WorldWideScience

Sample records for aspens

  1. Aspen Delineation - Aspen Delineation Project [ds362

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of aspen stands, where aspen assessment data was gathered. Aspen assessment information corresponding to this polygon layer can...

  2. Assessing aspen using remote sensing

    Science.gov (United States)

    Randy Hamilton; Kevin Megown; Jeff DiBenedetto; Dale Bartos; Anne Mileck

    2009-01-01

    Large areas of aspen (Populus tremuloides) have disappeared and continue to disappear from western forests due to successional decline and sudden aspen decline (SAD). This loss of aspen ecosystems negatively impacts watersheds, wildlife, plants, and recreation. Much can still be done to restore aspen if timely and appropriate action is taken. However, land managers...

  3. ASPEN Version 3.0

    Science.gov (United States)

    Rabideau, Gregg; Chien, Steve; Knight, Russell; Schaffer, Steven; Tran, Daniel; Cichy, Benjamin; Sherwood, Robert

    2006-01-01

    The Automated Scheduling and Planning Environment (ASPEN) computer program has been updated to version 3.0. ASPEN is a modular, reconfigurable, application software framework for solving batch problems that involve reasoning about time, activities, states, and resources. Applications of ASPEN can include planning spacecraft missions, scheduling of personnel, and managing supply chains, inventories, and production lines. ASPEN 3.0 can be customized for a wide range of applications and for a variety of computing environments that include various central processing units and random access memories.

  4. Aspen Delineation - Inyo National Forest [ds366

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of known aspen stands where aspen assessments were collected in the Inyo National Forest, Inyo County, California. The Inyo...

  5. Aspen Delineation - Klamath National Forest [ds370

    Data.gov (United States)

    California Natural Resource Agency — The database represents polygons of aspen stands in the Klamath National Forest, Siskiyou County, California. The Klamath National Forest Region 5 Vegetation aspen...

  6. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  7. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  8. Decay of aspen in Colorado

    Science.gov (United States)

    Ross W. Davidson; Thomas E. Hinds; Frank G. Hawksworth

    1959-01-01

    Quaking aspen (Populus tremuloides Michx.) stands are extensive in the central Rocky Mountains. The species reaches its maximum development in the mountains and high mesas west of the Continental Divide in Colorado (Baker, 1925). On the better sites aspen yields a greater volume of wood in a shorter period than most of the conifers growing at comparable elevations. The...

  9. Landscape dynamics of aspen and conifer forests

    Science.gov (United States)

    Dale L. Bartos

    2001-01-01

    Quaking aspen (Populus tremuloides Michx.) is widely dispersed across the landscape of North America. Seventy-five percent of the aspen in the western United States occurs in the states of Colorado (50%) and Utah (25%). Reproduction in aspen is primarily by asexual means, e.g., root sprouts that are generally referred to as suckers. An aspen clone consists of numerous...

  10. Aspen Delineation - Sierra State Parks [ds380

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of aspen stands associated with stand assessment data (SIERRA_SP_PTS) collected in aspen stands on lands administered by the...

  11. Aspen Delineation - Lassen National Forest [ds372

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of aspen stands associated with stand assessment data (LASSEN_NF_EAGLELAKE_PTS) collected in aspen stands in the in the Eagle...

  12. Aspen Delineation - Sequoia National Forest [ds378

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of aspen stands associated with stand assessment data (SEQUOIA_NF_PTS) collected in aspen stands in the Cannell Meadows Ranger...

  13. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ligang Zheng [CANMET Energy Technology Center, Natural Resources Canada, Nepean, ONT (Canada); Furimsky, E. [IMAG Group, Ottawa, ONT (Canada)

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data. (author)

  14. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ligang E-mail: lzheng@nrcan.gc.ca; Furimsky, Edward

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data.

  15. ASPEN simulation of cogeneration plants

    International Nuclear Information System (INIS)

    Zheng Ligang; Furimsky, Edward

    2003-01-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data

  16. Can aspen persist in conifer dominated forests?

    Science.gov (United States)

    Douglas H. Page; John D. Shaw

    2016-01-01

    In 1998 we measured a large, old aspen in a mixed spruce-fir-aspen forest on the Utah State University T.W. Daniel Experimental Forest in northern Utah. The tree was 297 years old - about the same age as the oldest spruce in the stand. A search of the forestry literature revealed that the oldest published age for an aspen came from a tree in the Sierra Nevada Range in...

  17. Aspen Characteristics - Klamath National Forest [ds369

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected with known aspen stands in the Klamath National Forest, Siskiyou County,...

  18. Aspen Characteristics - Plumas National Forest [ds373

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Beckwourth Ranger District...

  19. Aspen Characteristics - Sequoia National Forest [ds377

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected within aspen stands in the Cannell Meadows Ranger District, Sequoia National...

  20. Aspen Delineation - Klamath National Forest, EUI [ds368

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of known aspen stands where aspen assessments were collected in the Klamath National Forest, Siskiyou County, California. The...

  1. Implementing ASPEN on the CRAY computer

    International Nuclear Information System (INIS)

    Duerre, K.H.; Bumb, A.C.

    1981-01-01

    This paper describes our experience in converting the ASPEN program for use on our CRAY computers at the Los Alamos National Laboratory. The CRAY computer is two-to-five times faster than a CDC-7600 for scalar operations, is equipped with up to two million words of high-speed storage, and has vector processing capability. Thus, the CRAY is a natural candidate for programs that are the size and complexity of ASPEN. Our approach to converting ASPEN and the conversion problems are discussed, including our plans for optimizing the program. Comparisons of run times for test problems between the CRAY and IBM 370 computer versions are presented

  2. Liquefaction of aspen poplar wood

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Mathews, J F; Pepper, J M

    1982-01-01

    Dried and green aspen poplar wood suspended in water containing alkali catalysts was converted completely to an oil, water-soluble chemical, and gases by heating for 1 hour in the presence of CO in a rocking batch reactor. Within the ranges of parameters studied: temperature of 593-633 K; nominal reaction times of less than or equal to 1 hour; water-to-wood ratio of 0.5:1-5:1; Na/sub 2/CO/sub 3/, K/sub 2/CO/sub 3/, and NaOH catalysts; amount of catalyst 7.0-12.5%; and initial H-CO ratios of 2:1-0:1, the water-to-wood ratio was most important. Oil yields of approximately 50% with a C plus H content of approximately 80% and representing a C recovery of approximately 66% were obtained. The higher heats of combustion were 32.2-36.0 MJ/kg.

  3. Biomass of Sacrificed Spruce/Aspen (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Dimension analysis (diameter at breast high, tree height, depth of crown), estimated leaf area, and total aboveground biomass for sacrificed spruce and aspens in...

  4. Aspen Characteristics - Lassen National Forest [ds371

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected in aspen stands in the in the Eagle Lake Ranger District, Lassen National...

  5. Aspen Delineation - Plumas National Forest, FRRD [ds376

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of aspen stands associated with stand assessment data (PLUMAS_NF_FEATHERRIVER_PTS) collected in aspen stands in the Plumas...

  6. Fire regimes of quaking aspen in the Mountain West

    Science.gov (United States)

    Shinneman, Douglas J.; Baker, William L.; Rogers, Paul C.; Kulakowski, Dominik

    2013-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and it is found throughout much of the Mountain West (MW) across a broad range of bioclimatic regions. Aspen typically regenerates asexually and prolifically after fire, and due to its seral status in many western conifer forests, aspen is often considered dependent upon disturbance for persistence. In many landscapes, historical evidence for post-fire aspen establishment is clear, and following extended fire-free periods senescing or declining aspen overstories sometimes lack adequate regeneration and are succeeding to conifers. However, aspen also forms relatively stable stands that contain little or no evidence of historical fire. In fact, aspen woodlands range from highly fire-dependent, seral communities to relatively stable, self-replacing, non-seral communities that do not require fire for persistence. Given the broad geographic distribution of aspen, fire regimes in these forests likely co-vary spatially with changing community composition, landscape setting, and climate, and temporally with land use and climate – but relatively few studies have explicitly focused on these important spatiotemporal variations. Here we reviewed the literature to summarize aspen fire regimes in the western US and highlight knowledge gaps. We found that only about one-fourth of the 46 research papers assessed for this review could be considered fire history studies (in which mean fire intervals were calculated), and all but one of these were based primarily on data from fire-scarred conifers. Nearly half of the studies reported at least some evidence of persistent aspen in the absence of fire. We also found that large portions of the MW have had little or no aspen fire history research. As a result of this review, we put forth a classification framework for aspen that is defined by key fire regime parameters (fire severity and probability), and that reflects underlying biophysical

  7. Aspen biology, community classification, and management in the Blue Mountains

    Science.gov (United States)

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  8. Evaluation of burned aspen communities in Jackson Hole, Wyoming

    Science.gov (United States)

    Charles E. Kay

    2001-01-01

    Aspen has been declining in Jackson Hole for many years, a condition generally attributed to the fact that lightning fires have been aggressively suppressed since the early 1900s. It is also believed that burning will successfully regenerate aspen stands despite high elk numbers. To test this hypothesis, I evaluated 467 burned and 495 adjacent, unburned aspen stands at...

  9. Aspen: A microsimulation model of the economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.; Quint, T.; Arnold, T.

    1996-10-01

    This report presents, Aspen. Sandia National Laboratories is developing this new agent-based microeconomic simulation model of the U.S. economy. The model is notable because it allows a large number of individual economic agents to be modeled at a high level of detail and with a great degree of freedom. Some features of Aspen are (a) a sophisticated message-passing system that allows individual pairs of agents to communicate, (b) the use of genetic algorithms to simulate the learning of certain agents, and (c) a detailed financial sector that includes a banking system and a bond market. Results from runs of the model are also presented.

  10. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  11. Estimating white trunk rot in aspen stands

    Science.gov (United States)

    Alan C. Jones; Michael E. Ostry

    1998-01-01

    Advanced decay caused by Phellinus tremulae was estimated in 295 trembling aspen on 30 plots in 2 Minnesota counties using existing inventory guides, and then measured by felling and sectioning the trees. In standing trees, decay volume was underestimated by 38% compared to measured decay volume in felled trees. The most reliable external indicator...

  12. Aspen Characteristics - Plumas National Forest, FRRD [ds375

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Feather River Ranger...

  13. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Science.gov (United States)

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  14. Molecular tools and aspen management: A primer and prospectus

    Science.gov (United States)

    Karen E. Mock; Bryce A. Richardson; Paul G. Wolf

    2013-01-01

    Aspen (Populus tremuloides) isaniconic species in North American landscapes, highly valued for recreation, fiber, wildlife and livestock forage, carbon sequestration, biodiversity, and as a fuelbreak. However, there are rising concerns about the ability of aspen to persist in portions of its range, based on bioclimatic modeling, physiological thresholds and mortality...

  15. Stand development of trembling aspen in Canaan Valley, West Virginia

    Science.gov (United States)

    James S. Rentch; James T. Anderson

    2008-01-01

    In wetlands of Canaan Valley, West Virginia, trembling aspen occurs as a disjunct population well south of its primary natural range. Based on sample data from 15 stands, we found that aspen occurs as nearly monospecific stands or clones. Eight stands had median ages between 30 and 40 yrs, and we suggest that stand initiation was related to changes in land use after...

  16. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  17. AspenTech shows specific tools for refiners; AspenTech deploie des outils specifiques pour les raffineurs

    Energy Technology Data Exchange (ETDEWEB)

    Legros, E

    2003-10-01

    The supplier of integrated softwares AspenTech has organized last May, the 7 in Gelsenkirchen, on the site of the Veba Oel refinery, a seminar 'refining' intended to show the specificities of its products: Hysys, Aspen Utilities, Icarus...About fifty German engineers and responsible persons coming from refining and engineering firms have participated to this studies day. (O.M.)

  18. Aspen Grupp võitis RKASi / Lemmi Kann

    Index Scriptorium Estoniae

    Kann, Lemmi

    2008-01-01

    Ehitusfirma Aspen Grupp OÜ võitis Tallinna ringkonnakohtus Riigi Kinnisvara AS-i, kes diskvalifitseeris ehitusfirma riigihankelt seaduses olnud maksevõlgnevuse keelu tõttu. Vt. samas: Lahendust ootavad veel kaks kohtuasja

  19. Aspen Forest Cover by Stratum/Plot (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Average percent coverage and standard deviation of each canopy stratum from subplots at each aspen site during the SNF study in the Superior National Forest, Minnesota

  20. Do Pine Trees in Aspen Stands Increase Bird Diversity

    OpenAIRE

    Rumble, Mark A; Mills, Todd R; Dystra, Brian L; Flake, Lester D

    2001-01-01

    In the Black Hills of South Dakota, quaking aspen (Populus tremuloides) is being replaced by conifers through fire suppression and successional processes. Al- though the Black Hills National forest is removing conifers (primarily ponderosa pine [Pinus ponderosa])toincreasetheaspencommunitiesinsomemixedstands,ForestPlan guidelines allow four conifers per hectare to remain to increase diversity in the remaining aspen stand. We compared bird species richness in pure ponderosa pine, mixed stands ...

  1. Long-term monitoring of western aspen--lessons learned.

    Science.gov (United States)

    Strand, E K; Bunting, S C; Starcevich, L A; Nahorniak, M T; Dicus, G; Garrett, L K

    2015-08-01

    Aspen woodland is an important ecosystem in the western United States. Aspen is currently declining in western mountains; stressors include conifer expansion due to fire suppression, drought, disease, heavy wildlife and livestock use, and human development. Forecasting of tree species distributions under future climate scenarios predicts severe losses of western aspen within the next 50 years. As a result, aspen has been selected as one of 14 vital signs for long-term monitoring by the National Park Service Upper Columbia Basin Network. This article describes the development of a monitoring protocol for aspen including inventory mapping, selection of sampling locations, statistical considerations, a method for accounting for spatial dependence, field sampling strategies, and data management. We emphasize the importance of collecting pilot data for use in statistical power analysis and semi-variogram analysis prior to protocol implementation. Given the spatial and temporal variability within aspen stem size classes, we recommend implementing permanent plots that are distributed spatially within and among stands. Because of our careful statistical design, we were able to detect change between sampling periods with desired confidence and power. Engaging a protocol development and implementation team with necessary and complementary knowledge and skills is critical for success. Besides the project leader, we engaged field sampling personnel, GIS specialists, statisticians, and a data management specialist. We underline the importance of frequent communication with park personnel and network coordinators.

  2. Aspen HYSYS process simulation and Aspen ICARUS cost estimation of CO2 removal plant

    OpenAIRE

    Vozniuk, Ievgeniia Oleksandrivna

    2010-01-01

    An Aspen HYSYS model of CO2 removal was developed and modified with a split-stream configuration in order to reduce energy consumption in the reboiler. The model has been calculated with variation of parameters to optimize the process and find an optimum solution. For the selected base cases the heat exchanger minimum temperature difference was specified to 10K and the removal efficiency was 85%. The reboiler duty of 3.8 MJ/kg CO2 removed for the standard process without split-stream was ...

  3. Aspen Global Change Institute Summer Science Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  4. Chemical studies on oils derived from aspen poplar wood, cellulose, and an isolated aspen poplar lignin

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Roy, J C; Mathews, J F

    1983-01-01

    An initial study has been made of the chemical nature of the oil phase resulting from the conversion of aspen poplar wood, cellulose, and an isolated lignin from the aspen poplar as a result of their interactions with water and carbon monoxide in the presence of sodium carbonate at 360 degrees C. Gas chromatographic analysis of the sodium hydroxide soluble fractions from each substrate revealed similar spectra of alkyl-substituted phenols. The relative abundance of identified low molecular weight phenolic compounds decreased from lignin to wood to cellulose. This was in agreement with the known phenolic nature of lignin. As well, it confirmed the synthesis during reaction of such compounds from a carbohydrate substrate. Gas chromatographic analysis of the whole oils also revealed the presence in each case of several alkyl-substituted cyclopentanones whose relative abundance decreased from cellulose to wood to lignin. Silica gel column separation of the oils, after a charcoal treatment, followed by capillary gas chromatographic - mass spectrometric analyses of the resulting fraction indicated the presence of other higher molecular weight phenols, napthols, cycloalkanols, and polycyclic and long chain alkanes and alkenes.

  5. Aspen in the Sierra Nevada: Regional conservation of a continental species

    Science.gov (United States)

    Paul C. Rogers; Wayne D. Shepperd; Dale L. Bartos

    2007-01-01

    Quaking aspen (Populus tremuloides Michx.) a common species in North America, is a minor species in the Sierra Nevada of California. However, the limited coverage of aspen in this area appears to carry a disproportionate biodiversity load: numerous species are dependent on the unique components of aspen forests habitat. Land managers in the region...

  6. Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA

    Science.gov (United States)

    Tara L. Keyser; Frederick W. Smith; Wayne D. Shepperd

    2005-01-01

    Trembling aspen (Populus tremuloides Michx.) regeneration dynamics including sprout production, growth, and clone size were measured to determine the effects of fire on small aspen clone persistence following a mixedseverity wildfire in the Black Hills, South Dakota. Four years postfire, 10 small, isolated aspen clones per low and high fire severity...

  7. Characteristics of aspen infected with heartrot: Implications for cavity-nesting birds

    Science.gov (United States)

    Chris Witt

    2010-01-01

    Phellinus tremulae is an important fungal decay agent common to aspen and a critical component to the cavity-nesting bird complex found in western aspen stands. Little information exists on the conditions that facilitate infection and spread of P. tremulae in aspen forests. I used Forest Inventory and Analysis (FIA) data to explore the relationships of several tree and...

  8. Simulation of quaking aspen potential fire behavior in Northern Utah, USA

    Science.gov (United States)

    R. Justin DeRose; A. Joshua Leffler

    2014-01-01

    Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...

  9. Lichen community change in response to succession in aspen forests of the southern Rocky Mountains

    Science.gov (United States)

    Paul C. Rogers; Ronald J. Ryel

    2008-01-01

    In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about...

  10. Evaluation to the aspen for the air pollution monitoring

    International Nuclear Information System (INIS)

    De La Rosa, D.; Lima, L.; Santana, J.L.; Olivares, S.; Martin, R.; Garcia, M.

    2003-01-01

    Aspen is not often used in bio monitoring programs, but when it is, several interacting and confounding variables have to be considered. Biomass of leaves, and height changes are not easy linked with air pollution, whereas dry weight and leaf abscission are. Visible injury diagnosis and crown thinning are useful records for bio monitoring programs to consider, but skill and understanding of air pollution effects versus seasonal effects are very important. Understanding of actual air pollution symptoms and elemental ratios are especially important. Clonal response and heritability is discuses below, and has to be considered in any bio monitoring program. Above all, integration of aspen response with other key variables is key

  11. PERACETIC ACID PRETREATMENT OF ALFALFA STEM AND ASPEN BIOMASS

    OpenAIRE

    Lei Xu,; Ulrike W. Tschirner

    2011-01-01

    Alfalfa stems and ground aspen were exposed to peracetic acid (0.5 to 9% on biomass) at temperatures ranging from 40 to 100° C and reaction times from 1 to 5 hours. Glucose release as a percentage of total cellulose content was determined using subsequent standard enzymatic hydrolysis. Statistical analysis confirmed that aspen showed a strong response to peracetic acid addition rate. 9% peracetic acid removed 14% of the original lignin and increased the rate of glucose release from 23% to 44%...

  12. Widespread triploidy in Western North American aspen (Populus tremuloides.

    Directory of Open Access Journals (Sweden)

    Karen E Mock

    Full Text Available We document high rates of triploidy in aspen (Populus tremuloides across the western USA (up to 69% of genets, and ask whether the incidence of triploidy across the species range corresponds with latitude, glacial history (as has been documented in other species, climate, or regional variance in clone size. Using a combination of microsatellite genotyping, flow cytometry, and cytology, we demonstrate that triploidy is highest in unglaciated, drought-prone regions of North America, where the largest clone sizes have been reported for this species. While we cannot completely rule out a low incidence of undetected aneuploidy, tetraploidy or duplicated loci, our evidence suggests that these phenomena are unlikely to be significant contributors to our observed patterns. We suggest that the distribution of triploid aspen is due to a positive synergy between triploidy and ecological factors driving clonality. Although triploids are expected to have low fertility, they are hypothesized to be an evolutionary link to sexual tetraploidy. Thus, interactions between clonality and polyploidy may be a broadly important component of geographic speciation patterns in perennial plants. Further, cytotypes are expected to show physiological and structural differences which may influence susceptibility to ecological factors such as drought, and we suggest that cytotype may be a significant and previously overlooked factor in recent patterns of high aspen mortality in the southwestern portion of the species range. Finally, triploidy should be carefully considered as a source of variance in genomic and ecological studies of aspen, particularly in western U.S. landscapes.

  13. The 2013 Aspen Prize for Community College Excellence

    Science.gov (United States)

    Perlstein, Linda

    2013-01-01

    For millions of Americans, community colleges provide an essential pathway to well-paying jobs and continuing higher education. The Aspen Prize for Community College Excellence honors those institutions that strive for and achieve exceptional levels of success for all students, while they are in college and after they graduate. Community colleges…

  14. Defining Excellence: Lessons from the 2013 Aspen Prize Finalists

    Science.gov (United States)

    Aspen Institute, 2013

    2013-01-01

    In many respects, one couldn't find a group of 10 schools more diverse than the finalists for the 2013 Aspen Prize for Community College Excellence. One community college serves 1,500 students, another 56,000. There are institutions devoted primarily--even solely--to technical degrees, and ones devoted mainly to preparing students for further…

  15. Historical patterns in lichen communities of montane quaking aspen forests

    Science.gov (United States)

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  16. The Fate of Aspen in a World with Diminishing Snowpacks

    Science.gov (United States)

    Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.

    2010-12-01

    Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.

  17. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  18. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  19. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    Science.gov (United States)

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  20. Experimental Study of Impregnation Birch and Aspen Samples

    Directory of Open Access Journals (Sweden)

    Igor Vladislavovich Grigorev

    2014-10-01

    Full Text Available An experimental study of wood impregnation was implemented by applying centrifugal methods. The impregnants were a 10% aqueous solution of potassium chloride and a 2% aqueous solution of borax. Birch (Betula pendula and aspen (Populus tremula wood samples in different moisture content were tested. The impregnation time in the centrifugal device were 30 seconds repeated 21 times, and the samples were measured after every 30 seconds. The experimental results were fitted to a nonlinear filtration law, which indicated that the centrifugal wood impregnation was dependent on wood species, wood moisture, rotational speed, and radius. Determination of rotational speed and centrifuge radius for impregnating aspen and birch at varying lengths and humidity under conditions of the nonlinear impregnant filtration law can be done using the example charts that were developed and presented in this study.

  1. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  2. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  3. Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations

    Directory of Open Access Journals (Sweden)

    Katie Haggerty

    2010-01-01

    Full Text Available Numerous incidents of aspen decline have been recorded in North America over the past half century, and incidents of very rapid mortality of aspen clones have been observed in Colorado since 2004. The radio frequency (RF environment of the earth has undergone major changes in the past two centuries due to the development and use of electricity in power and communications applications, and the anthropogenic RF background continues to increase in intensity and complexity. This study suggests that the RF background may have strong adverse effects on growth rate and fall anthocyanin production in aspen, and may be an underlying factor in aspen decline.

  4. Using Aspen plus in thermodynamics instruction a step-by-step guide

    CERN Document Server

    Sandler, Stanley I

    2015-01-01

    A step-by-step guide for students (and faculty) on the use of Aspen in teaching thermodynamics Used for a wide variety of important engineering tasks, Aspen Plus software is a modeling tool used for conceptual design, optimization, and performance monitoring of chemical processes. After more than twenty years, it remains one of the most popular and powerful chemical engineering simulation programs used both industrially and academically. Using Aspen Plus in Thermodynamics Instruction: A Step by Step Guide introduces the reader to the use of Aspen Plus in courses in thermodynamics. It prov

  5. 2012 Aspen Winter Conferences on High Energy and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Olivier, Dore [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fox, Patrick [Aspen Center for Physics, CO (United States); Furic, Ivan [Univ. of Florida, Gainesville, FL (United States); Halkiadakis, Eva [Rutgers Univ., Piscataway, NJ (United States); Schmidt, Fabian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Senatore, Leonardo [Stanford Univ., CA (United States); Smith, Kendrick M. [Princeton Univ., NJ (United States); Whiteson, Daniel [Univ. of California, Irvine, CA (United States)

    2012-05-01

    Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era. It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists

  6. Simulating the Dependence of Aspen on Redistributed Snow

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  7. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  8. Hybrid Aspen Response to Shearing in Minnesota: Implications for Biomass Production

    Science.gov (United States)

    Grant M. Domke; Andrew J. David; Anthony W. D' Amato; Alan R. Ek; Gary W. Wycoff

    2011-01-01

    There is great potential for the production of woody biomass feedstocks from hybrid aspen stands; however, little is known about the response of these systems to silvicultural treatments, such as shearing. We sought to address this need by integrating results from more than 20 years of individual tree and yield measurements in hybrid aspen (Populus tremuloides Mich. ×...

  9. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Darbah, Joseph N.T., E-mail: darbah@ohio.ed [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States); Department of Environmental and Plant Biology, Ohio University, 315 Porter Hall, Athens, OH 45701 (United States); Sharkey, Thomas D. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Calfapietra, Carlo [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR), Via Salaria km 29300, 00016 Monterotondo Scalo, Roma (Italy); Karnosky, David F. [School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-04-15

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO{sub 2} and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO{sub 2} protected photosynthesis of both species against moderate heat stress. Elevated CO{sub 2} increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 deg. C) decreased all of these parameters in birch regardless of CO{sub 2} treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO{sub 2} were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO{sub 2}. Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms. - We report that elevated CO{sub 2} confers increased thermotolerance on both aspen and birch trees while isoprene production in aspen confers further thermotolerance in aspen.

  10. Nest-site selection and nest survival of Lewis's woodpecker in aspen riparian woodlands

    Science.gov (United States)

    Karen R. Newlon; Victoria A. Saab

    2011-01-01

    Riparian woodlands of aspen (Populus tremuloides) provide valuable breeding habitat for several cavity-nesting birds. Although anecdotal information for this habitat is available for Lewis's Woodpecker (Melanerpes lewis), no study has previously examined the importance of aspen woodlands to this species' breeding biology. From 2002 to 2004, we monitored 76...

  11. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca

    2015-01-01

    quality were all invariant to the reaction temperature. By increasing the crude glycerol to aspen wood mass ratio from 0:1 to 3:1, char yield was decreased from 18.3% (only aspen wood) to 3.4%. Furthermore, the biocrude quality in terms of the effective hydrogen-to-carbon ratio (H/Ceff) was significantly...

  12. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide

    International Nuclear Information System (INIS)

    Darbah, Joseph N.T.; Sharkey, Thomas D.; Calfapietra, Carlo; Karnosky, David F.

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO 2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO 2 protected photosynthesis of both species against moderate heat stress. Elevated CO 2 increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 deg. C) decreased all of these parameters in birch regardless of CO 2 treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO 2 were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO 2 . Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms. - We report that elevated CO 2 confers increased thermotolerance on both aspen and birch trees while isoprene production in aspen confers further thermotolerance in aspen.

  13. The aspen mortality summit; December 18 and 19, 2006; Salt Lake City, UT

    Science.gov (United States)

    Dale L. Bartos; Wayne D. Shepperd

    2010-01-01

    The USDA Forest Service Rocky Mountain Research Station sponsored an aspen summit meeting in Salt Lake City, Utah, on December 18 and19, 2006, to discuss the rapidly increasing mortality of aspen (Populus tremuloides) throughout the western United States. Selected scientists, university faculty, and managers from Federal, State, and non-profit agencies with experience...

  14. Differential response of Aspen and Birch trees to heat stress under elevated carbon dioxide

    Science.gov (United States)

    Joseph N.T. Darbah; Thomas D. Sharkey; Carlo Calfapietra; David F. Karnosky

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO...

  15. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  16. Factors influencing epiphytic lichen communities in aspen-associated forests of the Bear River Range, Idaho and Utah

    Science.gov (United States)

    Paul C. Rogers

    2007-01-01

    In western North America, quaking aspen (Populus tremuloides Michx.) is the most common hardwood in montane landscapes. Fire suppression, grazing, wildlife management practices, and climate patterns of the past century are some of the threats to aspen coverage in this region. Researchers are concerned that aspen-dependent species may be losing...

  17. 76 FR 69279 - Notice of Intent to Prepare an Environmental Impact Statement for the Quaking Aspen Wind Energy...

    Science.gov (United States)

    2011-11-08

    ... Intent to Prepare an Environmental Impact Statement for the Quaking Aspen Wind Energy Project, Wyoming... Statement (EIS) for the Quaking Aspen Wind Energy Project (Quaking Aspen). By this notice, BLM is: (1..._Wind_Energy[email protected] ; or Mail: 280 Highway 191 N., Rock Springs, WY 82901. Documents pertinent to...

  18. Allozyme and microsatellite data reveal small clone size and high genetic diversity in aspen in the southern Cascade Mountains

    Science.gov (United States)

    Jennifer DeWoody; Thomas H. Rickman; Bobette E. Jones; Valerie D. Hipkins

    2009-01-01

    The most widely distributed tree in North America, quaking aspen (Populus tremuloides, Michx.), reproduces sexually via seed and clonally via suckers. The size of aspen clones varies geographically, generally smaller in the east and large in the arid Intermountain West. In order to describe clone size and genetic structure of aspen in the southern Cascade...

  19. Habitone analysis of quaking aspen in the Utah Book Cliffs: Effects of site water demand and conifer cover

    Science.gov (United States)

    Joseph O. Sexton; R. Douglas Ramsey; Dale L. Bartos

    2006-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widely distributed tree species in North America, but its presence is declining across much of the Western United States. Aspen decline is complex, but results largely from two factors widely divergent in temporal scale: (1) Holocene climatic drying of the region has led to water limitation of aspen seedling...

  20. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  1. Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?

    Science.gov (United States)

    Painter, Luke E; Beschta, Robert L; Larsen, Eric J; Ripple, William J

    2015-01-01

    To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade in which a resurgent large carnivore community, combined with other ecological changes, has benefited aspen through effects on ungulate prey.

  2. Inventory of aspen trees in spruce dominated stands in conservation area

    Directory of Open Access Journals (Sweden)

    Matti Maltamo

    2015-05-01

    Full Text Available Background The occurrence of aspen trees increases the conservation value of mature conifer dominated forests. Aspens typically occur as scattered individuals among major tree species, and therefore the inventory of aspens is challenging. Methods We characterized aspen populations in a boreal nature reserve using diameter distribution, spatial pattern, and forest attributes: volume, number of aspens, number of large aspen stems and basal area median diameter. The data were collected from three separate forest stands in Koli National Park, eastern Finland. At each site, we measured breast height diameter and coordinates of each aspen. The comparison of inventory methods of aspens within the three stands was based on simulations with mapped field data. We mimicked stand level inventory by locating varying numbers of fixed area circular plots both systematically and randomly within the stands. Additionally, we also tested if the use of airborne laser scanning (ALS data as auxiliary information would improve the accuracy of the stand level inventory by applying the probability proportional to size sampling to assist the selection of field plot locations. Results The results showed that aspens were always clustered, and the diameter distributions indicated different stand structures in the three investigated forest stands. The reliability of the volume and number of large aspen trees varied from relative root mean square error figures above 50% with fewer sample plots (5–10 to values of 25%–50% with 10 or more sample plots. Stand level inventory estimates were also able to detect spatial pattern and the shape of the diameter distribution. In addition, ALS-based auxiliary information could be useful in guiding the inventories, but caution should be used when applying the ALS-supported inventory technique. Conclusions This study characterized European aspen populations for the purposes of monitoring and management of boreal conservation areas. Our

  3. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  4. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    Science.gov (United States)

    Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky

    2010-01-01

    The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...

  5. Effects of elevated CO2 and ozone on phenolic glycosides of trembling aspen

    Science.gov (United States)

    James K. Nitao; Muraleedharan G. Nair; William J. Mattson; Daniel A. Herms; Bruce A. Birr; Mark D. Coleman; Terry M. Trier; J. G. Isebrands

    1996-01-01

    We tested the effects of elevated CO2 and ozone on concentrations of the phenolic glycosides salicortin and tremulacin in immature and mature foliage of the trembling aspen (Populus tremuloides) clones 216, 259, and 271.

  6. 77 FR 60373 - Monroe Mountain Aspen Ecosystems Restoration Project Fishlake National Forest; Sevier and Piute...

    Science.gov (United States)

    2012-10-03

    ....u s. In addition, an Open House will be held at the Sevier County Administrative Building in... continual maintenance, fencing is not a long term sustainable response option for protecting aspen sprouts...

  7. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  8. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    Science.gov (United States)

    Robinson, Kathryn M.; Ingvarsson, Pär K.; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores. PMID:22662190

  9. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  10. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis.

  11. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.

    Science.gov (United States)

    Kauffman, Matthew J; Brodie, Jedediah F; Jules, Erik S

    2010-09-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  12. Simulation of SOFCs based power generation system using Aspen

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-12-01

    Full Text Available This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.

  13. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  14. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  15. The yield of natural trembling aspen (populus tremula L.) stands (northern and eastern anatolia)

    International Nuclear Information System (INIS)

    Misir, M.; Misir, N.

    2013-01-01

    Trembling aspen (Populus tremula L.) is one of the most resistant to cold natural species in Turkey. In spite of its importance, there is no research on the yield. Hence, site productivity was determined and yield Table for undisturbed natural trembling aspen stands in Turkey was developed. Data were obtained from a total of 46 plots ranging in age from 17 to 82 years. Yield Table indicates that trembling aspen is very slow growing in young and middle age and Current Annual Increment (CAI) and Mean Annual Increment (MAI) values do not reach its maximum value, even at age 70. This is a proof that trembling aspen is not a fast growing species as expected. The reason for its slow growth is attributed to very short period of growth at very high altitudes. However, in the event of 50 years rotation age, mean annual volume increments of 8.0, 3.6 and 1.1 m3 are estimated for trembling aspen for site classes I, II and III, respectively. At extended rotations, trees of pole sizes could be obtained on all site classes. (author)

  16. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  17. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  18. Summary and abstracts from Sudden Aspen Decline (SAD) Meeting; Fort Collins, Colorado, February 12-13, 2008

    Science.gov (United States)

    Paul C. Rogers

    2008-01-01

    In recent years the aspen research and management community has witnessed increasing accounts of unexplained aspen die-offs across the Rocky Mountain region. In response, two meetings were held to address the issue; this paper summarizes the most recent gathering, a symposium held in Fort Collins at the USDA Forest Service, Rocky Mountain Research Station, on February...

  19. Moderate-scale mapping methods of aspen stand types: a case study for Cedar Mountain in southern Utah

    Science.gov (United States)

    Chad M. Oukrop; David M. Evans; Dale L. Bartos; R. Douglas Ramsey; Ronald J. Ryel

    2011-01-01

    Quaking aspen (Populus tremuloides Michx.) are the most widely distributed tree species across North America, but its dominance is declining in many areas of the western United States, with certain areas experiencing rapid mortality events over the past decade. The loss of aspen from western landscapes will continue to profoundly impact biological, commercial, and...

  20. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine(Pinus contorta) forests in Colorado, USA

    Science.gov (United States)

    Grizelle Gonzalez; Timothy R. Seastedt; Zugeily Donato

    2003-01-01

    We compared the abundance and community composition of earthworms, soil macroarthropods, and litter microarthropods to test faunal effects on plant litter decomposition rates in two forests in the subalpine in Colorado, USA. Litterbags containing recently senesced litter of Populus tremuloides (aspen) and Pinus contorta (lodgepole pine) were placed in aspen and pine...

  1. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2015-01-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species' range. Disease may accelerate tree species' declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry. To assess the role of disease in mediating mortality risk in quaking aspen (Populus tremuloides), we developed hierarchical Bayesian models for both disease prevalence in live aspen stems and the resulting survival rates of healthy and diseased aspen near the species' southern range limit using 5088 individual trees on 281 United States Forest Service Forest Inventory and Analysis plots in the southwestern United States.

  2. Fibrillation of Aspen by Alkaline Cold Pre-treatment and Vibration Milling

    Directory of Open Access Journals (Sweden)

    Kärt KÄRNER

    2016-09-01

    Full Text Available In this article an attempt to fibrillate aspen bleached chemi-thermo mechanical pulp (BCTMP fibre in an environmentally friendly way is reported. The effects of various NaOH, KOH, urea and ethanol aqueous solutions at lowered temperature were tested for pre-treatment. The pre-treatment was followed by vibration milling aiming to peel off outer cell wall layers and to fibrillate S2 layer of the aspen wood fibre. The effects of the treatments were evaluated by scanning electron microscopy (SEM. The results show that it is possible to fibrillate BCTMP aspen fibres by using alkaline aqueous solutions at low temperatures followed by a mechanical treatment. A strong dependence on fibrillation of cellulose on temperature, time and alkali concentration was established.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7412

  3. Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

    Science.gov (United States)

    Mortensen, Brent; Wagner, Diane; Doak, Patricia

    2011-04-01

    The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.

  4. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1996-09-01

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  5. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link

    Directory of Open Access Journals (Sweden)

    Javier Fontalvo Alzate

    2014-05-01

    Full Text Available Process intensification and new technologies require tools for process design that can be integrated into well-known simulation software, such as Aspen Plus®. Thus, unit operations that are not included in traditional Aspen Plus software packages can be simulated with Matlab® and integrated within the Aspen Plus interface. In this way, the user can take advantage of all of the tools of Aspen Plus, such as optimization, sensitivity analysis and cost estimation. This paper gives a detailed description of how to implement this integration. The interface between Matlab and Aspen Plus is accomplished by sending the relevant information from Aspen Plus to Excel, which feeds the information to a Matlab routine. Once the Matlab routine processes the information, it is returned to Excel and to Aspen Plus. This paper includes the Excel and Matlab template files so the reader can implement their own simulations. By applying the protocol described here, a hybrid distillation-vapor permeation system has been simulated as an example of the applications that can be implemented. For the hybrid system, the effect of membrane selectivity on membrane area and reboiler duty for the partial dehydration of ethanol is studied. Very high selectivities are not necessarily required for an optimum hybrid distillation and vapor permeation system.

  6. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    Science.gov (United States)

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  7. Polypropylene /Aspen/ liquid polybutadienes composites: maximization of impact strength, tensile and modulus by statistical experimental design

    Czech Academy of Sciences Publication Activity Database

    Kokta, B. V.; Fortelný, Ivan; Kruliš, Zdeněk; Horák, Zdeněk; Michálková, Danuše

    2005-01-01

    Roč. 99, - (2005), s. 10-11 ISSN 0009-2770. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. 10.5.2005-12.5.2005, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : polypropylene * Aspen-PP composite Subject RIV: CD - Macromolecular Chemistry

  8. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min; James S. Han

    2006-01-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...

  9. Effect of citric acid modification of aspen wood on sorption of copper ion

    Science.gov (United States)

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  10. Variable performance of outbreak defoliators on aspen clones exposed to elevated CO2 and O3

    Science.gov (United States)

    Daniel A. Herms; William J. Mattson; David N. Karowe; Mark D. Coleman; Terry M. Trier; Bruce A. Birr; J. G. Isebrands

    1996-01-01

    Increasing atmospheric concentrations of ozone and CO2 affect many aspects of tree physiology. However, their effects on tree resistance to insects have received relatively little attention. The objectives of this study were to test the effects of elevated CO2 and ozone on the resistance of three quaking aspen (...

  11. Soil properties and aspen development five years after compaction and forest floor removal

    Science.gov (United States)

    Douglas M. Stone; John D. Elioff

    1998-01-01

    Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic...

  12. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Science.gov (United States)

    Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock

    2013-01-01

    Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...

  13. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Science.gov (United States)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  14. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  15. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  16. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    Science.gov (United States)

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  17. Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method

    International Nuclear Information System (INIS)

    Queiroz, João A.; Rodrigues, Vitor M.S.; Matos, Henrique A.; Martins, F.G.

    2012-01-01

    Highlights: ► Simulation of cooling tower performance under different operating conditions. ► Cooling tower performance is simulated using ASPEN PLUS. ► Levenberg–Marquardt method used to adjust model parameters. ► Air and water outlet temperatures are in good accordance with experimental data. - Abstract: Simulation of cooling tower performance considering operating conditions away from design is typically based on the geometrical parameters provided by the cooling tower vendor, which are often unavailable or outdated. In this paper a different approach for cooling tower modeling based on equilibrium stages and Murphree efficiencies to describe heat and mass transfer is presented. This approach is validated with published data and with data collected from an industrial application. Cooling tower performance is simulated using ASPEN PLUS. Murphree stage efficiency values for the process simulator model were optimized by minimizing the squared difference between the experimental and calculated data using the Levenberg–Marquardt method. The minimization algorithm was implemented in Microsoft Excel with Visual Basic for Applications, integrated with the process simulator (ASPEN PLUS) using Aspen Simulation Workbook. The simulated cooling tower air and water outlet temperatures are in good accordance with experimental data when applying only the outlet water temperature to calibrate the model. The methodology is accurate for simulating cooling towers at different operational conditions.

  18. Prehydrolysis of aspen wood with water and with dilute aqueous sulfuric acid

    Science.gov (United States)

    Edward L. Springer; John F. Harris

    1982-01-01

    Water prehydrolysis of aspen wood was compared with 0.40% sulfuric acid prehydrolysis at a reaction temperature of 170°C. Acid prehydrolysis gave much higher yields of total anhydroxylose units in the prehydrolyzate and removed significantly less anhydroglucose from the wood than did the water treatment. At maximum yields of total anhydroxylose units in the...

  19. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens (Populus × smithii).

    Science.gov (United States)

    Deacon, Nicholas John; Grossman, Jake Joseph; Schweiger, Anna Katharina; Armour, Isabella; Cavender-Bares, Jeannine

    2017-12-01

    Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant Populus tremuloides populations. Pleistocene hybridization between P. tremuloides and P. grandidentata has been proposed, but the nearest P. grandidentata populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically. We compared nuclear microsatellite loci and chloroplast sequences of Niobrara River aspens to their putative parental species. Parental species and putative hybrids were also grown in a common garden for phenotypic comparison. On the common garden plants, we measured leaf morphological traits and leaf-level spectral reflectance profiles, from which chemical traits were derived. The genetic composition of the three unique Niobrara aspen genotypes is consistent with the hybridization hypothesis and with maternal chloroplast inheritance from P. grandidentata . Leaf margin dentition and abaxial pubescence differentiated taxa, with the hybrids showing intermediate values. Spectral profiles allowed statistical separation of taxa in short-wave infrared wavelengths, with hybrids showing intermediate values, indicating that traits associated with internal structure of leaves and water absorption may vary among taxa. However, reflectance values in the visible region did not differentiate taxa, indicating that traits related to pigments are not differentiated. Both genetic and phenotypic results support the hypothesis of a hybrid origin for these genetically unique aspens. However, low genetic diversity and ongoing ecological and climatic threats to the hybrid taxon present a challenge for conservation of these relictual boreal communities. © 2017 Botanical Society of America.

  20. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Science.gov (United States)

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  1. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport.

    Science.gov (United States)

    Mauriat, Mélanie; Petterle, Anna; Bellini, Catherine; Moritz, Thomas

    2014-05-01

    Knowledge of processes involved in adventitious rooting is important to improve both fundamental understanding of plant physiology and the propagation of numerous plants. Hybrid aspen (Populus tremula × tremuloïdes) plants overexpressing a key gibberellin (GA) biosynthesis gene (AtGA20ox1) grow rapidly but have poor rooting efficiency, which restricts their clonal propagation. Therefore, we investigated the molecular basis of adventitious rooting in Populus and the model plant Arabidopsis. The production of adventitious roots (ARs) in tree cuttings is initiated from the basal stem region, and involves the interplay of several endogenous and exogenous factors. The roles of several hormones in this process have been characterized, but the effects of GAs have not been fully investigated. Here, we show that a GA treatment negatively affects the numbers of ARs produced by wild-type hybrid aspen cuttings. Furthermore, both hybrid aspen plants and intact Arabidopsis seedlings overexpressing AtGA20ox1, PttGID1.1 or PttGID1.3 genes (with a 35S promoter) produce few ARs, although ARs develop from the basal stem region of hybrid aspen and the hypocotyl of Arabidopsis. In Arabidopsis, auxin and strigolactones are known to affect AR formation. Our data show that the inhibitory effect of GA treatment on adventitious rooting is not mediated by perturbation of the auxin signalling pathway, or of the strigolactone biosynthetic and signalling pathways. Instead, GAs appear to act by perturbing polar auxin transport, in particular auxin efflux in hybrid aspen, and both efflux and influx in Arabidopsis. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    Science.gov (United States)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  3. Optimization of composition and technology for tablets containing aspen bark extract

    Directory of Open Access Journals (Sweden)

    O. I. Onуshkiv

    2015-04-01

    Full Text Available Summary. Influence of quantitativefactorsof basic quality parameters has been investigated for tabletscontainingextractofaspenbark, receivedbydirect pressingmethodand mathematicalplanningof experiment.To set the optimal composition of tablets containingaspen bark extract the proportion ofProsolv 90, Ludiflash and Polyplasdone XL 10 has been studied. The relationship between the studied factors and parameters of tablets’ regression models has been described. As a result tablets containing aspen bark extractwith mentioned above formula match necessary pharmaco-technological parameters of State Pharmacopoeia of Ukraine. Introduction.Peptic and duodenal ulcer are serious problems in modern medicine. According to statistics this disease is found in 12,83 % of the adult population in Ukraine [1]. Among the remedies for treatment and prevention of peptic ulcers we can find herbal medicines that may be used in the treatment of pre-peptic conditions and during an acute period as a means of adjuvant therapy in combination with strong remedies [2]. An antacid, cytoprotective, anti-inflammatory and reparative actions of aspen bark extract were proved by the researches of domestic and foreign scientists [3, 4]. Previously, we researched the mutual influence of excipients on the main indicators of quality of aspen bark extract tablets obtained by direct compression method. Due to these researches the best excipientshave been selected. It is necessary to establish the optimal quantitative proportion of excipients in order to obtain the tablets with suitable parameters that satisfy the requirements of the State Pharmacopoeia of Ukraine (SPU [5, 6]. Rational selection of excipients requires wide range of studies to obtain the optimal composition of the tablets containing aspen bark extract. Using mathematical planning of the experiment gives the possibility to reduce the number of experiments and to obtain the most detailed results of researches about effects

  4. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula

    Directory of Open Access Journals (Sweden)

    Grisel Nadine

    2010-08-01

    Full Text Available Abstract Background Ionic aluminum (mainly Al3+ is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3 and MATE (for multidrug and toxin efflux protein, mediating citrate efflux. Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The

  5. Identifying and Characterizing Important Trembling Aspen Competitors with Juvenile Lodgepole Pine in Three South-Central British Columbia Ecosystems

    Directory of Open Access Journals (Sweden)

    Teresa A. Newsome

    2012-01-01

    Full Text Available Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximized R2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. Maximum R2 values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.

  6. Enhanced model for integrated simulation of an entrained bed gasifier implemented as Aspen Hysys extension

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Fortes, M; Bojarski, A; Ferrer-Nadal, S; Kopanos, G; Mitta, N; Pinilla, C A; Nougues, J M; Velo, E; Puigjaner, L [Universitat Politecnica de Catalunya, Barcelona (Spain). Dept. of Chemical Engineering-CEPIMA

    2007-07-01

    In this work an enhanced mathematical model of an entrained bed gasifier has been developed for improved synthesis gas production. The gasification model considers five stages: pyrolysis, volatiles combustion, char combustion, gasification and a final gas equilibrium zone. Mathematical simulations are carried out to help finding out feasible operating conditions of the process to achieve improved process performance. Visual Basic (VB) is tested as tool for modelling, by using the Aspen Hysys Extension (AHE) interface standards. This standard provides a suitable environment for this purpose, since it allows the creation of completely custom modules which are easy to plug and use thus facilitating the handling of complex models ready to interact with commercial simulation platforms. In this work, integration of different models is accomplished in Aspen Hysys (AH), which provides the basic connectivity within models components, and the thermodynamic framework needed. The integrated modules simulation environment platform uses data from ELCOGAS for validation purposes with excellent preliminary results. 9 refs., 2 figs.

  7. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.

  8. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Directory of Open Access Journals (Sweden)

    Bobette E Jones

    Full Text Available The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010 involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i Phase 1 in January 2004, (ii Phase 2 in August 2005, and (iii Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management

  9. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  10. Effect of steam treatment on the hydrolysis of aspen by commerical enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D G; Mathews, J F

    1979-06-01

    Steam treatment renders aspen wood more susceptible to hydrolysis by commerical enzyme preparations such as the Onozuka variety. The main products of enzymatic hydrolysis are glucose, xylose, and xylobiose. Cellobiose may have been another product but it could not be measured due to interference by lactose, a sugar found in the enzyme. The hemicellulose fraction of the wood is relatively more rapidly hydrolyzed by the enzymes than the cellulose fraction.

  11. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Bich Thi Ngoc [Univ. of Alabama, Huntsville, AL (United States)

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  12. Figured grain in aspen is heritable and not affected by graft-transmissible signals

    Science.gov (United States)

    Youran Fan; Kendal Rupert; Alex C. Wiedenhoeft; Keith Woeste; Christian Lexer; Richard. Meilan

    2013-01-01

    Figure can add value to wood products, but its occurrence is unpredictable. A first step in reliably producing figured wood is determining whether it is faithfully transmitted to progeny via sexual and asexual reproduction. We describe a 26-year-old male aspen genotype, designated ‘Curly Poplar’, which was shown to be a Populus × canescens hybrid using microsatellite...

  13. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

  14. A system for predicting the amount of Phellinus (Fomes) igniarius rot in trembling aspen stands

    Science.gov (United States)

    Robert L. Anderson; Arthur L. Jr. Schipper

    1978-01-01

    The occurrence of Phellinus (Fomes) igniarius white trunk rot in 45- to 50-year-old trembling aspen stands can be predicted by applying a constant to the stand basal area with P. igniarius conks to estimate the total basal area with P. igniarius rot. Future decay projections can be made by reapplying the basal area of hidden decay for each 6 years projected. This paper...

  15. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    Science.gov (United States)

    Oldén, Anna; Ovaskainen, Otso; Kotiaho, Janne S; Laaka-Lindberg, Sanna; Halme, Panu

    2014-01-01

    Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old-growth forests.

  16. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    Directory of Open Access Journals (Sweden)

    Anna Oldén

    Full Text Available Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L. retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old

  17. Quantitative Evaluation of Hybrid Aspen Xylem and Immunolabeling Patterns Using Image Analysis and Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    David Sandquist

    2015-06-01

    Full Text Available A new method is presented for quantitative evaluation of hybrid aspen genotype xylem morphology and immunolabeling micro-distribution. This method can be used as an aid in assessing differences in genotypes from classic tree breeding studies, as well as genetically engineered plants. The method is based on image analysis, multivariate statistical evaluation of light, and immunofluorescence microscopy images of wood xylem cross sections. The selected immunolabeling antibodies targeted five different epitopes present in aspen xylem cell walls. Twelve down-regulated hybrid aspen genotypes were included in the method development. The 12 knock-down genotypes were selected based on pre-screening by pyrolysis-IR of global chemical content. The multivariate statistical evaluations successfully identified comparative trends for modifications in the down-regulated genotypes compared to the unmodified control, even when no definitive conclusions could be drawn from individual studied variables alone. Of the 12 genotypes analyzed, three genotypes showed significant trends for modifications in both morphology and immunolabeling. Six genotypes showed significant trends for modifications in either morphology or immunocoverage. The remaining three genotypes did not show any significant trends for modification.

  18. Effect of Auxins and Associated Metabolic Changes on Cuttings of Hybrid Aspen

    Directory of Open Access Journals (Sweden)

    Shao Peng Yan

    2017-04-01

    Full Text Available In the present study, an attempt was made to induce rooting from single-node cuttings of hybrid aspen (Populus tremula L. × P. tremuloides Michx. with different concentrations of Indole-3-acetic acid (IAA, Indole-3-Butytric acid (IBA and 1-Naphthylacetic acid (NAA. Among the three auxins used, 0.54 mM NAA showed more effective induction on rooting as compared to IAA and IBA at the whole level. Thereafter, 0.54 mM NAA was used further for the anatomical and biochemical investigation. The results showed that it took 12 days from the differentiation of primordium to the appearance of young adventitious roots under NAA application. It was found that endogenous IAA, Zeatin riboside (ZR and Gibberellic Acid (GA3 levels increased, but Abscisic acid (ABA decreased in cuttings with NAA treatment. In contrast to the endogenous IAA level, NAA resulted in a decrease in IAA-oxidase (IAAO activity. Similarly, the decreased peroxidase (POD activity, consistent with down-regulation of expressed levels of POD1 and POD2, was observed in NAA-treated cuttings. Moreover, NAA resulted in a higher activity in polyphenol oxidase (PPO compared with control cuttings. Collectively, the study highlighted that 0.54 mM NAA is efficient on rooting in hybrid aspen, and its effect on metabolic changes during rooting was discussed, which can provide valuable information for propagating hybrid aspen.

  19. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    Science.gov (United States)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  20. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  1. New exposure-based metric approach for evaluating O3 risk to North American aspen forests

    International Nuclear Information System (INIS)

    Percy, K.E.; Nosal, M.; Heilman, W.; Dann, T.; Sober, J.; Legge, A.H.; Karnosky, D.F.

    2007-01-01

    The United States and Canada currently use exposure-based metrics to protect vegetation from O 3 . Using 5 years (1999-2003) of co-measured O 3 , meteorology and growth response, we have developed exposure-based regression models that predict Populus tremuloides growth change within the North American ambient air quality context. The models comprised growing season fourth-highest daily maximum 8-h average O 3 concentration, growing degree days, and wind speed. They had high statistical significance, high goodness of fit, include 95% confidence intervals for tree growth change, and are simple to use. Averaged across a wide range of clonal sensitivity, historical 2001-2003 growth change over most of the 26 M ha P. tremuloides distribution was estimated to have ranged from no impact (0%) to strong negative impacts (-31%). With four aspen clones responding negatively (one responded positively) to O 3 , the growing season fourth-highest daily maximum 8-h average O 3 concentration performed much better than growing season SUM06, AOT40 or maximum 1 h average O 3 concentration metrics as a single indicator of aspen stem cross-sectional area growth. - A new exposure-based metric approach to predict O 3 risk to North American aspen forests has been developed

  2. Growing Season Conditions Mediate the Dependence of Aspen on Redistributed Snow Under Climate Change.

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Strand, E. K.

    2016-12-01

    Precipitation regimes in many semiarid ecosystems are becoming increasingly dominated by winter rainfall as a result of climate change. Across these regions, snowpack plays a vital role in the distribution and timing of soil moisture availability. Rising temperatures will result in a more uniform distribution of soil moisture, advanced spring phenology, and prolonged growing seasons. Productive and wide ranging tree species like aspen, Populus tremuloides, may experience increased vulnerability to drought and mortality resulting from both reduced snowpack and increased evaporative demand during the growing season. We simulated the net primary production (NPP) of aspen stands spanning the rain:snow transition zone in the Reynolds Creek Critical Zone Observatory (RCCZO) in southwest Idaho, USA. Within the RCCZO, the total amount of precipitation has remained unchanged over the past 50 years, however the percentage of the precipitation falling as snow has declined by approximately 4% per decade at mid-elevation sites. The biogeochemical process model Biome-BGC was used to simulate aspen NPP at three stands located directly below snowdrifts that provide melt water late into the spring. After adjusting precipitation inputs to account for the redistribution of snow, we assessed climate change impacts on future aspen productivity. Mid-century (2046-2065) aspen NPP was simulated using temperature projections from a multi-model average under high emission conditions using the Multivariate Adaptive Constructed Analogs (MACA) data set. While climate change simulations indicated over a 20% decrease in annual NPP for some years, NPP rates for other mid-century years remained relatively unchanged due to variations in growing season conditions. Mid-century years with the largest decreases in NPP typically showed increased spring transpiration rates resulting from earlier leaf flush combined with warmer spring conditions. During these years, the onset of drought stress occurred

  3. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity

    Science.gov (United States)

    E. Oksanen; E. Häikiö; J. Sober; D.F. Karnosky

    2003-01-01

    Saplings of three aspen (Populus tremuloides) genotypes and seedlings of paper birch (Betula papyrifera) were exposed to elevated ozone (1.5x ambient) and 560 p.p.m. CO2, singly and in combination, from 1998 at the Aspen-FACE (free-air CO2 enrichment) site (Rhinelander, USA).

  4. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  5. Development and validation of the activity significance personal evaluation (ASPEn) scale.

    Science.gov (United States)

    Mallinson, Trudy; Schepens Niemiec, Stacey L; Carlson, Mike; Leland, Natalie; Vigen, Cheryl; Blanchard, Jeanine; Clark, Florence

    2014-12-01

    Engagement in desired occupations can promote health and wellbeing in older adults. Assessments of engagement often measure frequency, amount or importance of specific activities. This study aimed to develop a scale to measure older adults' evaluation of the extent to which their everyday activities are contributing to their health and wellness. Eighteen items, each scored with a seven-point rating scale, were initially developed by content experts, covering perceptions of how daily activities contribute to physical and mental health, as well as satisfaction and activity participation in the last six months. Rasch analysis methods were used to refine the scale using the pencil and paper responses of 460 community-living older adults. Initial Rasch analysis indicated three unlabelled rating scale categories were seldom used, reducing measurement precision. Five items were conceptually different by misfit statistics and principal component analysis. Subsequently, those items were removed and the number of rating scale steps reduced to 4. The remaining 13-item, 4-step scale, termed the Activity Significance Personal Evaluation (ASPEn), formed a unidimensional hierarchy with good fit statistics and targeting. Person separation reliability (2.7) and internal consistency (.91) indicated the tool is appropriate for individual person measurement. Relative validity indicated equivalence between Rasch measures and total raw scores. ASPEn is a brief, easily administered assessment of older adults' perception of the contribution of everyday activities to personal health and wellness. ASPEn may facilitate occupational therapy practice by enabling clinicians to assess change in meaning of an older adult's activity over time. © 2014 Occupational Therapy Australia.

  6. Fast growing aspens in the development of a plant micropropagation system based on plant-produced ethylene action

    International Nuclear Information System (INIS)

    Žiauka, Jonas; Kuusienė, Sigutė; Šilininkas, Mindaugas

    2013-01-01

    Representatives of the genus Populus (poplars), such as Populus tremula L. (European aspen) and its fast-growing hybrids, are recognized as being among the most suitable tree species for short rotation coppicing in Northern Europe. Several technologies have been developed for fast propagation of selected aspen genotypes, including laboratory (in vitro) micropropagation, which is usually based on the action of exogenous plant hormones. Seeking to minimize the use of the latter, the present study was designed to test if the conditions suitable for increased accumulation of plant-produced gas, including the gaseous plant hormone ethylene, inside a culture vessel could contribute to commercially desirable changes in aspen development. Shoot cultures of several European and hybrid (Populus tremuloides Michx. × P. tremula) aspen genotypes were studied using two different types of culture vessels: tightly sealed Petri dishes (15 × 54 mm) designed to provide restricted gas exchange (RGE) conditions, and capped (but not sealed) test tubes (150 × 18 mm) providing control conditions. Under RGE conditions, not only the positive impact of the ethylene precursors 1-aminocyclopropane-1-carboxylic-acid (ACC) and ethephon on shoot proliferation was demonstrated but also a several-fold increase, compared to the control conditions, in the mean shoot number per explant was recorded even on the hormone-free nutrient medium. Moreover, the shoots developed under RGE conditions were distinguished by superior rooting ability in the subsequent culture. These results suggest that a plant micropropagation system based on the action of plant-produced ethylene rather than of exogenous hormones is possible. -- Highlights: ► Aspen in vitro cultures were grown in different vessels. ► Small-volume vessels were used for restriction of gas exchange. ► Aspen explants produced most shoots in small-volume vessels. ► Shoot proliferation was increased due to explant response to ethylene.

  7. Heavy metals uptake by the hybrid aspen and rowan-tree clones

    Czech Academy of Sciences Publication Activity Database

    Malá, J.; Máchová, P.; Cvrčková, H.; Vaněk, Tomáš

    2007-01-01

    Roč. 53, č. 11 (2007), s. 491-497 ISSN 1212-4834 R&D Projects: GA ČR GA526/04/0135; GA MŠk 2B06187 Grant - others:Výzkumný ústav lesního hospodářství a myslivosti, v.v (CZ) OC 118 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : phytoremediation * heavy metals * hybrid aspen Subject RIV: EB - Genetics ; Molecular Biology http://journals.uzpi.cz:8050/uniqueFiles/00437.pdf

  8. A simulation study of Solid Oxide fuel cell for IGCC power generation using Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Kim, Hyung Taek

    2010-01-01

    operating conditions and using diverse fuels. The SOFC stack model developed using the chemical process flow sheet simulator Aspen Plus which is of equilibrium type and is based on Gibbs free energy minimization. The SOFC model performs heat and mass balances and considers the ohmic, activation...... with respect to a variety of SOFC inputs. SOFC stack operation on syn-gas is compared to operation on different coal properties and as expected there is a drop in performance, which is attributed to increased input fuel and air flow due to the lower quality of the fuel gas....

  9. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    OpenAIRE

    Sun, Zhihong; H?ve, Katja; Vislap, Vivian; Niinemets, ?lo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 ?mol mol?1 and elevated [CO2] of 780 ?mol mol?1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibito...

  10. Estimation of Physical Properties for Hydrogen Isotopes Using Aspen Plus Simulator

    International Nuclear Information System (INIS)

    Cho, Jung Ho; Yun, Sei Hun; Cho, Seung Yon; Chang, Min Ho; Kang, Hyun Goo; Jung, Ki Jung; Kim, Dong Min

    2009-01-01

    Hydrogen isotopes are H 2 , HD, D 2 , H 2 , HD, D 2 , HT, DT and T 2 . Among the hydrogen isotopes, the physical properties of H2, HD and D+2 are included in the Aspen Plus, however HT, D T and T 2 are not included. In this study, various thermodynamic properties were estimated for six components of isotopes by use of the fixed properties and temperature-dependent properties. To estimate thermodynamic properties, Soave modified Redlich-Kwong equation of state and Aspenplus simulator was used. The results were verified and compared with by PRO/II with PROVISION of Invensys

  11. Utilization of steam- and explosion-decompressed aspen wood by some anaerobes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A W; Asther, M; Giuliano, C

    1984-01-01

    Tests made to study the suitability of using steam- and explosion-decompressed aspen wood as a substrate in anaerobic fermentations indicated that after washing with dilute NaOH it becomes less than 80% accessible to both mesophilic and thermophilic cellulolytic anaerobes and cellulases, compared with delignified, ball-milled pulp. After washing, this material was also suitable for the single-step conversion of cellulose to EtOH using cocultures consisting of cellulolytic and EtOH-producing saccharolytic anaerobes; and without and after washing by the use of cellulolytic enzymes and ethanologenic anaerobes.

  12. Microscale Ocean Biophysics, Aspen Center for Physics: January 11-16 2015

    Science.gov (United States)

    2017-04-19

    dissolved   organic  matter  persist  in  the  deep  ocean:  Is  the  solution   dilution ?”     8.45  –  Kwangmin  Son...AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES...Microscale Ocean Biophysics, Aspen Center for Physics, January 11-16, 2015 Microscopic organisms control ocean processes at global scales. However

  13. A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2013-03-01

    Full Text Available ) Orig inal manuscript received 13 June 2012, revision accepted 31 October 2012 Vol 66 No 1 January - March 2013 1 PEER REVIEWED A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS BRUCE SITHOLE1*, LUC... of polymerized wood resin that will be difficult to remove if present in pulp and paper products. On the other hand, these problems may be minor compared to using unseasoned wood. KEYWORDS: Aspen, extractives, polymerization, size exclusion chromatography, Py...

  14. Impacts of climate and insect defoliators on productivity and function of trembling aspen (Populus tremuloides) in Alaskan boreal forests

    Science.gov (United States)

    Boyd, M. A.; Walker, X. J.; Rogers, B. M.; Goetz, S. J.; Wagner, D.; Mack, M. C.

    2017-12-01

    Climate change has increased tree mortality and growth decline in forested ecosystems worldwide. In response to warming and drying of the boreal forest, trembling aspen (Populus tremuloides) has experienced recent large-scale productivity declines. Although declines in productivity are thought to be primarily a result of moistures stress, infestation is another major driver of aspen decline and may interact strongly with climate. Throughout interior Alaska widespread and consistent foliar damage by the aspen epidermal leaf miner Phyllocnistis populiella has been observed concurrent with some of the warmest and driest growing seasons on record. Here we use tree ring measurements and remote sensing indices of vegetation productivity (NDVI) to study the influence of leaf miner and climate on aspen productivity and physiology in the Alaskan boreal forest, and assess if NDVI reflects variations in these ground-based measurements. We assessed ring width and tree ring stable carbon isotope (d13C) response of aspen to infestation and a climate moisture index (CMI) from 2004 - 2014. We found that when growth was negatively correlated to infestation, then it was no longer positively influenced by moisture availability during the growing season. Regardless of the radial growth response to leaf mining, tree ring d13C decreased with increasing infestation. We also found that NDVI was influenced by leaf mining and showed a positive correlation with tree ring d13C, which suggests that NDVI is reflective of changes in tree characteristics under leaf mining that influence tree ring d13C. This finding also reveals the prospect of using satellite data to monitor fluctuations in tree physiology during leaf miner infestation. Our results indicate that aspen productivity will be severely hindered during leaf miner infestation, and that infestation will inhibit the ability of aspen to respond to favorable climate conditions by increasing growth and potentially photosynthesis. This

  15. Preparation of Highly Porous Binderless Active Carbon Monoliths from Waste Aspen Sawdust

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2014-01-01

    Full Text Available Waste aspen sawdust was used as a precursor to prepare binderless active carbon monoliths (ACMs with high porosities. The ACMs were prepared by activation with H3PO4 at different activation temperatures (500 to 700 °C and retention times (1 to 3 h. Their morphologies, yields, textural properties, and microcrystalline structures were investigated using scanning electron microscopy (SEM, an analytical balance, N2 adsorption/desorption techniques, and X-ray diffraction (XRD. The results indicated that waste aspen sawdust could be successfully converted into highly porous binderless ACMs. The apparent specific surface area (SSA and yield of ACMs were in the range of 688 to 951 m2/g and 26.6 to 36.2%, respectively. Highly microporous ACMs with a micropore percentage of 91.1%, apparent specific surface area of 951 m2/g, pore volume of 0.481 mL/g, and bulk density of 0.56 g/mL could be produced by activation at 700 °C for 1 h. Increasing the activation temperature or retention time increased the specific surface area, pore volume, and turbostratic degree, but decreased the yield.

  16. Downregulation of RWA genes in hybrid aspen affects xylan acetylation and wood saccharification.

    Science.gov (United States)

    Pawar, Prashant Mohan-Anupama; Ratke, Christine; Balasubramanian, Vimal K; Chong, Sun-Li; Gandla, Madhavi Latha; Adriasola, Mathilda; Sparrman, Tobias; Hedenström, Mattias; Szwaj, Klaudia; Derba-Maceluch, Marta; Gaertner, Cyril; Mouille, Gregory; Ezcurra, Ines; Tenkanen, Maija; Jönsson, Leif J; Mellerowicz, Ewa J

    2017-06-01

    High acetylation of angiosperm wood hinders its conversion to sugars by glycoside hydrolases, subsequent ethanol fermentation and (hence) its use for biofuel production. We studied the REDUCED WALL ACETYLATION (RWA) gene family of the hardwood model Populus to evaluate its potential for improving saccharification. The family has two clades, AB and CD, containing two genes each. All four genes are expressed in developing wood but only RWA-A and -B are activated by master switches of the secondary cell wall PtNST1 and PtMYB21. Histochemical analysis of promoter::GUS lines in hybrid aspen (Populus tremula × tremuloides) showed activation of RWA-A and -B promoters in the secondary wall formation zone, while RWA-C and -D promoter activity was diffuse. Ectopic downregulation of either clade reduced wood xylan and xyloglucan acetylation. Suppressing both clades simultaneously using the wood-specific promoter reduced wood acetylation by 25% and decreased acetylation at position 2 of Xylp in the dimethyl sulfoxide-extracted xylan. This did not affect plant growth but decreased xylose and increased glucose contents in the noncellulosic monosaccharide fraction, and increased glucose and xylose yields of wood enzymatic hydrolysis without pretreatment. Both RWA clades regulate wood xylan acetylation in aspen and are promising targets to improve wood saccharification. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  17. Vegetation of birch and aspen forests in the Pinega State Reserve

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Popov

    2017-05-01

    Full Text Available The Pinega State Nature Reserve (Russia is located in the Arkhangelsk region in the northern taiga subzone. Together with spruce forests and mires, birch forests represent one of the most wide-spread plant communities of its territory. Birch forests cover 24.6% of the Reserve's area. Aspen forests are rare plant communities in the Pinega Reserve. These forests cover only 0.9% of the whole Reserve's area. The birch and aspen forests vegetation has been classified based on 82 relevès. Eleven associations could be distinguished, which represent six groups of associations. Detailed characteristics of these syntaxa are provided including their biodiversity analysis. The analysis allowed establishing that the revealed syntaxa differ in relation to habitat environmental conditions: e.g., soil moisture, trophicity, nitrogen saturation and soil acidity. Sphagnum and blueberry birch forests proved to be the poorest in nitrogen, in contrast to the richest humidoherbaceous and broad-grassed groups of birch forest associations. Broad-grassed birch forests in the Pinega Reserve inhabit the most drained locations, while humidoherbaceous and Sphagnum forests occur in lesser drained locations.

  18. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    Nikula, Suvi; Vapaavuori, Elina; Manninen, Sirkku

    2010-01-01

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  19. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Subhash Minocha; Paula Marquardt; Neil Nelson; Mark. Kubiske

    2010-01-01

    This study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA). Since 1998, 12 experimental rings planted in 1997 underwent four different treatments: control; elevated CO2 (560 ppm); elevated O3 (1.5X ambient) and elevated CO2 (560 ppm) + O...

  20. The Future of Community and Personal Identity in the Coming Electronic Culture. A Report of the Annual Aspen Institute Roundtable on Information Technology (3rd, Aspen, Colorado, August 18-21, 1994).

    Science.gov (United States)

    Bollier, David

    The 1994 Aspen Institute Roundtable on Information Technology began as a look at the changing nature of the home. In building scenarios of the "new home," the participants expressed many significant insights into issues of personal identity, community-building, and setting boundaries in our lives and environments. This report captures…

  1. Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen

    Science.gov (United States)

    M. E. Kubiske; V. S. Quinn; P. E. Marquardt; D. F. Karnosky

    2007-01-01

    Three model communities of trembling aspen (monoculture, and mixed with either paper birch or sugar maple) were grown for seven years in elevated atmospheric CO2 and O3 using Free Air CO2 Enrichment (FACE) technology. We utilized trends in species' importance, calculated as an index of volume...

  2. Wood-inhabiting, polyporoid fungi in aspen-dominated forests managed for biomass in the U.S. Lake States

    Science.gov (United States)

    Nicholas J. Brazee; Daniel L. Lindner; Shawn Fraver; Anthony W. D' Amato; Amy M. Milo

    2012-01-01

    To better understand the potential long-term effects of biomass harvesting on biodiversity, the polyporoid fungi community was characterized from 120 plots in four aspen-dominated forests in Minnesota. Four deadwood variables (substratum species, substratum type, decay class and diameter class) were recorded for each polyporoid species occurrence. A total of 2358...

  3. Converting partially-stocked aspen stands to fully-stocked stands in the Lake States: an economic analysis.

    Science.gov (United States)

    Jeffrey T. Olson; Allen L. Lundgren

    1978-01-01

    The 1968 Wisconsin Forest Survey showed large areas of aspen type that are not considered fully stocked. The economic feasibility of converting partially-stocked stands to full stocking is examined, and a rule presented for determining when a partially-stocked stand should be harvested to maximize its present value.

  4. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    Science.gov (United States)

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  5. Climatic Sensitivity of a Mixed Forest Association of White Spruce and Trembling Aspen at Their Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2016-10-01

    Full Text Available Climatic sensitivity of white spruce (Picea glauca (Moench Voss was examined growing in association with trembling aspen (Populus tremuloides Michx. at their southern limit of distribution in a transitional ecotone between the southern boreal forest and northern prairie region. The study was carried out in the Spruce Woods Provincial Park (SWPP located in southwestern Manitoba, Canada. The dry regional climate restricted trembling aspen growth during the growing season via moisture deficiency and temperature induced drought stress. Warm, mild winters also negatively affected radial growth of trembling aspen. Growth of white spruce was moderated by conditions within the aspen stands as radial growth patterns showed low variability from year to year, a low common growth signal, and a stronger response to temperature than to precipitation. Nonetheless, the dry regional climate still restricted growth of white spruce during the growing season via temperature induced drought stress. The findings of the study for white spruce support the stress gradient hypothesis in which facilitative interactions between tree species are expected under harsher environmental conditions.

  6. Moderation of [CO2]-induced gas exchange responses by elevated tropospheric O3 in trembling aspen and sugar maple

    Science.gov (United States)

    Pooja Sharma; Anu Sober; Jaak Sober; Gopi P. Podila; Mark E. Kubiske; William J. Mattson; Judson G. Isebrands; David F. Karnosky

    2003-01-01

    The greenhouse gases CO2 and 03 are increasing in the earth's atmosphere. Little is known about long-term impacts of these two co-occurring gases on forest trees. We have been examining the impacts of these two gases on the physiology and growth of trembling aspen (Populus tremuloides) and sugar...

  7. Using aspen for artist stretcher frames: adding value through quality service, direct marketing, and careful material selection

    Science.gov (United States)

    Chris Polson

    2001-01-01

    Aspen wood, when carefully selected and kiln dried, makes excellent stock for artist stretcher frames. Direct marketing techniques including the Internet and word of mouth give access to national markets, providing a more diverse and stable customer base for operations from a rural area. High-quality service, as shown by product performance and rapid order fulfillment...

  8. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Science.gov (United States)

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  9. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    Science.gov (United States)

    Joseph N.T. Darbah; Wendy S. Jones; Andrew J. Burton; John Nagy; Mark E. Kubiske

    2011-01-01

    We studied the effect of high ozone (O3) concentration (110-490 nmol mol-1) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O3 pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine...

  10. Response Surface Methodology and Aspen Plus Integration for the Simulation of the Catalytic Steam Reforming of Ethanol

    Directory of Open Access Journals (Sweden)

    Bernay Cifuentes

    2017-01-01

    Full Text Available The steam reforming of ethanol (SRE on a bimetallic RhPt/CeO2 catalyst was evaluated by the integration of Response Surface Methodology (RSM and Aspen Plus (version 9.0, Aspen Tech, Burlington, MA, USA, 2016. First, the effect of the Rh–Pt weight ratio (1:0, 3:1, 1:1, 1:3, and 0:1 on the performance of SRE on RhPt/CeO2 was assessed between 400 to 700 °C with a stoichiometric steam/ethanol molar ratio of 3. RSM enabled modeling of the system and identification of a maximum of 4.2 mol H2/mol EtOH (700 °C with the Rh0.4Pt0.4/CeO2 catalyst. The mathematical models were integrated into Aspen Plus through Excel in order to simulate a process involving SRE, H2 purification, and electricity production in a fuel cell (FC. An energy sensitivity analysis of the process was performed in Aspen Plus, and the information obtained was used to generate new response surfaces. The response surfaces demonstrated that an increase in H2 production requires more energy consumption in the steam reforming of ethanol. However, increasing H2 production rebounds in more energy production in the fuel cell, which increases the overall efficiency of the system. The minimum H2 yield needed to make the system energetically sustainable was identified as 1.2 mol H2/mol EtOH. According to the results of the integration of RSM models into Aspen Plus, the system using Rh0.4Pt0.4/CeO2 can produce a maximum net energy of 742 kJ/mol H2, of which 40% could be converted into electricity in the FC (297 kJ/mol H2 produced. The remaining energy can be recovered as heat.

  11. The potential of aspen clonal forestry in Alberta: breeding regions and estimates of genetic gain from selection.

    Directory of Open Access Journals (Sweden)

    Tim Gylander

    Full Text Available BACKGROUND: Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. METHODOLOGY/PRINCIPAL FINDINGS: Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5-8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH ranged from 0.36 to 0.64, allowing 5-15% genetic gains in height and 9-34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. CONCLUSION/SIGNIFICANCE: Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ~40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta.

  12. The Potential of Aspen Clonal Forestry in Alberta: Breeding Regions and Estimates of Genetic Gain from Selection

    Science.gov (United States)

    Gylander, Tim; Hamann, Andreas; Brouard, Jean S.; Thomas, Barb R.

    2012-01-01

    Background Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. Methodology/Principal Findings Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5–8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH) ranged from 0.36 to 0.64, allowing 5–15% genetic gains in height and 9–34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. Conclusion/Significance Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ∼40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta. PMID:22957006

  13. Simulation and validation of chemical-looping combustion using ASPEN plus

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ling [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States); Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Laboratory-scale experimental studies have demonstrated that Chemical-Looping Combustion (CLC) is an advanced technology which holds great potential for high-efficiency low-cost carbon capture. The generated syngas in CLC is subsequently oxidized to CO2 and H2O by reaction with an oxygen carrier. In this paper, process-level models of CLC are established in ASPEN Plus code for detailed simulations. The entire CLC process, from the beginning of coal gasification to reduction and oxidation of the oxygen carrier is modeled. The heat content of each major component such as fuel and air reactors and air/flue gas heat exchangers is carefully examined. Large amount of energy is produced in the fuel reactor, but energy needs to be supplied to the air reactor. The overall performance and efficiency of the modeled CLC systems are also evaluated.

  14. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    International Nuclear Information System (INIS)

    Bassyouni, M.; Waheed ul Hasan, Syed; Abdel-Aziz, M.H.; Abdel-hamid, S.M.-S.; Naveed, Shahid; Hussain, Ahmed; Ani, Farid Nasir

    2014-01-01

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO 2 and CH 4 in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H 2 = 56.27%, CO = 21.71%, CO 2 = 18.24%, CH 4 = 3.78%). Increasing steam to biomass ratio increases CO 2 and H 2 at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas

  15. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS

    Energy Technology Data Exchange (ETDEWEB)

    Bassyouni, M. [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Waheed ul Hasan, Syed [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Abdel-Aziz, M.H., E-mail: helmy2002@gmail.com [Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911 (Saudi Arabia); Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt); Abdel-hamid, S. M.-S. [Department of Chemical Engineering, Higher Technological Institute, Tenth of Ramdan City (Egypt); Naveed, Shahid [Punjab Institute of Contemporary Sciences, 5.5 KM Raiwind Road, Lahore (Pakistan); Hussain, Ahmed [Department of Nuclear Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ani, Farid Nasir [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, UTM 81310 Johor Bahru (Malaysia)

    2014-12-15

    Highlights: • Simulation of date palm waste gasification using ASPEN HYSYS was studied. • A steady state simulation of downdraft gasifier has been developed. • The results were used to predict synthesis gas composition. • Simulation results and experimental results are in good agreement. - Abstract: The present research aims to study the simulation of date palm waste gasification using ASPEN HYSYS. A steady state simulation of downdraft gasifier firing date palm leaves has been developed. The model is able to predict syngas composition with sound accuracy and can be used to find optimal operating conditions of the gasifier. Biomass is defined as an unconventional hypothetical solid component in HYSYS. A set of six reactor models simulates various reaction zones of the downdraft gasifier in accordance with its hydrodynamics. Biomass decomposition into constituents in the pyrolysis zone is modeled with a conversion reactor. The combustion of char and volatiles in the combustion zone are modeled with equilibrium and Gibbs reactor models respectively. The gasification zone is modeled with a Gibbs and equilibrium reactor. The results of simulation are validated against experimental results of a parametric variability study on a lab scale gasifier. The proportion of synthesis gas increase as temperature increases (concentration, molar fraction, and partial pressure). CO{sub 2} and CH{sub 4} in the product gases were also found to decrease with increasing temperature. At 800 °C, the exit gas reaches a stable molar composition (H{sub 2} = 56.27%, CO = 21.71%, CO{sub 2} = 18.24%, CH{sub 4} = 3.78%). Increasing steam to biomass ratio increases CO{sub 2} and H{sub 2} at the expense of CO, governed by shift reaction. Steam induction increases the methane contents, thereby improves the heating value of the product gas.

  16. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

    Science.gov (United States)

    Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Vardja, Rael; Niinemets, Ulo

    2014-06-01

    The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of

  17. Mechanistic simulation of batch acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping using Aspen Plus™.

    Science.gov (United States)

    Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L

    2018-05-22

    Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.

  18. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  19. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    Zhang, W.; Croiset, E.; Douglas, P.L.; Fowler, M.W.; Entchev, E.

    2005-01-01

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlus TM , can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlus TM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlus TM functions and existing unit operation modules. The developed ''AspenPlus TM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (U f ), current density (I c ) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  20. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada.

    Science.gov (United States)

    Ted Hogg, Edward H; Michaelian, Michael

    2015-05-01

    Increases in mortality of trembling aspen (Populus tremuloides Michx.) have been recorded across large areas of western North America following recent periods of exceptionally severe drought. The resultant increase in standing, dead tree biomass represents a significant potential source of carbon emissions to the atmosphere, but the timing of emissions is partially driven by dead-wood dynamics which include the fall down and breakage of dead aspen stems. The rate at which dead trees fall to the ground also strongly influences the period over which forest dieback episodes can be detected by aerial surveys or satellite remote sensing observations. Over a 12-year period (2000-2012), we monitored the annual status of 1010 aspen trees that died during and following a severe regional drought within 25 study areas across west-central Canada. Observations of stem fall down and breakage (snapping) were used to estimate woody biomass transfer from standing to downed dead wood as a function of years since tree death. For the region as a whole, we estimated that >80% of standing dead aspen biomass had fallen after 10 years. Overall, the rate of fall down was minimal during the year following stem death, but thereafter fall rates followed a negative exponential equation with k = 0.20 per year. However, there was high between-site variation in the rate of fall down (k = 0.08-0.37 per year). The analysis showed that fall down rates were positively correlated with stand age, site windiness, and the incidence of decay fungi (Phellinus tremulae (Bond.) Bond. and Boris.) and wood-boring insects. These factors are thus likely to influence the rate of carbon emissions from dead trees following periods of climate-related forest die-off episodes. © 2014 Her Majesty the Queen in Right of Canada Global Change Biology © 2014 John Wiley & Sons Ltd Reproduced with the permission of the Minister of Natural Resources Canada.

  1. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones.

    Science.gov (United States)

    De Block, M

    1990-07-01

    Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25 degrees C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO(3) (-)/NH(4) (+) ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba x P. tremula and of the poplar hybrid Populus trichocarpa x P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not.

  2. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution

    International Nuclear Information System (INIS)

    Krpata, Doris; Fitz, Walter; Peintner, Ursula; Langer, Ingrid; Schweiger, Peter

    2009-01-01

    Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCF tot ) and NH 4 NO 3 -extractable metal concentrations in mineral soil (BCF lab ). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCF lab for both Zn and Cd described the data more closely than BCF tot . Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. - Populus tremula and associated ectomycorrhizal fungi accumulate zinc and cadmium to similar concentrations

  3. Growth, leaf traits and litter decomposition of roadside hybrid aspen (Populus tremula L. x P. tremuloides Michx.) clones

    International Nuclear Information System (INIS)

    Nikula, Suvi; Manninen, Sirkku; Vapaavuori, Elina; Pulkkinen, Pertti

    2011-01-01

    Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula x P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30 m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15 m from the motorway. Although no significant distance x clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling. - Highlights: → Roadside hybrid aspen displayed xeromorphic leaf traits and reduction in growth rate. → These responses were limited to trees close to the motorway and only to some clones. → Leaf litter decomposition was only temporarily retarded in the roadside environment. - Hybrid aspen had more xeromorphic leaves, displayed reduced growth, and showed retarded litter decomposition at an early stage in the roadside environment.

  4. Simulation of the gasification of animal wastes in a dual gasifier using Aspen Plus®

    International Nuclear Information System (INIS)

    Fernandez-Lopez, M.; Pedroche, J.; Valverde, J.L.; Sanchez-Silva, L.

    2017-01-01

    Highlights: • The gasification of manure was evaluated using the software Aspen Plus®. • Composition and LHV of the obtained syngas depends on the operating conditions. • CO 2 net emissions for the steam and CO 2 gasification processes were calculated. • Manure steam gasification can be used as feedstock for Fischer-Tropsch. • Manure CO 2 gasification lead to a syngas suitable for energy production. - Abstract: The gasification of an animal waste biomass (manure) in a dual gasifier was studied using the software Aspen Plus®. For this purpose, a model based on a Gibbs free energy reactor was considered. Effects of the gasification temperature, the gasifying/biomass ratio and the use of steam and CO 2 as the gasifying agents on the composition and the low heating value (LHV) of the produced syngas were evaluated. In this sense, the H 2 /CO ratio and the LHV were the parameters calculated to stablish the best operating conditions for the production of either hydrocarbons via Fischer-Tropsch or energy. Furthermore, the CO 2 net emissions generated by the gasification process were also important in the selection of the best operating conditions from an environmental point of view. The obtained results showed that for both gasifying agents the H 2 and CO production was favoured at high temperatures whereas the production of CH 4 and CO 2 was favoured at low ones. On the other hand, the H 2 production was higher when steam was used as the gasifying agent and the formation of CO was enhanced when CO 2 was considered as gasification agent. An increase of the gasifying agent/biomass ratio had a negatively influence on the production of CH 4 , leading to a decrease of the LHV. Therefore, steam as the gasifying agent and high temperatures favoured the obtaining of a syngas suitable for the Fischer-Tropsch process whereas CO 2 and low gasification temperatures enhanced a syngas with a high LHV which could be used for energy production. Finally, the net CO 2

  5. Changes in avian and plant communities of aspen woodlands over 12 years after livestock removal in the northwestern Great Basin

    Science.gov (United States)

    Earnst, Susan L.; Dobkin, David S.; Ballard, Jennifer A.

    2012-01-01

    Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500-ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow-pocket aspen plots. On each 1.5-ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150-m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow-pocket aspen produced extensive regeneration of new shoots (x̄ = 2646 stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium-diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow-pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow-pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow-pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic-level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.

  6. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    Energy Technology Data Exchange (ETDEWEB)

    Maja, Mengistu M., E-mail: mengistu.maja@uef.fi [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Kasurinen, Anne; Holopainen, Toini [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland); Julkunen-Tiitto, Riitta [University of Eastern Finland, Department of Biology, P.O. Box 111, 80101 Joensuu (Finland); Holopainen, Jarmo K. [University of Eastern Finland, Department of Environmental Science, P.O.Box 1627, 70211 Kuopio (Finland)

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  7. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen

    International Nuclear Information System (INIS)

    Maja, Mengistu M.; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K.

    2016-01-01

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient + 2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A + T and UV-B + T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B × temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone

  8. Studies on the products resulting from the conversion of aspen poplar to an oil

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Mathews, J F; Pepper, J M; Zohdi, H

    1981-01-01

    The reactions involved in the conversion of aspen poplar into a variety of chemical products as a result of its interaction with CO and H/sub 2/O in the presence of Na/sub 2/CO/sub 3/ at elevated temperatures and pressures are considered. The original C content of the wood is distributed between an oil phase, a complex mixture of highly oxygenated H/sub 2/O-soluble products many of which were identified as low-molecular-weight aliphatic alcohols, ketones, and acids, and a gaseous phase consisting of mainly H and CO/sub 2/. Using model substances (cellulose, cellobiose, -D-glucose, D-fructose, D-xylose, sorbitol, glycerol, and an isolated lignin) information was obtained on the origin of the oil and of the H/sub 2/O-soluble products. Studies at 160 degrees - 360 degrees revealed a marked exothermic reaction occurring at 200-240 degrees for wood and cellulose, which was reflected in the nature of the resulting product. With increasing temperature an increase in the yields of the H/sub 2/O-souluble derivatives and also a change in their relative abundance was observed.

  9. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.

    Science.gov (United States)

    Wiley, Erin; Hoch, Günter; Landhäusser, Simon M

    2017-11-02

    Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve. © Society for Experimental Biology 2017.

  10. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    International Nuclear Information System (INIS)

    Noormets, Asko; Kull, Olevi; Sober, Anu; Kubiske, Mark E.; Karnosky, David F.

    2010-01-01

    The effect of elevated CO 2 and O 3 on apparent quantum yield (φ), maximum photosynthesis (P max ), carboxylation efficiency (V cmax ) and electron transport capacity (J max ) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O 3 tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO 2 alone did not affect φ or P max , and increased J max in the O 3 -sensitive, but not in the O 3 -tolerant clone. Elevated O 3 decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O 3 increased through time. Significant interaction effect, whereby the negative impact of elevated O 3 was exaggerated by elevated CO 2 was seen in Chl, N and J max , and occurred in both O 3 -tolerant and O 3 -sensitive clones. The clonal differences in the level of CO 2 x O 3 interaction suggest a relationship between photosynthetic acclimation and background O 3 concentration. - Photosynthetic acclimation to elevated CO 2 depends on the background oxidant levels.

  11. Dual RBFNNs-Based Model-Free Adaptive Control With Aspen HYSYS Simulation.

    Science.gov (United States)

    Zhu, Yuanming; Hou, Zhongsheng; Qian, Feng; Du, Wenli

    2017-03-01

    In this brief, we propose a new data-driven model-free adaptive control (MFAC) method with dual radial basis function neural networks (RBFNNs) for a class of discrete-time nonlinear systems. The main novelty lies in that it provides a systematic design method for controller structure by the direct usage of I/O data, rather than using the first-principle model or offline identified plant model. The controller structure is determined by equivalent-dynamic-linearization representation of the ideal nonlinear controller, and the controller parameters are tuned by the pseudogradient information extracted from the I/O data of the plant, which can deal with the unknown nonlinear system. The stability of the closed-loop control system and the stability of the training process for RBFNNs are guaranteed by rigorous theoretical analysis. Meanwhile, the effectiveness and the applicability of the proposed method are further demonstrated by the numerical example and Aspen HYSYS simulation of distillation column in crude styrene produce process.

  12. Full employment and competition in the Aspen economic model: implications for modeling acts of terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Sprigg, James A.; Ehlen, Mark Andrew

    2004-11-01

    Acts of terrorism could have a range of broad impacts on an economy, including changes in consumer (or demand) confidence and the ability of productive sectors to respond to changes. As a first step toward a model of terrorism-based impacts, we develop here a model of production and employment that characterizes dynamics in ways useful toward understanding how terrorism-based shocks could propagate through the economy; subsequent models will introduce the role of savings and investment into the economy. We use Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate for validation purposes that a single-firm economy converges to the known monopoly equilibrium price, output, and employment levels, while multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment. However, we find that competition also leads to churn by consumers seeking lower prices, making it difficult for firms to optimize with respect to wages, prices, and employment levels. Thus, competitive firms generate market ''noise'' in the steady state as they search for prices and employment levels that will maximize profits. In the context of this model, not only could terrorism depress overall consumer confidence and economic activity but terrorist acts could also cause normal short-run dynamics to be misinterpreted by consumers as a faltering economy.

  13. Volatile-Mediated within-Plant Signaling in Hybrid Aspen: Required for Systemic Responses.

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-04-01

    Plant volatiles play crucial roles in signaling between plants and their associated community members, but their role in within-plant signaling remains largely unexplored, particularly under field conditions. Using a system comprising the hybrid aspen (Populus tremula x tremuloides) and the specialized herbivorous leaf beetle (Phratora laticollis) and, combining field, greenhouse and laboratory experiments, we examined whether local damage triggered systemic responses in undamaged branches that lack vascular connection to the damaged branches, and to what extent this was caused by airborne volatile signals versus internal signals. An experiment tracing dye through the vasculature of saplings revealed no downward movement of the dye from upper to lower branches, suggesting a lack of vascular connectivity among branches. However, we found under both field and laboratory conditions that herbivore feeding on upper branches elicited volatile emissions by undamaged lower branches. Greenhouse experiments manipulating air contact between damaged and undamaged branches showed that systemic induction of volatiles was almost eliminated when air contact was interrupted. Our findings clearly demonstrate that herbivore-induced volatiles overcome vascular constraints and mediate within-plant signaling. Further, we found that volatile signaling led to induction of different classes of volatiles under field and environment controlled conditions, with a weaker response observed in the field. This difference not only reflects the dose- and time-dependent nature of volatile signaling, but also points out that future studies should focus more on field observations to better understand the ecological role of volatile-mediated within-plant signaling.

  14. ASPEN: A fully kinetic, reduced-description particle-in-cell model for simulating parametric instabilities

    International Nuclear Information System (INIS)

    Vu, H.X.; Bezzerides, B.; DuBois, D.F.

    1999-01-01

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented

  15. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  16. Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers1[C][W

    Science.gov (United States)

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J.; Niittylä, Totte

    2013-01-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H+ symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after 13CO2 assimilation, the SUT3RNAi lines contained more 13C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. PMID:24170204

  17. 2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic Materials, February 5-10, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joel; Rabe, Karin; Nayak, Chetan; Troyer, Matthias

    2012-05-01

    Aspen Center for Physics Project Summary DOE Budget Period: 10/1/2011 to 9/30/2012 Contract # DE-SC0007479 New Paradigms for Low-Dimensional Electronic Materials The 2012 Aspen Winter Conference on Condensed Matter Physics was held at the Aspen Center for Physics from February 5 to 10, 2012. Seventy-four participants from seven countries, and several universities and national labs attended the workshop titled, New Paradigms for Low-Dimensional Electronic Materials. There were 34 formal talks, and a number of informal discussions held during the week. Talks covered a variety of topics related to DOE BES priorities, including, for example, advanced photon techniques (Hasan, Abbamonte, Orenstein, Shen, Ghosh) and predictive theoretical modeling of materials properties (Rappe, Pickett, Balents, Zhang, Vanderbilt); the full conference schedule is provided with this report. The week's events included a public lecture (Quantum Matters given by Chetan Nayak from Microsoft Research) and attended by 234 members of the public, and a physics caf© geared for high schoolers that is a discussion with physicists conducted by Kathryn Moler (Stanford University) and Andrew M. Rappe (University of Pennsylvania) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by Joel Moore (University of California Berkeley), Chetan Nayak (Microsoft Research), Karin Rabe (Rutgers University), and Matthias Troyer (ETH Zurich). Two organizers who did not attend the conference were Gabriel Aeppli (University College London & London Centre for Nanotechnology) and Andrea Cavalleri (Oxford University & Max Planck Hamburg).

  18. Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA

    Directory of Open Access Journals (Sweden)

    Mercedes Román Dobarco

    2014-04-01

    Full Text Available To assess the potential impact of conifer encroachment on soil organic carbon (SOC dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm across the aspen-conifer ecotones in southern and northern Utah and quantified total SOC stocks, stable SOC (i.e., mineral-associated SOC (MoM, labile SOC (i.e., light fraction (LF, decomposable (CO2 release during long-term aerobic incubations and soluble SOC (hot water extractable organic carbon (HWEOC. Total SOC storage (47.0 ± 16.5 Mg C ha−1 and labile SOC as LF (14.0 ± 7.10 Mg C ha−1, SOC decomposability (cumulative released CO2-C of 5.6 ± 3.8 g C g−1 soil or HWEOC (0.6 ± 0.6 mg C g−1 soil did not differ substantially with vegetation type, although a slight increase in HWEOC was observed with increasing conifer in the overstory. There were statistically significant differences (p = 0.035 in stable MoM storage, which was higher under aspen (31.2 ± 15.1 Mg C ha−1 than under conifer (22.8 ± 9.0 Mg C ha−1, with intermediate values under mixed (25.7 ± 8.8 Mg C ha−1. Texture had the greatest impact on SOC distribution among labile and stable fractions, with increasing stabilization in MoM and decreasing bio-availability of SOC with increasing silt + clay content. Only at lower silt + clay contents (40%–70% could we discern the influence of vegetation on MoM content. This highlights the importance of chemical protection mechanisms for long-term C sequestration.

  19. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen.

    Science.gov (United States)

    Meitern, Annika; Õunapuu-Pikas, Eele; Sellin, Arne

    2017-06-01

    Physiological processes taking place in plants are subject to diverse circadian patterns but some of them are poorly documented in natural conditions. The daily dynamics of physico-chemical properties of xylem sap and their covariation with tree hydraulic traits were investigated in hybrid aspen (Populus tremula L.×P. tremuloides Michx) in field conditions in order to clarify which environmental drivers govern the daily variation in these parameters. K + concentration ([K + ]), electrical conductivity (σ sap ), osmolality (Osm) and pH of the xylem sap, as well as branch hydraulic traits, were measured in the field over 24-h cycles. All studied xylem sap properties and hydraulic characteristics including whole-branch (K wb ), leaf blade (K lb ) and petiole hydraulic conductances (K P ) showed clear daily dynamics. Air temperature (T A ) and photosynthetic photon flux density (PPFD), but also water vapour pressure deficit (VPD) and relative humidity (RH), had significant impacts on K wb K lb , K P , [K + ] and σ sap . Osm varied only with light intensity, while K B varied depending on atmospheric evaporative demand expressed as T A , VPD or RH. Xylem sap pH depended inversely on soil water potential (Ψ S ) and during daylight also on VPD. Although soil water content was close to saturation during the study period, Ψ S influenced also [K + ] and σ sap . The present study presents evidence of coupling between circadian patterns of xylem sap properties and plant hydraulic conductance providing adequate water supply to foliage under environmental conditions characterised by diurnal variation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  2. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Unar, I.N.; Aftab, A.

    2015-01-01

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  3. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  4. Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process

    Science.gov (United States)

    Ansah, Emmanuel

    Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions

  5. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  6. Simulation of the SSC refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-01-01

    The SSC Magnet must be maintained at a superconducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 4.0 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of a number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamic model was provided and a series of simple, but three software vendors. Based on the results of the benchmark tests, the ASPEN/SP process simulator was selected for future modeling work. 2 refs., 4 figs

  7. A kinetic reaction model for biomass pyrolysis processes in Aspen Plus

    International Nuclear Information System (INIS)

    Peters, Jens F.; Banks, Scott W.; Bridgwater, Anthony V.; Dufour, Javier

    2017-01-01

    Highlights: • Predictive kinetic reaction model applicable to any lignocellulosic feedstock. • Calculates pyrolysis yields and product composition as function of reactor conditions. • Detailed modelling of product composition (33 model compounds for the bio-oil). • Good agreement with literature regarding yield curves and product composition. • Successful validation with pyrolysis experiments in bench scale fast pyrolysis rig. - Abstract: This paper presents a novel kinetic reaction model for biomass pyrolysis processes. The model is based on the three main building blocks of lignocellulosic biomass, cellulose, hemicellulose and lignin and can be readily implemented in Aspen Plus and easily adapted to other process simulation software packages. It uses a set of 149 individual reactions that represent the volatilization, decomposition and recomposition processes of biomass pyrolysis. A linear regression algorithm accounts for the secondary pyrolysis reactions, thus allowing the calculation of slow and intermediate pyrolysis reactions. The bio-oil is modelled with a high level of detail, using up to 33 model compounds, which allows for a comprehensive estimation of the properties of the bio-oil and the prediction of further upgrading reactions. After showing good agreement with existing literature data, our own pyrolysis experiments are reported for validating the reaction model. A beech wood feedstock is subjected to pyrolysis under well-defined conditions at different temperatures and the product yields and compositions are determined. Reproducing the experimental pyrolysis runs with the simulation model, a high coincidence is found for the obtained fraction yields (bio-oil, char and gas), for the water content and for the elemental composition of the pyrolysis products. The kinetic reaction model is found to be suited for predicting pyrolysis yields and product composition for any lignocellulosic biomass feedstock under typical pyrolysis conditions

  8. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    Rasson, J.; Dweck, J.

    1990-08-01

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  9. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    International Nuclear Information System (INIS)

    McGrath, Justin M.; Karnosky, David F.; Ainsworth, Elizabeth A.

    2010-01-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO 2 ]) and elevated ozone concentration ([O 3 ]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO 2 ] and [O 3 ] predicted for ∼2050. The responses of two clones were compared during the first month of spring leaf out when CO 2 fumigation had begun, but O 3 fumigation had not. Trees in elevated [CO 2 ] plots showed a stimulation of leaf area index (36%), while trees in elevated [O 3 ] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO 2 ], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO 2 ]; however, the two clones responded differently to long-term growth at elevated [O 3 ]. The O 3 -sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O 3 ] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O 3 ] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O 3 ], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. - Spring leaf flush is stimulated by elevated [CO 2 ] and suppressed by elevated [O 3 ] in aspen (Populus tremuloides).

  10. Utilization of steam- and explosion-decompressed aspen wood by some anaerobes. [Acetivibrio cellulolyticus, Clostridium saccharolyticum, Zymomonas anaerobia

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A W; Asther, M; Giuliano, C

    1984-01-01

    Tests made to study the suitability of using steam- and explosion-decompressed aspen wood as substrate in anaerobic fermentations indicated that after washing with dilute NaOH it becomes over 80% accessible to both mesophilic and thermophilic cellulolytic anaerobes and cellulases, compared with delignified, ball-milled pulp. After washing, this material was also found to be suitable for the single-step conversion of cellulose to ethanol using cocultures consisting of cellylolytic and ethanol-producing saccharolytic anaerobes; and without and after washing by the use of cellulolytic enzymes and ethanologenic anaerobes. 16 references, 3 tables.

  11. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada.

    Science.gov (United States)

    Huang, Jian-Guo; Stadt, Kenneth J; Dawson, Andria; Comeau, Philip G

    2013-01-01

    We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA), the sum of stem diameter at breast height (SDBH), and density (N) for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR), were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2)>0.67) to represent this complex variation in growth as a function of site, size and competition.

  12. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Huang

    Full Text Available We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA, the sum of stem diameter at breast height (SDBH, and density (N for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR, were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2>0.67 to represent this complex variation in growth as a function of site, size and competition.

  13. Dying piece by piece: carbohydrate dynamics in aspen seedlings under severe carbon stress and starvation

    Science.gov (United States)

    Wiley, Erin; Chow, Pak; Landhäusser, Simon

    2016-04-01

    Carbon stress and starvation remain poorly understood in trees, despite their potential role in mortality from a variety of agents. To explore the effects of carbon stress on nonstructural carbohydrate (NSC) dynamics and recovery potential and to examine the process of starvation, we grew aspen seedlings under one of three levels of shade: 40% (light shade), 8% (medium shade), and 4% (dark shade) of full sunlight. We then exposed seedlings to 24 hours darkness at either 20° or 28° C until trees had died. Periodically, seedlings were harvested for NSC analysis and to measure stem and root respiration. In addition, some seedlings were moved back into the light to determine if recovery was possible at certain points during starvation. Specifically, we sought to address the following questions: 1) Do NSC concentrations or mass influence tree survival under carbon stress? 2) At what carbohydrate levels do trees fail to recover and starve? 3) Does temperature affect the NSC level at which trees starve? Increasing shade reduced growth, but surprisingly did not reduce NSC levels, except in a portion of deep shade seedlings that experienced dieback. Once in darkness, leaves died first, with final NSC levels ranging from ~4% (Medium shade, 28 degrees) to 7.5% (Light shade). Stem death generally occurred gradually down the stem. Stem tissues retained ~1-2% NSC when dead. Recovery was still possible when only the upper half of the stem had died; at this point, seedlings had relatively high root NSC levels in their remaining roots (7-10%), with 1-3% starch. No trees recovered after the whole stem had died, at which point, some trees root systems were completely dead. However, most retained substantial amounts of live roots, averaging 5-6% NSC, with 0.25-1.5% starch. Despite the initially similar NSC concentrations, light shade seedlings took longer to reach half stem and whole stem death than seedlings from medium and dark shade. Longer survival times were associated with

  14. Energy from poultry waste: An Aspen Plus-based approach to the thermo-chemical processes.

    Science.gov (United States)

    Cavalaglio, Gianluca; Coccia, Valentina; Cotana, Franco; Gelosia, Mattia; Nicolini, Andrea; Petrozzi, Alessandro

    2018-03-01

    A particular approach to the task of energy conversion of a residual waste material was properly experienced during the implementation of the national funded Enerpoll project. This project is a case study developed in the estate of a poultry farm that is located in a rural area of central Italy (Umbria Region); such a farm was chosen for the research project since it is almost representative of many similar small-sized breeding realties of the Italian regional context. The purpose of the case study was the disposal of a waste material (i.e. poultry manure) and its energy recovery; this task is in agreement with the main objectives of the new Energy Union policy. Considering this background, an innovative gasification plant (300KW thermal power) was chosen and installed for the experimentation. The novelty of the investigated technology is the possibility to achieve the production of thermal energy burning just the produced syngas and not directly the solid residues. This aspect allows to reduce the quantity of nitrogen released in the atmosphere by the exhaust flue gases and conveying it into the solid residues (ashes). A critical aspect of the research program was the optimization of the pretreatment (reduction of the water content) and the dimensional homogenization of the poultry waste before its energy recovery. This physical pretreatment allowed the reduction of the complexity of the matrix to be energy enhanced. Further to the real scale plant monitoring, a complete Aspen Plus v.8.0 model was also elaborated for the prediction of the quality of the produced synthesis gas as a function of both the gasification temperature and the equivalence ratio (ER). The model is an ideal flowchart using as input material just the homogenized and dried material. On the basis of the real monitored thermal power (equal to about 200kW average value in an hour) the model was used for the estimation of the syngas energy content (i.e. LHV) that resulted in the range of 3-5MJ/m 3

  15. Effects of Tropospheric O3 on Trembling Aspen and Interaction with CO2: Results From An O3-Gradient and a Face Experiment

    Science.gov (United States)

    D.F. Karnosky; B. Mankovska; K. Percy; R.E. Dickson; G.K. Podila; J. Sober; A. Noormets; G. Hendrey; Mark D. Coleman; M. Kubiske; K.S. Pregitzer; J.G. Isebrands

    1999-01-01

    Abstract. Over the years, a series of trembling aspen (Populus tremuloides Michx.) clones differing in O3 sensitivity have been identified from OTC studies. Three clones (216 and 271[(O3 tolerant] and 259 [O3 sensitive]) have been characterized for O3...

  16. Information Literacy: Advancing Opportunities for Learning in the Digital Age. A Report of The Aspen Institute Forum on Communications and Society.

    Science.gov (United States)

    Adler, Richard P.; Breivik, Patricia Senn

    This report is an informed observer's interpretation of the discussions that took place at the 1998 annual meeting of the Aspen Institute's Forum on Communications and Society (FOCAS). It summarizes the inquiry made by FOCAS members into the many issues surrounding information literacy, including what information literacy is, why we need an…

  17. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...

  18. Ecophysiology of Trembling Aspen in Response to Root-Zone Conditions and Competition on Reclaimed Mine Soil.

    Science.gov (United States)

    Bockstette, S.; Landhäusser, S.; Pinno, B.; Dyck, M. F.

    2014-12-01

    Reclaimed soils are typically characterized by increased bulk densities, penetration resistances and poor soil structure as well as associated problems with hydrology and aeration. As a result, available rooting space for planted tree seedlings is often restricted to a shallow layer of topsoil, which is usually of higher quality and is cultivated prior to planting. This may hinder the development of healthy root systems, thus drastically increasing the risk for plant stress by limiting access to soil resources such as water, nutrients and oxygen. These problems are exacerbated when herbaceous plants compete for the same resources within this limited root-zone. To understand how limited rooting space affects the physiology of young trees, we experimentally manipulated soil conditions and levels of competition at a reclaimed mine site in central Alberta, Canada. The site was characterized by heavily compacted, fine textured subsoil (~2.0 Mg ha-1), capped with 15 cm of topsoil (~1.5 Mg ha-1). In a replicated study (n=6) half the plots were treated with a subsoil plow to a depth of about 60 cm to increase available rooting spece. Subsequently, trembling aspen (Populus tremuloides Michx.) and smooth brome (Bromus inermis L.) were planted to create four vegetation covers: aspen (a), brome (b), aspen + brome (ab) and control (c) (no vegetation). Various soil properties, including texture, bulk density, penetration resistance and water availability, in conjunction with plant parameters such as root and shoot growth, leaf area development, sap flow, and stomatal conductance have since been monitored, both in-situ and through destructive sampling. Our results indicate that the soil treatment was effective in lowering bulk densities and penetration resistance, while improving moisture retention characteristics. Tree seedling growth and leaf area development were significantly greater without competition, but did not differ between soil treatments. The soil treatment generally

  19. Lignin and related compounds. VIII. Lignin monomers and dimers from hydrogenolysis of aspen wood using rhodium-on-charcoal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, K; Mullord, D J; Pepper, J M

    1981-04-01

    Aspen poplar wood meal has been subjected to catalytic hydrogenolysis in dioxane-water (9:1) at 500 psig initial pressure of hydrogen over a 5% rhodium-on-charcoal catalyst for five hours at 195 plus or minus 5 degrees C. The resulting chloroform-soluble lignin degradation products were separated by cellulose and silica gel column chromatography. The following compounds were isolated and identified: 4-hydroxybenzoic acid, 1-(4-hydroxy-3,4-dimethoxyphenyl)-1-propanone (propiosyringone), 2,2'-dihydroxy-3,3'-dimethoxy- 5,5'-dipropylbiphenyl, 2,3-bis(4-hydroxy-3,5- dimethoxyphenyl)-1-propanol, and a mixture of 3-(4-hydroxy-3,5-dimethoxyphenyl)-2(4-hydroxy- 3-methoxyphenyl)-1-propan and 3-(4-hydroxy-3- methoxyphenyl)-2-(4-hydroxy-3,5-dimethoxyphenyl)-1- propanol. 9 references.

  20. Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform

    International Nuclear Information System (INIS)

    Mansouri, Rami; Boukholda, Ismail; Bourouis, Mahmoud; Bellagi, Ahmed

    2015-01-01

    A steady-state simulation model of a commercial 3-ton ammonia/water absorption chiller is developed and validated using the flow-sheeting software Aspen-Plus. First an appropriate thermodynamic property model for the ammonia/water fluid mixture is selected. To this purpose nine methods from the software library are pre-selected and tested, but none of the methods predicts the VLE (vapour–liquid equilibrium) with sufficient accuracy. The interaction parameters of these models are then determined by fitting the equations of state (EOS) to VLE data. It is finally found that the Boston–Mathias modified Peng–Robinson EOS with fitted parameters predicts most accurately the VLE for the temperature and pressure ranges encountered in commercial chillers. A simulation model of the machine is then developed. The simulation results are found to be in good agreement with data from literature at a cooling air temperature of 35 ºC. The heat transfer characteristics (UA) of the various heat exchangers of the machine are then determined and the model modified to make it accept these (UA) as input parameters. The comparison of the simulation predictions at cooling air temperatures of 26.7 and 38 ºC with the bibliographical data showed good concordance. The proposed model could be very useful for the analysis and performance prediction of the commercial absorption chiller. - Highlights: • A commercial NH 3 /H 2 O absorption chiller is simulated using the software Aspen-Plus. • Peng-Robinson-Boston-Mathias equation of state is used to predict VLE of NH 3 /H 2 O fluid mixture. • A steady-state model describing the chiller operation is developed. • The model predicts the internal operating conditions and COP of the chiller.

  1. Multimodel simulations of forest harvesting effects on long‐term productivity and CN cycling in aspen forests.

    Science.gov (United States)

    Wang, Fugui; Mladenoff, David J; Forrester, Jodi A; Blanco, Juan A; Schelle, Robert M; Peckham, Scott D; Keough, Cindy; Lucash, Melissa S; Gower, Stith T

    The effects of forest management on soil carbon (C) and nitrogen (N) dynamics vary by harvest type and species. We simulated long-term effects of bole-only harvesting of aspen (Populus tremuloides) on stand productivity and interaction of CN cycles with a multiple model approach. Five models, Biome-BGC, CENTURY, FORECAST, LANDIS-II with Century-based soil dynamics, and PnET-CN, were run for 350 yr with seven harvesting events on nutrient-poor, sandy soils representing northwestern Wisconsin, United States. Twenty CN state and flux variables were summarized from the models' outputs and statistically analyzed using ordination and variance analysis methods. The multiple models' averages suggest that bole-only harvest would not significantly affect long-term site productivity of aspen, though declines in soil organic matter and soil N were significant. Along with direct N removal by harvesting, extensive leaching after harvesting before canopy closure was another major cause of N depletion. These five models were notably different in output values of the 20 variables examined, although there were some similarities for certain variables. PnET-CN produced unique results for every variable, and CENTURY showed fewer outliers and similar temporal patterns to the mean of all models. In general, we demonstrated that when there are no site-specific data for fine-scale calibration and evaluation of a single model, the multiple model approach may be a more robust approach for long-term simulations. In addition, multimodeling may also improve the calibration and evaluation of an individual model.

  2. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    Science.gov (United States)

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.

  3. Different growth strategies determine the carbon gain and productivity of aspen collectives to be used in short-rotation plantations

    International Nuclear Information System (INIS)

    Müller, Annika; Horna, Viviana; Zhang, Chunxia; Leuschner, Christoph

    2012-01-01

    Populus tremula is a favoured tree species in short-rotation forestry with a recognised large intraspecific variation in productivity. We compared the growth potential of 1-yr-old saplings of four Central European aspen collectives with different climate adaptation on a low-fertility site and searched for growth-determining physiological and morphological traits and their dependence on genetic constitution. Among the 35 investigated traits were photosynthetic capacity and mean assimilation rate, quantum yield and carboxylation efficiency, leaf water potential, leaf phaenology and the ratio of leaves lost to leaves produced (LP ratio), leaf size and total leaf area, axes length growth and canopy carbon gain as an estimate of productivity. The collectives differed by more than 30% in cumulative carbon gain with a large genotype effect, while mean assimilation rate and most photosynthetic and water status traits showed a relatively small intraspecific variation with no significant influence on the variation in C gain. The timing of the beginning of net leaf loss (leaf abscission > leaf production) in August differed between the four collectives and resulted in different maximum leaf areas and LP ratios, which were identified as key factors controlling C gain. Mean assimilation rate, though not related to cumulative C gain, was positively correlated with the light, CO 2 and water use efficiencies of photosynthesis. We conclude that genotype selection for high-yielding aspen in short-rotation forestry at low-fertility sites should focus on the parameters leaf phaenology, LP ratio at the end of the growing season, and the resulting total leaf area as key traits.

  4. Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead

    International Nuclear Information System (INIS)

    Rabęda, Irena; Bilski, Henryk; Mellerowicz, Ewa J.; Napieralska, Anna; Suski, Szymon; Woźny, Adam; Krzesłowska, Magdalena

    2015-01-01

    Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with “Pb accumulation zone”. Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals. - Highlights: • Co-localization of low-methylesterified pectins and Pb was analysed in situ. • The pattern of Pb accumulation matched low-methylesterified pectins distribution. • Low-methylesterified pectins and Pb commonly co-localized in cell walls. • Low-methylesterified pectins revealed an important compound in Pb sequestration. • We suggest a new direction in enhancing plant efficiency for phytoremediation. - The distribution of lead in developing tissues of aspen root tips exposed to short-term lead treatment mimics the distribution of low-methylesterified pectin epitope

  5. ASPEN-AND-ESPEN: A postacute-care comparison of the basic definition of malnutrition from the American Society of Parenteral and Enteral Nutrition and Academy of Nutrition and Dietetics with the European Society for Clinical Nutrition and Metabolism definition.

    Science.gov (United States)

    Sánchez-Rodríguez, Dolores; Marco, Ester; Ronquillo-Moreno, Natalia; Maciel-Bravo, Liev; Gonzales-Carhuancho, Abel; Duran, Xavier; Guillén-Solà, Anna; Vázquez-Ibar, Olga; Escalada, Ferran; Muniesa, Josep M

    2018-01-25

    The aim of this study was to assess the prevalence of malnutrition by applying the ASPEN/AND definition and the ESPEN consensus definition in a postacute-care population, and secondly, to determine the metrological properties of the set of six clinical characteristics that constitute the ASPEN/AND basic diagnosis, compared to the ESPEN consensus, based mostly on objective anthropometric measurements. Prospective study of 84 consecutive deconditioned older inpatients (85.4 ± 6.2; 59.5% women) admitted for rehabilitation in postacute care. ASPEN/AND diagnosis of malnutrition was considered in presence of at least two of the following: low energy intake, fluid accumulation, diminished handgrip strength, and loss of weight, muscle mass, or subcutaneous fat. Sensitivity, specificity, positive and negative predictive values, accuracy, likelihood ratios, and kappa statistics were calculated for ASPEN/AND criteria and compared with ESPEN consensus. The prevalence of malnutrition by ASPEN/AND criteria was 63.1% and by ESPEN consensus, 20.2%; both diagnoses were associated with significantly longer length of stay, but the ESPEN definition was significantly associated with poorer functional outcomes after the rehabilitation program. Compared to ESPEN consensus, ASPEN/AND diagnosis showed fair validity (sensitivity = 94.1%; specificity = 44.8%); kappa statistic was 2.217. Applying the ASPEN/AND definition obtained a higher prevalence of malnutrition in a postacute-care population than was identified by the ESPEN definition. ASPEN/AND criteria had fair validity and agreement compared with the ESPEN definition. A simple, evidence-based, unified malnutrition definition might improve geriatric care. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  7. Online community marketing of ski resorts : an in-depth best practice study of aspen/snowmass and breckenridge ski resort

    OpenAIRE

    Kráľ, Branislav

    2013-01-01

    Online brand community is a novel phenomenon that carries a number of benefits, but lack of clarity in antecedents of its effectiveness as a marketing alternative. Aspen/Snowmass and Breckenridge Ski Resort are two leading players in the ski industry, and this paper analyzes their activity in-depth in order to bring clarity by extracting implications on best practice. For the purpose, a tailor-made methodology is constructed. It consists of combining two analytical frameworks, interviews with...

  8. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    Science.gov (United States)

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  9. Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2

    DEFF Research Database (Denmark)

    Ambus, P.; Robertson, G.P.

    1999-01-01

    Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice......-ambient CO2 concentrations crossed with `high' and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P CO2 (8.7 mu g CH4-C m(-2) h(-1)) than...... with elevated CO2 (6.5 mu g CH4-C m(-2) h(-1)) in the low N soil. Likewise, across dates and soil N treatments CH4 was oxidized more rapidly (P CO2 (9.5 mu g CH4-C m(-2) h(-1)) than in chambers with elevated CO2 (8.8 mu g CH4-C m(-2) h(-1)). Methane oxidation in soils incubated...

  10. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    Science.gov (United States)

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  11. Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Xiang Gou

    2016-12-01

    Full Text Available This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP and wastewater source heat pump (WSHP technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

  12. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Science.gov (United States)

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  13. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  14. IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Andrew J. [Michigan Technological University; Zak, Donald R. [University of Michigan; Kubiske, Mark E. [USDA Forest Service; Pregitzer, Kurt S. [University of Idaho

    2014-06-30

    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch

  15. The role of phytochrome A and gibberellins in growth under long and short day conditions: Studies in hybrid aspen

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M.E. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2000-07-01

    This thesis addresses questions concerning the regulation of growth and, specifically, the cessation of growth in response to short days in deciduous tree species. The model tree used in the studies was hybrid aspen (Populus tremula L. x P. tremuloides Michx.). We have exploited the possibility of transforming this species to modulate the level of expression of target genes using over-expression and antisense techniques. The target genes in the studies were the photoreceptor phytochrome A (phyA) and gibberellin 20-oxidase (GA 20-oxidase), the latter being a highly regulated enzyme involved in the biosynthesis of gibberellins (GAs). The photoreceptor phyA has been implicated in photoperiodic regulation of growth, while GAs may regulate the physiological response further downstream. The endogenous expression of these genes has been investigated in parallel with studies of various plants with ectopic and reduced levels of expression. The main focus has been on the early stages of induction of growth cessation and its physiological and molecular mechanisms. Studies of hybrid aspen plants with an increased or reduced expression of phyA, show this receptor to mediate the photoperiodic regulation of growth. Plants with ectopic expression could not stop growing despite drastically shortened photoperiods, while the antisense plants showed the reverse phenotype, with a higher sensitivity resulting in earlier cessation of growth. The role of GAs in growth inhibition was also addressed using plants with a reduction in GA levels. These plants showed early cessation of growth and dormancy, and thus an increased sensitivity toward daylength. Conversely, plants with increased rates of GA biosynthesis showed increased growth and stopped growing much later. Furthermore, increases in GA biosynthesis, resulting in high levels of GAs have a major impact on growth. Plants with high GA levels have increased elongation and diameter growth, due to higher rates of cell production in the

  16. Simulation of the Stabilization Unit Refinery “Hermanos Díaz” Using Aspen Hysys 8.0

    Directory of Open Access Journals (Sweden)

    Thayset Mariño-Peacok

    2016-07-01

    Full Text Available In this paper a study of the production of liquefied petroleum gas is carried out in the Stabilization Unit refinery “Hermanos Díaz”. Implementation of this process was conducted in the simulator Aspen Hysys 8.0 with the aim of developing a simulation that would increase the efficiency of this plant. Different alternatives are evaluated using the simulator tool Databook, as were the analysis of the temperature and pressure and its influence on the flow of the compounds of interest in the separators; the number of trays and the feed tray to the distillation column and its influence on the energy of the condenser and reboiler. It was determined that at 44°C and 160 kPa in the separator D-120 and at 34,5 °C and 738.8 kPa in the separator D-109 ensures good performance of the process. In addition it was found that with 50 trays and a feed tray 27 in the distillation tower T-104 guarantee lower consumption of energy (1,4*10 7 kJ/kmol and 1,5*107 kJ/kmol for the condenser and reboiler respectively. It was shown that an increased flow of unstabilized light naphtha fed to the plant, leads to increased efficiency of the unit. The simulation of the process led to raise the efficiency of the plant because the flow of liquefied petroleum gas increased in 11.79% to quality established.

  17. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk.

    Science.gov (United States)

    Anderegg, William R L; Plavcová, Lenka; Anderegg, Leander D L; Hacke, Uwe G; Berry, Joseph A; Field, Christopher B

    2013-04-01

    Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate-vegetation models. Finally, our findings highlight the

  18. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    International Nuclear Information System (INIS)

    Bradford, J.B.; Kastendick, D.N.

    2010-01-01

    Forest managers are now developing strategies to mitigate increases in atmospheric carbon dioxide (CO 2 ) and help stands to adapt to new climatic conditions. This study characterized the influence of stand age on carbon storage and sequestration in chronosequences of even-aged red pine and aspen-birch stands in northern Minnesota. The aim of the study was to determine the impact of age-related management strategies on carbon storage and forest complexity. The pine chronosequences ranged from 7 to 160 years. Aspen chronosequences ranged from 6 to 133 years. Field measurements of the trees were compiled into 5 carbon pools. Carbon storage variables were averaged within each stand in order to conduct a regression analysis. The study showed that forest complexity was positively related to stand age in all of the measured response variables except species richness. Relationships between compositional complexity and stand age depended on forest type. Total carbon storage also increased with age. Results of the study showed that age plays an important role in overall ecosystem carbon storage. The study can be used to provide insights into the overall costs and benefits of forest management strategies that favour younger or older forests. 45 refs., 2 figs.

  19. The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx.

    Science.gov (United States)

    Cai, Jing; Tyree, Melvin T

    2010-07-01

    The objective of this study was to quantify the relationship between vulnerability to cavitation and vessel diameter within a species. We measured vulnerability curves (VCs: percentage loss hydraulic conductivity versus tension) in aspen stems and measured vessel-size distributions. Measurements were done on seed-grown, 4-month-old aspen (Populus tremuloides Michx) grown in a greenhouse. VCs of stem segments were measured using a centrifuge technique and by a staining technique that allowed a VC to be constructed based on vessel diameter size-classes (D). Vessel-based VCs were also fitted to Weibull cumulative distribution functions (CDF), which provided best-fit values of Weibull CDF constants (c and b) and P(50) = the tension causing 50% loss of hydraulic conductivity. We show that P(50) = 6.166D(-0.3134) (R(2) = 0.995) and that b and 1/c are both linear functions of D with R(2) > 0.95. The results are discussed in terms of models of VCs based on vessel D size-classes and in terms of concepts such as the 'pit area hypothesis' and vessel pathway redundancy.

  20. Aspen Code Development Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    none,; Cherry, Robert S. [INL; Richard, Boardman D. [INL

    2013-10-03

    Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

  1. Aspen Meadows. Colorado

    Directory of Open Access Journals (Sweden)

    Bayer, Herbert

    1958-07-01

    Full Text Available La Bauhaus es uno de los principales movimientos artísticos creadores de la arquitectura moderna. Sus personalidades, tales como Kandinsky, Klee, Schlemmer, Feininger y Walter Gropius..., han hecho una aportación creadora de valor incalculable. Pero junto a ellos hay que reconocer el valor de sus jóvenes alumnos, los cuales supieron convertir en realidad las tendencias funcionalistas por ellos preconizadas, y a ellos se debe el desarrollo de las artes mecánicas, de la tipografía, del mobiliario...; todo ello concebido de acuerdo con una nueva forma de vida. A esta generación creadora de los jóvenes maestros pertenece Herbert Bayer, uno de los autores del proyecto, formado junto a Marcel Breuer, y Albers.

  2. ASPEN MIVACRON TRACRIUM sajaa

    African Journals Online (AJOL)

    Mark Beckwith

    administration of appropriate doses of sedatives and/or opiates invalidates consent,5,6 but .... been found to produce consistently reliable analgesia.19 Non- ..... Gogarten W, Van Aken H. A century of regional analgesia in obstetrics. Anesth.

  3. Model estimates of leaf area and reference canopy stomatal conductance suggest correlation between phenology and physiology in both trembling aspen and red pine

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Kruger, E. L.

    2006-12-01

    Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.

  4. Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region

    Science.gov (United States)

    Kurth, Valerie J.; Bradford, John B.; Slesak, Robert A.; D'Amato, Anthony W.

    2014-01-01

    Contemporary forest management practices are increasingly designed to optimize novel objectives, such as maximizing biomass feedstocks and/or maintaining ecological legacies, but many uncertainties exist regarding how these practices influence forest carbon (C) cycling. We examined the responses of soil respiration (Rs) to biomass harvesting and green-tree retention in an effort to empirically assess their impacts on C cycling. We measured Rs and soil microclimatic variables over four growing seasons following implementation of these management practices using a fully replicated, operational-scale experiment in aspen-dominated forests in northern Minnesota. Treatments included three levels of biomass removal within harvested areas: whole-tree harvest (no slash deliberately retained), 20% slash retained, and stem-only harvest (all slash retained), and two levels of green-tree retention: 0.1 ha aggregate or none. The relative amount of biomass removed had a negligible effect on Rs in harvested areas, but treatment effects were probably obscured by heterogeneous slash configurations and rapid post-harvest regeneration of aspen in all of the treatments. Discrete measurements of Rs and soil temperature within green-tree aggregates were not discernible from surrounding harvested areas or unharvested control stands until the fourth year following harvest, when Rs was higher in unharvested controls than in aggregates and harvested stands. Growing season estimates of Rs showed that unharvested control stands had higher Rs than both harvested stands and aggregates in the first and third years following harvest. Our results suggest that retention of larger forest aggregates may be necessary to maintain ecosystem-level responses similar to those in unharvested stands. Moreover, they highlight the innate complexity of operational-scale research and suggest that the initial impacts of biomass harvest on Rs may be indiscernible from traditional harvest in systems where incidental

  5. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.

    2017-01-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  6. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    Science.gov (United States)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  7. Contrasting Effects of Cattle Grazing Intensity on Upland-Nesting Duck Production at Nest and Field Scales in the Aspen Parkland, Canada

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Warren

    2008-12-01

    Full Text Available The Aspen Parkland of Canada is one of the most important breeding areas for temperate nesting ducks in North America. The region is dominated by agricultural land use, with approximately 9.3 million ha in pasture land for cattle grazing. However, the effects of using land for cattle grazing on upland-nesting duck production are poorly understood. The current study was undertaken during 2001 and 2002 to investigate how nest density and nesting success of upland-nesting ducks varied with respect to the intensity of cattle grazing in the Aspen Parkland. We predicted that the removal and trampling of vegetation through cattle grazing would reduce duck nest density. Both positive and negative responses of duck nesting success to grazing have been reported in previous studies, leading us to test competing hypotheses that nesting success would (1 decline linearly with grazing intensity or (2 peak at moderate levels of grazing. Nearly 3300 ha of upland cover were searched during the study. Despite extensive and severe drought, nest searches located 302 duck nests. As predicted, nest density was higher in fields with lower grazing intensity and higher pasture health scores. A lightly grazed field with a pasture score of 85 out of a possible 100 was predicted to have 16.1 nests/100 ha (95% CI = 11.7-22.1, more than five times the predicted nest density of a heavily grazed field with a pasture score of 58 (3.3 nests/100 ha, 95% CI = 2.2-4.5. Nesting success was positively related to nest-site vegetation density across most levels of grazing intensity studied, supporting our hypothesis that reductions in vegetation caused by grazing would negatively affect nesting success. However, nesting success increased with grazing intensity at the field scale. For example, nesting success for a well-concealed nest in a lightly grazed field was 11.6% (95% CI = 3.6-25.0%, whereas nesting success for a nest with the same level of nest-site vegetation in a heavily grazed

  8. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.

    Science.gov (United States)

    Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie

    2015-12-01

    Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula x P. tremuloides) as a model species

    Energy Technology Data Exchange (ETDEWEB)

    Chaffey, N.; Barlow, P. [Bristol Univ., Dept. of Agricultural Sciences, Long Ashton, (United Kingdom); Sundberg, B. [Swedish Univ. of Agricultural Sciences, Dept. of Forest Genetics and Plant Physiology, Umea (Sweden)

    2002-03-01

    The involvement of microfilaments (MFs) and microtubules (MTs) in the development of the radial and axial components of secondary wood in hybrid aspen (Populus tremula X P. tremuloides) was studied by indirect immunofluorescent localization techniques in order to elucidate a consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees. Early and late vessel elements, axial parenchyma, normal-wood fibres and contact and isolation cells were included in addition to cambial cells. Microfilaments were found to be rare in cambial cells, but were abundant and axially arranged in their derivatives once cell elongation begun. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits. Although only microtubules were seen in the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. These observations indicate that there are corresponding subcellular control points whose manipulation could lead to the development of 'designer wood'. However, such development would require a better understanding of the physiological basis for the behaviour of microtubule and microfibre cytoskeletons during wood formation. 44 refs., 6 figs.

  10. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    Science.gov (United States)

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. © 2014 John Wiley & Sons Ltd.

  11. A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi.

    Science.gov (United States)

    Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Tedersoo, Leho

    2011-02-01

    Ectomycorrhizal fungi (EcMF) form diverse communities and link different host plants into mycorrhizal networks, yet little is known about the magnitude of mycobiont diversity of a single tree individual. This study addresses species richness and spatial structure of EcMF in the root system of a single European aspen (Populus tremula) individual in an old-growth boreal mixed forest ecosystem in Estonia. Combining morphological and molecular identification methods for both plant and fungi, 122 species of EcMF were recovered from 103 root samples of the single tree. Richness estimators predicted the total EcMF richness to range from 182 to 207 species, reflecting the observation of 62.3% singletons and doubletons within the community. Fine-scale genetic diversity in Cenococcum geophilum indicates the presence of 23 internal transcribed spacer genotypes. EcMF community was significantly spatially autocorrelated only at the lineage level up to 3 m distance, but not at the species level. Proximity of other hosts had a significant effect on the spatial distribution of EcMF lineages. This study demonstrates that a single tree may host as many EcMF species and individuals as recovered on multiple hosts in diverse communities over larger areas. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Proceedings of the 2015 A.S.P.E.N. Research Workshop - Taste Signaling: Impact on Food Selection, Intake, and Health

    Science.gov (United States)

    Spector, Alan C.; le Roux, Carel W; Munger, Steven D.; Travers, Susan P.; Sclafani, Anthony; Mennella, Julie A.

    2016-01-01

    This paper summarizes research findings from six experts in the field of taste and feeding that were presented at the 2015 ASPEN Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass, increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding PMID:26598504

  13. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.

    Science.gov (United States)

    Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert

    2017-11-01

    This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Establishment of Alleycropped Hybrid Aspen “Crandon” in Central Iowa, USA: Effects of Topographic Position and Fertilizer Rate on Aboveground Biomass Production and Allocation

    Directory of Open Access Journals (Sweden)

    Richard B. Hall

    2013-07-01

    Full Text Available Hybrid poplars have demonstrated high productivity as short rotation woody crops (SRWC in the Midwest USA, and the hybrid aspen “Crandon” (Populus alba L. × P. grandidenta Michx. has exhibited particularly promising yields on marginal lands. However, a key obstacle for wider deployment is the lack of economic returns early in the rotation. Alleycropping has the potential to address this issue, especially when paired with crops such as winter triticale which complete their growth cycle early in the summer and therefore are expected to exert minimal competition on establishing trees. In addition, well-placed fertilizer in low rates at planting has the potential to improve tree establishment and shorten the rotation, which is also economically desirable. To test the potential productivity of “Crandon” alleycropped with winter triticale, plots were established on five topographic positions with four different rates of fertilizer placed in the planting hole. Trees were then harvested from the plots after each of the first three growing seasons. Fertilization resulted in significant increases in branch, stem, and total aboveground biomass across all years, whereas the effects of topographic position varied by year. Allocation between branches and stems was found to be primarily a function of total aboveground biomass.

  15. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Testing a hydraulic trait based model of stomatal control: results from a controlled drought experiment on aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas)

    Science.gov (United States)

    Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.

    2017-12-01

    Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.

  17. Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula x P. tremuloides) as the model species.

    Science.gov (United States)

    Chaffey, Nigel; Barlow, Peter; Sundberg, Björn

    2002-03-01

    The involvement of microfilaments and microtubules in the development of the radial and axial components of secondary xylem (wood) in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) was studied by indirect immunofluorescent localization techniques. In addition to cambial cells, the differentiated cell types considered were early- and late-wood vessel elements, axial parenchyma, normal-wood fibers and gelatinous fibers, and contact and isolation ray cells. Microfilaments were rare in ray cambial cells, but were abundant and axially arranged in their derivatives once cell elongation had begun, and persisted in that orientation in mature ray cells. Microfilaments were axially arranged in fusiform cambial cells and persisted in that orientation in all xylem derivatives of those cells. Microtubules were randomly oriented in ray and fusiform cells of the cambial zone. Dense arrays of parallel-aligned microtubules were oriented near axially in the developing gelatinous fibers, but at a wide range of angles in normal-wood fibers. Ellipses of microfilaments were associated with pit development in fiber cells and isolation ray cells. Rings of co-localized microtubules and microfilaments were associated with developing inter-vessel bordered pits and vessel-contact ray cell contact pits, and, in the case of bordered pits, these rings decreased in diameter as the over-arching pit border increased in size. Although only microtubules were seen at the periphery of the perforation plate of vessel elements, a prominent meshwork of microfilaments overlaid the perforation plate itself. A consensus view of the roles of the cytoskeleton during wood formation in angiosperm trees is presented.

  18. Bio energy production in birch and hybrid aspen after addition of residue based fertilizers - establishment of fertilization trials; Bioenergiproduktion hos bjoerk och hybridasp vid tillfoersel av restproduktbaserade goedselmedel - etablering av goedslingsfoersoek

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar (EkoBalans Fenix AB, Malmoe (Sweden))

    2009-03-15

    Sewage sludge and wood ashes could be used as fertilizers in order to increase forest tree production. In southern Sweden forest growth normally increases with approximately 10 % after ash recycling due to increased N and/or P availability. P is added with the ashes and the pH-increasing effect of the wood ash can lead to increased N net mineralization. Other positive effects of wood ash recycling are improved nutrient sustainability and less acid run-off water. Possible negative effects are heavy metal accumulation, if the content of one or more heavy metals of the recycled ash exceeds the heavy metal content of the harvested biomass, and nitrate leaching if the vegetation cannot take up nitrified N. It is important to evaluate the sustainability of fertilization systems based on residues such as sludge and wood ash. Wood ash does not contain N and the P concentration often is too low for the ashes to function as an NP fertilizer. Thus N and sometimes P must be added. Sludge is an interesting alternative. The main purpose of the project is to study sustainable production of forest bio energy in intensively cultivated birch and hybrid aspen stands. Another purpose is to establish experiments that can be used for long term studies and as demonstration objects. In the first few years the goal is to study the short term effects of residue based fertilization compared to conventional NPK fertilization on tree nutrient uptake, nutrient leaching, sustainability and economy. In the long term the goal is to design appropriate fertilization strategies in a residue based fertilization system for the intensive cultivation of birch and hybrid aspen without negative side effects such as large scale nutrient leaching. Four field experiments were established in 2008 and one additional experiment in hybrid aspen will be established in the spring of 2009. Elevated bud N and P concentrations after fertilization with both Ashes+N and NPK means good possibilities for future growth

  19. Heat Pump Efficiencies simulated in Aspen HYSYS and Aspen Plus

    OpenAIRE

    Øi, Lars Erik; Tirados, Irene Yuste

    2015-01-01

    Heat pump technology provides an efficient and sustainable solution for both heating and cooling. A traditional heat pump can be defined as a mechanical-compression cycle refrigeration system powered by electricity. Traditional refrigerants used in heat pumps are ammonia or chlorinated and fluorinated hydrocarbons. Because many of these chlorofluorohydrocarbons (CFC??) are ozone-depleting components, evaluation of more environmentally friendly refrigerants like pure hydrocarbons is important....

  20. Skandinaavia disainis seigeldes / Jay Aspen

    Index Scriptorium Estoniae

    Aspen, Jay

    2008-01-01

    Rootsi uue disaini hulgi- ja jaemüüja Michael Asplundi korter Stocholmis Södermalmi linnaosas 1930-ndate keskel ehitatud majas. Tubades on palju disainerite, eriti rootsi disainerite loodud esemeid. Lk. 44: Kristjan Arunurm "Põhjamaine selgus" - valik esemeid kodu sisustamiseks samas võtmes

  1. Simulación y validación de modelos de destilación por lotes usando Aspen Batch Modeler: recuperación de epóxido de limoneno

    OpenAIRE

    Yeison Agudelo; Rolando Barrera Zapata

    2016-01-01

    Se desarrolló el modelado y simulación de una columna de destilación por lotes para la recuperación de epóxido de limoneno de una mezcla multicomponente, usando el software especializado Aspen Batch Modeler. Para la validación de los modelos se desarrolló el proceso experimental en un equipo de roto-evaporación, donde se varió la composición inicial de la mezcla, temperatura y presión de operación. La composición final de fondos y destilado se determinó a través de cromatografía de gases. Los...

  2. Effects of elevated concentrations of atmospheric CO{sub 2} and tropospheric O{sub 3} on leaf litter production and chemistry in trembling aspen and paper birch communities

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.; King, J.S. [Michigan Technological Univ., Houghton, MI (United States). School of Forest Resources and Environmental Science; Giardina, C.P. [United States Dept. of Agriculture Forest Service, Houghton, MI (United States)

    2005-12-01

    This study examined the effects of elevated carbon dioxide (CO{sub 2}) and elevated ozone (O{sub 3}) on the quantity and timing of nutrient release to plants and on soil carbon formation rates, and how they are influenced by the combined change in litter quality and quantity. The changes in leaf litter in response to environmental changes was characterized in order to understand the influence of global change on forests. Free-air CO{sub 2} enrichment (FACE) technology was used to examine leaf litter production and biochemical input to soil in response to elevated CO{sub 2} and O{sub 3} treatments. The study involved collecting litter from aspen and birch-aspen communities that had been exposed to FACE and O{sub 3} treatments for 6 years. The hypothesis of growth differentiation balance was used as the basis to develop other hypotheses regarding litter chemistry responses to elevated levels of carbon dioxide and ozone. It was assumed that environmental factors that increase the net balance of plant carbon sources relative to growth sinks will increase the allocation of photosynthate to the production of carbon-based secondary compounds. Litter was analyzed for concentrations of carbon, nitrogen, soluble sugars, lipids, lignin, cellulose, hemicellulose and carbon-based defensive compounds such as soluble phenolics and condensed tannins. The study showed that high levels of ozone greatly increased litter concentrations of soluble sugars, soluble phenolics and condensed tannins, but there were no major effects of elevated carbon dioxide or elevated ozone on the concentrations of individual carbon structural carbon hydrates such as cellulose, hemicellulose and lignin. It was concluded that in the future, the inputs of nitrogen, soluble sugars, condensed tannins, soluble phenolics, cellulose and lignin to forest soils can change as a result of small changes in litter chemistry resulting from elevated CO{sub 2}, tropospheric O{sub 3}, and changes in litter biomass

  3. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression.

    Science.gov (United States)

    Lexer, C; Fay, M F; Joseph, J A; Nica, M-S; Heinze, B

    2005-04-01

    The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.

  4. The Aspen Prize for Community College Excellence

    Science.gov (United States)

    Perlstein, Linda

    2011-01-01

    The nation's community colleges share a common and vital purpose: preparing students--young and working adults--for jobs and continued academic study. Today, over 7 million community college students strive to attain a degree that will expand their opportunity, whether they aim to graduate directly into the workforce or continue on to seek a…

  5. Kasulikud raamatud lastega reisijatele / Lydia Aspen

    Index Scriptorium Estoniae

    Aspen, Lydia

    2009-01-01

    Tutvustus: London : laste reisijuht : suurlinna seiklused, mõistatused ja mängud. Tallinn : TEA Kirjastus, 2009 ; Pariis : laste reisijuht : suurlinna seiklused, mõistatused ja mängud. Tallinn : TEA Kirjastus, 2009

  6. Logging methods and peeling of Aspen

    Science.gov (United States)

    T. Schantz-Hansen

    1948-01-01

    The logging of forest products is influenced by many factors, including the size of the trees, density of the stand, the soundness of the trees, size of the area logged, topography and soil, weather conditions, the degree of utilization, the skill of the logger and the equipment used, the distance from market, etc. Each of these factors influences not only the method...

  7. A comparison of the pharmacokinetics of Aspen Ceftriaxone and ...

    African Journals Online (AJOL)

    Intravenous ceftriaxone, of which Rocephin (ROC) is the originator brand, is recommended as first-line therapy in South Africa. Despite concerns regarding therapeutic equivalence with generic agents, this is the first study that has been conducted comparing clinical pharmacokinetics (PK) of a generic ceftriaxone ...

  8. Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong-keun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

  9. Data for prediction of mechanical properties of aspen flakeboards

    Science.gov (United States)

    C. G. Carll; P. Wang

    1983-01-01

    This research compared two methods of producing flakeboards with uniform density distribution (which could then be used to predict bending properties of flakeboards with density gradients). One of the methods was suspected of producing weak boards because it involved exertion of high pressures on cold mats. Although differences were found in mechanical properties of...

  10. A comparison of the pharmacokinetics of Aspen Ceftriaxone and ...

    African Journals Online (AJOL)

    Medicines Control Council (MCC) requires proof of equivalence ... clinical pharmacokinetics (PK) of a generic ceftriaxone formulation with the originator. .... on performance of the quality control samples). ... Endogenous components of plasma had an insignificant effect .... Clinical features and prognostic factors in adults with.

  11. Contrasting patterns of cytokinins between years in senescing aspen leaves

    Czech Academy of Sciences Publication Activity Database

    Edlund, E.; Novák, Ondřej; Karady, M.; Ljung, K.; Jansson, S.

    2017-01-01

    Roč. 40, č. 5 (2017), s. 622-634 ISSN 0140-7791 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : leaf senescence * arabidopsis-thaliana * autumn senescence * gene-expression * populus-trichocarpa * mass-spectrometry * tobacco plants * translocation * biosynthesis * identification * autumn senescence * gene expression * metabolism * Populus tremula * profiling Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Plant sciences, botany Impact factor: 6.173, year: 2016

  12. Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment

    Science.gov (United States)

    Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth

    2010-01-01

    Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...

  13. Quantitative proteomics reveals protein profiles underlying major transitions in aspen wood development.

    Science.gov (United States)

    Obudulu, Ogonna; Bygdell, Joakim; Sundberg, Björn; Moritz, Thomas; Hvidsten, Torgeir R; Trygg, Johan; Wingsle, Gunnar

    2016-02-18

    Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 μm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development.

  14. Study of Behavior and Measurement of Seismic Resistant Connections in Light Structural Frame Out of Aspen

    Directory of Open Access Journals (Sweden)

    Mohammad Shamsian

    2012-06-01

    Full Text Available Earthquake is the major Natural disaster in Iran which once a while causes widespread death and financial losses. Constructional system and materials used in them, most often accelerate these damages, so these are considered principal reasons of the events. Countries that have regions of high seismicity, conducted research on constructional systems, materials, and methods of improving their resistance to earthquake. These research efforts have found simple solution of the problem in wood and its proper combinations with other constructional materials. In this research, regarding such target, two subjects were studied. A model of light framed one story single-family residential house in Iran was constructed to determine its dynamical behavior. The model was constructed in one- third scale of a unit with 54 square meters in base. Foundation anchorage in model was made by metal angle pieces, which were bolted to lower plank. These types of connectors could easily be fabricated in metal working shops in Iran. The rest of joints in model were made with bolts and common nails. To see the behavior of the model, its natural frequency, acceleration at different points, lateral movements (displacement, and also response of joints to tensile and compressive forces (developed due to lateral dynamical loading on a shaking table were measured and analyzed. Results have shown that with respect to Fast Fourier Transformation spectra, ratio of maximum acceleration in roof to bottom of model, in sinusoidal acceleration test, the natural frequency of model is ten HZ (fn = 10 Hz, since 10 Hz frequency has the highest amplitude. This result had contingency with data of sinusoidal acceleration records with 10 HZ frequency and 0.64 g as well. Therefore, stiffness of model structure would be 78,250 Kg/cm. In addition, results of several sinusoidal acceleration tests for determining delay damping, has shown on the average 0.039 for this quantity. Brief results of sinusoidal acceleration test, sweeping frequency and time history of Kobe and Tabas earthquake have shown that maximum displacements (lateral movement due to dynamic loading are related to this acceleration with 8 HZ frequency and 1.18 g. This displacement in model has been measured 0.76 mm, which is lower than allowable limit in IBC code (1% of story high, that is, 30 mm for a 3 m high. Including scale coefficient of constructed model, this figure would be 5.76 mm. But for force, it could be considered that highest tensile and compressive force would occur with 10 HZ frequency and 0.85g test. The cause is resonant phenomena in this frequency. Therefore, in resonant phenomena maximum force is applied to joints and in this case, each joint would be under load of 30% of building’s weight. Therefore, well-installed joint can considerably prevent death and financial damages. financial losses. Constructional system and materials used in them, most often accelerate these damages, so these are considered principal reasons of the events.

  15. 75 FR 13805 - Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet...

    Science.gov (United States)

    2010-03-23

    ... Concepts, Inc., Desert Health Products, Inc., Equalnet Communications Corp., Geneva Steel Holdings Corp... securities of Commercial Concepts, Inc. because it has not filed any periodic reports since the period ended... accurate information concerning the securities of Desert Health Products, Inc. because it has not filed any...

  16. Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in Northern Minnesota, USA

    Science.gov (United States)

    Michael Reinikainen; Anthony W. D' Amato; Shawn. Fraver

    2012-01-01

    Characterizing the timing, severity, and agents of historic forest disturbances is critical to developing management and conservation strategies based on natural processes. Typically such information is derived from retrospective studies of remnant old-growth forests; however, this approach has limited application in regions dominated by secondary forests heavily...

  17. 2011 Aspen Winter Conference on Contrasting Superconductivity of Pnictides and Cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P. [Aspen Center for Physics, CO (United States); Schmalian, J. [Aspen Center for Physics, CO (United States); Canfield, P. [Aspen Center for Physics, CO (United States); Chakravarty, S. [Aspen Center for Physics, CO (United States)

    2011-05-02

    Our quest for materials with better properties is closely integral to the fabric of our society. Currently the development of materials that will allow for improved generation, transport, and storage of energy is at the forefront of our research in condensed matter physics and materials science. Among these materials, compounds that exhibit correlated electron states and emergent phenomena such as superconductivity have great promise, but also difficulties that need to be overcome: problems associated with our need to reliably find, understand, improve and control these promising materials. At the same time, the field of correlated electrons represents the frontier of our understanding of the electronic properties of solids. It contains deep open scientific issues within the broad area of quantum phenomena in matter. The aim of this workshop is to explore and understand the physics of recently discovered Fe-based high-temperature superconductors and contrast and compare them with the cuprates. The superconductivity in iron pnictides, with transition temperatures in excess of 55 K, was discovered in early 2008. The impact of this discovery is comparable to cuprates discovered in 1986. At the same time a number of recent experimental developments in cuprates may lead to a shift in our thinking with regards to these materials. There is therefore much to be learned by devoting a conference in which both classes of superconductors are discussed, especially at this nascent stage of the pnictides.

  18. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas H.; Grigoras, Ionela F.; Hoffmann, Julia

    2016-01-01

    heating value of 34.3 MJ/kg. The volatile fraction of the biocrude consisted mostly of compounds having number of carbon atoms in the C6–C12 range similar to gasoline. In terms of process feasibility, it was revealed that total organic carbon (TOC) and ash significantly accumulated in the water phase when...... such is recirculated for the proceeding batch. After four batches the TOC and the ash mass fraction of the water phase were 136.2 [g/L] and 12.6 [%], respectively. Water phase recirculation showed a slight increase in the biocrude quality in terms on an effective hydrogen-to-carbon ratio, but it showed no effects...

  19. Study of the conversion of lignocellulosic (aspen) materials to liquid fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, J M; Eager, R L; Mathews, J F

    1979-01-01

    Studies were completed on the use of the small-scale semi-continuous reactor whereby lignocellulosic materials may be converted into a fuel oil. Changes in design and operation were made and further data obtained as a result of studies of the following parameters: pretreatment with sulfuric acid, operating pressure, presence or absence of CO, and nature of feedstock. The major study has centered around the design, construction and testing of a small-scale continuous reactor whose operation was based upon the use of a newly designed screw unit to compress and deliver the wood meal to the reactor site. Chemical studies on oils were obtained from both wood and cellulose. Semi-continuous reactor experiments were run to demonstrate that proto oil could be made continuously under conditions similar to batch runs, and to outline the ranges of the process variable in which satisfactory operation can be maintained for extended periods of time. 7 refs., 4 figs., 5 tabs.

  20. 78 FR 46312 - Spruce Beetle Epidemic and Aspen Decline Management Response; Grand Mesa, Uncompahgre and...

    Science.gov (United States)

    2013-07-31

    ... treat affected stands, improve the resiliency of stands at risk of these large-scale epidemics and... across diverse vegetation ranging from sagebrush, pi[ntilde]on, juniper and ponderosa pine to Engelmann... past decade has been the hottest and driest in centuries. This climate pattern, together with...

  1. Aspen's Global 100: Beyond Grey Pinstripes 2009-2010--Preparing MBAs for Social and Environmental Stewardship

    Science.gov (United States)

    Aspen Institute, 2009

    2009-01-01

    Beyond Grey Pinstripes is a research survey and alternative ranking of business schools that spotlights innovative full-time MBA programs leading the way in integrating social and environmental stewardship into their curriculum and scholarly research. These schools are preparing today's students--tomorrow's leaders--for future market realities by…

  2. Analysis and Modeling of Vapor Recompressive Distillation Using ASPEN-HYSYS

    Directory of Open Access Journals (Sweden)

    Cinthujaa C. Sivanantha

    2011-10-01

    Full Text Available HYSYS process modeling software was used to analyze the effect of reflux ratio and number of trays on the purity of ethylene in a vapor recompression distillation column and also in an ordinary distillation column. Analysis of data showed that with increased pressure a higher reflux ratio is needed to obtain a purity of 99.9{\\%} for both towers. In addition number of trays was varied to see its effect on purity. Analysis proved that purity increases with number of trays.

  3. Biocrude production via supercritical hydrothermal co-liquefaction of spent mushroom compost and aspen wood sawdust

    DEFF Research Database (Denmark)

    Jasiunas, Lukas; Pedersen, Thomas Helmer; Toor, Saqib Sohail

    2017-01-01

    The work investigates a new potential feedstock source for hydrothermal liquefaction (HTL) driven biocrude production. Specifically, the focus is set on utilizing spent mushroom compost (SMC), the primary waste by-product from mushroom farming. It is considered as a feedstock for HTL conversion due...

  4. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Science.gov (United States)

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  5. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables

    Science.gov (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov

    2014-01-01

    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  6. Poly(propylene)/aspen/liquid polybutadiene composites: maximization of impact strength, tensile and modulus by statistical experimental design

    Czech Academy of Sciences Publication Activity Database

    Kokta, B. V.; Michálková, Danuše; Fortelný, Ivan; Kruliš, Zdeněk

    2007-01-01

    Roč. 18, č. 2 (2007), s. 106-111 ISSN 1042-7147 Grant - others:Network of Centres of Excellence(EU) AUTO21 Institutional research plan: CEZ:AV0Z40500505 Source of funding: R - rámcový projekt EK Keywords : poly butadiene * composites * poly (propylene) (pp) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.504, year: 2007

  7. Supporting 13 years of global change research: the history, technology, and methods of the Aspen FACE Experiment

    Science.gov (United States)

    Mark E. Kubiske; Anita R. Foss; Andrew J. Burton; Wendy S. Jones; Keith F. Lewin; John Nagy; Kurt S. Pregitzer; Donald R. Zak; David F. Karnosky

    2015-01-01

    This publication is an additional source of metadata for data stored and publicly available in the U.S. Department of Agriculture, Forest Service Research Data Archive. Here, we document the development, design, management, and operation of the experiment. In 1998, a team of scientists from the U.S. Forest Service, Department of Energy (DOE), Michigan Technological...

  8. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-07-01

    Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. 77 FR 60119 - Proposed Consent Agreements: DesignerWare, LLC, Timothy Kelly and Ronald P. Koller, Aspen Way...

    Science.gov (United States)

    2012-10-02

    ... the news release describing it. The FTC Act and other laws that the Commission administers permit the...' private information would not be possible. RTO stores also used Detective Mode to send fake ``software.... DesignerWare created several different fake registration forms that its servers displayed on consumers...

  10. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands? New Phytologist

    Science.gov (United States)

    Emily V. Moran; Mark E. Kubiske

    2013-01-01

    The world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration. Here, we report how elevated CO

  11. 78 FR 9876 - Endangered and Threatened Wildlife and Plants; Endangered Status and Designation of Critical...

    Science.gov (United States)

    2013-02-12

    ... (Pinus flexilis); ponderosa pine (Pinus ponderosa); and aspen (Populus tremuloides); and (b) Has an... pine (Pinus flexilis); ponderosa pine (Pinus ponderosa); and aspen (Populus tremuloides); and (B) Has...

  12. 77 FR 25490 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2012-04-30

    ... Department, 1905 m/index.php/ Gulf Shores, P.O. West 1st Street, alabama/baldwin/. Box 299, Gulf Gulf Shores..., Management m/index.php/ 211 West Aspen Section, 211 West arizona/coconino- Avenue, Flagstaff, Aspen Avenue..., Management m/index.php/ 211 West Aspen Section, 211 West arizona/coconino- Avenue, Flagstaff, Aspen Avenue...

  13. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations

    Science.gov (United States)

    Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth

    2017-01-01

    Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...

  14. Proceedings of the 2013 A.S.P.E.N. Research workshop: the interface between nutrition and the gut microbiome: implications and applications for human health [corrected].

    Science.gov (United States)

    Alverdy, John; Gilbert, Jack; DeFazio, Jennifer R; Sadowsky, Michael J; Chang, Eugene B; Morowitz, Michael J; Teitelbaum, Daniel H

    2014-02-01

    The human and earth microbiomes are among the most important biological agents in understanding and preventing disease. Technology is advancing at a fast pace and allowing for high-resolution analysis of the composition and function of our microbial partners across regions, space, and time. Bioinformaticists and biostatisticians are developing ever more elegant displays to understand the generated megadatasets. A virtual cyberinfrastructure of search engines to cross-reference the rapidly developing data is emerging in line with technologic advances. Nutrition science will reap the benefits of this new field, and its role in preserving the earth and the humans who inhabit it will become evidently clear. In this report we highlight some of the topics of an A.S.P.E.N.-sponsored symposium held during Clinical Nutrition Week in 2013 that address the importance of the human microbiome to human health and disease.

  15. KURUMSAL FAALİYET RAPORLARININ GRAFİK TASARIM ÜRÜNÜ OLARAK İNCELENMESİ: ASPEN SİGORTA HOLDİNG ÖRNEĞİ

    OpenAIRE

    CİVELEK, Hüseyin; GÖKÇEARSLAN, Armağan

    2017-01-01

    Bu çalışmada, bir grafik tasarım ürünü olarak düşünülenfaaliyet raporlarının tanımı, içeriğinin nasıl olması gerektiği, kurumsal birşirket açısından yeri ve önemi ve grafik tasarım öğelerinin bir faaliyetraporunda nasıl kullanılması gerektiği araştırılmıştır. Ayrıca tüm dünyadayatırımcılar ve tanıtım ajansları tarafından faaliyet raporlarının Oscar’larıolarak bilinen, alanında yılın en çok tanınan organizasyonu olan Annual ReportCompetition (ARC: Yıllık Faaliyet Raporları) Ödüllerine değinilm...

  16. Temporal Alterations in the Secretome of the Selective Ligninolytic Fungus Ceriporipsis subvermispora during growth on Aspen Wood Reveal this Organism's Strategy for Degrading Lighnocellulose

    Science.gov (United States)

    Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Phil Kersten; Michael Mozuch; Masahiro Samejima; Dan Cullen

    2014-01-01

    The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about themechanismof selective ligninolysis. To...

  17. Simulação de uma planta piloto de Biodisel com estudo da viabilidade econômica preliminar usando o ASPEN/HYSYS

    OpenAIRE

    Pinho Costa Souza, Thibério

    2011-01-01

    Nos últimos anos o biodiesel se tornou uma alternativa para a demanda crescente de combustível. O próximo passo é conseguir produzir um biodiesel economicamente competitivo com o diesel fóssil em um processo em nível industrial. Este trabalho visa estudar do ponto de vista computacional, uma planta piloto de biodiesel, simulando o processo desde a reação de transesterificação de óleos vegetais, chegando até a purificação do biodiesel, utilizando o APEN/HYSYS. Além disso, foi feito o estudo da...

  18. An applicable method for efficiency estimation of operating tray distillation columns and its comparison with the methods utilized in HYSYS and Aspen Plus

    Science.gov (United States)

    Sadeghifar, Hamidreza

    2015-10-01

    Developing general methods that rely on column data for the efficiency estimation of operating (existing) distillation columns has been overlooked in the literature. Most of the available methods are based on empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods may not be sufficiently accurate when applied to industrial columns. In this paper, an applicable and accurate method was developed for the efficiency estimation of distillation columns filled with trays. This method can calculate efficiency as well as mass and heat transfer coefficients without using any empirical mass transfer or hydraulic correlations and without the need to estimate operational or hydraulic parameters of the column. E.g., the method does not need to estimate tray interfacial area, which can be its most important advantage over all the available methods. The method can be used for the efficiency prediction of any trays in distillation columns. For the efficiency calculation, the method employs the column data and uses the true rates of the mass and heat transfers occurring inside the operating column. It is highly emphasized that estimating efficiency of an operating column has to be distinguished from that of a column being designed.

  19. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    Science.gov (United States)

    John B. Bradford; Douglas N. Kastendick

    2010-01-01

    Forest managers are seeking strategies to create stands that can adapt to new climatic conditions and simultaneously help mitigate increases in atmospheric CO2. Adaptation strategies often focus on enhancing resilience by maximizing forest complexity in terms of species composition and size structure, while mitigation involves sustaining carbon...

  20. Self-stigma as a mediator between social capital and empowerment among people with major depressive disorder in Europe: the ASPEN study.

    Science.gov (United States)

    Lanfredi, M; Zoppei, S; Ferrari, C; Bonetto, C; Van Bortel, T; Thornicroft, G; Knifton, L; Quinn, N; Rossi, G; Lasalvia, A

    2015-01-01

    Individual social capital has been recognized as having an important role for health and well-being. We tested the hypothesis that poor social capital increases internalized stigma and, in turn, can reduce empowerment among people with major depressive disorder (MDD). This is a cross-sectional multisite study conducted on a sample of 516 people with MDD in 19 European countries. Structural Equation Models were developed to examine the direct and indirect effects of self-stigma and social capital on empowerment. Social capital and self-stigma accounted for 56% of the variability in empowerment. Higher social capital was related to lower self-stigma (r=-0.72, Psocial capital and empowerment (r=0.38, PSocial capital plays a key role in the appraisal of empowerment, both directly and through the indirect effect mediated by self-stigma. In order to improve empowerment of people with MDD, we identify strategies to foster individual social capital, and to overcome the negative consequences related to self-stigma for attainment of life goals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  2. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Science.gov (United States)

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  3. Response of overstory and understory vegetation 37 years after prescribed burning in an aspen-dominated forest in northern Minnesota, USA – a case study

    Science.gov (United States)

    A. Dhar; C.D. Baker; H.B. Massicotte; Brian J. Palik; C.D.B. Hawkins

    2016-01-01

    Many studies have examined short-term changes in understory vegetation following prescribed burning. However, knowledge concerning longer term effects on both forest understory and overstory vegetation is lacking. This investigation was initiated to examine changes in understory (herbaceous and shrub) and overstory species composition almost four decades after logging...

  4. Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle

    Science.gov (United States)

    David A. Galvez; M.T. Tyree

    2009-01-01

    Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic...

  5. Forest atmosphere carbon transfer and storage (FACTS-II) the aspen Free-air CO2 and O3 Enrichment (FACE) project: an overview.

    Science.gov (United States)

    R.E. Dickson; K.F. Lewin; J.G. Isebrands; M.D. Coleman; W.E. Heilman; D.E. Riemenschneider; J. Sober; G.E. Host; D.R. Zak; G.R. Hendrey; K.S. Pregitzer; D.F. Karnosky

    2000-01-01

    This publication briefly reviews the impact of increasing atmospheric carbon dioxide and tropospheric ozone on global climate change, and the response of forest trees to these atmospheric pollutants and their interactions; points out the need for large-scale field experiments to evaluate the response of plants to these environmental stresses; and describes the...

  6. American Society for Parenteral & Enteral Nutrition

    Science.gov (United States)

    ... Center Advertising and Sponsorship Learn More ASPEN Enteral Nutrition by the Numbers: EN Data Across the Healthcare Continuum Learn More The ASPEN Adult Nutrition Support Core Curriculum, 3rd Edition Has Arrived! The ...

  7. Genetics and variation

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  8. Slow lifelong growth predisposes Populus tremuloides to tree mortality

    Science.gov (United States)

    Kathryn B. Ireland; Margaret M. Moore; Peter Z. Fule; Thomas J. Zegler; Robert E. Keane

    2014-01-01

    Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of...

  9. Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew

    2009-01-01

    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.

  10. Biomass production in forest plantations used as raw material for industry and energy. Final report. Biomasseproduktion in forstlichen Plantagen fuer die Rohstoff- und Energiegewinnung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, M.R.; Muhs, H.J.

    1986-10-01

    European aspen (Populus tremula), quaking aspen (Populus tremuloides), and their hybrids (hybrid aspen) are short-rotation, fast growing forest tree species, that apparently hold potential for biomass and energy production. Because of inherent difficulties in vegetative propagation in aspen, it has not been possible to propagate selected aspen and hybrid aspen tress on a large scale. Therefore, the aim of this project was to develop unconventional methods of vegetative propagation in aspen that can easily be adapted to nursery practices and are also cost-effective. Explants from buds, leaves, stems, and roots were cultured on a modified Woody Plant Medium for the purposes of microvegetative propagation. Protoplasts were also cultured for regenerative studies. Mainly the bud explants were employed for microvegetative propagation. A 2-step micropropagation method, which is commmercially feasible, has been developed for aspen. This method involves: (1) culture of bud explants on a medium for bud conditioning and microshoot proliferation, and (2) rooting of microshoots in peat-perlite mix. By employing this 2-step micropropagation method, several thousand plants have been regenerated from about 50 mature selected aspen and hybrid aspen trees ranging from 1 to 40 years of age. Following transfer to field conditions, tissue culture derived plants exhibited vigorous growth and attained a height of 1.5-2 meters in the first growing season. (orig.) With 23 refs., 1 tab., 20 figs.

  11. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  12. Environmental Impact Study of the Northern Section of the Upper Mississippi River, Upper and Lower St. Anthony Falls Pool.

    Science.gov (United States)

    1973-11-01

    occasionally with pines . barrens and aspen-oak),and Aspen-Oak Land: aspen, generally dense, but small in transition zones most places, with scattered...activities has led to a vegetational gradation from the extensive mixed pine -hardwood forests bejeweled with numerous lakes and streams in the northeast, to...occurs along the right bank from the Plymouth Avenue Bridge upstream nearly to the Burlington Northern Rail- , road Bridge next to the new West River

  13. What Is Enteral Nutrition?

    Science.gov (United States)

    ... Solution Center NOVEL Project Parenteral Nutrition Resources Intravenous Lipid Emulsions (ILE) Video Series SmartPN Practice and Research Toolkits Publications & ASPEN Journals Journal of Parenteral and ...

  14. Ormosil Beads for Insulation of Ground Cryogenic Storage Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Organically modified silica (Ormosil) aerogel beads developed at Aspen Aerogels, Inc. offer several advantages for retrofitting perlite insulation in NASA's ground...

  15. 78 FR 62716 - Pacific Life Insurance Company, et al; Notice of Application

    Science.gov (United States)

    2013-10-22

    ... objective of the Replaced Portfolio is to maximize total return consistent with its Investment Adviser's... Replaced Portfolio; (2) the historical performance of the Replacement Portfolio is generally better than..., approving the substitution of Service Shares of the Janus Aspen Balanced Portfolio, a series of Janus Aspen...

  16. Distribution

    Science.gov (United States)

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  17. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  18. Wood decay by Chlorociboria aeruginascens (Nyl.) Kanouse (Helotiales, Leotiaceae) and associated basidiomycete fungi

    Science.gov (United States)

    Dana L. Richter; Jessie A. Glaeser

    2015-01-01

    Two isolates of Chlorociboria aeruginascens (Nyl.) Kanouse incubated axenically on aspen wood blocks resulted in 18% and 32% mass loss after 134 wks (2 yrs 8 mo). Aspen wood decayed by C. aeruginascens contained cavities in the S2 layer of the secondary cell wall, similar to Type I soft rot attack, as well as erosion troughs and...

  19. Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern hardwoods

    Science.gov (United States)

    Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser

    2016-01-01

    We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...

  20. Animal impacts

    Science.gov (United States)

    Norbert V. DeByle

    1985-01-01

    The aspen ecosystem is rich in number and species of animals, especially in comparison to associated coniferous forest types. This natural species diversity and richness has been both increased and influenced by the introduction of domestic livestock. The high value of the aspen type as a forage resource for livestock and as forage and cover for wildlife makes the...

  1. Modelling and analysis of offshore energy systems on North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Elmegaard, Brian; Pierobon, Leonardo

    2012-01-01

    export, and power generation. In this paper, a generic model of a North Sea oil and gas platform is described and the most thermodynamically inefficient processes are identified by performing an exergy analysis. Models and simulations are built and run with the tools Aspen Plus R, DNA and Aspen HYSYS R...

  2. Exergetic assessment of energy systems on North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Pierobon, Leonardo; Elmegaard, Brian

    2013-01-01

    offshore system is described: its thermodynamic performance is assessed by performing an exergy accounting and rules of thumb for oil and gas platforms are derived. Simulations are built and conducted with the tools Aspen Plus_, Dynamic Network Analysis and Aspen HYSYS_. 62e65% of the total exergy...

  3. Exergy analysis of offshore processes on North Sea oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Pierobon, Leonardo; Elmegaard, Brian

    2012-01-01

    generation. In this paper, the most thermodynamically inefficient processes are identified by performing an exergy analysis, based on models built with the simulation tools Aspen Plus®, DNA and Aspen HYSYS®. Results reveal that the total exergy destruction of the system amounts to 69.4 MW, while the total...

  4. Enhancing multi-component separation of aromatics with Kaibel columns and DWC

    NARCIS (Netherlands)

    Flores Landaeta, S.J.; Kiss, A.A.; Haan, de A.B.

    2012-01-01

    This study investigates novel schemes for an energy efficient separation of aromatics, based on a dividing-wall column (DWC) and a Kaibel distillation column. AspenTech Aspen Plus®was used as CAPE tool to perform rigorous simulations and optimization of the proposed designs applying a simplified

  5. Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest

    Science.gov (United States)

    Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly

    2014-01-01

    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...

  6. Advancing Entrepreneurship Education. A Report of the Youth Entrepreneurship Strategy Group

    Science.gov (United States)

    Aspen Institute, 2008

    2008-01-01

    The Youth Entrepreneurship Strategy Group convened its inaugural meeting from September 26-28, 2007 at the Aspen Institute in Aspen, Colorado. A group of dynamic national leaders from the fields of education, entrepreneurship and business, public policy, media, and philanthropy met over three days to explore the promise of, and obstacles to,…

  7. Wood property variation in Populus

    Science.gov (United States)

    Dean W. Einspahr; Miles K. Benson; John R. Peckham

    1968-01-01

    The use of bigtooth aspen (Populus grandidentata Michx.), quaking aspen (P. tremuloides Michx.), and cottonwood (P. deltoides Bartr.) by the pulp and paper industry has increased greatly during the past decade. This expanded use has stimulated research on the genetic improvement of Populus. For the past 12 years...

  8. Growth

    Science.gov (United States)

    John R. Jones; George A. Schier

    1985-01-01

    This chapter considers aspen growth as a process, and discusses some characteristics of the growth and development of trees and stands. For the most part, factors affecting growth are discussed elsewhere, particularly in the GENETICS AND VARIATION chapter and in chapters in PART 11. ECOLOGY. Aspen growth as it relates to wood production is examined in the WOOD RESOURCE...

  9. Vegetation types and forest productivity, west part of Syncrude's Lease 17, Alberta. Environmental Research Monography 1977-6. [Tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E B; Levinsohn, A G

    1977-01-01

    The vegetation that existed in August 1977 on the western half of Syncrude's Lease 17 near Fort McMurray, Alberta is described. Eight vegetation types were identified and are mapped at a scale if 1 : 24,000. Black Spruce--Labrador Tea was the dominant vegetation type, making up 35.0% of the 9250 hectare study area. The second most abundant vegetation type was Aspen--White Spruce (26.0%) and the third was White Spruce--Aspen (18.0%). The remaining 21.0% of the area was occupied by the Aspen--Birch vegetation type (7.5%), Balsam Poplar--Alder (6.0%) along the McKay River, Sedge--Reed Grass (4.0%) mainly around bodies of standing water created by beaver dams, Willow--Reed Grass (3.0%) along stream courses, and Black Spruce--Feathermoss (0.5%). The White Spruce--Aspen type is best developed in the southern part of the lease. It is the only vegetation type that contains some white spruce stands approaching the present lower limits of merchantable forest in Alberta. The Aspen--White Spruce type was less productive. In terms of mean annual increment and site index, the two vegetation types with the greatest potential for fibre production (White Spruce--Aspen and Aspen--White Spruce types) are average or below average productivity when compared to data from similar stands elsewhere in Alberta and Saskatchewan.

  10. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    Directory of Open Access Journals (Sweden)

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  11. Survey and Certification - Enforcement - 2567 Report

    Data.gov (United States)

    U.S. Department of Health & Human Services — This website provides high level results of the surveys conducted by the State Agencies captured by the ASPEN system. It provides deficiency information for Nursing...

  12. Discrete-Event Simulation in Chemical Engineering.

    Science.gov (United States)

    Schultheisz, Daniel; Sommerfeld, Jude T.

    1988-01-01

    Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)

  13. Romper la oferta y la demanda

    OpenAIRE

    Interamericano, Diálogo

    2011-01-01

    [Informe del diálogo Interamericano, publicado por el Aspen Institute and University Press of America, Inc.] Perspectivas de los Estados Unidos -- Perspectivas latinoamericanas -- Dirigir la demanda -- La oferta -- Agenda de acción

  14. Thermodynamic analysis of hydrogen production via hydrothermal gasification of hexadecane

    KAUST Repository

    Alshammari, Yousef M.; Hellgardt, Klaus

    2012-01-01

    minimisation of Gibbs free energy employed within the Aspen HYSYS. This modelling enabled establishing both the limits and optimum conditions at which the hydrogen molar yield may be theoretically maximised. The effects of parameters including the reactor

  15. Growing a market economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.

    1997-09-01

    This report presents a microsimulation model of a transition economy. Transition is defined as the process of moving from a state-enterprise economy to a market economy. The emphasis is on growing a market economy starting from basic microprinciples. The model described in this report extends and modifies the capabilities of Aspen, a new agent-based model that is being developed at Sandia National Laboratories on a massively parallel Paragon computer. Aspen is significantly different from traditional models of the economy. Aspen`s emphasis on disequilibrium growth paths, its analysis based on evolution and emergent behavior rather than on a mechanistic view of society, and its use of learning algorithms to simulate the behavior of some agents rather than an assumption of perfect rationality make this model well-suited for analyzing economic variables of interest from transition economies. Preliminary results from several runs of the model are included.

  16. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.; Hellgardt, K.

    2014-01-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS

  17. PEGylation of α-momorcharin retained its anti-tumor activity with ...

    African Journals Online (AJOL)

    user

    the anti-tumor activity of α-MMC-PEG decreased by about 30% in vitro. This sensitivity increase of 50 ... experiments and were acclimatized in the animal room. They were housed on aspen ..... PEGylation, successful approach to drug delivery.

  18. Simulating economic effects of disruptions in the telecommunications infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.; Eidson, Eric D.; Schoenwald, David Alan

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

  19. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  20. Feeding ecology of sharp-shinned hawks in deciduous and coniferous forests in Colorado

    Science.gov (United States)

    Suzanne M. Joy; Richard T. Reynolds; Richard L. Knight; Richard W. Hoffman

    1994-01-01

    Feeding ecology of 11 Sharp-skinned Hawk (Accipiter striates) pairs nesting in aspen (Populus tremuloides), conifer (Abies, Picea spp.), and mixed aspen-conifer habitats in southwest Colorado was investigated during 1988-1989. Small birds (x-bar = 20.9 g, SE = 0.8 g) and mammals (x-bar = 41.1 g, SE = 3.3 g) comprised 91 and 9% of...

  1. Wood resource

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Robert P. Winokur

    1985-01-01

    Aspen has not been cut extensively in the West; in fact, it has been grossly underutilized. For example, as recently as 1975, the aspen harvest from National Forests in four Forest Service regions in the Rocky Mountain area was 7.64 million board feet. Additional minor volumes were cut on special-use permits for products such as fuel and corral poles. The total amount...

  2. Clinical Investigation Program Annual Progress Report.

    Science.gov (United States)

    1985-09-30

    Development of Subsensitivity to Chlorpheniramine. J Allergy Clin Immunol 76:103, 1985. (C) Weber, R.W. and Simon, P.J.: Eosinophilia , Mental Status Changes...Fourteenth Aspen Coiference on Pediatric Research, Aspen, CO, July 1985. (C) Opel, S.M., Cannady, P.B., Asp, A.A. and Morse, P.L.: The Epidemiology of ...Cholesteatoma of the Infratemporal Fossa. Presented: XIII World Congress of Otorhinolaryngology, Miami Beach, Florida, May 1985. Uroloqy Service Fauver

  3. Small-scale semi-continuous reactor for the conversion of wood to fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Mathews, J F

    1983-04-01

    The design and operation of a small-scale semi-continuous reactor to convert aspen wood meal into an oil product is described. Modifications that reduce erosion/corrosion are also presented. Short residence times and relatively low operating pressures have been achieved for the reaction of aspen with CO and H2O in the presence of Na2CO3. Conversions, char formation, and the effect of sodium carbonate concentration on oil product are reported.

  4. Flambeau Mining Corporation, Ladysmith, Rusk County, Wisconsin. Proposed Open Pit Copper Mine and Waste Containment Area, Draft Environmental Impact Statement.

    Science.gov (United States)

    1976-08-01

    American elm Lonicera tatarica - tartarian honeysuckle Ulmus rubra - slippery elm Siiibucus canadenis - common elder Ulmus thoiii~sii - cork elm ...community borders the marshes and swamps. 2.060 The predominant species are the trembling aspen (Populus tremuloides), red maple (Acer rubrum), the elms ...succession. The most numerous trees (in descending order) are: white birch, red maple, aspen, sugar maple, black ash, basswood, elm (Ulmus sp.), hemlock

  5. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  6. Growth-climate relationships across topographic gradients in the northern Great Lakes

    Science.gov (United States)

    Dymond, S.F.; D'Amato, A.W.; Kolka, R.K.; Bolstad, P.V.; Sebestyen, S.D.; Bradford, John B.

    2016-01-01

    Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climate–growth relationships for two dominant species, Populus tremuloides (quaking aspen) and Pinus resinosa (red pine), in the upper Great Lakes region to understand how climate and water availability influence annual forest productivity. Trees were sampled along a topographic gradient at the Marcell Experimental Forest (Minnesota, USA) to assess growth response to variations in temperature and different water availability metrics (precipitation, potential evapotranspiration (PET), cumulative moisture index (CMI), and soil water storage). Climatic variables were able to explain 33–58% of the variation in annual growth (as measured by ring-width increment) for quaking aspen and 37–74% of the variation for red pine. Climate–growth relationships were influenced by topography for quaking aspen but not for red pine. Annual ring growth for quaking aspen decreased with June CMI on ridges, decreased with temperature in the November prior to the growing season on sideslopes, and decreased with June PET on toeslopes. Red pine growth increased with increasing July PET across all topographic positions. These results indicate the sensitivity of both quaking aspen and red pine to local climate and show several vulnerabilities of these species to shifts in water supply and temperature because of climate change.

  7. Seasonal dynamics of the photosynthetic pigments content in Populus tremula L. leaves at the adaptation on an open-pit coal mine revegetating dump

    Directory of Open Access Journals (Sweden)

    Yu. V. Zagurskaya

    2017-02-01

    Full Text Available Seasonal dynamics of the basic photosynthetic pigments (a and b chlorophylls, carotenoids content in the samples of aspen Populus tremula during natural regeneration on a revegetating pit dump of a worked-out coal pit has been studied. The studies were conducted every ten days during the vegetation period in 2015 (June–September on the territory of «Yuzhniy» dump of «Kedrovskiy» open-pit coal mine (Kemerovo region. The pigment content was identified by the means of spectrophotometric detection. The content of photosynthetic pigments in aspen leaves was calculated on oven-dry weight of the leaves, as moisture aspen leaves can greatly vary, and the determination of accuracy of dry matter content higher than the for specific gravity of the sheet. No changes in visible absorption spectrum of acetone extracts indicating pheophytin formation in chlorophylls have been identified. For all variants the larger amount of b chlorophyll was contained in control samples. The largest differences in a/b chlorophylls and chlorophylls/carotenoids ratio were observed in the end of vegetation period. The ratio between a and b chlorophylls of aspen leaves in both cases by the end of the season was considerably lower. The adaptation of aspen photosynthetic system to the revegetating dump conditions was performed due to decrease in the total pigment content and the percent of b chlorophyll in their composition.

  8. Software features and applications in process design, integration and operation

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, V. [Aspen Tech Limited, Warrington (United Kingdom)

    1999-02-01

    Process engineering technologies and tools have evolved rapidly over the last twenty years. Process simulation/modeling, advanced process control, on-line optimisation, production planning and supply chain management are some of the examples of technologies that have rapidly matured from early commercial prototypes and concepts to established tools with significant impact on profitability of process industry today. Process Synthesis or Process Integration (PI) in comparison is yet to create its impact and still remains largely in the domain of few expert users. One of the key reasons as to why PI has not taken off is because the PI tools have not become integral components of the standard process engineering environments. On the last 15 years AspenTech has grown from a small process simulation tool provider to a large multinational company providing a complete suite of process engineering technologies and services covering process design, operation, planning and supply chain management. Throughout this period, AspenTech has acquired experience in rapidly evolving technologies from their early prototype stage to mature products and services. The paper outlines AspenTech`s strategy of integrating PI with other more established process design and operational improvement technologies. The paper illustrates the key elements of AspenTech`s strategy via examples of software development initiatives and services projects. The paper also outlines AspenTech`s future vision of the role of PI in process engineering. (au)

  9. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1979-October 14, 1980

    International Nuclear Information System (INIS)

    Murphy, P.G.; Sharitz, R.R.

    1980-07-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone, were studied before and after irradiation in northern Wisconsin. Irradiation occurred during the summer of 1972. By the summer of 1973 the density of viable tree seedlings at 10 m from the radiation source was substantially reduced in all three areas relative to the preirradiation densities of 1971. As of the summer of 1979, establishment of tree seedlings continued to be inhibited by the vigorous development of ground vegetation. In most respects, the ecotone has shown properties and responses to radiation intermediate to those observed in the aspen and maple-birch areas. The rate and compositional characteristics of succession in the ecotone relative to aspen and maple-birch forest types is presently under study

  10. Effects of elevated CO2 leaf diets on gypsy moth (Lepidoptera: Lymantriidae) respiration rates.

    Science.gov (United States)

    Foss, Anita R; Mattson, William J; Trier, Terry M

    2013-06-01

    Elevated levels of CO2 affect plant growth and leaf chemistry, which in turn can alter host plant suitability for insect herbivores. We examined the suitability of foliage from trees grown from seedlings since 1997 at Aspen FACE as diet for the gypsy moth (Lymantria dispar L.) Lepidoptera: Lymantriidae: paper birch (Betula papyrifera Marshall) in 2004-2005, and trembling aspen (Populus tremuloides Michaux) in 2006-2007, and measured consequent effects on larval respiration. Leaves were collected for diet and leaf chemistry (nutritional and secondary compound proxies) from trees grown under ambient (average 380 ppm) and elevated CO2 (average 560 ppm) conditions. Elevated CO2 did not significantly alter birch or aspen leaf chemistry compared with ambient levels with the exception that birch percent carbon in 2004 and aspen moisture content in 2006 were significantly lowered. Respiration rates were significantly higher (15-59%) for larvae reared on birch grown under elevated CO2 compared with ambient conditions, but were not different on two aspen clones, until larvae reached the fifth instar, when those consuming elevated CO2 leaves on clone 271 had lower (26%) respiration rates, and those consuming elevated CO2 leaves on clone 216 had higher (36%) respiration rates. However, elevated CO2 had no apparent effect on the respiration rates of pupae derived from larvae fed either birch or aspen leaves. Higher respiration rates for larvae fed diets grown under ambient or elevated CO2 demonstrates their lower efficiency of converting chemical energy of digested food stuffs extracted from such leaves into their biosynthetic processes.

  11. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  12. Compilation of 1987 Annual Reports of the Navy ELF (Extremely Low Frequency) Communications System Ecological Monitoring Program. Volume 1

    Science.gov (United States)

    1988-08-01

    Apparently strong associations occur between A anni and eastern white pine, between amanita muscaria, boletus piDeratus, £in alboviolaceus, and T...bigtooth aspen/ ¥i = -3.864 + 1.032 BTA# .657 19.192 .001 Boletus piperatus ¥i = -1.334 + 18.587 BTABA .887 31.326 .005 bigtooth aspen/ Yi = -2.435 + 4.495... Boletus , Hebeloma, Paxillus or Suillus spp.; these have been designated as Type 6 mycorrhizae. Though variations occur within mycorrhizal morphology

  13. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  14. Double keystone bird in a keystone species complex.

    Science.gov (United States)

    Daily, G C; Ehrlich, P R; Haddad, N M

    1993-01-15

    Species in a Colorado subalpine ecosystem show subtle interdependences. Red-naped sapsuckers play two distinct keystone roles. They excavate nest cavities in fungus-infected aspens that are required as nest sites by two species of swallows, and they drill sap wells into willows that provide abundant nourishment for themselves, hummingbirds, orange-crowned warblers, chipmunks, and an array of other sap robbers. The swallows thus depend on, and the sap robbers benefit from, a keystone species complex comprised of sapsuckers, willows, aspens, and a heartwood fungus. Disappearance of any element of the complex could cause an unanticipated unraveling of the community.

  15. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James [AGCI

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  16. Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Lundorff, Peter; Ivarsson, Anders

    2007-01-01

    and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline. FT based diesel generally showed good emission performance, whereas the FT based gasoline not necessary lead to lower emissions. On the other hand, the Aspen fuel did show many advantages for the emissions from the gasoline...... vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were...

  17. Rats Housed on Corncob Bedding Show Less Slow-Wave Sleep

    OpenAIRE

    Leys, Laura J; McGaraughty, Steve; Radek, Richard J

    2012-01-01

    Despite the reported advantages of corncob bedding, questions have emerged about how comfortable animals find this type of bedding as a resting surface. In this study, encephalography (EEG) was used to compare the effects of corncob and aspen-chip bedding on rat slow-wave sleep (SWS). According to a facility-wide initiative, rats that were weaned on aspen-chip bedding were switched to corncob bedding in home cages and EEG recording chambers. Spontaneous EEG recordings obtained for 5 wk after ...

  18. Aging in a long-lived clonal tree.

    Directory of Open Access Journals (Sweden)

    Dilara Ally

    2010-08-01

    Full Text Available From bacteria to multicellular animals, most organisms exhibit declines in survivorship or reproductive performance with increasing age ("senescence". Evidence for senescence in clonal plants, however, is scant. During asexual growth, we expect that somatic mutations, which negatively impact sexual fitness, should accumulate and contribute to senescence, especially among long-lived clonal plants. We tested whether older clones of Populus tremuloides (trembling aspen from natural stands in British Columbia exhibited significantly reduced reproductive performance. Coupling molecular-based estimates of clone age with male fertility data, we observed a significant decline in the average number of viable pollen grains per catkin per ramet with increasing clone age in trembling aspen. We found that mutations reduced relative male fertility in clonal aspen populations by about 5.8 x 10(-5 to 1.6 x 10(-3 per year, leading to an 8% reduction in the number of viable pollen grains, on average, among the clones studied. The probability that an aspen lineage ultimately goes extinct rises as its male sexual fitness declines, suggesting that even long-lived clonal organisms are vulnerable to senescence.

  19. Using a Commercial Simulator to Teach Sorption Separations

    Science.gov (United States)

    Wankat, Phillip C.

    2006-01-01

    The commercial simulator Aspen Chromatography was used in the computer laboratory of a dual-level course. The lab assignments used a cookbook approach to teach basic simulator operation and open-ended exploration to understand adsorption. The students learned theory better than in previous years despite having less lecture time. Students agreed…

  20. Biosorbents prepared from wood particles treated with anionic polymer and iron salt: Effect of particle size on phosphate adsorption

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min

    2008-01-01

    Biomass-based adsorbents have been widely studied as a cost-effective and environmentally-benign means to remove pollutants and nutrients from water. A two-stage treatment of aspen wood particles with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a biosorbent that was effective in removing phosphate from test solutions. FTIR spectroscopy of...

  1. Entrainer-based reactive distillation versus conventional reactive distillation for the synthesis of fatty acid esters

    NARCIS (Netherlands)

    Jong, de M.C.; Dimian, A.C.; Haan, de A.B.

    2008-01-01

    In this paper different reactive distillation configurations for the synthesis of isopropyl myristate were compared with the use of process models made in Aspen Plus. It can be concluded that the configurations in which an entrainer is added are more capable to reach the required conversion of

  2. Polymer-treated woody biomass: a filtration medium for removing phosphate from water

    Science.gov (United States)

    Thomas L Eberhardt

    2006-01-01

    A two-stage treatment of refined aspen wood fiber with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a filtration medium that was effective in removing phosphate from test solutions. To assess the stability of the filtration medium, samples exposed to the test solutions were analyzed by FTIR spectroscopy. The resultant spectra indicated that...

  3. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  4. Effects of elevated CO2 leaf diet on gypsy moth (Lepidoptera: Lymantriidae) respiration rates

    Science.gov (United States)

    Anita R. Foss; William J. Mattson; Terry M. Trier

    2013-01-01

    Elevated levels of CO2 affect plant growth and leaf chemistry, which in turn can alter host plant suitability for insect herbivores. We examined the suitability of foliage from trees grown from seedlings since 1997 at Aspen FACE as diet for the gypsy moth (Lymantria dispar L.) Lepidoptera: Lymantriidae: paper birch (...

  5. The Evidence Base for How Learning Happens: A Consensus on Social, Emotional, and Academic Development

    Science.gov (United States)

    Jones, Stephanie M.; Kahn, Jennifer

    2018-01-01

    The Aspen Institute's National Commission on Social, Emotional, and Academic Development united a broad alliance of leaders to speak with a unified voice about the urgency of integrating social and emotional development into the fabric of K-12 education. The commission convened a group of scientists, researchers, and academics across disparate…

  6. Techno-Economic Analysis of Magnesium Extraction from Seawater via a Catalyzed Organo-Metathetical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Bearden, Mark D.; Fernandez, Carlos A.; Fifield, Leonard S.; Nune, Satish K.; Motkuri, Radha K.; Koech, Philip K.; McGrail, B. Pete

    2018-01-16

    Magnesium (Mg) has many useful applications especially in various Mg alloys which can decrease weight while increasing strength. To increase the affordability and minimize environment consequence, a novel catalyzed organo-metathetical (COMET) process was proposed to extract Mg from seawater aiming to achieve significant reduction in total energy and production cost comparing with the melting salt electrolysis method currently adopted by US Mg LLC. A process flowsheet for a reference COMET process was set-up using Aspen Plus which included five key steps, anhydrous MgCl2 production, transmetallation, dibutyl Mg decomposition, n-BuLi regeneration, and LiCL electrolysis. The energy and production cost and CO2 emission were estimated based on the Aspen modeling using Aspen economic analyzer. Our results showed that it is possible to produce Mg from seawater with a production cost of $2.0/kg-Mg while consuming about 35.3 kWh/kg-Mg and releasing 7.0 kg CO2/kg-Mg. A simplified US Mg manufacturing process was also generated using Aspen and the cost and emission results were estimated for comparison purpose. Under our simulation conditions, the reference COMET process maintain a comparable CO2 emission rate and can save about 40% in production cost and save about 15% energy compared to the simplified US Mg process.

  7. Module 1: Text Versions | State, Local, and Tribal Governments | NREL

    Science.gov (United States)

    that you purchase some certificates at the end of a year to make up the difference between your way the City of Aspen handled the issue, as to purchase RECs as a balancing mechanism. Capacity goals amount of time you spend analyzing different options. It will ease the decision making process when you

  8. Flammulated Owls (Otus flammeolus) breeding in deciduous forests

    Science.gov (United States)

    Carl D. Marti

    1997-01-01

    The first studies of nesting Flammulated Owls (Otus flammeolus) established the idea that the species needs ponderosa pine (Pinus ponderosa) forests for breeding. In northern Utah, Flammulated Owls nested in montane deciduous forests dominated by quaking aspen (Populus tremuloides). No pines were present but...

  9. Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses

    Science.gov (United States)

    Elizabeth Bent; Preston Kiekel; Rebecca Brenton; D.Lee. Taylor

    2011-01-01

    The role of common mycorrhizal networks (CMNs) in postfire boreal forest successional trajectories is unknown. We investigated this issue by sampling a 50-m by 40-m area of naturally regenerating black spruce (Picea mariana), trembling aspen, (Populus tremuloides), and paper birch (Betula papyrifera)...

  10. Selection of Plot Remeasurement in an Annual Inventory

    Science.gov (United States)

    Mark H. Hansen; Hans T. Schreuder; Dave Heinzen

    2000-01-01

    A plot selection approach is proposed based on experience from the Annual Forest Inventory System (AFIS) in the Aspen-Birch Unit of northestern Minnesota. The emphasisis on a mixture of strategies. Although the Agricultural Act of 1998 requires that a fixed 20 percent of plots be measured each year in each state, sooner or later we will need to vary the scheme to...

  11. THE PRINCIPLE OF THE PRESUMPTION OF INNOCENCE AND ...

    African Journals Online (AJOL)

    SimenehKA

    The central issue relating to the presumption of innocence and burden of proof in Ethiopia's ... (moral) costs in the application of the substantive law.6 Those moral costs for the acquittal of the ..... (New York: Aspen Law and Business), at 767. ..... Buhagiar,. William (last accessed 26 August 2009).

  12. Strategic Retrenchment and Renewal in the American Experience

    Science.gov (United States)

    2014-08-01

    vigorously as American films and music .22 In addi- tion to culture and the arts, the pursuit of diplomacy and engagement by indirect means also...Texas, a Senior Research Fellow at the Nobel Institute, and an Aspen Ideas Festival Scholar. He is a life member of the Council on Foreign Rela

  13. 76 FR 23639 - Revocation of License of Small Business Investment Company

    Science.gov (United States)

    2011-04-27

    ... SMALL BUSINESS ADMINISTRATION Revocation of License of Small Business Investment Company Pursuant..., II, L.P., a Delaware Limited Partnership, to function as a small business investment company under the Small Business Investment Company License No. 09790400 issued to Aspen Ventures West, II, L.P., on...

  14. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Furimsky, E. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2005-07-01

    The performances of four IGCC plants employing Shell, Texaco, BGL and KRW gasifiers were simulated using ASPEN Plus software for three different feeds. Performance analyses and comparisons of all four IGCC plants were performed based on the established data bank from the simulation. Discussions were focused on gas compositions, gasifier selection and overall performance.

  15. Heat treatment of wet wood fiber: A study of the effect of reaction conditions on the formation of furfurals

    Science.gov (United States)

    Mandla A. Tshabalala; James D. McSweeny; Roger M. Rowell

    2012-01-01

    Furan monomers are produced when wood is heated at high temperatures. To understand the process conditions for production of furfural (FF) and hydroxymethylfurfural (HMF) from wood, samples of milled aspen wood were subjected to autohydrolyzis by microwave heating in a sealed Teflon reactor. The experiments were designed to simulate temperature and pressure variables...

  16. Pilot trials of hemicelluloses extraction prior to thermomechanical pulp production: Part 1

    Science.gov (United States)

    Carl Houtman; Eric Horn

    2011-01-01

    Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no...

  17. Woody tissue analysis using an element ratio technique (DRIS)

    Science.gov (United States)

    Kurt H. Riitters; L.F. Ohmann; D.F. Grigal

    1991-01-01

    The diagnosis and recommendation integrated system (DRIS) was used to describe the variation of 12 elements in woody tree tissue and balsam fir (Abies balsamae (L.) Mill.), sugar maple (Acer saccharum Marsh.), jack pine (Pinus banksiana Lamb.), red pine (Pinus resinosa alt.), and aspen (

  18. Timber harvesting trends in the Lake States, 1983-1987.

    Science.gov (United States)

    W. Brad Smith; James E. Blyth

    1989-01-01

    Growing-stock removals for products have increased by 12% in the Lake States since 1983. Regional gains are led by red pine, aspen, and other hardwoods. New mills and technology promise to further improve markets for underutilized species throughout the region.

  19. Lignosulfonate To Enhance Enzymatic Saccharification of Lignocelluloses: Role of Molecular Weight and Substrate Lignin

    Science.gov (United States)

    Haifeng Zhou; Hongming Lou; Dongjie Yang; J.Y. Zhu; Xueqing Qiu

    2013-01-01

    This study conducted an investigation of the effect of lignosulfonate (LS) on enzymatic saccharification of lignocelluloses. Two commercial LSs and one laboratory sulfonated kraft lignin were applied to Whatman paper, dilute acid and SPORL (sulfite pretreatment to overcome recalcitrance of lignocelluloses) pretreated aspen, and kraft alkaline and SPORL pretreated...

  20. New developments in clinical practice guidelines

    African Journals Online (AJOL)

    the critical ill patient who is unable to maintain volitional intake. ESPEN: It should be given to all ... ASPEN: In the critically ill obese patient, permissive underfeeding or hypocaloric feeding with EN is recommended. For all classes of obesity ...

  1. Ionic liquid-facilitated preparation of lignocellulosic composites

    Science.gov (United States)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  2. Validity of plant fiber length measurement : a review of fiber length measurement based on kenaf as a model

    Science.gov (United States)

    James S. Han; Theodore. Mianowski; Yi-yu. Lin

    1999-01-01

    The efficacy of fiber length measurement techniques such as digitizing, the Kajaani procedure, and NIH Image are compared in order to determine the optimal tool. Kenaf bast fibers, aspen, and red pine fibers were collected from different anatomical parts, and the fiber lengths were compared using various analytical tools. A statistical analysis on the validity of the...

  3. Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Hansen, Nick Høy; Pérez, Oscar Miralles

    2018-01-01

    This study demonstrates the economic feasibility of producing renewable transportation drop-in fuels from lignocellulosic biomass through hydrothermal liquefaction and upgrading. An Aspen Plus® process model is developed based on extensive experimental data to document a techno-economic assessmen...

  4. Using inventory data to determine the impact of drought on tree mortality

    Science.gov (United States)

    Greg C. Liknes; Christopher W. Woodall; Charles H. Perry

    2012-01-01

    Drought has been the subject of numerous recent studies that hint at an acceleration of tree mortality due to climate change. In particular, a recent global survey of tree mortality events implicates drought as the cause of quaking aspen mortality in Minnesota, USA in 2007. In this study, data from the Forest Inventory and Analysis program of the USDA Forest Service...

  5. Tree Hazards Recognition and Reduction in Recreation Sites

    Science.gov (United States)

    David W. Johnson

    1981-01-01

    Defective trees are potential hazards to people and property in recreation areas. Most reported tree failures within recreation sites in the Rocky Mountain Region occur in lodgepole pine. Defective root systems account for the greatest percentage of failures. External indicators of defects are used to identify trees that may fail. Some tree species, particularly aspen...

  6. Quantifying early-seral forest composition with remote sensing

    Science.gov (United States)

    Rayma A. Cooley; Peter T. Wolter; Brian R. Sturtevant

    2016-01-01

    Spatially explicit modeling of recovering forest structure within two years following wildfire disturbance has not been attempted, yet such knowledge is critical for determining successional pathways. We used remote sensing and field data, along with digital climate and terrain data, to model and map early-seral aspen structure and vegetation species richness following...

  7. Advances in Graduate Marketing Curriculum: Paying Attention to Ethical, Social, and Sustainability Issues

    Science.gov (United States)

    Weber, James

    2013-01-01

    This research explores the impact of coercive, mimetic, and normative isomorphic pressures on the coverage and offering of courses addressing ethical, social, and sustainability issues (ESSI) in business schools' graduate marketing curricula. Data from the Aspen Institute's Beyond Grey Pinstripes program are analyzed to detect if significant…

  8. Autonomously generating operations sequences for a Mars Rover using AI-based planning

    Science.gov (United States)

    Sherwood, Rob; Mishkin, Andrew; Estlin, Tara; Chien, Steve; Backes, Paul; Cooper, Brian; Maxwell, Scott; Rabideau, Gregg

    2001-01-01

    This paper discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from highlevel science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This Artificial Intelligence (AI) based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules.

  9. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Science.gov (United States)

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  10. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    International Nuclear Information System (INIS)

    Brunet, Robert; Cortés, Daniel; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2012-01-01

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: ► Novel framework for the optimal design of thermdoynamic cycles. ► Combined use of simulation and optimization tools. ► Optimal design and operating conditions according to several economic and LCA impacts. ► Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  11. Energy and Exergy Performance of three FPSO Operational Modes

    DEFF Research Database (Denmark)

    Sánchez, Yamid Alberto Carranza; Junior, Silvio de Oliveira; da Silva, Julio Augusto Mendes

    2015-01-01

    by the FPSO operator. Energy and exergy criteria have been applied to evaluate and compare the performance of components and systems of the three operational modes of the FPSO. The processing and utilities plants have been modeled and simulated by using Aspen HYSYS®. Results indicate that higher oil content...

  12. Process Design of Industrial Triethylene Glycol Processes Using the Cubic-Plus-Association (CPA) Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; Maribo-Mogensen, Bjørn; Tsivintzelis, Ioannis

    2014-01-01

    The Cubic-Plus-Association (CPA) equation of state (EoS) has already been proven to be a successful model for phase equilibrium calculations for systems containing glycols. In the present work, we interface a thermodynamic property package (Thermo System), based on CPA, with Aspen HYSYS through...

  13. Minimization of the LCA impact of thermodynamic cycles using a combined simulation-optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, Robert; Cortes, Daniel [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Guillen-Gosalbez, Gonzalo [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Jimenez, Laureano [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007 Tarragona (Spain); Boer, Dieter [Departament d' Enginyeria Mecanica, Escola Tecnica Superior d' Enginyeria, Universitat Rovira i Virgili, Campus Sescelades, Avinguda Paisos Catalans 26, 43007, Tarragona (Spain)

    2012-12-15

    This work presents a computational approach for the simultaneous minimization of the total cost and environmental impact of thermodynamic cycles. Our method combines process simulation, multi-objective optimization and life cycle assessment (LCA) within a unified framework that identifies in a systematic manner optimal design and operating conditions according to several economic and LCA impacts. Our approach takes advantages of the complementary strengths of process simulation (in which mass, energy balances and thermodynamic calculations are implemented in an easy manner) and rigorous deterministic optimization tools. We demonstrate the capabilities of this strategy by means of two case studies in which we address the design of a 10 MW Rankine cycle modeled in Aspen Hysys, and a 90 kW ammonia-water absorption cooling cycle implemented in Aspen Plus. Numerical results show that it is possible to achieve environmental and cost savings using our rigorous approach. - Highlights: Black-Right-Pointing-Pointer Novel framework for the optimal design of thermdoynamic cycles. Black-Right-Pointing-Pointer Combined use of simulation and optimization tools. Black-Right-Pointing-Pointer Optimal design and operating conditions according to several economic and LCA impacts. Black-Right-Pointing-Pointer Design of a 10MW Rankine cycle in Aspen Hysys, and a 90kW absorption cycle in Aspen Plus.

  14. Bibliography on Cold Regions Science and Technology, Volume 46, Part 1, 1992

    Science.gov (United States)

    1992-01-01

    analysis, snose cover is depleted and a bhoswl-shaped depression (a tree Ecology, Nutrient cycle. Bitmass.46-3969 well) forms. Around aspen and birch...ibscrsatuons ori heteroigenrerus asterlee hysis an miromehanis: arevew o selctedItow and siome attcmptS 1 tomidel percirlattirn in (%o moirds Ice hyscs

  15. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S.; Raghukumar, C.; Behnke, A.; Stoeck, T.

    , Ollivier B, Skiena S, Taghavi S, Zak D & van der Lelie D (2008) Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10 : 926–941. López-García P, Vereshchaka A & Moreira D (2007) Eukaryotic...

  16. Multiple steady states detection in a packed-bed reactive distillation column using bifurcation analysis

    DEFF Research Database (Denmark)

    Ramzan, Naveed; Faheem, Muhammad; Gani, Rafiqul

    2010-01-01

    A packed reactive distillation column producing ethyl tert-butyl ether from tert-butyl alcohol and ethanol was simulated for detection of multiple steady states using Aspen Plus®. A rate-based approach was used to make the simulation model more realistic. A base-case was first developed and fine...

  17. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  18. Highlights of the 2012 research workshop: Using nutrigenomics and metabolomics in clinical nutrition research

    Science.gov (United States)

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and meta...

  19. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  20. COMPOST-FREE BIOLOGICAL TREATMENT OF ACID ROCK DRAINAGE, TECHNICAL EVALUATION BULLETIN

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  1. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  2. Nanotechnology and Lifestyle

    Science.gov (United States)

    2006-11-01

    nano & lifestyle, November 2006 12 Bodywarmers etc (Invista, Outlast Technologies, ToastyFeet) • ToastyFeet/Aspen Aerogel : 5% sheets of fiber...submarines and aircraft ) and B/C-warfare agent decontamination (tent materials and tarpaulins). Surfaces Nato lectures, Henne van Heeren, enablingMNT, nano

  3. Air Quality at Devils Postpile National Monument, Sierra Nevada Mountains, California, USA

    Science.gov (United States)

    Joel D. Burley; Andrzej Bytnerowicz; Monica Buhler; Barbara Zielinska; Donald Schweizer; Ricardo Cisneros; Susan Schilling; Jennifer Chapman Varela; Mark McDaniel; Michelle Horn; Deanna Dulen

    2016-01-01

    Ambient concentrations of O3, PM2.5, NH3, NO, NO2, HNO3, SO2 and VOCs were measured at Devils Postpile National Monument (DEPO) during the summer seasons of 2013 and 2014. The measurements were impacted by the Aspen and Rim Fires in...

  4. 78 FR 57573 - Approval and Promulgation of Air Quality Implementation Plans; State of Colorado Second Ten-Year...

    Science.gov (United States)

    2013-09-19

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R08-OAR-2012-0475; FRL-9901-05-Region 8] Approval and Promulgation of Air Quality Implementation Plans; State of Colorado Second Ten-Year PM 10 Maintenance Plan for Aspen AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA...

  5. Jennifer N. Markham | NREL

    Science.gov (United States)

    Jennifer.Markham@nrel.gov | 303-275-4154 Orcid ID http://orcid.org/0000-0003-0086-1559 Research Interests Techno Affiliated Research Programs Process Design, Modeling, and Economics Areas of Expertise Aspen Plus Process Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products, NREL Technical Report (2014) "

  6. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1978-October 14, 1979

    International Nuclear Information System (INIS)

    Murphy, P.G.; Sharitz, R.R.

    1979-07-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone, were studied before and after irradiation in northern Wisconsin. Irradiation occurred during the summer of 1972. As of the summer of 1978, establishment of tree seedlings at 10 m from the radiation source continued to be inhibited by the vigorous development of ground vegetation except, in part, in the aspen area where seedling density increased sharply relative to 1977 because of an influx of Acer rubrum. By 1974 many of the seedlings at 20 m had reached the sapling size-class. At the present time it appears that recolonization of the 10 m irradiated zone by the original tree flora will be a very slow process, largely because of a dense growth of Rubus sp. and other heliophytes. As of 1978 the recovery of leaf litter production appeared to be continuing in all three areas although the ratios of tree to shrub litter were still well below preirradiation levels at 10 m and slightly below at 20 m. In most respects, the ecotone has shown properties and responses to radiation intermediate to those observed in the aspen and maple-birch areas. The rate and compositional characteristics of succession in the ecotone relative to aspen and maple-birch forest types is presently under study

  7. Genetic improvement of hardwood fiber production in the north-central region: potentials and breeding alternatives

    Science.gov (United States)

    R.E., Jr. Farmer

    1973-01-01

    In the Lake States, aspens are now growing towards senility Faster than they are being harvested (Groff 1966). In the Central States, wood processing residues have recently supplied about one-half of the area's hardwood fiber requirement (Blyth 1970), thus allowing hardwood growing stock to continue its recuperation. In fact, the national hardwood fiber supply...

  8. Accredited Birth Centers

    Science.gov (United States)

    ... Danbury, CT 06810 203-748-6000 Accredited Since March 1998 Corvallis Birth & Women's Health Center Accredited 2314 NW Kings Blvd, Suite ... Washington, DC 20002 202-398-5520 Accredited Since March 2001 Flagstaff Birth and Women's Center Accredited 401 West Aspen Avenue Flagstaff, AZ ...

  9. Logging Options to Minimize Soil Disturbance in the Northern Lake States

    Science.gov (United States)

    Douglas M. Stone

    2002-01-01

    Forest harvesting is likely to have greater impacts on site productivity than any other activity during the rotation. We determined effects of commercial, winter-logging of four aspen-dominated stands on site disturbance and development of regeneration on clay soils in western Upper Michigan. A large skidder caused deep rutting on 20% of a site in a thinning that...

  10. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Science.gov (United States)

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  11. Minnesota's Forests 2008

    Science.gov (United States)

    Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett

    2011-01-01

    The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this method, reduction of keto and alkene functional groups has been achieved in a single step using low cost catalyst NiCl2/NaBH4 in methanol. ... Department of Chemistry, JNTUH College of Engineering Jagtial, Karimnagar 505 501, India; R&D Division, Aspen Bio Pharma Labs Pvt. Ltd, Genome Vally, Turkapally, ...

  13. An Assessment of the Growth in Coverage of Social and Environmental Issues in Graduate Accounting Courses

    Science.gov (United States)

    Green, Sharon; Weber, James

    2013-01-01

    The paper examines if there has been an increase in the attention paid to social and environmental issues (SEI) in accounting curricula. Using schools participating in the Aspen Institute's Beyond Grey Pinstripes (BGP) program, we measure the increase in the number of accounting courses incorporating SEI across the biennial application years of…

  14. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Directory of Open Access Journals (Sweden)

    Brice B Hanberry

    Full Text Available We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  15. Winning and Losing Tree Species of Reassembly in Minnesota’s Mixed and Broadleaf Forests

    Science.gov (United States)

    Hanberry, Brice B.; Palik, Brian J.; He, Hong S.

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity. PMID:23613911

  16. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Science.gov (United States)

    Hanberry, Brice B; Palik, Brian J; He, Hong S

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  17. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    Science.gov (United States)

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  18. Response of a forest ecotone to ionizing radiation. Progress report, April 15, 1983-April 14, 1984

    International Nuclear Information System (INIS)

    Murphy, P.G.; Sharitz, R.R.

    1983-11-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone (midecotone), were studied before and after irradiation in northern Wisconsin. In all three areas, the density of seedlings at 10 m was greatly reduced within a year following the 1972 radiation event. In the maple-birch area seedlings were virtually absent at 10 m until 1982 and 1983 when their numbers were comparable to preirradiation levels. In the aspen and midecotone areas 1983 seedling densities at 10 m were only 50 and 17%, respectively, of the preirradiation levels. Woody plants of tree stature were eliminated at 10 m in all three areas within two years of irradiation but by 1982 only the aspen area lacked plants in this size class. In 1982 total leaf litter production was 26 and 63% below 1971 preirradiation levels at 10 m in the aspen and maple-birch areas, respectively. But at 10 m in the midecotone, it had increased, relative to 1971, by 27%. The ratio of shrub to tree leaf litter continues to decline as the heavily irradiated zone of all three areas continues to be recolonized by tree species and the canopy at 20 m continues to fill out. Present studeis emphasize the rate at which the three areas continue to be recolonized, and the composition of the recolonizing flora, relative to the preirradiation forest

  19. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Science.gov (United States)

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  20. Transcript patterns of Phanerochaete chrysosporium genes in organopollutant contaminated soils and in wood

    Science.gov (United States)

    Amber. Vanden Wymelenberg; Bernard. Janse; Jill. Gaskell; Diane. Dietrich; Marcelo. Vallim; Dan. Cullen

    1998-01-01

    We describe here recent methods for quantitative assessment of specific P. chrysosporium mRNAs in organopollutant contaminated soils and in Aspen wood chips. Magnetic capture techniques were used to rapidly purify poly(A)-RNA, and quantitative RT-PCR protocols were developed for all known lignin peroxidase (lip) and cellobiohydrolase (cbh1) genes. The methodology is...

  1. Circumventing Graphical User Interfaces in Chemical Engineering Plant Design

    Science.gov (United States)

    Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert

    2007-01-01

    Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…

  2. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after three years of treatments to elevated carbon dioxide and ozone

    Science.gov (United States)

    Seija Kaakinen; Katri Kostiainen; Fredrik Ek; Pekka Saranpaa; Mark E. Kubiske; Jaak Sober; David F. Karnosky; Elina Vapaavuori

    2004-01-01

    The aim of this study was to examine the effects of elevated carbon dioxide [CO2] and ozone [O3] and their interaction on wood chemistry and anatomy of five clones of 3-year-old trembling aspen (Populus tremuloides Michx.). Wood chemistry was studied also on paper birch (Betula papyrifera...

  3. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  4. Common Core State Standards and Teacher Effectiveness. Q&A with Ross Wiener, Ph.D. REL Mid-Atlantic Teacher Effectiveness Webinar Series

    Science.gov (United States)

    Regional Educational Laboratory Mid-Atlantic, 2013

    2013-01-01

    In this REL Mid-Atlantic webinar, Dr. Ross Wiener, Vice President and Executive Director of the Education and Society Program, Aspen Institute, discussed strategies for integrating the Common Core State Standards (CCSS) into teacher effectiveness systems, including ways in which the CCSS can support professional growth and inform teacher…

  5. Experimental Research of Moisture Evaporation Process from Biomass in a Drying Chamber

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2015-01-01

    Full Text Available Presented mass evaporation rate hardwood (birch, aspen, maple, poplar derived from experimental studies. The dependence of temperature on evaporation mass rate and calculated the accommodation coefficient for the respective temperature ranges are obtained. Analyzed the temperature of drying conditions relevant species hardwood.

  6. Leaf chemical composition of twenty-one Populus hybrid clones grown under intensive culture

    Science.gov (United States)

    Richard E. Dickson; Philip R. Larson

    1976-01-01

    Leaf material from 21 nursery-grown Populus hybrid clones was analyzed for three nitrogen fractions (total N, soluble protein, and soluble amino acids) and three carbhydrate fractions (reducing sugars, total soluble sugars, and total nonstructural carbohydrates-TNC). In addition, nursery-grown green ash and silver maple, field-grown bigtooth and trembling aspen, and...

  7. 77 FR 3810 - New York Life Insurance and Annuity Corporation, et al., Notice of Application

    Science.gov (United States)

    2012-01-25

    ... Eck Assets Fund--Initial Global Hard Assets Class. Portfolio--Initial Class 2 Janus Aspen Balanced... Accounts'' and, together with NYLIAC, the ``Section 26 Applicants''); and Mainstay VP Funds Trust (``MVPFT... investment companies (the ``Existing Portfolios'') held by the Separate Accounts to fund certain group and...

  8. Process Simulation of Biobutanol Production from Lignocellulosic Feedstocks

    NARCIS (Netherlands)

    Procentese, A.; Guida, T.; Raganati, F.; Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    A potential flowsheet to produce butanol production by conversion of a lignocellulosic biomass has been simulated by means of the software Aspen Plus®. The flowsheet has included upstream, fermentation, and downstream sections and the attention has been focused on the upstream section. The proposed

  9. Scattering From the Finite-Length, Dielectric Circular Cylinder. Part 2 - On the Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band

    Science.gov (United States)

    2015-09-01

    19b. TELEPHONE NUMBER (Include area code) (301) 394-1741 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of...the Sapwood of Aspen, White Birch, Yellow Birch, and Sugar Maple. Drying Technology. 2008;26(5):568–578. 16. Peplinski NR, Ulaby FT, Dobson MC

  10. Theory explaining it all doesn't quite

    CERN Multimedia

    2004-01-01

    A history of string theory since the first announcement at Aspen by Michael Green and John Schwartz. Among its triumphs are explanations of quantum gravity and the study of black holes but experimental evidence in particle physics supports an alternative theory - that of quantum chromodynamics (2 pages)

  11. Working Together and Making a Difference: Virginia Western Community College and Goodwill Industries of the Valleys Partnership Case Study Report

    Science.gov (United States)

    Browning, Bill

    2015-01-01

    "Working Together and Making A Difference: Virginia Western Community College and Goodwill Industries of the Valleys Partnership Case Study Report" is a report aimed at informing community college and workforce leaders of best practices for launching and expanding partnerships to serve students more effectively. Co-published by AspenWSI…

  12. Fluid dynamics structures in a fire environment observed in laboratory-scale experiments

    Science.gov (United States)

    J. Lozano; W. Tachajapong; D.R. Weise; S. Mahalingam; M. Princevac

    2010-01-01

    Particle Image Velocimetry (PIV) measurements were performed in laboratory-scale experimental fires spreading across horizontal fuel beds composed of aspen (Populus tremuloides Michx) excelsior. The continuous flame, intermittent flame, and thermal plume regions of a fire were investigated. Utilizing a PIV system, instantaneous velocity fields for...

  13. A techno-economic analysis of biodiesel production from microalgae

    NARCIS (Netherlands)

    Olivieri, G.; Guida, T.; Salatino, P.; Marzocchella, A.

    2013-01-01

    The preliminary assessment of a cost-effective flow-sheet for the production of biodiesel from microalgae lipid fraction was carried out. The study was based on approximated cost-estimation methods integrated with the simulation software Aspen Plus (R). Several scenarios were investigated to compare

  14. 15-00443_SI_NP.docx

    Indian Academy of Sciences (India)

    suresh

    Supporting Information. A Facile and Efficient Synthesis of (15R)-Latanoprost from Chiral Precursor Corey Lactone Diol. K VIJENDHARa,b, B SRINIVASb and SATHYANARAYANA BOODIDA*,a. aDepartment of Chemistry, JNTUH College of Engineering Jagtial, Karimnagar 505 501, India. bR&D Division, Aspen Bio Pharma ...

  15. Dimension yields from short logs of low-quality hardwood trees.

    Science.gov (United States)

    Howard N. Rosen; Harold A. Stewart; David J. Polak

    1980-01-01

    Charts are presented for determining yields of 4/4 dimension cuttings from short hardwood logs of aspen, soft maple, black cherry, yellow-poplar, and black walnut for several cutting grades and bolt sizes. Cost comparisons of short log and standard grade mixes show sizes. Cost comparisons of short log and standard grade mixes show the estimated least expensive...

  16. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  17. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    Science.gov (United States)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence

  18. Bedding material affects mechanical thresholds, heat thresholds and texture preference

    Science.gov (United States)

    Moehring, Francie; O’Hara, Crystal L.; Stucky, Cheryl L.

    2015-01-01

    It has long been known that the bedding type animals are housed on can affect breeding behavior and cage environment. Yet little is known about its effects on evoked behavior responses or non-reflexive behaviors. C57BL/6 mice were housed for two weeks on one of five bedding types: Aspen Sani Chips® (standard bedding for our institute), ALPHA-Dri®, Cellu-Dri™, Pure-o’Cel™ or TEK-Fresh. Mice housed on Aspen exhibited the lowest (most sensitive) mechanical thresholds while those on TEK-Fresh exhibited 3-fold higher thresholds. While bedding type had no effect on responses to punctate or dynamic light touch stimuli, TEK-Fresh housed animals exhibited greater responsiveness in a noxious needle assay, than those housed on the other bedding types. Heat sensitivity was also affected by bedding as animals housed on Aspen exhibited the shortest (most sensitive) latencies to withdrawal whereas those housed on TEK-Fresh had the longest (least sensitive) latencies to response. Slight differences between bedding types were also seen in a moderate cold temperature preference assay. A modified tactile conditioned place preference chamber assay revealed that animals preferred TEK-Fresh to Aspen bedding. Bedding type had no effect in a non-reflexive wheel running assay. In both acute (two day) and chronic (5 week) inflammation induced by injection of Complete Freund’s Adjuvant in the hindpaw, mechanical thresholds were reduced in all groups regardless of bedding type, but TEK-Fresh and Pure-o’Cel™ groups exhibited a greater dynamic range between controls and inflamed cohorts than Aspen housed mice. PMID:26456764

  19. Plant Signals Disrupt (regulate?) Arbuscular Mycorrhizal Fungal Growth Under Enhanced Ozone and CO2 Growing Conditions for Populus tremuloides

    Science.gov (United States)

    Miller, R. M.; Podila, G. K.

    2008-12-01

    An understanding of the genetic determinants of keystone symbiotic relationships is essential to elucidating adaptive mechanisms influencing higher-order processes, including shifts in community composition following environmental perturbations. The Aspen FACE project offers a unique opportunity to address adaptive processes with an imposed three way interaction experiment composed of the atmospheric pollutant ozone (eO3), elevated CO2 (eCO2) fumigations, five Populus tremuloides (aspen) genotypes, and both arbuscular mycorrhizal and ectomycorrhizal fungal interactions. The 10 year time span of this experiment has allowed for a realistic and mechanistic understanding of above ground responses of the aspen genotypes to eCO2, eO3 and the interaction effects of eCO2 and eO3. Even so, treatment influences to the below ground, including carbon allocation to roots and associated mycorrhizal symbionts, and rhizosphere dynamics are just beginning to be understood. We hypothesized that mycorrhizal fungal responses to eCO2, eO3, and the interaction effects of eCO2+eO3 are conditioned by the degree of response of their aspen hosts. We intend to describe the molecular mechanisms of an important critical interaction between host and fungus using microarray analysis of expression profiles, as well as metabolic profiling of aspen roots and their associated mycorrhizal partner, the arbuscular mycorrhizal fungus (AMF) Glomus intraradices, under eCO2, eO3 and eCO2+eO3. We present evidence that host-derived factors, expressed in response to eCO2+eO3, trigger responses in Glomus leading to the partitioning or metabolic shift in lipid biosynthesis that is associated with reduced extraradical hyphae growth and altered lipid metabolism. We then scale these lower-level responses to give better insight to fungal intraradical and extraradical allocation of biomass and fungal and root lipid and carbohydrate content in association with aspen genotype responses to the imposed treatments. By

  20. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  1. Validation of the Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition Recommendations for Caloric Provision to Critically Ill Obese Patients: A Pilot Study.

    Science.gov (United States)

    Mogensen, Kris M; Andrew, Benjamin Y; Corona, Jasmine C; Robinson, Malcolm K

    2016-07-01

    The Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN) recommend that obese, critically ill patients receive 11-14 kcal/kg/d using actual body weight (ABW) or 22-25 kcal/kg/d using ideal body weight (IBW), because feeding these patients 50%-70% maintenance needs while administering high protein may improve outcomes. It is unknown whether these equations achieve this target when validated against indirect calorimetry, perform equally across all degrees of obesity, or compare well with other equations. Measured resting energy expenditure (MREE) was determined in obese (body mass index [BMI] ≥30 kg/m(2)), critically ill patients. Resting energy expenditure was predicted (PREE) using several equations: 12.5 kcal/kg ABW (ASPEN-Actual BW), 23.5 kcal/kg IBW (ASPEN-Ideal BW), Harris-Benedict (adjusted-weight and 1.5 stress-factor), and Ireton-Jones for obesity. Correlation of PREE to 65% MREE, predictive accuracy, precision, bias, and large error incidence were calculated. All equations were significantly correlated with 65% MREE but had poor predictive accuracy, had excessive large error incidence, were imprecise, and were biased in the entire cohort (N = 31). In the obesity cohort (n = 20, BMI 30-50 kg/m(2)), ASPEN-Actual BW had acceptable predictive accuracy and large error incidence, was unbiased, and was nearly precise. In super obesity (n = 11, BMI >50 kg/m(2)), ASPEN-Ideal BW had acceptable predictive accuracy and large error incidence and was precise and unbiased. SCCM/ASPEN-recommended body weight equations are reasonable predictors of 65% MREE depending on the equation and degree of obesity. Assuming that feeding 65% MREE is appropriate, this study suggests that patients with a BMI 30-50 kg/m(2) should receive 11-14 kcal/kg/d using ABW and those with a BMI >50 kg/m(2) should receive 22-25 kcal/kg/d using IBW. © 2015 American Society for Parenteral and Enteral Nutrition.

  2. Environmental impact of population growth

    Science.gov (United States)

    Naylor, Rosamond; Matson, Pamela

    Earth's population currently numbers 5.4 billion; even given optimistic assumptions for reduction in growth rates, the number will double by the middle of the next century with most of the increase in the developing countries. Rapid population growth in the developing world raises the fundamental dilemma of how to alleviate chronic hunger and poverty in the short run while preserving the atmosphere and ecosystem services required for long-term human and biospheric sustenance. This dilemma, and the compromises required to solve it, were discussed by twenty-five researchers from five countries at the Aspen Global Change Institute 1992 Summer Science Session III, Food, Conservation, and Global Environmental Change: Is Compromise Possible?, held from August 16 to 28, in Aspen, Colo.

  3. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    Science.gov (United States)

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    Science.gov (United States)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  5. Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process

    Directory of Open Access Journals (Sweden)

    Elena Vlad

    2012-01-01

    Full Text Available Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics.

  6. Modeling and simulation of syngas purification and power generation in integrated gasification combined cycle (IGCS)

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, N; Zaman, Z U; Mehran, M T [National Development, Islamabad (Pakistan)

    2011-07-01

    Integrated Gasification Combined Cycle (IGCC) is one of the most promising technologies for power generation; The environmental benefits and the higher energy conversion efficiency distinguish it from traditional coal generation technologies. This work presents a structured and validated conceptual model of purification of coal gas produced during the Underground Coal Gasification (UCG) of coal containing high sulfur contents. Gas cleaning operations for CO/sub 2/, H/sub 2/S and moisture removal have been modeled in steady and dynamic state. The power generation from combined cycle is also modeled. The model has been developed using Aspen HYSYS and Aspen Plus simulation software. Predicted results of clean gas composition and generated power present a good agreement with industrial data and efficiency parameters. This study is aimed at obtaining optimal assessment of an integrated gasification combined cycle (IGCC) power plant configurations. (author)

  7. Modeling and simulation of syngas purification and power generation in integrated gasification combined cycle (IGCS)

    International Nuclear Information System (INIS)

    Mehmood, N.; Zaman, Z.U.; Mehran, M.T.

    2011-01-01

    Integrated Gasification Combined Cycle (IGCC) is one of the most promising technologies for power generation; The environmental benefits and the higher energy conversion efficiency distinguish it from traditional coal generation technologies. This work presents a structured and validated conceptual model of purification of coal gas produced during the Underground Coal Gasification (UCG) of coal containing high sulfur contents. Gas cleaning operations for CO/sub 2/, H/sub 2/S and moisture removal have been modeled in steady and dynamic state. The power generation from combined cycle is also modeled. The model has been developed using Aspen HYSYS and Aspen Plus simulation software. Predicted results of clean gas composition and generated power present a good agreement with industrial data and efficiency parameters. This study is aimed at obtaining optimal assessment of an integrated gasification combined cycle (IGCC) power plant configurations. (author)

  8. Study of radiation-destroyed wood

    International Nuclear Information System (INIS)

    Klimentov, A.S.; Shakhanova, R.K.; Stepanova, I.N.; Vysotskaya, I.F.

    1986-01-01

    The change in carbohydrate composition of aspen wood exposed to electron beam radiation (0.5 MeV, dose rates of 0-0.56 MGy) is studied. It has been found that the water-soluble polysaccharide content grows from 0.47 up to 8.54 %, and that of the non-hydrolyzed polysaccharides decreases from 49.4 down to 36.1 %. The polysaccharide total content of aspen wood goes down from 61.28 to 56.82 % with the radiation dose increasing. Consequently, the xylose, arabinose, and ramnose percentage of wood hydrolyzates increases correspondingly from 11.9 up to 15.44, from 0.66 up to 0.90, and from 0.21 up to 0.38

  9. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine

    International Nuclear Information System (INIS)

    Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang

    2013-01-01

    Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed

  10. GREET Pretreatment Module

    Energy Technology Data Exchange (ETDEWEB)

    Adom, Felix K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    A wide range of biofuels and biochemicals can be produced from cellulosic biomass via different pretreatment technologies that yield sugars. Process simulations of dilute acid and ammonia fiber expansion pretreatment processes and subsequent hydrolysis were developed in Aspen Plus for four lignocellulosic feedstocks (corn stover, miscanthus, switchgrass, and poplar). This processing yields sugars that can be subsequently converted to biofuels or biochemical. Material and energy consumption data from Aspen Plus were then compiled in a new Greenhouses Gases, Regulated Emissions, and Energy Use in Transportation (GREETTM) pretreatment module. The module estimates the cradle-to-gate fossil energy consumption (FEC) and greenhouse gas (GHG) emissions associated with producing fermentable sugars. This report documents the data and methodology used to develop this module and the cradle-to-gate FEC and GHG emissions that result from producing fermentable sugars.

  11. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem

    International Nuclear Information System (INIS)

    Rier, S. T.; Tuchman, N. C.; Wetzel, R. G.

    2005-01-01

    The effects of elevated carbon dioxide on the chemistry and subsequent response of stream microorganisms growing on leaf litter of three riparian tree species (quaking aspen, white willow and sugar maple) were studied. Results showed that the effects were species-specific, i.e. aspen leaves contained high concentrations of lignin, maple leafs contained higher concentrations of soluble phenolic compounds and willow leaves contained higher concentrations of carbohydrate-bound condensed tannins. Initially, the higher concentrations of soluble phenolic compounds in maple leaves were rapidly leached in stream water, but overall, the impact of altered leaf chemistry on riparian trees grown under elevated carbon dioxide was clearly variable; no strongly suppressed microbial activity during stream incubation was observed. Any evidence of suppression observed, was species-specific. 49 refs., 2 tabs., 3 figs

  12. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  13. How common is within-plant signaling via volatiles?

    Science.gov (United States)

    Li, Tao; Blande, James D

    2017-08-03

    Many plants respond to herbivory by releasing a complex blend of volatiles that may differ from that emitted by intact counterparts. These herbivore-induced plant volatiles (HIPV) mediate many interactions among plants and their community members, including alerting undamaged leaves of the attacked or neighboring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signaling and that other organisms subsequently evolved to use them. However, only 7 studies have reported HIPV-mediated within-plant signaling, most conducted in the laboratory or greenhouse. This leaves open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signaling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants in which within-plant signaling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits.

  14. Optimized CO2-flue gas separation model for a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Mohsin, Muhammad [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The detailed description of the CO2 removal process using mono-ethylamine (MEA) as a solvent for coal-fired power plant is present in this paper. The rate based Electrolyte NRTL activity coefficient model was used in the Aspen Plus. The complete removal process with re-circulating solvent back to the absorber was implemented with the sequential modular method in Aspen Plus. The most significant cost related to CO2 capture is the energy requirement for re-generating solvent, i.e. re-boiler duty. Parameters’ effects on re-boiler duty were studied, resulting decreased re-boiler duty with the packing height and absorber packing diameter, absorber pressure, solvent temperature, stripper packing height and diameter. On the other hand, with the flue gas temperature, re-boiler duty is increased. The temperature profiles and CO2 loading profiles were used to check the model behavior.

  15. How common is within-plant signalling via volatiles?

    DEFF Research Database (Denmark)

    Li, Tao; Blande, James D.

    2017-01-01

    or neighbouring plants to impending danger. It has been postulated that HIPVs evolved for within-plant signalling and that other organisms subsequently evolved to use them. However, only seven studies have reported HIPV-mediated within-plant signalling, most conducted in the laboratory or greenhouse. This leaves...... open the ecological relevance and evolutionary underpinning of the phenomenon. We recently observed within-plant signalling in hybrid aspen under laboratory and field conditions. Greenhouse experiments showed that HIPVs mediated the process. While our study adds an aspen hybrid to the list of plants...... in which within-plant signalling has been demonstrated, we lack understanding of how common the process is and whether plants obtain fitness benefits....

  16. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  17. Impact relevance and usability of high resolution climate modeling and data

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James C. [Aspen Global Change Inst., Basalt, CO (United States)

    2016-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andy Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.

  18. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    Science.gov (United States)

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  19. Intermountain West Military Training Lands Planting Guide: Selecting Seed Mixtures for Actively Used Military Lands

    Science.gov (United States)

    2009-06-01

    the following rating system: 1 = Poor – difficult 2 = Fair 3 = Medium 4= Good 5 = Excellent – easy A = Annual – reproduction from seed S... Reproduction from seed V = Reproduction vegetative (rhizomes or stolons) and from seed The table uses the following abbreviations for vegetative...types to which the species is adapted: a. A = Aspen- conifer ; b. AW = Annual weed; c. BB = Blackbrush; d. BG = Black greasewood; e. BS

  20. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib

    2013-01-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL...... grid or for CHP. An estimated 62–84% of the biomass energy can be recovered in the biofuels....

  1. Maine's forests 2008

    Science.gov (United States)

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  2. A New Proposal Of Cellulosic Ethanol To Boost Sugarcane Biorefineries: Techno-economic Evaluation

    OpenAIRE

    Albarelli J.Q.; Ensinas A.V.; Silva M.A.

    2014-01-01

    Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction). Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the ev...

  3. Buffalo Harbor Study. Preliminary Feasibility Report. Volume I. Main Report.

    Science.gov (United States)

    1983-04-01

    to usually narrow strips of riparian vegetation, which is composed of various trees and shrubs of the Salix genus (willow), sumac, aspen, boxelder...reptiles were found. Species included, leopard frogs, snapping turtles, painted turtle, and garter snakes (SUNY Brockport: 1982). (7) Endangered Species...vessel traffic on the Buffalo River causes interrupted truck service. Firms have also cited snow removal as a problem. The harbor area road service

  4. Effects of wind velocity and slope on flame properties

    Science.gov (United States)

    David R. Weise; Gregory S. Biging

    1996-01-01

    Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...

  5. Physicochemical patterns of ozone absorption by wood

    Science.gov (United States)

    Mamleeva, N. A.; Lunin, V. V.

    2016-11-01

    Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.

  6. Consequences of habitat change and resource selection specialization for population limitation in cavity-nesting birds

    Science.gov (United States)

    Martin, Thomas E.

    2015-01-01

    Resource selection specialization may increase vulnerability of populations to environmental change. One environmental change that may negatively impact some populations is the broad decline of quaking aspen Populus tremuloides, a preferred nest tree of cavity-nesting organisms who are commonly limited by nest-site availability. However, the long-term consequences of this habitat change for cavity-nesting bird populations are poorly studied.

  7. North End Runway Material Extraction and Transport Environmental Assessment

    Science.gov (United States)

    2006-05-01

    raspberry, currant, bunchberry, horsetail, and high bush cranberry as well as willow, elderberry, rusty menzeiseia, devil’s club, and sapling cottonwood...shrubs and young trees to include paper birch, willow, aspen, cottonwood/balsam poplar, high bush cranberry , Sitka alder, and mountain ash. In winter...the southeast corner of the plot. Standing water appears in small depressions around the vegetated area as well. Vegetation: Table 1, below

  8. Environmental Assessment and Final Finding of No Significant Impact for Lantirn Village & Camera I Site Upgrades Fort Wainwright Yukon Training Area Fort Wainwright, Alaska

    Science.gov (United States)

    2009-08-01

    overlying stratified sands, silts, and gravel. Depressions in the alluvial plains are often interbedded with thick peat layers and usually underlain...layers of peat typical of both north slopes and drainage bottoms/ depressions are underlain by permafrost, while south slopes are generally free of...aspen, and balsam poplar. Willows, alder, wild rose, blueberry, and highbush cranberry are common shrubs. o Upland Mixed Forest: Mixed forests

  9. Possibilities for the Use of Wood Ashes in Agriculture

    OpenAIRE

    Barbara Symanowicz; Marcin Becher; Dawid Jaremko; Korneliusz Skwarek

    2018-01-01

    The aim of the study was to determine the agricultural usefulness of the ashes obtained following the combustion of wood of fourteen tree species (pear tree, apple tree, aspen, ash, alder, birch, poplar, hornbeam, pine, common walnut, oak, hazel, bird cherry and spruce) in home fireplaces. The following physical properties of the ashes were determined: colour, solubility, porosity, absorbability, compression strength, degree of fineness, moisture content and spreadability. In the ashes...

  10. Remedial Investigation Addendum Report Data Item A009. Volume 4: Appendices I-Z

    Science.gov (United States)

    1993-12-01

    Moore, 1991). Methylation of inorganic mercury occurs as a result of bacterial processes*1 in the sediment, as well as through biochemical interactions...the southeastern side of this wetland system there is a swamp which is I dominated by white pines ( Pinus strobus) in addition to red maple (Acer rubrum...FAC Green Ash Fraxinus pennsylvanica FACW Red Pine Pinus resinosa FACUI White Pine Pinus strobus FACU Quaking Aspen Populus tremula FACU Black Cherry

  11. To Create a Consensus on Malnutrition Diagnostic Criteria.

    Science.gov (United States)

    Cederholm, Tommy; Jensen, Gordon L

    2017-03-01

    During the European Society for Clinical Nutrition and Metabolism (ESPEN) Congress in Copenhagen, Denmark (September 2016), representatives of the 4 largest global parenteral and enteral nutrition (PEN) societies from Europe (ESPEN), the United States (American Society for Parenteral and Enteral Nutrition [ASPEN]), Asia (Parenteral and Enteral Nutrition Society of Asia [PENSA]), and Latin America (Latin American Federation of Parenteral and Enteral Nutrition [FELANPE]) and from national PEN societies around the world met to continue the conversation on how to diagnose malnutrition that started during the Clinical Nutrition Week, Austin, Texas (February 2016). Current thinking on diagnostic approaches was shared; ESPEN suggested a grading approach that could encompass various types of signs, symptoms, and etiologies to support diagnosis. ASPEN emphasized where the parties agree; that is, that the 3 major published approaches (ESPEN, ASPEN-Academy of Nutrition and Dietetics, and Subjective Global Assessment [SGA]) all propose weight loss as a key indicator for malnutrition. FELANPE suggested that the anticipated consensus approach needs to prioritize a diagnostic method that is available for everybody since resources differ globally. PENSA highlighted that body mass index varies by ethnicity/race and that sarcopenia/muscle mass evaluation is important for the diagnosis of malnutrition. A Core Working Committee of the Global Leadership Initiative on Malnutrition has been established (comprising 2 representatives each from the 4 largest PEN societies) that will lead consensus development in collaboration with a larger working group with broad global representation, using e-mail, telephone conferences, and face-to-face meetings during the upcoming ASPEN and ESPEN congresses. Transparency and external input will be sought. Objectives include (1) consensus development around evidence-based criteria for broad application, (2) promotion of global dissemination of the

  12. To create a consensus on malnutrition diagnostic criteria: A report from the Global Leadership Initiative on Malnutrition (GLIM) meeting at the ESPEN Congress 2016.

    Science.gov (United States)

    Cederholm, Tommy; Jensen, Gordon L

    2017-02-01

    During the ESPEN Congress in Copenhagen, Denmark (September 2016) representatives of the 4 largest global PEN-societies from Europe (ESPEN), USA (ASPEN), Asia (PENSA) and Latin America (FELANPE), and from national PEN-societies around the world met to continue the conversation on how to diagnose malnutrition that started during the Clinical Nutrition Week, Austin, USA (February 2016). Current thinking on diagnostic approaches was shared; ESPEN suggested a grading approach that could encompass various types of signs, symptoms and etiologies to support diagnosis. ASPEN emphasized where the parties agree; i.e. that the three major published approaches (ESPEN, ASPEN/AND and Subjective Global Assessment (SGA)) all propose weight loss as a key indicator for malnutrition. FELANPE suggested that the anticipated consensus approach needs to prioritize a diagnostic methodology that is available for everybody since resources differ globally. PENSA highlighted that BMI varies by ethnicity/race, and that sarcopenia/muscle mass evaluation is important for the diagnosis of malnutrition. A Core Working Committee of the Global Leadership Initiative on Malnutrition (GLIM) has been established (comprised of two representatives each from the 4 largest PEN-societies) that will lead consensus development in collaboration with a larger Working Group with broad global representation, using e-mail, telephone conferences, and face-to-face meetings during the up-coming ASPEN and ESPEN Congresses. Transparency and external input will be sought. Objectives include: 1. Consensus development around evidence-based criteria for broad application. 2. Promotion of global dissemination of the consensus criteria. 3. Seeking adoption by the World Health Organization (WHO) and the International Classification of Diseases (ICD). Copyright © 2017 American Society for Parenteral and Enteral Nutrition, Elsevier Ltd, European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd.. All

  13. Twin Valley, Wild Rice River, Minnesota. Addendum.

    Science.gov (United States)

    1976-05-01

    acres each and one having a drainage area of over 13,000 acres. Along with the impoundment program, p!-oper management of soil and water is stressed ...diversity of both plants and animals associated with this ecotone and stresses its importance: first, because it is an ecotone, and second, because it...1969. Pole stage aspen woods. Thirty-third breeding bird census. Aud. Field Notes 23: 712-713. Cumins , K.W. 1962. An evaluation of some techniques for

  14. Coast Guard Proceedings. Volume 68, Number 1, Spring 2011

    Science.gov (United States)

    2011-01-01

    largest mar- ijuana seizure by a USCG buoy tender, CGC Aspen intercepted a “go-fast” vessel loaded with eight tons of marijuana . · Fisheries Enforcement...recommended routes; · amplifying vessel static and voyage-related data; · VTS or synthetic targets (vessels without AIS); · pertinent time-critical dynamic...Used by a ship to report the number of persons on board (e.g., on request by a competent authority). VTS-generated/ synthetic targets Used to transmit

  15. Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory

    Science.gov (United States)

    Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia

    2014-01-01

    Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.

  16. Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E.; Ferro, V.R., E-mail: victor.ferro@uam.es; Riva, J. de; Moreno, D.; Palomar, J.

    2014-06-01

    Highlights: • NH{sub 3}–IL absorption cycles are modeled by COSMO-based Aspen simulations. • Proposed a priori computational approach is validated using experimental data. • Cycle performance was analyzed for conventional and task-specific ILs. • IL solvents with high NH{sub 3} absorption capacity improve the cycle performance. • Using IL mixtures is revealed as promising alternative in NH{sub 3} absorption applications. - Abstract: COSMO-based process simulations with Aspen Plus/Aspen HYSYS are used, for the first time, to a priori estimate the thermodynamic performance of ammonia absorption refrigeration cycles using ionic liquids as absorbents. This allows not only broadening the criteria set used to select/design ionic liquids with optimized properties to be used in that role, but also evaluating innovative strategies to improve the cycle’s performances. COSMO-RS method provides the information required for both creating the ionic liquid non-database components and specifying the COSMOSAC property model to perform Aspen Plus calculations. The computational procedure used here gives at the same time reasonable good property predictions of the vapor (refrigerant) and the condensed (ammonia + ionic liquid) phases as well as physically consistent estimations of the cycle’s performance under different conditions. Current results agree with those previously reported in the literature for several ionic liquid-based systems taken for comparison. In addition, task-specific ionic liquids, with improved properties for ammonia absorption, and also binary ionic liquid mixtures are considered in the analysis. It is obtained that ionic liquids showing higher ammonia absorption capacity among the considered absorbents simultaneously provide the best cycle’s performances. The cycle performances vary in relatively wide intervals depending on the ammonia concentration in the (refrigerant + absorbent) solutions. This behavior is strongly modulated by the ammonia

  17. Evaluation of ionic liquids as absorbents for ammonia absorption refrigeration cycles using COSMO-based process simulations

    International Nuclear Information System (INIS)

    Ruiz, E.; Ferro, V.R.; Riva, J. de; Moreno, D.; Palomar, J.

    2014-01-01

    Highlights: • NH 3 –IL absorption cycles are modeled by COSMO-based Aspen simulations. • Proposed a priori computational approach is validated using experimental data. • Cycle performance was analyzed for conventional and task-specific ILs. • IL solvents with high NH 3 absorption capacity improve the cycle performance. • Using IL mixtures is revealed as promising alternative in NH 3 absorption applications. - Abstract: COSMO-based process simulations with Aspen Plus/Aspen HYSYS are used, for the first time, to a priori estimate the thermodynamic performance of ammonia absorption refrigeration cycles using ionic liquids as absorbents. This allows not only broadening the criteria set used to select/design ionic liquids with optimized properties to be used in that role, but also evaluating innovative strategies to improve the cycle’s performances. COSMO-RS method provides the information required for both creating the ionic liquid non-database components and specifying the COSMOSAC property model to perform Aspen Plus calculations. The computational procedure used here gives at the same time reasonable good property predictions of the vapor (refrigerant) and the condensed (ammonia + ionic liquid) phases as well as physically consistent estimations of the cycle’s performance under different conditions. Current results agree with those previously reported in the literature for several ionic liquid-based systems taken for comparison. In addition, task-specific ionic liquids, with improved properties for ammonia absorption, and also binary ionic liquid mixtures are considered in the analysis. It is obtained that ionic liquids showing higher ammonia absorption capacity among the considered absorbents simultaneously provide the best cycle’s performances. The cycle performances vary in relatively wide intervals depending on the ammonia concentration in the (refrigerant + absorbent) solutions. This behavior is strongly modulated by the ammonia absorption

  18. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  19. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    OpenAIRE

    Gil, I. D.; Uyazán, A. M.; Aguilar, J. L.; Rodríguez, G.; Caicedo, L. A.

    2008-01-01

    The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration pro...

  20. Breeding of the White-Tailed Eagle in the Omsk Region, Russia

    Directory of Open Access Journals (Sweden)

    Boris Yu. Kassal

    2014-11-01

    Full Text Available The White-Tailed Eagle (Haliaeetus albicilla in the Omsk region prefers to breed within the Irtysh River floodplain and its tributaries, as well as along Rahtovo lake and large lake systems (Bolshie Krutinskie, Tyukalinskie, Ilyinskie. Its nests are built mainly on silver birch, aspen, Scots and Siberian pines, white willow and poplars, at a height of 6–15 m with zonal.

  1. Chicken feather fiber as an additive in MDF composites

    Science.gov (United States)

    Jerrold E. Winandy; James H. Muehl; Jessie A. Glaeser; Walter Schmidt

    2007-01-01

    Medium density fiberboard (MDF) panels were made with aspen fiber and 0-95% chicken feather fiber (CFF) in 2.5%, 5%, or 25% increments, using 5% phenol formaldehyde resin as the adhesive. Panels were tested for mechanical and physical properties as well as decay. The addition of CFF decreased strength and stiffness of MDF-CFF composites compared with that of all-wood...

  2. Impact of native ungulates and beaver on riparian communities in the intermountain west

    OpenAIRE

    Kay, Charles E.

    1994-01-01

    This paper reviews the impact native ungulates, primarily elk and moose, and beaver can have on riparian communities in the Western United States. In Yellowstone National Park and in other areas where ungulates are not managed, repeated browsing has reduced tall willow, aspen, and cottonwood communities by approximately 95 percent since the late 1800's. Native ungulates can also severely reduce or eliminate palatable grasses and forbs from herbaceous riparian communities. By eliminating woody...

  3. How Do We Turn This Thing Off? A Study to Determine an Approach for Making Curtailment of Service and Closure Decisions in Health Care Facilities.

    Science.gov (United States)

    1979-04-09

    22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL Lawrence M. Leahy, MAJ, MS (512) 221-6345 HSHA-IHC DO Form...Facilities. Germantown, MD.: Aspen Systems Corporation, 1976. Bierman, Harold Jr., Charles R. Bonini and Warren H. Hausman . Quantitative Analysis for Business...Assessment," Topics in Health Care Financing II, No. 4 ( Summer , 1976), 109-121. Drake, David F. and Kozak, David M. "A Primer on Antitrust and Hospital

  4. Double keystone bird in a keystone species complex.

    OpenAIRE

    Daily, G C; Ehrlich, P R; Haddad, N M

    1993-01-01

    Species in a Colorado subalpine ecosystem show subtle interdependences. Red-naped sapsuckers play two distinct keystone roles. They excavate nest cavities in fungus-infected aspens that are required as nest sites by two species of swallows, and they drill sap wells into willows that provide abundant nourishment for themselves, hummingbirds, orange-crowned warblers, chipmunks, and an array of other sap robbers. The swallows thus depend on, and the sap robbers benefit from, a keystone species c...

  5. Community assembly in epiphytic lichens in early stages of colonization.

    Science.gov (United States)

    Gjerde, Ivar; Blom, Hans H; Lindblom, Louise; Saetersdal, Magne; Schei, Fride Høstad

    2012-04-01

    Colonization studies may function as natural experiments and have the potential of addressing important questions about community assembly. We studied colonization for a guild of epiphytic lichens in a former treeless heathland area of 170 km2 in southwest Norway. We investigated if epiphytic lichen species richness and composition on aspen (Populus tremula) trees corresponded to a random draw of lichen individuals from the regional species pool. We compared lichen communities of isolated young (55-120 yr) and old (140-200 yr) forest patches in the heathland area to those of aspen forest in an adjacent reference area that has been forested for a long time. All thalli (lichen bodies) of 32 selected lichen species on trunks of aspen were recorded in 35 aspen sites. When data for each site category (young, old, and reference) were pooled, we found the species richness by rarefaction to be similar for reference sites and old sites, but significantly lower for young sites. The depauperated species richness of young sites was accompanied by a skew in species composition and absence of several species that were common in the reference sites. In contrast, genetic variation screened with neutral microsatellite markers in the lichen species Lobaria pulmonaria showed no significant differences between site categories. Our null hypothesis of a neutral species assembly in young sites corresponding to a random draw from the regional species pool was rejected, whereas an alternative hypothesis based on differences in colonization capacity among species was supported. The results indicate that for the habitat configuration in the heathland area (isolated patches constituting lichen communities may need a colonization time of 100-150 yr for species richness to level off, but given enough time, isolation will not affect species richness. We suggest that this contradiction to expectations from classical island equilibrium theory results from low extinction rates.

  6. Manufacture of furfural from logging wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kul' kevits, Y.A.; Pugulis, M.O.; Daugavietis, M.O.; Zavylavov, V.A.; Butsena, A.Y.

    1980-01-01

    A pilot plant has been built at the Kalsnava forest experiment station in Latvia to convert chips of low-value broadleaves (birch, aspen, alder etc.), especially from branchwood into furfural (obtainable from bark as well as from wood). The process (patented) and flow line are described. Furfural is obtained in 6.8-7.6% yield on total DM by low-temperature pyrolysis 210-220 degrees Centigrade. A prototype factory of 1000 tons raw furfural capacity is proposed.

  7. Health Security Intelligence: Assessing the Nascent Public Health Capability

    Science.gov (United States)

    2012-03-01

    States of Micronesia, Republic of the Marshall Islands , and Republic of Palau) (CDC— PHPR—Funding, Guidance, and Technical Assistance to States...and eight U.S. territories and freely associated states (American Samoa, Guam, U.S. Virgin Islands , Northern Mariana Islands , Puerto Rico, Federated...planning for the aerosolized release of the toxin ricin near state and federal government facilities (Jaslow, 2011). A recent report by the Aspen

  8. Assessing urban forest effects and values, Scranton's urban forest

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Jack C. Stevens; Vincent. Cotrone

    2010-01-01

    An analysis of trees in the urbanized portion of Scranton, PA, reveals that this area has about 1.2 million trees with canopies that cover 22.0 percent of the area. The most common tree species are red maple, gray birch, black cherry, northern red oak, and quaking aspen. Scranton's urban forest currently store about 93,300 tons of carbon valued at $1.9 million. In...

  9. Cultural Resources Investigation of a Proposed Flood Control Project along the Sheyenne River, at West Fargo, Cass County, North Dakota. Phase I.

    Science.gov (United States)

    1988-01-15

    cottonwood (Po2ulus salrgenti), sumac (Ehus sp.), peach and sandbar willows (Salix amvdaloides; . terio), and slippery elm (Ulmus rubra). 3.4.2 Bluestem...forest of elm , oak, ash, hackberry, cottonwood, and aspen along the major streams. Archaeological evidence indicates that prehistoric people along the...black willow (Salix nifra), and American elm (Ulmus amicnan). Other components include: boxelder (Acer neaundo), red maple (A. Subrum), silver maple (A

  10. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management in Cazenovia Creek Watershed.

    Science.gov (United States)

    1977-03-01

    Ulmus rubra slippery elm Ulmus thomasii rock elm Pinus strobus white pine Juglans cinerea. butternut Juglans nigra black walnut Carya ovata shagbark...West Seneca X : X : X Town of Elm : X X X Town of Aurora : X : Town of Boston X : Town of Colden : X : 5.i, Table 1 (cont’d) Flood Insurance Status for...grandidentata bigtooth aspen Populus deltoides eastern cottonwood Rhus typhina staghorn. sumc Betula alleghaniesis yellow birch Ulmus americana. American elm

  11. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 9, Number 2, April - June 1984,

    Science.gov (United States)

    1984-06-01

    physics, and mathematics. - Physics at Tunku Abdul Rahman College -. Students wishing to study physics must pass the STP /HSC (Sijil Tinggi...Malaysians and 50 foreigners attended. ASPEN is supported by UNESCO. TAPE was sponsored by UNESCO, COSTED, the Institute of Physics Malaysia and PETRONAS ...cooling and the rationale for selecting processing parameters have been developed by the Structural Steels Laboratory [Ouchi et at., ASTM STP 672, 105

  12. Modelling of an industrial NGL-Recovery unit considering environmental and economic impacts

    International Nuclear Information System (INIS)

    Sharratt, P. N.; Hernandez-Enriquez, A.; Flores-Tlacuahuac, A.

    2009-01-01

    In this work, an integrated model is presented that identifies key areas in the operation of a cryogenic NGL-recovery unit. This methodology sets out to provide deep understanding of various interrelationship across multiple plant operating factors including reliability, which could be essential for substantial improvement of process performance. The integrated model has been developed to predict the economic and environmental impacts of a real cryogenic unit (600 MMCUF/D) during normal operation, and has been built in Aspen TM. (Author)

  13. Detectability of Cold Rocket Plumes.

    Science.gov (United States)

    1979-10-11

    blackbody temperature measurements (after Fetterman et al., Ref.9). 41 DIRECTION 118-8-1457i01 OF MAXIMUM Z RADIATION 1*I y CORERRELECOR. QU--MASRE...34 Aspen Int. Conf. on Fourier Spectroscopy, (1970), p. 19, DDC AD-724 100. 9. H. R. Fetterman , P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D...A. Blumberg, H. R. Fetterman , D. D. Peck, and P. F. Goldsmith, "Tunable Submillimeter Sources Applied to the Excited State Rotational Spectro- scopy

  14. The Validation of the Mixedwood Growth Model (MGM for Use in Forest Management Decision Making

    Directory of Open Access Journals (Sweden)

    Mike Bokalo

    2013-01-01

    Full Text Available We evaluated the Mixedwood Growth Model (MGM at a whole model scale for pure and mixed species stands of aspen and white spruce in the western boreal forest. MGM is an individual tree-based, distance-independent growth model, designed to evaluate growth and yield implications relating to the management of white spruce, black spruce, aspen, lodgepole pine, and mixedwood stands in Alberta, British Columbia, Saskatchewan, and Manitoba. Our validation compared stand-level model predictions against re-measured data (volume, basal area, diameter at breast height (DBH, average and top height and density from permanent sample plots using combined analysis of residual plots, bias statistics, efficiency and an innovative application of the equivalence test. For state variables, the model effectively simulated juvenile and mature stages of stand development for both pure and mixed species stands of aspen and white spruce in Alberta. MGM overestimates increment in older stands likely due to age-related pathology and weather-related stand damage. We identified underestimates of deciduous density and volume in Saskatchewan. MGM performs well for increment in postharvest stands less than 30 years of age. These results illustrate the comprehensive application of validation metrics to evaluate a complex model, and provide support for the use of MGM in management planning.

  15. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  16. Research and survey report of FY 1997 on the CO2 balance for high-temperature CO2 fixation and utilization technology; 1997 nendo chosa hokokusho (nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The purpose of this research is to clarify the application condition and effectiveness of high-temperature CO2 fixation and utilization technology. To evaluate the present process, it was compared with others, such as separation using a polymer membrane, physico-chemical absorption process, adsorption process, hydrogen contact reduction process, and biological fixation. The development trends of absorption, membrane, adsorption, and cryogenic separation were investigated. The questionnaire was carried out about the separation technologies which are in the stage of performance test using actual gas, to arrange and compare the data and information. The current trends of chemical and biological CO2 fixation and utilization technology were also investigated for arranging the subjects. High-temperature CO2 disposal by the carbonation in concrete waste has been studied, to clarify its application conditions and effectiveness. In order to compare the separation technologies, treatment processes of CO2 in the exhaust gas from boilers of LNG power generation and coal fired power generation were simulated. These processes were simulated by ASPEN PLUS for the modeling. Trends of application of ASPEN PLUS and collection of information were surveyed by participating in the ASPEN WORLD. 103 refs., 51 figs., 55 tabs.

  17. Selection of bioprocess simulation software for industrial applications.

    Science.gov (United States)

    Shanklin, T; Roper, K; Yegneswaran, P K; Marten, M R

    2001-02-20

    Two commercially available, process-simulation software packages (Aspen Batch Plus v1.2, Aspen Technology, Inc., Cambridge, Massachusetts, and Intelligen SuperPro v3.0, INTELLIGEN, INC., Scotch Plains, Ner Jersey) are evaluated for use in modeling industrial, biotechnology processes. Software is quantitatively evaluated by Kepner-Tregoe Decision Analysis (Kepner and Tregoe, 1981). This evaluation shows that Aspen Batch Plus v1.2 (ABP) and Intelligen SuperPro v3.0 (ISP) can successfully perform specific simulation tasks but do not provide a complete model of all phenomena occurring within a biotechnology process. Software is best suited to provide a format for process management, using material and energy balances to answer scheduling questions, explore equipment change-outs, and calculate cost data. The ability of simulation software to accurately predict unit operation scale-up and optimize bioprocesses is limited. To realistically evaluate the software, a vaccine manufacturing process under development at Merck & Company is simulated. Case studies from the vaccine process are presented as examples of how ABP and ISP can be used to shed light on real-world processing issues. Copyright 2001 John Wiley & Sons, Inc.

  18. Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus.

    Science.gov (United States)

    Siedlecka, Anna; Wiklund, Susanne; Péronne, Marie-Amélie; Micheli, Fabienne; Lesniewska, Joanna; Sethson, Ingmar; Edlund, Ulf; Richard, Luc; Sundberg, Björn; Mellerowicz, Ewa J

    2008-02-01

    Wood cells, unlike most other cells in plants, grow by a unique combination of intrusive and symplastic growth. Fibers grow in diameter by diffuse symplastic growth, but they elongate solely by intrusive apical growth penetrating the pectin-rich middle lamella that cements neighboring cells together. In contrast, vessel elements grow in diameter by a combination of intrusive and symplastic growth. We demonstrate that an abundant pectin methyl esterase (PME; EC 3.1.1.11) from wood-forming tissues of hybrid aspen (Populus tremula x tremuloides) acts as a negative regulator of both symplastic and intrusive growth of developing wood cells. When PttPME1 expression was up- and down-regulated in transgenic aspen trees, the PME activity in wood-forming tissues was correspondingly altered. PME removes methyl ester groups from homogalacturonan (HG) and transgenic trees had modified HG methylesterification patterns, as demonstrated by two-dimensional nuclear magnetic resonance and immunostaining using PAM1 and LM7 antibodies. In situ distributions of PAM1 and LM7 epitopes revealed changes in pectin methylesterification in transgenic trees that were specifically localized in expanding wood cells. The results show that en block deesterification of HG by PttPME1 inhibits both symplastic growth and intrusive growth. PttPME1 is therefore involved in mechanisms determining fiber width and length in the wood of aspen trees.

  19. Response of a forest ecotone to ionizing radiation. Progress report, October 15, 1981-April 14, 1983

    International Nuclear Information System (INIS)

    Murphy, P.G.; Sharitz, R.R.

    1982-11-01

    Compositional and structural characteristics of three forest types, including aspen dominated, maple-birch dominated, and an intervening ecotone (midecotone), were studied before and after irradiation in northern Wisconsin. In all three areas, the density of seedlings at 10 m was greatly reduced within a year following the 1972 radiation event. Woody plants of tree stature were eliminated at 10 m in all three areas within two years of irradiation but by 1982 only the aspen area lacked plants in this size class. The low densities of young trees in the other two areas at 10 m were of successional species rather than the original species killed by radiation. In 1981 total leaf litter production was 42 and 61% below 1971 preirradiation levels at 10 m in the aspen and maple-birch areas, respectively. But at 10 m in the midecotone, it had increased, relative to 1971, by 23%. The ratio of shrub to tree leaf litter continues to decline as the heavily irradiated zone of all three areas continues to be recolonized by tree species and the canopy at 20 m continues to fill out. Our present studies emphasize the rate at which the three areas continue to be recolonized and the composition of the recolonizing flora, relative to the preirradiation forest. Influences of the successional shrub species within 10 m are of particular interest and are also under study

  20. Application of a novel calcium looping process for production of heat and carbon dioxide enrichment of greenhouses

    International Nuclear Information System (INIS)

    Ramezani, Mohammad; Shah, Kalpit; Doroodchi, Elham; Moghtaderi, Behdad

    2015-01-01

    Highlights: • The greenhouse calcium looping process was developed by ASPEN Plus simulator. • In this process, the carbonation reaction provides required heat during night time. • The calcination reaction provides required carbon dioxide during day time. • This novel process saves up to 72% energy compared to the fossil fuel burners. • The process thermodynamically attributes to zero emission of carbon dioxide. - Abstract: Greenhouses typically employ conventional burner systems to suffice heat and carbon dioxide required for plant growth. The energy requirement and carbon dioxide emissions from fossil fuel burner are generally high. As an alternative, this paper describes a novel greenhouse calcium looping process which is expected to decrease the energy requirements and associated carbon dioxide emissions. The conceptual design of greenhouse calcium looping process is carried out in the ASPEN Plus v 7.3 simulator. In a greenhouse calcium looping process, the calcination reaction is considered to take place during day time in order to provide the required optimum carbon dioxide between 1000 and 2000 ppm, while the carbonation reaction is occurred during night time to provide required heat. The process simulations carried out in ASPEN indicates that greenhouse calcium looping process theoretically attributes to zero emission of carbon dioxide. Moreover, in a scenario modelling study compared to the conventional natural gas burner system, the heat duty requirements in the greenhouse calcium looping process were found to reduce by as high as 72%