WorldWideScience

Sample records for aspen pulp mill

  1. Fibrillation of Aspen by Alkaline Cold Pre-treatment and Vibration Milling

    Directory of Open Access Journals (Sweden)

    Kärt KÄRNER

    2016-09-01

    Full Text Available In this article an attempt to fibrillate aspen bleached chemi-thermo mechanical pulp (BCTMP fibre in an environmentally friendly way is reported. The effects of various NaOH, KOH, urea and ethanol aqueous solutions at lowered temperature were tested for pre-treatment. The pre-treatment was followed by vibration milling aiming to peel off outer cell wall layers and to fibrillate S2 layer of the aspen wood fibre. The effects of the treatments were evaluated by scanning electron microscopy (SEM. The results show that it is possible to fibrillate BCTMP aspen fibres by using alkaline aqueous solutions at low temperatures followed by a mechanical treatment. A strong dependence on fibrillation of cellulose on temperature, time and alkali concentration was established.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.7412

  2. Air pollution control in kraft pulp mills.

    Science.gov (United States)

    Bhatia, S P; de Souza, T L; Azarniouch, M K; Prahacs, S

    1978-02-01

    A patented gas scrubbing process, whereby the emissions of malodorous reduced sulphur compounds are effectively and economically reduced, is described. Stack gases are scrubbed with an alkaline suspension of activated carbon. Reduced sulphur compounds as well as sulphur oxides are converted to sodium salts which are subsequently recovered and utilized for pulping. The process also reduces particulate emissions. It does not produce subsequent waste disposal problems and has little or, in some cases, zero net cost, on account of the simultaneous recovery of heat and chemicals. Furthermore, the paper also reviews some innovations made in gas chromatography techniques, for the measurement of trace quantities of sulphur compounds present in kraft mill emissions.

  3. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan.

    Science.gov (United States)

    Li, Zongquan; Dou, Hongyan; Fu, Yingjuan; Qin, Menghua

    2015-11-05

    The presence of transition metals during the hydrogen peroxide bleaching of pulp results in the decomposition of hydrogen peroxide, which decreases the bleaching efficiency. In this study, chitosans were used as peroxide stabilizer in the alkaline hydrogen peroxide bleaching of aspen chemithermomechanical pulp (CTMP). The results showed that the brightness of the bleached CTMP increased 1.5% ISO by addition of 0.1% chitosan with 95% degree of deacetylation during peroxide bleaching. Transition metals in the form of ions or metal colloid particles, such as iron, copper and manganese, could be adsorbed by chitosans. Chitosans could inhibit the decomposition of hydrogen peroxide catalyzed by different transition metals under alkaline conditions. The ability of chitosans to inhibit peroxide decomposition depended on the type of transition metals, chitosan concentration and degree of deacetylation applied. The addition of chitosan slightly reduced the concentration of the hydroxyl radical formed during the hydrogen peroxide bleaching of aspen CTMP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Decolourisation of a pulp mill effluent using commercial activated carbons

    OpenAIRE

    Valente Nabais, Joao; Carrott, Peter; Carrott, Manuela; Marques, Lilinana

    2006-01-01

    The decolourisation of industry effluents is a challenging and fundamental task related to pollution control, mainly in pulp mill and textile industries. The dark colour of the pulp mill effluent, depending on the river characteristics, can lead to the reduction of the light penetration into the aquatic environment with the consequent decrease of photosynthesis and aquatic life destruction. Also, the lignocelulosic material deposited on the margins and river bed can lead to a larg...

  5. Biomechanical pulping : a mill-scale evaluation

    Science.gov (United States)

    Masood. Akhtar; Gary M. Scott; Ross E. Swaney; Mike J. Lentz; Eric G. Horn; Marguerite S. Sykes; Gary C. Myers

    1999-01-01

    Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory...

  6. Corrosion testing in flash tanks of kraft pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.J.; Stead, N.J.

    1999-11-01

    The corrosion observed in the first flash tanks in kraft pulp mills with modified cooking practices was characterized. Coupons of carbon steel (CS), several stainless steels (SS), and Ti were exposed at two mills. At one mill, identical sets of coupons were exposed in the No. 1 and No. 2 flash tank. At the other mill, three identical sets of coupons were placed in flash tank No. 1. The results of the exposures showed that both CS and Ti suffered high rates of general corrosion, while the SS suffered varying degrees of localized attack. The ranking of the corrosion resistance in the flash tank was the same that would be expected in a reducing acid environment. Attack by organic acids was concluded to be the most likely cause of corrosion of the flash tanks.

  7. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  8. Biological removal of phyto-sterols in pulp mill effluents.

    Science.gov (United States)

    Mahmood-Khan, Zahid; Hall, Eric R

    2013-12-15

    Phyto-sterols and extractives found in pulp mill effluents are suspected to cause endocrine abnormalities in receiving water fish. The control of sterols in pulp mill effluents through biological secondary wastewater treatment was studied using two lab-scale bioreactor systems. After achieving a stable performance, both bioreactor systems successfully removed (>90%) sterols and the estimated biodegradation was up to 80%. Reactor 1 system operating at 6.7 ± 0.2 pH effectively treated pulp mill effluent sterols spiked up to 4500 μg/L in 11 h HRT and 11 day SRT. However, Reactor 2 system operating at 7.6 ± 0.2 pH performed relatively poorly. Retention time reductions beyond critical values deteriorated the performance of treatment systems and quickly reduced the sterols biodegradation. The biodegradation loss was indicated by mixed liquor sterols content that started increasing. This biodegradation loss was compensated by the increased role of bio-adsorption and the overall sterols removal remained relatively high. Hence, a relatively small (20-30%) loss in the overall sterols removal efficiency did not fully reflect the associated major (60-70%) loss in the sterols biodegradation because the amount of sterols accumulated in the sludge due to adsorption increased so the estimate of sterols removal through adsorption increased from 30-40% to 70-80% keeping the overall sterols removal still high. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    Science.gov (United States)

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  10. Effects of ozone on kraft process pulp mill effluent

    International Nuclear Information System (INIS)

    Mohammed, A.; Smith, D.W.

    1992-01-01

    Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O 3 /L to identify the suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for (Biochemical Oxygen Demand) BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for BOD tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The results were analyzed using the open-quote t close-quote test for paired experiments and an ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent. 21 refs., 9 figs., 7 tabs

  11. Simulation of pulp mill wastewater recycling after tertiary treatment.

    Science.gov (United States)

    Fontanier, V; Albet, J; Baig, S; Molinier, J

    2005-12-01

    The aim of this work is to study the possibilities of effluent recycling in a bleached Kraft pulp mill, for a better water management. To avoid problems associated with effluent recycling (corrosion, odors, loss in pulp and paper quality), wastewaters have to be treated before recycling. This study is particularly focused on organic matter removal. Several treatments are applied on a biological secondary effluent: adsorption on activated carbon, coagulation with ferric chloride or alum sulfate, precipitation with lime, ozonation and catalytic ozonation. These techniques are compared in terms of COD (Chemical Oxygen Demand) removal. Catalytic ozonation is finally chosen as the most effective solution to achieve 50% of COD removal in the effluent. The characteristics of the effluent treated according to this technique are then used to simulate the impact of its reuse in the process for pulp production. The study is focused on the changes in these parameters in the various stages of bleaching and final washing when water is replaced by the wastewater treated or directly issued from the wastewater treatment plant. The simulation demonstrates the need of a tertiary treatment to eliminate COD in order to avoid possible reactant overconsumption and decrease in pulp brightness. Chloride and sulfate ions which could cause corrosion should also be removed.

  12. Effects of size and age on the survival and growth of pulp and paper mills

    Science.gov (United States)

    Xiaolei Li; Joseph Buongiorno; Peter J. Ince

    2004-01-01

    The growth of pulp and paper mills in the US from 1970 to 2000 depended mostly on size and age. Mills grew according to Gibrat’s law, and post-1970 mills grew faster than pre-1971 mills. Mills stopped growing at approximately 22 years of age. But most mills survived beyond that, thus growth was not necessary for survival, but characteristic of the early phase of the...

  13. Optimal energy management in pulp and paper mills

    International Nuclear Information System (INIS)

    Sarimveis, H.K.; Angelou, A.S.; Retsina, T.R.; Rutherford, S.R.; Bafas, G.V.

    2003-01-01

    In this paper, we examine the utilization of mathematical programming tools for optimum energy management of the power plant in pulp and paper mills. The objective is the fulfillment of the total plant requirements in energy and steam with the minimum possible cost. The proposed methodology is based on the development of a detailed model of the power plant using mass and energy balances and a mathematical formulation of the electrical purchase contract, which can be translated into a rigorous mixed integer linear programming optimization problem. The results show that the method can be a very useful tool for the reduction of production cost due to minimization of the fuel and electricity costs

  14. Future CO2 removal from pulp mills - Process integration consequences

    International Nuclear Information System (INIS)

    Hektor, Erik; Berntsson, Thore

    2007-01-01

    Earlier work has shown that capturing the CO 2 from flue gases in the recovery boiler at a pulp mill can be a cost-effective way of reducing mill CO 2 emissions. However, the CO 2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO 2 are investigated. The reduction is achieved by using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO 2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the heat of absorption from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO 2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO 2 . With tough CO 2 reduction targets and correspondingly high CO 2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2

  15. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  16. Assessing the value of pulp mill biomass savings in a climate change conscious economy

    International Nuclear Information System (INIS)

    Adahl, Anders; Harvey, Simon; Berntsson, Thore

    2006-01-01

    Pulp mills use significant amounts of biofuels, both internal and purchased. Biofuels could contribute to reach greenhouse gas emission targets at competitive costs. Implementing process integration measures at a pulp mill in order to achieve pulp production with less use of energy (biofuels) has not only on-site consequences but also off-site consequences, such as substitution of fossil fuels elsewhere by the saved pulp mill biofuels, and less on-site electric power generation. In this paper a method, a linking model, is suggested to analyse pulp mill biofuel saving measures when carbon dioxide (CO 2 ) external costs are internalised. The linking model is based on equilibrium economics and links information from CO 2 constrained energy market future scenarios with process integration measures. Pulp mill economics and marginal energy market CO 2 response are identified. In an applied study, four process integration measures at a Swedish pulp mill were analysed using five energy market future scenarios emanating from a Nordic energy model. The investigated investment alternatives for biofuel savings all result in positive net annual savings, irrespectively of the scenario used. However, CO 2 emissions may increase or decrease depending on the future development of the Nordic energy market

  17. TECHNICAL APPROACHES TO CHARACTERIZING AND CLEANING UP BROWNFIELDS SITES: PULP AND PAPER MILLS

    Science.gov (United States)

    This guidance document gives assistance to communities, decision-makers, states and municipalities, academia, and the private sector to address issues related to the redevelopment of Brownfields sites, specifically pulp and paper mills sites. The document helps users to understan...

  18. The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill ...

    African Journals Online (AJOL)

    spent liquor effluent obtained from Sappi Saiccor (formerly South African Industrial Cellulose Corporation) dissolving pulp mill as well as on lignin- and lignan-type compounds previously identified in the effluent. Voltammograms were obtained ...

  19. The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill ...

    African Journals Online (AJOL)

    2009-10-28

    spent liquor effluent obtained from Sappi. Saiccor (formerly South African Industrial Cellulose Corporation) dissolving pulp mill as well as on lignin- and lignan-type compounds previously identified in the effluent.

  20. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  1. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge.

    Directory of Open Access Journals (Sweden)

    Martijn Eikelboom

    Full Text Available The Multi-Criteria Decision Analysis (MCDA procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery, economic (overall costs, value of products and technical (maintenance and operation, feasibility of implementation. The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry. Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery.

  2. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    Science.gov (United States)

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  3. The role of bleaching in pulp mill effluent effects on fish

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, J.; Hodson, P.; Cross, T. [Queen`s Univ., School of Environmental Studies, Queen`s Univ., Kingston, ON (Canada); Van Heiningen, A. [New Brunswick Univ., Limerick Pulp and Paper Centre, Fredericton, NB (Canada)

    1999-05-01

    Sources and potency of mixed function oxygenase (MFO)-inducing compounds within a 5-stage chlorine dioxide bleaching sequence at a pulp and paper mill was determined. Environmental concerns regarding chlorinated organic materials and their toxicity to aquatic organisms caused many mills to switch to elemental chlorine-free bleaching processes, with the most common being the chlorine dioxide bleaching process. However, even with this switch, effluent from kraft pulp mills still affect aquatic organisms. In this study, bleach plant filtrates were collected from two kraft mills in Ontario. The filtrates were used in fish bioassays to assess MFO-inducing potency. Results showed that potency varied depending on the wood used (softwood or hardwood) and the bleaching stage. Filtrates produced in a lab were weak MFO inducers compared to mill filtrates.14 refs., 6 figs.

  4. 75 FR 26794 - International Paper Company Franklin Pulp & Paper Mill Including On-Site Leased Workers From...

    Science.gov (United States)

    2010-05-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,764] International Paper Company Franklin Pulp & Paper Mill Including On-Site Leased Workers From Railserve, Franklin, VA; Amended... workers of International Paper Company, Franklin Pulp & Paper Mill, Franklin, Virginia. The notice was...

  5. 76 FR 2145 - International Paper Company, Franklin Pulp & Paper Mill, Including On-Site Leased Workers From...

    Science.gov (United States)

    2011-01-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,764] International Paper Company, Franklin Pulp & Paper Mill, Including On-Site Leased Workers From Railserve, Franklin, VA..., applicable to workers and former workers of International Paper Company, Franklin Pulp & Paper Mill, Franklin...

  6. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mills

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2010-03-01

    Full Text Available value of freeness (32 ml CSF) for base fraction pulps confirmed the scenario. The second set of trials examined the efficiency of the mill fractionation process in terms of the final pulp quality. The mill’s accept pulps were fractionated. The results...

  7. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  8. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    Science.gov (United States)

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  9. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    Science.gov (United States)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  10. Histopathology, enzyme activities, and PAH metabolites in English sole collected near coastal pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Brand, D.G. [Univ. of Victoria, British Columbia (Canada)

    1995-12-31

    The bottom-feeding flatfish, English sole (Pleuronectes vetulus), is widely distributed along the B.C. Pacific coast and fulfills a majority of the requirements as a sentinel species for environmental effects monitoring programs. Studies involving the use of histopathological, biochemical, and chemical tools with English sole collected near the vicinity of B.C. pulp mills are currently being conducted. Analysis, to date, has revealed idiopathic liver lesions to be strongly dependent on location of capture with a prevalence of 30% preneoplastic and neoplastic lesions found in fish collected near pulp mills. All fish residing near pulp mills show hepatocellular hemosiderosis, an iron storage disorder. The mixed-function oxidizing enzyme, EROD, was found to be induced in fish collected near pulp mills. However, the levels of conjugating enzymes, GST and UDP-GT, were found to be unchanged when compared with reference fish. PAH metabolites, measured as FACs in bile, are also present in English sole collected from the mill sites and the conjugated derivatives are presently being identified by HPLC/ES-MS techniques, The relationships between these observations will be discussed.

  11. Are Eucalyptus clones advantageous for the pulp mill? | Clarke ...

    African Journals Online (AJOL)

    Dissolving pulp yield of clones varied from 43.8 to 45.6%, viscosity from 41.4 to 69.8cps and brightness from 43.7 to 50.7. Wood density was found to vary between clones from 460 to 570kg / m3, fibre diameter from 12.05 to 14.49:m and cell wall thickness from 2.40 to 2.64: m. Differences in wood and dissolving pulp ...

  12. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill.)

    OpenAIRE

    Vanini,Lucimara Salvat; Kwiatkowski,Angela; Clemente,Edmar

    2010-01-01

    The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic...

  13. PERIPHYTON AND SEDIMENT BIOASSESSMENT AS INDICATORS OF THE EFFECT OF A COASTAL PULP MILL WASTEWATER

    Science.gov (United States)

    A two year study was conducted near Port St. Joe, Florida, in a coastal transportation canal and bay receiving combined municipal and pulp mill wastewater. The objective of the study was to determine the effectiveness of periphyton analysis techniques and sediment toxicity as ind...

  14. CATALYTIC OXIDATION OF MALODOROUS COMPOUNDS FROM PULP AND PAPER MILLS WITH OZONE AS AN OXIDANT

    Science.gov (United States)

    Total reduced sulfer (TRS) compounds such as dimethyl sulfide, dimethyl disulfide, methanethiol and H2S are identified as major constituents of pulp and paper mill blow tank effluents. TRS compounds are calodorous and can have potentially serious impacts on environmental quality ...

  15. Scale up of ethanol production using pulp mill wastewater sludge by cellulase and saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kunchada Sangasintu; Petchporn Chawakitchareon

    2010-01-01

    This study aimed to evaluate the potential use of pulp mill wastewater sludge as substrate in ethanol production. The simultaneous saccharification and fermentation process was conducted by using Saccharomyces cerevisiae TISTR 5339 under optimum proportion of cellulase and pulp mill wastewater sludge. The ethanol production from cellulosic materials in simultaneous saccharification and fermentation needs cooperation between cellulase and yeast. The cellulase hydrolyzes cellulose to sugar while yeast utilizes sugar to produce ethanol. The pulp mill wastewater sludge has an average content of 73.3 % hemi cellulose, 67.1 % alpha cellulose, 4.7 % beta cellulose and 1.4 % gamma cellulose. The experimental results indicated that the volume of the ethanol tend to increase with time, providing the maximum ethanol yield of 0.69 g/g on the 7 th day, the last day of the experiment. The ethanol production was scaled up in 5 L fermentor under optimum proportion and increased the fermentation period. It was found that the ethanol production gave the maximum ethanol yield of 1.14 g/g on the 9 th day of the totally 13 days experimentation. These results showed that the cellulose from pulp mill wastewater sludge was as effective substrate for ethanol production and alternative energy for the future. (author)

  16. Variation reduction of brightness and pH of pulp sent to a paper mill

    Directory of Open Access Journals (Sweden)

    Napassavong Rojanarowan

    2015-03-01

    Full Text Available The variance of the brightness of pulp sent to the paper mill during the changing period of dry pulp grades affects the chemical control in the paper mill. This research aims to determine the mixing formula of pulp with different brightness from the EOP and D1 stages to handle this variation issue. This research uses response surface design with Central Composite Design type, regression technique and optimization technique to find the optimal setting of the mixing formula for each of the seven brightness levels to obtain the target brightness of 86% and the pH of 5.25. The mixing formulas are determined by the pulp mixing percentage and the sulfuric acid consumption. The experimental results reveal that when using higher EOP mixing ratio, the brightness decreases and the pH increases. Regarding the effect of the sulfuric acid, increasing the sulfuric acid makes the brightness and the pH decrease. After implementing the optimal formula in the production line, the mean of pulp brightness is closer to the target compared with the brightness before improvement and the brightness variation decreases without affecting the quality of other pulp grades, average of brightness decreased from 87.4% to 86.3% and standard deviation of brightness decreased from 1.09 to 0.46.

  17. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  18. Reusing pulp and paper mill effluent as a bioresource to produce biohydrogen through ultrasonicated Rhodobacter sphaeroides

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Ng, Boon Junn; Juan, Joon Ching; Md Jahim, Jamaliah

    2016-01-01

    Highlights: • Ultrasonication pretreatment on R. sphaeroides enhanced biohydrogen production. • Pretreatment using amplitude 30% for 10 min gave the highest biohydrogen yield. • Pretreatment using amplitude 45% for 15 min inhibited biohydrogen production. - Abstract: Pulp and paper industry is a water-intensive industry. This industry commonly produces considerable amount of effluent, especially from virgin raw materials processing. The effluent, namely pulp and paper mill effluent has the potential to adversely affect the receiving watercourses. However, the nutrients in the pulp and paper mill effluent could be reused as a substrate in biohydrogen production. In this study, photofermentative biohydrogen production was investigated using Rhodobacter sphaeroides and pulp and paper mill effluent as a substrate. An application of low power ultrasound on R. sphaeroides was predicted to increase photofermentative biohydrogen production but excessive ultrasound effects might inhibit the production due to possible cell disruption. Hence, various ultrasonication duration (5, 10 and 15 min) and amplitude (15%, 30% and 45%) were applied on the bacteria to determine the recommended ultrasonication conditions for improving biohydrogen production. The recommended conditions were operated at ultrasonication amplitude and duration of 30% and 10 min, respectively. A maximum biohydrogen yield of 9.62 mL bioH 2 /mL medium was obtained under this condition, which was 66.7% higher than the result obtained using R. sphaeroides without undergoing ultrasonication (control). The light efficiency and cell concentration were increased by 67% and 150%, respectively, using ultrasonication amplitude and duration of 30% and 10 min, respectively as compared to the control. The present results demonstrated that moderate power of ultrasonication applied on R. sphaeroides was an effective method for enhancing photofermentative biohydrogen production using raw pulp and paper mill effluent as

  19. The role of microorganisms in the formation of pitch deposits in pulp and paper mills.

    Science.gov (United States)

    Stranger-Johannessen, M

    1984-01-01

    The cause of pitch deposit formation seems still not fully understood. The work reported here demonstrates that microorganisms effect the agglomeration of emulgated resin droplets and the formation of sticky precipitates. Pitch deposits from mills consist mainly of ethanol-soluble resins. It is also the ethanol-soluble fraction of wood resins which forms stable emulsions and which is easily agglomerated by microorganisms. Pitch deposits, collected from various pulp and paper mills, were all found to contain large amounts of microorganisms. Sterile resin emulsions prepared from pitch deposits remained stable over long periods. After inoculation with microorganisms the emulsions were destabilized and the resins completely precipitated as sticky lumps. Various bacteria and fungi are capable of agglomerating the resins, but species isolated from water, pulp and slime in paper mills were usually most effective. Resins from fresh wood were precipitated at a faster rate than aged resins. Problems of pitch formation can be considerably reduced when microbial growth is kept under control in the production system. To be effective, the control measures, e.g. slimicides, must be applied at the right place and time, and in the correct concentrations. This presupposes a thorough knowledge of the plant's microbiological condition which can only be obtained by microbiological examination. Practical cases of the appropriate application of biocides in pulp and paper mill systems are discussed.

  20. Recycling of water in bleached kraft pulp mills by using electrodialysis.

    Energy Technology Data Exchange (ETDEWEB)

    Fracaro, A. T.; Henry, M. P.; Pfromm, P.; Tsai, S.-P.

    1999-01-15

    Conservation of water in bleached kraft pulp mills by recycling the bleach plant effluent directly without treatment will cause accumulation of inorganic ''non-process elements'' (NPEs) and serious operational problems. In this work, an electrodialysis process is being developed for recycling the acidic bleach plant effluent of bleached kraft pulp mills. In this process, electrodialysis functions as a selective kidney to remove inorganic NPEs from bleach plant effluents, before they reach the recovery cycle. Acidic bleach plant effluents from several mills using bleaching sequences based on chlorine dioxide were characterized. The total dissolved solids were mostly inorganic NPEs. Sodium was the predominant cation and chloride was present at significant levels in all these effluents. In laboratory electrodialysis experiments, selective removal of chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently. Rejection of organic compounds was up to 98%. Electrodialysis was shown to be resistant to membrane fouling and scaling, in a 100-hour laboratory experiment. Based on a model mill with 1,000 ton/day pulp production, the economic analysis suggests that the energy cost of electrodialysis is less than $200/day, and the capital cost of the stack is about $500,000.

  1. National design environment for pulp mills; Kansallinen paperitehtaan suunnitteluympaeristoe - PMST 03

    Energy Technology Data Exchange (ETDEWEB)

    Kaijaluoto, S. [VTT Energy, Jyvaeskylae (Finland)

    1998-12-31

    The research to be done in the CACTUS research programme produces new process models and generates new knowledge about the influence of various contaminants on the runnability and the quality of paper. The generated information calls for an environment where it can be analysed and utilised. The goal of the project is to build a design environment for papermaking processes. The environment will be composed of a number of tools, all integrated together, that can be used in process design from preliminary concept screening through detailed simulation studies to the design and tuning of control systems. The design environment is based on the Balas and APMS simulation programmes developed at VTT. Balas is a general steady-state simulation package for chemical processes with emphasis on pulp and paper. Recent applications include the analysis of the influence of new drying techniques on the energy and water management of a paper mill and the evaluation of new paper machine and water treatment concepts. APMS (Advanced Pulp and Paper Mill Simulator) is a new flexible tool intended for fast modelling and efficient simulation of the dynamic performance the various unit processes in pulp and paper mill, or even of the whole integrated mill. (orig.)

  2. ALTERED DEVELOPMENT AND REPRODUCTION IN MOSQUITOFISH EXPOSED TO PULP AND PAPER MILL EFFLUENT IN THE FENHOLLOW RIVER, FLORIDA USA

    Science.gov (United States)

    Female mosquitofish exposed to pulp and paper mill effluent (PME) in the Fenholloway River, Florida, USA have masculinized secondary sex characteristics and altered aromatase enzyme activity. We and others have shown that the Fenholloway River PME contains androgenic and progesto...

  3. Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed

    Science.gov (United States)

    Cawley, Kaelin M.; Butler, Kenna D.; Aiken, George R.; Larsen, Laurel G.; Huntington, Thomas G.; McKnight, Diane M.

    2012-01-01

    Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.

  4. Review on recent developments on pulp and paper mill wastewater treatment.

    Science.gov (United States)

    Kamali, Mohammadreza; Khodaparast, Zahra

    2015-04-01

    Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Impact of pulp and paper mill effluents and solid wastes on soil mineralogical and physicochemical properties.

    Science.gov (United States)

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-03-01

    The present study was carried out to evaluate the impact of the effluents and the solid wastes generated by a giant pulp and paper mill in the northeastern part of India on soil mineralogy of the area. The impacts were monitored by analysis of soil samples from seven sites located in the potential impact zone and a control site where any kind of effluent discharge or solid waste dumping was absent. The soil belonged to medium texture type (sandy clay loam, sandy loam, loamy sand, and silt loam), and the soil aggregate analysis indicated higher levels of organic carbon, pH, electrical conductivity, effective cation exchange capacity, and mean weight diameter at sites receiving effluents and solid wastes from the pulp and paper mill. Depletion in soil silica level and in feldspar and quartz contents and rise in iron and calcium contents at the sites receiving effluents from the pulp and paper mill indicated significant influence on soil mineralogy. The soil contained a mixture of minerals consisting of tectosilicates (with silicate frameworks as in quartz or feldspar), phylosilicates (layered clays like kaolinite, smectite, chlorite, illite, etc.), and carbonates. Absence of pure clay minerals indicated a state of heterogeneous intermediate soil clay transformation. The significance of the mixed mineralogy in relation to the disposal of effluents and dumping of solid wastes is discussed in details.

  6. Pretreatment of pulp mill secondary sludge for high-rate anaerobic conversion to biogas.

    Science.gov (United States)

    Wood, Nicholas; Tran, Honghi; Master, Emma

    2009-12-01

    Three pretreatment methods were compared based on their ability to increase the extent and rate of anaerobic bioconversion of pulp mill secondary sludge to biogas. The pretreatment technologies used in these experiments were: (i) thermal pretreatment performed at 170 degrees C; (ii) thermochemical (caustic) pretreatment performed at pH 12 and 140 degrees C; and (iii) sonication performed at 20 kHz and 1 W mL(-1). Sludge samples were obtained from a sulfite and a kraft pulp mill, and biochemical methane potential (BMP) assays were performed using microbial granules obtained from a high-rate anaerobic digester operating at a pulp mill. Biogas production from untreated sludge was 0.05 mL mg(-1) of measured chemical oxygen demand (COD) and 0.20 mL mg(-1) COD for kraft and sulfite sludge, respectively. Thermal pretreatment had the highest impact on sludge biodegradability. In this case, biogas yield and production rate from sulfite sludge increased by 50% and 10 times, respectively, while biogas yield and production rate from kraft sludge increased by 280% and 300 times, respectively. Biogas yield correlated to soluble carbohydrate content better than soluble COD.

  7. Evaluation of bioremediation potentiality of ligninolytic Serratia liquefaciens for detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Haq, Izharul; Kumar, Sharad; Kumari, Vineeta; Singh, Sudheer Kumar; Raj, Abhay

    2016-03-15

    Due to high pollution load and colour contributing substances, pulp and paper mill effluents cause serious aquatic and soil pollution. A lignin-degrading bacterial strain capable of decolourising Azure-B dye was identified as lignin peroxidase (LiP) producing strain LD-5. The strain was isolated from pulp and paper mill effluent contaminated site. Biochemical and 16S rDNA gene sequence analysis suggested that strain LD-5 belonged to the Serratia liquefaciens. The strain LD-5 effectively reduced pollution parameters (colour 72%, lignin 58%, COD 85% and phenol 95%) of real effluent after 144h of treatment at 30°C, pH 7.6 and 120rpm. Extracellular LiP produced by S. liquefaciens during effluent decolourisation was purified to homogeneity using ammonium sulfate (AMS) precipitation and DEAE cellulose column chromatography. The molecular weight of the purified lignin peroxidase was estimated to be ∼28kDa. Optimum pH and temperature for purified lignin peroxidase activity were determined as pH 6.0 and 40°C, respectively. Detoxified effluent was evaluated for residual toxicity by alkaline single cell (comet) gel electrophoresis (SCGE) assay using Saccharomyces cerevisiae MTCC 36 as model organism. The toxicity reduction to treated effluent was 49.4%. These findings suggest significant potential of S. liquefaciens for bioremediation of pulp and paper mill effluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Assessment of status of white sucker (Catostomus commersoni) populations exposed to bleached kraft pulp mill effluent.

    Science.gov (United States)

    Miller, David H; Tietge, Joseph E; McMaster, Mark E; Munkittrick, Kelly R; Xia, Xiangsheng; Ankley, Gerald T

    2013-07-01

    Credible ecological risk assessments often need to include analysis of population-level impacts. In the present study, a predictive model was developed to investigate population dynamics for white sucker (Catostomus commersoni) exposed to pulp mill effluent at a well-studied site in Jackfish Bay, Lake Superior, Canada. The model uniquely combines a Leslie population projection matrix and the logistic equation to translate changes in the fecundity and the age structure of a breeding population of white sucker exposed to pulp mill effluent to alterations in population growth rate. Application of this density-dependent population projection model requires construction of a life table for the organism of interest, a measure of carrying capacity, and an estimation of the effect of stressors on vital rates. A white sucker population existing at carrying capacity and subsequently exposed to pulp mill effluent equivalent to a documented exposure experienced during the period 1988 to 1994 in Jackfish Bay would be expected to exhibit a 34% to 51% annual decrease in recruitment during the first 5 yr of exposure and approach a population size of 71% of carrying capacity. The Jackfish Bay study site contains monitoring data for biochemical endpoints in white sucker, including circulating sex steroid concentrations, that could be combined with population modeling to utilize the model demonstrated at the Jackfish Bay study site for investigation of other white sucker populations at sites that are less data-rich. Copyright © 2013 SETAC.

  9. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  10. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  11. Effluents from a pulp and paper mill: a skin and health survey of children living in upstream and downstream villages

    OpenAIRE

    Lee, J; Koh, D; Andijani, M; Saw, S; Munoz, C; Chia, S; Wong, M; Hong, C; Ong, C

    2002-01-01

    Objectives: A health survey of three villages (upstream village Rantau Baru and two downstream villages, Sering and Pelalawan) in the vicinity of a pulp and paper mill along the Kampar river in the province of Riau, Indonesia was conducted to find whether exposure to the effluents from the mill was related to skin conditions and ill health.

  12. Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent.

    Science.gov (United States)

    Rocha-Santos, Teresa; Ferreira, Filipe; Silva, Lurdes; Freitas, Ana Cristina; Pereira, Ruth; Diniz, Mário; Castro, Luísa; Peres, Isabel; Duarte, Armando Costa

    2010-05-01

    Pulp and paper mills generate a plethora of pollutants depending upon the type of pulping process. Efforts to mitigate the environmental impact of such effluents have been made by developing more effective biological treatment systems in terms of biochemical oxygen demand, chemical oxygen demand, colour and lignin content. This study is the first that reports an evaluation of the effects of a tertiary treatment by fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium and Rhizopus oryzae) on individual organic compounds of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (final effluent). The tertiary treatment with P. sajor caju, T. versicolor and P. chrysosporium and R. oryzae was performed in batch reactors, which were inoculated with separate fungi species and monitored throughout the incubation period. Samples from effluent after secondary and after tertiary treatment with fungi were analysed for both absorbance and organic compounds. The samples were extracted for organic compounds using solid-phase extraction (SPE) and analysed by gas chromatography-mass spectrometry (GC/MS). The efficiencies of the SPE procedure was evaluated by recovery tests. A total of 38 compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were identified and quantified in the E. globulus bleached kraft pulp mill final effluent after secondary treatment. Recoveries from the extraction procedure were between 98.2% and 99.9%. The four fungi species showed an adequate capacity to remove organic compounds and colour. Tertiary treatment with R. oryzae was able to remove 99% of organic compounds and to reduce absorbance on 47% (270 nm) and 74% (465 nm). P. sajor caju, T. versicolor and P. chrysosporium were able to remove 97%, 92% and 99% of organic compounds, respectively, and reduce 18% (270 nm) to 77% (465 nm), 39% (270 nm) to 58% (465 nm) and 31% (270 nm) to 10% (465 nm) of absorbance

  13. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various

  14. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    Science.gov (United States)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  15. Integrating the processes of a Kraft pulp and paper mill and its supply chain

    International Nuclear Information System (INIS)

    Mesfun, Sennai; Toffolo, Andrea

    2015-01-01

    Highlights: • A process integration model that establishes material stream connections among typical Nordic forest industries is developed. • Potential benefit of the operating the different industries in one site is studied using pinch analysis. • Different scenarios considered to assess impact of prioritization on how to utilize excess biomass. • Results indicate large potential for improved biomass resource utilization. - Abstract: This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  16. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    Science.gov (United States)

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    Science.gov (United States)

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  18. Effect of a novel oil extraction method on avocado (Persea americana Mill) pulp microstructure.

    Science.gov (United States)

    Ortiz, M Alicia; Dorantes, A Lidia; Gallndez, M Juvencio; Cardenas, S Elizabeth

    2004-01-01

    Avocado (Persea americana Mill) is an oil-rich fruit, the pulp containing up to 33% of the oil. It is rich in monounsaturated fatty acids, and has nutritional properties similar to olive oil. However, there is no widespread commercial method for oil recovery from avocado pulp. The aim of this study is to contribute to the limited knowledge about the micro- and ultrastructure of avocado. It presents a micro- and ultrastructural study of avocado pulp before and after three different oil recovery methods, in order to relate the quality and yielding of the oil to the cellular changes in the pulp. This study was made using light, scanning electron, and electron transmission microscopy. The microwave-squeezing method yielded 67% of the oil, preserved the shape of the cell by causing only a slight modification, and gave the best quality oil. Hexane extraction yielded 59%, causing the idioblastic oil cells to become irregularly shaped and rough-surfaced. Acetone extraction yielded 12%, and deformed the cellular wall while the oil remained inside, giving a poor quality oil. On the basis of these results, the microwave-squeezing method is suggested as a new option for oil recovery from avocadopulp. This method could be adapted for industrial processing.

  19. Influence of pretreatment techniques on anaerobic digestion of pulp and paper mill sludge: A review.

    Science.gov (United States)

    Veluchamy, C; Kalamdhad, Ajay S

    2017-12-01

    Pulp and paper industry is one of the most polluting, energy and water intensive industries in the world. Produced pulp and paper mill sludge (PPMS) faces a major problem for handling and its management. An anaerobic digestion has become an alternative source. This review provides a detailed summary of anaerobic digestion of PPMS - An overview of the developments and improvement opportunities. This paper explores the different pretreatment methods to enhance biogas production from the PPMS. First, the paper gives an overview of PPMS production, and then it reviews PPMS as a substrate for anaerobic digestion with or without pretreatment. Finally, it discuss the optimal condition and concentration of organic and inorganic compounds required for the anaerobic metabolic activity. Future research should focus on the combination of different pretreatment technologies, relationship between sludge composition, reactor design and its operation, and microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of ripening on rheological properties of avocado pulp (Persea americana mill. Cv. Hass)

    Science.gov (United States)

    Osorio, F.; Roman, A.; Ortiz, J.

    2015-04-01

    Avocado (Persea americana Mill) Hass variety is the most planted in Chile with a greater trade prospect. The aim of this study was to investigate the effect of maturity on rheological properties of Chilean Avocado Hass pulp. Fresh unripe avocados were washed and peeled, cut and stored at 3 different times; a portion was treated at 5°C and the other was treated at 20°C until it reached 2 lb puncture pressure. During maturation changes would develop due to temperature and time, with internal cellular structure changes. Preliminary results of the rheological characteristics of avocado puree show a Bingham plastic behavior.

  1. Production of biofuels from lignocellulosic biomass in pulp and paper mill effluents for low carbon society

    OpenAIRE

    Thakur, Indu Shekhar; Nakagoshi, Nobukazu

    2011-01-01

    Carbon Dioxide (CO2) is the most prominent Green House Gas (GHGs) in the Earth's atmosphere is responsible for climate change and other environmental problems. However, CO2 may be converted into organic compounds and lignocellulosic biomass. The pulp and paper mill is a major industrial sector utilizing huge amount of natural product (woody and non-woody plants), inorganic and organic materials along with large volume of water in different stages of the paper manufacturing. In kraft pulping, ...

  2. Gene expression fingerprints of largemouth bass (Micropterus salmoides) exposed to pulp and paper mill effluents

    Science.gov (United States)

    Denslow, N.D.; Kocerha, J.; Sepulveda, M.S.; Gross, Timothy; Holm, S.E.

    2004-01-01

    Effluents from pulp and paper mills that historically have used elemental chlorine in the bleaching process have been implicated in inhibiting reproduction in fish. Compounds with estrogenic and androgenic binding affinities have been found in these effluents, suggesting that the impairment of reproduction is through an endocrine-related mode of action. To date, a great deal of attention has been paid to phytoestrogens and resin acids that are present in mill process streams as a result of pulping trees. Estrogen and estrogen mimics interact directly with the estrogen receptor and have near immediate effects on gene transcription by turning on the expression of a unique set of genes. Using differential display (DD) RT-PCR, we examined changes in gene expression induced by exposure to paper mill effluents. Largemouth bass were exposed to 0, 10, 20, 40, and 80% paper mill effluent concentrations in large flow-through tanks for varied periods of time including 7, 28 or 56 days. Plasma hormone levels in males and females and plasma vitellogenin (Vtg) in females decreased with dose and time. Measurements of changes in gene expression using DD RT-PCR suggest that the gene expression patterns of male fish do not change much with exposure, except for the induction of a few genes including CYP 1A, a protein that is induced through the action of the Ah receptor in response to dioxin and similar polyaromatic hydrocarbons. However, in the case of females, exposure to these effluents resulted in an up-regulation of CYP 1A that was accompanied by a generalized down-regulation of genes normally expressed during the reproductive season. These antiestrogenic changes are in agreement with previous studies in bass exposed to these effluents, and could result in decreased reproductive success in affected populations. ?? 2004 Elsevier B.V. All rights reserved.

  3. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  4. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and

  5. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  6. Kinetics of pulp mill effluent treatment by ozone-based processes

    International Nuclear Information System (INIS)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  7. Kinetics of pulp mill effluent treatment by ozone-based processes.

    Science.gov (United States)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  8. Environmental study of a pulp and paper mill in NWFP, Pakistan

    International Nuclear Information System (INIS)

    Shah, J.; Jan, A.; Rahman, A.U.

    2006-01-01

    A detailed environmental study of a pulp and paper mill was carried out, which included effluent flow measurements and sample collection from some selected points. Stack gas analysis was carried out on the sport. The quantity of raw materials used and their wastage in the production processes were identified. The data obtained were fed into environmental balance sheets, already developed for the mill, which showed excessive use of water per ton production of paper, as compared to a European paper mill the biological oxygen demand, chemical oxygen demand, and total soluble solids were above the permissible level of National Environmental Quality Standards specified by the Government of Pakistan. Control measures for preventing raw materials wastage, both at in-plant and end-of-pipe treatment, were recommended, which included water conservation, spill control, recovery of valuable fibre, reduction in chlorinated compounds, waste heat recovery, solid waste recovery and its safe disposal for the in-plant controls, while options for the end-of-pipe treatment were discussed with the factory management. (author)

  9. Tertiary treatment of pulp mill wastewater by solar photo-Fenton

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Marco S., E-mail: mlucas@utad.pt [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Peres, Jose A.; Amor, Carlos [Centro de Quimica de Vila Real, Universidade de Tras-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Prieto-Rodriguez, Lucia; Maldonado, Manuel I.; Malato, Sixto [Plataforma Solar de Almeria (CIEMAT), Carretera de Senes, Km 4, 04200, Tabernas, Almeria (Spain)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We firstly report a real pulp mill wastewater treatment by solar photo-Fenton in a CPC reactor. Fenton reagent experiments were tested firstly. Black-Right-Pointing-Pointer Solar photo-Fenton presents excellent ability to treat the pulp mill wastewater. Black-Right-Pointing-Pointer Experimental conditions were optimised. Black-Right-Pointing-Pointer Biodegradability and toxicity tests (respirometry assays and BOD{sub 5}/COD ratio) were performed during the wastewater treatment. Black-Right-Pointing-Pointer A way to reduce the economic and environmental impact was evaluated. - Abstract: This work reports on pulp mill wastewater (PMW) tertiary treatment by Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}) and solar photo-Fenton (Fe{sup 2+}/H{sub 2}O{sub 2}/UV) processes in a pilot plant based on compound parabolic collectors (CPCs). Solar photo-Fenton reaction is much more efficient than the respective dark reaction under identical experimental conditions. It leads to DOC mineralisation, COD and total polyphenols (TP) removal higher than 90%. The solar photo-Fenton experiment with 5 mg Fe L{sup -1} reaches 90% of DOC mineralisation with 31 kJ L{sup -1} of UV energy and 50 mM of H{sub 2}O{sub 2}. The initial non-biodegradability of PMW, as shown by respirometry assays and BOD{sub 5}/COD ratio, can be changed after a solar photo-Fenton treatment. Experiments with 20 and 50 mg Fe L{sup -1} revealed that solar photo-Fenton can reach the same DOC degradation (90%), however, consuming less H{sub 2}O{sub 2} and time. Diluting the initial organic load to 50% also diminishes the dosage of H{sub 2}O{sub 2} and the necessary reaction time to achieve high DOC removals. Accordingly, solar photo-Fenton can be considered an alternative or complementary process to improve the performance of a biologic treatment and, subsequently, achieve legal limits on discharge into natural waters.

  10. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  11. Lignin Biodegradation in Pulp-and-Paper Mill Wastewater by Selected White Rot Fungi

    Directory of Open Access Journals (Sweden)

    Stefania Costa

    2017-12-01

    Full Text Available An investigation has been carried out to explore the lignin-degrading ability of white rot fungi, as B. adusta and P. crysosporium, grown in different media containing (i glucose and mineral salts; (ii a dairy residue; (iii a dairy residue and mineral salts. Both fungi were then used as inoculum to treat synthetic and industrial pulp-and-paper mill wastewater. On synthetic wastewater, up to 97% and 74% of lignin degradation by B. adusta and P. crysosporium, respectively, have been reached. On industrial wastewater, both fungal strains were able to accomplish 100% delignification in 8–10 days, independent from pH control, with a significant reduction of total organic carbon (TOC of the solution. Results have confirmed the great biotechnological potential of both B. adusta and P. crysosporium for complete lignin removal in industrial wastewater, and can open the way to next industrial applications on large scale.

  12. Radiotracer investigation of a pulp and paper mill effluent treatment plant

    Directory of Open Access Journals (Sweden)

    Sarkar Metali

    2017-12-01

    Full Text Available The pulp and paper industry is highly dependent on water for most of its processes, producing a significant amount of wastewater that should be treated to comply with environmental standards before its discharge into surface-water reservoirs. The wastewater generated primarily consists of substantial amounts of organic, inorganic, toxic and pathogenic compounds in addition to nutrients, which are treated in an effluent treatment plant that often combines primary, secondary, tertiary and advanced treatments. However, the treatment methods vary from industry to industry according to the process utilized. The effective performance of effluent treatment plants is crucial from both environmental and economic points of view. Radiotracer techniques can be effectively used to optimize performance and detect anomalies like dead zones, bypassing, channelling, etc. in wastewater treatment plants. Experiments on the distribution of residence time were performed on the aeration tank and secondary clarifier of a full-scale pulp and paper mill to study the flow behaviour as well as locate system anomalies and hence evaluate the performance of the treatment plants using the radiotracer I-131. The convolution method was applied to model the system with an imperfect impulse radiotracer input. The aeration tank was working efficiently in the absence of any dead zones or bypassing. Various hydrodynamic models available in the literature were applied on the aeration tank and secondary clarifier to obtain the hydraulic representation of the systems.

  13. Identification of sublethal toxicants in a BC coastal pulp and paper mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, C.V.; Pickard, J.; Kinnee, K. [BC Research Inc., Vancouver, BC (Canada); Dwernychuk, W. [Hatfield Consultants Ltd., West Vancouver, BC (Canada); Birkholz, D. [EnviroTest Lab., Edmonton, AB (Canada); Kilback, D. [Pacifica Papers, Powell River, BC (Canada)

    2001-06-01

    BC Research Inc. conducted a toxicity identification evaluation to identify the different compounds comprised in the mill Outfall number 1 effluent. The Environmental Effects Monitoring program had determined that these compounds were responsible for sublethal effects to organisms. Echinoderm species like the sand dollar, Dendraster excentricus Eshscholtz, the purple sea urchin, Stronglyocentrotus purpuratus Stimpson, and the marine algae, Champia parvula had suffered toxicity caused by the mill effluent. The last several Environmental Effects Monitoring testing periods had shown the sublethal toxicity of the Outfall number 1 effluent to echinoderms was very consistent. Based on the high cost and shipping associated with the Champia bioassays, toxicity tests conducted during the peak spawning season of the sea urchin and the non significant difference between the sensitivity of the sand dollar and the purple sea urchin, the purple sea urchin was selected to evaluate the toxicity of the manipulated samples for the tests. The tests conducted were: a baseline toxicity test performed immediately upon receipt of the effluent sample, the pH adjustment filtration test to determine if the toxic compound can be removed using filtration, the pH adjustment aeration test to determine if volatile compounds in the sample are toxic, the pH adjustment solid phase extraction test to determine the level of toxicity from organic compounds and metal chelates that can be removed by solid phase extraction. The results indicated that it seems high molecular weight molecules were responsible for the sublethal toxicity observed. Two different sources could be responsible: lignin derived macromolecules, and polymer compounds used as flocculants and sizing agents. Further testing of the pulp mill effluent to identify the source of the toxic high molecular weight compounds was recommended. 22 refs., 4 tabs., 6 figs.

  14. Aspen Delineation - Aspen Delineation Project [ds362

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands, where aspen assessment data was gathered. Aspen assessment information corresponding to this polygon layer can...

  15. A field-based approach for assessing the impact of paper pulp mill effluent on the metbolite profile of fathead minnows (Pimephales promelas)

    Science.gov (United States)

    Although evidence indicates that exposure to effluent from paper pulp mills (PME) can alter the body condition, secondary sexual characteristics, and reproductive success of aquatic organisms, there is currently little understanding of the biochemical mechanisms for these effects...

  16. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond.

    Science.gov (United States)

    Usha, M T; Sarat Chandra, T; Sarada, R; Chauhan, V S

    2016-08-01

    A mixed culture of microalgae, containing two Scenedesmus species, was analysed to determine its potential in coupling of pulp and paper mill effluent treatment and microalgal cultivation. Laboratory studies suggested that 60% concentration of wastewater was optimum for microalgal cultivation. A maximum of 82% and 75% removal of BOD and COD respectively was achieved with microalgal cultivation in outdoor open pond. By the end of the cultivation period, 65% removal of NO3-N and 71.29% removal of PO4-P was observed. The fatty acid composition of mixed microalgal culture cultivated with effluent showed the palmitic acid, oleic acid, linoleic acid and α-linolenic acid as major fatty acids. The results obtained suggest that pulp and paper mill effluent could be used effectively for cultivation of microalgae to minimise the freshwater and nutrient requirements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Directional genetic selection by pulp mill effluent on multiple natural populations of three-spined stickleback (Gasterosteus aculeatus).

    Science.gov (United States)

    Lind, Emma E; Grahn, Mats

    2011-05-01

    Contamination can cause a rapid environmental change which may require populations to respond with evolutionary changes. To evaluate the effects of pulp mill effluents on population genetics, we sampled three-spined sticklebacks (Gasterosteus aculeatus) near four pulp mills and four adjacent reference sites and analyzed Amplified Fragment Length Polymorphism (AFLP) to compare genetic variability. A fine scale genetic structure was detected and samples from polluted sites separated from reference sites in multidimensional scaling plots (Pselection. When removing 13 F(ST)-outlier loci, significant at the Pselective agent on natural populations of G. aculeatus, causing a convergence in genotype composition change at multiple sites in an open environment. © The Author(s) 2011. This article is published with open access at Springerlink.com

  18. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    Science.gov (United States)

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  19. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Solantausta, Y. [VTT Energy, Espoo (Finland). New Energy Technologies; Salo, K.; Horvath, A. [Carbona Inc. (Finland)

    1999-11-01

    In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million

  20. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    International Nuclear Information System (INIS)

    Koljonen, T.; Solantausta, Y.

    1999-01-01

    In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million

  1. Methods for facilitating microbial growth on pulp mill waste streams and characterization of the biodegradation potential of cultured microbes.

    Science.gov (United States)

    Mathews, Stephanie L; Ayoub, Ali S; Pawlak, Joel; Grunden, Amy M

    2013-12-12

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.

  2. Metal Concentrations and Responses of Chironomid Larvae Exposed to Thailand Pulp and Paper Mill Effluent.

    Science.gov (United States)

    Tokhun, Natsima; Iwai, Chuleemas Boonthai; Noller, Barry N

    2017-11-01

    Pulp and paper mills (PPM) may discharge insufficiently treated waste into rivers and give rise to serious effects with aquatic life. This study investigated the biological response of the chironomid (Chironomus javanus, Kieffer) when exposed to PPM effluent. Effluent concentrations of BOD, COD, TKN, TS, Cr, Cu, Pb and Zn were high. Cd and Cr concentrations in chironomid were the most accumulated. Whole effluent toxicity on the chironomid test organism was significant as expressed by the percent survival and decreased with increasing concentration. Highest dry weight, head capsule and length of the chironomid test organism corresponded to 100% effluent at a specific time. Effect of dilution was assessed by using glutathione S-transferase activity on chironomid and corresponded to 6.25% effluent during 48-96 h which was significantly increased in the chironomid. The results showed that the chironomid was sensitive to PPM effluent and toxicity tests can be used for assessing the effect of effluent on aquatic species.

  3. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    International Nuclear Information System (INIS)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-01-01

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

  4. Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects

    Directory of Open Access Journals (Sweden)

    Tamara Llano

    2017-03-01

    Full Text Available Detoxification is required for sugar bioconversion and hydrolyzate valorization within the biorefining concept for biofuel or bio-product production. In this work, the spent sulfite liquor, which is the main residue provided from a pulp mill, has been detoxified. Evaporation, overliming, ionic exchange resins, and adsorption with activated carbon or black carbon were considered to separate the sugars from the inhibitors in the lignocellulosic residue. Effectiveness in terms of total and individual inhibitor removals, sugar losses and sugar-to-inhibitor removal ratio was determined. The best results were found using the cation exchange Dowex 50WX2 resin in series with the anion exchange Amberlite IRA-96 resin, which resulted in sugar losses of 24.2% with inhibitor removal of 71.3% of lignosulfonates, 84.8% of phenolics, 82.2% acetic acid, and 100% of furfurals. Apart from exchange resins, the results of evaporation, overliming, adsorption with activated carbon and adsorption with black carbon led to total inhibitor removals of 8.6%, 44.9%, 33.6% and 47.6%, respectively. Finally, some fermentation scenarios were proposed in order to evaluate the most suitable technique or combination of techniques that should be implemented in every case.

  5. Colour and chloride removal from kraft pulp mill effluent using ion exchange

    International Nuclear Information System (INIS)

    Yun, G.; Ikehata, K.; Buchanan, I.D.

    2002-01-01

    Two weakly basic ion exchange resins (WBA) and seven strongly basic ion exchange resins (SBA) were evaluated on a bench scale for colour and chloride ion removal from kraft pulp mill effluent. Chloride ion was selected as a surrogate for non-process anions. Batch testing was carried out to determine effective resins and regenerants for colour and chloride removal. Although all of the WBA and SBA tested removed colour from the effluent to some extent, the results from the screening tests indicate that three SBA (IRA958, IRA458 and IRA900) have higher potential for complete removal of colour from the effluent. The three resins were successfully regenerated to nearly their original colour removal capacity using 1 N NaOH combined with 1 N NaCl. A macroporous acrylic SBA, IRA958, exhibited the highest average exchange capacity of the resins tested during three colour removal and two regeneration cycles. IRN78 and 4400OH, gel-type styrene-divinylbenzene SBA in the hydroxide form, were found to be effective for chloride removal. Breakthrough studies were conducted at various flow rates through columns of differing bed depths. The effectiveness of the selected resins and regenerating solutions was confirmed with these studies for both colour and chloride removal. (author)

  6. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  7. Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor.

    Science.gov (United States)

    Chanworrawoot, Kanjana; Hunsom, Mali

    2012-12-30

    The treatment of wastewater from a pulp and paper mill plant using electrochemical methods was performed at a laboratory bench-scale at ambient temperature (~30 °C). The effects of wastewater dilution (10- to 100-fold), circulating water flow rate (0-3.95 l/min), current density (1.90-3.80 mA/cm(2)) and sodium chloride concentration (0-3.75 g/l) were ascertained. The results demonstrated that this methods can facilitate the disappearance of the oxidative coupling unit of lignin as well as other organic and inorganic compounds, measured in terms of the removal of color, total biological- and total chemical oxygen demand (BOD and COD), and the total suspended and dissolved solids (TSS and TSD). In addition, the electrochemical method was more effective at reducing the pollutant levels, produced a smaller quantity of low-density sludge and had a low operating cost per unit quantity of COD. After optimization, the electrochemical method operating in a batch mode enhanced the removal of color, BOD and COD at around 98%, 98% and 97%, respectively, whilst in a continuous mode at the steady state condition (8 h after the start-up time) the color, BOD and COD levels were reduced by around 91%, 83% and 86%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  9. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    Science.gov (United States)

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  10. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    Science.gov (United States)

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. © 2013 Elsevier Inc. All rights

  11. Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions.

    Science.gov (United States)

    Hoffman, Emma; Lyons, James; Boxall, James; Robertson, Cam; Lake, Craig B; Walker, Tony R

    2017-06-01

    A bleached kraft pulp mill in Nova Scotia has discharged effluent wastewater into Boat Harbour, a former tidal estuary within Pictou Landing First Nation since 1967. Fifty years of effluent discharge into Boat Harbour has created >170,000 m 3 of unconsolidated sediment, impacted by inorganic and organic contaminants, including metal[loid]s, polycyclic aromatic hydrocarbons (PAHs), dioxins, and furans. This study aimed to characterize metal(loid)-impacted sediments to inform decisions for a $89 million CAD sediment remediation program. The remediation goals are to return this impacted aquatic site to pre-mill tidal conditions. To understand historical sediment characteristics, spatiotemporal variation covering ~quarter century, of metal(loid) sediment concentrations across 103 Boat Harbour samples from 81 stations and four reference locations, were assessed by reviewing secondary data from 1992 to 2015. Metal(loid) sediment concentrations were compared to current Canadian freshwater and marine sediment quality guidelines (SQGs). Seven metal(loid)s, As, Cd, Cr, Cu, Pb, Hg, and Zn, exceeded low effect freshwater and marine SQGs; six, As, Cd, Cr, Pb, Hg, and Zn, exceeded severe effect freshwater SQGs; and four, Cd, Cu, Hg, and Zn, exceeded severe effect marine SQGs. Metal(loid) concentrations varied widely across three distinct temporal periods. Significantly higher Cd, Cu, Pb, Hg, and Zn concentrations were measured between 1998 and 2000, compared to earlier, 1992-1996 and more recent 2003-2015 data. Most samples, 69%, were shallow (0-15 cm), leaving deeper horizons under-characterized. Geographic information system (GIS) techniques also revealed inadequate spatial coverage, presenting challenges for remedy decisions regarding vertical and horizontal delineation of contaminants. Review of historical monitoring data revealed that gaps still exist in our understanding of sediment characteristics in Boat Harbour, including spatial, vertical and horizontal, and temporal

  12. The fate of EDTA and DTPA in aquatic environments receiving waste water from two pulp and paper mills

    Energy Technology Data Exchange (ETDEWEB)

    Remberger, M.; Svenson, Anders

    1997-10-01

    To evaluate the fate of the complexing agents in receiving waters, two basic questions have been addressed: (i) are EDTA and DTPA found in the aquatic environment after discharge into receiving waters and (ii) are they photolytically converted. Two mills, one pulp mill localized at a fresh water lake and one pulp and paper mill at a brackish water were investigated, both mills using bleaching technologies with EDTA and DTPA as complexing agents. Samples were collected at the discharge point and along a gradient in the receiving waters at two occasions: summer at solstice and winter with low light intensity. Samples were taken from surface water, an intermediate depth, and bottom water. A new analytical method was applied, which made it possible to quantify the analytes at sub-{mu}g/l level. The complexing agents EDTA and DTPA and their primary degradation products were detected in the effluent and the receiving waters in the vicinity of the mills. DTPA and the degradation products could be detected a few kilometers from the effluent point while EDTA could be detected in more remote locations at fairly constant concentrations. The absorption of light in the sun spectrum in the water columns of the receiving waters was studied at different localities and during summer and winter conditions. The theoretical photochemical half-life of the ferric complex of EDTA in the surface layer of a central Swedish lake was confirmed. Analysis of EDTA in samples of receiving waters after photolytic treatment showed however, that a large portion of the complexing agent was unaffected by the treatment, indicating that most of the EDTA was complexed with other metals. EDTA in brackish water samples was unaffected by the photolytic treatment upon addition of excess ferric ions, except in winter close to the discharge point. The ease by which the ferric complexes are photochemically converted in ideal conditions seems to be hampered in receiving waters. 42 refs, 16 figs, 2 tabs

  13. Comparative environmental assessment of wood transport models: a case study of a Swedish pulp mill.

    Science.gov (United States)

    González-García, Sara; Berg, Staffan; Feijoo, Gumersindo; Moreira, Ma Teresa

    2009-05-15

    Wood transportation from forest landing to forest-based industries uses large amounts of energy. In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). This paper intends to compare the environmental burdens associated to different wood transport models considering a Swedish pulp mill as a case study by using Life Cycle Assessment (LCA) as an analytical tool. Five scenarios (the current one and four alternative reliable scenarios) were proposed and analysed taking into account two variables. On the one hand, the influence of imported pulpwood share from Baltic countries and on the other hand, the use of rail transportation for wood transport. In particular, the following impact categories were assessed: Eutrophication, Global Warming, Photochemical Oxidant Formation, Acidification and Fossil fuel extraction. The environmental results indicate that transport alternatives including electric and diesel trains, as well as the reduction in Baltic wood imports should present better environmental performance than the current scenario in terms of all the impact categories under study. Remarkable differences were identified with regard to energy requirements. This divergence is related to different long-distance transport strategies (lorry, boat and/or train) as well as the relative import of wood selected. The combination of lorry and train in wood transportation from Southern Sweden plus the reduction of wood imports from 25% to 15% seems to be more favourable from an environmental perspective. The results obtained allow forecasting the importance of the wood transport strategy in the wood supply chain in LCA of forest products and the influence of energy requirements in the results.

  14. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi.

    Science.gov (United States)

    Freitas, A C; Ferreira, F; Costa, A M; Pereira, R; Antunes, S C; Gonçalves, F; Rocha-Santos, T A P; Diniz, M S; Castro, L; Peres, I; Duarte, A C

    2009-05-01

    Three white-rot fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium) and one soft-rot fungi (Rhizopus oryzae) species confirmed their potential for future applications in the biological treatment of effluents derived from the secondary treatment of a bleached kraft pulp mill processing Eucalyptus globulus. Among the four species P. sajor caju and R. oryzae were the most effective in the biodegradation of organic compounds present in the effluent, being responsible for the reduction of relative absorbance (25-46% at 250 nm and 72-74% at 465 nm) and of chemical oxygen demand levels (74 to 81%) after 10 days of incubation. Laccase (Lac), lignin (Lip) and manganese peroxidases (MnP) expression varied among fungal species, where Lac and LiP activities were correlated with the degradation of organic compounds in the effluent treated with P. sajor caju. The first two axes of a principal component analysis explained 88.9% of the total variation among sub-samples treated with the four fungus species, after different incubation periods. All the variables measured contributed positively to the first component except for the MnP enzyme activity which was the only variable contributing negatively to the first component. Absorbances at 465 nm, LiP and Lac enzyme activities were the variables with more weight on the second component. P. sajor caju revealed to be the only species able to perform the biological treatment without promoting an increment in the toxicity of the effluent to the Vibrio fischeri, as it was assessed by the Microtox assay. The opposite was recorded for the treatments with the other three species of fungus. EC(50-5 min) values ranging between 28 and 57% (effluent concentrations) were recorded even after 10 to 13 days of treatment with P. chrysosporium, R. oryzae or with T. versicolor.

  15. Improved biohydrogen production and treatment of pulp and paper mill effluent through ultrasonication pretreatment of wastewater

    International Nuclear Information System (INIS)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2015-01-01

    Highlights: • Ultrasonication facilitated the reuse of PPME in biohydrogen production. • Ultrasonication at an amplitude of 60% for 45 min produced the highest biohydrogen. • Ultrasonication increased the solubilization of PPME. • Higher net savings were obtained in pretreated PPME compared to raw PPME. - Abstract: Pulp and paper mill effluent (PPME), a rich cellulosic material, was found to have great potential for biohydrogen production through a photofermentation process. However, pretreatments were needed for degrading the complex structure of PPME before biohydrogen production. The aim of this study was to gain further insight into the effect of an ultrasonication process on PPME as a pretreatment method and on photofermentative biohydrogen production using Rhodobacter sphaeroides NCIMB. The ultrasonication amplitudes and times were varied between 30–90% and 15–60 min, respectively, and no dilution or nutrient supplementation was introduced during the biohydrogen production process. A higher biohydrogen yield, rate, light efficiency and COD removal efficiency were attained in conditions using ultrasonicated PPME. Among these different pretreatment conditions, PPME with ultrasonication pretreatment employing an amplitude of 60% and time of 45 min (A60:T45) gave the highest yield and rate of 5.77 mL H 2 /mL medium and 0.077 mL H 2 /mL h, respectively, while the raw PPME without ultrasonication showed a significantly lower yield and rate of 1.10 mL H 2 /mL medium and 0.015 mL H 2 /mL h, respectively. The results of this study demonstrated the potential of using ultrasonication as a pretreatment for PPME because the yield and rate of biohydrogen production were highly enhanced compared to the raw PPME. Economic analysis was also performed in this study, and in comparison with raw PPME, the highest net saving was $0.2132 for A60:T45.

  16. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill.

    Science.gov (United States)

    Raj, Abhay; Reddy, M M Krishna; Chandra, Ram; Purohit, Hemant J; Kapley, Atya

    2007-12-01

    Eight bacterial strains were isolated on kraft lignin (KL) containing mineral salt medium (L-MSM) agar with glucose and peptone from the sludge of pulp and paper mill. Out of these, ITRC-S8 was selected for KL degradation, because of its fast growth at highest tested KL concentration and use of various lignin-related low molecular weight aromatic compounds (LMWACs) as sole source of carbon and energy. The bacterium was identified by biochemical tests as Gram-positive, rod-shaped and non-motile. Subsequent 16S rRNA gene sequencing showed 95% base sequence homology and it was identified as Bacillus sp. In batch experiments, a decrease in pH was observed initially followed by an increase till it reached an alkaline pH, which did not alter the culture growth significantly. The bacterium reduced the colour and KL content of 500 mg l(-1 )KL in MSM, in the presence of glucose and peptone, at pH 7.6, temperature 30 degrees C, agitation of 120 rpm and 6 days of incubation by 65 and 37% respectively. Significant reduction in colour and KL content in subsequent incubations is indicative of a co-metabolism mechanism, possibly due to initial utilization of added co-substrates for energy followed by utilization of KL as a co-metabolic. The degradation of KL by bacterium was confirmed by GC-MS analysis indicating formation of several LMWACs such as t-cinnamic acid, 3, 4, 5-trimethoxy benzaldehyde and ferulic acid as degradation products, which were not present in the control (uninoculated) sample. This favours the idea of biochemical modification of the KL polymer to a single monomer unit.

  17. Evaluating the potential of effluent extracts from pulp and paper mills in Canada, Brazil, and New Zealand to affect fish reproduction: Estrogenic effects in fish.

    Science.gov (United States)

    Orrego, Rodrigo; Milestone, Craig B; Hewitt, L Mark; Guchardi, John; Heid-Furley, Tatiana; Slade, Alison; MacLatchy, Deborah L; Holdway, Douglas

    2017-06-01

    The authors examined the potential of pulp mill effluent from pulp-producing countries (Canada, Brazil, New Zealand) to affect fish reproduction. Specifically, the estrogenic effects in juvenile rainbow trout (Oncorhynchus mykiss) pulse-exposed to 11 different mill effluent extracts (intraperitoneal injections of solid-phase extraction-dichloromethane nonpolar fraction). The results indicated that effluent extracts were estrogenic in juvenile trout irrespective of the gender, as reflected by increasing level of plasma vitellogenin (VTG; Brazil > New Zealand > Canada). Despite the high variability observed among mills, differences in VTG levels were related to the type of mill process (kraft > elementary chlorine-free kraft > thermomechanical pulping). Moreover, effluent treatments did not appear to significantly decrease VTG induction. A consistent estrogenic effect was observed in those mills that process a combination of feedstocks (softwood and hardwood), with the highest increase in VTG related to eucalyptus feedstock. The results demonstrate significant estrogenic effects of pulp mill effluents on chronically exposed juvenile trout, suggesting that in vivo metabolic activation of precursors is necessary to cause the observed increases in VTG levels. This molecular estrogenic response provides a useful starting point for predicting population-level impacts through the adverse outcome pathway methodology. Environ Toxicol Chem 2017;36:1547-1555. © 2016 SETAC. © 2016 SETAC.

  18. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced....... The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  19. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    International Nuclear Information System (INIS)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G.; Law, R. David

    2012-01-01

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  20. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents

    Energy Technology Data Exchange (ETDEWEB)

    Costigan, Shannon L.; Werner, Julieta; Ouellet, Jacob D.; Hill, Lauren G. [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada); Law, R. David, E-mail: dlaw@lakeheadu.ca [Department of Biology, Lakehead University, 955 Oliver Road, Ontario P7B 5E1, (Canada)

    2012-10-15

    Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22 K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.

  1. Co-digestion of manure with grass silage and pulp and paper mill sludge using nutrient additions.

    Science.gov (United States)

    Hagelqvist, Alina; Granström, Karin

    2016-08-01

    There is an increasing worldwide demand for biogas. Anaerobic co-digestion involves the treatment of different substrates with the aim of improving the production of biogas and the stability of the process. This study evaluates how methane production is affected by the co-digestion of pig and dairy manure with grass silage and pulp and paper mill sludge and assesses whether methane production is affected by factors other than nutrient deficiency, low buffering capacity, inadequate dilution, and an insufficient activity and amount of microorganism culture. Anaerobic digestion was performed in batch reactors under mesophilic conditions for 20 days. The season of grass silage and manure collection proved to be an important factor affecting methane production. Spring grass silage produced a maximum of 250 mL/VSadded and spring manure 150 mL/VSadded, whereas autumn grass silage produced at most 140 ml/VSadded and autumn manure 45 mL/VSadded. The pulp mill sludge used is comprised of both primary and secondary sludge and produced at most 50 mL/VSadded regardless of season; this substrate benefitted most from co-digestion.

  2. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  3. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    Science.gov (United States)

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased.

  4. Fungal and enzyme treatment kidney: a promising way to help pulp and paper mills to achieve zero effluent discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Soong, J.J.; Stebbing, D.W.; Saddler, J.N. [British Columbia Univ., Vancouver, BC (Canada). Forest Products Biotechnology Faculty of Forestry; Beatson, R.P. [British Columbia Inst. of Technology, Burnaby, BC (Canada). Advanced Papermaking Initiative

    2001-06-01

    Water usage and effluent discharge must be minimized by pulp and paper mills to comply with increasingly stringent environmental standards and market demands. As a result, the potential use of a combined fungal and enzyme system was evaluated as an internal water treatment kidney in a TMP/newsprint mill with a closed water system. The evaluation involved the use of three different white water samples. A sample of mill white water (MWW) was taken from the cloudy white water chest of the disk thickener at the Howe Sound Pulp and Paper Ltd. A mix of interior spruce/pine/fir and coastal hemlock from British Columbia comprised the chip supply used during the collection. Then , the model recycled white water (RWW) was prepared, as was the membrane filtered model recycled white water (FWW). A significant decrease in the amount of total dissolved and colloidal substances was observed as a result of the growth of the white-rot fungus Trametes versicolor on these waters. After seven days of fungal treatment, in excess of 75 per cent of the extractives, and 62-71 per cent of the carbohydrates initially present in the three white waters were removed. Laccase, cellulase and lipase enzyme activities had been noted in the fungal culture filtrates (FCF) during the growth of the fungus. Using the fungal culture filtrates obtained after two days growth of Trametes versicolor, subsequent fungal enzyme treatments of MWW and RWW were performed on mill white water. After a three-hour FCF treatment at 65 Celsius, more than 90 per cent of the lignans and ester bonded extractives (steryl esters and triglycerides) were removed from both white waters. During the same period, the resin and fatty acids content decreased by almost 40 per cent in the mill white water while it decreased by almost 60 per cent in the model white water sample. The polymerization of low molecular weight phenolics into higher molecular weight lignin-types of material occurred as a result of the fungal and enzyme

  5. Field-Based Approach for Assessing the Impact of Treated Pulp and Paper Mill Effluent on Endogenous Metabolites of Fathead Minnows (Pimephales promelas)

    Science.gov (United States)

    A field-based metabolomic study was conducted during a shutdown of a pulp and paper mill (PPM) to assess the impacts of treated PPM effluent on endogenous polar metabolites in fathead minnow (FHM; Pimephales promelas) livers. Caged male and female FHMs were deployed at a Great La...

  6. The effect of aspen wood characteristics and properties on utilization

    Science.gov (United States)

    Kurt H. Mackes; Dennis L. Lynch

    2001-01-01

    This paper reviews characteristics and properties of aspen wood, including anatomical structure and characteristics, moisture and shrinkage properties, weight and specific gravity, mechanical properties, and processing characteristics. Uses of aspen are evaluated: sawn and veneer products, composite panels, pulp, excelsior, post and poles, animal bedding, animal food...

  7. Utilisation aspects of ashes and green liquor dregs from an integrated semichemical pulp and board mill

    Energy Technology Data Exchange (ETDEWEB)

    Manskinen, K.

    2013-09-01

    This thesis investigated the properties of bottom and fly ashes originating from a bubbling fluidised bed boiler (120 MW) using two different fuel mixtures (i.e. Fuel mixture A: coal, wood and peat; and B: wood and peat) and of the green liquor dregs originating from the associated semichemical pulp and board mill in relation to the potential utilisation of these residues from various aspects. The total concentrations of As, Cd, Cr, Cu, Ni, Pb, Zn and Hg in the bottom ashes were lower than the maximum allowable concentrations for these elements in forest fertilisers. The total Ca concentrations in bottom ashes A (2.4%; d.w.) and B (3.4%; d.w.) were lower than the legal requirement of 6.0% (d.w.) for ash used as a forest fertiliser. The total Ca concentrations in fly ashes A (6.4%; d.w.) and B (11.0%; d.w.) were higher than the minimum limit value of 6.0% (d.w.), but the concentration of As in fly ashes A (46.9 mg/kg d.w.) and B (41.3 mg/kg; d.w.) exceeded the maximum limit value of 40 mg/kg (d.w.). Only bottom ash B could be used as a forest fertiliser, provided some additional Ca is used. The bottom ashes both fulfilled the Finnish regulations on waste recovery in earth construction. Due to the elevated total concentration of PAH (23 mg/kg; d.w.) and extractable concentrations of Mo (3.9 mg/kg; d.w.) and Se (0.2 mg/kg; d.w.) in fly ash A, this residue cannot be used in covered structures. Due to the elevated concentration of PAH (90 mg/kg; d.w.) in fly ash B, this residue cannot be used in covered and paved structures. However, the utilisation of these residues as an earth construction agent is still possible, but an environmental permit would be required. According to the sequential extraction studies, extractable concentrations of most of the elements in the fly ash A were higher than those in the bottom ash A. The extractability of various elements, both in the bottom and fly ashes A, varied widely. Most of the elements did not occur as readily soluble and

  8. Unexpected promotion of PCDD/F formation by enzyme-aided Cl2bleaching in non-wood pulp and paper mill.

    Science.gov (United States)

    Fang, Liping; Zheng, Minghui; Liu, Guorui; Zhao, Yuyang; Liu, Wenbin; Huang, Linyan; Guo, Li

    2017-02-01

    Enzyme-aided Cl 2 bleaching is widely considered as promising replacements for conventional Cl 2 bleaching in wood pulp and paper mills. However, the effects of using enzyme-aided bleaching on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the non-wood pulp and paper mills are unclear. A field study was performed to investigate PCDD/F formation when enzyme-aided Cl 2 bleaching was used to replace conventional Cl 2 bleaching in non-wood pulp and paper mills. Unexpectedly, the PCDD/F toxic equivalents (TEQs) in solid samples were higher when using enzyme-aided bleaching (0.49-5.4 pg TEQ/g) than that using conventional Cl 2 bleaching (0.15-2.44 pg TEQ/g). Large amounts of octachlorodibenzo-p-dioxin were formed during the enzyme-aided bleaching process. This could have been because enzyme strongly promoted the release of organic molecules bound to lignin and thus accelerated the formation of octachlorodibenzo-p-dioxin through organic molecular precursors. Although enzyme-aided Cl 2 bleaching was previously considered to be efficient for reducing PCDD/F releases and to be the best available technologies and best environmental practices for wood pulp and paper mills, the results obtained in this study suggested the necessity and urgency to evaluate the suitability of enzyme-aided Cl 2 bleaching for non-wood pulp and paper mills that intensively practiced in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Excess heat from kraft pulp mills. Trade-offs between internal and external use in the case of Sweden. Part 2. Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Berntsson, Thore; Svensson, Inger-Lise; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden - Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases. (author)

  10. Fungal treatment of hemp-based pulp and paper mill wastes

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... for acid-line effluents (67% AOX (adsorbable organic halogens), 44% TOC 8 total organic carbon), 97% color) were obtained ... Key words: Hemp, bleaching, adsorbable organic halogens, pulping, Penicillium camemberti, molecular weight .... Fractions were collected and ring structures were followed with ...

  11. Fungal treatment of hemp-based pulp and paper mill wastes | Taseli ...

    African Journals Online (AJOL)

    based pulp and paper plant bleachery effluents in batch and up-flow column reactor studies. In batch tests, the highest removals for acid-line effluents (67% AOX (adsorbable organic halogens), 44% TOC 8 total organic carbon), 97% color) were ...

  12. MINERAL ELEMENTS IN WOODS OF EUCALYPTUS AND BLACK WATTLE AND ITS INFLUENCE IN A BLEACHED KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    André Fredo

    2009-09-01

    Full Text Available Effluents are one of the most important problems in a pulp mill regarding to environmental subjects. With the purpose to reduce them, the mills are closing the internal cycles and reducing the water consumption. The wood, as the most significant source of non-process elements to the system, is responsible for some troubles to the industrial process. With the aim of evaluating their intake and to offer some informations for closing the loop, the contents of Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, and Si were analysed in Acacia mearnsii, Eucalyptus dunnii, Eucalyptus globulus globulus, Eucalyptus grandis and Eucalyptus saligna woods. Wood samples were prepared by oven burning and acidic digestion methods, following analysis by ICP (inductively coupled plasm. Using also the results from silvicultural evaluation of trees and stands, they were calculated which elements were carried out from the site in larger amounts (K, Ca, Na, Al, Mn and Si and the species which exported largest amount of these elements (Eucalyptus dunnii and Eucalyptus globulus. The species with lower growth were Eucalyptus globulus and Eucalyptus dunnii, that leads to a bigger elements input and more potential industrial troubles. It was observed a range of 3.8 (Eucalyptus grandis up to 6 (Eucalyptus dunnii kg of analised mineral elements introduced to the process per ton of umbleached pulp produced. The Acacia mearnsii showed the lower level for Fe, Mn and Ni, being useful for oxygen, ozone and peroxide bleaching. The silicon observed in woods was in low concentration although the high values of this element in industrial liquor cycle. This leads to state that there is some contamination with soil when harvesting and handling the wood. Special care must be taken with both high ash and high mineral elements species, such as Eucalyptus dunnii and Eucalyptus globulus.

  13. Industrial hygiene aspects of a sampling survey at a bleached-kraft pulp mill in British Columbia.

    Science.gov (United States)

    Astrakianakis, G; Svirchev, L; Tang, C; Janssen, R; Anderson, J; Band, P; Le, N; Fang, R; Bert, J

    1998-10-01

    To validate exposure estimates used to investigate correlations between exposure and cancer risk, 1678 personal measurements were collected for 46 job titles during 73 day shifts at a bleached-kraft pulp mill. Measurements included shift-long average and short-term exposures to carbon monoxide, chlorine dioxide (ClO2), and hydrogen sulfide; and shift-long average exposures to calcium oxide and wood dust (WD). Overall results indicate low levels of exposure with a few noteworthy exceptions. Although ClO2 was the exclusive bleaching agent, 77 area samples indicated that chlorine (Cl2), not ClO2 was present in all areas apart from the chemical preparation area (chem-prep) and during a pulp spill. The highest shift-long exposures to Cl2 were measured in the chip yard and are attributed to uncontrolled stack emissions. Finally, WD samples collected from several laborers significantly exceeded regulatory limits, with the highest exposures measured in the steam and recovery area. For short-term exposures to ClO2 in chem-prep, 12 of 17 data-logging electro-chemical sensor sample results showed at least one peak that exceeded the short-term exposure limit of 0.3 ppm. The use of data-logging equipment quantified short-term exposures that previously had been characterized only anecdotally. The peaks were correlated with tasks and upset conditions and, given their transient nature, these exceedances could not have been detected using shift-long average-based sampling devices. Since the respiratory effects of significant short-term exposures to irritant gases such as Cl2 and ClO2 are well-documented, data-logging instruments are necessary to characterize exposures in the pulp and paper industry.

  14. Evolution of Lignocellulosic Macrocomponents in the Wastewater Streams of a Sulfite Pulp Mill: A Preliminary Biorefining Approach

    Directory of Open Access Journals (Sweden)

    Tamara Llano

    2015-01-01

    Full Text Available The evolution of lignin, five- and six-carbon sugars, and other decomposition products derived from hemicelluloses and cellulose was monitored in a sulfite pulp mill. The wastewater streams were characterized and the mass balances throughout digestion and total chlorine free bleaching stages were determined. Summative analysis in conjunction with pulp parameters highlights some process guidelines and valorization alternatives towards the transformation of the traditional factory into a lignocellulosic biorefinery. The results showed a good separation of cellulose (99.64% during wood digestion, with 87.23% of hemicellulose and 98.47% lignin dissolved into the waste streams. The following steps should be carried out to increase the sugar content into the waste streams: (i optimization of the digestion conditions increasing hemicellulose depolymerization; (ii improvement of the ozonation and peroxide bleaching stages, avoiding deconstruction of the cellulose chains but maintaining impurity removal; (iii fractionation of the waste water streams, separating sugars from the rest of toxic inhibitors for 2nd generation biofuel production. A total of 0.173 L of second-generation ethanol can be obtained in the spent liquor per gram of dry wood. The proposed methodology can be usefully incorporated into other related industrial sectors.

  15. Polyphenoloxidase and peroxidase in avocado pulp (Persea americana Mill. Polifenoloxidase e peroxidase na polpa de abacate (Persea americana Mill.

    Directory of Open Access Journals (Sweden)

    Lucimara Salvat Vanini

    2010-06-01

    Full Text Available The aim of the present investigation was to evaluate the enzymatic activity of polyphenoloxidase and peroxidase in avocado pulps, from the Northwest area of Paraná-Brazil, in order to compare the varieties on their enzymatic activity for both, minimum and industrial processing. Enzymatic extracts were prepared from avocado pulp of Choquete, Fortuna and Quintal varieties, in green and ripe maturation stage. Thermal treatment was applied with temperatures 60, 65, 70, 75 and 80 °C. The enzymatic activities were determined by using spectrophotometer. A decline of polyphenoloxidase activity was observed in all of the varieties when both, temperature and time increased. Total inactivation of enzymes was not observed in the largest temperature. Fortuna and Choquete variety showed the lowest polyphenoloxidase activity in the ripe stage. Soluble peroxidase showed activity in the green stage, whereas, ionically bound peroxidase activity increased with the change from green to ripe maturation stage in Choquete variety.O objetivo foi avaliar a atividade enzimática da polifenoloxidase (PPO e da peroxidase (POD em polpas de abacates, da região Noroeste do Paraná, Brasil, visando comparar as variedades e suas atividades enzimáticas para processamento mínimo ou industrial. Extratos enzimáticos foram preparados da polpa de abacate das variedades Choquete, Fortuna e Quintal no estágio de maturação verde e maduro. Foi aplicado tratamento térmico com temperaturas de 60, 65, 70, 75 e 80 °C. As atividades enzimáticas foram determinadas por espectrofotometria. Observou-se declínio da atividade da PPO, à medida que aumentava a temperatura e o tempo em todas as variedades. Não foi observada inativação total das enzimas na maior temperatura. As variedades Fortuna e Choquete apresentaram menor atividade da PPO no estágio maduro. A POD solúvel apresentou menor atividade no estágio verde, e, atividade da POD ionicamente ligada aumentou com a mudan

  16. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  17. Project Independence: Construction of an Integrated Biorefinery for Production of Renewable Biofuels at an Existing Pulp and Paper Mill

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Douglas

    2012-06-01

    Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would

  18. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  19. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology

    International Nuclear Information System (INIS)

    Svensson, Inger-Lise; Joensson, Johanna; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios

  20. Process integration study of a kraft pulp mill converted to an ethanol production plant – part B: Techno-economic analysis

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore; Åsblad, Anders

    2012-01-01

    In a previous study by the authors, energy efficiency measures in a conceptual kraft pulp mill converted to a lignocellulosic ethanol plant were investigated. The results suggested a number of different process designs which would give a substantial improvement in steam economy in the ethanol plant, compared to the original design. In the present study the different process designs are evaluated from an economic point-of-view, in order to determine if energy efficiency measures and increasing by-product sales decrease the production cost of ethanol from this specific process, or if the increased costs related to the implementation of these measures overshadow the benefits from increased by-product sales. The different energy efficiency measures are compared with less capital demanding alternatives (i.e. including low or no energy efficiency improvements) in order to assess the economic benefits of different strategies when converting a kraft pulp mill to ethanol production. The study indicates the economic importance of considering energy efficiency measures when repurposing a kraft pulp mill to an ethanol plant. It is also shown that, within the context of this study, a larger investment in measures will give better economic results than less capital demanding alternatives (with less improvement in energy efficiency). From an economic and energy efficiency viewpoint many of the suggested process designs will give approximately similar results, therefore the process design should be made based on other criteria (e.g. low complexity, low maintenance). - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Energy efficiency measures lead to lower ethanol production cost. ► If capital costs and raw material prices are low the production cost could be as low as 365 €/m 3 EtOH.

  1. UV pretreatment of Alkaline Bleaching Wastewater from a Kraft Pulp and Paper Mill prior to Anaerobic Digestion in a Lab scale UASB Reactor

    OpenAIRE

    Karlsson, Marielle

    2013-01-01

    The effects of UV pretreatment on alkaline bleaching (EOP) wastewater from a kraft pulp and paper mill were investigated prior to anaerobic digestion (AD) in an upflow anaerobic sludge blanket (UASB) reactor. The aim was to enhance the methane production, increase the reduction of total organic carbon (TOC) and determine the best UV exposure time. The exposure time of 2.6 minutes partially degraded the organic material in the EOP wastewater since it generated higher biogas and methane product...

  2. Studies of transformation and particle-binding of resin acids during oxidative treatment of effluent from two New Zealand pulp mills.

    Science.gov (United States)

    Kanber, S A; Langdon, A G; Wilkins, A L

    2008-02-01

    Reactor studies of aerobic degradation of effluent from the first and last ponds of the treatment system of two New Zealand pulp and paper mills indicated that filterable BOD(5), resin acids and transformed resin acids, free and bound, degraded at similar rates. During oxidative treatment the resin acids of untreated effluent became increasingly bound to particulate material and a sediment high in abiet-13-enoic acid was formed.

  3. Effect of effluent from a nitrogen fertilizer factory and a pulp mill on the distribution and abundance of Aeromonas hydrophila in Albemarle Sound, North Carolina.

    Science.gov (United States)

    Hazen, T C; Esch, G W

    1983-01-01

    The density of Aeromonas hydrophila, standard count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters were measured simultaneously at six sites for 12 months in Albemarle Sound, N.C. One site was above and two sites were below the discharge plume of a Kraft pulping process paper mill. The fourth site was above and the remaining two sites were below the discharge point of a nitrogen fertilizer factory. The impact of the pulp mill on water quality was acute, whereas that of the nitrogen fertilizer factory was chronic and much more subtle. Diffusion chamber studies indicated that A. hydrophila survival is increased by pulp mill effluent and decreased by nitrogen fertilizer factory effluent. From correlation and regression analysis, A. hydrophila was found to be directly affected by phytoplankton density and, thus, indirectly by concentrations of phosphate, nitrate, and total organic carbon. These two point sources are suspect as indirect causes of red-sore disease epizootics, a disease of fish caused by A. hydrophila.

  4. Effect of effluent from a nitrogen fertilizer factory and a pulp mill on the distribution and abundance of Aeromonas hydrophila in Albemarle Sound, North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C. (Univ. of Puerto Rico, Rio Piedras); Esch, G.W.

    1983-01-01

    The density of Aeromonas hydrophila, standard count bacteria, fecal coliform bacteria, and 18 physical and chemical parameters were measured simultaneously at six sites for 12 months in Albemarle Sound, N.C. One site was above and two sites were below the discharge plume of a Kraft pulping process paper mill. The fourth site was above and the remaining two sites were below the discharge point of a nitrogen fertilizer factory. The impact of the pulp mill on water quality was acute, whereas that of the nitrogen fertilizer factory was chronic and much more subtle. Diffusion chamber studies indicated that A. hydrophila survival is increased by pulp mill effluent and decreased by nitrogen fertilizer factor effluent. From correlation and regression analysis, A. hydrophila was found to be directly affected by phytoplankton density and, thus, indirectly by concentrations of phosphate, nitrate, and total organic carbon. These two point sources are suspect as indirect causes of red-sore disease epizootics, a disease of fish caused by A. hydrophila.

  5. Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test.

    Science.gov (United States)

    Haq, Izharul; Kumar, Sharad; Raj, Abhay; Lohani, Mohtashim; Satyanarayana, G N V

    2017-02-01

    A lignin peroxidases-producing Serratia liquefaciens was used for bioremediation of pulp and paper (P&P) mill effluent. The treatment led to reduction of chemical oxygen demand (COD), colour, lignin and phenolic content by 84%, 72%, 61% and 95%, respectively. The effluent detoxification was studied by genotoxicity assays using Allium cepa L. (onion) root tip cells. Genotoxicity studies included measuring mitotic index (MI), chromosomal aberrations (CA) and nuclear abnormalities (NA) in root tip cells following treatment with 25, 50, 75 and 100% (v/v) of effluent. The root tip cells grown in untreated effluent showed a significant decrease in MI from 69% (control) to 32%, 27%, 22% and 11% at 25%, 50%, 75% and 100% effluent concentration, respectively. This indicated that the untreated effluent was highly cytotoxic in nature. Further, root tip cells, when treated with different concentrations of effluent showed various CA and NA including c-mitosis, stickiness, chromosome loss, chromosome break, anaphase bridge, multipolar anaphase, vagrant chromosomes, micronucleated and binucleated cells. The MI observed in root tip cells grown in bacterial treated effluents at similar concentrations (25, 50, 75 and 100% v/v) showed an increase of 33%, 36%, 42% and 66%. CA showed a substantial decrease and in some instances, complete absence of CA was also observed. The findings suggest that S. liquefaciens culture could be a potential bacterial culture for bioremediation of P&P mill effluent, as it is effective in substantial lowering of pollutants load as well as reduces the cytotoxic and genotoxic effects of effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Suitable woody species for a land application alternative to pulp and paper mill wastewater disposal

    International Nuclear Information System (INIS)

    Aw, M.; Wagner, M.R.

    1993-01-01

    Saline pulp and paper wastewater produced by Stone Container Corporation in Snowflake, Arizona was used to irrigate 32 different species/genotypes/hybrids of woody plants to test their suitability as an alternative treatment to the current wastewater disposal method. Suitability was measured in terms of survival and height growth. Among the 32 species, six were found to be a very good choice for wastewater treatment and biomass production. Their suitability is further justified by the fact that some have salt tolerance and others fix nitrogen. These species are Tamarix ramosissima, Atriplex canescens, Robinia pseudoacacia, Eleagnus angustifoliz, Ulmus pumila, and Populus deltoides x Populus nigra. Three other species are possible candidates. These include Caragana arborescens, Gleditsia triacanthos and Populus deltoides var. siouxland. In general, conifers performed poorly because of the harsh environment and other silvicultural problems

  7. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS model of the U.S. pulp and paper sector.

    Directory of Open Access Journals (Sweden)

    Nabanita Modak

    Full Text Available Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA, and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.

  8. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS) model of the U.S. pulp and paper sector.

    Science.gov (United States)

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.

  9. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    Science.gov (United States)

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516

  10. Biodegradation of pulp and paper mill effluent by co-culturing ascomycetous fungi in repeated batch process.

    Science.gov (United States)

    Rajwar, Deepika; Paliwal, Rashmi; Rai, J P N

    2017-08-31

    The competence of novel fungal consortium, consisting of Nigrospora sp. LDF00204 (accession no. KP732542) and Curvularia lunata LDF21 (accession no. KU664593), was investigated for the treatment of pulp and paper mill effluent. Fungal consortium exhibited enhanced biomass production under optimized medium conditions, i.e., glucose as carbon (C), sodium nitrate as nitrogen (N), C/N 1.5:0.5, pH 5, temperature 30 °C, and agitation 140 rpm, and significantly reduced biochemical oxygen demand (85.6%), chemical oxygen demand (80%), color (82.3%), and lignin concentration (76.1%) under catalytic enzyme activity; however, unutilized ligninolytic enzymes, such as laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP), were observed to be 13.5, 11.4, and 9.4 U/ml after the third cycle of effluent treatment in repeated batch process. Scanning electron microscopy (SEM) of fungal consortium revealed their compatibility through intermingled hyphae and spores, while the FTIR spectra confirmed the alteration of functional groups ensuring structural changes during the effluent treatment. Gas chromatography/mass spectroscopy (GC-MS) analysis showed the reduction of complex compounds and development of numerous low-molecular-weight metabolites, such as 1-3-dimethyl benzene, 2-chloro-3-methyl butane, pentadecanoic acid, and 1-2-benzene dicarboxylic acid, during the treatment, demonstrating the massive potential of the novel fungal consortium to degrade recalcitrant industrial pollutants.

  11. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)], E-mail: elin.svensson@chalmers.se; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives.

  12. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty. A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, doi:10.1016/j.enpol.2008.10.023] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives. (author)

  13. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith

    2009-01-01

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO 2 emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO 2 emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives

  14. Respiratory hospital admissions in young children living near metal smelters, pulp mills and oil refineries in two Canadian provinces.

    Science.gov (United States)

    Brand, Allan; McLean, Kathleen E; Henderson, Sarah B; Fournier, Michel; Liu, Ling; Kosatsky, Tom; Smargiassi, Audrey

    2016-09-01

    Industrial plants emit air pollutants like fine particles (PM2.5), sulfur dioxide (SO2) and nitrogen dioxide (NO2) that may affect the health of individuals living nearby. To assess the effects of community exposure to air emissions of PM2.5, SO2, and NO2 from pulp mills, oil refineries, metal smelters, on respiratory hospital admissions in young children in Quebec (QC) and British Columbia (BC), Canada. We assessed QC, BC and pooled associations between the following estimates of exposure and hospital admissions for asthma and bronchiolitis in children aged 2-4years for the years 2002-2010: i) Crude emission exposures at the residential postal codes of children, calculated by multiplying estimated daily emissions of PM2.5, SO2, or NO2 from all nearby (exposure. Associations with measured pollutant levels were only seen in BC, with SO2 and NO2. Hospital admissions for wheezing diseases in young children were associated with community exposure to industrial air pollutant emissions. Future work is needed to better assess the risk of exposure to complex mixture of air pollutants from multiple industrial sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  16. Stimulation of increased short-term growth and development of the mayfly, baetis tricaudatus, from the Thompson River basin following exposure to biologically treated pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, R.B.; Culp, J.M.; Wrona, F.J.

    1994-12-31

    This report summarizes a portion of the ongoing Fraser River Action Plan investigations of pulp mill effluent effects on aquatic life. The report presents the results of a toxicity experiment using bleached kraft mill effluent from a mill on the Thompson River in Kamloops, British Columbia. This effluent has the potential for both nutrient enrichment and toxic effects on aquatic ecosystems. The experiment was designed as a first attempt to examine the relative nature of these two effects as determined by the response to the effluent of the mayfly, an abundant benthic macroinvertebrate in the river. Food-dependent effects were determined by exposing the mayflies to effluent for two weeks within artificial streams arranged in a 2x3 factorial design. Responses measured included survival, growth, and development. Possible mechanisms for the responses are discussed.

  17. Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    This paper presents a comparison between four gasification-based biorefineries integrated with a pulp and paper mill. It is a continuation of 'Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part A: Heat integration and system performance'. Synthesis into methanol, Fischer-Tropsch crude or synthetic natural gas, or electricity generation in a gas turbine combined cycle, were evaluated. The concepts were assessed in terms of GHG (greenhouse gas) emissions and economic performance. Net annual profits were positive for all biofuel cases for an annuity factor of 0.1 in the year 2030; however, the results are sensitive to biofuel selling prices and CO 2,eq charge. Additionally, GHG emissions from grid electricity are highly influential on the results since all biofuel processes require external power. Credits for stored CO 2 might be necessary for processes to be competitive, i.e. storage of separated CO 2 from the syngas conditioning has an important role to play. Without CO 2 storage, the gas turbine case is better than, or equal to, biofuels regarding GHG emissions. Efficiency measures at the host mill prior to heat integration of a gasification process are beneficial from the perspective of GHG emissions, while having a negative impact on the economy. - Highlights: • Biomass gasification integrated with a pulp and paper mill was evaluated. • Greenhouse gas emission consequences and economic performance were assessed. • CCS has an important role to play, both in terms of emissions and economy. • Green electricity production is competitive compared to biofuel production in terms of GHG. • All biofuel cases are profitable in 2030 with assumed level of future policy instruments.

  18. The optimization of predicting the liquefy of pulp in a ball mill at variable flow of water in sand of the classifier

    Directory of Open Access Journals (Sweden)

    Кondratets V.О.

    2017-04-01

    Full Text Available To diminish the cost of iron-ore concentrate is possible by stabilization in the ball mill ratio ore / water, and this work is devoted to find it. In this work we used an algorithmic approach of the determination of the controlled value, the dynamic programming method and the Gauss-Seidel’s method, method of analytical calculations with using the mathematical model of the process, the theory of accuracy, the theory of signal filtering, the theory of sensitivity of optimum, modeling of the processes in the sand trough of the single-spiral classifier during valuing the water supply regimes in the sands. Prediction of ore / water ratio at a constant flow of the water in the sand of the classifier optimization of the selection information means by accuracy is made at the level of permissible error of ± 3,0 % with a significant reserve (of error in a conditions of high error of measurement of pulp, it improves the indices of the ball mill, but has identified detects. Much better results provides regimen of stabilization pulp liquefaction in the sand trough. Prediction the index in these conditions could provide at level of error ± 3,0 % in case of increasing the accuracy of the conveyor balance. The work demonstrates for the first time the possibility of creating devices of ratio ore / water prediction in a ball mill in the stabilization of pulp liquefaction in the sand trough by implementation of the algorithmic approach and optimize the choice of measuring devices by accuracy. The practical significance consists in the increasing of production of the ball mill and economy electricity, steel balls and inwall.

  19. Aspen Characteristics - Aspen Delineation Project [ds361

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Lake Tahoe Basin Management Unit (Placer and...

  20. The economy of chip, tree section and short wood methods in the procurement of a pulp mill; Hake-, puu- ja puutavaralajimenetelmien taloudellisuus massatehtaan kuitu- ja energiapuun hankinnassa

    Energy Technology Data Exchange (ETDEWEB)

    Imponen, V. [Metsaeteho Oy, Helsinki (Finland)

    1997-12-01

    Regional forest management plans for Finland`s private, non-industrial forestry indicate that first thinnings account for 13 % of the felling potential in these forests. The majority of first thinnings focus on pine-dominated stands. First-thinnings wood represents 29 % of the allowable cut consisting of pine pulpwood. However, small-diameter pine has not enjoyed great demand as raw material by the chemical pulp industry due to the high associated production costs and due to its inferior fibre properties when compared to large-sized softwood logs. Consequently, research and development work has been focused on the procurement, handling and usage of small-diameter wood, and especially of first-thinning pine. Both defibration and use as fuel are options when considering how to exploit small-diameter softwood raw material. Integrated procurement of industrial wood and wood fuel have improved the profitability of wood from thinnings in pulp manufacture and in energy generation at the mill. These methods would appear to be economic in regard to both the wood procurement of the pulp mills even at the present prices paid for alternative fuels. Advances in combustion technology and increased generation of electric power improve the competitiveness of methods based on the harvesting tree sections in comparison with the shortwood system yielding delimbed roundwood. The adoption of longer timber lorry-trailer combination as recognised by EU directives will have the effect of reducing the transportation costs for non-delimbed and partially delimbed wood. (orig.)

  1. Improving photofermentative biohydrogen production by using intermittent ultrasonication and combined industrial effluents from palm oil, pulp and paper mills

    International Nuclear Information System (INIS)

    Budiman, Pretty Mori; Wu, Ta Yeong; Ramanan, Ramakrishnan Nagasundara; Md Jahim, Jamaliah

    2017-01-01

    Highlights: • Intermittent ultrasonication onto broth improved biohydrogen production. • A20T10 treatment produced 14.438 mL H 2 /mL medium with 7.412% light efficiency. • Excessive ultrasonication (>306.1 J/mL) inhibited biohydrogen production. - Abstract: An ultrasonication technique was applied intermittently onto photofermentation broth during the first six hours of photofermentation to improve biohydrogen production by using Rhodobacter sphaeroides NCIMB8253. In this research, photofermentation broth consisted of a combination of palm oil (25%, v/v), pulp and paper (75%, v/v) mill effluents as well as liquid inoculum. The effects of amplitude (10, 20 and 30%, A) and ultrasonication duration (5, 10 and 15 min, T) were investigated in terms of their influences on photofermentative biohydrogen yield and total chemical oxygen demand (COD total ) removal. The recommended ultrasonication parameters were found at the middle range of amplitude and duration (A20T10). Using A20T10 intermittent treatment, the production of biohydrogen could be maximized up to 14.438 mL H 2 /mL medium with a COD total removal and light efficiency of 52.2% and 7.412%, respectively. By comparing the treatment without intermittent ultrasonication, an increase of biohydrogen yield by 44.6% was achieved in A20T10 treatment. A total energy input of 306.1 J/mL (A20T10 treatment) was supplied to improve substrate consumption and light distribution during the photofermentation, which led to the increase of biohydrogen yield.

  2. Energy and protein production from pulp mill wastes. Final report, 15 Jun 1976-14 Jun 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, M.F.; Patton, J.T.

    1979-06-14

    The goal of this research was to convert the organics and sulfur in sulfite spent liquor (SSL) now classified as pollutants from sulfite pulp mills, into synthetic methane and protein by means of a combination chemical-biological process. Ozonization was used to break the high molecular weight lignosulfonate molecules present in SSL into lower weight fractions which could be metabolized by methane-producing bacteria and protein-producing yeast. Ozonization experiments showed that this treatment is effective in partially oxidizing and fragmenting lignosulfonates into fermentable substrates. This process is initiated at low ozone concentrations and proceeds rapidly until nearly 30% of the Chemical Oxygen Demand (COD) has been consumed. The conditions under which ozonization is conducted greatly affect the degree of oxidation and the molecular weight of the cleaved fragments. In spite of the appreciable oxidative cleavage of the lignosulfonate molecules, continuous-flow fermentation studies showed rather low yields of methane and yeast from ozonated SSL. Under optimum conditions, methane production averaged only 1.7 1/1 of SSL or approximately 3% of the total organics present. Protein production was somewhat more favorable with 6% of the organics being converted to yeast biomass. (6g/1). Neither fermentation fully used all of the oxygenated fragments produced by ozonization, and thus, a two-stage process might yield better results. Although it appears that ozonization is not a viable treatment of SSL under present economic conditions, with increased demand for energy and protein, it could become more competitive in the future. However, of possibly greater importance is the potential use of partial oxidation treatments to improve the biodegradability of organic wastes.

  3. The World Court’s Ongoing Contribution to International Water Law: The Pulp Mills Case between Argentina and Uruguay

    Directory of Open Access Journals (Sweden)

    Owen McIntyre

    2011-06-01

    Full Text Available The judgment of the International Court of Justice in the Pulp Mills (Argentina v. Uruguay case makes a very important contribution to international law relating to shared international water resources and to international environmental law more generally. It does much to clarify the relationship between procedural and substantive rules of international environmental law. The Court linked interstate notification of new projects to the satisfaction of the customary due diligence obligation to prevent significant transboundary harm. It found that environmental impact assessment (EIA is an essential requirement of customary international law in respect of activities having potential transboundary effects. The real significance of the judgment is that it held that the duty to notify, and the related duty to conduct an EIA taking account of transboundary impacts, exist in customary international law and thus apply to all states, not just those that have concluded international agreements containing such obligations. The Court confirmed that for shared international water resources, the principle of equitable and reasonable utilisation, universally accepted as the cardinal rule of international water law, is virtually synonymous with the concept of sustainable development, and suggests that considerations of environmental protection are absolutely integral to the equitable balancing of interests involved. The judgment makes it clear that the principle of equitable utilisation ought to be understood as a process, rather than a normatively determinative rule. This ought to help to address widespread confusion about the nature of the key rules and principles of international water resources law and its role in the resolution of water resources disputes and in environmental diplomacy more generally.

  4. Multiple Biological Effects of Olive Oil By-products such as Leaves, Stems, Flowers, Olive Milled Waste, Fruit Pulp, and Seeds of the Olive Plant on Skin.

    Science.gov (United States)

    Kishikawa, Asuka; Ashour, Ahmed; Zhu, Qinchang; Yasuda, Midori; Ishikawa, Hiroya; Shimizu, Kuniyoshi

    2015-06-01

    As olive oil production increases, so does the amount of olive oil by-products, which can cause environmental problems. Thus, new ways to utilize the by-products are needed. In the present study, five bioactive characteristics of olive oil by-products were assessed, namely their antioxidant, anti-bacterial, anti-melanogenesis, anti-allergic, and collagen-production-promoting activities. First, the extracts of leaves (May and October), stems (May and October), flowers, olive milled waste, fruit pulp and seeds were prepared using two safe solvents, ethanol and water. According to HPLC and LC/MS analysis and Folin-Ciocalteu assay, the ethanol extracts of the leaves (May and October), stems (May and October) and flowers contained oleuropein, and the ethanol extract of the stems showed the highest total phenol content. Oleuropein may contribute to the antioxidant and anti-melanogenesis activities of the leaves, stems, and flowers. However, other active compounds or synergistic effects present in the ethanol extracts are also likely to contribute to the anti-bacterial activity of the leaves and flowers, the anti-melanogenesis activity of some parts, the anti-allergic activity of olive milled waste, and the collagen-production-promoting activity of the leaves, stems, olive milled waste and fruit pulp. This study provides evidence that the by-products of olive oil have the potential to be further developed and used in the skin care industry. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Minnesota's Aspen Resource

    Science.gov (United States)

    Pamela J. Jakes

    1981-01-01

    The fourth Minnesota Forest Inventory shows that aspen continues to dominate the State's forests. Thirty-nine percent of Minnesota's commercial forest area is in the aspen forest type. Aspen species accounted for the largest portion of growing-stock inventory, net annual growth, and removals.

  6. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste.

    Science.gov (United States)

    Chandra, Ram; Singh, Shail; Krishna Reddy, M M; Patel, D K; Purohit, Hemant J; Kapley, Atya

    2008-12-01

    Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S(6) and ITRC S(8) and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S(6) and ITRC S(8) were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S(6), namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S(8), namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.

  7. Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water

    International Nuclear Information System (INIS)

    Zhang, Linghong; Champagne, Pascale; Xu, Chunbao

    2011-01-01

    Co-liquefaction of secondary pulp/paper-mill sludge (solids concentration: 1.6 wt%) and waste newspaper with a total solids concentration of 11.3 wt% was investigated with and without the addition of catalysts in a 75 ml Parr High-Pressure reactor at temperatures of 250-380 o C for 20 min. The yield of heavy oil (HO) without catalyst was between 16.7 and 28.0 wt% within this temperature range, and peaked at 350 o C. The addition of HCO 2 H, FeS, or KOH at 5 wt% of the total solids (on a dry basis) was found to enhance the HO yield at 300 o C, particularly HCO 2 H, which increased the yield of HO from 24.9 to 34.4 wt%. More interestingly, synergistic effects between secondary pulp/paper-mill sludge and waste newspaper were observed in the co-liquefaction operations. For example, the HO yield attained was 26.9 wt% at 300 o C in the co-liquefaction of the mixture of 33 wt% sludge and 67 wt% waste newspaper, and was noted to be 9 wt% and 6 wt% higher than the yields obtained from liquefaction of sludge and waste newspaper alone, respectively. The HOs from liquefaction or co-liquefaction at 300 o C for 20 min exhibited significantly higher energy contents (HHV ≥ 30 MJ/kg), almost doubled those (-tilde 16 MJ/kg) of the original feedstocks.

  8. Changes in the nature of dissolved organics during pulp and paper mill wastewater treatment: a multivariate statistical study combining data from three analytical techniques.

    Science.gov (United States)

    Plant, Emma L; Smernik, Ronald J; van Leeuwen, John; Greenwood, Paul; Macdonald, Lynne M

    2014-03-01

    The paper-making process can produce large amounts of wastewater (WW) with high particulate and dissolved organic loads. Generally, in developed countries, stringent international regulations for environmental protection require pulp and paper mill WW to be treated to reduce the organic load prior to discharge into the receiving environment. This can be achieved by primary and secondary treatments involving both chemical and biological processes. These processes result in complex changes in the nature of the organic material, as some components are mineralised and others are transformed. In this study, changes in the nature of organics through different stages of secondary treatment of pulp and paper mill WW were followed using three advanced characterisation techniques: solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, pyrolysis-gas chromatography mass spectrometry (py-GCMS) and high-performance size-exclusion chromatography (HPSEC). Each technique provided a different perspective on the changes that occurred. To compare the different chemical perspectives in terms of the degree of similarity/difference between samples, we employed non-metric multidimensional scaling. Results indicate that NMR and HPSEC provided strongly correlated perspectives, with 86 % of the discrimination between the organic samples common to both techniques. Conversely, py-GCMS was found to provide a unique, and thus complementary, perspective.

  9. Estimation of Bioactive Compound, Maslinic Acid by HPTLC, and Evaluation of Hepatoprotective Activity on Fruit Pulp of Ziziphus jujuba Mill. Cultivars in India

    Directory of Open Access Journals (Sweden)

    Anagha Rajopadhye

    2016-01-01

    Full Text Available Fruits of Ziziphus jujuba Mill. (family: Rhamnaceae, known as Indian jujube or “Ber,” are of potential nutritional and medicinal value. The objectives of the present study were to estimate bioactive compound maslinic acid by HPTLC method and to evaluate in vitro antioxidant and hepatoprotective activity of eight cultivars of Indian jujube. Maslinic acid and the fruit pulp of various cultivars of Indian jujube, namely, Gola, Sannur, Umaran, Mehrun, and Chhuhara, exhibited significantly high antioxidant and hepatoprotective activity. HPTLC-densitometric method was developed for quantification of maslinic acid from fruits of Indian jujube cultivars. The trend of occurrence of maslinic acid in fruits pulp extracts was as follows: Gola > Sannur > Umaran > Mehrun > Chhuhara > Wild > Kadaka > Apple. A significant correlation was shown by maslinic acid content and prevention of oxidative stress induced by CCl4 in liver slice culture cell treated with extract. Maslinic acid along with its other phytoconstituents like phenols, flavonoids, and ascorbic acid may act as a possible therapeutic agent for preventing hepatotoxicity caused by oxidative stress generated due to the prooxidants like CCl4. This is the first report of fruit pulp extracts of Z. jujube cultivars in India and maslinic acid preventing CCl4 induced damage in liver slice culture cell of mice.

  10. On-line determination of anions in pulp mills by capillary electrophoresis (CE); Tehdasoloissa tapahtuva anionien kapillaarielektroforeettinen on-line maeaeritys ja sen hyoedyntaeminen prosessivalvonnassa - MPKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Kokkonen, R.; Holmberg, M.; Vainikka, V. [Finnish Pulp and Paper Research Institute, Espoo (Finland)

    1998-12-31

    The aim of the study was to set-up a process control system for on-line measurement of certain anions. Typical anions which forms precipitates in pulp and paper mills are oxalate, carbonate and sulphate. Thus it is important to develop a continuous process analyzing system to control concentration levels of this anions. For the preliminary tests of continuous determinations of chloride and sulphate anions in tap water a simple on-line system was build in KCL (The Finnish Pulp and Paper Research Institute) and connected to a capillary electroforesis apparatus. In the preliminary tests a chromate buffer (ph = 7.6) was used. Separation of chloride and sulphate was excellent but the stability of buffer was not good enough and it was usable only for few hours. After experimental studies VTT developed a stable capillary electrophoresis method based on mixed amine buffer and this was selected for an on-line method for determination of anions in process waters of the pulp and paper industry. In the preliminary on-line test (r = 20) repeatabilities of migration times of sulphate and chloride with the chromate buffer were < 5 % (RSD) and peak heights < 15 % (RSD). With the mixed amine buffer repeatabilities were better. The preliminary tests showed that it is possible to connect a capillary electrophoresis system to on-line measurements. For the moment no commercial on-line CE apparatus is available. (orig.)

  11. Calibration and validation of a modified ASM1 using long-term simulation of a full-scale pulp mill wastewater treatment plant.

    Science.gov (United States)

    Keskitalo, Jukka; Jansen, Jes la Cour; Leiviskä, Kauko

    2010-04-14

    A mathematical model modified from the well established Activated Sludge Model no. 1 was used for modelling a full-scale wastewater treatment plant (WWTP) in a bleached kraft pulp mill. Effluents from the pulp and paper industry are typically nutrient deficient, which was considered in the model. The wastewater characterization and model calibration were based on respirometric batch experiments with sludge and wastewater sampled from the WWTP. The model performance was validated in a long-term simulation using routinely measured process data from the WWTP as the model inputs. The simulation results proved useful in evaluating nutrient dosage strategies at the WWTP and in troubleshooting poor treatment plant performance. However, in order to achieve a completely accurate description of nitrogen removal, more complex phenomena would have to be included in the model. Even though the simulated period was long compared to the brief measurement campaign used in the model calibration, the model was able to describe the treatment plant's behaviour. The calibrated model can be expected to stay valid for a long time, which allows the use of deterministic modelling in practical applications at pulp and paper WWTPs.

  12. Occupational exposure to chemical and biological agents in the nonproduction departments of pulp, paper, and paper product mills: an international study.

    Science.gov (United States)

    Teschke, K; Ahrens, W; Andersen, A; Boffetta, P; Fincham, S; Finkelstein, M; Henneberger, P; Kauppinen, T; Kogevinas, M; Korhonen, K; Liss, G; Liukkonnen, T; Osvoll, P; Savela, A; Szadkowska-Stanczyk, I; Westberg, H; Widerkiewicz, K

    1999-01-01

    As part of an international epidemiological study of workers in the pulp and paper industry, previously unpublished exposure measurements were assembled in a database. This article describes 7293 measurements in nonproduction departments from 147 mills in 11 countries. The greatest variety of agents was measured in the maintenance, construction, and cleaning department, where high exposures to asbestos, chromium [VI] compounds, copper, mercury in urine, nitrogen dioxide, ozone, styrene, sulfur dioxide, trichloroethylene, and welding fumes were observed. Measurements in the storage, yard, loading, and shipping department indicated high exposures to asbestos, carbon monoxide, fungal spores, nitrogen oxides, sulfur dioxide, and total dust. The steam and power generation department had high exposures to methyl mercaptan, silica, and total dust. Measurements in process and effluent water treatment, laboratory and research, engineering, and office, administration, and cafeteria areas had few elevated exposures. Throughout the nonproduction departments, measurements of pulp-production chemicals such as chlorine and sulfur compounds tended to be low, with many below detection limits. There were some problems with the available data; in particular, detection limits were often not specified, and the data tended to be clustered in such a way that sources of exposure variability could not be distinguished. Despite these problems, the data provide new insight into the exposures of nonproduction pulp and paper industry personnel.

  13. Bio-refinery system in a pulp mill for methanol production with comparison of pressurized black liquor gasification and dry gasification using direct causticization

    International Nuclear Information System (INIS)

    Naqvi, Muhammad; Yan, Jinyue; Dahlquist, Erik

    2012-01-01

    Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

  14. Aerobic effluent treatment with lower electric power consumption. Survey of results from questionnaire sent out to Swedish pulp and paper mills with biological effluent treatment plants; Aerob rening med laegre elfoerbrukning. Sammanstaellning av enkaetsvar fraan svenska skogsindustrier med biologisk rening

    Energy Technology Data Exchange (ETDEWEB)

    Sivard, Aasa; Simon, Olle

    2010-12-15

    A survey of the energy situation at 23 Swedish pulp and paper mills with aerobic effluent treatment plants has been performed. The electricity consumption for aeration equipment is about 80 % of the total electricity consumption. Proposed measures to increase energy efficiency are regular measurements of energy consumption, better control of the oxygen level in some mills and evaluation of measures to use the heat in process effluent before and after biological treatment

  15. Assessment of electrochemical and chemical coagulation as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    Science.gov (United States)

    Buzzini, A P; Motheo, A J; Pires, E C

    2005-01-01

    This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible.

  16. Assessing aspen using remote sensing

    Science.gov (United States)

    Randy Hamilton; Kevin Megown; Jeff DiBenedetto; Dale Bartos; Anne Mileck

    2009-01-01

    Large areas of aspen (Populus tremuloides) have disappeared and continue to disappear from western forests due to successional decline and sudden aspen decline (SAD). This loss of aspen ecosystems negatively impacts watersheds, wildlife, plants, and recreation. Much can still be done to restore aspen if timely and appropriate action is taken. However, land managers...

  17. Preliminary study on the potential of improving pulp quality and energy efficiency in a South African TMP mill

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2010-09-01

    Full Text Available refining of TMP pulp by fractionation after the first refining stage, Appita J. 63: 308 ? 314. Experimental Summary Presented at the TAPPSA National Conference and Exhibition 19-20 October 2010, Durban, South Africa SCREEN FRACTION LONG APEX BASE...

  18. 77 FR 55698 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Science.gov (United States)

    2012-09-11

    ... for kraft, soda and semi-chemical pulping vent gases; sulfite pulping processes; and bleaching systems... vents, pulping process condensates) at chemical, mechanical, secondary fiber and non- wood pulp mills... chemical recovery processes at kraft, soda, sulfite and stand-alone semi- chemical pulp mills was...

  19. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID

    Directory of Open Access Journals (Sweden)

    Tamara Llano

    2017-09-01

    The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  20. BOD biosensors for pulp and paper industry wastewater analysis.

    Science.gov (United States)

    Raud, Merlin; Tutt, Marti; Jõgi, Eerik; Kikas, Timo

    2011-08-01

    Two semi-specific microbial biosensors were constructed for the analysis of biochemical oxygen demand (BOD) in high-cellulose-content pulp and paper industry wastewaters. The biosensors were based on living cells of Bacillus subtilis and Paenibacillus sp. immobilized in an agarose gel matrix. Semi-specific microorganisms were isolated from various samples (decaying sawdust and rabbit manure) and were chosen based on their ability to assimilate cellulose. The biosensors were calibrated with the Organization for Economic Cooperation and Development synthetic wastewater, and measurements with different wastewaters were conducted. The response time of biosensors using the steady-state method was 20-25 min, and the service life of immobilized microorganisms was 96 days. Detection limit was 5 mg/l of BOD(7) while linear ranges extended up to 55 and 50 mg/l of the BOD(7) for B. subtilis- and Paenibacillus sp.-based biosensors, respectively. Repeatability and reproducibility of both biosensors were within the limits set by APHA-less than 15.4%. In comparison, both biosensors overestimated the BOD(7) values in paper mill wastewaters and underestimated the BOD(7) in aspen pulp mill wastewater. The semi-specific biosensors are suitable for the estimation of organic pollution derived from cellulose, while the detection of pollution derived from tannins and lignins was minor. Better results in terms of accuracy and repeatability were gained with Paenibacillus sp. biosensor.

  1. Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill

    International Nuclear Information System (INIS)

    Martins, Fernanda Machado; Munhoz Martins, Joaniel; Ferracin, Luiz Carlos; Cunha, Carlos Jorge da

    2007-01-01

    Four residues generated in a Kraft, pulp and paper plant, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimmetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. Emphasis was given on the identification of the mineral components of each material. The green liquor dregs and the lime mud contain Calcite and Gipsite. The slaker grits contains Calcite, Portlandite, Pirssonite, Larnite and Brucite. The Calcite phase, present in the dregs and in the lime mud, has small amounts of magnesium replacing calcium. The wood ash contains Quartz as the major crystalline mineral phase

  2. Effect of nitrogen source on methanol oxidation and genetic diversity of methylotrophic mixed cultures enriched from pulp and paper mill biofilms.

    Science.gov (United States)

    Babbitt, Callie W; Lindner, Angela S

    2011-04-01

    Methanol-oxidizing bacteria may play an important role in the development and use of biological treatment systems for the removal of methanol from industrial effluents. Optimization of methanol degradation potential in such systems is contingent on availability of nutrients, such as nitrogen, in the most favorable form and concentration. To that end, this study examined the variation in growth, methanol degradation, and bacterial diversity of two mixed methylotrophic cultures that were provided nitrogen either as ammonium or nitrate and in three different concentrations. Methanol-degrading cultures were enriched from biofilms sampled at a pulp and paper mill and grown in liquid batch culture with methanol as the only carbon source and either ammonium or nitrate as the only added nitrogen source. Results indicate that growth and methanol removal of the mixed cultures increase directly with increased nitrogen, added in either form. However, methanol removal and bacterial diversity, as observed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods, were higher when using nitrate as the nitrogen source for enrichment and growth, rather than ammonium. Based on results described here, nitrate may potentially be a better nitrogen source when enriching or working with mixed methylotrophic cultures, and possibly more effective when used as a nutrient addition to biofilters.

  3. Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling.

    Science.gov (United States)

    Hay, Jacqueline Xiao Wen; Wu, Ta Yeong; Juan, Joon Ching; Md Jahim, Jamaliah

    2017-04-01

    Although a significant amount of brewery wastewater (BW) is generated during beer production, the nutrients in the BW could be reused as a potential bio-resource for biohydrogen production. Therefore, improvements in photofermentative biohydrogen production due to a combination of BW and pulp and paper mill effluent (PPME) as a mixed production medium were investigated comprehensively in this study. The experimental results showed that both the biohydrogen yield and the chemical oxygen demand removal were improved through the combination of BW and PPME. The best biohydrogen yield of 0.69 mol H 2 /L medium was obtained using the combination of 10 % BW + 90 % PPME (10B90P), while the reuse of the wastewater alone (100 % BW and 100 % PPME) resulted in 42.3 and 44.0 % less biohydrogen yields than the highest yield, respectively. The greatest light efficiency was 1.97 % and was also achieved using the combination of both wastewaters at 10B90P. This study revealed the potential of reusing and combining two different effluents together, in which the combination of BW and PPME improved the nutrients and light penetration into the mixed production medium.

  4. BIOCONVERSION OF CELLULOSE INTO HYDROGEN, BIOGAS AND ORGANIC ACIDS USING MICROBIAL CONSORTIUM FROM A PULP AND PAPER MILL WASTEWATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Camila Abreu B. Silva Rabelo

    Full Text Available This study evaluated the potential of a microbial consortium collected from a pulp and paper mill wastewater treatment plant (WWTP for converting cellulose to hydrogen, biogas and organic acids. Fermentation tests were conducted in batch reactors fed with different concentrations of cellulose as substrate: (C1 2.0 g L -1; (C2 5.0 g L -1 and (C3 10.0 g L -1. The parameters investigated were hydrogen, biogas, organic acids, carbohydrates and pH. The maximum hydrogen production was 14.77, 39.25 and 22.53 mmol L -1, and the maximum methane was 4.40, 3.72 and 9.56 mmol L -1, for C1, C2 and C3, respectively. Butyric acid was the main metabolite generated, with maximum concentrations of 2.2, 1.8 and 2.2 g L -1 for C1, C2 and C3, respectively. The decrease in hydrogen production was accompanied by the production of methane, acetic acid and hydrogen sulfide in the three tests, probably related to hydrogenotrophic methanogenesis, homoacetogenesis and sulfidogenesis, respectively. The phylogenetic characterization of the bacterial community was performed by cloning and sequencing analysis. The microorganisms identified in the consortium were similar (> 95% to Clostridium sp., Klebsiella sp., Routella sp. and Desulfovibrio sp. These genera were associated with hydrogen production, degradation of cellulosic substrates, and/or hydrogen-consuming microorganisms.

  5. Reproductive and biochemical biomarkers in largemouth bass sampled downstream of a pulp and paper mill in Florida

    Science.gov (United States)

    Sepulveda, M.S.; Gallagher, E.P.; Wieser, C.M.; Gross, T.S.

    2004-01-01

    The objective of this study was to evaluate the effects of bleached/unbleached kraft mill effluents (B/UKME) on the reproductive parameters of free-ranging Florida largemouth bass (Micropterus salmoides floridanus). The reproductive parameters measured included gonadosomatic index (GSI), histological evaluation of gonads, and plasma concentrations of vitellogenin (VTG), 17??-estradiol, and 11-ketotestosterone (11-KT). Hepatic ethoxyresorufin-O-deethylase (EROD) activity was measured as a marker of exposure to cytochrome P450-inducing agents in these effluents. Endpoints were compared among adult bass sampled from tributary and mainstream effluent-contaminated and reference sites. Females sampled from the site closest to the mill outfall had a significant five-fold increase in EROD activity compared to bass sampled from reference streams. Although sex hormones were significantly reduced in bass from exposed sites, there were no differences in VTG and GSI across sites. The absence of organism-level responses was probably not related to a lack of sensitivity, as previous studies in our laboratory have shown that bass exposed to these effluents exhibit changes in GSI and in other measures associated with reproductive success. In females, inverse relationships were observed between VTG and GSI and EROD activity. These relationship, however, were not consistent within all of the sites studied. Collectively, our findings indicate that hepatic EROD induction is an effective marker of B/UKME exposure in largemouth bass and that it might be associated with antiestrogenic effects in this species. ?? 2003 Elsevier Inc. All rights reserved.

  6. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    Science.gov (United States)

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Environmental health assessment of the benthic habitat adjacent to a pulp mill discharge. I. Acute and chronic toxicity of sediments to benthic macroinvertebrates.

    Science.gov (United States)

    Sibley, P K; Legler, J; Dixon, D G; Barton, D R

    1997-04-01

    In this study, we assessed the acute and chronic toxicity of sediments contaminated by bleached kraft pulp mill effluent (BKME). Sediments were collected in August 1991 and 1992, and May 1993 from eight stations exposed directly to the effluent and from four reference sites.Acute toxicity was determined for five macroinvertebrates (Hyalella azteca, Daphnia magna, Chironomus riparius, Hexagenia spp., and Tubifex tubifex) using pore water, elutriate, and bulk sediment exposures. Chronic toxicity was assessed using C. tentans and H. azteca (growth and survival) and D. magna and T. tubifex (reproduction) in bulk sediment exposures. Mortality declined with decreasing proximity to the outfall; acute toxicity (>20% mortality after 48 h)was observed at the two stations closest to the outfall (300 and 400 m). At 300 m, pore water was consistently more toxic than elutriate or bulk sediment phases, resulting in 100% mortality for all invertebrates except T. tubifex (23%). Elutriate exposures were toxic to C. riparius (88%), D. magna (54%), and Hexagenia (47%), but not H. azteca. Bulk sediments were toxic to Hexagenia (100%) and D. magna(88%), but not to C. riparius or H. azteca. In chronic tests, mortality in H. azteca and T. tubifex was highest at 300 and 400 m, indicating that toxicity observed in the short-term aqueous exposures adequately predicted long-term toxicity in bulk sediments. In both acute and chronic tests, mortality was significantly correlated with the concentration of extractable organic chlorines (EOCl) in the sediment, with LC50 values ranging from 4500 to 5500 mg EOCl/kg organic carbon. Growth of C. tentans larvae was depressed at 300 and 400 m in August 91 but enhanced in May 93 relative to the reference sites. Growth of H.azteca also declined near the outfall in August 91 sediments and was approximately one half that observed in 92/93 sediments; however, growth did not differ among stations in 92 or 93. Reproductive output in D. magna (neonates) and T

  8. Analysis of Volatile Organic and Sulfur Compounds in Air Near a Pulp Paper Mill in North-Central Idaho

    Science.gov (United States)

    Johnston, N. A. C.; Bundy, B. A.; Andrew, J. P.; Grimm, B. K.; Ketcherside, D.; Rivero-Zevallos, J. A.; Uhlorn, R. P.

    2017-12-01

    Lewiston, Idaho is a small city in the Snake River Valley bordering North-Central Idaho and Southeastern Washington, with a population of over 40,000 including the surrounding areas. One of the main industries and employers in the region is a kraft paper mill in North Lewiston, which results in odorous levels of sulfur air pollutants there. The Idaho Department of Environmental Quality has an air monitoring station in Lewiston but measures only air particulate matter (PM). Surprisingly, not much long-term data exists on this area for specific air constituents such as volatile organics, hazardous air pollutants, and sulfur compounds. One year-long study conducted in 2006-2007 by the Nez Perce Tribe found high formaldehyde levels in the area, and warranted further study in July of 2016-2017. Our ongoing study began in the fall of 2016 and investigates the seasonal air composition in the Lewiston area. Specifically, active air sampling via sorbent tubes and analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). was utilized to measure over 50 volatile organic compounds, hazardous air pollutants, and sulfurous compounds in ambient air (adapted from EPA Method TO-17). Seasonal, diurnal, and spatial variations in air composition were explored with weekly to monthly grab sampling. Dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were the primary sulfur compounds detected, and these varied considerably depending on time of day, season, location and meteorology. DMS was more prevalent in the summer months, while DMDS was more prevalent in the spring. Elevated concentrations of benzene and chloroform were found in the region during 2017, with average values of short term grab samples over three times the acceptable ambient concentrations in Idaho. These levels did not persist during longer term sampling of 12-hours, however further monitoring is needed to assess a potential health concern.

  9. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2017-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  10. Changes in the n-alkane composition of avocado pulp oil ( Persea americana, Mill. during fruit ripening

    Directory of Open Access Journals (Sweden)

    Giuffrè, A. M.

    2005-03-01

    Full Text Available The n-alkane composition of Avocado pulp oil (cv. Hass was investigated during fruit ripening. Three samples of fruit were harvested on March 3, 2003, March 18, 2003 and April 2, 2003. Glass gravity column chromatography was employed to separate n-alkanes from other minor components contained in the unsaponifiable fraction. Gas chromatography was used to analyze the eluate. Fourteen compounds were detected ranging from n -C21 to n -C34; mainly n -C24, followed by n -C25 and then by n -C23. Quantities of n -C21, n -C22, n -C23, n -C27 and n -C28 progressively increased during ripening, whereas n -C24, n -C25, n -C26, n -C29, n -C30 and n -C34 decreased from the first harvest date to the third harvest date. While odd-numbered carbon n-alkanes increased (52.38 %, 52.85 % and 53.06 % for the three samples respectively, even-numbered carbon n-alkanes decreased as the fruit ripened (47.62 %, 47.15 % and 46.94 %. The total n-alkane content decreased during ripening, from 25.20 mg/Kg (first harvest date to 16.77 mg/Kg (third harvest date. In order to minimize.Se ha analizado la composición en hidrocarburos lineales saturados del aceite de la pulpa de aguacate (variedad Hass. Tres muestras fueron recolectadas: el 3 de marzo 2003, el 18 de marzo 2003 y el 2 de abril 2003. La separación de los hidrocarburos lineales saturados se realizó mediante fraccionamiento del insaponificable por cromatografía gravimétrica de adsorción en columna y la determinación de los mismos hidrocarburos por cromatografía gaseosa. 14 compuestos fueron detectados del n- C21 al n- C34. El n- C24 fue el mayoritario, seguido del n- C25 y el n- C23. El porcentaje de n- C21, n- C22, n- C23, n- C27 y n- C28, aumentó durante la maduración, mientras que el porcentaje de n- C24, n- C25, n- C26, n- C29, n- C30 y C34 disminuyó desde el 3 de marzo 2003 hasta el 2 de abril 2003. Los hidrocarburos lineales saturados con número impar de átomos de carbono aumentaron (52.38 %, 52

  11. Aspen Delineation - Inyo National Forest [ds366

    Data.gov (United States)

    California Natural Resource Agency — The database represents delineations of known aspen stands where aspen assessments were collected in the Inyo National Forest, Inyo County, California. The Inyo...

  12. Aspen Delineation - Klamath National Forest [ds370

    Data.gov (United States)

    California Department of Resources — The database represents polygons of aspen stands in the Klamath National Forest, Siskiyou County, California. The Klamath National Forest Region 5 Vegetation aspen...

  13. Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen

    Science.gov (United States)

    S. Tian; W. Zhu; Roland Gleisner; X.J. Pan; Junyong Zhu

    2011-01-01

    This study reports comparative evaluations of sugar and ethanol production from a native aspen (Populus tremuloides) between sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) and dilute acid (DA) pretreatments. All aqueous pretreatments were carried out in a laboratory wood pulping digester using wood chips at 170°C with a liquid to...

  14. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  15. Cankers on Western Quaking Aspen

    Science.gov (United States)

    David W. Johnson; Jerome S. Beatty; Thomas E. Hinds

    1995-01-01

    Long appreciated for its esthetic and shade tree value and its importance for wildlife, aspen is also capable of excellent growth and high yields and thus is an important commercial timber species. However, aspen has one major drawback-its soft bark is easily wounded by abiotic factors, animals, and insects. Subsequently, these wounds can be invaded by disease...

  16. Historical variations in the stable isotope composition of mercury in a sediment core from a riverine lake: Effects of dams, pulp and paper mill wastes, and mercury from a chlor-alkali plant

    International Nuclear Information System (INIS)

    Jackson, Togwell A.

    2016-01-01

    The Wabigoon River (Ontario, Canada) was affected by dams starting in 1898 and was polluted with pulp and paper mill wastes starting in 1913 and mercury from a chlor-alkali plant from 1962 to 1975. A dated sediment core from a riverine lake was analysed to investigate resultant changes in the biogeochemistry of mercury as revealed by variations in mercury isotope ratios and sediment chemistry. A total mercury maximum formed by the mercury pollution coincided with minimums in the δ-values of the 198 Hg/ 202 Hg, 199 Hg/ 202 Hg, 200 Hg/ 202 Hg, and 201 Hg/ 202 Hg ratios, and the δ-values decreased in the order δ 201 Hg > δ 200 Hg > δ 199 Hg > δ 198 Hg. Thus, mass-dependent fractionation caused depletion in lighter isotopes, implying evaporation of Hg(0) and pollution of the atmosphere as well as the river-lake system. Concurrently, mass-independent fractionation caused 199 Hg enrichment, possibly reflecting an independently documented upsurge in methylmercury production, and 201 Hg depletion, suggesting removal of methylmercury with anomalously high 201 Hg/ 199 Hg ratios by aquatic organisms and accumulation of 201 Hg-depleted inorganic Hg(II) in sediments. The δ 201 Hg/δ 199 Hg ratio rose abruptly when mercury pollution began, reflecting the resultant increase in methylmercury production, and remained high but gradually declined as the pollution abated, paralleling trends shown by methylmercury in aquatic organisms. The δ 201 Hg/δ 199 Hg ratio of pre-1962 background mercury increased ca. 1898 and ca. 1913–1929, suggesting accelerated methylmercury production due to stimulation of microbial activities by the damming of the river and the input of pulp and paper mill wastes, respectively. Other variations were linked to economic and technological factors that affected pulp and paper manufacture. - Highlights: • A core from a lake polluted by Hg and organic wastes was analysed for Hg isotopes. • Hg from a chlor-alkali plant was depleted in lighter

  17. Optimization and Technical/Economical Evaluation of Biogas Production from Biosludge from Pulp and Paper Mills; Optimering och teknisk/ekonomisk utvaerdering av biogasproduktion fraan bioslam fraan massa-/pappersbruk

    Energy Technology Data Exchange (ETDEWEB)

    Xu-Bin Truong; Karlsson, Anna; Ejlertsson, Joergen; Nilsson, Fredrik

    2010-04-15

    The biogas potentials from biosludges from six different pulp- and paper mills have been evaluated. It ranged from 100 - 200 mL CH{sub 4}/g VS (volatile solids) for all six mills where five of them gave results between 150 - 200 mL CH{sub 4}/g VS. Long-term semi-continuous trials with biosludges from two of the mills showed stable biogas production throughout the testing period. Pretreatments with enzymes and ultrasound were tested but showed no significant effect on the methane potential. The investment costs for two production plants were calculated. For a small plant using 7 ton biosludge TS/d (total solids per day), producing 305 000 Nm3 CH{sub 4}/yr the investment cost was estimated to 30 MSEK and for a larger plant using 20 ton biosludge TS/d, producing 871 000 Nm3 CH{sub 4}/yr the investment cost was estimated to 51 MSEK (1 USD approx 7 SEK)

  18. Effects of Non Process Elements in the chemical recovery system of a kraft pulp mill from the incineration in the recovery boiler of biological sludge; Effekter av PFG vid indunstning och foerbraenning av bioslam i ett massabruks sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbom, Johan

    2003-01-01

    The purpose of this project was to investigate the effects of incineration of biological sludge in the recovery boiler of a Swedish Kraft pulp mill, StoraEnso Pulp AB Skutskaers Bruk, which has practiced incineration of sludge in the recovery boiler during the last two years. The following aspects of the technique were investigated: Experience from operation of incineration of biological sludge in the recovery boiler; The content of Non-Process Elements (NPE) in process flows and evaluate the risks of incrustations in the system; The build-up of NPE in the chemicals recovery system and the estimated increase in make-up lime demand; and Technical risks for mills with different process equipment. This study comprises the following NPE: aluminium, silicon, phosphorus, magnesium, calcium, chloride, iron, manganese, potassium, copper, and nitrogen. The operational experience from the system for hydrolysis of the biological sludge and evaporation/incineration in the recovery boiler is excellent. The handling of the sludge takes place in a closed system that demands little supervision and maintenance. Overall, the mill has not seen any negative effects that can be explained by increased intake of NPEs to the chemical recovery system. Aluminium can lead to troublesome incrustations of sodium-aluminium-silicates on the heat surfaces in the evaporation plant. An effective elimination of aluminium by the green liquor dreg is obtained with the double salt hydrotalcite if the quotient Mg/Al is kept higher than 4-5 in the black liquor. The need for make-up lime has increased due to the build-up of phosphorus in the lime. Depending on the level of make-up lime the need will increase 2-5 kg/ t{sub 90} at a price of 2-5 kr/t{sub 90}. If a higher level of phosphorus is accepted instead of increasing lime make-up the running costs will be somewhat higher, 0,5-1 kr/t{sub 90} due to increased ballast. NO{sub x} in the flue gases from the recovery boiler has not increased since the

  19. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    Science.gov (United States)

    The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant sector-based analyses that are performed in conjunction with ...

  20. Towards Optimising Pulp and Paper Production Capacities in Nigeria

    African Journals Online (AJOL)

    Abstract. In Nigeria, pulp and paper production capacities are low due to dependence on foreign inputs. Two of the three primary pulp and paper mills established in the 1960's to 1970's performed optimally till the 1980's. In 1985 and 1986, capacity utilization in Nigeria paper mill reached 62.3% and 66.17% respectively.

  1. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

  2. Aspen Delineation - Sequoia National Forest [ds378

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (SEQUOIA_NF_PTS) collected in aspen stands in the Cannell Meadows Ranger...

  3. Aspen Delineation - Sierra State Parks [ds380

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (SIERRA_SP_PTS) collected in aspen stands on lands administered by the...

  4. Aspen Delineation - Lassen National Forest [ds372

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (LASSEN_NF_EAGLELAKE_PTS) collected in aspen stands in the in the Eagle...

  5. Aspen Delineation - Plumas National Forest [ds374

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (PLUMAS_NF_PTS) collected in aspen stands in the Plumas National Forest,...

  6. Aspen's ecological role in the West

    Science.gov (United States)

    William H. Romme; Lisa Floyd-Hanna; David D. Hanna; Elisabeth Bartlett

    2001-01-01

    Aspen exhibits a variety of ecological roles. In southern Colorado, the 1880 landscape mosaic contained a range of stand ages, of which half were >70 years old and half were younger. Pure aspen stands in southern Colorado are widespread and may result from previous short fire intervals that eliminated local conifer seed sources. Aspen regeneration in northern...

  7. Delignification of wood and kraft pulp with polyoxometalates

    Science.gov (United States)

    Edward L. Springer; Richard S. Reiner; Ira A. Weinstock; Rajai H. Atalla; Michael W. Wemple; Elena M. G. Barbuzzi

    1998-01-01

    Finely divided aspen and spruce woods and a high lignin pine kraft pulp have been selectively delignified to low lignin levels using aqueous solutions of polyoxometalates under anaerobic conditions. The reduced polyoxometalates in the solutions can be reoxidized with oxygen and act as wet oxidation catalysts for the mineralization of the solubilized lignin and...

  8. Use of electrochemical oxidation process as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    Science.gov (United States)

    Buzzini, A P; Miwa, D W; Motheo, A J; Pires, E C

    2006-01-01

    The main purpose of this study was to evaluate the performance of the electrochemical oxidation process as a post-treatment for the effluents of a bench-scale UASB reactor treating simulated wastewater from an unbleached pulp plant. The oxidation process was performed using a single compartment cell with two plates as electrodes. The anode was made of Ti/Ru0.3Ti0.7O2 and the cathode of stainless steel. The following variables were evaluated: current density (75, 150 and 225 mA cm(-2)) and recirculation flow rate in the electrochemical cell (0.22, 0.45 and 0.90 L h(-1)). The increase in current density from 75 to 225 mA cm(-2) did not increased the color removal efficiency for the tested flow rates, 0.22, 0.45 and 0.90 L h(-1), however the energy consumption increased significantly. The results indicated the technical feasibility of the electrochemical treatment as post-treatment for UASB reactors treating wastewaters from pulp and paper plants.

  9. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  10. Short-rotation hardwood species as whole-tree raw material for pulp and paper. 4. Effect of bark upon chemical pulping

    Energy Technology Data Exchange (ETDEWEB)

    Loennberg, B.

    1976-01-01

    Data are tabulated and discussed from pulping, beating and washing experiments on pulps including various proportions of the bark and leaves of 4 species: Aspen (Populus tremula), Sallow (Salix caprea), White Birch (Betula pubescens) and Grey Alder (Alnus incana). Leaves were found to be unsuitable as a raw material, but the yields and strength of pulps including bark were satisfactory. The main problem in the use of these pulps is their bad drainage characteristics; this calls for either more washing capacity or for a chip barking process. An economic analysis indicates that it is best to use unbarked stems of these species at age 20 to 25.

  11. Purification and recycling of the waste water of a paper mill using mechanical pulp; Mekaanista massaa kaeyttaevaen paperitehtaan jaeteveden puhdistus ja uudelleenkaeyttoe - EKY 07

    Energy Technology Data Exchange (ETDEWEB)

    Mattelemaeki, R. [Enso Oyj, Imatra (Finland)

    1998-12-31

    The objective of the project was to study which levels of organic and inorganic substances could be obtained by treatment of waste waters of mechanical pulper and paper machine biologically and after that with solid matter removal. Another target was also to test the utilisation of the purified water in pulp and paper manufacture, and to study the properties of purified water. The three months test runs with PK 4 and TMP plant clarified waters were carried out using a pilot-scale plant, which also consisted of two serial aerobic bioreactors and a parallel anaerobic line as a reference. The solid matter was removed by chemical flocculation, flotation and sand filtration. The purification efficiencies of both waters were similar both in aerobic and anaerobic lines. The reduction of soluble COD in biological stage was about 75 % and that of the whole line about 85 %. The solid matter reduction was 60-70 %. Solid fines, including bacteria, could not be removed sufficiently from the water by flotation and sand filtration so the water cannot be recommended to be used to replace fresh water. Circulating water sheets were produced, and pulp washing tests, retention tests and microbiological tests were carried out in order to estimate the recyclability of the water. Minor lowering of whiteness of the sheets were observed when a part of the fresh water was replaced with recycled water. Microscopic analysis shoved that after the sand filter there were a lot of free bacteria in the water. Further research will be concentrated to recycling of purified water, e.g. To research on how the colour of the water effects on the quality of the product. (orig.)

  12. The optimization of predicting the liquefy of pulp in a ball mill at variable flow of water in sand of the classifier

    OpenAIRE

    Кondratets V.О.; Matsui А.М.

    2017-01-01

    To diminish the cost of iron-ore concentrate is possible by stabilization in the ball mill ratio ore / water, and this work is devoted to find it. In this work we used an algorithmic approach of the determination of the controlled value, the dynamic programming method and the Gauss-Seidel’s method, method of analytical calculations with using the mathematical model of the process, the theory of accuracy, the theory of signal filtering, the theory of sensitivity of optimum, modeling of the pro...

  13. Aspen Characteristics - Klamath National Forest [ds369

    Data.gov (United States)

    California Natural Resource Agency — The database represents point locations and associated stand assessment data collected with known aspen stands in the Klamath National Forest, Siskiyou County,...

  14. Aspen Characteristics - Klamath National Forest [ds369

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected with known aspen stands in the Klamath National Forest, Siskiyou County,...

  15. Aspen Characteristics - Sierra State Parks [ds379

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands on lands administrated by the Sierra District, California...

  16. Aspen Characteristics - Plumas National Forest [ds373

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Beckwourth Ranger District...

  17. Aspen Characteristics - Sequoia National Forest [ds377

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Cannell Meadows Ranger District, Sequoia National...

  18. Aspen Delineation - El Dorado National Forest [ds364

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands, where aspen assessments were gathered in the Eldorado National Forest, Eldorado and Amador Counties,...

  19. Aspen Delineation - Klamath National Forest, EUI [ds368

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands where aspen assessments were collected in the Klamath National Forest, Siskiyou County, California. The...

  20. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  1. Evaluation of Co-Digestion of Biosludge from Pulp and Paper Mills; Utvaerdering av samroetningspotential foer bioslam fraan massa-/pappersbruk

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Andreas; Karlsson, Anna; Ejlertsson, Joergen; Nilsson, Fredrik

    2011-02-15

    The biogas potentials from 2 biosludges from the pulp- and paper industry and 10 possible co-digestion substrates have been evaluated. 6 combinations, each including two co-digestion substrates and one biosludge, were evaluated in lab scale biogas reactors. Stable biogas processes were obtained with all combinations and the rawgas potential was higher in the co-digestion processes then for the biosludges alone (0.31- 0.43 compared to 0.21- 0.22 NL/g VS) The investment costs for two production plants were calculated. For a plant using 7 ton biosludge TS/d (total solids per day), co-digested with evaporation condensate (3 m3/d) and fibre sludge (3 ton/d) and thereby producing 850 000 Nm3 CH{sub 4}/yr the investment cost was estimated to 43 MSEK excluding ground works. For a larger plant using 20 ton biosludge TS/d, co-digested with food waste (8 ton/d) and cereal residues (12 ton/d) and producing 2 500 000 Nm3 CH{sub 4}/yr, the investment cost was estimated to 51 MSEK excluding ground works

  2. Flow dynamics of pulp fiber suspensions

    OpenAIRE

    Ventura, Carla; Garcia, Fernando; Ferreira, Paulo; Rasteiro, Maria

    2008-01-01

    The transport between different equipment and unit operations plays an important role in pulp and paper mills because fiber suspensions differ from all other solid-liquid systems, due to the complex interactions between the different pulp and paper components. Poor understanding of the suspensions’ flow dynamics means the industrial equipment design is usually conservative and frequently oversized, thus contributing to excessive energy consumption in the plants. Our study aim was ...

  3. Nitrogen mineralization in the aspen ecosystem

    Science.gov (United States)

    M. C. Amacher; A. D. Johnson; T. Christopherson; D. E. Kutterer; D. L. Bartos; J. Kotuby-Amacher

    1999-01-01

    Aspen (Populus tremuloides) are in decline throughout the interior western U.S. because of conifer invasion, fire suppression, and overbrowsing by domestic livestock and native ungulates. Aspen restoration requires disturbances such as fire or cutting and exclosures to protect against overbrowsing. We measured the effects of the 1996 Pole Creek fire, Fishlake NF, UT on...

  4. Chemical sequential extraction of heavy metals and sulphur in bottom ash and in fly ash from a pulp and paper mill complex.

    Science.gov (United States)

    Nurmesniemi, Hannu; Pöykiö, Risto; Kuokkanen, Toivo; Rämö, Jaakko

    2008-08-01

    A five-stage sequential extraction procedure was used to determine the distribution of 11 metals (Cd, Cr, Cu, Mo, Pb, Zn, As, Co, V, Ni, Ba), and sulphur (S) in bottom ash and in fly ash from a fluidized bed co-combustion (i.e. wood and peat) boiler of Stora Enso Oyj Oulu Mill at Oulu, Northern Finland, into the following fractions: (1) water-soluble fraction (H2O); (2) exchangeable fraction (CH3COOH); (3) easily reduced fraction (NH2OH-HCl); (4) oxidizable fraction (H2O2 + CH3COONH4); and (5) residual fraction (HF + HNO3 + HCl). Although metals were extractable in all fractions, the highest concentrations of most of the metals occurred in the residual fraction. From the environmental point of view, this fraction is the non-mobile fraction and is potentially the least harmful. The Ca concentrations of 29.3 g kg(-1) (dry weight) in bottom ash and of 68.5 g kg(-1) (dry weight) in fly ash were correspondingly approximately 18 and 43 times higher than the average value of 1.6 g kg(-1) (dry weight) in arable land in Central Finland. The ashes were strongly alkaline pH (approximately 12) and had a liming effects of 9.3% (bottom ash) and 13% (fly ash) expressed as Ca equivalents (dry weight). The elevated Ca concentrations indicate that the ashes are potential agents for soil remediation and for improving soil fertility. The pH and liming effect values indicate that the ashes also have a pH buffering capacity. From the environmental point of view, it is notable that the heavy metal concentrations in both types of ash were lower than the Finnish criteria for ash utilization.

  5. Landscape composition in aspen woodlands under various modeled fire regimes

    Science.gov (United States)

    Eva K. Strand; Stephen C. Bunting; Lee A. Vierling

    2012-01-01

    Quaking aspen (Populus tremuloides) is declining across the western United States. Aspen habitats are diverse plant communities in this region and loss of these habitats can cause shifts in biodiversity, productivity, and hydrology across spatial scales. Western aspen occurs on the majority of sites seral to conifer species, and long-term maintenance of these aspen...

  6. Prescribed fire, elk, and aspen in Grand Teton National Park

    Science.gov (United States)

    Ron Steffens; Diane Abendroth

    2001-01-01

    In Grand Teton National Park, a landscape-scale assessment of regeneration in aspen has assisted park managers in identifying aspen stands that may be at risk due to a number of interrelated factors, including ungulate browsing and suppression of wildland fire. The initial aspen survey sampled an estimated 20 percent of the park's aspen stands. Assessment of these...

  7. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  8. Anthraquinone-A Review of the Rise and Fall of a Pulping Catalyst

    Science.gov (United States)

    Peter W. Hart; Alan W. Rudie

    2014-01-01

    The application of anthraquinone (AQ) as a pulping catalyst has been well documented in scientific studies and mill applications. AQ is known to increase the rate of delignification, enabling a reduction in pulping time, temperature, or chemical charge and an increase in pulp yield. Specific details of AQ use are not extensively reviewed in this work. The review...

  9. Implementing ASPEN on the CRAY computer

    International Nuclear Information System (INIS)

    Duerre, K.H.; Bumb, A.C.

    1981-01-01

    This paper describes our experience in converting the ASPEN program for use on our CRAY computers at the Los Alamos National Laboratory. The CRAY computer is two-to-five times faster than a CDC-7600 for scalar operations, is equipped with up to two million words of high-speed storage, and has vector processing capability. Thus, the CRAY is a natural candidate for programs that are the size and complexity of ASPEN. Our approach to converting ASPEN and the conversion problems are discussed, including our plans for optimizing the program. Comparisons of run times for test problems between the CRAY and IBM 370 computer versions are presented

  10. Pilot trials of hemicelluloses extraction prior to thermomechanical pulp production: Part 1

    Science.gov (United States)

    Carl Houtman; Eric Horn

    2011-01-01

    Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no...

  11. Biomass of Sacrificed Spruce/Aspen (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Dimension analysis (diameter at breast high, tree height, depth of crown), estimated leaf area, and total aboveground biomass for sacrificed spruce and aspens in...

  12. Aspen Characteristics - Lassen National Forest [ds371

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected in aspen stands in the in the Eagle Lake Ranger District, Lassen National...

  13. Investigation of ESEM/EDX to measure liquor penetration and diffusion in Eucalyptus grandis wood chips during kraft pulping

    CSIR Research Space (South Africa)

    Grzeskowiak, V

    2011-01-01

    Full Text Available 2011. 6. Quinde A. (1994). Pulping additives in kraft pulping: Past, present and future. Spring Conference Canadian Pulp and Paper Ass. Jasper, Alberta. May 19 ? 21. 7. Stamm A.J. (1953). Diffusion and penetration mechanism of liquids into wood... and aspen wood chips using SEM/EDXA. J. Pulp and Paper Sci. 22(3): 71-77. 10. Jensen W., Folgelberg B.C. and Johanson M. (1960). Studies on the possibilities of using radioactive tracers to follow the penetration of cooking liquors into wood. Paperi ja...

  14. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Aspen Delineation - Plumas National Forest, FRRD [ds376

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (PLUMAS_NF_FEATHERRIVER_PTS) collected in aspen stands in the Plumas...

  16. Fire regimes of quaking aspen in the Mountain West

    Science.gov (United States)

    Shinneman, Douglas J.; Baker, William L.; Rogers, Paul C.; Kulakowski, Dominik

    2013-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and it is found throughout much of the Mountain West (MW) across a broad range of bioclimatic regions. Aspen typically regenerates asexually and prolifically after fire, and due to its seral status in many western conifer forests, aspen is often considered dependent upon disturbance for persistence. In many landscapes, historical evidence for post-fire aspen establishment is clear, and following extended fire-free periods senescing or declining aspen overstories sometimes lack adequate regeneration and are succeeding to conifers. However, aspen also forms relatively stable stands that contain little or no evidence of historical fire. In fact, aspen woodlands range from highly fire-dependent, seral communities to relatively stable, self-replacing, non-seral communities that do not require fire for persistence. Given the broad geographic distribution of aspen, fire regimes in these forests likely co-vary spatially with changing community composition, landscape setting, and climate, and temporally with land use and climate – but relatively few studies have explicitly focused on these important spatiotemporal variations. Here we reviewed the literature to summarize aspen fire regimes in the western US and highlight knowledge gaps. We found that only about one-fourth of the 46 research papers assessed for this review could be considered fire history studies (in which mean fire intervals were calculated), and all but one of these were based primarily on data from fire-scarred conifers. Nearly half of the studies reported at least some evidence of persistent aspen in the absence of fire. We also found that large portions of the MW have had little or no aspen fire history research. As a result of this review, we put forth a classification framework for aspen that is defined by key fire regime parameters (fire severity and probability), and that reflects underlying biophysical

  17. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually and in combi......A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually...... of anaerobic inhibitors such as adsorbable organic halogens (36 mg/L), total sulfur (170 mg/L), and resin and fatty acids (3.2 mg/L). Therefore, the total bleaching effluent from hardwood kraft pulping may be considered for full-scale anaerobic wastewater treatment, either as a singular stream or as part...... of a composite stream including other in-mill effluents....

  18. Use of laccase in pulp and paper industry.

    Science.gov (United States)

    Virk, Antar Puneet; Sharma, Prince; Capalash, Neena

    2012-01-01

    Laccase, through its versatile mode of action, has the potential to revolutionize the pulping and paper making industry. It not only plays a role in the delignification and brightening of the pulp but has also been described for the removal of the lipophilic extractives responsible for pitch deposition from both wood and nonwood paper pulps. Laccases are capable of improving physical, chemical, as well as mechanical properties of pulp either by forming reactive radicals with lignin or by functionalizing lignocellulosic fibers. Laccases can also target the colored and toxic compounds released as effluents from various industries and render them nontoxic through its polymerization and depolymerization reactions. This article reviews the use of both fungal and bacterial laccases in improving pulp properties and bioremediation of pulp and paper mill effluents. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  19. Aspen biology, community classification, and management in the Blue Mountains

    Science.gov (United States)

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  20. Evaluation of burned aspen communities in Jackson Hole, Wyoming

    Science.gov (United States)

    Charles E. Kay

    2001-01-01

    Aspen has been declining in Jackson Hole for many years, a condition generally attributed to the fact that lightning fires have been aggressively suppressed since the early 1900s. It is also believed that burning will successfully regenerate aspen stands despite high elk numbers. To test this hypothesis, I evaluated 467 burned and 495 adjacent, unburned aspen stands at...

  1. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  2. Wood and non-wood pulp production. Comparative ecological footprinting on the Canadian prairies

    International Nuclear Information System (INIS)

    Kissinger, Meidad; Fix, Jennifer; Rees, William E.

    2007-01-01

    Pulp production accounts for a major part of the Canadian forest industry. Because of the ecological damage caused by the industry, there has been growing interest in the use of agricultural residues as an alternative or supplementary fibre source for pulp making. The purpose of this study is to determine whether the use of crop residues has the potential to reduce the environmental 'load' associated with pulp production. We answer this question by estimating and comparing the ecological footprints of the currently dominant practice of using spruce and aspen harvested from the boreal forest, with the practice of using plant fibre from the residue of wheat and flax crops commonly grown in the Canadian prairie provinces. The analysis accounts for all major land and energy inputs associated with the two production processes. The study results indicate that the ecological load of pulp production varies among resources and provinces. However, overall, the total eco-footprint of pulped wheat straw is the smallest. (author)

  3. Water requirements of the pulp and paper industry

    Science.gov (United States)

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills

  4. Aspen: A microsimulation model of the economy

    Energy Technology Data Exchange (ETDEWEB)

    Basu, N.; Pryor, R.J.; Quint, T.; Arnold, T.

    1996-10-01

    This report presents, Aspen. Sandia National Laboratories is developing this new agent-based microeconomic simulation model of the U.S. economy. The model is notable because it allows a large number of individual economic agents to be modeled at a high level of detail and with a great degree of freedom. Some features of Aspen are (a) a sophisticated message-passing system that allows individual pairs of agents to communicate, (b) the use of genetic algorithms to simulate the learning of certain agents, and (c) a detailed financial sector that includes a banking system and a bond market. Results from runs of the model are also presented.

  5. Pulp and paper mill effluents: Toxicity to humans. February 1987-March 1990 (A Bibliography from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for February 1987-March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to plant workers and the populace surrounding the plant. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared with those discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 120 citations, 22 of which are new entries to the previous edition.)

  6. Pulp and paper mill effluents: Toxicity to humans. January 1976-January 1987 (Citations from the Paper and Board, Printing, and Oackaging Industries Research Associations data base). Report for January 1976-January 1987

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to people within the plants as well as outside. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared to that which is discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 197 citations, none of which are new entries to the previous edition.)

  7. Pulp and paper mill effluents: Toxicity to humans. February 1987-October 1989 (Citations from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for February 1987-October 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    This bibliography contains citations concerning the hazards of toxic pulping and papermaking effluents to people within the plants as well as outside. Biomonitoring studies, bioassay performance and reliability, cost factors of reducing toxicity, and effects of reducing toxicity on biological treatment of wastes are discussed. Evaluation of toxicity and mutagenicity of effluents within the plants compared to that which is discharged to the outside environment is included. Toxicity of pulping effluents to fish and water vegetation is covered in another bibliography. (This updated bibliography contains 140 citations, all of which are new entries to the previous edition.)

  8. Decline in the pulp and paper industry: Effects on backward-linked forest industries and local economies

    Science.gov (United States)

    Consuelo Brandeis; Zhimei Guo

    2016-01-01

    Pulp, paper, and paperboard mills consume close to 52 percent of southern roundwood, providing a  significant market to southern forest landowners. Declining numbers of pulpwood-using mills and downward trends in mill  capacity, however, present a growing challenge to the southern forest sector. Shrinking mill  capacity affects rural communities that depend on mill...

  9. Foreword: "We already know all about aspen"

    Science.gov (United States)

    Dan Binkley

    2001-01-01

    As we developed plans for the symposium on sustaining aspen in western landscapes (held in Grand Junction, Colorado, on June 13-15, 2000), we solicited support from state and federal agencies, universities, and the Rocky Mountain Elk Foundation. The widespread support was very encouraging, and only one agency turned down the opportunity to join in supporting this...

  10. Aspen Winter Conferences on High Energy

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-02-12

    The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, "New Data From the Energy Frontier." There were 54 formal talks, and a considerable number of informal discussions held during the week. The week's events included a public lecture ("The Hunt for the Elusive Higgs Boson" given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was "Indirect and Direct Detection of Dark Matter." It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled "What Makes Up Dark Matter." There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics cafe to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

  11. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  12. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    Science.gov (United States)

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  13. The Potential of Aspen Clonal Forestry in Alberta: Breeding Regions and Estimates of Genetic Gain from Selection

    Science.gov (United States)

    Gylander, Tim; Hamann, Andreas; Brouard, Jean S.; Thomas, Barb R.

    2012-01-01

    Background Aspen naturally grows in large, single-species, even-aged stands that regenerate clonally after fire disturbance. This offers an opportunity for an intensive clonal forestry system that closely emulates the natural life history of the species. In this paper, we assess the potential of genetic tree improvement and clonal deployment to enhance the productivity of aspen forests in Alberta. We further investigate geographic patterns of genetic variation in aspen and infer forest management strategies under uncertain future climates. Methodology/Principal Findings Genetic variation among 242 clones from Alberta was evaluated in 13 common garden trials after 5–8 growing seasons in the field. Broad-sense heritabilities for height and diameter at breast height (DBH) ranged from 0.36 to 0.64, allowing 5–15% genetic gains in height and 9–34% genetic gains in DBH. Geographic partitioning of genetic variance revealed predominant latitudinal genetic differentiation. We further observed that northward movement of clones almost always resulted in increased growth relative to local planting material, while southward movement had a strong opposite effect. Conclusion/Significance Aspen forests are an important natural resource in western Canada that is used for pulp and oriented strandboard production, accounting for ∼40% of the total forest harvest. Moderate to high broad-sense heritabilities in growth traits suggest good potential for a genetic tree improvement program with aspen. Significant productivity gains appear possible through clonal selection from existing trials. We propose two breeding regions for Alberta, and suggest that well-tested southern clones may be used in the northern breeding region, accounting for a general warming trend observed over the last several decades in Alberta. PMID:22957006

  14. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  15. Aspen wood characteristics, properties and uses: a review of recent literature.

    Science.gov (United States)

    Fred M. Lamb

    1967-01-01

    Summarizes information on wood properties and uses of quaking aspen from recent literature. Includes current data on the growth and production of aspen in the Lake States. Outlines additional research needs concerning aspen wood properties and uses.

  16. Energy conservation in the pulp and paper industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Almost 40 specific research and development ideas were formulated by the 67 participants at this workshop. Projects were assessed with the following criteria in mind: potential energy savings, cost, risk, Federal role, time frame, and priority. Data are tabulated on the projects followed by six topics discussed by panel members: waste and recycling, energy management in the mill, papermaking, pulping and bleaching, power generation in the mill, and coating and conversion. Three summary speeches are included. (MCW)

  17. Aspen Characteristics - Plumas National Forest, FRRD [ds375

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Feather River Ranger...

  18. VOC Control in Kraft Mills; FINAL

    International Nuclear Information System (INIS)

    Zhu, J.Y.; Chai, X.-S.; Edwards, L.L.; Gu, Y.; Teja, A.S.; Kirkman, A.G.; Pfromm, P.H.; Rezac, M.E.

    2001-01-01

    The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)

  19. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  20. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    Science.gov (United States)

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft.

  1. United States paper, paperboard, and market pulp capacity trends by process and location, 1970-2000

    Science.gov (United States)

    Peter J. Ince; Xiaolei Li; Mo Zhou; Joseph Buongiorno; Mary Reuter

    This report presents a relational database with estimates of annual production capacity for all mill locations in the United States where paper, paperboard, or market pulp were produced from 1970 to 2000. Data for more than 500 separate mill locations are included in the database, with annual capacity data for each year from 1970 to 2000 (more than 17, 000 individual...

  2. Sitka spruce and western hemlock beach logs in southeast Alaska: suitability for lumber, pulp, and energy.

    Science.gov (United States)

    Susan Ernst; Marlin E. Plank; Donald J. Fahey

    1986-01-01

    The suitability of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) beach logs in southeast Alaska for lumber, pulp, and energy was determined. Logs were sawn at a cant mill in southeast Alaska and at a dimension mill in northern Washington. Volume and value recovery was...

  3. Sequenced anaerobic - aerobic treatment of hemp pulping wastewaters

    NARCIS (Netherlands)

    Kortekaas, S.

    1998-01-01

    Biological treatment is an indispensable instrument for water management of non-wood pulp mills, either as internal measure to enable progressive closure of water cycles, or as end of pipe treatment. In this thesis, the sequenced anaerobic-aerobic treatment of hemp ( Cannabis

  4. The economy of chip, whole-tree and short-wood methods in the pulpwood and fuelwood procurement of a pulp mill; Hake-, puu- ja puutavaralajimenetelmien taloudellisuus massatehtaan kuitu- ja energiapuun hankinnassa

    Energy Technology Data Exchange (ETDEWEB)

    Imponen, V. [Metsaeteho, Helsinki (Finland)

    1996-12-31

    Branch-mass models, applicable for different kinds of technical/economical inspections of timber procurement, based on large data collections of the Finnish Forest Research Institute, were developed in the project. These models are based on the assumption that the branch-mass distribution inside the top-end of different tree-species resembles each-other. The production costs of pulp produced from first-thinning pine were lowest when the minimum diameter of the pulpwood varied between 6 - 9 cm, then the relative costs varied between 101 - 99. The production costs consisted of timber procurement costs, variable industrial timber processing and pulping costs, and secondary product reimbursements. In addition to the calculational inspections, the effects of the dimensions of pulpwood and the harvesting technology on profitability of harvesting of first thinning pine, on debarking, on the chip-size distribution and on fiber properties, were studied in the research. The profitability of harvesting is increased by about 10 % when the minimum diameter is decreased from 7 cm to 5 cm. This requires, however, that the size of the minimum-stem is not decreased

  5. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  6. Drought causes reduced growth of trembling aspen in western Canada.

    Science.gov (United States)

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  7. Ecology and management of aspen: A Lake States perspective

    Science.gov (United States)

    David T. Cleland; Larry A. Leefers; Donald I. Dickmann

    2001-01-01

    Aspen has been an ecologically important, though relatively minor, component of the Lake States (Michigan, Wisconsin, and Minnesota) forests for millennia. General Land Office records from the 1800s indicate that aspen comprised a small fraction of the region's eastern forests, but was more extensive on the western edge. Then Euro-American settlement in the 1800s...

  8. Aspen, climate, and sudden decline in western USA

    Science.gov (United States)

    Gerald E. Rehfeldt; Dennis E. Ferguson; Nicholas L. Crookston

    2009-01-01

    A bioclimate model predicting the presence or absence of aspen, Populus tremuloides, in western USA from climate variables was developed by using the Random Forests classification tree on Forest Inventory data from about 118,000 permanent sample plots. A reasonably parsimonious model used eight predictors to describe aspen's climate profile. Classification errors...

  9. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Science.gov (United States)

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  10. Predation risk and elk-aspen foraging patterns

    Science.gov (United States)

    Clifford A. White; Michael C. Feller

    2001-01-01

    Elk-aspen foraging patterns may be influenced by cover type, distance from roads or trails, the type of user on road or trail (park visitor, human hunter, or predator), and two general states of aspen condition (open-grown or thicket). Pellet group and browse utilization transects in the Canadian Rockies showed that elk were attracted to roads used by park visitors and...

  11. Aspen response to prescribed fire and wild ungulate herbivory

    Science.gov (United States)

    Steve Kilpatrick; Diane Abendroth

    2001-01-01

    Land management agencies in northwest Wyoming have implemented an active prescribed fire program to address historically altered fire regimes, regenerate aspen, and improve overall watershed functions. Treated clones are susceptible to extensive browsing from elk concentrated on supplemental feedgrounds and from wintering moose. Previous attempts at fire-induced aspen...

  12. Predicting Ground Fire Ignition Potential in Aspen Communities

    Science.gov (United States)

    S. G. Otway; E. W. Bork; K. R. Anderson; M. E. Alexander

    2006-01-01

    Fire is one of the key disturbances affecting aspen (Populus tremuloides Michx.) forest ecosystems within western Canadian wildlands, including Elk Island National Park. Prescribed fire use is a tool available to modify aspen forests, yet clearly understanding its potential impact is necessary to successfully manage this disturbance.

  13. Effects of ugulate browsing on aspen regeneration in northwestern Wyoming

    Science.gov (United States)

    Bruce L. Smith; J. Scott Dieni; Roxane L. Rogers; Stanley H. Anderson

    2001-01-01

    Although clearcutting has been demonstrated to be an effective means to regenerate aspen, stand replacement may be retarded under conditions of intense browsing of regeneration, such as that experienced near elk feedgrounds in northwestern Wyoming. We studied the effects of ungulate browsing on regenerating aspen following clearcutting on the National Elk Refuge. Nine...

  14. Dynamics of aspen root biomass and sucker production following fire

    Science.gov (United States)

    Roy A. Renkin; Don G. Despain

    2001-01-01

    Changes in preburn aspen root biomass 8 years following prescribed fire were analyzed for five experimental sites distributed across a moisture gradient. Total root biomass decreased across all sites but was proportionately greater in xeric than mesic sites. Response of post-burn aspen suckers to ungulate browsing varied according to site and treatment. Browsing...

  15. Molecular tools and aspen management: A primer and prospectus

    Science.gov (United States)

    Karen E. Mock; Bryce A. Richardson; Paul G. Wolf

    2013-01-01

    Aspen (Populus tremuloides) isaniconic species in North American landscapes, highly valued for recreation, fiber, wildlife and livestock forage, carbon sequestration, biodiversity, and as a fuelbreak. However, there are rising concerns about the ability of aspen to persist in portions of its range, based on bioclimatic modeling, physiological thresholds and mortality...

  16. Effects of moisture on aspen-fiber/polypropylene composites

    Science.gov (United States)

    Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson

    2004-01-01

    Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...

  17. Optical Approach To The Measurement Of Delignification In Kraft Pulping: Part B: Using Infrared Spectroscopy.

    Science.gov (United States)

    Adam, E.; Sugden, N.

    1986-10-01

    A study of the infrared (IR) absorption characteristics of dried kraft pulp sheets was made. This was done in order to assess the potential of using this approach as the basis for determining residual lignin, or Kappa number, in pulp after cooking. Strong positive linear correlations were obtained between Kappa number and IR absorbance at 1509 cm-for pulps made from different wood species, produced in different mills and having a Kappa number range of 13-37. For pulps from some mills, made from the same wood furnish and having a small Kappa number range, the degree of correlation was seriously reduced. The method requires the use of moisture-free pulp specimens in the measurement of absorbance. It is suggested that it would be more suitable as the basis for a laboratory instrument than for an on-line, process Kappa number sensor.

  18. Application of enzymes in the pulp and paper industry

    Science.gov (United States)

    Bajpai

    1999-03-01

    The pulp and paper industry processes huge quantities of lignocellulosic biomass every year. The technology for pulp manufacture is highly diverse, and numerous opportunities exist for the application of microbial enzymes. Historically, enzymes have found some uses in the paper industry, but these have been mainly confined to areas such as modifications of raw starch. However, a wide range of applications in the pulp and paper industry have now been identified. The use of enzymes in the pulp and paper industry has grown rapidly since the mid 1980s. While many applications of enzymes in the pulp and paper industry are still in the research and development stage, several applications have found their way into the mills in an unprecedented short period of time. Currently the most important application of enzymes is in the prebleaching of kraft pulp. Xylanase enzymes have been found to be most effective for that purpose. Xylanase prebleaching technology is now in use at several mills worldwide. This technology has been successfully transferred to full industrial scale in just a few years. The enzymatic pitch control method using lipase was put into practice in a large-scale paper-making process as a routine operation in the early 1990s and was the first case in the world in which an enzyme was successfully applied in the actual paper-making process. Improvement of pulp drainage with enzymes is practiced routinely at mill scale. Enzymatic deinking has also been successfully applied during mill trials and can be expected to expand in application as increasing amounts of newsprint must be deinked and recycled. The University of Georgia has recently opened a pilot plant for deinking of recycled paper. Pulp bleaching with a laccase mediator system has reached pilot plant stage and is expected to be commercialized soon. Enzymatic debarking, enzymatic beating, and reduction of vessel picking with enzymes are still in the R&D stage but hold great promise for reducing energy

  19. Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Fowler, R.A.

    1994-05-01

    This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

  20. 40 CFR 430.03 - Best management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill...

    Science.gov (United States)

    2010-07-01

    ... the effectiveness of the BMPs, and to detect trends in spent pulping liquor losses. Such monitoring.... (g) Record keeping requirements. (1) Each mill subject to this section must maintain on its premises..., tracking the effectiveness of the BMPs, and detecting trends in spent pulping liquor losses. (2) Whenever...

  1. Genetic diversity in aspen and its relation to arthropod abundance

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  2. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    Science.gov (United States)

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Paper Pulp Panoply.

    Science.gov (United States)

    Marque, Margo E.

    1999-01-01

    Explains that creating paper-pulp bowls is designed to acquaint students with the beginning vocabulary and finger dexterity needed to sculpt clay. Describes the process of making paper-pulp bowls and identifies important vocabulary words. Provides directions for making paper bowl forms and lists the materials. (CMK)

  4. A review of the potential effects of climate change on quaking aspen (Populus tremuloides) in the Western United States and a new tool for surveying sudden aspen decline

    Science.gov (United States)

    Toni Lyn Morelli; Susan C. Carr

    2011-01-01

    We conducted a literature review of the effects of climate on the distribution and growth of quaking aspen (Populus tremuloides Michx.) in the Western United States. Based on our review, we summarize models of historical climate determinants of contemporary aspen distribution. Most quantitative climate-based models linked aspen presence and growth...

  5. Aspen Grupp võitis RKASi / Lemmi Kann

    Index Scriptorium Estoniae

    Kann, Lemmi

    2008-01-01

    Ehitusfirma Aspen Grupp OÜ võitis Tallinna ringkonnakohtus Riigi Kinnisvara AS-i, kes diskvalifitseeris ehitusfirma riigihankelt seaduses olnud maksevõlgnevuse keelu tõttu. Vt. samas: Lahendust ootavad veel kaks kohtuasja

  6. Fluoropolymer use in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Magdzinski, L.

    1999-11-01

    Fluoropolymers are ubiquitous in the pulp and paper industry. Fluoropolymer-lined pumps, valves, pipes, tanks, scrubbers, and towers are encountered frequently in the pulp mill. Chemically resistant fluoropolymer filter fabrics are used in bleach plant washers and flue gas scrubbers. In the recovery cycle, fluoropolymer coatings and fluoroelastomers are used as gaskets and expansion joints in accumulators and heat exchangers. Fluoropolymer-containing paper machine fabrics, roll covers, and greases provide corrosion-free, clean and smooth performance. The array of fluorinated materials for different applications is detailed. New corrosion and caustic resistant filter fabrics, surfacing veils, paints and ductwork are presented.

  7. Interaction among cervids, fungi, and aspen in northwest Wyoming

    Science.gov (United States)

    John H. Hart; D. L. Hart

    2001-01-01

    Eighty-five 0.02-ha plots in the Gros Ventre River drainage of northwestern Wyoming with high elk usage had 39% fewer aspen stems in 1985 than in 1970. Sixtyfive of these plots were remeasured in 1989 and 53 additional plots established in 1986 on the Hoback River drainage (lower winter elk usage) were remeasured in 1990. Overall mortality (average/year) of aspen stems...

  8. Long-term monitoring of western aspen--lessons learned.

    Science.gov (United States)

    Strand, E K; Bunting, S C; Starcevich, L A; Nahorniak, M T; Dicus, G; Garrett, L K

    2015-08-01

    Aspen woodland is an important ecosystem in the western United States. Aspen is currently declining in western mountains; stressors include conifer expansion due to fire suppression, drought, disease, heavy wildlife and livestock use, and human development. Forecasting of tree species distributions under future climate scenarios predicts severe losses of western aspen within the next 50 years. As a result, aspen has been selected as one of 14 vital signs for long-term monitoring by the National Park Service Upper Columbia Basin Network. This article describes the development of a monitoring protocol for aspen including inventory mapping, selection of sampling locations, statistical considerations, a method for accounting for spatial dependence, field sampling strategies, and data management. We emphasize the importance of collecting pilot data for use in statistical power analysis and semi-variogram analysis prior to protocol implementation. Given the spatial and temporal variability within aspen stem size classes, we recommend implementing permanent plots that are distributed spatially within and among stands. Because of our careful statistical design, we were able to detect change between sampling periods with desired confidence and power. Engaging a protocol development and implementation team with necessary and complementary knowledge and skills is critical for success. Besides the project leader, we engaged field sampling personnel, GIS specialists, statisticians, and a data management specialist. We underline the importance of frequent communication with park personnel and network coordinators.

  9. Properties of OCC Pulp

    Directory of Open Access Journals (Sweden)

    Masoumeh Moradi

    2013-06-01

    Full Text Available Old Corrugated Container (OCC recycled pulp provided by a local paper manufacturing company was treated by lactase enzyme. The pulp was sampled from headbox and treated by enzyme in the conditions of consistency 2%, pH 5, reaction time 2 hours, and reaction temperature 60 °C in dosing levels of 0.005, 0.01 and 0.015 % based on oven-dried weight of pulp. Fiber classification of the control pulp showed 31.3 % of fines content and 0.82 mm average fiber length. Results have indicated that lactase treatment decreased kappa number and SR degree to 20% and 14 degrees, respectively which consequently facilitated the drainage of pulp. The extraction of treated samples showed a peak at around 280 nm, confirming the delignification of pulp by enzyme. Microscopic observation of fiber walls of the treated sample indicated a local separation of middle lamella, fiber linting and removal of fines from fiber surface. The highest Water Retention Value (WRV was measured to be at 0.015% enzyme addition level. The apparent density of handsheets made from treated samples was lower compared with the handsheets made of control pulp resulting in loss of paper strengths.

  10. Collection and dissemination of TES system information for the paper and pulp industry

    Science.gov (United States)

    Dietrich, M. W.; Edde, H.

    1980-01-01

    A survey of U.S. and international paper and pulp mills using thermal energy storage (TES) systems as a part of their production processes was conducted to obtain sufficient operating data to conduct a benefits analysis encompassing: (1) an energy conservation assessment, (2) an economic benefits analysis, and (3) an environmental impact assessment. An information dissemination plan was then proposed to effectively present the benefits of TES to the U.S. paper and pulp industry.

  11. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    OpenAIRE

    Thi Thuy Nhi Nguyen; Man Seung Lee; Thi Hong Nguyen

    2018-01-01

    A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumi...

  12. Effects of conifers and elk browsing on quaking aspen forests in the central Rocky Mountains, USA

    Science.gov (United States)

    Kaye, Margot W.; Binkley, Dan; Stohlgren, Thomas J.

    2005-01-01

    Elk browsing and conifer species mixing with aspen (Populus tremuloides Michx.) present current challenges to aspen forest management in the western United States. We evaluated the effects of conifers and elk browsing on quaking aspen stands in and near Rocky Mountain National Park using tree rings to reconstruct patterns of aspen establishment, growth, and mortality over the past 120 years. High conifer encroachment and elk browse were both associated with decreased aspen recruitment, with mean recruitment dropping over 30% from pure aspen to mixed stands and over 50% from low-browse to high-browse stands. Maximum aspen recruitment was lower in mixed stands than in pure stands with the same tree basal area. High levels of elk browsing were also associated with a 30% decrease in stand-level growth of aspen. Neither high conifer abundance nor elk browse affected the growth of individual trees or aspen mortality. Aspen establishment was negatively influenced by conifers and elk browsing; however, aspen growth and mortality appeared to be resilient to these two external influences. Overall, these results suggest that long-term preservation of aspen forests could be achieved by enhancing aspen recruitment.

  13. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  14. Factors affecting the corrosivity of pulping liquors

    Science.gov (United States)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  15. Magnet options for sensors for the pulp and paper industry

    Science.gov (United States)

    Green, M. A.; Barale, P. J.; Fong, C. G.; Luft, P. A.; Reimer, J. A.; Yahnke, M. S.

    2002-05-01

    The Lawrence Berkeley National Laboratory (LBNL) has been developing sensors for the pulp and paper industry that use a magnetic field. The applications for magnetic sensors that have been studied include 1) sensors for the measurement of the water and ice content of wood chips entering the pulping mill, 2) sensors for measuring the water content and other constituents of the black liquor leaving the paper digester, and 3) sensors for measuring paper thickness and water content as the paper is being processed. These tasks can be done using nuclear magnetic resonance (NMR). The magnetic field used for doing the NMR can come from either permanent magnets or superconducting magnets. The choice of the magnet is dependent on a number of factors, which include the size of the sample and field strength needed to do the sensing task at hand. This paper describes some superconducting magnet options that can be used in the pulp and paper industry.

  16. Wastewater treatment of pulp and paper industry: a review.

    Science.gov (United States)

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  17. Aspen Global Change Institute Summer Science Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  18. Pelletization of biomass waste with potato pulp content

    Science.gov (United States)

    Obidziński, Sławomir

    2014-03-01

    This paper presents the results of a research on the influence of potato pulp content in a mixture with oat bran on the power demand of the pelletization process and on the quality of the produced pellets, in the context of use thereof as a heating fuel. The tests of the densification of the pulp and bran mixture were carried out on a work stand whose main element was a P-300 pellet mill with the `flat matrix-densification rolls' system. 24 h after the pellets left the working system, their kinetic durability was established with the use of a Holmen tester. The research results obtained in this way allowed concluding that increasing the potato pulp content in a mixture with oat bran from 15 to 20% caused a reduction of the power demand of the pellet mill. It was also established that as the pulp content in a mixture with oat bran increases from 15 to 25%, the value of the kinetic durability of the pellets determined using Holmen and Pfost methods decreases.

  19. Universal industrial sectors integrated solutions module for the pulp and paper industry.

    Science.gov (United States)

    Bhander, Gurbakhash; Jozewicz, Wojciech

    2017-09-01

    The U.S. is the world's second-leading producer of pulp and paper products after China. Boilers, recovery furnaces, and lime kilns are the dominant sources of emissions from pulp and paper mills, collectively accounting for more than 99 % of the SO 2 , almost 96 % of the NO X , and more than 85 % of the particulate matter (PM) emitted to the air from this sector in the U.S. The process of developing industrial strategies for managing emissions can be made efficient, and the resulting strategies more cost-effective, through the application of modeling that accounts for relevant technical, environmental and economic factors. Accordingly, the United States Environmental Protection Agency is developing the Universal Industrial Sectors Integrated Solutions module for the Pulp and Paper Industry (UISIS-PNP). It can be applied to evaluate emissions and economic performance of pulp and paper mills separately under user-defined pollution control strategies. In this paper, we discuss the UISIS-PNP module, the pulp and paper market and associated air emissions from the pulp and paper sector. After illustrating the sector-based multi-product modeling structure, a hypothetical example is presented to show the engineering and economic considerations involved in the emission-reduction modeling of the pulp and paper sector in the U.S.

  20. Biodiversity: Aspen stands have the lead, but will nonnative species take over?

    Science.gov (United States)

    Geneva W. Chong; Sara E. Simonson; Thomas J. Stohlgren; Mohammed A. Kalkhan

    2001-01-01

    We investigated vascular plant and butterfly diversity in Rocky Mountain National Park. We identified 188 vascular plant species unique to the aspen vegetation type. The slope of the mean species-area curve for the aspen vegetation type was the steepest of the 10 types sampled, thus, an increase in aspen area could have much greater positive impacts on plant species...

  1. Simulation of quaking aspen potential fire behavior in Northern Utah, USA

    Science.gov (United States)

    R. Justin DeRose; A. Joshua Leffler

    2014-01-01

    Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and...

  2. Lichen community change in response to succession in aspen forests of the southern Rocky Mountains

    Science.gov (United States)

    Paul C. Rogers; Ronald J. Ryel

    2008-01-01

    In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about...

  3. Aspen structure and variability in Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Kaye, Margot W.; Stohlgren, T.J.; Binkley, Dan

    2003-01-01

    Elk, fire and climate have influenced aspen populations in the Rocky Mountains, but mostly subjective studies have characterized these factors. A broad-scale perspective may shed new light on the status of aspen in the region. We collected field measurements of aspen (Populus tremuloides Michx.) patches encountered within 36 randomly located belt transects in 340 km2 of Rocky Mountain National Park, Colorado, to quantify the aspen population. Aspen covered 5.6% of the area in the transects, much more than expected based on previously collected remotely sensed data. The distribution and structure of aspen patches were highly heterogeneous throughout the study area. Of the 123 aspen patches encountered in the 238 ha surveyed, all but one showed signs of elk browsing or had conifer species mixed with the aspen stems. No significant difference occurred in aspen basal area, density, regeneration, browsing of regeneration and patch size, between areas of concentrated elk use (elk winter range) and areas of dispersed elk use (elk summer range). Two-thirds of the aspen patches were mixed with conifer species. We concluded that the population of aspen in our study area is highly variable in structure and that, at a landscape-scale, evidence of elk browsing is widespread but evidence of aspen decline is not.

  4. Plant Community Chemical Composition Influences Trembling Aspen (Populus tremuloides) Intake by Sheep.

    Science.gov (United States)

    Heroy, Kristen Y; St Clair, Samuel B; Burritt, Elizabeth A; Villalba, Juan J

    2017-08-01

    Nutrients and plant secondary compounds in aspen (Populus tremuloides) may interact with nutrients in the surrounding vegetation to influence aspen use by herbivores. Thus, this study aimed to determine aspen intake and preference by sheep in response to supplementary nutrients or plant secondary compounds (PSC) present in aspen trees. Thirty-two lambs were randomly assigned to one of four molasses-based supplementary feeds to a basal diet of tall fescue hay (N = 8) during three experiments. The supplements were as follows: (1) high-protein (60% canola meal), (2) a PSC (6% quebracho tannins), (3) 25% aspen bark, and (4) control (100% molasses). Supplements were fed from 0700 to 0900, then lambs were fed fresh aspen leaves collected from stands containing high (Experiment 1, 2) or low (Experiment 3) concentrations of phenolic glycosides (PG). In Experiment 2, lambs were simultaneously offered aspen, a forb (Lathyrus pauciflorus), and a grass (Bromus inermis) collected from the aspen understory. Animals supplemented with high protein or tannins showed greater intake of aspen leaves than animals supplemented with bark or the control diet (P tannins have a positive effect on protein nutrition and protein aids in PSC detoxification. Overall, animals supplemented with bark showed the lowest aspen intake, suggesting PSC in bark and aspen leaves had additive inhibitory effects on intake. In summary, these results suggest that not only the concentration but also the types and proportions of nutrients and chemical defenses available in the plant community influence aspen use by herbivores.

  5. Trembling aspen response to a mixed-severity wildfire in the Black Hills, South Dakota, USA

    Science.gov (United States)

    Tara L. Keyser; Frederick W. Smith; Wayne D. Shepperd

    2005-01-01

    Trembling aspen (Populus tremuloides Michx.) regeneration dynamics including sprout production, growth, and clone size were measured to determine the effects of fire on small aspen clone persistence following a mixedseverity wildfire in the Black Hills, South Dakota. Four years postfire, 10 small, isolated aspen clones per low and high fire severity...

  6. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  7. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  8. Influence of kraft pulping on carboxylate content of softwood kraft pulps

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2006-01-01

    This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...

  9. Evaluation to the aspen for the air pollution monitoring

    International Nuclear Information System (INIS)

    De La Rosa, D.; Lima, L.; Santana, J.L.; Olivares, S.; Martin, R.; Garcia, M.

    2003-01-01

    Aspen is not often used in bio monitoring programs, but when it is, several interacting and confounding variables have to be considered. Biomass of leaves, and height changes are not easy linked with air pollution, whereas dry weight and leaf abscission are. Visible injury diagnosis and crown thinning are useful records for bio monitoring programs to consider, but skill and understanding of air pollution effects versus seasonal effects are very important. Understanding of actual air pollution symptoms and elemental ratios are especially important. Clonal response and heritability is discuses below, and has to be considered in any bio monitoring program. Above all, integration of aspen response with other key variables is key

  10. Evaluation of Seedlings Gowth of Eucalyptus badjensis in Substrata from Composted Residues (Pulp and Paper Mill, Brewery Industry and Goat Dung Resíduos Industriais e Dejetos da Caprinocultura como Componentes de Substratos para Produção de Mudas de Eucalyptus badjensis

    Directory of Open Access Journals (Sweden)

    Shizuo Maeda

    2011-03-01

    Full Text Available

    The aim of this work was to evaluate the seedling growth of Eucalyptus badjensis Beuzev. & Welch in substrata prepared from different residues: pulp and paper mill wastes (organic sludge and cellulose mill liquid alkaline liquor, brewery malt and also goat manure. The experiment was carried out in the seedlings nursery of the Embrapa Florestas, in Colombo, Paraná. The organic sludge, cellulose mill liquid alkaline liquor and the brewer’s grain were previously composted with sawdust, and goat dung with pinus bark. A randomized blocks design with split-plot arrangement, with four replications was used. Plot treatments were the substrata and split-plot were base fertilization (with and without: 1 mixture of a commercial substratum prepared with composted pinus bark in a volume/volume relation - v/v - of 1/1 - standard of the experiment when base fertilization was applied; 2 composted brewery malt with sawdust in a relation v/v of 1/4; 3 composted organic sludge with sawdust (relation v/v of 1/1; 4 mixture of
    treatment 3 with pinus bark (relation v/v of 1/1; 5 composted cellulose mill liquid alkaline waste with sawdust (relation v/v of 4/1; 6 composted cellulose mill liquid alkaline waste with sawdust (relation v/v of 3/2; 7 mixture of the product
    of treatment 6 with Pinus bark (relation v/v of 1/1; 8 composted goat dung with pinus bark. The results showed that substrata of treatments 2 and 8 can be used for the production of E. badjensis seedlings, with or without base fertilization, while treatment 4 can only be used with base fertilization. The growth of E. badjensis in the substratum of the standard treatment was not influenced by the lack of base fertilization.
    Com o objetivo de avaliar resíduos gerados nas produções de papel e celulose, de cerveja e na caprinocultura como substratos para a produção de mudas de Eucalyptus badjensis Beuzev. & Welch, foi

  11. Avaliação do emprego de microfiltração para remoção de fibras do efluente de branqueamento de polpa celulósica Evaluation of the use of microfiltration for removal of fiber from bleaching pulp mill effluent

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Santos Amaral

    2013-03-01

    Full Text Available O processo de branqueamento é o estágio em que ocorre a maior perda de fibras durante a fabricação de polpa celulósica. Além de ser uma perda de produto, estas fibras aumentam a concentração de matéria orgânica do efluente dificultando seu tratamento. O objetivo deste trabalho foi avaliar o emprego de microfiltração (MF na remoção de fibras de efluente de branqueamento alcalino de polpa celulósica. Foi empregada membrana de poli(éter imida com tamanho médio de poros de 0,5 µm e área de filtração de 0,05 m². O efeito das condições operacionais no fluxo permeado foi avaliado através do monitoramento do perfil de fluxo durante a operação em diferentes condições de velocidade de escoamento (Reynolds de 1.226, 1.653 e 2.043, pH da alimentação (7, 10 e 10,6, temperatura (28, 43 e 48°C e pressão de operação através da avaliação da pressão crítica. Os resultados mostraram que a MF é um processo eficiente para remoção de fibras, apresentado 99% eficiência de remoção de sólidos suspensos. O melhor desempenho da operação de MF foi obtido empregando pH 7, pressão de 1 bar e Re de 1.653. Os resultados mostram que a redução do fluxo se deve principalmente à formação de torta.The bleaching process is the stage where there is the greatest loss of fibers during the pulp production. Besides being a waste of product, these fibers increase the concentration of organic matter in the effluent and make the treatment of effluent more difficult. The aim of this study was to evaluate the use of microfiltration (MF in the removal of fiber of effluent of alkaline bleaching pulp mill. The membrane employed was hollow fiber poly (ether imide, with average pore size of 0.5 µm and filtration area of 0.05 m². The effect of operating conditions on the permeate flux was evaluated by monitoring the flux profile during operation in different conditions of flow velocity (Reynolds 1,226, 1,653 and 2,043, pH of feeding (7, 10

  12. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    Science.gov (United States)

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  13. Influence of forest and rangeland management on anadromous fish habitat in Western North America: processing mills and camps.

    Science.gov (United States)

    Donald C. Schmiege

    1980-01-01

    For nearly 50 years, effluents from pulp and paper mills have been known to be toxic to fish and other aquatic animals. Lethal concentrations have been determined for several species of fish and other organisms. Many factors- -such as water temperature, age of fish, and additional stresses—affect the ability of fish to withstand pollution. Kraft mill wastes...

  14. WOOD BASIC DENSITY EFFECT OF Eucalyptus grandis x Eucalyptus urophylla CLONES ON BLEACHED PULP QUALITY

    Directory of Open Access Journals (Sweden)

    Sheila Rodrigues dos Santos

    2010-08-01

    Full Text Available The study analyzed the wood basic density effect in two Eucalyptus grandis x Eucalyptus urophylla hybrid clones (440 kg/m3 e 508 kg/m3 on bleached pulp quality (fiber dimensions and physical-mechanical properties. The woods performance on pulping, bleaching and beating results were analyzed. The Kraft pulping was carried out in forced circulation digester in order to obtain 17±1 kappa number targets. The pulps were bleached to 90±1 using delignification oxygen and D0EOPD1 bleaching sequence. Bleached pulp of low basic density clone showed, significantly, lowest revolutions number in the PFI mill to reach tensile index of 70 N.m/g, low Schopper Riegler degree and generated sheets with higher values to bulk and opacity. These characteristics and properties allow concluding that bleached pulp of low basic density clone was the most indicated to produce printing and writing sheets. The bleached pulp of high basic density clone showed higher values of bulk and capillarity Klemm and lower water retention value when analyzed without beating. The bleached pulp of high basic density clone showed more favorable characteristics to the production of tissue papers.

  15. Biomechanical pulping of kenaf

    Science.gov (United States)

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  16. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  17. Using glyphosate herbicide in converting aspen to conifers.

    Science.gov (United States)

    Donald A. Perala

    1985-01-01

    Glyphosate at 1.5 to 2.0 lbs. Per acre active ingredient will control aspen suckers, shrubs, and herbs when applied during August to early September. There appears to be some intersite variability in the efficacy of the herbicide.

  18. Historical patterns in lichen communities of montane quaking aspen forests

    Science.gov (United States)

    Paul C. Rogers; Dale L. Bartos; Ronald J. Ryel

    2011-01-01

    Climate shifts and resource exploitation in Rocky Mountain forests have caused profound changes in quaking aspen (Populus tremuloides Michx.) structure and function since Euro-American settlement. It therefore seems likely that commensurate shifts in dependent epiphytes would follow major ecological transitions. In the current study, we merge several lines of inquiry...

  19. Defining Excellence: Lessons from the 2013 Aspen Prize Finalists

    Science.gov (United States)

    Aspen Institute, 2013

    2013-01-01

    In many respects, one couldn't find a group of 10 schools more diverse than the finalists for the 2013 Aspen Prize for Community College Excellence. One community college serves 1,500 students, another 56,000. There are institutions devoted primarily--even solely--to technical degrees, and ones devoted mainly to preparing students for further…

  20. The 2013 Aspen Prize for Community College Excellence

    Science.gov (United States)

    Perlstein, Linda

    2013-01-01

    For millions of Americans, community colleges provide an essential pathway to well-paying jobs and continuing higher education. The Aspen Prize for Community College Excellence honors those institutions that strive for and achieve exceptional levels of success for all students, while they are in college and after they graduate. Community colleges…

  1. Preliminary study on flakeboard panels made from aspen slash wood

    Science.gov (United States)

    Yan Yu; Alan Rudie; Zhiyong Cai

    2010-01-01

    The disposal of forest-thinning residue is one of the major problems for sustainable forest management. The purpose of this study was to investigate the technical possibility of utilizing aspen logging slash wood with a diameter ranging from 50 to 76 mm for flakeboard production. Influences of weight ratio between slash wood and commercial flakes on the selected...

  2. Aspen ecosystem properties in the Upper Great Lakes.

    Science.gov (United States)

    David H. Alban; Donald A. Perala; Martin F. Jurgensen; Michael E. Ostry; John R. Probst

    1991-01-01

    Describes four ecosystems in Minnesota and Michigan comprised of mature aspen stands on a range of soils from sandy to clay. The ecosystems are part of a long-term study of the effects of harvesting and species conversion on ecosystem properties. Presents data on geology, weather, soils, vegetation, litterfall, nitrogen dynamics, insects, disease, and wildlife.

  3. Timber resource of Minnesota's Aspen-Birch Unit, 1977.

    Science.gov (United States)

    John S. Jr. Spencer; Arnold J. Ostrom

    1979-01-01

    The fourth inventory of Minnesota's Aspen-Birch Unit shows solid gains in growing-stock and sawtimber volumes between 1962 and 1977, but a 13% decline in commercial forest area. This report gives statistical highlights and contains detailed tables of forest area a well as timber volume, growth, mortality, ownership, and use.

  4. Aspen fencing in northern Arizona: A 15-year perspective

    Science.gov (United States)

    James M. Rolf

    2001-01-01

    Aspen clearcuts in the 1960s and 1970s on the Peaks Ranger District of the Coconino National Forest in northern Arizona failed to regenerate successfully because of browsing primarily by elk. Since 1985, over 400 acres have been successfully regenerated using fencing of various designs to exclude elk. The expense and visual impact of establishing and maintaining over...

  5. Co-operative Education in the Pulp and Paper Sector in Quebec.

    Science.gov (United States)

    Savoie-Zajc, Lorraine; Dolbec, Andre

    2003-01-01

    A cooperative education program involved student practica in Quebec pulp and paper mills. Using the concept of community of practice and a typology of work experience, data from 175 students indicated that schools and workplaces placed traditional roles regarding theory and practice. Organizational cultures remained separate and opportunities for…

  6. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    Directory of Open Access Journals (Sweden)

    Thi Thuy Nhi Nguyen

    2018-03-01

    Full Text Available A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumina and silica were dissolved, while the leaching percentage of other oxides was negligible. The leaching percentage of silica decreased rapidly to nearly zero as pulp density increased to 100 g/L. At the optimum leaching conditions (5 M NaOH, 50 °C, 2 h, pulp density of 100 g/L, the purity of Al in the leaching solution was higher than 98%, but the leaching percentage of alumina was only 35%.

  7. Energy efficient aeration of wastewaters from the pulp and paper industry.

    Science.gov (United States)

    Sandberg, M

    2010-01-01

    More than 50% of the electrical power needed to treat pulp and paper industry effluents is used for aeration in biological treatment stages. A large share of the oxygen that passes through the wastewater is not consumed and will be found in the off-gas. Energy can be saved by aerating under conditions where the oxygen transfer is most efficient, for example at low concentrations of dissolved oxygen Consider the sludge as an energy source; electricity can be saved by avoiding sludge reduction through prolonged aeration. High oxygen transfer efficiency can be retained by using the oxygen consumption of biosolids. Quantified savings in the form of needed volumes of air while still achieving sufficient COD reduction are presented. The tests have been made in a bubble column with pulp mill process water and sludge from a biological treatment plant. These were supplemented with case studies at three pulp and paper mills.

  8. The Fate of Aspen in a World with Diminishing Snowpacks

    Science.gov (United States)

    Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Kemp, K. B.

    2010-12-01

    Aspen (Populus tremuloides) productivity is tightly coupled with soil moisture. In the mountainous regions of the western USA, annual replenishment of soil moisture commonly occurs during snowmelt. Therefore, snow pack depth and duration can play an important role in sustaining aspen productivity. The presence of almost 50 years of detailed climate data across an elevational transect in the Reynolds Creek Experimental Watershed (RCEW) in southwestern Idaho offers a novel opportunity to better understand the role of shifting precipitation patterns on aspen productivity. Over the past 50 years, the proportion of the precipitation falling in the form of snow decreased by almost a factor of 2 at mid to low elevations in the RCEW, coupled with a roughly four week advance of snow ablation, and decline of large snow drifts that release moisture into the early summer. Results from growth ring increment, stable isotope analysis, sapflux and a process model (Biome BGC), will be used to determine the impact of shifting precipitation patterns on tree productivity along this transect over the past 50 years. Aspen trees located on moist microsites continue to transpire water and maintain high stomatal conductance 21 days later in the growing season relative to individuals on drier microsites. Predictions of net primary productivity (NPP) in aspen are very sensitive to precipitation patterns. NPP becomes negative as early as day 183 (90 days post budbreak) for years with little winter and spring precipitation whereas, in years with ample winter and spring precipitation, NPP remains positive until day 260 when leaf fall occurs. These results give unique insight into the conditions that deciduous tree species will encounter in a warming climate where snow water equivalent continues to diminish and soil moisture declines soon after budbreak occurs.

  9. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  10. Mill Designed Bio bleaching Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current

  11. Effects of genotype, elevated CO2 and elevated O3 on aspen phytochemistry and aspen leaf beetle Chrysomela crotchi performance

    Science.gov (United States)

    Leanne M. Vigue; Richard L. Lindroth

    2010-01-01

    Trembling aspen Populus tremuloides Michaux is an important forest species in the Great Lakes region and displays tremendous genetic variation in foliar chemistry. Elevated carbon dioxide (CO2) and ozone (O3) may also influence phytochemistry and thereby alter the performance of insect herbivores such as...

  12. Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks

    Science.gov (United States)

    Reinikainen, Michael; D’Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Low-severity canopy disturbance presumably influences forest carbon dynamics during the course of stand development, yet the topic has received relatively little attention. This is surprising because of the frequent occurrence of such events and the potential for both the severity and frequency of disturbances to increase as a result of climate change. We investigated the impacts of low-severity canopy disturbance and average insect defoliation on forest carbon stocks and rates of carbon sequestration in mature aspen mixedwood forests of varying stand age (ranging from 61 to 85 years), overstory composition, stocking level, and site quality. Stocking level and site quality positively affected the average annual aboveground tree carbon increment (CAAI), while stocking level, site quality, and stand age positively affected tree carbon stocks (CTREE) and total ecosystem carbon stocks (CTOTAL). Cumulative canopy disturbance (DIST) was reconstructed using dendroecological methods over a 29-year period. DIST was negatively and significantly related to soil carbon (CSOIL), and it was negatively, albeit marginally, related to CTOTAL. Minima in the annual aboveground carbon increment of trees (CAI) occurred at sites during defoliation of aspen (Populus tremuloides Michx.) by forest tent caterpillar (Malacosoma disstria Hubner), and minima were more extreme at sites dominated by trembling aspen than sites mixed with conifers. At sites defoliated by forest tent caterpillar in the early 2000s, increased sequestration by the softwood component (Abies balsamea (L.) Mill. and Picea glauca (Moench) Voss) compensated for overall decreases in CAI by 17% on average. These results underscore the importance of accounting for low-severity canopy disturbance events when developing regional forest carbon models and argue for the restoration and maintenance of historically important conifer species within aspen mixedwoods to enhance stand-level resilience to disturbance agents and maintain

  13. 78 FR 31315 - Kraft Pulp Mills NSPS Review

    Science.gov (United States)

    2013-05-23

    ... lime kilns is PM with an aerodynamic diameter less than or equal to 2.5 micrometers (PM 2.5 ). The EPA... informational purposes. To increase the ease and efficiency of data submittal and improve data accessibility... to be removed with alkaline scrubbing, resulting in a removal efficiency much lower than that...

  14. 29 CFR 1910.261 - Pulp, paper, and paperboard mills.

    Science.gov (United States)

    2010-07-01

    .... (iii) Safety Code for Elevators, Dumbwaiters, and Moving Walks, A17.1—1965, including Supplements A17.1a—1967, A17.1b—1968, A17.1c—1969, and A17.1d—1970. (iv) Practice for the Inspection of Elevators... brakes, rail clamping chocks shall be used. (vi) A derail shall be used to prevent movement of other rail...

  15. Impact of epidermal leaf mining by the aspen leaf miner (Phyllocnistis populiella) on the growth, physiology, and leaf longevity of quaking aspen.

    Science.gov (United States)

    Diane L. Wagner; Linda DeFoliart; Patricia Doak; Jenny Schneiderheinze

    2008-01-01

    The aspen leaf miner, Phyllocnistis populiella, feeds on the contents of epidermal cells on both top (adaxial) and bottom (abaxial) surfaces of quaking aspen leaves, leaving the photosynthetic tissue of the mesophyll intact. This type of feeding is taxonomically restricted to a small subset of leaf mining insects but can cause widespread plant...

  16. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually...... degradation and methane generation. Chemical oxygen demand (COD) removal ranged from 57%-76%, and methane generation was 220-280 mL/g COD contained in the wastewater, depending on the degree of dilution. When codigestion was tested, the composite consisting of total bleaching effluent, chemithermomechanical...

  17. Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolor

    Science.gov (United States)

    Reid, Ian D.

    1998-01-01

    The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems. PMID:9603823

  18. Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir.

    Directory of Open Access Journals (Sweden)

    Aaron C Rhodes

    Full Text Available Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only, defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen's storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.

  19. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    Science.gov (United States)

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  20. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater

    International Nuclear Information System (INIS)

    Pulp and paper mill wastewater is characterized by very high chemical oxygen demand (COD) values that inhibit the activity of microorganisms during biological oxidations. The electrochemical degradation of pulp and paper mill wastewater catalyzed by molybdenum and phosphate (Mo-P) modified kaolin with graphite as anode and cathode was investigated. The catalyst was characterized by XRD, XPS and SEM spectra and the effects of pH, metal ion and introduction of NaCl on the efficiency of the electrochemical degradation process were also studied. It was found out that the modified kaolin loaded with Fe 3+ had higher electrochemical catalytic activity in the electrochemical degradation of paper mill wastewater at pH 4. A 96% COD removal efficiency was obtained in 40 min of electrochemical treatment of the wastewater at current density 30 mA cm -2 . A possible mechanism for degradation of the mill wastewater constituents was also proposed

  1. Pulping: Energy consumption and conservation. June 1985-December 1989 (Citations from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for June 1985-December 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This bibliography contains citations concerning energy saving processes, machinery, and plants applicable to the pulping industry. Water removal and wet pressing, small power steam and electricity generation, mathematical modelling for determining energy consumption, mechanical pulping energy reduction techniques, fiber pretreatment, cooking methods and equipment, and heat recovery processes are among the topics included. Energy efficient pulp mill operation management is included. (This updated bibliography contains 118 citations, all of which are new entries to the previous edition.)

  2. Pulping: Energy consumption and conservation. January 1976-May 1985 (Citations from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for January 1976-May 1985

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This bibliography contains citations concerning energy saving processes, machinery and plants applicable to the pulping industry. Water removal and wet pressing, small power steam and electricity generation, mathematical modelling for determining energy consumption, mechanical pulping energy reduction techniques, fiber pretreatment, cooking methods and equipment, and heat recovery processes are among the topics included. Energy efficient pulp mill operation management is included. (This updated bibliography contains 163 citations, none of which are new entries to the previous edition.)

  3. Laccase for biobleaching of eucalypt kraft pulp by means of a modified industrial bleaching sequence.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2012-01-01

    Biobleaching of kraft pulp is a possible application of laccase, but it has not been described in detail for complete industrial bleaching sequences yet. Therefore, in this work, the biobleaching of Eucalyptus globulus kraft pulp was performed using a modified industrial totally chlorine-free sequence. The modification consisted in the substitution of an enzymatic delignification stage, based on the application of laccase from Trametes villosa, for the first alkaline extraction one. The enzymatic stage was performed with several synthetic and natural mediators, namely 1-hydroxybenzotriazole (HBT), violuric acid (VA), methyl syringate, and syringaldehyde. Several pulp properties were analyzed after each stage of the bleaching process--kappa number, ISO brightness, viscosity, and optical properties of CIEL*a*b* system. The new biobleaching sequence improved the pulp properties, in comparison to the conventional bleaching sequence, if HBT or VA was used as mediators. VA was selected as the best mediator of those tested and the effect of its concentration in the enzymatic stage was subsequently studied. Reducing the initial concentration by 30%, the same pulp quality was obtained, but if the reduction attained 60%, an important decrease in pulp integrity was detected. The modified bleaching sequence could improve the bleached pulp properties (kappa number 10%, ISO brightness 1%, and viscosity 5%) in comparison to the mill sequence. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Assessment of public perception and environmental compliance at a pulp and paper facility: a Canadian case study.

    Science.gov (United States)

    Hoffman, Emma; Bernier, Meagan; Blotnicky, Brenden; Golden, Peter G; Janes, Jeffrey; Kader, Allison; Kovacs-Da Costa, Rachel; Pettipas, Shauna; Vermeulen, Sarah; Walker, Tony R

    2015-12-01

    Communities across Canada rely heavily on natural resources for their livelihoods. One such community in Pictou County, Nova Scotia, has both benefited and suffered, because of its proximity to a pulp and paper mill (currently owned by Northern Pulp). Since production began in 1967, there have been increasing impacts to the local environment and human health. Environmental reports funded by the mill were reviewed and compared against provincial and federal regulatory compliance standards. Reports contrasted starkly to societal perceptions of local impacts and independent studies. Most environmental monitoring reports funded by the mill indicate some levels of compliance in atmospheric and effluent emissions, but when compliance targets were not met, there was a lack of regulatory enforcement. After decades of local pollution impacts and lack of environmental compliance, corporate social responsibility initiatives need implementing for the mill to maintain its social licence to operate.

  5. Aspen Overstory Recruitment in Northern Yellowstone National Park During the Last 200 Years

    OpenAIRE

    Larsen, Eric J; Ripple, William J

    2001-01-01

    Using a monograph provided by Warren (1926) and two sets of aspen increment cores collected in 1997 and 1998, we analyzed aspen overstory recruitment in Yellowstone National Park (YNP) over the past 200 years. We found that successful aspen overstory recruitment occurred on the northern range of YNP from the middle to late 1700s until the 1920s, after which it essentially ceased. We hypothesized why the browsing influence of Rocky Mountain elk (Cervus elaphus) may be different now than it was...

  6. Controlling Hazel, Aspen Suckers, and Mountain Maple with Picloram

    Science.gov (United States)

    Donald A. Perala

    1971-01-01

    Tests showed that picloram/2,4-D mixture was equal to or superior to 2,4-D alone or a 2,4,5-D/2,4,5-T mixture in controlling hazel, aspen suckers, and mountain maple for reforestation purposes. Survival of red pine planted 9 months after treatment was not influenced by residual soil effects of picloram. However, foliar application contributed to mortality of...

  7. Closed-mill delignification by design using polyoxometalates

    Science.gov (United States)

    C. J. Houtman; R. S. Reiner; S. E. Reichel; M. J. Birchmeier; C. E. Sullivan; L. A. Weinstock; R. H. Atalla

    1999-01-01

    Polyoxometalates (POMs) are a class of delignification agents that promise to provide the basis for a new closed-mill bleaching technology. The results presented here are based on the use of Na6SiV2W10O40, which is effective in reducing the Kappa number of softwood Kraft pulp from 30 to below 10 with minimal loss in viscosity. A critical part of a viable POM process is...

  8. Using Aspen plus in thermodynamics instruction a step-by-step guide

    CERN Document Server

    Sandler, Stanley I

    2015-01-01

    A step-by-step guide for students (and faculty) on the use of Aspen in teaching thermodynamics Used for a wide variety of important engineering tasks, Aspen Plus software is a modeling tool used for conceptual design, optimization, and performance monitoring of chemical processes. After more than twenty years, it remains one of the most popular and powerful chemical engineering simulation programs used both industrially and academically. Using Aspen Plus in Thermodynamics Instruction: A Step by Step Guide introduces the reader to the use of Aspen Plus in courses in thermodynamics. It prov

  9. 77 FR 60373 - Monroe Mountain Aspen Ecosystems Restoration Project Fishlake National Forest; Sevier and Piute...

    Science.gov (United States)

    2012-10-03

    ... stands by ungulates; improving native species diversity; reducing hazardous fuel accumulations; and...), effects from insects and disease, effects on livestock grazing management, overbrowsing of new aspen by...

  10. Adverse Influence of Radio Frequency Background on Trembling Aspen Seedlings: Preliminary Observations

    Directory of Open Access Journals (Sweden)

    Katie Haggerty

    2010-01-01

    Full Text Available Numerous incidents of aspen decline have been recorded in North America over the past half century, and incidents of very rapid mortality of aspen clones have been observed in Colorado since 2004. The radio frequency (RF environment of the earth has undergone major changes in the past two centuries due to the development and use of electricity in power and communications applications, and the anthropogenic RF background continues to increase in intensity and complexity. This study suggests that the RF background may have strong adverse effects on growth rate and fall anthocyanin production in aspen, and may be an underlying factor in aspen decline.

  11. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  12. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  13. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    Science.gov (United States)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  14. Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir

    Science.gov (United States)

    Rhodes, Aaron C.; Barney, Trevor; St. Clair, Samuel B.

    2016-01-01

    Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen’s storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands. PMID:27124496

  15. Laser Induced Fluorescence For Measurement Of Lignin Concentrations In Pulping Liquors

    Science.gov (United States)

    Horvath, J. J.; Semerjian, H. G.; Biasca, K. L.; Attala, R.

    1988-11-01

    Laser excited fluorescence of pulping liquors was investigated for use in the pulp and paper industry for process measurement and control applications. Liquors from both mill and laboratory cooks were studied. A Nd-YAG pumped dye laser was used to generate the excitation wavelength of 280 nm; measurements were also performed using a commercially available fluorometer. Measurements on mill pulping liquors gave strong signals and showed changes in the fluorescence intensity during the cook. Absorption spectra of diluted mill liquor samples showed large changes during the cook. Samples from well controlled and characterized laboratory cooks showed fluorescence to be linear with concentration over two decades with an upper limit of approximately 1000 ppm dissolved lignin. At the end of these cooks a possible chemical change was indicated by an increase in the observed fluorescence intensity. Results indicate that lignin concentrations in pulping liquors can be accurately determined with fluorescence in the linear optical region over a greater dynamic range than absorption spectroscopy. Laser induced fluorescence may also provide an indication of chemical changes occurring in the lignin structure during a cook.

  16. Simulating the Dependence of Aspen on Redistributed Snow

    Science.gov (United States)

    Soderquist, B.; Kavanagh, K.; Link, T. E.; Seyfried, M. S.; Winstral, A. H.

    2013-12-01

    In mountainous regions across the western USA, the distribution of aspen (Populus tremuloides) is often directly related to heterogeneous soil moisture subsidies resulting from redistributed snow. With decades of climate and precipitation data across elevational and precipitation gradients, the Reynolds Creek Experimental Watershed (RCEW) in southwest Idaho provides a unique opportunity to study the relationship between aspen and redistributed snow. Within the RCEW, the total amount of precipitation has not changed in the past 50 years, but there are sharp declines in the percentage of the precipitation falling as snow. As shifts in the distribution of available moisture continue, future trends in aspen net primary productivity (NPP) remain uncertain. In order to assess the importance of snowdrift subsidies, NPP of three aspen stands was simulated at sites spanning elevational and precipitation gradients using the biogeochemical process model BIOME-BGC. At the aspen site experiencing the driest climate and lowest amount of precipitation from snow, approximately 400 mm of total precipitation was measured from November to March of 2008. However, peak measured snow water equivalent (SWE) held in drifts directly upslope of this stand was approximately 2100 mm, 5 times more moisture than the uniform winter precipitation layer initially assumed by BIOME-BGC. BIOME-BGC simulations in dry years forced by adjusted precipitation data resulted in NPP values approximately 30% higher than simulations assuming a uniform precipitation layer. Using BIOME-BGC and climate data from 1985-2011, the relationship between simulated NPP and measured basal area increments (BAI) improved after accounting for redistributed snow, indicating increased simulation representation. In addition to improved simulation capabilities, soil moisture data, diurnal branch water potential, and stomatal conductance observations at each site detail the use of soil moisture in the rooting zone and the onset

  17. 2012 Aspen Winter Conferences on High Energy and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Olivier, Dore [California Inst. of Technology (CalTech), Pasadena, CA (United States); Fox, Patrick [Aspen Center for Physics, CO (United States); Furic, Ivan [Univ. of Florida, Gainesville, FL (United States); Halkiadakis, Eva [Rutgers Univ., Piscataway, NJ (United States); Schmidt, Fabian [California Inst. of Technology (CalTech), Pasadena, CA (United States); Senatore, Leonardo [Stanford Univ., CA (United States); Smith, Kendrick M. [Princeton Univ., NJ (United States); Whiteson, Daniel [Univ. of California, Irvine, CA (United States)

    2012-05-01

    Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era. It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists

  18. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Science.gov (United States)

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  19. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    Science.gov (United States)

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  20. Factors influencing epiphytic lichen communities in aspen-associated forests of the Bear River Range, Idaho and Utah

    Science.gov (United States)

    Paul C. Rogers

    2007-01-01

    In western North America, quaking aspen (Populus tremuloides Michx.) is the most common hardwood in montane landscapes. Fire suppression, grazing, wildlife management practices, and climate patterns of the past century are some of the threats to aspen coverage in this region. Researchers are concerned that aspen-dependent species may be losing...

  1. Habitone analysis of quaking aspen in the Utah Book Cliffs: Effects of site water demand and conifer cover

    Science.gov (United States)

    Joseph O. Sexton; R. Douglas Ramsey; Dale L. Bartos

    2006-01-01

    Quaking aspen (Populus tremuloides Michx.) is the most widely distributed tree species in North America, but its presence is declining across much of the Western United States. Aspen decline is complex, but results largely from two factors widely divergent in temporal scale: (1) Holocene climatic drying of the region has led to water limitation of aspen seedling...

  2. Allozyme and microsatellite data reveal small clone size and high genetic diversity in aspen in the southern Cascade Mountains

    Science.gov (United States)

    Jennifer DeWoody; Thomas H. Rickman; Bobette E. Jones; Valerie D. Hipkins

    2009-01-01

    The most widely distributed tree in North America, quaking aspen (Populus tremuloides, Michx.), reproduces sexually via seed and clonally via suckers. The size of aspen clones varies geographically, generally smaller in the east and large in the arid Intermountain West. In order to describe clone size and genetic structure of aspen in the southern Cascade...

  3. The aspen mortality summit; December 18 and 19, 2006; Salt Lake City, UT

    Science.gov (United States)

    Dale L. Bartos; Wayne D. Shepperd

    2010-01-01

    The USDA Forest Service Rocky Mountain Research Station sponsored an aspen summit meeting in Salt Lake City, Utah, on December 18 and19, 2006, to discuss the rapidly increasing mortality of aspen (Populus tremuloides) throughout the western United States. Selected scientists, university faculty, and managers from Federal, State, and non-profit agencies with experience...

  4. Nest-site selection and nest survival of Lewis's woodpecker in aspen riparian woodlands

    Science.gov (United States)

    Karen R. Newlon; Victoria A. Saab

    2011-01-01

    Riparian woodlands of aspen (Populus tremuloides) provide valuable breeding habitat for several cavity-nesting birds. Although anecdotal information for this habitat is available for Lewis's Woodpecker (Melanerpes lewis), no study has previously examined the importance of aspen woodlands to this species' breeding biology. From 2002 to 2004, we monitored 76...

  5. 76 FR 77591 - Surety Companies Acceptable on Federal Bonds: Aspen American Insurance Company

    Science.gov (United States)

    2011-12-13

    ... Fiscal Service Surety Companies Acceptable on Federal Bonds: Aspen American Insurance Company AGENCY.... 9305 to the following company: Aspen American Insurance Company (NAIC 43460). Business Address: 175... subject to subsequent annual renewal as long as the companies remain qualified (see 31 CFR part 223). A...

  6. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide

    International Nuclear Information System (INIS)

    Darbah, Joseph N.T.; Sharkey, Thomas D.; Calfapietra, Carlo; Karnosky, David F.

    2010-01-01

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO 2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO 2 protected photosynthesis of both species against moderate heat stress. Elevated CO 2 increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 deg. C) decreased all of these parameters in birch regardless of CO 2 treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO 2 were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO 2 . Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms. - We report that elevated CO 2 confers increased thermotolerance on both aspen and birch trees while isoprene production in aspen confers further thermotolerance in aspen.

  7. Scaling Aspen-FACE experimental results to century and landscape scales

    Science.gov (United States)

    Eric J. Gustafson; Mark E. Kubiske; Brian R. Sturtevant; Brian R. Miranda

    2013-01-01

    The Aspen-FACE experiment generated 11 years of empirical data on the effect of CO2 enrichment and elevated ozone on the growth of field-grown trees (maple, birch and six aspen clones) in northern Wisconsin, but it is not known how these short-term plot-level responses might play out at the landscape scale over multiple decades where competition...

  8. 75 FR 13805 - Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet...

    Science.gov (United States)

    2010-03-23

    ... COMMISSION Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet Communications Corp., Geneva Steel Holdings Corp., Orderpro Logistics, Inc. (n/k/a Securus Renewable Energy, Inc... Aspen Group Resources Corp. because it has not filed any periodic reports since the period ended...

  9. Response of transplanted aspen to irrigation and weeding on a Colorado reclaimed surface coal mine

    Science.gov (United States)

    Robert C. Musselman; Wayne D. Shepperd; Frederick W. Smith; Lance A. Asherin; Brian W. Gee

    2012-01-01

    Successful re-establishment of aspen (Populus tremuloides Michx.) on surface-mined lands in the western United States is problematic because the species generally regenerates vegetatively by sprouting from parent roots in the soil; however, topsoil is removed in the mining process. Previous attempts to plant aspen on reclaimed mine sites have failed because...

  10. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  11. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Directory of Open Access Journals (Sweden)

    Joshua R Buck

    Full Text Available Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3 and NH(4 were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  12. Harvesting Impacts on Soil Properties and Tree Regeneration in Pure and Mixed Aspen Stands

    Science.gov (United States)

    Melissa J. Arikian; Kiaus J. Peuttmann; Alaina L. Davis; George E. Host; John Zasada

    1999-01-01

    Impacts of clearcutting and selective harvesting on pure aspen/mixed aspen hardwood stands were examined in northern Minnesota. We studied these impacts on 18 stands, which were harvested 4 to 11 years ago and received no further treatment. In each stand, residual composition, soil compaction, and tree regeneration were determined along a gradient of disturbance in the...

  13. Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA

    Directory of Open Access Journals (Sweden)

    R. Justin DeRose

    2014-12-01

    Full Text Available Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and Fuels Extension. The wind speeds necessary for crowning (crown-to-crown fire spread and torching (surface to crown fire spread were evaluated to test the hypothesis that predicted fire behavior is influenced by the proportion of aspen in the stand. Results showed a strong effect of species composition on crowning, but only under moderate fire weather, where aspen-dominated stands were unlikely to crown or torch. Although rarely observed in actual fires, conifer-dominated stands were likely to crown but not to torch, an example of “hysteresis” in crown fire behavior. Results support the hypothesis that potential crown fire behavior varies across a gradient of aspen dominance and fire weather, where it was likely under extreme and severe fire weather, and unlikely under moderate and high fire weather. Furthermore, the “fire-proof” nature of aspen stands broke down across the gradient of aspen dominance and fire weather.

  14. Model-based assessment of aspen responses to elk herbivory in Rocky Mountain National Park

    Science.gov (United States)

    Peter J. Weisberg; Michael B. Coughenour

    2001-01-01

    In Rocky Mountain National Park, aspen has been observed to decline on elk winter range for many decades. The SAVANNA ecosystem model was adapted to explore interactions between elk herbivory and aspen dynamics on the elk winter range. Several scenarios were explored that considered different levels of overall elk population; different levels of elk utilization of...

  15. Landscape-scale dynamics of aspen in Rocky Mountain National Park, Colorado

    Science.gov (United States)

    Margot W. Kaye; Kuni Suzuki; Dan Binkley; Thomas J. Stohlgren

    2001-01-01

    Past studies of quaking aspen in Rocky Mountain National Park suggested that the aspen population is declining due to intensive browsing by elk (Cervus elaphus). These studies were conducted in the elk winter range, an area of intensive elk impact. The elk summer range experiences less intense grazing pressure. We tested the hypothesis that impacts of elk would be...

  16. Hybrid Aspen Response to Shearing in Minnesota: Implications for Biomass Production

    Science.gov (United States)

    Grant M. Domke; Andrew J. David; Anthony W. D' Amato; Alan R. Ek; Gary W. Wycoff

    2011-01-01

    There is great potential for the production of woody biomass feedstocks from hybrid aspen stands; however, little is known about the response of these systems to silvicultural treatments, such as shearing. We sought to address this need by integrating results from more than 20 years of individual tree and yield measurements in hybrid aspen (Populus tremuloides Mich. ×...

  17. Decline of aspen (Populus tremuloides) in the Interior West [Abstract 2

    Science.gov (United States)

    Dale L. Bartos

    1997-01-01

    It is commonly recognized that aspen (Populus tremuloides) ecosystems in the Interior West provide numerous benefits: (1) forage for livestock, (2) habitat for wildlife, (3) water for downstream users, (4) esthetics, (5) sites for recreational opportunities, (6) wood fiber, and (7) landscape diversity. Loss or potential loss of aspen on these lands can be attributed...

  18. Bleaching of kraft pulps produced from green liquor pre-hydrolyzed South African Eucalyptus grandis wood chips

    CSIR Research Space (South Africa)

    Andrew, JE

    2014-01-01

    Full Text Available The effect of hemicellulose pre-extraction of South African Eucalyptus grandis wood chips using green liquor, on subsequent kraft pulping and bleaching processes was studied. This was done in the context of a biorefinery mill producing both ethanol...

  19. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp.

    Science.gov (United States)

    Gao, Wenhua; Xiang, Zhouyang; Chen, Kefu; Yang, Rendang; Yang, Fei

    2015-01-01

    Commercial bleached softwood kraft pulp was mechanically fibrillated by a PFI-mill with beating revolution from 5000 to 30,000 r. The extent of fibrillating on the pulp was evaluated by beating degree, fiber morphological properties (fiber length, width, coarseness and curls index), water retention value (WRV) and physical properties of paper made from the pulp. Depth beating process significantly affected the pulp fibrillations as showed by the decreased fiber length and width as well as the SEM analysis, but the effects were limited after beating revolution of 15,000. Depth beating process also improved the total internal pore and inter-fibril surface areas as shown by the increased WRV values. Substrate enzymatic digestibility (SED) of beaten pulp at 5000 revolutions could reach 95% at cellulase loading of 15 FPU/g of glucan. After the enzymatic hydrolysis, the size of the pulp residues was reduced to micro-scale, and a relative uniform size distribution of the residues appeared at 10,000 r beating revolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  1. Pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Viinikainen, S.; Nousiainen, I.; Edelman, K.; Manninen, J.

    2002-07-01

    The pulp and paper industry has played a major role in Finland with regards to energy use, technological development and the economy. Finland's market share in printing and writing paper exports is 25%. Finnish companies now figure among the world's biggest pulp and paper enterprises through international consolidations. Finnish equipment manufacturers, control system suppliers and consulting engineering firms are also global players. Rapid technological changes have taken place in the unit sizes of main process equipment or whole production lines. Environmental effects have been reduced significantly, e.g. biological oxygen demand load has been reduced from 530 000 to 18 000 t/a in the last 30 years, even though the production of paper and board has tripled. Competitiveness in the future depends on the supply of raw material, energy use, environmental issues as well as on the development of information and communication technology (ICT) for transferring and storing information. The growth rate of paper products has been closely interconnected with economic development. The average annual increase in the production volume has been 2-3%, whereas the real price of products has followed a declining trend. The first indication of the effects of ICT is seen in the reduced newsprint demand in the US market. It is foreseen that the use of cut-size office papers will increase, together with individual printing. Global growth in the demand for paper products is expected to slow down but not to cease because of this development. Forest growth in Finland currently exceeds annual harvesting. Taking into account the changes in forest ownership, taxation principles and forest land protection, an increase in harvesting of 5-10% is feasible. The amount of imported wood is expected to increase also in the future. Utilisation of the available fibre supply has to be further optimised in terms of endproduct properties. Since the investment in a new production line is already

  2. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  3. FM Interviews: Stephanie Mills

    OpenAIRE

    Valauskas, Edward

    2002-01-01

    Stephanie Mills is an author, editor, lecturer and ecological activist who has concerned herself with the fate of the earth and humanity since 1969, when her commencement address at Mills College in Oakland, Calif., drew the attention of a nation. Her speech, which the New York Times called "perhaps the most anguished statement" of the year's crop of valedictory speeches, predicted a bleak future. According to Mills, humanity was destined for suicide, the result of overpopulation and overuse ...

  4. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  5. The potential for generating a surplus of biomass fuel in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Wising, U.

    2001-06-01

    The conditions under which the pulp and paper industry is working are changing. New technology and new environmental objectives lead to changes: system closure (less water is used); processes are introduced and modified; new, more energy efficient processes are applied. Many of these changes affect the energy system in a mill and can also result in new potential for energy savings. Here a method is described and applied to six modern and/or future green field kraft market pulp model mills. The basic configuration for these model mills is designed according to best available technology today and consists of commercially available equipment in conventionally designed mills. These basic configurations are process integrated using Pinch Technology to ensure that the model mills are as energy efficient as possible with existing processes. Then by allowing process and system modifications, the model mills are made even more energy efficient. From the process integration study streams that could produce usable excess heat below the Pinch temperature are identified. In a pulp mill, necessary cooling is performed while producing warm and hot water. In modern mills there is usually a surplus of warm and hot water. It is herein presented that by designing the secondary heat system differently such that only necessary warm and hot water is produced, excess heat at a higher temperature than traditionally can be made available. The excess heat made available can be used for several applications; in this work it is used for evaporation. In order to use the excess heat for evaporation the evaporation plant has to be designed non-conventionally, with more than one level where heat is supplied, and a lower temperature in the surface condenser than what is typically used. A reasonable level of the extra investment cost for the novel system compared to the reference system is then calculated and a payback period is estimated. This payback period varies between approximately 3.5 and 6

  6. Prediction of mill performance

    Energy Technology Data Exchange (ETDEWEB)

    P.A. Bennett [CoalTech Pty Ltd. (Australia)

    2005-07-01

    This Australian Coal Association Research Program (ACARP) project aimed to demonstrate that the Hardgrove Grindability Index (HGI) coupled with standard Petrographic Analysis can be used to greatly improve the prediction of mill power requirements, mill throughput and product size. The project examined the mill test data from ACIRL's pilot scale vertical spindle mill on 96 coals. A total of 360 mill tests, conducted under a wide range of throughputs, roll pressures and classifier settings, were included into the data set. The mill performance of maceral groups or microlithotypes was assumed to be additive, that is, each maceral group or microlithotype behaved independently and a size fraction of the product PF was the volume weighted sum of the petrographic components of that size fraction. Based on this assumption it was possible to determine the size distribution of the product PF, for a wide range of milling conditions, based solely on petrographic analysis. Microlithotypes were not determined directly but were estimated from the maceral analysis. The size distribution of individual maceral groups or microlithotypes can also be estimated based on developed correlations. Size distribution determined from petrographic analysis proved to be a better estimate than that determined from the HGI. Mill power can be estimated from petrographic analysis, but the HGI was found to be a better predictor of mill power. 19 refs., 4 figs., 1 tab.

  7. Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

    Energy Technology Data Exchange (ETDEWEB)

    Raj K. Rajamani

    2006-07-21

    A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter has been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.

  8. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry.

    Science.gov (United States)

    Polishchuk, Anna; Valev, Dimitar; Tarvainen, Marko; Mishra, Sujata; Kinnunen, Viljami; Antal, Taras; Yang, Baoru; Rintala, Jukka; Tyystjärvi, Esa

    2015-10-01

    The eicosapentaenoic acid (EPA) containing marine microalga Nannochloropsis oculata was grown in an effluent from anaerobic digestion of excess activated sludge from a wastewater treatment plant serving a combination of a pulp and a paper mill and a municipality (digester effluent, DE), mixed with the effluent of the same wastewater treatment plant. The maximum specific growth rate and photosynthesis of N. oculata were similar in the DE medium and in artificial sea water medium (ASW) but after 7 days, algae grown in the DE medium contained seven times more triacylglycerols (TAGs) per cell than cells grown in ASW, indicating mild stress in the DE medium. However, the volumetric rate of EPA production was similar in the ASW and DE media. The results suggest that N. oculata could be used to produce EPA, utilizing the nutrients available after anaerobic digestion of excess activated sludge of a pulp and paper mill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The role of organic matter lost in kraft pulping material balances .

    Science.gov (United States)

    Luonsi, A; Lento, S; Halttunen, S; Ala-Kaila, K

    2003-01-01

    Efficiency improvement in a pulp mill includes minimisation of environmental discharges simultaneously with the development of pulp quality and production economy. Material balances in production processes, including fate of sidestreams, are key in proceeding these matters. Different approaches of determining the material balances increase understanding of process behaviour. We have focused on measuring sidestream (carryovers, washing water, filtrate) dissolved organic matter (DOM) in fibreline unit process blocks of softwood ECF bleached kraft production. The DOM was analysed by traditional wastewater methods (volatile solids, organic carbon, chemical oxygen demand). The measured data was combined with primarily simulated water balances and routine operational mill data in a simulation model. From this balance, yield estimate included, lost organic matter through complete degradation (CD) and volatile organic compounds (VOC) can be calculated throughout the fibreline. The sensitivity of this considerable amount (23-35 kgDVS/adt in total) to various factors is discussed in this paper.

  10. Effect of ozonation on activated sludge from pulp and paper industry.

    Science.gov (United States)

    Gupta, S; Chakrabarti, S K; Singh, S

    2010-01-01

    Aerobic biological treatment with activated sludge is the predominant process all over the world for treatment of pulp and paper industry wastewater. 50-70% of the biodegradable organic material is oxidized to CO₂ and the rest is converted to bacterial biomass, typically termed as excess sludge or waste activated sludge (WAS). Handling and disposal of WAS in general and in particular from the pulp and paper industry face different processing difficulties, regulatory stringency due to organochlorine contamination and reluctance of people for reuse. With an objective of reducing the net disposable biomass, ozonation of WAS from a pulp and paper mill and from a laboratory scale batch activated sludge process operated with the wastewater and bacterial seed of the same pulp and paper mill have been carried out. With the mill sludge having predominant filamentous organisms 18% MLSS was reduced at an ozone dosage of 55 mg O₃/g dry MLSS solid (DS) resulting in 2.5 times COD increase. With the laboratory sludge which is well structured and flocculating, only 6% MLSS was reduced at an ozone dosage of 55 mg O₃/g DS. Ozonation mineralizes 26% and 20% AOX compounds embedded in the secondary sludge in the mill and laboratory sludge respectively at an ozone dosage of 55 mg O₃/g DS. During ozonation, absorbed/adsorbed lignin on biomass was released which resulted in increased colour concentration. Ozonation can be a potential oxidative pretreatment process for reducing the WAS and paving the way for cost effective overall treatment of WAS.

  11. Use of an expert system for energy cost calculations in the pulp and paper industry

    International Nuclear Information System (INIS)

    Viinikainen, S.; Malinen, H.

    1991-12-01

    In this paper, an application for the calculation of energy prices and product energy costs in the pulp and paper industry by using the Xi Plus expert system is presented. The use of expert systems in the energy field and also the Xi Plus expert system and its general features are also discussed. The application has been made after collecting data from several sources. It runs in an IBM AT compatible microcomputer therefore being easily used in mills. The name of the application is PRODUCT ENERGY COST. It has a three level structure: the mill level, the department level and the main equipment level. Currently, the mill level and, in the energy production area, the department level (power plant) and the equipment level (boilers, turbines) are used. The application consists of four knowledge base groups. Altogether there are 52 separate knowledge bases having 534 rules or demons. The knowledge base groups are: BASIC DATA, ENERGY USE, ENERGY PRODUCTION and ENERGY COSTS. The application can be used for various heat and electrical energy price calculations or for energy cost calculations for different pulp and paper products. In this study, the energy prices for kraft pulp, TMP, newsprint and fine paper in different operating conditions and the associated energy costs of the products are calculated. Also, in some cases a sensitivity analysis is done. The expert system is quite suitable for this type of calculation and the method could be further developed for specific industrial needs, e.g. to enhance the energy management systems

  12. Comparison of combustion and pyrolysis for energy generation in a sugarcane mill

    International Nuclear Information System (INIS)

    Nsaful, F.; Görgens, J.F.; Knoetze, J.H.

    2013-01-01

    Highlights: • Biomass to energy processes for sugarmills via combustion and pyrolysis are modelled. • Models compared based on technical and economic performance for two mill efficiencies. • Combustion more suited for sugar mill energy supply. • Pyrolysis based models have higher overall process efficiencies. • Pyrolysis contributes more towards environmental mitigation but is less profitable. - Abstract: The study focusses on the comparison of biomass to energy conversion process (BMECP) models to convert sugar mill biomass (bagasse) into energy products via combustion and pyrolysis as thermochemical pathways. Bagasse was converted to steam and electricity via combustion using 40 bar, 63 bar and 82 bar Condensing Extraction Steam Turbines (CEST) systems and a 30 bar back pressure steam turbine (BPST) system. Two BMECPs, namely partial fast pyrolysis and pure fast pyrolysis systems, were modeled for the pyrolysis pathway. In the Pure Fast Pyrolysis BMECP all the input bagasse stream was converted to pyrolysis products, with subsequent combustion of some of these products to generate steam and electricity for sugar mill operations. In the partial fast pyrolysis BMECP, a fraction of the bagasse is combusted directly to supply steam and electricity to the sugar mill, while the remaining fraction is pyrolyzed to generate pyrolysis products. All process models were simulated in AspenPlus® and were assessed on their ability to supply the energy requirement of to two sugar mill scenarios: More efficient mill and less efficient mill. The economic viability of BMECPs was determined using Aspen Process Economic Analyzer. Both combustion based and pyrolysis based BMECPs were capable of meeting the energy requirement of the sugar mill, although the pyrolysis based BMECP had limited steam and electricity production rates due to the accumulation of energy in pyrolysis products. High energy valued pyrolysis products resulted in higher overall process efficiencies of 85

  13. Simulation of IGFC power generation system by Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Sayem, Abu Sadahat

    2010-01-01

    The solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur free syngas from the gas cleaning unit serves as a fuel for SOFC in IGFC (Integrated gasification Fuel cell) power plant. It converts the chemical energy of the fuel gas directly to electric energy...... efficiency and power with respect to a variety of SOFC inputs. HRSG which is located after the SOFC is also included in current simulation study with various operating parameters. This paper also describes for the IGFC Power Plants, the optimization of the Heat Recovery Steam Generator (HRSG...... and therefore, very high efficiencies can be achieved. The outputs from SOFC can be utilized by HRSG which drives steam turbine for electricity production. The SOFC stack model developed using the process flow sheet simulator Aspen Plus which is of equilibrium type. The results indicate there must be tread off...

  14. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Thinning Pole-Sized Aspen Has no Effect on Number of Veneer Trees or Total Yield

    Science.gov (United States)

    Bryce E. Schlaegel; Stanley B. Ringlod

    1971-01-01

    Thinning 37-year-old aspen in north central Minnesota did not increase either total volume production or the number of veneer-sized trees after 10 years. Thinning is not recommended for stands nearing rotation age.

  16. Best Practices Case Study: Shaw Construction Burlingame Ranch Ph.1, Aspen, CO

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory & Oak Ridge National Laboratory

    2010-12-01

    Shaw Construction built 84 energy efficient, affordable condominiums forthe City of Aspen that achieved HERS scores of less than 62 with help from Building America’s research team lead Building Science Corporation.

  17. Elevated CO2 response of photosynthesis depends on ozone concentration in aspen

    Science.gov (United States)

    Asko Noormets; Olevi Kull; Anu Sober; Mark E. Kubiske; David F. Karnosky

    2010-01-01

    The effect of elevated CO2 and O3 on apparent quantum yield (ø), maximum photosynthesis (Pmax), carboxylation efficiency (Vcmax) and electron transport capacity (Jmax) at different canopy locations was studied in two aspen (Populus...

  18. Methanol-based pulping of Eucalyptus globulus

    Energy Technology Data Exchange (ETDEWEB)

    Gilarranz, M.A.; Oliet, M.; Rodriguez, F.; Tijero, J. [Universidad Complutense de Madrid, Madrid (Spain). Dept. de Ingenieria Quimica

    1999-06-01

    The dissolution of wood components using organosolv pulping was discussed. Solvents such as ethanol and methanol can provide more efficient utilization of the lignocellulosic feedstock, ease of bleachability, and lower capital production costs compared to the kraft process. In this study, the autocatalyzed pulping of Eucalyptus globulus wood in a methanol-water media was examined. The influence of pulping temperature, pulping time and methanol concentration on pulp properties were determined by a surface response method. One of the advantages of using methanol pulping of hardwoods compared to ethanol pulping is the low boiling point of methanol which makes its recovery easy from pulping black liquor by distillation. The price of methanol is also very low compared to other solvents. The optimum pulping conditions were found to be a cooking temperature of 185 degrees C, a cooking time of 110 minutes and a methanol concentration of 50 per cent. These conditions yielded a pulp with a low kappa number and a viscosity value of 110 mL/g. When ethanol pulping was used under the same conditions, the resulting pulp had a higher kappa number and a lower viscosity. 27 refs., 2 tabs., 8 figs.

  19. Mercuric Chloride Effects on Root Water Transport in Aspen Seedlings.

    Science.gov (United States)

    Wan; Zwiazek

    1999-11-01

    HgCl(2) (0.1 mM) reduced pressure-induced water flux and root hydraulic conductivity in the roots of 1-year-old aspen (Populus tremuloides Michx.) seedlings by about 50%. The inhibition was reversed with 50 mM mercaptoethanol. Mercurial treatment reduced the activation energy of water transport in the roots from 10.82 +/- 0.700 kcal mol(-1) to 6.67 +/- 0.193 kcal mol(-1) when measured over the 4 degrees C to 25 degrees C temperature range. An increase in rhodamine B concentration in the xylem sap of mercury-treated roots suggested a decrease in the symplastic transport of water. However, the apoplastic pathway in both control and mercury-treated roots constituted only a small fraction of the total root water transport. Electrical conductivity and osmotic potentials of the expressed xylem sap suggested that 0.1 mM HgCl(2) and temperature changes over the 4 degrees C to 25 degrees C range did not induce cell membrane leakage. The 0.1 mM HgCl(2) solution applied as a root drench severely reduced stomatal conductance in intact plants, and this reduction was partly reversed by 50 mM mercaptoethanol. In excised shoots, 0.1 mM HgCl(2) did not affect stomatal conductance, suggesting that the signal that triggered stomatal closure originated in the roots. We suggest that mercury-sensitive processes in aspen roots play a significant role in regulating plant water balance by their effects on root hydraulic conductivity.

  20. Impact of ozone on understory plants of the aspen zone

    Energy Technology Data Exchange (ETDEWEB)

    Harward, M.R.; Treshow, M.

    1971-01-01

    The purpose of this study was to learn how ozone might affect the growth and reproduction of understory species of the aspen community, and thereby influence its stability and composition. Plants of 15 representative species of the aspen community were grown in chambers and fumigated 4 hours each day, 5 days per week throughout their growing seasons. These included: Achillea millifolium, Chenopodium album, Chenopodium fremontii, Cruciferae sp., Descurainia pinnata, Descurainia sp., Geranium fremontii, Isatis tinctoria, Ligusticum porteri, Lepidium virginicum, Madia glomerata, Polygonum aviculare, Polygonum douglasii, Phacelia heterophylla, Viola italica. Plants were exposed to 30 pphm, 15 pphm, ambient air reaching 5-7 pphm for 2 hours per day, and filtered air. The study was repeated for 3 seasons. Ambient air caused a significant reduction of total plant weight only of Lepidium virginicum. Six species produced fruit and seeds. At 15 pphm, seed production by Madia glomerata and Polygonum douglasii was significantly reduced. At 30 pphm, seed production was also reduced in Polygonum aviculare and Lepidium virginicum. The two most significant conclusions to emerge from the study were first that several species were more sensitive to ozone than might have been suspected. Second, this sensitivity varied sufficiently that major shifts in community composition would be probable following only a year or two of exposure. More tolerant species have no doubt already become dominant over more sensitive species in natural plant communities exposed to elevated ozone concentrations. It must be stressed that the species studied did not necessarily represent the most ozone sensitive members of the community, or the most tolerant.

  1. Comparative pulping of sunflower stalks

    Directory of Open Access Journals (Sweden)

    Valerii Barbash

    2016-03-01

    Full Text Available The procedure of holocellulose content determination in non-wood plant raw materials was developed. The strength properties of pulp obtained from sunflower stalks by neutral-sulphite, soda, alkaline sulphite-anthraquinone-ethanol and peracetic methods of delignification were studied. Methodology of comparison of plant materials delignification methods using new lignin-carbohydrate diagram was proposed. It was shown, that the alkaline sulphite-anthraquinone-ethanol method of pulping is characterized by the highest delignification degree and is the most efficient among the studied methods

  2. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  3. Managed Mixtures of Aspen and White Spruce 21 to 25 Years after Establishment

    Directory of Open Access Journals (Sweden)

    Richard Kabzems

    2015-12-01

    Full Text Available Intimate mixtures of trembling aspen (Populus tremuloides Michx. and white spruce (Picea glauca (Moench Voss are a key feature of western Canadian boreal forests. These mixtures have the potential to produce high yields of merchantable fibre and provide numerous ecological services. Achievement of this potential has been difficult, and often expensive, to realize as a regeneration goal in managed forests. We report 21 to 25 year results of managed mixtures on two study sites where the white spruce was planted, and the density of aspen natural regeneration manipulated within five years of the stand initiation disturbance. On both sites, white spruce mortality did not increase with increasing aspen density. While height and diameter growth of white spruce declined with increasing aspen density, the effect was not entirely consistent across the two sites. Abrasion from aspen branches was the most common source of damage to spruce crowns. Mixed stands had greater merchantable volume production than pure spruce stands based on model projections. Application of aspen harvest at year 60, while protecting the spruce component for a second harvest entry at year 90, was projected to optimize combined yield for the mixedwood stands.

  4. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  5. Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen.

    Science.gov (United States)

    Schreiber, Stefan G; Hacke, Uwe G; Hamann, Andreas; Thomas, Barb R

    2011-04-01

    Intensive forestry systems and breeding programs often include either native aspen or hybrid poplar clones, and performance and trait evaluations are mostly made within these two groups. Here, we assessed how traits with potential adaptive value varied within and across these two plant groups. Variation in nine hydraulic and wood anatomical traits as well as growth were measured in selected aspen and hybrid poplar genotypes grown at a boreal planting site in Alberta, Canada. Variability in these traits was statistically evaluated based on a blocked experimental design. We found that genotypes of trembling aspen were more resistant to cavitation, exhibited more negative water potentials, and were more water-use-efficient than hybrid poplars. Under the boreal field test conditions, which included major regional droughts, height growth was negatively correlated with branch vessel diameter (Dv ) in both aspen and hybrid poplars and differences in Dv were highly conserved in aspen trees from different provenances. Differences between the hybrid poplars and aspen provenances suggest that these two groups employ different water-use strategies. The data also suggest that vessel diameter may be a key trait in evaluating growth performance in a boreal environment. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. EFFECTS OF XYLAN IN EUCALYPTUS PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bianca Moreira Barbosa

    2016-06-01

    Full Text Available The search for a better use of wood in the pulp industry has fuelled interest in a more rational use of its components, particularly xylans. The impact of xylans removal and of xylans redeposition on pulp properties for tissue and P&W paper grades are discussed in this paper. Kraft pulp (15.6% xylans treatment with 10-70 g.L-1 NaOH resulted in pulps of 14.5-5.9% xylans. The treatments decreased pulp lignin and HexA contents and caused significant positive impact on subsequent oxygen delignification and ECF bleaching. Xylan removal decreased pulp beatability, water retention value and tensile index but increased drainability, water absorption capacity, capillarity Klemm and bulk. Overall, xylan depleted pulps showed almost ideal properties for tissue paper grade pulps. In a second step of the research, xylans extracted from unbleached (BXL and bleached eucalyptus pulps (WXL by cold caustic extraction (CCE were added to a commercial brown pulp in the oxygen delignification (O-stage and further bleached. Xylans deposition occurred at variable degree (up to 7% on pulp weight depending upon the O-stage reaction pH. Pulp bleachability was not impaired by WXL xylan deposition but slightly negatively affected by BXL xylans. Pulp beatability was improved by xylan deposition. The deposited xylans were quite stable across bleaching and beating, with the WXL xylans being more stable than the BXL ones. At low energy consumption, the deposited xylans improved pulp physical and mechanical properties. Xylans extraction by CCE with subsequent deposition onto pulp in the O-stage proved attractive for manufacturing high xylan P&W paper grades.

  7. PEMUTIHAN PULP DENGAN HIDROGEN PEROKSIDA

    Directory of Open Access Journals (Sweden)

    Ahmad M. Fuadi

    2012-01-01

    Full Text Available The use of bleaching agent has increased as the result of increasing of paper consumption. The conventional bleaching agent that commonly used is material containing of chlorine. This material is not environmentally friendly and should be replaced by environmentally benign chemical, such as H2O2. About 40 gram of dry Akasia pulp was mixed with 600 ml of distilled water was put into plastic bag heated in a water bath. When the temperature reached 630C, a solution of 4 % of H2O2 and distilled water was added to obtain 5 % consistency. This mixture was put into water bath and was heated for 2 hours. The same procedure was conducted with various concentration of H2O2, time and pH. At the end of the process, the pulp was dewatered and washed. The filtrate obtained from the initial dewatering was used to determine the residual of H2O2. The pulp was analyzed to determine brightness, fiber strength and kappa number. The maximum achievement of brightness was 62,1 % ISO, 6.86 of kappa number and 1.02 kg/15 mm of fiber strength, which are reached at16 % of the use of H2O2, pH 11 and 5 hours of bleaching time. This achievement is similar to bleaching result by the additional of 4% H2O2. Inefficient usage of H2O2 was caused by some metal ions in the pulp which facilitate the decomposition of H2O2 to produce oxygen and water which has not effect on increasing the brightness. To improve the bleach ability of H2O2, initial treatment to remove metal ions from pulp should be done. Seiring dengan meningkatnya kebutuhan kertas, kebutuhan bahan pemutih juga mengalami kenaikan. Saat ini bahan pemutih yang banyak digunakan adalah senyawa yang mengandung khlor. Senyawa ini sangat tidak ramah lingkungan, oleh karena itu, perlu dicari bahan yang ramah lingkungan untuk menggantikannya. Salah satunya adalah hidrogen peroksida. Pulp dari pohon akasia sebanyak 40 gram kering dicampur dengan 600 ml aquadest dimasukkan dalam kantung plastik dipanaskan dalam water bath

  8. [Chronobiology of pulp sensibility in young people].

    Science.gov (United States)

    Guo, Bin; Xu, Zhen; Chen, Xiu-Mei; Wang, Qing-Qing; Xie, Si-Jing; Zhang, Qiong; Zhou, Xue-Dong

    2005-11-01

    To explore the biological clock of pulp sensibility in young people so as to enrich the theory of pulp-chronobiology and conduce to clinical diagnosis and the treatment of pulposis. 40 healthy young volunteers (20 males and 20 females) were examined. Pulp sensibility test was performed using the pulp sensibility tester produced in France. Pulp sensibility reading was obtained at each 4 hours from 8:00 a.m. till next 8:00 a.m., thus there were totally seven time-pints in 24 hours. And the readings were averaged. The pulp sensibility data of every volunteer were analyzed by methods for cosinor-rhythmometry, and significant difference (P 0.05). Circadian rhythm is demonstrated in thepulp sensibility data of young people; the highest pulp sensibility is at 12:00 while the lowest is at 0:00.

  9. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  10. Effect of organosolv and soda pulping processes on the metals content of non-woody pulps.

    Science.gov (United States)

    González, M; Cantón, L; Rodríguez, A; Labidi, J

    2008-09-01

    In this work the effect of different pulping processes (ethyleneglycol, diethyleneglycol, ethanolamine and soda) of tow abounded raw materials (empty fruit bunches - EFB and rice straw) on the ash, silicates and metals (Fe, Zn, Cu, Pb, Mn, Ni and Cd) content of the obtained pulps have been studied. Results showed that pulps obtained by diethyleneglycol pulping process presented lower metals content (756 microg/g and 501 microg/g for EFB and rice straw pulp, respectively) than soda pulps (984 microg/g and 889 microg/g). Ethanolamine pulps presented values of holocellulose (74% and 77% for EFB and rice straw pulp, respectively), alpha-cellulose (74% and 69%), kappa number (18.7 and 18.5) and viscosity (612 and 90 6ml/g) similar to those of soda pulp, and lower lignin contents (11% and 12%).

  11. Pulp regeneration: Current approaches and future challenges

    Directory of Open Access Journals (Sweden)

    Jingwen eYANG

    2016-03-01

    Full Text Available Regenerative endodontics aims to replace inflamed/necrotic pulp tissues with regenerated pulp-like tissues to revitalize teeth and improve life quality. Pulp revascularization case reports, which showed successful clinical and radiographic outcomes, indicated the possible clinical application of pulp regeneration via cell homing strategy. From a clinical point of view, functional pulp-like tissues should be regenerated with the characterization of vascularization, re-innervation, and dentin deposition with a regulated rate similar to that of normal pulp. Efficient root canal disinfection and proper size of the apical foramen are the two requisite preconditions for pulp regeneration. Progress has been made on pulp regeneration via cell homing strategies. This review focused on the requisite preconditions and cell homing strategies for pulp regeneration. In addition to the traditionally used mechanical preparation and irrigation, antibiotics, irrigation assisted with EndoVac apical negative-pressure system, and ultrasonic and laser irradiation are now being used in root canal disinfection. In addition, pulp-like tissues could be formed with the apical foramen less than 1 mm, although more studies are needed to determine the appropriate size. Moreover, signaling molecules including stromal cell derived factor (SDF-1α, basic Fibroblast Growth Factor (bFGF, Platelet Derived Growth Factor (PDGF, stem cell factor (SCF, and Granulocyte Colony-Stimulating Factor (G-CSF were used to achieve pulp-like tissue formation via a cell homing strategy. Studies on the cell sources of pulp regeneration might give some indications on the signaling molecular selection. The active recruitment of endogenous cells into root canals to regenerate pulp-like tissues is a novel concept that may offer an unprecedented opportunity for the near-term clinical translation of current biology-based therapies for dental pulp regeneration.

  12. Signaling Molecules and Pulp Regeneration.

    Science.gov (United States)

    Schmalz, Gottfried; Widbiller, Matthias; Galler, Kerstin M

    2017-09-01

    Signaling molecules play an essential role in tissue engineering because they regulate regenerative processes. Evidence exists from animal studies that single molecules such as members of the transforming growth factor beta superfamily and factors that induce the growth of blood vessels (vascular endothelial growth factor), nerves (brain-derived neurotrophic factor), or fibroblasts (fibroblast growth factor) may induce reparative dentin formation. Mainly the formation of atubular dentin (osteodentin) has been described after the application of single molecules or combinations of recombinant growth factors on healthy exposed pulps or in pulp regeneration. Generally, such preparations have not received regulatory approval on the market so far. Only the use of granulocyte colony-stimulating factors together with cell transplantation is presently tested clinically. Besides approaches with only 1 or few combined molecules, the exploitation of tissue-derived growth factors depicts a third promising way in dental pulp tissue engineering. Preparations such as platelet-rich plasma or platelet-rich fibrin provide a multitude of endogenous signaling molecules, and special regulatory approval for the market does not seem necessary. Furthermore, dentin is a perfect reservoir of signaling molecules that can be mobilized by treatment with demineralizing agents such as EDTA. This conditions the dentin surface and allows for contact differentiation of pulp stem cells into odontoblastlike cells, protects dentin from resorption, and enhances cell growth as well as attachment to dentin. By ultrasonic activation, signaling molecules can be further released from EDTA pretreated dentin into saline, thus avoiding cytotoxic EDTA in the final preparation. The use of dentin-derived growth factors offers a number of advantages because they are locally available and presumably are most fit to induce signaling processes in dental pulp. However, better characterization and standardization of the

  13. Comparison of Wet and Dry Grinding in Electromagnetic Mill

    Directory of Open Access Journals (Sweden)

    Szymon Ogonowski

    2018-03-01

    Full Text Available Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects were tested: processing time, feed size, size of the grinding media, mass of the material and graining media, and density of the pulp. The particles size distribution of the product samples was analyzed in the laboratory after each experiment. The paper discusses the experimental results as well as the concept of dry and wet grinding and classification circuits for the electromagnetic mill. The main points of the discussion are the size reduction effectiveness and power consumption of the entire system.

  14. Pulp and Paper Industry Energy Bandwidth Study

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  15. Materials needs and opportunities in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Angelini, P. [comp.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  16. Activated sludge optimization using ATP in pulp and paper industry.

    Science.gov (United States)

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  17. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  18. Simulation of SOFCs based power generation system using Aspen

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2017-12-01

    Full Text Available This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.

  19. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  20. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site [Abstract

    Science.gov (United States)

    R. Minocha; S. Long; S. Minocha; P Marquardt; M. Kubiske

    2010-01-01

    The objective of the present study was to evaluate the long-term (10 years) effects of elevated CO2 and O3 on the carbon and nitrogen metabolism of aspen trees. The study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA).

  1. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  2. Uranium mining and milling

    International Nuclear Information System (INIS)

    Floeter, W.

    1976-01-01

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK) [de

  3. Uranium mill tailings

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contains information on uranium mill tailings included in the Department of Energy's Energy Data Base from January 1981 through October 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Mill Tailings/Radiation Hazards. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (335 abstracts)

  4. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    Science.gov (United States)

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  5. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  6. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  7. [Confusion and solution for vital pulp therapy].

    Science.gov (United States)

    Dingming, Huang; Qian, Lu; Qian, Liao; Ling, Ye; Xuedong, Zhou

    2017-06-01

    Dental pulp tissue plays a role in forming dentin, providing nutrition, conducting pain, and generating protective responses to environmental stimuli. Bacterial infection is the main cause of pulp disease, where histopathological changes are the histological basis for determining the choice of treatment and the evaluation of therapeutic effect. Thus, particular attention should be given to eliminate infection, as well as preserve and maintain pulpal health in teeth that show reversible or limited pulpal injuries. Vital pulp therapy, especially its indications and prognostic factors, has been a research hotspot that often causes confusion among clinicians. In this paper, we briefly introduce the confusion and solution for vital pulp therapy in terms of indications, pulp condition assessment, infection elimination, and capping material selection. In addition, we develop a clinical pathway and an operation normalization of vital pulp therapy to better perform the therapy.

  8. Laccase modification of the physical properties of bark and pulp of loblolly pine and spruce pulp

    Science.gov (United States)

    William Kenealy; John Klungness; Mandla Tshabalala; Eric Horn; Masood Akhtar; Roland Gleisner; Gisela Buschle-Diller

    2004-01-01

    Pine bark, pine pulp, and spruce pulp were reacted with laccase in the presence of phenolic laccase substrates to modify the fiber surface properties. The acid-base and dispersive characteristics of these modified steam-treated thermomechanical loblolly pine pulps were determined by inverse gas chromatography. Different combinations of substrates with laccase modified...

  9. Moderate-scale mapping methods of aspen stand types: a case study for Cedar Mountain in southern Utah

    Science.gov (United States)

    Chad M. Oukrop; David M. Evans; Dale L. Bartos; R. Douglas Ramsey; Ronald J. Ryel

    2011-01-01

    Quaking aspen (Populus tremuloides Michx.) are the most widely distributed tree species across North America, but its dominance is declining in many areas of the western United States, with certain areas experiencing rapid mortality events over the past decade. The loss of aspen from western landscapes will continue to profoundly impact biological, commercial, and...

  10. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  11. Will photosynthetic capacity of aspen trees acclimate after long term exposure to elevated CO2 and O3?

    Science.gov (United States)

    Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Katre Kets; Johanna Riikonen; Anu Sober; Lisa Rouse; David F. Karnosky

    2010-01-01

    Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site...

  12. Persistence of aspen regeneration near the National Elk Refuge and Gros Ventre Valley Elk Feedgrounds of Wyoming

    Science.gov (United States)

    David T. Barnett; Thomas J. Stohlgren

    2001-01-01

    We investigated aspen (Populus tremuloides) regeneration in the Gros Ventre River Valley, the National Elk Refuge, and a small part of Grand Teton National Park, Wyoming, to see if elk (Cervus elaphus) browsing was as damaging as previously thought. We conducted a landscape-scale survey to assess aspen regeneration across gradients of wintering elk concentrations using...

  13. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine(Pinus contorta) forests in Colorado, USA

    Science.gov (United States)

    Grizelle Gonzalez; Timothy R. Seastedt; Zugeily Donato

    2003-01-01

    We compared the abundance and community composition of earthworms, soil macroarthropods, and litter microarthropods to test faunal effects on plant litter decomposition rates in two forests in the subalpine in Colorado, USA. Litterbags containing recently senesced litter of Populus tremuloides (aspen) and Pinus contorta (lodgepole pine) were placed in aspen and pine...

  14. Acetosolv pulping of Eucalyptus globulus wood. Pt. 1. The effect of operational variables on pulp yield, pulp lignin content and pulp potential glucose content

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, G. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain); Antorrena, G. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain); Gonzalez, J. [Dept. of Chemical Engineering, Univ. of Santiago de Compostela (Spain)

    1995-07-01

    The HCl-catalysed delignification of Eucalyptus globulus wood by aqueous acetic acid was optimized in accordance with an incomplete 3x3x3 factorial design with HCl concentration (0-0.05%), temperature (120-160 C) and reaction time (1-4 h) as independent variables and pulp yield, pulp lignin content and pulp potential glucose content as dependent variables. Empirical equations derived from the results satisfactorily predict the influence of the independent variables on these characteristics of the delignification process and the delignified pulps. (orig.)

  15. Stem Cells of the Dental Pulp

    OpenAIRE

    Mahboobe Dehghani

    2014-01-01

     Dental Pulp Stem Cells (DPSCs) can be found within the cell rich zone of dental pulp. These stem cells, under specific stimuli, differentiate into many cell types which have wide therapeutic applications.   The dental stem cells are derived from both deciduous and permanent teeth. The viable dental stem cells are very simple to collect, without any mortality and morbidity. Dental pulp stem cells can be obtained from the patient’s vital pulp with the help of stem cell markers, which hel...

  16. Cellulose pulp produced from bulrush fiber

    Directory of Open Access Journals (Sweden)

    Vania Karine Dick Wille

    Full Text Available ABSTRACT: Brazil continues to use wood as the principal raw material source for the pulp industry; although, non-wood fibers have been revealed to be a competent substitute to produce paper with different and exceptional properties. Keeping this in focus, this study aimed to assess potential of Schoenoplectus californicus fibers (C. A. Mey. Soják, commonly identified as bulrush or reed, in cellulosic pulp generation, as an alternative fiber source for the pulp and paper industry. On analyzing the chemical composition of reed fibers, extractives of lignin, carbohydrates, uronic acids and minerals were reported. Physico-chemical characteristics of reed-based cellulosic pulp were estimated including viscosity, hexenuronic acids, etc., as well as anatomical features of length, width, etc. From the chemical analyses of the reed the presence of high concentrations of extractives and silica was clear, making them unfit as raw material for cellulosic pulp production. Pulp kraft pulping process produced brown pulps low in viscosity (34.5m Pa.s and hexenuronic acid content. Reed is thus classifiable as short-fiber source for pulp and paper industries.

  17. The Determinants of Brazilian Pulp exports from 1980 to 2001

    OpenAIRE

    Bacha, Carlos José Caetano; SanJuan, Adriana E.

    2004-01-01

    This paper makes an econometric analysis of the determinants of BrazilÂ’s pulp exports. The time period from 1980 to 2001 is considered for estimating a supply equation of pulp exports. Exogenous variables considered were: price of Brazilian exported pulp, production cost of Brazilian pulp, productive capacity, exchange rate between dollar and domestic currency and lagged pulp exports. It was observed that BrazilÂ’s pulp exports have responded little to price fluctuation; however, these expor...

  18. Paper sludge (PS) to bioethanol: Evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentation.

    Science.gov (United States)

    Boshoff, Sonja; Gottumukkala, Lalitha Devi; van Rensburg, Eugéne; Görgens, Johann

    2016-03-01

    Paper sludge (PS) from the paper and pulp industry consists primarily of cellulose and ash and has significant potential for ethanol production. Thirty-seven PS samples from 11 South African paper and pulp mills exhibited large variation in chemical composition and resulting ethanol production. Simultaneous saccharification and fermentation (SSF) of PS in fed-batch culture was investigated at high solid loadings and low enzyme dosages. Water holding capacity and viscosity of the PS influenced ethanol production at elevated solid loadings of PS. High viscosity of PS from virgin pulp mills restricted the solid loading to 18% (w/w) at an enzyme dosage of 20 FPU/gram dry PS (gdPS), whereas an optimal solid loading of 27% (w/w) was achieved with corrugated recycle mill PS at 11 FPU/gdPS. Ethanol concentration and yield of virgin pulp and corrugated recycle PS were 34.2g/L at 66.9% and 45.5 g/L at 78.2%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Stand Dynamics, Humus Type and Water Balance Explain Aspen Long Term Productivity across Canada

    Directory of Open Access Journals (Sweden)

    Kenneth A. Anyomi

    2015-02-01

    Full Text Available This study examined the relative importance of soil, stand development and climate hypotheses in driving productivity for a species that is widely distributed in North America. Inventory plots, 3548 of such, either dominated by aspen or made up of species mixture of which aspen occurs in dominant canopy position were sampled along a longitudinal gradient from Quebec to British Columbia. Site index (SI, was used as a measure of productivity, and soil, climate and stand attributes were correlated with site index in order to determine their effects on productivity. Results show a decline in productivity with high moisture deficit. Soil humus correlates significantly with SI but does not sufficiently capture differential rates of litter deposition and decomposition effects over the long-term. Consequently, aspen composition, stand ageing, and stand structural changes dominate variability in productivity. Within the context where deciduous cover has being increasing, there are implications for forest productivity.

  20. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2015-01-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species' range. Disease may accelerate tree species' declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry. To assess the role of disease in mediating mortality risk in quaking aspen (Populus tremuloides), we developed hierarchical Bayesian models for both disease prevalence in live aspen stems and the resulting survival rates of healthy and diseased aspen near the species' southern range limit using 5088 individual trees on 281 United States Forest Service Forest Inventory and Analysis plots in the southwestern United States.

  1. Feasibility of vermicomposting dewatered sludge from paper mills using Perionyx excavatus

    Directory of Open Access Journals (Sweden)

    Puspanjali Sonowal

    2013-06-01

    Full Text Available India has a large network of pulp and paper mills of varying capacity. On an industrial scale the sludge from paper and pulp mills is disposed of either as landfill or incinerated. Both methods result in the loss of a valuable resource and have obvious environmental and economic disadvantages. The solid waste from pulp and paper mills is a source of organic matter and its proper disposal and management is the responsibility of the industry. As composting/vermicomposting could be used to transform this waste trials were carried out to determine the feasibility of converting dewatered sludge (DS into a value added end product using an earthworm, Perionyx excavatus. The vermicomposting of the waste resulted in an increase in its electrical conductivity (EC, ash content, total nitrogen (TN, total phosphorous (TP and available phosphorous (AP, respectively, and a decrease in total organic carbon (TOC, biochemical oxygen demand (BOD, chemical oxygen demand (COD, oxygen uptake rate (OUR and evolution of carbon dioxide (CO2. Overall, the best treatment was T5 in which there was a 76.1% increase in TP, 58.7% in TN, 74.5% decrease in TOC , and a reduction of 6.7 fold in the production of CO2 and 10.7 fold in BOD, respectively. Our trials demonstrate that vermicomposting using an epigeic earthworm, Perionyx excavatus, is an alternate and environmentally safe way of recycling paper mill sludge if it is mixed with an appropriate amount of cow dung and food processing waste. Overall T5 was the best combination of paper mill sludge and waste for vermicomposting followed by T3, T2, T4 and T1, respectively.

  2. Wood Quality and Growth Characterization across Intra- and Inter-Specific Hybrid Aspen Clones

    Directory of Open Access Journals (Sweden)

    Shawn D. Mansfield

    2013-09-01

    Full Text Available Trembling aspen (Populus tremuloides Michx. is one of the most abundant poplar species in North America; it is native, displays substantial breadth in distribution inhabiting several geographical and climatic ecoregions, is notable for its rapid growth, and is ecologically and economically important. As the demand for raw material continues to increase rapidly, there is a pressing need to improve both tree quality and growth rates via breeding efforts. Hybridization is considered one of the most promising options to simultaneously accelerate these tree characteristics, as it takes advantage of heterosis. Two aspen species showing particular promise for hybridization with trembling aspen are European aspen (P. tremula and Chinese aspen (P. davidiana because their native climates are similar to that of P. tremuloides and are also very easy to hybridize. In 2003, aspen clones were planted in Athabasca, Alberta from the following species crosses: open pollinated (OP P. tremuloides (NN, OP P. davidiana (CC, P. tremula × P. tremula (EE, P. tremula × P. tremuloides (EN, and P. tremuloides × P. davidiana (CN. In November 2010, growth measurements and core samples were taken from seven-year field grown clones. Comparisons of the mean growth and cell wall traits were made between crosses using generalized linear model least squares means tests for stem volume, fiber length, fiber width, coarseness, wood density, microfibril angle, total cell wall carbohydrate and lignin content, and lignin composition. The results clearly indicated that the inter-specific crosses offer a means to breed for more desirable wood characteristics than the intra-specific Populus spp. crosses.

  3. Defensive effects of extrafloral nectaries in quaking aspen differ with scale.

    Science.gov (United States)

    Mortensen, Brent; Wagner, Diane; Doak, Patricia

    2011-04-01

    The effects of plant defenses on herbivory can differ among spatial scales. This may be particularly common with indirect defenses, such as extrafloral nectaries (EFNs), that attract predatory arthropods and are dependent on predator distribution, abundance, and behavior. We tested the defensive effects of EFNs in quaking aspen (Populus tremuloides Michx.) against damage by a specialist herbivore, the aspen leaf miner (Phyllocnistis populiella Cham.), at the scale of individual leaves and entire ramets (i.e., stems). Experiments excluding crawling arthropods revealed that the effects of aspen EFNs differed at the leaf and ramet scales. Crawling predators caused similar reductions in the percent leaf area mined on individual leaves with and without EFNs. However, the extent to which crawling predators increased leaf miner mortality and, consequently, reduced mining damage increased with EFN expression at the ramet scale. Thus, aspen EFNs provided a diffuse defense, reducing damage to leaves across a ramet regardless of leaf-scale EFN expression. We detected lower leaf miner damage and survival unassociated with crawling predators on EFN-bearing leaves, suggesting that direct defenses (e.g., chemical defenses) were stronger on leaves with than without EFNs. Greater direct defenses on EFN-bearing leaves may reduce the probability of losing these leaves and thus weakening ramet-scale EFN defense. Aspen growth was not related to EFN expression or the presence of crawling predators over the course of a single season. Different effects of aspen EFNs at the leaf and ramet scales suggest that future studies may benefit from examining indirect defenses simultaneously at multiple scales.

  4. Modeling Carbon Dioxide Capture by Monoethanolamine Solvent with ASPEN Plus

    Science.gov (United States)

    Luo, Tianyi

    Fossil fuels provide approximately 80% of the world's energy demands. Methods for reducing CO2 emissions resulting from fossil fuels include increasing the efficiency of power plants and production processes, decreasing energy demands, in combination with CO2 capture and long term storage (CCS). CO2 capture technologies include post-combustion, pre-combustion, and oxyfuel combustion. The amine-based post-combustion CO2 capture from a coal-fired power plant was studied in this thesis. In case of post-combustion capture, CO2 can be captured by Monoethanolamine solvent (MEA), a primary ethanolamine. MEA can associate with H3O+ to form an ion MEAH+, and can react with CO2 to form a carbonate ion MEACOO-. Commercial code ASPEN Plus was used to simulate the process of CO2 capture and optimize the process parameters and required energy duty. The major part of thermal energy requirement is from the Absorber and Stripper columns. This suggests that process optimization should focus on the Absorption/Desorption process. Optimization results show that the gas-liquid reaction equilibrium is affected by several operating parameters including solvent flow rate, stream temperature, column operating pressure, flue gas composition, solvent concentration and absorber design. With optimized CO2 capture, the energy consumption for solvent regeneration (reboiler thermal duty) was decreased from 5.76 GJ/ton captured CO2 to 4.56 GJ/t CO2. On the other hand, the cost of CO2 capture (and sequestration) could be reduced by limiting size of the Absorber column and operating pressure.

  5. Pengaruh Pendidikan dan Pelatihan terhadap Kinerja Karyawan Bagian Produksi Pulp Making 8 PT. Indah Kiat Pulp And Paper Perawang

    OpenAIRE

    Etalia, Mikha; Andri, Seno

    2015-01-01

    This research aimed to determine the effect of education and training to employee performance in pulp production Pulp Making PT.Indah Kiat Pulp and Paper. Education and training as an independent variable (X) has been formulated by ability and skill instructors coach, the determination of material, facilities and infrastructure. While employee performance as the dependent variable (Y). This research was conducted on all employees pulp production Pulp Making PT.Indah Kiat Pulp and Paper by 40 ...

  6. Elliptic Yang-Mills equation.

    Science.gov (United States)

    Tian, Gang

    2002-11-26

    We discuss some recent progress on the regularity theory of the elliptic Yang-Mills equation. We start with some basic properties of the elliptic Yang-Mills equation, such as Coulomb gauges, monotonicity, and curvature estimates. Next we discuss singularity of stationary Yang-Mills connections and compactness theorems on Yang-Mills connections with bounded L(2) norm of curvature. We also discuss in some detail self-dual solutions of the Yang-Mills equation and describe a compactification of their moduli space.

  7. Elliptic Yang–Mills equation

    OpenAIRE

    Tian, Gang

    2002-01-01

    We discuss some recent progress on the regularity theory of the elliptic Yang–Mills equation. We start with some basic properties of the elliptic Yang–Mills equation, such as Coulomb gauges, monotonicity, and curvature estimates. Next we discuss singularity of stationary Yang–Mills connections and compactness theorems on Yang–Mills connections with bounded L2 norm of curvature. We also discuss in some detail self-dual solutions of the Yang–Mills equation and describe a compactification of the...

  8. Landscape dynamics in aspen and western juniper woodlands on the Owyhee Plateau, Idaho

    Science.gov (United States)

    Strand, Eva K.

    A century of altered fire regimes has affected the landscape vegetation dynamics in the Intermountain West. Suppression of wildfires has resulted in increases in woody plant cover in these semi-arid ecosystems, which has resulted in land cover changes affecting biogeochemical cycling, landscape composition, and habitat diversity. Recent developments in remote sensing technology, computational power, and a rapid development of analysis techniques have enabled us to quantify such changes at the landscape scale. Wavelet analysis is a powerful image analysis technique that is here applied in a novel fashion to fine scale remote sensing imagery to automatically detect the location and crown diameter of individual western juniper plants (Juniperus occidentalis ssp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe at multiple scales. The produced marked point pattern of historical and current spatial juniper distribution was compared regionally and changes in foliar cover and above ground biomass were estimated across a 330,000 ha area on the Owyhee Plateau, Idaho. The above ground carbon accumulation rate from 1946 to 1998 was estimate to be 3.3 gCm-2yr-1 and 10.0 gCm-2yr -1 employing the wavelet and conventional texture analysis methods, respectively, with an additional 25% rise in belowground carbon accumulation in root stock. This research further demonstrates that estimates of carbon accumulation rates as a result of woody encroachment are highly dependent on the spatial and temporal scales of analysis. Conifer species, western juniper and Douglas-fir (Pseudotsuga menziesii) on the Owyhee Plateau, have further expanded into the biologically important quaking aspen ( Populus tremuloides) habitats resulting in conifer dominance and occasional loss of aspen clones. Classification of remotely sensed imagery combined with spatially explicit modeling of aspen successional stages indicate that, in the absence of management activity, loss of seral aspen stands

  9. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca

    2015-01-01

    Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co-processing ......Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co...

  10. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    Schindler, R.E.

    1996-09-01

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  11. Landscape-Scale Dynamics of Aspen in Rocky Mountain National Park, Colorado

    OpenAIRE

    Kaye, Margot W; Suzuki, Kuni; Binkley, Dan; Stohlgren, Thomas J

    2001-01-01

    Past studies of quaking aspen in Rocky Mountain National Park suggested that the aspen population is declining due to intensive browsing by elk (Cervus elaphus). These studies were conducted in the elk winter range, an area of intensive elk impact. The elk summer range experiences less intense grazing pressure. We tested the hypothesis that impacts of elk would be greater in the elk winter range than the summer range with landscape-scale data from the Park. The detrimental effects of elk on a...

  12. Pulp and Paper Industry Effluent Management.

    Science.gov (United States)

    Gove, George W.

    1978-01-01

    Presents a literature review of wastes from pulp and paper industry, covering publications of 1976-77. This review focuses on: (1) receiving water, toxicity, and effluent characterization; (2) pulping liquor disposal and recovery; and (3) physicochemical and biological treatment. A list of 238 references is also presented. (HM)

  13. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp. Hydrophilic interaction chromatography with on-line evaporative light scattering

  14. Characterization of sugar beet pulp derived oligosaccharides

    NARCIS (Netherlands)

    Leijdekkers, M.

    2015-01-01

    Abstract

    This thesis aimed at characterizing complex mixtures of sugar beet pulp derived oligosaccharides, in order to be able to monitor and optimize the enzymatic saccharification of sugar beet pulp.

    Hydrophilic interaction chromatography with on-line evaporative

  15. ARE PULP SENSIBILITY TESTS STILL SENSIBLE?

    Science.gov (United States)

    Farid, Huma; Khan, Farhan Raza; Pasha, Lubna; Shinwari, Muhammad Saad

    2015-01-01

    Electric and thermal tests are the most commonly employed methods for the diagnosis of pulp health status. The objectives of our study are to assess the validity, yield and accuracy of cold and electric pulp tests in determining the vitality of teeth requiring endodontic treatment. A cross sectional study was carried out at the Dental Clinic of Aga Khan University Hospital on 75 patients requiring endodontic treatment. Before commencement of endodontic treatment, a provisional diagnosis of pulp status was made using an electric pulp tester and cold test. The tooth was then labelled as either vital or necrotic. Then an access openings was made and tooth's actual pulp status (vital/necrotic) was determined by observing bleeding in the pulp chamber. The validity, yield and accuracy were calculated on the basis of these findings. The sensitivity, specificity, positive predictive value and negative predictive value of cold test were 84%, 88%, 93% and 73% respectively. The sensitivity & specificity of electric test were 82% and 88% respectively whereas the positive predictive value negative predictive value of electric test were 93% and 71% respectively. The accuracy of cold and electric pulp test was 85% and 84% respectively. Both cold test and EPT have similar sensitivity, specificity and accuracy values. Although vitality tests have a promising future in the diagnosis of pulp health status but within limitation of this study we found that sensibility tests have satisfactory validity and accuracy values to be used routinely prior to endodontic and restorative treatments especially when used in conjunction with one each other.

  16. Pulp sensibility test in elderly patients.

    Science.gov (United States)

    Farac, Roberta Vieira; Morgental, Renata Dornelles; Lima, Regina Karla de Pontes; Tiberio, Denise; dos Santos, Maria Teresa Botti Rodrigues

    2012-06-01

    The ageing process transforms the histological composition of the dental pulp and may affect the response to pulp sensibility tests. The aim of this study was to assess the influence of age on pulp response time and on pain intensity. Fifty elderly patients and 50 young patients were selected. Different classes of teeth were evaluated. The pulp sensibility test was performed with a refrigerant spray. The pulp response time was measured in seconds and the pain intensity was assessed by visual analogue scale. The Spearman coefficient was calculated and detect a positive correlation between age and pulp response time for maxillary incisors, premolars, mandibular incisors, and mean (p < 0.05). On the contrary, there was a negative correlation between age and pain intensity for maxillary incisors, mandibular incisors, and mean (p < 0.05). Also, the results of elderly and young groups were compared by Mann-Whitney test. Significant difference was noted regarding the pulp response time for maxillary incisors, premolars, mandibular incisors, and mean (p < 0.05). Significant difference was detected regarding the pain intensity for mandibular incisors only (p < 0.05). Pulp response time increases when people get older while pain intensity decreases. There were variations among the classes of teeth. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  17. Apparatus for processing fibrous pulp material

    NARCIS (Netherlands)

    Dekker, J.C.; Bouma, H.; Mulder, F.B.M.

    2008-01-01

    The invention relates to an apparatus (1) for processing a flow of pulp comprising fibrous material, in particular pulp comprising cellulose fibres for making paper, said apparatus comprising a drum (2) having a rotational axis (R), an inlet end (3), an outlet end (4) and an inner surface, a

  18. PULP DEMAND IN THE INTERNATIONAL MARKET

    Directory of Open Access Journals (Sweden)

    Edmilson Santos Cruz

    2003-01-01

    Full Text Available This study aimed at analyzing the international pulp market, taking into account themain exporting countries and importing regions, with the objective of estimating, for each market, theown-price and cross-price elasticity in relation to the demand of the pulp, differentiated for country oforigin. The model considers that imports are differentiated by origin; therefore they are not perfect substitutes. The demand from Europe, North America and the Rest of the World for the pulp from theUnited States,Canada, Sweden, Finland, Portugal and Brazil was inelastic. The Asian demand for thissome pulp was elastic. Europe and the Rest of the World showed negative cross-price elasticity, i. e.,and the imported pulp from other countries are complementary products. North America and Asiashowed positive crow-price elasticity, i. e., they consider the pulp produced in other countries assubstitute products. The net effect of the variation on the price of pulp in a country h, over the amountof pulp that goes to the region i depends on the matching of values related to the elasticity ofsubstitution and the price elasticity of the total demand.

  19. Structural and morphological characterization of cellulose pulp

    CSIR Research Space (South Africa)

    Ocwelwang, A

    2015-09-01

    Full Text Available International Symposium on Wood, Fibre and Pulping Chemistry, BOKU University, Vienna, Austria, 09-11th September 2015 9-11 September 2015 Structural and morphological characterization of cellulose pulp Atsile Ocwelwang1,2,*Bruce Sithole1,2, Deresh...

  20. Anaerobic treatment for C and S removal in 'zero-discharge' paper mills: effects of process design on S removal efficiencies.

    NARCIS (Netherlands)

    Lier, van J.B.; Lens, P.N.L.; Hulshoff Pol, L.W.

    2001-01-01

    Stringent environmental laws in Europe and Northern America lead to the development towards closure of the process water streams in pulp and paper mills. Application of a "zero-discharge" process is already a feasible option for the board and packaging paper industry, provided in-line treatment is

  1. [Endodontic treatment of primary teeth. Pulp exposure and pulp necrosis].

    Science.gov (United States)

    Gruythuysen, R J M

    2005-11-01

    With management of the deep caries in primary teeth we have to take account into the coping strategies of the patient and the state of the development of the dentition. That's why in most cases a root canal treatment of primary incisors or even a pulpotomy is not indicated. Often Intellectual Decision Not To Restore is a good alternative for treatment of deep caries in primary incisors. In deep caries lesions of primary canines and molars preferably minimal invasive techniques as indirect pulp capping are performed. In case of a exposure, the dentist can choose between several types of treatment. Improved techniques have lead to clinical satisfying results of the calcium hydroxide pulpotomy. A partial pulpotomy is if possible the treatment of choice. A resin modified glass ionomer cement is used to cover the pulp wound because it has good sealing properties and it is easy to handle. To limit the burden in young children a root canal treatment in primary teeth is seldom indicated. Overfilling with calcium hydroxide in root canal treatment of primary teeth never causes problems.

  2. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system , the loss in weight feeder system , the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...process equipment sprinkler protection systems , and the 5 psig steam supply serving the building heating and make-up air systems . It also included

  3. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement.

    Science.gov (United States)

    Duarte, Marta C Teixeira; da Silva, Elizete Cristina; de Bulhões Gomes, Isabel Menezes; Ponezi, Alexandre Nunes; Portugal, Edilberto Princi; Vicente, João Roberto; Davanzo, Ednilson

    2003-05-01

    The extracellular productions of beta-xylanase, beta-xylosidase, beta-glucosidase, beta-mannanase, arabinosidase, alpha-glucuronidase, alpha-galactosidase and Fpase from Bacillus pumilus CBMAI 0008 were investigated with three different xylan sources as substrate. The enzymatic profiles on birchwood, Eucalyptus grandis and oat were studied at alkaline and acidic pH conditions. B. pumilus CBMAI 0008 grown on the three carbon sources produced mainly beta-xylanase. At pH 10, the levels of xylanase were 328, 160 and 136 U/ml, for birch, oat and E. grandis, respectively. beta-Mannanase production was induced on E. grandis (5 U/ml) and arabinofuranosidase on oat (5 U/ml). Although small quantities of alpha-glucuronidase had been produced at pH 10, activity at pH 4.8 was 1.5 U/ml, higher than observed for Aspergillus sp. in literature reports. Preliminary assays carried out on E. grandis kraft pulp from an industrial paper mill (RIPASA S.A. Celulose e Papel, Limeira, SP, Brazil) showed a reduction of 0.3% of chlorine use in the pulp treated with the enzymes, resulting in increased brightness, compared to conventional bleaching. The enzymes were more efficient if applied before the initial bleaching sequence, in a non-pre-oxygenated pulp.

  4. Sensitization and exposure to methylisothiazolinones (Kathon) in the pulp and paper industry--a report of two cases.

    Science.gov (United States)

    Torén, K; Brisman, J; Meding, B

    1997-05-01

    Two cases of contact allergy to methylisothiazolinones from slimicides used in pulp and paper mills are described. The first patient worked as a batcher in a paper mill, and he was in charge of pumping slimicides containing methylisothiazolinones. During pumping, the liquid often overflowed, and his clothes were wet daily with slimicides. After 3 months of work, he began to suffer from dermatitis, which improved when he was away from work. A clinical investigation confirmed the dermatitis diagnosis and a positive skin patch test to Kathon CG was found. The second patient worked as an agent for a firm marketing slimicides containing methylisothiazolinones. One of his tasks was to pump slimicides into the mills, and during such operations his clothes often got wet from slimicides. After some years of work, he began to suffer from erythema and dermatitis after contact with the slimicides. A skin patch test showed a strongly positive reaction to Kathon CG. These case reports draw the attention to the fact that employees in the pulp and paper industry handling slimicides are exposed to extraordinarily high concentrations of methylisothiazolinones and run a substantial risk of being sensitized. The report also stresses the need for improved handling routines of those strong sensitizers in the paper mills.

  5. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link

    Directory of Open Access Journals (Sweden)

    Javier Fontalvo Alzate

    2014-05-01

    Full Text Available Process intensification and new technologies require tools for process design that can be integrated into well-known simulation software, such as Aspen Plus®. Thus, unit operations that are not included in traditional Aspen Plus software packages can be simulated with Matlab® and integrated within the Aspen Plus interface. In this way, the user can take advantage of all of the tools of Aspen Plus, such as optimization, sensitivity analysis and cost estimation. This paper gives a detailed description of how to implement this integration. The interface between Matlab and Aspen Plus is accomplished by sending the relevant information from Aspen Plus to Excel, which feeds the information to a Matlab routine. Once the Matlab routine processes the information, it is returned to Excel and to Aspen Plus. This paper includes the Excel and Matlab template files so the reader can implement their own simulations. By applying the protocol described here, a hybrid distillation-vapor permeation system has been simulated as an example of the applications that can be implemented. For the hybrid system, the effect of membrane selectivity on membrane area and reboiler duty for the partial dehydration of ethanol is studied. Very high selectivities are not necessarily required for an optimum hybrid distillation and vapor permeation system.

  6. Pulping effluents: Biological treatment. January 1976-September 1989 (Citations from the Paper and Board, Printing, and Packaging Industries Research Associations data base). Report for January 1976-September 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-01

    This bibliography contains citations concerning effluent and wastewater biological treatment and disposal in the pulping industry. Effluent toxicity; treatment plant management, treatment systems and equipment design; combined mechanical and biological treatment processes; biological degradation treatment in chemical pulp mills; and the handling and disposal of solid wastes are among the topics discussed. Performance evaluations of biological treatment processes in domestic and foreign plants in full scale operation and pilot programs are considered. (This updated bibliography contains 48 citations, 10 of which are new entries to the previous edition.)

  7. Is the wide distribution of aspen a result of its stress tolerance?

    Science.gov (United States)

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  8. Risk Communication, Metacommunication, and Rhetorical Stases in the Aspen-EPA Superfund Controversy.

    Science.gov (United States)

    Stratman, James F.; And Others

    1995-01-01

    Explores the relationship between current theoretical definitions of risk communication, the unique national role that EPA plays in defining health and environmental risks, and possible explanations for EPA's inability to persuade Aspen, Colorado, to accept a cleanup plan. Explores ownership messages conveyed through metacommunication conflict…

  9. From Plant Hydraulics to Ecohydrology: a Case Study of Water Limitation in Aspen Forests

    Science.gov (United States)

    Sperry, J.; Venturas, M.; Love, D.; Anderegg, W.; Mackay, D. S.

    2017-12-01

    How dry must it get to threaten a standing forest? We answered this question for aspen stands in Utah with a model that predicts tree gas exchange and water status by optimizing photosynthetic gain vs. hydraulic risk from xylem cavitation. The model was parameterized for 10 aspen stands from various elevations and mountain ranges in the state of Utah, USA. The 2016 growing season was simulated from site-specific micrometeorological data under shallow (0.5 m) vs. deep (2m) root depth scenarios starting at field capacity. The model predicted a water-limiting threshold for each stand, defined as the minimum water input required to maximize stand gas exchange. All but one stand was estimated to be near or above its threshold in 2016. In the majority of stands, spring soil moisture and summer rain fell far short of supplying the threshold requirement. Without additional water, these stands would suffer over 70% loss of tree hydraulic conductance and high mortality risk. These more water-demanding stands were predicted to rely on groundwater for 60-95% of their threshold supply. Groundwater dependence suggests a greater sensitivity to winter precipitation than to growing season conditions. All but the sparsest aspen stands would experience significant mortality risk from a 50% reduction in groundwater input. The aspen test case suggests a wider utility for linking plant hydraulics and hydrology.

  10. Polypropylene /Aspen/ liquid polybutadienes composites: maximization of impact strength, tensile and modulus by statistical experimental design

    Czech Academy of Sciences Publication Activity Database

    Kokta, B. V.; Fortelný, Ivan; Kruliš, Zdeněk; Horák, Zdeněk; Michálková, Danuše

    2005-01-01

    Roč. 99, - (2005), s. 10-11 ISSN 0009-2770. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. 10.5.2005-12.5.2005, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : polypropylene * Aspen-PP composite Subject RIV: CD - Macromolecular Chemistry

  11. Pine hollow exclosures: Effect of browsing on an aspen community sprayed with 2,4-D

    Science.gov (United States)

    Dale L. Bartos; Roy O. Harniss

    1990-01-01

    The Pine Hollow aspen (Populus tremuloides) exclosures on the Ashley National Forest in eastern Utah were sampled in 1984, 19 years after they were established. The effects of 2,4-D, wildlife, and cattle on plant succession were evaluated. Two exclosures were used to protect the sprayed area from (1) all animal use and (2) only livestock use. A third sprayed area was...

  12. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  13. ASPEN Plus in the Chemical Engineering Curriculum: Suitable Course Content and Teaching Methodology

    Science.gov (United States)

    Rockstraw, David A.

    2005-01-01

    An established methodology involving the sequential presentation of five skills on ASPEN Plus to undergraduate seniors majoring in ChE is presented in this document: (1) specifying unit operations; (2) manipulating physical properties; (3) accessing variables; (4) specifying nonstandard components; and (5) applying advanced features. This…

  14. Genetic, morphological, and spectral characterization of relictual Niobrara River hybrid aspens (Populus × smithii).

    Science.gov (United States)

    Deacon, Nicholas John; Grossman, Jake Joseph; Schweiger, Anna Katharina; Armour, Isabella; Cavender-Bares, Jeannine

    2017-12-01

    Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant Populus tremuloides populations. Pleistocene hybridization between P. tremuloides and P. grandidentata has been proposed, but the nearest P. grandidentata populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically. We compared nuclear microsatellite loci and chloroplast sequences of Niobrara River aspens to their putative parental species. Parental species and putative hybrids were also grown in a common garden for phenotypic comparison. On the common garden plants, we measured leaf morphological traits and leaf-level spectral reflectance profiles, from which chemical traits were derived. The genetic composition of the three unique Niobrara aspen genotypes is consistent with the hybridization hypothesis and with maternal chloroplast inheritance from P. grandidentata . Leaf margin dentition and abaxial pubescence differentiated taxa, with the hybrids showing intermediate values. Spectral profiles allowed statistical separation of taxa in short-wave infrared wavelengths, with hybrids showing intermediate values, indicating that traits associated with internal structure of leaves and water absorption may vary among taxa. However, reflectance values in the visible region did not differentiate taxa, indicating that traits related to pigments are not differentiated. Both genetic and phenotypic results support the hypothesis of a hybrid origin for these genetically unique aspens. However, low genetic diversity and ongoing ecological and climatic threats to the hybrid taxon present a challenge for conservation of these relictual boreal communities. © 2017 Botanical Society of America.

  15. Prehydrolysis of aspen wood with water and with dilute aqueous sulfuric acid

    Science.gov (United States)

    Edward L. Springer; John F. Harris

    1982-01-01

    Water prehydrolysis of aspen wood was compared with 0.40% sulfuric acid prehydrolysis at a reaction temperature of 170°C. Acid prehydrolysis gave much higher yields of total anhydroxylose units in the prehydrolyzate and removed significantly less anhydroglucose from the wood than did the water treatment. At maximum yields of total anhydroxylose units in the...

  16. Using Aspen to Teach Chromatographic Bioprocessing: A Case Study in Weak Partitioning Chromatography for Biotechnology Applications

    Science.gov (United States)

    Evans, Steven T.; Huang, Xinqun; Cramer, Steven M.

    2010-01-01

    The commercial simulator Aspen Chromatography was employed to study and optimize an important new industrial separation process, weak partitioning chromatography. This case study on antibody purification was implemented in a chromatographic separations course. Parametric simulations were performed to investigate the effect of operating parameters…

  17. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Science.gov (United States)

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  18. Lake States Aspen Productivity Following Soil Compaction and Organic Matter Removal

    Science.gov (United States)

    Douglas M. Stone

    2002-01-01

    Aspen (Populus tremuloides Michx. and P. grandidentata Michx.) provides wood products, watershed protection, and wildlife habitat for numerous game and non-game species across the northern Great Lakes region. Sustaining the productivity of these ecosystems requires maintaining soil productivity. Management activities that decrease...

  19. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride

    Science.gov (United States)

    Thomas L. Eberhardt; Soo-Hong Min; James S. Han

    2006-01-01

    Biomass-based filtration media are of interest as an economical means to remove pollutants and nutrients found in stormwater runoff. Refined aspen wood fiber samples treated with iron salt solutions demonstrated limited capacities to remove (ortho)phosphate from test solutions. To provide additional sites for iron complex formation, and thereby impart a greater...

  20. Review of pulp sensibility tests. Part II: electric pulp tests and test cavities.

    Science.gov (United States)

    Jafarzadeh, H; Abbott, P V

    2010-11-01

    The electric pulp test (EPT) is one type of pulp sensibility test that can be used as an aid in the diagnosis of the status of the dental pulp. However, like thermal pulp sensibility tests, it does not provide any direct information about the vitality (blood supply) of the pulp or whether the pulp is necrotic. The relevant literature on pulp sensibility tests in the context of endodontics up to January 2009 was reviewed using PubMed and MEDLINE database searches. This search identified articles published between November 1964 and January 2009 in all languages. The EPT is technique sensitive, and false responses may occur. Various factors can affect the test results, and therefore it is important that dental practitioners understand the nature of these tests and how to interpret them. Test cavities have been suggested as another method for assessing the pulp status; however, the use of this technique needs careful consideration because of its invasive and irreversible nature. In addition, it is unlikely to be useful in apprehensive patients and should not be required because it provides no further information beyond what thermal and electric pulp sensibility tests provide - that is, whether the pulp is able to respond to a stimulus. A review of the literature and a discussion of the important points regarding these two tests are presented. © 2010 International Endodontic Journal.

  1. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    lignin content and lignin type present in these wood species. The infra red analysis of the pulp obtained from the various wood species confirmed the chemical integrity of the pulps obtained from all the hard wood species surveyed. Key words: Kraft pulp, Nigerian wood species, pulp yield, cellulose. INTRODUCTION.

  2. Novel bleaching of thermomechanical pulp for improved paper properties

    Science.gov (United States)

    Marguerite S. Sykes; John H. Klungness; Freya. Tan

    2002-01-01

    Production of mechanical pulp is expected to increase significantly to meet the growing global demand for paper. Mechanical pulping uses wood resources more efficiently with less negative impact on the environment than does chemical pulping. However, several problems related to mechanical pulping need to be resolved: high energy consumption, low paper strength...

  3. Pulping Variables, Storage Time and Pitch Deposit | Ogunwusi ...

    African Journals Online (AJOL)

    Pulp resin is also influenced by effective alkali concentration of the pulping medium. With increase in effective alkali concentration from 13% to 15%, pulp pitch is reduced. The interaction effect of storage and effective alkali concentration was not significant indicating that reduction in pulp pitch caused by effective alkali ...

  4. A primary estimation of PCDD/Fs release reduction from non-wood pulp and paper industry in China based on the investigation of pulp bleaching with chlorine converting to chlorine dioxide.

    Science.gov (United States)

    Xiao, Qingcong; Song, Xiaoqian; Li, Wenchao; Zhang, Yuanna; Wang, Hongchen

    2017-10-01

    Chlorine bleaching technology (C process, CEH process, H process and theirs combination), which was identified as a primary formation source of PCDD/Fs, is still widely used by the vast majority of Chinese non-wood pulp and paper mills (non-wood PMs). The purpose of this study was to provide information and data support for further eliminating dioxin for non-wood PMs in China, and especially to evaluate the PCDD/Fs release reduction for those mills converting their pulp bleaching processes from CEH to ECF. The PCDD/Fs concentrations of the bleached pulp and bleaching wastewater with ECF bleaching were in the ranges of 0.13-0.8 ng TEQ kg -1 , and 0.15-1.9 pg TEQ L -1 , respectively, which were far lower than those with CEH process, indicating that the ECF process is an effective alternative bleaching technology to replace CEH in Chinese non-wood PMs to reduce dioxin release. The release factor via flue gas of the alkali recovery boiler in Chinese non-wood PMs was first reported to be 0.092 μg TEQ Ad t -1 in this study. On the assumption that pulp bleaching processes of all Chinese non-wood PMs were converted from CEH to ECF, the annual release of PCDD/Fs via the bleaching wastewater and bleached pulp would be reduced by 79.1%, with a total of 1.60 g TEQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Science.gov (United States)

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  6. Production of value added chemicals from xylan extraction in a Kraft pulp mill and the effect on pulp quality

    OpenAIRE

    Helmerius, Jonas; Vinblad von Walter, Jonas; Rova, Ulrika; Berglund, Kris; Hodge, David

    2008-01-01

    In the Kraft process hemicelluloses are lost in the cooking procedure to the black liquor stream, which is subsequently burnt in the recovery boiler to recover cooking chemicals and to produce steam and energy. Hemicelluloses have a low heating value compared to lignin and therefore recovery of hemicelluloses at an earlier stage of the Kraft process followed by biochemical conversionintohighvalue-conversion intohighvalue-into high value-added products might offer a muchbettereconomicopportuni...

  7. A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides

    Directory of Open Access Journals (Sweden)

    Takata Naoki

    2012-08-01

    Full Text Available Abstract Background The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches. Results We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter. Conclusions The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.

  8. Uranium-mill appraisal program

    International Nuclear Information System (INIS)

    Everett, R.J.; Cain, C.L.

    1982-08-01

    The results of special team appraisals at NRC-licensed uranium mills in the period May to November 1981 are reported. Since the Three Mile Island accident, NRC management has instituted a program of special team appraisals of radiation protection programs at certain NRC-licensed facilities. These appraisals were designed to identify weaknesses and strengths in NRC-licensed programs, including those areas not covered by explicit regulatory requirements. The regulatory requirements related to occupational radiation protection and environmental monitoring at uranium mills have been extensively upgraded in the past few years. In addition, there was some NRC staff concern with respect to the effectiveness of NRC licensing and inspection programs. In response to this concern and to changes in mill requirements, the NRC staff recommended that team appraisals be conducted at mills to determine the adequacy of mill programs, the effectiveness of the new requirements, and mill management implementation of programs and requirements. This report describes the appraisal scope and methodology as well as summary findings and conclusions. Significant weaknesses identified during the mill appraisals are discussed as well as recommendations for improvements in uranium mill programs and mill licensing and inspection

  9. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Science.gov (United States)

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  10. Vital Pulp Therapy—Current Progress of Dental Pulp Regeneration and Revascularization

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2010-01-01

    Full Text Available Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space with synthetic material. Over time, the pulpless tooth, now lacking proper blood supply and nervous system, becomes more vulnerable to injury. Recently, potential for successful pulp regeneration and revascularization therapies is increasing due to accumulated knowledge of stem cells, especially dental pulp stem cells. This paper will review current progress and feasible strategies for dental pulp regeneration and revascularization.

  11. In vitro antibacterial activity of different pulp capping materials

    OpenAIRE

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Ceci, Matteo; Dagna, Alberto; Chiesa, Marco

    2015-01-01

    Background Direct pulp capping involves the application of a dental material to seal communications between the exposed pulp and the oral cavity (mechanical and carious pulp exposures) in an attempt to act as a barrier, protect the dental pulp complex and preserve its vitality. The aim of this study was to evaluate and compare, by the agar disc diffusion test, the antimicrobial activity of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC...

  12. Low Temperature Soda-Oxygen Pulping of Bagasse

    OpenAIRE

    Fengxia Yue; Ke-Li Chen; Fachuang Lu

    2016-01-01

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum coo...

  13. Vital Pulp Therapy?Current Progress of Dental Pulp Regeneration and Revascularization

    OpenAIRE

    Zhang, Weibo; Yelick, Pamela C.

    2010-01-01

    Pulp vitality is extremely important for the tooth viability, since it provides nutrition and acts as biosensor to detect pathogenic stimuli. In the dental clinic, most dental pulp infections are irreversible due to its anatomical position and organization. It is difficult for the body to eliminate the infection, which subsequently persists and worsens. The widely used strategy currently in the clinic is to partly or fully remove the contaminated pulp tissue, and fill and seal the void space ...

  14. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs

    OpenAIRE

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-01

    Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinica...

  15. Optimization of composition and technology for tablets containing aspen bark extract

    Directory of Open Access Journals (Sweden)

    O. I. Onуshkiv

    2015-04-01

    Full Text Available Summary. Influence of quantitativefactorsof basic quality parameters has been investigated for tabletscontainingextractofaspenbark, receivedbydirect pressingmethodand mathematicalplanningof experiment.To set the optimal composition of tablets containingaspen bark extract the proportion ofProsolv 90, Ludiflash and Polyplasdone XL 10 has been studied. The relationship between the studied factors and parameters of tablets’ regression models has been described. As a result tablets containing aspen bark extractwith mentioned above formula match necessary pharmaco-technological parameters of State Pharmacopoeia of Ukraine. Introduction.Peptic and duodenal ulcer are serious problems in modern medicine. According to statistics this disease is found in 12,83 % of the adult population in Ukraine [1]. Among the remedies for treatment and prevention of peptic ulcers we can find herbal medicines that may be used in the treatment of pre-peptic conditions and during an acute period as a means of adjuvant therapy in combination with strong remedies [2]. An antacid, cytoprotective, anti-inflammatory and reparative actions of aspen bark extract were proved by the researches of domestic and foreign scientists [3, 4]. Previously, we researched the mutual influence of excipients on the main indicators of quality of aspen bark extract tablets obtained by direct compression method. Due to these researches the best excipientshave been selected. It is necessary to establish the optimal quantitative proportion of excipients in order to obtain the tablets with suitable parameters that satisfy the requirements of the State Pharmacopoeia of Ukraine (SPU [5, 6]. Rational selection of excipients requires wide range of studies to obtain the optimal composition of the tablets containing aspen bark extract. Using mathematical planning of the experiment gives the possibility to reduce the number of experiments and to obtain the most detailed results of researches about effects

  16. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  17. Pulp and paper program fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Summaries are presented of Argonne technology transfer research projects in: sustainable forest management, environmental performance, energy performance, improved capital effectiveness, recycling, and sensors and controls. Applications in paper/pulp industry, other industries, etc. are covered.

  18. 21 CFR 872.1720 - Pulp tester.

    Science.gov (United States)

    2010-04-01

    ... battery powered device intended to evaluate the pulpal vitality of teeth by employing high frequency current transmitted by an electrode to stimulate the nerve tissue in the dental pulp. (b) Classification...

  19. GHGRP Pulp and Paper Sector Industrial Profile

    Science.gov (United States)

    EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Pulp and Paper industry.

  20. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula

    Directory of Open Access Journals (Sweden)

    Grisel Nadine

    2010-08-01

    Full Text Available Abstract Background Ionic aluminum (mainly Al3+ is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3 and MATE (for multidrug and toxin efflux protein, mediating citrate efflux. Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The

  1. Identifying and Characterizing Important Trembling Aspen Competitors with Juvenile Lodgepole Pine in Three South-Central British Columbia Ecosystems

    Directory of Open Access Journals (Sweden)

    Teresa A. Newsome

    2012-01-01

    Full Text Available Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximized R2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. Maximum R2 values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.

  2. A novel role for Twist-1 in pulp homeostasis.

    Science.gov (United States)

    Galler, K M; Yasue, A; Cavender, A C; Bialek, P; Karsenty, G; D'Souza, R N

    2007-10-01

    The molecular mechanisms that maintain the equilibrium of odontoblast progenitor cells in dental pulp are unknown. Here we tested whether homeostasis in dental pulp is modulated by Twist-1, a nuclear protein that partners with Runx2 during osteoblast differentiation. Our analysis of Twist-1(+/-) mice revealed phenotypic changes that involved an earlier onset of dentin matrix formation, increased alkaline phosphatase activity, and pulp stones within the pulp. RT-PCR analyses revealed Twist-1 expression in several adult organs, including pulp. Decreased levels of Twist-1 led to higher levels of type I collagen and Dspp gene expression in perivascular cells associated with the pulp stones. In mice heterozygous for both Twist-1 and Runx2 inactivation, the phenotype of pulp stones appeared completely rescued. These findings suggest that Twist-1 plays a key role in restraining odontoblast differentiation, thus maintaining homeostasis in dental pulp. Furthermore, Twist-1 functions in dental pulp are dependent on its interaction with Runx2.

  3. Low Temperature Soda-Oxygen Pulping of Bagasse.

    Science.gov (United States)

    Yue, Fengxia; Chen, Ke-Li; Lu, Fachuang

    2016-01-13

    Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today's pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm³/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115-125 °C), this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  4. Low Temperature Soda-Oxygen Pulping of Bagasse

    Directory of Open Access Journals (Sweden)

    Fengxia Yue

    2016-01-01

    Full Text Available Wood shortages, environmental pollution and high energy consumption remain major obstacles hindering the development of today’s pulp and paper industry. Energy-saving and environmental friendly pulping processes are still needed, especially for non-woody materials. In this study, soda-oxygen pulping of bagasse was investigated and a successful soda-oxygen pulping process for bagasse at 100 °C was established. The pulping parameters of choice were under active alkali charge of 23%, maximum cooking temperature 100 °C, time hold at maximum temperature 180 min, initial pressure of oxygen 0.6 MPa, MgSO4 charge 0.5%, and de-pithed bagasse consistency 12%. Properties of the resultant pulp were screened yield 60.9%, Kappa number 14, viscosity 766 dm3/kg, and brightness 63.7% ISO. Similar pulps were also obtained at 110 °C or 105 °C with a cooking time of 90 min. Compared with pulps obtained at higher temperatures (115–125 °C, this pulp had higher screened yield, brightness, and acceptable viscosity, while the delignification degree was moderate. These results indicated that soda-oxygen pulping at 100 °C, the lowest cooking temperature reported so far for soda-oxygen pulping, is a suitable process for making chemical pulp from bagasse. Pulping at lower temperature and using oxygen make it an environmental friendly and energy-saving pulping process.

  5. Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching.

    Science.gov (United States)

    Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar

    2017-10-01

    Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.

  6. MASSAHAKE whole tree harvesting method for pulp raw-material and fuel -- R&D in 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D.A.; Ahonen, M.A. [Technical Research Centre of Finland, Jyvaeskylae (Finland)

    1993-12-31

    In Finland biofuels and hydropower are the only indigenous fuels available. Peat, wood and wood derived fuels form about 18% of total primary energy requirement. The largest wood and wood fuel user in Finland is wood processing industry, paper, pulp, sawmills. Due to silvicultural activities the growth of forests has developed an instant need for first thinnings. This need is about 12% of total stem wood growth. With conventional harvesting methods this would produce about 8 mill. m{sup 3} pulp raw material and 2 mill. m{sup 3} wood fuel. By using integrated harvesting methods about 12 mill. m{sup 3} pulp raw material and 8 mill. m{sup 3} (about 1, 3 mill. toe) fuel could be produced. At the moment, there is no economically profitable method for harvesting first thinning trees for industrial use or energy production. Hence, there are a few ongoing research projects aiming at solving the question of integrated harvesting. MASSAHAKE chip purification method has been under R&D since 1987. Research with continuous experimental line (capacity 5--10 loose-m{sup 3}) has been done in 1991 and 1992. The research has concentrated on pine whole tree chip treatment, but preliminary tests with birch whole tree chips has been done. The experiment line will be modified for birth whole tree chips during 1993. Based on the research results more than 60% of the whole tree chips can be separated to pulp raw material with < 1% bark content. This amount is 1.5--2 times more than with present technology. The yield of fuel fraction is 2--4 times higher compared to present methods. Fuel fraction is homogeneous and could be used in most furnaces for energy production. By replacing fossil fuels with wood fuel in energy production it is possible to reduce CO{sub 2}-emissions significantly. This paper presents the wood fuel research areas in Finland and technical potential of MASSAHAKE-method including the plant for building a demonstration plant based on this technology.

  7. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    International Nuclear Information System (INIS)

    Nilsson, L.J.

    1995-01-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co

  8. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    OpenAIRE

    Nandan, Dhritiman; Plefka, Jan; Schlotterer, Oliver; Wen, Congkao

    2016-01-01

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton ca...

  9. Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process waters.

    Science.gov (United States)

    Rigol, Anna; Latorre, Anna; Lacorte, Sílvia; Barceló, Damià

    2004-02-01

    The risk associated with wood extractives, biocides, and other additives in pulp and paper mill effluents was evaluated by performing a characterization of process waters and effluents in terms of toxicity and chemical analysis. The individual toxicity of 10 resin acids, two unsaturated fatty acids, and three biocides was estimated by measuring the bioluminescence inhibition with a ToxAlert 100 system. Median effective concentration values (EC50) of 4.3 to 17.9, 1.2 to 1.5, and 0.022 to 0.50 mg/L were obtained, respectively. Mixtures of these three families of compounds showed antagonistic effects. Chemical analysis of process waters was performed by liquid chromatography- and gas chromatography-mass spectrometry. Biocides such as 2-(thiocyanomethylthio)-benzotiazole (TCMTB) (EC50 = 0.022 mg/L) and 2,2-dibromo-3-nitrilpropionamide (DBNPA) (EC50 = 0.50 mg/L) were the most toxic compounds tested and were detected at concentrations of 16 and 59 microg/L, respectively, in a closed-circuit recycling paper mill. Process waters from kraft pulp mills, printing paper mills, and packing board paper mills showed the highest concentration of resin acids (up to 400 microg/L) and accounted for inhibition percentages up to 100%. Detergent degradation products such as nonylphenol (NP) and octylphenol (OP) and the plasticizer bisphenol A (BPA) were also detected in the waters at levels of 0.6 to 10.6, 0.3 to 1.4, and 0.7 to 187 microg/L, respectively. However, once these waters were biologically treated, the concentration of detected organic compounds diminished and the toxicity decreased in most cases to values of inhibition lower than 20%.

  10. Extracellular matrix of dental pulp stem cells: applications in pulp tissue engineering using somatic MSCs.

    Science.gov (United States)

    Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2014-01-06

    Dental Caries affects approximately 90% of the world's population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs) have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells (MSCs) from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM) incorporated scaffold. Human periodontal ligament stem cells (PDLSCs) and human bone marrow stromal cells (HMSCs) were investigated for their ability to differentiate toward an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  11. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  12. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    Science.gov (United States)

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  13. Physicochemical characteristics of paper industry effluents--a case study of South India Paper Mill (SIPM).

    Science.gov (United States)

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Q I; Singh, Surendra; Belagali, S L

    2011-06-01

    Pulp and paper mills generate varieties of pollutants depending upon type of the pulping process being used. This paper presents the characteristics of wastewater from South India Paper Mill, Karnataka, India which is using recycled waste paper as a raw material. The raw wastewater consists of 80-90 mg L( - 1) suspended solid and 1,010-1,015 mg L( - 1) dissolved solid. However, pH varied from 5.5-6.8. The biochemical oxygen demand and chemical oxygen demand ranged from 200-210 and 1,120-1,160 mg L( - 1), respectively. Aerobic treatment of raw effluent attribute to significant reduction in suspended solid (range between 25 to 30 mg L( - 1)) and total dissolved solid (range between 360 to 390 mg L( - 1)). However, pH, temperature, and electrical conductivity were found superior after treatment. Copper, cadmium, iron, lead, nickel, and zinc were found in less quantity in raw effluent and were almost completely removed after treatment. The dendrogram of the effluent quality parameters clearly indicate that South India Paper Mill does not meet Minimal National Standard set by central Pollution Control Board to discharge in agricultural field.

  14. THE FOREST-ATMOSPHERIC CARBON TRANSFER AND STORAGE-II (FACTS-II): ASPEN FACE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    KARNOSKY,D.F.; HENDREY,G.; PREGITZER,K.; ISEBRANDS,J.G.

    1998-02-01

    The FACTS II (ASPEN FACE) infrastructure including 12 FACE [Free-Air Carbon dioxide Enrichment] rings, a central control facility, a central CO{sub 2} and O{sub 2} receiving and storage area, a central O{sub 3} generation system, and a dispensing system for CO{sub 2} and O{sub 3} was completed in 1997. The FACE rings were planted with over 10,000 plants (aspen, birch and maple). The entire system was thoroughly tested for both CO{sub 2} and O{sub 3} and was shown to be effective in delivering elevated CO{sub 2} and/or O{sub 3} on demand and at predetermined set points. The NCASI support to date has been extremely helpful in matching support for federal grants.

  15. The Forest-Atmospheric Carbon Transfer and Storage-II (FACTS-II): Aspen FACE project

    Energy Technology Data Exchange (ETDEWEB)

    Karnosky, D.F.; Pregitzer, K. [Michigan Technological Univ., Houghton, MI (United States). School of Forestry and Wood Products; Hendrey, G. [Brookhaven National Lab., Upton, NY (United States); Isebrands, J.G. [Forest Service, Rhinelander, WI (United States)

    1998-02-01

    The FACTS II (Aspen FACE) infrastructure including 12 FACE rings, a central control facility, a central CO{sub 2} and O{sub 3} receiving and storage area, a central O{sub 3} generation system, and a dispensing system for CO{sub 2} and O{sub 3} was completed in 1997. The FACE rings were planted with over 10,000 plants (aspen, birch and maple). The entire system was thoroughly tested for both CO{sub 2} and O{sub 3} and was shown to be effective in delivering elevated CO{sub 2} and/or O{sub 3} on demand and at predetermined set points. The NCASI support to date has been extremely helpful in matching support for federal grants.

  16. ASPEN Plus Simulation of CO2 Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    White, Charles W. [EG& G Technical Services, Inc., Morgantown, WV (United States)

    2002-09-30

    ASPEN Plus simulations have been created for a CO2 capture process based on adsorption by monoethanolamine (MEA). Three separate simulations were developed, one each for the flue gas scrubbing, recovery, and purification sections of the process. Although intended to work together, each simulation can be used and executed independently. The simulations were designed as template simulations to be added as a component to other more complex simulations. Applications involving simple cycle or hybrid power production processes were targeted. The default block parameters were developed based on a feed stream of raw flue gas of approximately 14 volume percent CO2 with a 90% recovery of the CO2 as liquid. This report presents detailed descriptions of the process sections as well as technical documentation for the ASPEN simulations including the design basis, models employed, key assumptions, design parameters, convergence algorithms, and calculated outputs.

  17. A case-referent study of cancer mortality among sulfate mill workers in Sweden.

    Science.gov (United States)

    Andersson, E; Hagberg, S; Nilsson, T; Persson, B; Wingren, G; Torén, K

    2001-05-01

    To investigate whether workers in Swedish sulfate mills have an increased risk of death from certain malignancies that have previously been linked to the pulping process. Subjects of the study (n=2480) were men aged 40-75 at death during 1960-89 in the parishes surrounding four sulfate mills. Exposure assessment was based on information from the personnel files in the mills- 35% of the subjects were recognised there, and work categories were created. Among all sulfate mill workers, the odds ratio (OR) (90% confidence interval (90% CI)) for death from lung cancer was 1.6 (1.1 to 2.3), pleural mesotheliomas 9.5 (1.9 to 48), brain tumours 2.6 (1.2 to 5.3), and liver or biliary tract cancer 2.3 (1.0 to 5.2). There was an increased mortality from leukaemia among workers in the soda recovery plant (5.9 (2.6 to 13)) and bleaching plant and digester house (2.8 (1.0 to 7.5)). Sulfate mill workers were at increased risk of dying from lung cancer and pleural mesotheliomas, probably due to exposure to asbestos. Increased risks of brain tumours and cancers of the liver or biliary tract were also found but the aetiology is not obvious.

  18. Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage under Aspen and Conifer Forest Overstories?

    Directory of Open Access Journals (Sweden)

    Antra Boča

    2017-04-01

    Full Text Available Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC storage and stability. Quaking aspen (Populus tremuloides Michx. is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm, characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (<2 mm biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences.

  19. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Directory of Open Access Journals (Sweden)

    Bobette E Jones

    Full Text Available The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010 involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i Phase 1 in January 2004, (ii Phase 2 in August 2005, and (iii Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management

  20. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Bich Thi Ngoc [Univ. of Alabama, Huntsville, AL (United States)

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.