety concerning human health. Preharvest aflatoxin contamination in the field has been a common problem in certain agricultural products including corn, peanut, cottonseed, pepper, and tree nuts. Several factors have been associated with preharvest aflatoxin contamination in various crops. Drought stress along with high temperature is the most major environmental factor related to preharvest aflatoxin contamination. Resistance of host plant could effectively reduce the contamination. Genetic enhancement for resistance to fungi invasion and aflatoxin production as well as diseases and insect pests and tolerance to drought through combination of conventional breeding and molecular biology approaches will be the priority for aflatoxin contamination management. Meanwhile, integrated control of diseases and pests with suitable crop management is also crucial to prevent preharvest aflatoxin contamination.

  12. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    Science.gov (United States)

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  13. Efficacy of Lippia alba (Mill.) N.E. Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production.

    Science.gov (United States)

    Shukla, Ravindra; Kumar, Ashok; Singh, Priyanka; Dubey, Nawal Kishore

    2009-10-31

    The present study deals with evaluation of antifungal properties of Lippia alba essential oil (EO) and two of its monoterpene aldehyde constituents against legume-contaminating fungi. Seventeen different fungal species were isolated from 11 varieties of legumes, and aflatoxigenic isolates of Aspergillus flavus were identified. Hydrodistillation method was used to extract the EO from fresh leaves. The GC and GC-MS analysis of EO revealed the monoterpene aldehydes viz. geranial (22.2%) and neral (14.2%) as the major components. The antifungal activity of EO, geranial and neral was evaluated by contact assay on Czapek's-dox agar. The EO (0.25-1 microL/mL) and its two constituents (1 microL/mL) showed remarkable antifungal effects against all the fungal isolates (growth inhibition range 32.1-100%). Their minimal inhibitory (MIC) and fungicidal (MFC) concentrations for A. flavus were lower than those of the systemic fungicide Bavistin. Aflatoxin B(1) (AFB(1)) production by three isolates of A. flavus was strongly inhibited even at the lower fungistatic concentration of EO and its constituents. There was no adverse effect of treatments on seed germination, and rather, there was enhanced seedling growth in the EO-treated seeds. It is concluded that L. alba EO and two of its constituents could be safely used as effective preservative for food legumes against fungal infections and mycotoxins.

  14. REDUKSI KANDUNGAN AFLATOKSIN B1 (AFB1 PADA PEMBUATAN KACANG TELUR MELALUI PEREBUSAN DALAM LARUTAN KAPUR (REDUCTION OF AFLATOXIN B1 (AFB1 CONTENT IN THE EGG PEANUT BY BOILLING IN LIME SOLUTION

    Directory of Open Access Journals (Sweden)

    Yuliana Tandi Rubak

    2013-07-01

    Full Text Available ABSTRAK Latar belakang: Efek berbahaya dari aflatoksin B1 bagi manusia adalah toksisitasnya sebagai senyawa karsinogenik. Toksin ini diproduksi oleh Aspergillus flavus, yang biasanya tumbuh pada serealia dan kacang-kacangan. Akibatnya serealia dan kacang-kacangan tersebut serta produknya bisa terkontaminasi oleh toksin ini. Kacang telur merupakan salah satu produk kacang tanah yang banyak dikonsumsi. Karena itu, kacang telur harus bebas toksin. Menurut informasi pustaka, salah satu cara untuk menghilangkan toksin ini adalah modifikasi proses pembuatan kacang telur. Artikel ini menyajikan hasil penelitian untuk menghilangkan aflatoksin kacang telur melalui perendaman bahan baku kacang tanah dalam larutan kapur 0,5 persen dan 1 persen selama 10 menit. Metodologi: Membuat dua jenis produk kacang telur, satu produk berbahan baku kacang yang telah dikontaminasi aflatoksin dan satu produk lagi berbahan baku kacang utuh tidak terkontaminasi aflatoksin. Produk pertama untuk menguji pengaruh perebusan dalam larutan kapur terhadap kandungan aflatoksin. Sedangan produk kedua untuk menguji pengaruh perebusan dalam larutan kapur terhadap cita rasa.Kedua produk dibuat melalui proses yang sama, bahan kacang mendapat perlakukan perendaman dalam larutan kapur konsentrasi 0,5 persen dan 1,5 persen selama 10 menit, kemudian dilanjutkkan dengan proses seperti umumnya membuat kacang telur. Kandungan aflatoksin dianalisis dengan metoda ELISA (Enzyme Linked Immunosorbent Assay. ABSTRACT Background: The harmful effect of aflatoxin B1 for human being because of its toxicity, as carcinogenic agent. The toxin is produced by the Aspergillus flavus which usually grows in grain and nuts. As the result that the grain, nuts and their product contaminated by the toxin.  Egg peanut is one of peanut products which are widely consumed by the peoples. Consequently the egg peanut should be not containing the toxin. The modification of process of making peanut is one way to

  15. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    Science.gov (United States)

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis.

  16. PENURUNAN KADAR AFLATOKSIN B1 PADA SARI KEDELAI OLEH SEL HIDUP DAN SEL MATI Lactobacillus acidophilus SNP-2 [Reduction of Aflatoxin B1 in Soymilk by Viable and Heat-killed Lactobacillus acidophilus SNP-2

    Directory of Open Access Journals (Sweden)

    Tyas Utami1*

    2012-06-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins that commonly contaminate foods and feed. There are many different forms of aflatoxin and its metabolites. Of these, aflatoxin B1 (AFB1 is the most prevalent and toxic. Lactobacillus acidophilus SNP-2 has previously been shown to remove AFB1 from liquid solution of phosphate saline buffer. However, the ability of lactic acid bacteria to reduce AFB1 content in soymilk has not been studied yet. The objective of this study was to investigate the ability of viable and heat-killed cells of L. acidophilus SNP-2 to reduce AFB1 in soymilk and fermented soymilk. Soymilk contaminated with Aspergillus flavus was inoculated with culture of L. acidophilus SNP-2, and incubated at 37C for 12 hours. Fermented soymilk, then, was heat sterilized and stored at cool room (4°C. Heat-killed cells were introduced to soy milk and then kept at cool room for 3 days. During soymilk fermentation, there was reduction of AFB1 content in soymilk related to the growth of lactic acid bacteria and the reduction of pH. The initial concentration of AFB1 in the soymilk was 4.9 ppb. Lactobacillus acidophilus SNP-2 reduced 67.58% of AFB1 in the soymilk after 12 hoursof fermentation. In cool environment, the binding of AFB1 to heat-killed cell after soymilk fermentation was relatively more stable than that of soymilk without fermentation.

  17. Preparation and anti-Aspergillus flavus activity of chitosan-trypsin inhibitor blend edible film%壳聚糖-胰蛋白酶抑制剂复合可食性膜的制备及抗黄曲霉活性

    Institute of Scientific and Technical Information of China (English)

    张宾; 汪东风; 邓尚贵; 林慧敏; 唐艳

    2012-01-01

    In order to explore the preparation method of biological film and its activity of anti-Aspergillus flavus, the chitosan-based blend film was prepared from chitosan, soybean trypsin inhibitor extract (TI) and glycerol solution, and the properties of which were also investigated, including thickness, mechanical property, water vapor transmission, optical transmittance, solubility apparent structure and anti-A flavus activity. The results showed that the chitosan, TI and glycerol concentration got 18 mg/mL, 2 mg/mL and 12 mg/mL respectively, the blend films exhibited good physical and chemical properties, and the germination and growth of A. Flavus were strongly inhibited by blend films on peanuts.%为探索新型生物膜材料的制备方法及抗黄曲霉活性,以壳聚糖和大豆胰蛋白酶抑制剂(TI)提取物为原料,甘油为增埋剂,利用溶液共混流延法制备壳聚糖-TI-甘油复合可食性膜,测试其厚度、表观结构、力学性质、透光率、水蒸气透过率及抗黄曲霉侵染活性.结果表明,当壳聚糖浓度为18 mg/mL、TI浓度2 mg/mL、甘油浓度12 mg/mL和干燥温度45℃时,制备复合膜具有优良抗黄曲霉活性,且综合理化性能最佳.制备壳聚糖-TI-甘油复合膜液涂膜于花生上,接种黄曲霉培养后发现,复合膜对于黄曲霍侵染具有较强的抵抗和抑制作用.

  18. A colorimetric and spectrophotometric method for in vitro susceptibility testing of Aspergillus species against caspofungin.

    NARCIS (Netherlands)

    Dorsthorst, D.T.A. te; Zwaaftink, R.B.; Rijs, A.J.M.M.; Meletiadis, J.; Verweij, P.E.

    2007-01-01

    The in vitro susceptibility of 45 Aspergillus fumigatus, Aspergillus flavus and Aspergillus terreus isolates against caspofungin (CAS) was assessed by the CLSI reference method with spectrophotometric reading and by a colorimetric method that employed the dye MTT. Perfect agreement was found between

  19. Field ecology, fungal sex and food contamination involving Aspergillus species

    Science.gov (United States)

    Several species within the genus Aspergillus are capable of producing a myriad of toxic seconda