WorldWideScience

Sample records for aspen populus tremula

  1. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    OpenAIRE

    Robinson, Kathryn M; Pär K Ingvarsson; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod ...

  2. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  3. The yield of natural trembling aspen (populus tremula L.) stands (northern and eastern anatolia)

    International Nuclear Information System (INIS)

    Trembling aspen (Populus tremula L.) is one of the most resistant to cold natural species in Turkey. In spite of its importance, there is no research on the yield. Hence, site productivity was determined and yield Table for undisturbed natural trembling aspen stands in Turkey was developed. Data were obtained from a total of 46 plots ranging in age from 17 to 82 years. Yield Table indicates that trembling aspen is very slow growing in young and middle age and Current Annual Increment (CAI) and Mean Annual Increment (MAI) values do not reach its maximum value, even at age 70. This is a proof that trembling aspen is not a fast growing species as expected. The reason for its slow growth is attributed to very short period of growth at very high altitudes. However, in the event of 50 years rotation age, mean annual volume increments of 8.0, 3.6 and 1.1 m3 are estimated for trembling aspen for site classes I, II and III, respectively. At extended rotations, trees of pole sizes could be obtained on all site classes. (author)

  4. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  5. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula

    Directory of Open Access Journals (Sweden)

    Grisel Nadine

    2010-08-01

    Full Text Available Abstract Background Ionic aluminum (mainly Al3+ is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3 and MATE (for multidrug and toxin efflux protein, mediating citrate efflux. Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The

  6. A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides

    Directory of Open Access Journals (Sweden)

    Takata Naoki

    2012-08-01

    Full Text Available Abstract Background The genus Populus is accepted as a model system for molecular tree biology. To investigate gene functions in Populus spp. trees, generating stable transgenic lines is the common technique for functional genetic studies. However, a limited number of genes have been targeted due to the lengthy transgenic process. Transient transformation assays complementing stable transformation have significant advantages for rapid in vivo assessment of gene function. The aim of this study is to develop a simple and efficient transient transformation for hybrid aspen and to provide its potential applications for functional genomic approaches. Results We developed an in planta transient transformation assay for young hybrid aspen cuttings using Agrobacterium-mediated vacuum infiltration. The transformation conditions such as the infiltration medium, the presence of a surfactant, the phase of bacterial growth and bacterial density were optimized to achieve a higher transformation efficiency in young aspen leaves. The Agrobacterium infiltration assay successfully transformed various cell types in leaf tissues. Intracellular localization of four aspen genes was confirmed in homologous Populus spp. using fusion constructs with the green fluorescent protein. Protein-protein interaction was detected in transiently co-transformed cells with bimolecular fluorescence complementation technique. In vivo promoter activity was monitored over a few days in aspen cuttings that were transformed with luciferase reporter gene driven by a circadian clock promoter. Conclusions The Agrobacterium infiltration assay developed here is a simple and enhanced throughput method that requires minimum handling and short transgenic process. This method will facilitate functional analyses of Populus genes in a homologous plant system.

  7. Growth, leaf traits and litter decomposition of roadside hybrid aspen (Populus tremula L. x P. tremuloides Michx.) clones

    International Nuclear Information System (INIS)

    Road traffic contributes considerably to ground-level air pollution and is therefore likely to affect roadside ecosystems. Differences in growth and leaf traits among 13 hybrid aspen (Populus tremula x P. tremuloides) clones were studied in relation to distance from a motorway. The trees sampled were growing 15 and 30 m from a motorway and at a background rural site in southern Finland. Litter decomposition was also measured at both the roadside and rural sites. Height and diameter growth rate and specific leaf area were lowest, and epicuticular wax amount highest in trees growing 15 m from the motorway. Although no significant distance x clone interactions were detected, clone-based analyses indicated differences in genotypic responses to motorway proximity. Leaf N concentration did not differ with distance from the motorway for any of the clones. Leaf litter decomposition was only temporarily retarded in the roadside environment, suggesting minor effects on nutrient cycling. - Highlights: → Roadside hybrid aspen displayed xeromorphic leaf traits and reduction in growth rate. → These responses were limited to trees close to the motorway and only to some clones. → Leaf litter decomposition was only temporarily retarded in the roadside environment. - Hybrid aspen had more xeromorphic leaves, displayed reduced growth, and showed retarded litter decomposition at an early stage in the roadside environment.

  8. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides)

    OpenAIRE

    Hajek, Peter; Hertel, Dietrich; Leuschner, Christoph

    2013-01-01

    Leaf and fine root morphology and physiology have been found to vary considerably among tree species, but not much is known about intraspecific variation in root traits and their relatedness to leaf traits. Various aspen progenies (Populus tremula and P. tremuloides) with different growth performance are used in short-rotation forestry. Hence, a better understanding of the link between root trait syndromes and the adaptation of a deme to a particular environment is essential in order to impro...

  9. Conservation and yield aspects of old European aspen Populus tremula L. in Swedish forestry

    Energy Technology Data Exchange (ETDEWEB)

    Hazell, Per [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Management and Products

    1999-06-01

    Biodiversity issues are becoming integrated parts of Swedish forest management. In this context, the amount and distribution of broadleaved species, including aspen, are important. This thesis summarises results of two studies in which species from the rich epiphytic flora on aspen were used to evaluate important features of aspens, and two studies relating these features to production losses due to retention of aspen. The presence and abundance of four epiphytic, bark-living bryophytes in relation to stand and host-tree characteristics, were investigated in four mixed forest stands in central Sweden. There was no general and consistent relation between aspen density and bryophyte presence. Large diameter and rough bark of the aspen host, together with site factors and stand density around the host, were important. On 35 clearfelled areas, the bryophyte Antitrichia curtipendula (Hedw.) Brid. and the lichen Lobaria pulmonaria (L.) Hoffm., species considered sensitive to clearfelling, were transplanted on retained aspen stems. As a reference, transplants were made on aspens in adjacent old stands. After two years the bryophyte showed its highest vitality in the forest, but was also vigorous on the north side of retained trees. The lichen thrived best on the clearfelled areas, on the north side of trees retained in groups. For conservation purposes, aspen are best retained in groups. Qualitative and quantitative aspects of retained large aspens (diameter 49.6{+-}7.0 cm and height 29.4{+-}1.0 m) were studied in a 110-year-old aspen stand. Twelve trees were destructively analysed to establish allometric equations relating stem, bark and branch biomass and current annual stem increment (CAI{sub s}) to diameter at breast height. Biomass of the mean tree was 1172 kg, of which 80% was stemwood. CAI{sub s} was 1.5% of total stem biomass. Finally, the yield of a 44-year-old Norway spruce stand under an aspen overstorey was compared with that of pure Norway spruce, estimated

  10. Genotypic variation in growth and physiological responses of Finnish hybrid aspen (Populus tremuloides x P. tremula) to elevated tropospheric ozone concentration.

    Science.gov (United States)

    Oksanen, E; Amores, G; Kokko, H; Amores, J M; Kärenlampi, L

    2001-10-01

    Saplings of six Finnish hybrid aspen (Populus tremuloides Michx. x P. tremula L.) clones were exposed to 0, 50, 100 and 150 ppb ozone (O3) for 32 days in a chamber experiment to determine differences in O3 sensitivity among genotypes. Based on the chamber experiment, three clones with intermediate sensitivity to O3 were selected for a free-air O3 enrichment experiment in which plants were exposed for 2 months to either ambient air (control) or air containing 1.3 x the ambient O3 concentration. We measured stem height and radial growth, number of leaves, dry mass and relative growth rate of leaves, stem and roots, visible leaf injuries, net photosynthesis and stomatal conductance of the clones. There was high clonal variation in susceptibility to O3 in the chamber experiment, indicated by foliar injuries and differential reductions in growth and net photosynthesis. In the free-air O3 enrichment experiment, ozone caused a shift in resource allocation toward stem height growth, thereby altering the shoot to root balance. In both experiments, low O3 concentrations tended to stimulate growth of most clones, whereas 100 and 150 ppb O3 in the chamber experiment impaired growth of most clones. However, growth of the most O3-tolerant clone was not significantly affected by any O3 treatment. PMID:11600339

  11. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes.

    Science.gov (United States)

    Davies, Chantel; Ellis, Christopher J; Iason, Glenn R; Ennos, Richard A

    2014-01-01

    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity. PMID:24789141

  12. Clinal Variation in phyB2, a Candidate Gene for Day-Length-Induced Growth Cessation and Bud Set, Across a Latitudinal Gradient in European Aspen (Populus tremula)

    OpenAIRE

    Ingvarsson, Pär K.; García, M. Victoria; Hall, David; Luquez, Virginia; Jansson, Stefan

    2006-01-01

    The initiation of growth cessation and dormancy represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees. The most important environmental cue regulating the initiation of dormancy is a shortening of the photoperiod and phytochrome genes have been implicated in short-day-induced bud set and growth cessation in Populus. We characterized patterns of DNA sequence variation at the putative candidate gene phyB2 in 4 populations of European aspen ...

  13. UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves.

    Science.gov (United States)

    Abreu, Ilka Nacif; Ahnlund, Maria; Moritz, Thomas; Albrectsen, Benedicte Riber

    2011-08-01

    Associations of salicylate-like phenolic glycosides (PGs) with biological activity have been reported in Salix and Populus trees, but only for a few compounds, and in relation to a limited number of herbivores. By considering the full diversity of PGs, we may improve our ability to recognize genotypes or chemotype groups and enhance our understanding of their ecological function. Here, we present a fast and efficient general method for salicylate determination in leaves of Eurasian aspen that uses ultra-high performance liquid chromatography-electrospray ionization/time-of-flight mass spectrometry (UHPLC-ESI/TOFMS). The time required for the liquid chromatography separations was 13.5 min per sample, compared to around 60 min per sample for most HPLC protocols. In leaf samples from identical P. tremula genotypes with diverse propagation and treatment histories, we identified nine PGs. We found the compound-specific mass chromatograms to be more informative than the UV-visible chromatograms for compound identification and when quantitating samples with large variability in PG content. Signature compounds previously reported for P. tremoloides (tremulacin, tremuloidin, salicin, and salicortin) always were present, and five PGs (2'-O-cinnamoyl-salicortin, 2'-O-acetyl-salicortin, 2'-O-acetyl-salicin, acetyl-tremulacin, and salicyloyl-salicin) were detected for the first time in P. tremula. By using information about the formic acid adduct that appeared for PGs in the LTQ-Orbitrap MS environment, novel compounds like acetyl-tremulacin could be tentatively identified without the use of standards. The novel PGs were consistently either present in genotypes regardless of propagation and damage treatment or were not detectable. In some genotypes, concentrations of 2'-O-acetyl-salicortin and 2'-O-cinnamoyl-salicortin were similar to levels of biologically active PGs in other Salicaceous trees. Our study suggests that we may expect a wide variation in PG content in aspen

  14. Populus tremula (European aspen) shows no evidence of sexual dimorphism

    OpenAIRE

    Robinson, Kathryn M; Delhomme, Nicolas; Mähler, Niklas; Schiffthaler, Bastian; Önskog, Jenny; Albrectsen, Benedicte Rieber; Pär K Ingvarsson; Hvidsten, Torgeir Rhoden; Jansson, Stefan; Street, Nathaniel

    2014-01-01

    Background Evolutionary theory suggests that males and females may evolve sexually dimorphic phenotypic and biochemical traits concordant with each sex having different optimal strategies of resource investment to maximise reproductive success and fitness. Such sexual dimorphism would result in sex biased gene expression patterns in non-floral organs for autosomal genes associated with the control and development of such phenotypic traits. Results We examined morphological, biochemical and he...

  15. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    Science.gov (United States)

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa

    2016-08-01

    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  16. Impact du stress hydrique sur le fonctionnement hydraulique foliaire du peuplier Populus tremula x alba

    OpenAIRE

    Daaboul, Philippe

    2015-01-01

    Afin d’aborder l’impact du stress hydrique sur le fonctionnement hydraulique foliaire, des plants de Populus tremula x alba ont été soumis à un stress hydrique modéré ou sévère pendant une semaine par ajout de PEG dans la solution nutritive. La mesure de paramètres écophysiologiques et moléculaires tissus spécifiques a permis de dégager plusieurs tendances sur la caractérisation de l’influence du stress. Les deux types de stress n’ont que peu d’impact sur la croissance et la capacité de synth...

  17. Populations of aspen (Populus tremuloides Michx.) with different evolutionary histories differ in their climate occupancy.

    Science.gov (United States)

    Greer, Burke T; Still, Christopher; Howe, Glenn T; Tague, Christina; Roberts, Dar A

    2016-05-01

    Quaking aspens (Populus tremuloides Michx.) are found in diverse habitats throughout North America. While the biogeography of aspens' distribution has been documented, the drivers of the phenotypic diversity of aspen are still being explored. In our study, we examined differences in climate between northern and southwestern populations of aspen, finding large-scale differences between the populations. Our results suggest that northern and southwestern populations live in distinct climates and support the inclusion of genetic and phenotypic data with species distribution modeling for predicting aspens' distribution. PMID:27217950

  18. Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny.

    Science.gov (United States)

    Aasamaa, Krõõt; Niinemets, Ulo; Sõber, Anu

    2005-11-01

    Leaf hydraulic conductance (K(leaf)) and several characteristics of hydraulic architecture and physiology were measured during the first 10 weeks of leaf ontogeny in Populus tremula L. saplings growing under control, mild water deficit or elevated temperature conditions. During the initial 3 weeks of leaf ontogeny, most measured characteristics rapidly increased. Thereafter, a gradual decrease in K(leaf) was correlated with a decrease in leaf osmotic potential under all conditions, and with increases in leaf dry mass per area and bulk modulus of elasticity under mild water deficit and control conditions. From about Week 3 onward, K(leaf) was 33% lower in trees subjected to mild water deficit and 33% higher in trees held at an elevated temperature relative to control trees. Mild water deficit and elevated temperature treatment had significant and opposite effects on most of the other characteristics measured. The ontogenetic maximum in K(leaf) was correlated positively with the width of xylem conduits in the midrib, but negatively with the overall width of the midrib xylem, number of lateral ribs, leaf dry mass per area and bulk modulus of elasticity. The ontogenetic maximum in K(leaf) was also correlated positively with the proportion of intercellular spaces and leaf osmotic potential, but negatively with leaf thickness, volume of mesophyll cells and epidermis and number of cells per total mesophyll cell volume, the closest relationships being between leaf osmotic potential and number of cells per total mesophyll cell volume. It was concluded that differences in protoplast traits are more important than differences in xylem or parenchymal cell wall traits in determining the variability in K(leaf) among leaves growing under different environmental conditions. PMID:16105808

  19. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    OpenAIRE

    Callahan, Colin M.; Rowe, Carol A.; Ryel, Ronald J.; Shaw, John D.; Madritch, Michael D.; Mock, Karen E.

    2013-01-01

    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns o...

  20. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    Science.gov (United States)

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  1. Response of Populus x canescens (Populus tremula x alba) to high concentration of NaCl stress

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; PENG Zhen-hua

    2006-01-01

    Populus x canescens was cultivated on solid substrate and treated by salt (150 mM NaCl). The growth parametersincluding new leaf formation, height increment, diameter at the base increment, fresh and dry mass of leaf, stem, coarse root, and fine root were determined. The nutrient elements in leaves of samples under salt stress and the control, and the chlorophyll fluorescence of plants separated dark and light, initial fluorescence (Fo), and maximum fluorescence (Fm) were measured. Results showed that 150 mM NaCl treatment resulted in growth reduction of Populus x canescens. Nutrient element contents in the foliage of plants under salt stress were different from that of control. The foliar N-concentrations of plants under salt stress were not affected. Contents of Na under salt stress were 120 times as much as that under control. However, contents of S, K, P, Ca, Mg, Fe, Mn under salt stress were less than that under control. Salt stress caused damage in the PSII reaction centers, i.e. photo-inhibition couldn't be repaired under dark situation. The yield of chlorophyll fluorescence showed that several parameters associated with PSII functions, e.g. Fv/Fo, Fv/Fm were not influenced at the first stage of salt stress treatment. However, after a period of time, PSII functions were significantly inhibited, which led to the decrease of carbon assimilation. These results suggest that salt stress (150 mM NaCl) did not affect photosynthetic chlorophyll fluorescence of Populus x canescens immediately. After four day of salt stress, PSII reaction centres were seriously damaged during photo-inhibition.

  2. Effect of aluminium toxicity on the development of poplar (Populus tremula L. x P. alba L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    Krystyna Bojarczuk

    2014-02-01

    Full Text Available Adventitious bud cultures were established using vegetative buds from selected clones of poplar (Populus tremula L. x P. alba L. as initial explants. For multiplication of shoots a modified Murashige and Skoog medium (MS was used. Aluminium salts (aluminium sulphate and aluminium chloride were added to the media. It was found that the pH of the medium had no effect on the development of cultures at low concentrations of nutrients (1/2 or 1/4 MS. Low concentrations of aluminium (Al 25mg•dm-3 supplied as aluminium sulphate, Al 15 mg•dm-3 as aluminium chloride had no inhibitory effect on shoot development but decreased regeneration of adventitious roots. High concentrations of aluminium inhibited the development of shoots and roots, especially in a medium at pH 4.5. Microcuttings rooted in the highest percentage and formed the strongest rooting system on 1/4 strength MS medium at pH 4.5. It was found that there was no difference between the rooting of shoots excised from cultures cultivated with or without A1 in this medium at pH 5.5.

  3. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4).

    Science.gov (United States)

    Coleman, Heather D; Cánovas, Francisco M; Man, Huimin; Kirby, Edward G; Mansfield, Shawn D

    2012-09-01

    Hybrid poplar (Populus tremula X P. alba) genetically engineered to express the pine cytosolic glutamine synthetase gene (GS1a) has been previously shown to display desirable field performance characteristics, including enhancements in growth and nitrogen use efficiency. Analysis of wood samples from a 3-year-old field trial of three independently transformed GS1a transgenic hybrid poplar lines revealed that, when compared with wild-type controls, ectopic expression of GS1a resulted in alterations in wood properties and wood chemistry. Included were significant enhancements in wood fibre length, wood density, microfibre angle, per cent syringyl lignin and elevated concentrations of wood sugars, specifically glucose, galactose, mannose and xylose. Total extractive content and acid-insoluble lignin were significantly reduced in wood of GS1a transgenics when compared with wild-type trees. Together, these cell wall characteristics resulted in improved wood pulping attributes, including improved lignin solubilization with no concurrent decrease in yield. Trees with increased GS1a expression have improved characteristics for pulp and paper production and hold potential as a feedstock for biofuels production. PMID:22672155

  4. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories.

    Science.gov (United States)

    Randriamanana, Tendry R; Nybakken, Line; Lavola, Anu; Aphalo, Pedro J; Nissinen, Katri; Julkunen-Tiitto, Riitta

    2014-05-01

    Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs. PMID:24852570

  5. Hydraulic conductivity and aquaporin transcription in roots of trembling aspen (Populus tremuloides) seedlings colonized by Laccaria bicolor.

    Science.gov (United States)

    Xu, Hao; Cooke, Janice E K; Kemppainen, Minna; Pardo, Alejandro G; Zwiazek, Janusz J

    2016-07-01

    Ectomycorrhizal fungi have been reported to increase root hydraulic conductivity (L pr) by altering apoplastic and plasma membrane intrinsic protein (PIP)-mediated cell-to-cell water transport pathways in associated roots, or to have little effect on root water transport, depending on the interacting species and imposed stresses. In this study, we investigated the water transport properties and PIP transcription in roots of aspen (Populus tremuloides) seedlings colonized by the wild-type strain of Laccaria bicolor and by strains overexpressing a major fungal water-transporting aquaporin JQ585595. Inoculation of aspen seedlings with L. bicolor resulted in about 30 % colonization rate of root tips, which developed dense mantle and the Hartig net that was restricted in the modified root epidermis. Transcript abundance of the aspen aquaporins PIP1;2, PIP2;1, and PIP2;2 decreased in colonized root tips. Root colonization by JQ585595-overexpressing strains had no significant impact on seedling shoot water potentials, gas exchange, or dry mass; however, it led to further decrease in transcript abundance of PIP1;2 and PIP2;3 and the significantly lower L pr than in non-inoculated roots. These results, taken together with our previous study that showed enhanced root water hydraulics of L. bicolor-colonized white spruce (Picea glauca), suggest that the impact of L. bicolor on root hydraulics varies by the ectomycorrhiza-associated tree species. PMID:26861480

  6. Wood Quality and Growth Characterization across Intra- and Inter-Specific Hybrid Aspen Clones

    Directory of Open Access Journals (Sweden)

    Shawn D. Mansfield

    2013-09-01

    Full Text Available Trembling aspen (Populus tremuloides Michx. is one of the most abundant poplar species in North America; it is native, displays substantial breadth in distribution inhabiting several geographical and climatic ecoregions, is notable for its rapid growth, and is ecologically and economically important. As the demand for raw material continues to increase rapidly, there is a pressing need to improve both tree quality and growth rates via breeding efforts. Hybridization is considered one of the most promising options to simultaneously accelerate these tree characteristics, as it takes advantage of heterosis. Two aspen species showing particular promise for hybridization with trembling aspen are European aspen (P. tremula and Chinese aspen (P. davidiana because their native climates are similar to that of P. tremuloides and are also very easy to hybridize. In 2003, aspen clones were planted in Athabasca, Alberta from the following species crosses: open pollinated (OP P. tremuloides (NN, OP P. davidiana (CC, P. tremula × P. tremula (EE, P. tremula × P. tremuloides (EN, and P. tremuloides × P. davidiana (CN. In November 2010, growth measurements and core samples were taken from seven-year field grown clones. Comparisons of the mean growth and cell wall traits were made between crosses using generalized linear model least squares means tests for stem volume, fiber length, fiber width, coarseness, wood density, microfibril angle, total cell wall carbohydrate and lignin content, and lignin composition. The results clearly indicated that the inter-specific crosses offer a means to breed for more desirable wood characteristics than the intra-specific Populus spp. crosses.

  7. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Justin M., E-mail: jmcgrath@illinois.ed [Department of Plant Biology, University of Illinois, Urbana-Champaign, 190 ERML, 1201 W. Gregory Drive, Urbana, IL 61801 (United States); Karnosky, David F., E-mail: karnosky@mtu.ed [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Ainsworth, Elizabeth A., E-mail: lisa.ainsworth@ars.usda.go [Department of Plant Biology, University of Illinois, Urbana-Champaign, 190 ERML, 1201 W. Gregory Drive, Urbana, IL 61801 (United States); USDA ARS Photosynthesis Research Unit, 147 ERML, 1201 W. Gregory Drive, Urbana, IL 61801 (United States)

    2010-04-15

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO{sub 2}]) and elevated ozone concentration ([O{sub 3}]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO{sub 2}] and [O{sub 3}] predicted for approx2050. The responses of two clones were compared during the first month of spring leaf out when CO{sub 2} fumigation had begun, but O{sub 3} fumigation had not. Trees in elevated [CO{sub 2}] plots showed a stimulation of leaf area index (36%), while trees in elevated [O{sub 3}] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO{sub 2}], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO{sub 2}]; however, the two clones responded differently to long-term growth at elevated [O{sub 3}]. The O{sub 3}-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O{sub 3}] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O{sub 3}] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O{sub 3}], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. - Spring leaf flush is stimulated by elevated [CO{sub 2}] and suppressed by elevated [O{sub 3}] in aspen (Populus tremuloides).

  8. Fast growing aspens in the development of a plant micropropagation system based on plant-produced ethylene action

    International Nuclear Information System (INIS)

    Representatives of the genus Populus (poplars), such as Populus tremula L. (European aspen) and its fast-growing hybrids, are recognized as being among the most suitable tree species for short rotation coppicing in Northern Europe. Several technologies have been developed for fast propagation of selected aspen genotypes, including laboratory (in vitro) micropropagation, which is usually based on the action of exogenous plant hormones. Seeking to minimize the use of the latter, the present study was designed to test if the conditions suitable for increased accumulation of plant-produced gas, including the gaseous plant hormone ethylene, inside a culture vessel could contribute to commercially desirable changes in aspen development. Shoot cultures of several European and hybrid (Populus tremuloides Michx. × P. tremula) aspen genotypes were studied using two different types of culture vessels: tightly sealed Petri dishes (15 × 54 mm) designed to provide restricted gas exchange (RGE) conditions, and capped (but not sealed) test tubes (150 × 18 mm) providing control conditions. Under RGE conditions, not only the positive impact of the ethylene precursors 1-aminocyclopropane-1-carboxylic-acid (ACC) and ethephon on shoot proliferation was demonstrated but also a several-fold increase, compared to the control conditions, in the mean shoot number per explant was recorded even on the hormone-free nutrient medium. Moreover, the shoots developed under RGE conditions were distinguished by superior rooting ability in the subsequent culture. These results suggest that a plant micropropagation system based on the action of plant-produced ethylene rather than of exogenous hormones is possible. -- Highlights: ► Aspen in vitro cultures were grown in different vessels. ► Small-volume vessels were used for restriction of gas exchange. ► Aspen explants produced most shoots in small-volume vessels. ► Shoot proliferation was increased due to explant response to ethylene.

  9. Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae).

    Science.gov (United States)

    Breen, Amy L; Glenn, Elise; Yeager, Adam; Olson, Matthew S

    2009-01-01

    Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P < 0.001) and among populations (F(ST) = 0.256, P < 0.001). These results suggest that geographic or taxonomic factors are important for understanding patterns of variation throughout the genus Populus. Our findings have the potential to aid in the design of sampling regimes for conservation and breeding stock and contribute to historical inferences regarding the factors that shaped the genetic diversity of boreal plant species. PMID:19228296

  10. Tree-ring Width Chronology of Populus tremula and Its Relationship with the Weather in Changbai Mountain of Northeastern China%长白山山杨年轮年表及其与气候变化的关系

    Institute of Scientific and Technical Information of China (English)

    王雨茜; 高露双; 赵秀海

    2013-01-01

    以长白山自然保护区内设立面积为1 hm2的固定样地内山杨为主要研究对象,介绍了使用RESISTOGRAPH树木针测仪获取年轮宽度的过程,并使用COFECHA对获取的年轮宽度进行的交叉定年和控制检验.结果表明,获得的山杨宽度年表轮宽指数与该地区月平均气温达到显著相关(P<0.05),生长季气温与树轮径向宽度正相关性显著,从而影响了山杨的生长,冬季低温则制约树木的生长,当年生长季前4月份的温度为树木萌发需要的积温提供基础;从山杨宽度年表轮宽指数与该地区月降水量的关系可看出,树木生长季的降水量对树木生长产生一定影响,其中上一年9月份由于降水的减少使其与树轮宽度表现出显著负相关,而秋冬季节降水量的增加可促进下一年树木径向生长.%Populus tremula in 1 hm2 fixed sample plot in the Changbai Mountain was investigated to describe the process of obtaining the width by using Rinntech RESISTOGRAPH,and test the cross dating and quality control of tree-ring measurements by COFECHA.The results indicate that the chronology index in the width of P.tremula has significant correlation with the average monthly temperature (P<0.05).In the growing season,there is a strong positive correlation between the radial growth and temperature,and the temperature can influence the growth of P.tremula.But in winter the low temperature restricts the growth,while the temperature in April provides the necessary foundation in tree growth.Based on the relationship with the chronology index of the monthly precipitation,the amount of precipitation has some effect on the tree growth in the growing season.Especially in September,there is a strong negative correlation between the precipitation and the chronology index of the width because of the little rain in the month,while the precipitation in winter can promote the width growth.

  11. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.

    Science.gov (United States)

    Wang, Haihai; Wang, Cuiting; Liu, Hua; Tang, Renjie; Zhang, Hongxia

    2011-11-01

    Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding. PMID:21717184

  12. Pre- and Post-Harvest Carbon Dioxide Fluxes from an Upland Boreal Aspen (Populus tremuloides) Forest in Western Boreal Plain, Alberta, Canada

    Science.gov (United States)

    Giroux, Kayla

    The Utikuma Region Study Area (URSA) is located in north-central Alberta, Canada, in a region where aspen (Populus tremuloides) dominate the upland vegetation of the Western Boreal Plain Due to the heterogeneity of the surficial geology as well as the sub-humid climate where the water balance is dominated by evapotranspiration, the carbon balance across this landscape is highly variable. Moreover, the upland aspen regions represent significant stores of carbon. More recently, aspen stands have become valuable commercial resources for pulp and paper processing. These stands are harvested through a clear cutting process and are generally left to regenerate on their own, a process which occurs rapidly in clonal species like aspen. Since clonal species establish very quickly following harvest, information on the key ecohydrological controls on stand carbon dioxide (CO2) exchange from the years immediately following harvest are essential to understand the successional trajectory. However, most information currently available on these interactions are obtained several years following a disturbance. Thus, to determine the effects of harvest on aspen regeneration and productivity, ecosystem level fluxes of CO2 three years before and three years after timber harvest were analyzed. Prior to harvest, the ecosystem sequestered 1216 to 1286 g CO2 m-2period-1 over the growing season. Immediately after harvest, the ecosystem became a significant source of CO2 ranging from -874 to -1183 g CO2 m -2period-1, while the second growing season ranged from -233 to -577 g CO2 m-2period-1. The third growing season resulted in a net sink (76 g CO2 m -2period-1) over the same period, but if extrapolated over the whole year, the ecosystem would remain a source of carbon. The magnitude of Gross Ecosystem Productivity (GEP) returned pre-harvest range within two growing seasons. Ecosystem respiration (RE), on the other hand, increased year over year after harvest had taken place. Forest floor

  13. Comparative nucleotide diversity across North American and European populus species.

    Science.gov (United States)

    Ismail, Mohamed; Soolanayakanahally, Raju Y; Ingvarsson, Pär K; Guy, Robert D; Jansson, Stefan; Silim, Salim N; El-Kassaby, Yousry A

    2012-06-01

    Nucleotide polymorphisms in two North American balsam poplars (Populus trichocarpa Torr. & Gray and P. balsamifera L.; section Tacamahaca), and one Eurasian aspen (P. tremula L.; section Populus) were compared using nine loci involved in defense, stress response, photoperiodism, freezing tolerance, and housekeeping. Nucleotide diversity varied among species and was highest for P. tremula (θ(w) = 0.005, π(T) = 0.007) as compared to P. balsamifera (θ(w) = 0.004, π(T) = 0.005) or P. trichocarpa (θ(w) = 0.002, π(T) = 0.003). Across species, the defense and the stress response loci accounted for the majority of the observed level of nucleotide diversity. In general, the studied loci did not deviate from neutral expectation either at the individual locus (non-significant normalized Fay and Wu's H) or at the multi-locus level (non-significant HKA test). Using molecular clock analysis, section Tacamahaca probably shared a common ancestor with section Populus approximately 4.5 million year ago. Divergence between the two closely related balsam poplars was about 0.8 million years ago, a pattern consistent with an isolation-with-migration (IM) model. As expected, P. tremula showed a five-fold higher substitution rate (2 × 10(-8) substitution/site/year) compared to the North American species (0.4 × 10(-8) substitution/site/year), probably reflecting its complex demographic history. Linkage disequilibrium (LD) varied among species with a more rapid decay in the North American species (balsam poplar species likely reflects the recent time of their divergence. PMID:22562720

  14. Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction

    OpenAIRE

    Jokipii, Soile; Häggman, Hely; Brader, Günter; Kallio, Pauli T.; Niemi, Karoliina

    2008-01-01

    Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremula×tremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both ...

  15. The efficacy of six elite isolates of the fungus Chondrostereum purpureum against the sprouting of European aspen.

    Science.gov (United States)

    Hamberg, Leena; Hantula, Jarkko

    2016-04-15

    The sprouting of broad-leaved trees after cutting is problematic in forest regeneration areas, along roads and railways, under electric power and above gas pipe lines. In Finland, one of the most difficult species to control in these areas is the European aspen (Populus tremula), which produces both stump sprouts and root suckers after saplings have been cut. In this study, we investigated whether a decay fungus of broad-leaved trees, Chondrostereum purpureum, could be used as a biological control agent against aspen sprouting. The efficacy of six elite strains of C. purpureum (improved earlier in a breeding process) was investigated on aspen for three years. The most efficient C. purpureum strain, R53, tested earlier on birch (Betula pendula and B. pubescens), was efficient in causing mortality of aspen stumps and preventing the development of root suckers. With this strain, stump mortality was 78%, while significantly lower in control stumps which were cut only (47%). Aspen trees in the vicinity of the treatments (within a 10 m radius around each sapling) decreased the efficacy of C. purpureum. This study shows that the decay fungus C. purpureum can successfully be used in the sprout control of aspen saplings. PMID:26899306

  16. DECAY RESISTANCE AND PHYSICAL PROPERTIES OF OIL HEAT TREATED ASPEN WOOD

    Directory of Open Access Journals (Sweden)

    Behzad Bazyar

    2011-12-01

    Full Text Available The decay resistance of oil-heat treated aspen wood (Populus tremula l. against white rot fungi (Coriolus versicolor and brown rot fungi (Coniophora puteana was investigated. Three different temperature stages and two time levels for oil heat treatment for the selection of optimum conditions were determined. Linseed oil as a heating medium was used. The mass loss of treated samples that were exposed to both fungi was significantly lower than that of the control samples. Results also showed improvement in dimensional stability after oil heat treatment. Decay resistance and dimensional stability of aspen wood were increased significantly with temperature increasing, but time seemed to have no effect on those properties. Oil heat treatment is a suitable method to improve decay resistance of aspen wood as it reduced the mass loss by 71% and 77% against Coriolus versicolor and Coniophora puteana compared with control samples, respectively. On the other hand, oil heat treatment improved the dimensional stability by about 20.5%.

  17. Bioconcentration of zinc and cadmium in ectomycorrhizal fungi and associated aspen trees as affected by level of pollution

    International Nuclear Information System (INIS)

    Concentrations of Zn and Cd were measured in fruitbodies of ectomycorrhizal (ECM) fungi and leaves of co-occurring accumulator aspen. Samples were taken on three metal-polluted sites and one control site. Fungal bioconcentration factors (BCF = fruitbody concentration: soil concentration) were calculated on the basis of total metal concentrations in surface soil horizons (BCFtot) and NH4NO3-extractable metal concentrations in mineral soil (BCFlab). When plotted on log-log scale, values of BCF decreased linearly with increasing soil metal concentrations. BCFlab for both Zn and Cd described the data more closely than BCFtot. Fungal genera differed in ZnBCF but not in CdBCF. The information on differences between fungi with respect to their predominant occurrence in different soil horizons did not improve relations of BCF with soil metal concentrations. Aspen trees accumulated Zn and Cd to similar concentrations as the ECM fungi. Apparently, the fungi did not act as an effective barrier against aspen metal uptake by retaining the metals. - Populus tremula and associated ectomycorrhizal fungi accumulate zinc and cadmium to similar concentrations

  18. Aspen biology, community classification, and management in the Blue Mountains

    OpenAIRE

    Swanson, David K; Schmitt, Craig L; Shirley, Diane M; Erickson, Vicky; Schuetz, Kenneth J; Tatum, Michael L; Powell, David C

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a discussion of aspen conservation and management techniques such as fencing, conifer removal, and artificial propagation. Local data on bird use of as...

  19. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    Directory of Open Access Journals (Sweden)

    Anna Oldén

    Full Text Available Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L. retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old

  20. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. PMID:25399006

  1. Aspen Delineation - Aspen Delineation Project [ds362

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands, where aspen assessment data was gathered. Aspen assessment information corresponding to this polygon layer can...

  2. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  3. Parameter Changes Which Characterize the Wear of the Cutting Tool in the Milling Process of Aspen Wood

    Directory of Open Access Journals (Sweden)

    Andis ĀBELE

    2012-09-01

    Full Text Available The aim of the paper is to determine changesof parameters (cutting power, roughness of woodensurface and rounding of cutting edge whichcharacterize the wear of the cutting tool in the millingprocess of aspen wood (Populus tremula,depending on the rake angle of the cutting tool.The milling process was performed by meansof a computer numerical control milling machine andtwo cutterheads with a rake angle of the fixed cutterknife adjusted at 100, 150, 200 and 300. The cuttersmade of high speed steel and highly alloyed toolsteel. After reaching the definite length of the cuttingtrajectory, the cutting power and the roughness ofthe processed wood surface were measured, as wellas replicates of the cutting edge, by pressing it inlead sheet.By milling aspen wood with highly alloyed toolsteel cutter knives at rake angle of cutter 10º, theroughness of the processed wooden surface beganincreasing after 44 000m length of cutting trajectory,which corresponds to a cutting time of 15 hours.

  4. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees

    Energy Technology Data Exchange (ETDEWEB)

    Potkar, Rewati; Recla, Jill [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Busov, Victor, E-mail: vbusov@mtu.edu [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2013-02-15

    Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.

  5. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong; Talts, Eero

    2015-12-01

    Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. PMID:26037962

  6. Different growth strategies determine the carbon gain and productivity of aspen collectives to be used in short-rotation plantations

    International Nuclear Information System (INIS)

    Populus tremula is a favoured tree species in short-rotation forestry with a recognised large intraspecific variation in productivity. We compared the growth potential of 1-yr-old saplings of four Central European aspen collectives with different climate adaptation on a low-fertility site and searched for growth-determining physiological and morphological traits and their dependence on genetic constitution. Among the 35 investigated traits were photosynthetic capacity and mean assimilation rate, quantum yield and carboxylation efficiency, leaf water potential, leaf phaenology and the ratio of leaves lost to leaves produced (LP ratio), leaf size and total leaf area, axes length growth and canopy carbon gain as an estimate of productivity. The collectives differed by more than 30% in cumulative carbon gain with a large genotype effect, while mean assimilation rate and most photosynthetic and water status traits showed a relatively small intraspecific variation with no significant influence on the variation in C gain. The timing of the beginning of net leaf loss (leaf abscission > leaf production) in August differed between the four collectives and resulted in different maximum leaf areas and LP ratios, which were identified as key factors controlling C gain. Mean assimilation rate, though not related to cumulative C gain, was positively correlated with the light, CO2 and water use efficiencies of photosynthesis. We conclude that genotype selection for high-yielding aspen in short-rotation forestry at low-fertility sites should focus on the parameters leaf phaenology, LP ratio at the end of the growing season, and the resulting total leaf area as key traits.

  7. Restoring Aspen Riparian Stands With Beaver on the Northern Yellowstone Winter Range

    OpenAIRE

    McColley, Samuel D; Tyers, Dan B; Sowell, Bok F

    2011-01-01

    Aspen (Populus tremuloides) on the Gardiner Ranger District, Gallatin National Forest, have declined over the last half-century. In an attempt to reverse this trend, beaver (Castor canadensis) were reintroduced in Eagle Creek in 1991. In 2005, we assessed the long-term effects of beaver on aspen stands and the associated riparian area in the Eagle Creek drainage. Aspen recovery was estimated by comparing vegetative changes among control sites with (n = 5), active beaver sites (n = 6), sites a...

  8. Coniferyl benzoate in quaking aspen A ruffed grouse feeding deterrent.

    Science.gov (United States)

    Jakubas, W J; Gullion, G W

    1990-04-01

    Quaking aspen (Populus tremuloides Michx.) staminate flower buds and catkins are important food resources for ruffed grouse (Bonasa umbellus); however, ruffed grouse select only certain quaking aspen to feed upon. Earlier studies indicate that the primary difference between quaking aspen that ruffed grouse feed upon and those not used is the level of coniferyl benzoate in the flower buds. Bioassays show that coniferyl benzoate is a feeding deterrent for ruffed grouse; its effect on ruffed grouse after ingestion has not been tested. Possible physiological effects, based on the chemical properties of coniferyl benzoate and its oxidation products, include inhibition of protein digestion, toxic effects, and antiestrogenic effects. PMID:24263713

  9. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

    Science.gov (United States)

    Rasulov, Bahtijor; Talts, Eero; Kännaste, Astrid; Niinemets, Ülo

    2015-06-01

    Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux. PMID:25926480

  10. Polyploidy in aspen alters plant physiology and drought sensitivity

    Science.gov (United States)

    Greer, B.; Still, C. J.; Brooks, J. R.; Meinzer, F. C.

    2015-12-01

    Polyploids of quaking aspen (Populus tremuloides) may be better suited to dry climatic conditions than diploids. However, the expression of diploid and polyploid functional traits, including water use efficiency, an important component of drought avoidance and tolerance, are not well understood in quaking aspen. In this study diploid and triploid aspen clones' leaf, ramet, and stand functional traits were measured near the Rocky Mountain Biological Laboratory in Gothic, Colorado. The physiology of diploid and triploid aspen, including leaf size, chlorophyll content, stomatal size and density and stomatal conductance, as well as growth rates and carbon isotope discrimination in response to climate (measured in tree rings), were found to be significantly different between ploidy levels. These findings demonstrate different sensitivities of diploid and triploid clones to drought related climate stressors which may impact strategies for aspen forest management and conservation.

  11. Aspen Characteristics - Aspen Delineation Project [ds361

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Lake Tahoe Basin Management Unit (Placer and...

  12. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera).

    Science.gov (United States)

    Olson, Matthew S; Robertson, Amanda L; Takebayashi, Naoki; Silim, Salim; Schroeder, William R; Tiffin, Peter

    2010-04-01

    *Current perceptions that poplars have high levels of nucleotide variation, large effective population sizes, and rapid decay of linkage disequilibrium are based primarily on studies from one poplar species, Populus tremula. *We analysed 590 gene fragments (average length 565 bp) from each of 15 individuals from different populations from throughout the range of Populus balsamifera. *Nucleotide diversity (theta(total) = 0.0028, pi = 0.0027) was low compared with other trees and model agricultural systems. Patterns of nucleotide diversity and site frequency spectra were consistent with purifying selection on replacement and intron sites. When averaged across all loci we found no evidence for decay of linkage disequilibrium across 750 bp, consistent with the low estimates of the scaled recombination parameter, rho = 0.0092. *Compared with P. tremula, a well studied congener with a similar distribution, P. balsamifera has low diversity and low effective recombination, both of which indicate a lower effective population size in P. balsamifera. Patterns of diversity and linkage indicate that there is considerable variation in population genomic patterns among poplar species and unlike P. tremula, association mapping techniques in balsam poplar should consider sampling single nucleotide polymorphisms (SNPs) at well-spaced intervals. PMID:20122131

  13. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen.

    Science.gov (United States)

    Maja, Mengistu M; Kasurinen, Anne; Holopainen, Toini; Julkunen-Tiitto, Riitta; Holopainen, Jarmo K

    2016-03-15

    Different environmental stress factors often occur together but their combined effects on plant secondary metabolism are seldom considered. We studied the effect of enhanced ultraviolet (UV-B) (31% increase) radiation and temperature (ambient +2 °C) singly and in combination on gender-specific emissions of volatile organic compounds (VOCs) from 2-year-old clones of European aspen (Populus tremula L.). Plants grew in 36 experimental plots (6 replicates for Control, UV-A, UV-B, T, UV-A+T and UV-B+T treatments), in an experimental field. VOCs emitted from shoots were sampled from two (1 male and 1 female) randomly selected saplings (total of 72 saplings), per plot on two sampling occasions (June and July) in 2014. There was a significant UV-B×temperature interaction effect on emission rates of different VOCs. Isoprene emission rate was increased due to warming, but warming also modified VOC responses to both UV-A and UV-B radiation. Thus, UV-A increased isoprene emissions without warming, whereas UV-B increased emissions only in combination with warming. Warming-modified UV-A and UV-B responses were also seen in monoterpenes (MTs), sesquiterpenes (SQTs) and green leaf volatiles (GLVs). MTs showed also a UV × gender interaction effect as females had higher emission rates under UV-A and UV-B than males. UV × gender and T × gender interactions caused significant differences in VOC blend as there was more variation (more GLVs and trans-β-caryophyllene) in VOCs from female saplings compared to male saplings. VOCs from the rhizosphere were also collected from each plot in two exposure seasons, but no significant treatment effects were observed. Our results suggest that simultaneous warming and elevated-UV-radiation increase the emission of VOCs from aspen. Thus the contribution of combined environmental factors on VOC emissions may have a greater impact to the photochemical reactions in the atmosphere compared to the impact of individual factors acting alone. PMID

  14. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    Science.gov (United States)

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  15. Aspen management for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, S.; Chapman, P.B. (eds.)

    1991-01-01

    A symposium was held to discuss the management of the aspen resource for fiber and other uses, along with public concerns regarding the aspen resource. Papers were presented on aspen regeneration, the role of balsam poplar, aspen inventory, modelling aspen growth and yield, aspen harvesting, aspen management and the environment, integrated resource management, wildlife and aspen management, genetic improvement of poplars, aspen stand thinning, sustainable development of the aspen resource, private land forestry, and the effect of climate change on aspen in Canada. A separate abstract has been prepared for one paper from this symposium.

  16. Spring frost and decay fungi are implicated in suppressing aspen re-growth following partial cleaning in juvenile stands

    OpenAIRE

    Wolken, Jane M; Lieffers, Victor J.; Landhausser, Simon M; Mulak, Tara

    2009-01-01

    Aspen (Populus tremuloides Michx.) regenerates at high densities following manual cleaning. Ten-year-old stands located near Lac La Biche and Peace River, Alberta were manually cleaned to three densities (0, 500 or 1 500 stems ha−1 ) at three times (bud set, dormancy or bud flush) to test the hypothesis that maintaining residual aspen reduces regeneration. At Lac La Biche up to 98% of the aspen regeneration died in the partially-cleaned plots compared to 67% at Peace River five years post-tre...

  17. Comparative physiology of allopatric Populus species: Geographic clines in photosynthesis, height growth and carbon isotope discrimination in common gardens

    Directory of Open Access Journals (Sweden)

    Raju Yaranna Soolanayakanahally

    2015-07-01

    Full Text Available Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both P. tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A, whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06. Stomatal conductance (gs and chlorophyll content index (CCI follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C were observed for both species; but, intrinsic water-use efficiency (WUEi was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED, which was well approximated by the number of days available for free growth between bud flush and bud set. In doing so, we highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.

  18. Ruffed grouse feeding behavior and its relationship to secondary metabolites of quaking aspen flower buds.

    Science.gov (United States)

    Jakubas, W J; Gullion, G W; Clausen, T P

    1989-06-01

    Quaking aspen (Populus tremuloides Michx.) staminate flower buds and the extended catkins are primary food resources for ruffed grouse (Bonasa umbellus). Winter feeding observations indicate that ruffed grouse select specific trees or clones of quaking aspen to feed in. Flower buds and catkins of quaking aspen were analyzed for secondary compounds (tannins, alkaloids, and phenolics) that might cause ruffed grouse to avoid trees with high levels of these compounds. Coniferyl benzoate, a compound that has not been previously found in quaking aspen, exists in significantly higher concentrations in buds from trees with no feeding history as compared to ruffed grouse feeding trees. Aspen catkins were also significantly lower in coniferyl benzoate than buds from the same tree. Ruffed grouse feeding preference was not related to the tannin or total phenolic levels found in buds or catkins. Buds from feeding trees had higher protein levels than trees with no feeding history; however, catkins did not differ from buds in protein concentration. The high use of extended catkins in the spring by ruffed grouse is probably due to a lower percentage of bud scale material in the catkin as opposed to the dormant bud. Bud scales contain almost all of the nontannin phenolics in catkins and dormant buds. A feeding strategy where bud scales are avoided may exist for other bird species that feed on quaking aspen. Dormant flower buds are significantly lower in protein-precipitable tannins than catkins and differ in secondary metabolite composition from other aspen foliage. PMID:24272191

  19. Aspen Delineation - Inyo National Forest [ds366

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands where aspen assessments were collected in the Inyo National Forest, Inyo County, California. The Inyo...

  20. Aspen Delineation - Klamath National Forest [ds370

    Data.gov (United States)

    California Department of Resources — The database represents polygons of aspen stands in the Klamath National Forest, Siskiyou County, California. The Klamath National Forest Region 5 Vegetation aspen...

  1. Populus: arabidopsis for forestry. Do we need a model tree?

    Science.gov (United States)

    Taylor, Gail

    2002-12-01

    Trees are used to produce a variety of wood-based products including timber, pulp and paper. More recently, their use as a source of renewable energy has also been highlighted, as has their value for carbon mitigation within the Kyoto Protocol. Relative to food crops, the domestication of trees has only just begun; the long generation time and complex nature of juvenile and mature growth forms are contributory factors. To accelerate domestication, and to understand further some of the unique processes that occur in woody plants such as dormancy and secondary wood formation, a 'model' tree is needed. Here it is argued that Populus is rapidly becoming accepted as the 'model' woody plant and that such a 'model' tree is necessary to complement the genetic resource being developed in arabidopsis. The genus Populus (poplars, cottonwoods and aspens) contains approx. 30 species of woody plant, all found in the Northern hemisphere and exhibiting some of the fastest growth rates observed in temperate trees. Populus is fulfilling the 'model' role for a number of reasons. First, and most important, is the very recent commitment to sequence the Populus genome, a project initiated in February 2002. This will be the first woody plant to be sequenced. Other reasons include the relatively small genome size (450-550 Mbp) of Populus, the large number of molecular genetic maps and the ease of genetic transformation. Populus may also be propagated vegetatively, making mapping populations immortal and facilitating the production of large amounts of clonal material for experimentation. Hybridization occurs routinely and, in these respects, Populus has many similarities to arabidopsis. However, Populus also differs from arabidopsis in many respects, including being dioecious, which makes selfing and back-cross manipulations impossible. The long time-to-flower is also a limitation, whilst physiological and biochemical experiments are more readily conducted in Populus compared with the

  2. Quaking Aspen in the Residential-Wildland Interface: Elk Herbivory Hinders Forest Conservation

    OpenAIRE

    Paul C. Rogers; Jones, Allison; Catlin, James C; Shuler, James; Morris, Arthur; Kuhns, Michael R.

    2014-01-01

    Quaking aspen (Populus tremuloides Michx.) forests are experiencing numerous impediments across North America. In the West, recent drought, fire suppression, insects, diseases, climate trends, inappropriate management, and ungulate herbivory are impacting these high biodiversity forests. Additionally, ecological tension zones are sometimes created where the above factors intermingle with jurisdictional boundaries. The public-private land interface may result in stress to natural areas where g...

  3. Managed Mixtures of Aspen and White Spruce 21 to 25 Years after Establishment

    Directory of Open Access Journals (Sweden)

    Richard Kabzems

    2015-12-01

    Full Text Available Intimate mixtures of trembling aspen (Populus tremuloides Michx. and white spruce (Picea glauca (Moench Voss are a key feature of western Canadian boreal forests. These mixtures have the potential to produce high yields of merchantable fibre and provide numerous ecological services. Achievement of this potential has been difficult, and often expensive, to realize as a regeneration goal in managed forests. We report 21 to 25 year results of managed mixtures on two study sites where the white spruce was planted, and the density of aspen natural regeneration manipulated within five years of the stand initiation disturbance. On both sites, white spruce mortality did not increase with increasing aspen density. While height and diameter growth of white spruce declined with increasing aspen density, the effect was not entirely consistent across the two sites. Abrasion from aspen branches was the most common source of damage to spruce crowns. Mixed stands had greater merchantable volume production than pure spruce stands based on model projections. Application of aspen harvest at year 60, while protecting the spruce component for a second harvest entry at year 90, was projected to optimize combined yield for the mixedwood stands.

  4. The Populus Superoxide Dismutase Gene Family and Its Responses to Drought Stress in Transgenic Poplar Overexpressing a Pine Cytosolic Glutamine Synthetase (GS1a)

    OpenAIRE

    Molina-Rueda, Juan Jesús; Tsai, Chung Jui; Kirby, Edward G.

    2013-01-01

    Background Glutamine synthetase (GS) plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD) family were reciprocally regulated in GS poplar when...

  5. The role of phytochrome A and gibberellins in growth under long and short day conditions: Studies in hybrid aspen

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, M.E. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Genetics and Plant Physiology

    2000-07-01

    This thesis addresses questions concerning the regulation of growth and, specifically, the cessation of growth in response to short days in deciduous tree species. The model tree used in the studies was hybrid aspen (Populus tremula L. x P. tremuloides Michx.). We have exploited the possibility of transforming this species to modulate the level of expression of target genes using over-expression and antisense techniques. The target genes in the studies were the photoreceptor phytochrome A (phyA) and gibberellin 20-oxidase (GA 20-oxidase), the latter being a highly regulated enzyme involved in the biosynthesis of gibberellins (GAs). The photoreceptor phyA has been implicated in photoperiodic regulation of growth, while GAs may regulate the physiological response further downstream. The endogenous expression of these genes has been investigated in parallel with studies of various plants with ectopic and reduced levels of expression. The main focus has been on the early stages of induction of growth cessation and its physiological and molecular mechanisms. Studies of hybrid aspen plants with an increased or reduced expression of phyA, show this receptor to mediate the photoperiodic regulation of growth. Plants with ectopic expression could not stop growing despite drastically shortened photoperiods, while the antisense plants showed the reverse phenotype, with a higher sensitivity resulting in earlier cessation of growth. The role of GAs in growth inhibition was also addressed using plants with a reduction in GA levels. These plants showed early cessation of growth and dormancy, and thus an increased sensitivity toward daylength. Conversely, plants with increased rates of GA biosynthesis showed increased growth and stopped growing much later. Furthermore, increases in GA biosynthesis, resulting in high levels of GAs have a major impact on growth. Plants with high GA levels have increased elongation and diameter growth, due to higher rates of cell production in the

  6. Annotated host fungus index for populus in British Columbia. FRDA report No. 222

    Energy Technology Data Exchange (ETDEWEB)

    Callan, B.E.

    1994-12-31

    This index lists all documented fungal associations with either living or dead native Populus in British Columbia. The first part of the index lists fungi in alphabetical order by species scientific name and includes synonyms (if any), a brief description, and the fungal association. This part arranges the fungi by host in four categories: Trembling aspen, black cottonwood, balsam poplar, and other Populus species and hybrids. The second part of the index provides cross-references from species name (arranged by taxonomic group) to the category of host.

  7. Taxonomy Icon Data: quaking aspen [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available png Populus_tremuloides_S.png Populus_tremuloides_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Po...pulus+tremuloides&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NL http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Populus+tremuloides&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Populus+tremuloides&t=NS ...

  8. Forest stand structure, productivity, and age mediate climatic effects on aspen decline

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality index to forest structure and climate in the Rocky Mountains and Intermountain Western United States. We found that forest structure explained most of the patterns in mortality indices, but that variation in growing-season vapor pressure deficit and winter precipitation over the last 20 years was important. Mortality index sensitivity to precipitation was highest in forests where aspen exhibited high densities, relative basal areas, quadratic mean diameters, and productivities, whereas sensitivity to vapor pressure deficit was highest in young forest stands. These results indicate that the effects of drought on mortality may be mediated by forest stand development, competition with encroaching conifers, and physiological vulnerabilities of large trees to drought. By examining mortality index responses to both forest structure and climate, we show that forest succession cannot be ignored in studies attempting to understand the causes and consequences of sudden aspen decline.

  9. Aspen Ecology in Rocky Mountain National Park: Age Distribution, Genetics, and the Effects of Elk Herbivory

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Yin, Tongming [ORNL

    2008-10-01

    Lack of aspen (Populus tremuloides) recruitment and canopy replacement of aspen stands that grow on the edges of grasslands on the low-elevation elk (Cervus elaphus) winter range of Rocky Mountain National Park (RMNP) in Colorado has been a cause of concern for more than 70 years (Packard, 1942; Olmsted, 1979; Stevens, 1980; Hess, 1993; R.J. Monello, T.L. Johnson, and R.G. Wright, Rocky Mountain National Park, 2006, written commun.). These aspen stands are a significant resource since they are located close to the park's road system and thus are highly visible to park visitors. Aspen communities are integral to the ecological structure of montane and subalpine landscapes because they contain high native species richness of plants, birds, and butterflies (Chong and others, 2001; Simonson and others, 2001; Chong and Stohlgren, 2007). These low-elevation, winter range stands also represent a unique component of the park's plant community diversity since most (more than 95 percent) of the park's aspen stands grow in coniferous forest, often on sheltered slopes and at higher elevations, while these winter range stands are situated on the low-elevation ecotone between the winter range grasslands and some of the park's drier coniferous forests.

  10. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.

    Science.gov (United States)

    Kauffman, Matthew J; Brodie, Jedediah F; Jules, Erik S

    2010-09-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  11. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade

    Science.gov (United States)

    Kauffman, Matthew J.; Brodie, Jedediah F.; Jules, Erik S.

    2010-01-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  12. Aspen Delineation - Lassen National Forest [ds372

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (LASSEN_NF_EAGLELAKE_PTS) collected in aspen stands in the in the Eagle...

  13. Aspen Delineation - Sierra State Parks [ds380

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (SIERRA_SP_PTS) collected in aspen stands on lands administered by the...

  14. Aspen Delineation - Plumas National Forest [ds374

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (PLUMAS_NF_PTS) collected in aspen stands in the Plumas National Forest,...

  15. Aspen Delineation - Sequoia National Forest [ds378

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (SEQUOIA_NF_PTS) collected in aspen stands in the Cannell Meadows Ranger...

  16. Aspen Fire, Arizona

    Science.gov (United States)

    2003-01-01

    On June 26, NASA's Terra satellite acquired this image of the Aspen fire burning out of control north of Tucson, AZ. As of that date, the fire had consumed more than 27,000 acres and destroyed more than 300 homes, mostly in the resort community of Summerhaven, according to news reports. These data are being used by NASA's Wildfire Response Team and the US Forest Service to assess the intensity of the burn for future remediation efforts.This image was acquired on June 26, 2003 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on Terra. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA, is the U.S. science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide

  17. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae).

    Science.gov (United States)

    Jelínková, Hana; Tremblay, Francine; Desrochers, Annie

    2009-08-01

    Trembling aspen (Populus tremuloides) is a clonal tree species, which regenerates mostly through root suckering. In spite of vegetative propagation, aspen maintains high levels of clonal diversity. We hypothesized that the maintenance of clonal diversity in this species can be facilitated by integrating different clones through natural root grafts into aspen's communal root system. To verify this hypothesis, we analyzed root systems of three pure aspen stands where clones had been delineated with the help of molecular markers. Grafting between roots was frequent regardless of their genotypes. Root system excavations revealed that many roots were still living below trees that had been dead for several years. Some of these roots had no root connections other than grafts to living ramets of different clones. The uncovered root systems did not include any unique genotypes that would not occur among stems. Nevertheless, acquiring roots of dead trees helps to maintain extensive root systems, which increases the chances of clone survival. Substantial interconnectivity within clones as well as between clones via interclonal grafts results in formation of large genetically diverse physiological units. Such a clonal structure can significantly affect interpretations of diverse ecophysiological processes in forests of trembling aspen. PMID:21628295

  18. Study of Regenerated Plants Aspen from Callus

    OpenAIRE

    G. A. PETROVA; Kalashnikova, E. A.

    2014-01-01

    This article presents the results of an experiment for obtaining healthy seed aspen by micropropagation. The studies we have obtained from callus tissue regenerated plants aspen, various different growth rate. Were obtained two types of plants: plants, characterized by rapid growth and plants, which are characterized by slow growth. The data of biochemical studies on the content of soluble phenolic compounds in plants regenerated aspen. So plants with rapid growth during the five passages, th...

  19. Aspen Characteristics - Sierra State Parks [ds379

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands on lands administrated by the Sierra District, California...

  20. Aspen Characteristics - Plumas National Forest [ds373

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Beckwourth Ranger District...

  1. Aspen Characteristics - Sequoia National Forest [ds377

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Cannell Meadows Ranger District, Sequoia National...

  2. Aspen Characteristics - Klamath National Forest [ds369

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected with known aspen stands in the Klamath National Forest, Siskiyou County,...

  3. Drought characteristics drive patterns in widespread aspen forest mortality across the western United States

    Science.gov (United States)

    Anderegg, W.; Anderegg, L.; Abatzoglou, J. T.; Berry, J. A.

    2011-12-01

    Widespread drought-induced forest mortality has been documented across the globe in the last few decades and influences land-atmosphere interactions, biodiversity, carbon sequestration, and biophysical and biogeochemical feedbacks to climate change. These rapid mortality events are currently not well-captured in current vegetation models, limiting the ability to predict them. While many studies have focused on the plant physiological mechanisms that mediate vegetation mortality, the characteristics of drought seasonality, sequence, severity and duration that drive mortality events have received much less attention. These characteristics are particularly relevant in light of changing precipitation regimes, changes to snowpack and snowmelt, and increasing temperature stress associated with climate change. We examine the characteristics of drought associated with the recent widespread mortality of trembling aspen (Populus tremuloides) across much of the western United States. We combine a regional model of watershed-level aspen mortality with in situ tissue isotopic analysis of water source to analyze the roles of drought seasonality, severity, and duration in this mortality event, including raw climate variables, derived drought indices, and variables generated by a climate envelope approach. We found that variables pertaining to spring temperatures and spring-summer water deficit, especially during the peak severity of drought, best capture regional mortality patterns, though multi-year drought variables did improve the model. Field water isotopic analysis of aspen water source over a growing season and during moderate seasonal water stress corroborate the regional model by indicating that aspen clones generally utilize surface water with little plasticity during drought stress. These results suggest that drought characteristics can play an important role in mediating widespread forest mortality and have implications for the future vulnerability of trembling aspen

  4. Aspen Delineation - El Dorado National Forest [ds364

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands, where aspen assessments were gathered in the Eldorado National Forest, Eldorado and Amador Counties,...

  5. Aspen Delineation - Klamath National Forest, EUI [ds368

    Data.gov (United States)

    California Department of Resources — The database represents delineations of known aspen stands where aspen assessments were collected in the Klamath National Forest, Siskiyou County, California. The...

  6. Effectiveness of mycorrhizal inoculation in the nursery on root colonization, growth, and nutrient uptake of aspen and balsam poplar

    Energy Technology Data Exchange (ETDEWEB)

    Quoreshi, A.M.; Khasa, D.P. [Symbiotech Research Inc. 201, 509-11 Avenue, Nisku, AB (Canada); Forest Biology Research Centre, University of Laval, Quebec (Canada)

    2008-05-15

    Aspen and balsam poplar seedlings were inoculated with six species of ectomycorrhizal fungi (Hebeloma longicaudum, Laccaria bicolor, Paxillus involutus, Pisolithus tinctorius, Rhizopogon vinicolor, and Suillus tomentosus), one species of endomycorrhizal fungus (Glomus intraradices), two species of bacteria (Agrobacterium sp. and Burkholderia cepacia), treated with a growth hormone (SR3), and co-inoculated with a combination of Paxillus and Burkholderia. The seedlings were grown in a greenhouse under three different fertility regimes. Bacterial inoculation alone did not affect seedling growth and nutrition as observed when co-inoculated with ectomycorrhizal fungus. The biomass and root collar diameter of aspen and balsam poplar were significantly increased when adequate mycorrhizas are formed and more prominent when co-inoculated with P. involutus and B. cepacia and grown at the 67% fertilizer level. Except for R. vinicolor and S. tomentosus, the other four species of ectomycorrhizal fungi and G. intraradices formed symbiotic associations with both plant species. Both ectomycorrhizal and endomycorrhizal colonization were observed at all fertilizer levels and fertilizer applications did not affect the colonization rates. Nitrogen and phosphorus concentrations were significantly improved in both aspen and balsam poplar compared with control only when co-inoculated with P. involutus and B. cepacia. However, plant net nitrogen uptake (content) increased significantly in all successful inoculation treatments and co-inoculated treatment when compared with control. These results hold promise for incorporation of inoculation of Populus sp. with appropriate mycorrhizal fungi and selected bacteria into commercial nursery system to improve the establishment of Populus in various sites. (author)

  7. Spatiotemporal distribution of essential elements through Populus leaf ontogeny.

    Science.gov (United States)

    Carvalho, Mónica R; Woll, Arthur; Niklas, Karl J

    2016-04-01

    We examined the spatiotemporal distribution and accumulation of calcium (Ca), potassium (K), and zinc (Zn) during the growth and maturation of grey poplar (Populus tremula × alba) leaves covering plastochrons 01 through 10. This period spans the sugar sink-to-source transition and requires coordinated changes of multiple core metabolic processes that likely involve alterations in essential and non-essential element distributions as tissues mature and effect a reversal in phloem flow direction. Whole-leaf elemental maps were obtained from dried specimens using micro X-ray fluorescence spectroscopy. Additional cross-sections of fresh leaves were scanned to check for tissue specificity in element accumulation. The anatomical distribution of Zn and K remains relatively consistent throughout leaf development; Ca accumulation varied across leaf developmental stages. The basipetal allocation of Ca to the leaf mesophyll matched spatially and temporally the sequence of phloem maturation, positive carbon balance, and sugar export from leaves. The accumulation of Ca likely reflects the maturation of xylem in minor veins and the enhancement of the transpiration stream. Our results independently confirm that xylem and phloem maturation are spatially and temporally coordinated with the onset of sugar export in leaves. PMID:26985054

  8. Seed yield and quality in Populus tremuloides following pollination with gamma-irradiated pollen

    International Nuclear Information System (INIS)

    A pollen mixture from three male quaking aspen (Populus tremuloides Michx.) trees was irradiated at exposures of 484, 968, 1453, 1937, 3874, 7747, and 15 494 R and used to control-pollinate cut branches from three female trees. The pollen LD50 exposure varied with the end point evaluated, ranging from 255 R for number of 50-mesh seed per catkin to 8800 R for total seeds per catkin. The mean LD50 for nine seed yield and seed quality end points was 3995 R. A significant stimulatory response in seed yield was noted at low pollen irradiation levels, particularly at the 484-R exposure. The LD100 was approached but not reached at 15 494 R. Irradiated quaking aspen pollen may be useful in breeding experiments. (author)

  9. Composition of cavity-nesting bird communities in montane aspen woodland fragments: The roles of landscape context and forest structure

    Science.gov (United States)

    Lawler, J.J.; Edwards, T.C., Jr.

    2002-01-01

    We compared cavity-nesting bird communities in aspen (Populus tremuloides) woodland fragments classified on the basis of vegetation structure (tree density) and landscape context (surrounding vegetation). We found very few cavity nesters in fragments predominantly surrounded by forests. Fragments adjacent to meadows contained more species and a greater abundance of cavity nesters. Species richness and abundance were higher in sparsely than in densely treed meadow fragments. Because secondary cavity nesters are often limited by cavity availability, we augmented natural cavities with nest boxes. Although only five boxes contained bird nests, these were all in sparse aspen fragments predominantly surrounded by meadows. However, we found 25 northern flying squirrel (Glaucomys sabrinus) nests in boxes, none of which were in sparse meadow fragments. In addition to high-lighting the importance of landscape context in avian and mammalian habitat relationships, our results suggest that predator or competitor interactions may help structure this cavity-nester community. ?? The Cooper Ornithological Society 2002.

  10. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).

    Science.gov (United States)

    Geraldes, A; Hefer, C A; Capron, A; Kolosova, N; Martinez-Nuñez, F; Soolanayakanahally, R Y; Stanton, B; Guy, R D; Mansfield, S D; Douglas, C J; Cronk, Q C B

    2015-07-01

    All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole-genome scans that the sex-associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of 'turnover' of sex-determination regions in animals. We performed whole-genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex-associated SNPs revealed this to be an XY sex-determining system. Estimated divergence times of X and Y haplotype sequences (6-7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past. PMID:25728270

  11. Aspen Characteristics - Lassen National Forest [ds371

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected in aspen stands in the in the Eagle Lake Ranger District, Lassen National...

  12. Aspen Delineation - Plumas National Forest, FRRD [ds376

    Data.gov (United States)

    California Department of Resources — The database represents delineations of aspen stands associated with stand assessment data (PLUMAS_NF_FEATHERRIVER_PTS) collected in aspen stands in the Plumas...

  13. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    Science.gov (United States)

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses. PMID:24372544

  14. New exposure-based metric approach for evaluating O(3) risk to North American aspen forests.

    Science.gov (United States)

    Percy, K E; Nosal, M; Heilman, W; Dann, T; Sober, J; Legge, A H; Karnosky, D F

    2007-06-01

    The United States and Canada currently use exposure-based metrics to protect vegetation from O(3). Using 5 years (1999-2003) of co-measured O(3), meteorology and growth response, we have developed exposure-based regression models that predict Populus tremuloides growth change within the North American ambient air quality context. The models comprised growing season fourth-highest daily maximum 8-h average O(3) concentration, growing degree days, and wind speed. They had high statistical significance, high goodness of fit, include 95% confidence intervals for tree growth change, and are simple to use. Averaged across a wide range of clonal sensitivity, historical 2001-2003 growth change over most of the 26 Mha P. tremuloides distribution was estimated to have ranged from no impact (0%) to strong negative impacts (-31%). With four aspen clones responding negatively (one responded positively) to O(3), the growing season fourth-highest daily maximum 8-h average O(3) concentration performed much better than growing season SUM06, AOT40 or maximum 1h average O(3) concentration metrics as a single indicator of aspen stem cross-sectional area growth. PMID:17140714

  15. Improving root-zone soil properties for Trembling Aspen in a reconstructed mine-site soil

    Science.gov (United States)

    Dyck, M. F.; Sabbagh, P.; Bockstette, S.; Landhäusser, S.; Pinno, B.

    2014-12-01

    Surface mining activities have significantly depleted natural tree cover, especially trembling aspen (Populus tremuloides), in the Boreal Forest and Aspen Parkland Natural Regions of Alberta. The natural soil profile is usually destroyed during these mining activities and soil and landscape reconstruction is typically the first step in the reclamation process. However, the mine tailings and overburden materials used for these new soils often become compacted during the reconstruction process because they are subjected to high amounts of traffic with heavy equipment. Compacted soils generally have low porosity and low penetrability through increased soil strength, making it difficult for roots to elongate and explore the soil. Compaction also reduces infiltration capacity and drainage, which can cause excessive runoff and soil erosion. To improve the pore size distribution and water transmission, subsoil ripping was carried out in a test plot at Genesee Prairie Mine, Alberta. Within the site, six replicates with two treatments each, unripped (compacted) and ripped (decompacted), were established with 20-m buffers between them. The main objective of this research was to characterize the effects of subsoil ripping on soil physical properties and the longevity of those effects.as well as soil water dynamics during spring snowmelt. Results showed improved bulk density, pore size distribution and water infiltration in the soil as a result of the deep ripping, but these improvements appear to be temporary.

  16. ON THE INTERACTIONS BETWEEN CELLULOSE AND XYLAN, A BIOMIMETIC SIMULATION OF THE HARDWOOD CELL WALL

    OpenAIRE

    Sofia Dammström; Lennart Salmén; Paul Gatenholm

    2009-01-01

    The plant cell wall exhibits a hierarchical structure, in which the organization of the constituents on different levels strongly affects the mechanical properties and the performance of the material. In this work, the interactions between cellulose and xylan in a model system consisting of a bacterial cellulose/glucuronoxylan (extracted from aspen, Populus tremula) have been studied and compared to that of a delignified aspen fiber material. The properties of the materials were analyzed usin...

  17. Heterozygosity, gender, and the growth-defense trade-off in quaking aspen.

    Science.gov (United States)

    Cole, Christopher T; Stevens, Michael T; Anderson, Jon E; Lindroth, Richard L

    2016-06-01

    Although plant growth is generally recognized to be influenced by allocation to defense, genetic background (e.g., inbreeding), and gender, rarely have those factors been addressed collectively. In quaking aspen (Populus tremuloides Michx.), phenolic glycosides (PGs) and condensed tannins (CTs) constitute up to 30 % of leaf dry weight. To quantify the allocation cost of this chemical defense, we measured growth, defense chemistry, and individual heterozygosity (H obs at 16 microsatellite loci) for male and female trees in both controlled and natural environments. The controlled environment consisted of 12 juvenile genets grown for 3 years in a common garden, with replication. The natural environment consisted of 51 mature genets in wild populations, from which we sampled multiple ramets (trees) per genet. Concentrations of PGs and CTs were negatively correlated. PGs were uncorrelated with growth, but CT production represented a major cost. Across the range of CT levels found in wild-grown trees, growth rates varied by 2.6-fold, such that a 10 % increase in CT concentration occurred with a 38.5 % decrease in growth. H obs had a marked effect on aspen growth: for wild trees, a 10 % increase in H obs corresponded to a 12.5 % increase in growth. In wild trees, this CT effect was significant only in females, in which reproduction seems to exacerbate the cost of defense, while the H obs effect was significant only in males. Despite the lower growth rate of low-H obs trees, their higher CT levels may improve survival, which could account for the deficit of heterozygotes repeatedly found in natural aspen populations. PMID:26886130

  18. Interactions between Bacteria And Aspen Defense Chemicals at the Phyllosphere - Herbivore Interface.

    Science.gov (United States)

    Mason, Charles J; Lowe-Power, Tiffany M; Rubert-Nason, Kennedy F; Lindroth, Richard L; Raffa, Kenneth F

    2016-03-01

    Plant- and insect-associated microorganisms encounter a diversity of allelochemicals, and require mechanisms for contending with these often deleterious and broadly-acting compounds. Trembling aspen, Populus tremuloides, contains two principal groups of defenses, phenolic glycosides (salicinoids) and condensed tannins, which differentially affect the folivorous gypsy moth, Lymantria dispar, and its gut symbionts. The bacteria genus Acinetobacter is frequently associated with both aspen foliage and gypsy moth consuming that tissue, and one isolate, Acinetobacter sp. R7-1, previously has been shown to metabolize phenolic glycosides. In this study, we aimed to characterize further interactions between this Acinetobacter isolate and aspen secondary metabolites. We assessed bacterial carbon utilization and growth in response to different concentrations of phenolic glycosides and condensed tannins. We also tested if enzyme inhibitors reduce bacterial growth and catabolism of phenolic glycosides. Acinetobacter sp. R7-1 utilized condensed tannins but not phenolic glycosides or glucose as carbon sources. Growth in nutrient-rich medium was increased by condensed tannins, but reduced by phenolic glycosides. Addition of the P450 enzyme inhibitor piperonyl butoxide increased the effects of phenolic glycosides on Acinetobacter sp. R7-1. In contrast, the esterase inhibitor S,S,S,-tributyl-phosphorotrithioate did not affect phenolic glycoside inhibition of bacterial growth. Degradation of phenolic glycosides by Acinetobacter sp. R7-1 appears to alleviate the cytotoxicity of these compounds, rather than provide an energy source. Our results further suggest this bacterium utilizes additional, complementary mechanisms to degrade antimicrobial phytochemicals. Collectively, these results provide insight into mechanisms by which microorganisms contend with their environment within the context of plant-herbivore interactions. PMID:26961755

  19. Experiential Education at Aspen High School.

    Science.gov (United States)

    Burson, George

    1981-01-01

    Aspen High School's (Colorado) Experiential Education Week, developed to provide a "real-world" experience for students from a small, mountain, tourist-oriented community, is planned by both student and faculty; the whole process encourages both self-reliant and responsible students and develops positive student-teacher and peer relationships.…

  20. Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO(2) and O(3).

    Science.gov (United States)

    Kostiainen, Katri; Kaakinen, Seija; Warsta, Elina; Kubiske, Mark E; Nelson, Neil D; Sober, Jaak; Karnosky, David F; Saranpää, Pekka; Vapaavuori, Elina

    2008-05-01

    We investigated the interactive effects of elevated concentrations of carbon dioxide ([CO(2)]) and ozone ([O(3)]) on radial growth, wood chemistry and structure of five 5-year-old trembling aspen (Populus tremuloides Michx.) clones and the wood chemistry of paper birch (Betula papyrifera Marsh.). Material for the study was collected from the Aspen FACE (free-air CO(2) enrichment) experiment in Rhinelander, WI, where the saplings had been exposed to four treatments: control, elevated [CO(2)] (560 ppm), elevated [O(3)] (1.5 x ambient) and their combination for five growing seasons. Wood properties of both species were altered in response to exposure to the treatments. In aspen, elevated [CO(2)] decreased uronic acids (constituents of, e.g., hemicellulose) and tended to increase stem diameter. In response to elevated [O(3)] exposure, acid-soluble lignin concentration decreased and vessel lumen diameter tended to decrease. Elevated [O(3)] increased the concentration of acetone-soluble extractives in paper birch, but tended to decrease the concentration of these compounds in aspen. In paper birch, elevated [CO(2)] decreased and elevated [O(3)] increased starch concentration. The responses of wood properties to 5 years of fumigation differed from those previously reported after 3 years of fumigation. PMID:18316312

  1. Organo-mineral interactions promote greater soil organic carbon stability under aspen in semi-arid montane forests in Utah

    Science.gov (United States)

    Van Miegroet, H.; Roman Dobarco, M.

    2014-12-01

    Forest species influence soil organic carbon (SOC) storage through litter input, which in interaction with soil microclimate, texture and mineralogy, lead to different SOC stabilization and storage patterns. We sampled mineral soil (0-15 cm) across the ecotone between aspen (Populus tremuloides) and mixed conifers stands (Abies lasiocarpa and Pseudotsuga menziesii) in semi-arid montane forests from Utah, to investigate the influence of vegetation vs. site characteristics on SOC stabilization, storage and chemistry. SOC was divided into light fraction (LF), mineral-associated SOC in the silt and clay fraction (MoM), and a dense subfraction > 53 μm (SMoM) using wet sieving and electrostatic attraction. SOC decomposability and solubility was derived from long term laboratory incubations and hot water extractions (HWE). Fourier transform infrared spectroscopy (FTIR) was used to study differences in chemical functional groups in LF and MoM. Vegetation cover did not affect SOC storage (47.0 ± 16.5 Mg C ha-1), SOC decomposability (cumulative CO2-C release of 93.2 ± 65.4 g C g-1 C), or SOC solubility (9.8 ± 7.2 mg C g-1 C), but MoM content increased with presence of aspen [pure aspen (31.2 ± 15.1 Mg C ha-1) > mixed (25.7 ± 8.8 Mg C ha-1) > conifer (22.8 ± 9.0 Mg C ha-1)]. Organo-mineral complexes reduced biological availability of SOC, indicated by the negative correlation between silt+clay (%) and decomposable SOC per gram of C (r = -0.48, p = 0.001) or soluble SOC (r = -0.59, p plant or microbial origin. FTIR spectra clustered by sites with similar parent material rather than by vegetation cover. This suggests that initial differences in litter chemistry between aspen and conifers converged into similar MoM chemistry within sites.

  2. Automated Design Space Exploration with Aspen

    Directory of Open Access Journals (Sweden)

    Kyle L. Spafford

    2015-01-01

    Full Text Available Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation language with three new language constructs: user-defined resources, parameter ranges, and a collection of costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.

  3. Aspen Characteristics - Plumas National Forest, FRRD [ds375

    Data.gov (United States)

    California Department of Resources — The database represents point locations and associated stand assessment data collected within aspen stands in the Plumas National Forest, Feather River Ranger...

  4. Aspen Characteristics - El Dorado National Forest [ds363

    Data.gov (United States)

    California Department of Resources — The database represents aspen stand locations and field assessments conducted in the Eldorado National Forest, Eldorado and Amador Counties, California. Data was...

  5. Inventory of aspen trees in spruce dominated stands in conservation area

    OpenAIRE

    Matti Maltamo; Annukka Pesonen; Lauri Korhonen; Jari Kouki; Mikko Vehmas; Kalle Eerikäinen

    2015-01-01

    Background The occurrence of aspen trees increases the conservation value of mature conifer dominated forests. Aspens typically occur as scattered individuals among major tree species, and therefore the inventory of aspens is challenging. Methods We characterized aspen populations in a boreal nature reserve using diameter distribution, spatial pattern, and forest attributes: volume, number of aspens, number of large aspen stems and basal area median diameter. The data were collecte...

  6. What Is Community College Excellence? Lessons from the Aspen Prize

    Science.gov (United States)

    Wyner, Joshua

    2012-01-01

    Over the past year, in a process to select the winner of the Aspen Prize for Community College Excellence, the Aspen Institute has convened national experts to define and determine how to measure "excellence," to identify community colleges with high levels of student success, and to help more community colleges understand what can be done to…

  7. Modified lignin biosynthesis in field-grown Populus tremula x alba: Host genotype effects on the plant-associated bacterial microbiome

    OpenAIRE

    Beckers, Bram

    2015-01-01

    Since their discovery and the onset of the industrial revolution, fossil fuels have powered global economical development and have been the world’s primary energy source. However, the continuous depletion of the fossil energy reserves for manufacturing and transport and the accompanying side-effects (environmental ramifications and energy security) has ultimately led to an everincreasing requirement of alternative and sustainable energy sources for our industrial economies and consumer societ...

  8. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Menard, Terry; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  9. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  10. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  11. Modelling growth-competition relationships in trembling aspen and white spruce mixed boreal forests of Western Canada.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Huang

    Full Text Available We examined the effect of competition on stem growth of Picea glauca and Populus tremuloides in boreal mixedwood stands during the stem exclusion stage. We combined traditional approaches of collecting competition data with dendrochronology to provide retrospective measurements of stem diameter growth. Several competition indices including stand basal area (BA, the sum of stem diameter at breast height (SDBH, and density (N for the broadleaf and coniferous species, as well as similar indices considering only trees with diameters greater than each subject (BAGR, SDBHGR, and NGR, were evaluated. We used a nonlinear mixed model to characterize the basal area increment over the past 5, 10, 15, 20, 25, 30, and 35 years as a function of growth of nearby dominant trees, the size of the subject trees, deciduous and coniferous competition indices, and ecoregions. SDBHGR and BAGR were better predictors for spruce, and SDBHGR and NGR were better for aspen, respectively, than other indices. Results showed strongest correlations with long-term stem growth, as the best models integrated growth for 10-25 years for aspen and ≥ 25 for spruce. Our model demonstrated a remarkable capability (adjusted R(2>0.67 to represent this complex variation in growth as a function of site, size and competition.

  12. Clone history shapes Populus drought responses.

    Science.gov (United States)

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M

    2011-07-26

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. PMID:21746919

  13. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  14. Elevated CO{sub 2} response of photosynthesis depends on ozone concentration in aspen

    Energy Technology Data Exchange (ETDEWEB)

    Noormets, Asko, E-mail: anoorme@ncsu.ed [Michigan Technological University, School of Forest Resources and Environmental Science, Houghton, MI 49931 (United States); Kull, Olevi; Sober, Anu [University of Tartu, Institute of Botany and Ecology, Tartu, Estonia (United States); Kubiske, Mark E. [US Forest Service, Northern Research Lab, Rhinelander, WI 54501 (United States); Karnosky, David F. [Michigan Technological University, School of Forest Resources and Environmental Science, Houghton, MI 49931 (United States)

    2010-04-15

    The effect of elevated CO{sub 2} and O{sub 3} on apparent quantum yield (phi), maximum photosynthesis (P{sub max}), carboxylation efficiency (V{sub cmax}) and electron transport capacity (J{sub max}) at different canopy locations was studied in two aspen (Populus tremuloides) clones of contrasting O{sub 3} tolerance. Local light climate at every leaf was characterized as fraction of above-canopy photosynthetic photon flux density (%PPFD). Elevated CO{sub 2} alone did not affect phi or P{sub max}, and increased J{sub max} in the O{sub 3}-sensitive, but not in the O{sub 3}-tolerant clone. Elevated O{sub 3} decreased leaf chlorophyll content and all photosynthetic parameters, particularly in the lower canopy, and the negative impact of O{sub 3} increased through time. Significant interaction effect, whereby the negative impact of elevated O{sub 3} was exaggerated by elevated CO{sub 2} was seen in Chl, N and J{sub max}, and occurred in both O{sub 3}-tolerant and O{sub 3}-sensitive clones. The clonal differences in the level of CO{sub 2} x O{sub 3} interaction suggest a relationship between photosynthetic acclimation and background O{sub 3} concentration. - Photosynthetic acclimation to elevated CO{sub 2} depends on the background oxidant levels.

  15. Populus transcriptomics : from noise to biology

    OpenAIRE

    Sjödin, Andreas

    2007-01-01

    Mikromatriser handlar numera inte bara om att alstra genuttrycksdata i snabb takt, utan det är minst lika viktigt att effektivt ta hand om informationen efteråt. I den här avhandlingen presenteras ett arbetsflöde för att mäta, lagra och analysera genuttrycksdata i asp och poppel (Populus spp.). En Populus} mikromatrisdatabas - UPSC--BASE - tillgänglig för alla intresserade, utvecklades i syfte att samla in och lagra genuttrycksdata. Flertalet analysverktyg gjordes samtidigt tillgängliga, för ...

  16. Epigenomics of Development in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  17. Aspen Grupp võitis RKASi / Lemmi Kann

    Index Scriptorium Estoniae

    Kann, Lemmi

    2008-01-01

    Ehitusfirma Aspen Grupp OÜ võitis Tallinna ringkonnakohtus Riigi Kinnisvara AS-i, kes diskvalifitseeris ehitusfirma riigihankelt seaduses olnud maksevõlgnevuse keelu tõttu. Vt. samas: Lahendust ootavad veel kaks kohtuasja

  18. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  19. Long-term monitoring of western aspen--lessons learned.

    Science.gov (United States)

    Strand, E K; Bunting, S C; Starcevich, L A; Nahorniak, M T; Dicus, G; Garrett, L K

    2015-08-01

    Aspen woodland is an important ecosystem in the western United States. Aspen is currently declining in western mountains; stressors include conifer expansion due to fire suppression, drought, disease, heavy wildlife and livestock use, and human development. Forecasting of tree species distributions under future climate scenarios predicts severe losses of western aspen within the next 50 years. As a result, aspen has been selected as one of 14 vital signs for long-term monitoring by the National Park Service Upper Columbia Basin Network. This article describes the development of a monitoring protocol for aspen including inventory mapping, selection of sampling locations, statistical considerations, a method for accounting for spatial dependence, field sampling strategies, and data management. We emphasize the importance of collecting pilot data for use in statistical power analysis and semi-variogram analysis prior to protocol implementation. Given the spatial and temporal variability within aspen stem size classes, we recommend implementing permanent plots that are distributed spatially within and among stands. Because of our careful statistical design, we were able to detect change between sampling periods with desired confidence and power. Engaging a protocol development and implementation team with necessary and complementary knowledge and skills is critical for success. Besides the project leader, we engaged field sampling personnel, GIS specialists, statisticians, and a data management specialist. We underline the importance of frequent communication with park personnel and network coordinators. PMID:26215826

  20. Allelopathic potential of populus euphratica olivier

    International Nuclear Information System (INIS)

    Populus euphratica Olivier is frequently cultivated deciduous tree in Pakistan on agricultural land for its shade, fodder, timber and fuel wood. A relatively reduced under storey is often observed below it. Therefore the present study was conducted to assess the allelopathic potential of Populus euphratica against some crop species. Plant material of Populus euphratica were collected from the agriculture fields of Lahor, District Swabi in 2008 and were dried at room temperature (258 deg. C-308 deg. C). Allelopathic studies conducted by using aqueous extracts from various parts including young leaves, mature leaves, bark, litter and mulching in various experiments invariably retarded the germination, plumule, radical growth, fresh and dry weight of Sorghum vulgare Perse, Setaria italica (L.) P. Beauv and Triticum aestivum L., in laboratory experiments. The aqueous extracts obtained after 48 h were more inhibitory than 24 h. Leaves were more toxic than bark. Litter and mulching experiments also proved to be inhibitory. It is suggested that the various assayed parts of Populus euphratica have strong allelopathic potential at least against the tested species. Further investigation is required to see its allelopathic behavior under field condition against its associated species and to identify the toxic principles. (author)

  1. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  2. Terra Populus and DataNet Collaboration

    Science.gov (United States)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  3. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  4. Aspen Global Change Institute Summer Science Sessions

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  5. New insights into carbon transport and incorporation to wood

    OpenAIRE

    Mahboubi, Amir

    2015-01-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species the majority of this carbon is derived from sucrose transported in the phloem. This thesis describes experimental work on the mechanism of radial sucrose transport from phloem to developing wood and subsequent incorporation of carbon into wood polymers. I investigated the role of active sucrose transport during secondary cell wall formation in hybrid aspen (Populus tremula x tremuloides...

  6. Deciduous tree occurrence and large herbivore browsing in multiscale perspectives

    OpenAIRE

    Cassing, Gunilla

    2009-01-01

    Aspen ( Populus tremula), rowan (Sorbus auquparia) and sallow (Salix caprea) are deciduous tree species of low economic value for forestry and contribute to biodiversity of boreal forests. The species are rare in managed forest landscapes, and severely browsed by moose. Their recruitment needs to increase to meet requirements of sustainable forestry to factors that affect occurrence need to be indentified. Paper I is an exploratory study on distribution of these species in relation to natural...

  7. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa x P. deltoides clones.

    Science.gov (United States)

    Bassman, J H; Zwier, J C

    1991-03-01

    Responses of net photosynthesis, dark respiration, photorespiration, transpiration, and stomatal conductance to irradiance, temperature, leaf-to-air vapor density difference (VDD), and plant water stress were examined in two Populus trichocarpa clones (one from a moist, coastal climate in western Washington and one from a dry, continental climate in eastern Washington), one P. deltoides clone, and two P. trichocarpa x P. deltoides clones. Light saturation of photosynthesis in greenhouse-grown trees occurred at about 800 micromol m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern Washington ecotype of P. trichocarpa, but at about 600 micromol m(-2) s(-1) for the western Washington ecotype of P. trichocarpa. Average net photosynthesis (at saturating irradiance and the optimum temperature of 25 degrees C) was 20.7, 18.8, 18.2 and 13.4 micromol CO(2) m(-2) s(-1) for P. deltoides, P. trichocarpa x P. deltoides, and the eastern and western Washington clones of P. trichocarpa, respectively. In all clones, net photosynthesis decreased about 14% as VDD increased from 3 to 18 g H(2)O m(-3). Stomatal conductance decreased sharply with decreasing xylem pressure potential (XPP) in all clones except the western Washington clone of P. trichocarpa. Stomata in this clone were insensitive to changes in XPP and did not control water loss. Complete stomatal closure (stomatal conductance water use efficiency (WUE) and the western Washington clone of P. trichocarpa had the lowest WUE. The hybrids were intermediate. It was concluded that: (1) gas exchange characteristics of eastern and western Washington clones of P. trichocarpa reflected adaptation to their native environment; (2) crossing the western Washington clone of P. trichocarpa with the more drought resistant P. deltoides clone produced plants better adapted to the interior Pacific Northwest climate, although the stomatal response to soil water deficits in the hybrid was conservative compared with that

  8. Biomass production in forest plantations used as raw material for industry and energy. Final report. Biomasseproduktion in forstlichen Plantagen fuer die Rohstoff- und Energiegewinnung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, M.R.; Muhs, H.J.

    1986-10-01

    European aspen (Populus tremula), quaking aspen (Populus tremuloides), and their hybrids (hybrid aspen) are short-rotation, fast growing forest tree species, that apparently hold potential for biomass and energy production. Because of inherent difficulties in vegetative propagation in aspen, it has not been possible to propagate selected aspen and hybrid aspen tress on a large scale. Therefore, the aim of this project was to develop unconventional methods of vegetative propagation in aspen that can easily be adapted to nursery practices and are also cost-effective. Explants from buds, leaves, stems, and roots were cultured on a modified Woody Plant Medium for the purposes of microvegetative propagation. Protoplasts were also cultured for regenerative studies. Mainly the bud explants were employed for microvegetative propagation. A 2-step micropropagation method, which is commmercially feasible, has been developed for aspen. This method involves: (1) culture of bud explants on a medium for bud conditioning and microshoot proliferation, and (2) rooting of microshoots in peat-perlite mix. By employing this 2-step micropropagation method, several thousand plants have been regenerated from about 50 mature selected aspen and hybrid aspen trees ranging from 1 to 40 years of age. Following transfer to field conditions, tissue culture derived plants exhibited vigorous growth and attained a height of 1.5-2 meters in the first growing season. (orig.) With 23 refs., 1 tab., 20 figs.

  9. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence

    Science.gov (United States)

    White, L.L.; Zak, D.R.; Barnes, B.V.

    2004-01-01

    The Upper Lake States region is marked by major disturbances of fire and logging over 100 years ago that created a landscape mosaic of early successional forests. Given the intimate link between soil N availability and forest growth in this region, it is important to understand how temporal changes in soil N constrain the rate at which forest biomass accumulates following a stand-destroying disturbance. Bigtooth aspen (Populus grandidentata Michx.) currently dominates sites where primarily old-growth pine-hemlock-oak forests once thrived, which provides an opportunity to observe nearly 100 years of succession following severe disturbance. In this study, we examine the relationship between soil N availability and biomass accrual in a series of plots undergoing secondary succession following logging and burning. Our results demonstrate that total aboveground biomass and nitrogen accrual patterns are strongly and positively related on a highly disturbed, bigtooth aspen-dominated ecosystem in northern Lower Michigan. Nitrogen mineralization and nitrification were highest immediately following disturbance, and then decreased over the next approximately 20 years of succession. Following this short-term decrease, these processes increased and attained a maximum value after 70 years of forest succession. Understory biomass accumulation showed the opposite trend of nutrient availability, with highest values during the first 20 years of succession, followed by a dramatic decrease for the next 70 years. Understory biomass began to decrease as plants grew into the overstory or died. Total aboveground biomass was correlated with N mineralization (r=0.894; P=0.041) and nitrification (r=0.782; P=0.118) and appears to be increasing steadily to some maximum that has not yet been reached. ?? 2003 Elsevier B.V. All rights reserved.

  10. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-01-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less man-power rises.Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. The Automated-Scheduling and Planning Environment (ASPEN)tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the ASE project's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  11. Ecophysiology of Trembling Aspen in Response to Root-Zone Conditions and Competition on Reclaimed Mine Soil.

    Science.gov (United States)

    Bockstette, S.; Landhäusser, S.; Pinno, B.; Dyck, M. F.

    2014-12-01

    Reclaimed soils are typically characterized by increased bulk densities, penetration resistances and poor soil structure as well as associated problems with hydrology and aeration. As a result, available rooting space for planted tree seedlings is often restricted to a shallow layer of topsoil, which is usually of higher quality and is cultivated prior to planting. This may hinder the development of healthy root systems, thus drastically increasing the risk for plant stress by limiting access to soil resources such as water, nutrients and oxygen. These problems are exacerbated when herbaceous plants compete for the same resources within this limited root-zone. To understand how limited rooting space affects the physiology of young trees, we experimentally manipulated soil conditions and levels of competition at a reclaimed mine site in central Alberta, Canada. The site was characterized by heavily compacted, fine textured subsoil (~2.0 Mg ha-1), capped with 15 cm of topsoil (~1.5 Mg ha-1). In a replicated study (n=6) half the plots were treated with a subsoil plow to a depth of about 60 cm to increase available rooting spece. Subsequently, trembling aspen (Populus tremuloides Michx.) and smooth brome (Bromus inermis L.) were planted to create four vegetation covers: aspen (a), brome (b), aspen + brome (ab) and control (c) (no vegetation). Various soil properties, including texture, bulk density, penetration resistance and water availability, in conjunction with plant parameters such as root and shoot growth, leaf area development, sap flow, and stomatal conductance have since been monitored, both in-situ and through destructive sampling. Our results indicate that the soil treatment was effective in lowering bulk densities and penetration resistance, while improving moisture retention characteristics. Tree seedling growth and leaf area development were significantly greater without competition, but did not differ between soil treatments. The soil treatment generally

  12. 76 FR 69279 - Notice of Intent to Prepare an Environmental Impact Statement for the Quaking Aspen Wind Energy...

    Science.gov (United States)

    2011-11-08

    ... Aspen Wind Energy Project, Wyoming, and Notice of Segregation of Public Lands AGENCY: Bureau of Land... prepare an Environmental Impact Statement (EIS) for the Quaking Aspen Wind Energy Project (Quaking Aspen..._Aspen_Wind_Energy_WY@blm.gov ; or Mail: 280 Highway 191 N., Rock Springs, WY 82901. Documents...

  13. Radiation regime and canopy architecture in a boreal aspen forest

    International Nuclear Information System (INIS)

    This study was part of the Boreal Ecosystem-Atmosphere Study (BOREAS). It took place in a mature aspen forest in Prince Albert National Park, Saskatchewan, Canada. The aspen trees were 21.5 m high with a 2–3 m high hazelnut understory. The objectives were: (1) to compare the radiation regime beneath the overstory before and after leaf emergence; (2) to infer the structural characteristics of the aspen canopy leaf inclination and clumping; (3) to determine the seasonal course of the leaf area index (L) for both the overstory and understory. Above-stand radiation measurements were made on a 39m walk-up tower, and understory radiation measurements were made on a tram which moved horizontally back and forth at 0.10 m s−1 on a pair of steel cables 65m in length suspended 4 m above the ground. In addition, several LI-COR LAI-2000 Plant Canopy Analyzers were used to determine the effective leaf area index and the zenith angle dependent extinction coefficient (G(θ)) for both the aspen and the hazelnut throughout the growing season. These measurements were supplemented with destructive sampling of the hazelnut at the peak of the growing season. Before leaf emergence, the ratios of below- to above-aspen solar radiation (S), photosynthetic photon flux density (PPFD) and net radiation (Rn) during most of the day were 0.58, 0.55 and 0.47, respectively. By midsummer, these ratios had fallen to 0.33, 0.26 and 0.26, respectively. The aspen G(θ) was relatively invariant with θ, within ±0.05 of 0.5 throughout the growing season, indicating a spherical distribution of leaf inclination angles (i.e. the leaves were randomly inclined). The hazelnut G(θ) has a cosine response with respect to θ, which was consistent with the generally planophile leaf distribution for hazelnut. Using canopy gap size distribution theories developed by Chen and Black (1992b, Agric. For. Meteorol., 60: 249–266) and Chen and Cihlar (1995a, Appl. Opt., 34: 6211–6222) based on Miller and Norman

  14. Orbital Express mission operations planning and resource management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel

    2008-04-01

    As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.

  15. Identification and Characterization of the Populus AREB/ABF Subfamily

    Institute of Scientific and Technical Information of China (English)

    Lexiang Ji; Jia Wang; Meixia Ye; Ying Li; Bin Guo; Zhong Chen; Hao Li; Xinmin An

    2013-01-01

    Abscisic acid (ABA) is a major plant hormone that plays an important role in responses to abiotic stresses.The ABA-responsive element binding proteinlABRE-binding factor (AREB/ABF) gene subfamily contains crucial transcription factors in the ABA-mediated signaling pathway.In this study,a total of 14 putative AREB/ABF members were identified in the Populus trichocarpa Torr.& Gray.genome using five AREB/ABF amino acid sequences from Arabidopsis thaliana L.as probes.The 14 putative Populus subfamily members showed high protein similarities,especially in the basic leucine zipper (bZlP) domain region.A neighbor-joining analysis combined with gene structure data revealed homology among the 14 genes.The expression patterns of the Populus AREB/ABF subfamily suggested that the most abundant transcripts of 11 genes occurred in leaf tissues,while two genes were most transcribed in root tissues.Significantly,eight Populus AREB/ABF gene members were upregulated after treatment with 100 μM exogenous ABA,while the other six members were downregulated.We identified the expression profiles of the subfamily members in Populus tissues and elucidated different response patterns of Populus AREB/ABF members to ABA stress.This study provided insight into the roles of Populus AREB/ABF homologues in plant response to abiotic stresses.

  16. ASPEN Plus Simulation of CO2 Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Charles W. White III

    2003-09-30

    ASPEN Plus simulations have been created for a CO{sub 2} capture process based on adsorption by monoethanolamine (MEA). Three separate simulations were developed, one each for the flue gas scrubbing, recovery, and purification sections of the process. Although intended to work together, each simulation can be used and executed independently. The simulations were designed as template simulations to be added as a component to other more complex simulations. Applications involving simple cycle or hybrid power production processes were targeted. The default block parameters were developed based on a feed stream of raw flue gas of approximately 14 volume percent CO{sub 2} with a 90% recovery of the CO{sub 2} as liquid. This report presents detailed descriptions of the process sections as well as technical documentation for the ASPEN simulations including the design basis, models employed, key assumptions, design parameters, convergence algorithms, and calculated outputs.

  17. A flexible model for biomass fast pyrolysis in Aspen+

    OpenAIRE

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika

    2012-01-01

    In order to estimate the heat of condensation of fast pyrolysis product of woody biomass a model to be used in the chemical process simulation software Aspen+ has been developed based on the composition of wood fast pyrolysis product. A simulation model for biomass fast pyrolysis was developed. The results obtained are in good accordance with values found in the literature. With more specific data (e.g. from measurements) it should be possible to adjust the flexible model to other data. ...

  18. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  19. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  20. Aquatic Ecosystem Response to Timber Harvesting for the Purpose of Restoring Aspen

    OpenAIRE

    Bobette E Jones; Monika Krupa; Kenneth W Tate

    2013-01-01

    The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010) involved two projects located ...

  1. 2012 Aspen Winter Conferences on High Energy and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John; Olivier, Dore; Fox, Patrick; Furic, Ivan; Halkiadakis, Eva; Schmidt, Fabian; Senatore, Leonardo; Smith, Kendrick M; Whiteson, Daniel

    2012-05-01

    Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era. It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists

  2. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  3. Using Aspen plus in thermodynamics instruction a step-by-step guide

    CERN Document Server

    Sandler, Stanley I

    2015-01-01

    A step-by-step guide for students (and faculty) on the use of Aspen in teaching thermodynamics Used for a wide variety of important engineering tasks, Aspen Plus software is a modeling tool used for conceptual design, optimization, and performance monitoring of chemical processes. After more than twenty years, it remains one of the most popular and powerful chemical engineering simulation programs used both industrially and academically. Using Aspen Plus in Thermodynamics Instruction: A Step by Step Guide introduces the reader to the use of Aspen Plus in courses in thermodynamics. It prov

  4. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO{sub 2} and/or O{sub 3} and daily climatic variation

    Energy Technology Data Exchange (ETDEWEB)

    Kets, Katre, E-mail: katre.kets@gmail.co [Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu (Estonia); Darbah, Joseph N.T. [Michigan Technological University, Houghton, MI (United States); Sober, Anu [Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu (Estonia); Riikonen, Johanna [University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio (Finland); Sober, Jaak [Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu (Estonia); Karnosky, David F. [Michigan Technological University, Houghton, MI (United States)

    2010-04-15

    The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO{sub 2} and/or O{sub 3} in relation to stomatal conductance (g{sub s}), water potential, intercellular [CO{sub 2}], leaf temperature and vapour-pressure difference between leaf and air (VPD{sub L}) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased g{sub s} and decreased Rubisco carboxylation efficiency, Vc{sub max}. As a result of increasing VPD{sub L}, g{sub s} decreased. Elevated [CO{sub 2}] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO{sub 2} treatment. The positive impact of CO{sub 2} on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases. - Diurnal and seasonal patterns of environmental stress (drought, high air temperature) affects a relative impact of elevated concentrations of CO{sub 2} and O{sub 3} on trees.

  5. Over-expression of the Hybrid Aspen Homeobox PttKN1 Gene in Red Leaf Beet Induced Altered Coloration of Leaves

    Directory of Open Access Journals (Sweden)

    Quanle XU

    2015-04-01

    Full Text Available PttKN1 (Populus tremula × tremuloides KNOTTED1 gene belongs to the KNOXI gene family. It plays an important role in plant development, typically in meristem initiation, maintenance and organogenesis, and potentially in plant coloration. To investigate the gene functions further, it was introduced into red leaf beet by the floral dip method mediated via Agrobacterium tumefaciens. The transformants demonstrated typical phenotypes as with other PttKN1 transformants. These alterations were very different from the morphology of the wild type. Among them, morphological modification of changed color throughout the entire plant from claret of wild type to yellowish green was the highlight in those transgenic PttKN1-beet plants. The result of spraying selection showed that the PttKN1-beet plants had kanamycin resistance. PCR assay of the 35S-Promoter, NPTII and PttKN1 gene, PCR-Southern analysis of the NPTII and PttKN1 gene showed that the foreign PttKN1 gene had successfully integrated into the genome of beet plant. Furthermore, the results of RT-PCR analysis showed that the gene was ectopic expressed in transgenic plants. These data suggested that there is a correlation between the ectopic expression of PttKN1 gene and morphological alterations of beet plants. Pigment content assay showed that betaxanthins concentrations shared little difference between wild type and transgenic lines, while betacyanins content in transgenic plants was sharply decreased, indicating that the altered plant coloration of the transgenic beet plants may be caused by the changed betacyanins content. The tyrosinase study suggested that the sharply decreased of betacyanins content in transgenic plants was caused via the decreased tyrosinase level. Therefore, the reason for the altered plant coloration may be due to partial inhibition of betacyanin biosynthesis that was induced via the pleiotropic roles of PttKN1 gene.

  6. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    constituted a metabolic carbon drain in developing leaves that was not observed in the roots. We propose that PEA, in addition to other factors, including flavonoid pathway Myb transcription factors, is an important contributor to carbon management and plant defense in Populus. Objective 3: From work related to the first two objectives, it appeared that CT chemistry, at least in terms of the proportions of mono, di and tri hydroxylation at the phenylpropanoid-derived B-ring, changed little if at all when CT accrual per unit time was increased. A large number of transgenic Populus plants with alterations in the expression of flavonoid pathway genes and the potential to produce B-ring, chemically altered CT were generated during the project. Transgenic lines of Populus tremula Michx. Populus alba L. clone 717-1B4, a low CT producer, were produced that over- or under-express several mid and late flavonoid pathway genes including dihydroxyflavonol reductase (DFR-2 isoforms), leucoanthocyanidin reductase (LAR-3 isoforms), anthocyanidin reductase (ANR-2 isoforms), flavonol synthase (FLS-2 isoforms). A large number of additional transformation constructs (chalcone synthases, flavone synthases, and flavanol hydroxylases) were developed that failed to result in transgenic plants. We have purified CT from several of the successful lines and have obtained evidence from pyrolysis GC-MS that CT chemical composition was altered in transgenic lines harboring overexpression constructs for one of the two DFR isoforms. We have also observed increased CT levels in leaves of those lines, but the increases vary substantially in magnitude from experiment to experiment which has led to ongoing efforts to understand the variation before attempting to publish the findings. Preliminary results from some of the transgenic work were presented: An C*, Luo K, El Kayal W, Harding SA, Tsai C-J (2009) Transgenic manipulation of condensed tannins in Populus. IUFRO Tree Biotechnology Conference, Whistler, BC

  7. Ecology, management, and use of aspen and balsam poplar in the Prairie Provinces, Canada. Special report No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E.B.; Peterson, N.M.

    1992-01-01

    This report summarizes information on the ecology, management, and use of aspen and balsam poplar in the ecosystems of the main zone of commercially important aspen-balsam poplar from southern Manitoba to northeastern British Columbia.

  8. Populus Responses to Edaphic and Climatic Cues: Emerging Evidence from Systems Biology Research

    Energy Technology Data Exchange (ETDEWEB)

    Wullschleger, Stan D [ORNL; Weston, David [ORNL; Davis, John M [University of Florida

    2009-01-01

    The emergence of Populus as a model system for tree biology continues to be driven by a community of scientists dedicated to developing the resources needed to undertake genetic and functional genomic studies in this genus. As a result, understanding the molecular processes that underpin the growth and development of cottonwood, aspen, and hybrid poplar has steadily increased over the last several decades. Recently, our ability to examine the basic mechanisms whereby trees respond to a changing climate and resource limitations has benefited greatly from the sequencing of the P. trichocarpa genome. This landmark event has laid a solid foundation upon which biologists can now quantify, in breathtaking and unprecedented detail, the diversity of genes, proteins, and metabolites that govern the growth and development of some of the longest living and tallest growing organisms on Earth. Although the challenges likely to be encountered by scientists who work with trees are many, recent literature provides a few examples where a systems approach, one that focuses on integrating transcriptomic, proteomic, and metabolomic analyses, is beginning to provide insights into the molecular-scale response of poplars to their climatic and edaphic environment. In this review, our objectives are to look at evidence from studies that examine the molecular response of poplar to edaphic and climatic cues and highlight instances where two or more omic-scale measurements confirm and hopefully expand our inferences about mechanisms contributing to observed patterns of response. Based on conclusions drawn from these studies, we propose that three requirements will be essential as systems biology in poplar moves to reveal unique insights. These include use of genetically-defined individuals (e.g., pedigrees or transgenics) in studies; incorporation of modeling as a complement to transcriptomic, proteomic and metabolomic data; and inclusion of whole-tree and stand-level phenotypes to place

  9. Modelling and Simulation of Gas Engines Using Aspen HYSYS

    Directory of Open Access Journals (Sweden)

    M. C. Ekwonu

    2013-12-01

    Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.

  10. Tank SY-102 remediation project summary report: ASPEN modeling

    International Nuclear Information System (INIS)

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus trademark computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated

  11. Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianjun [ORNL; Morrell-Falvey, Jennifer L [ORNL; Labbe, Jessy L [ORNL; Muchero, Wellington [ORNL; Kalluri, Udaya C [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL

    2012-01-01

    Background: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. Methodology/Principal Findings: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. Conclusions/Significance: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  12. Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: Populus is a model woody plant and a promising feedstock for lignocellulosic biofuel production. However, its lengthy life cycle impedes rapid characterization of gene function. METHODOLOGY/PRINCIPAL FINDINGS: We optimized a Populus leaf mesophyll protoplast isolation protocol and established a Populus protoplast transient expression system. We demonstrated that Populus protoplasts are able to respond to hormonal stimuli and that a series of organelle markers are correctly localized in the Populus protoplasts. Furthermore, we showed that the Populus protoplast transient expression system is suitable for studying protein-protein interaction, gene activation, and cellular signaling events. CONCLUSIONS/SIGNIFICANCE: This study established a method for efficient isolation of protoplasts from Populus leaf and demonstrated the efficacy of using Populus protoplast transient expression assays as an in vivo system to characterize genes and pathways.

  13. 76 FR 77591 - Surety Companies Acceptable on Federal Bonds: Aspen American Insurance Company

    Science.gov (United States)

    2011-12-13

    ... Supplement No. 3 to the Treasury Department Circular 570, 2011 Revision, published July 1, 2011, at 76 FR... Fiscal Service Surety Companies Acceptable on Federal Bonds: Aspen American Insurance Company AGENCY.... 9305 to the following company: Aspen American Insurance Company (NAIC 43460). Business Address:...

  14. Simulation of Quaking Aspen Potential Fire Behavior in Northern Utah, USA

    Directory of Open Access Journals (Sweden)

    R. Justin DeRose

    2014-12-01

    Full Text Available Current understanding of aspen fire ecology in western North America includes the paradoxical characterization that aspen-dominated stands, although often regenerated following fire, are “fire-proof”. We tested this idea by predicting potential fire behavior across a gradient of aspen dominance in northern Utah using the Forest Vegetation Simulator and the Fire and Fuels Extension. The wind speeds necessary for crowning (crown-to-crown fire spread and torching (surface to crown fire spread were evaluated to test the hypothesis that predicted fire behavior is influenced by the proportion of aspen in the stand. Results showed a strong effect of species composition on crowning, but only under moderate fire weather, where aspen-dominated stands were unlikely to crown or torch. Although rarely observed in actual fires, conifer-dominated stands were likely to crown but not to torch, an example of “hysteresis” in crown fire behavior. Results support the hypothesis that potential crown fire behavior varies across a gradient of aspen dominance and fire weather, where it was likely under extreme and severe fire weather, and unlikely under moderate and high fire weather. Furthermore, the “fire-proof” nature of aspen stands broke down across the gradient of aspen dominance and fire weather.

  15. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide

    International Nuclear Information System (INIS)

    The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO2 and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO2 protected photosynthesis of both species against moderate heat stress. Elevated CO2 increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 deg. C) decreased all of these parameters in birch regardless of CO2 treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO2 were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO2. Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms. - We report that elevated CO2 confers increased thermotolerance on both aspen and birch trees while isoprene production in aspen confers further thermotolerance in aspen.

  16. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link

    OpenAIRE

    Javier Fontalvo Alzate

    2014-01-01

    Process intensification and new technologies require tools for process design that can be integrated into well-known simulation software, such as Aspen Plus®. Thus, unit operations that are not included in traditional Aspen Plus software packages can be simulated with Matlab® and integrated within the Aspen Plus interface. In this way, the user can take advantage of all of the tools of Aspen Plus, such as optimization, sensitivity analysis and cost estimation. This paper gives a detailed desc...

  17. The CLE gene family in Populus trichocarpa.

    Science.gov (United States)

    Liu, Zhijun; Yang, Nan; Lv, Yanting; Pan, Lixia; Lv, Shuo; Han, Huibin; Wang, Guodong

    2016-06-01

    The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants. PMID:27232947

  18. Growth of Populus and Salix Species under Compost Leachate Irrigation

    Directory of Open Access Journals (Sweden)

    Tooba Abedi

    2014-12-01

    Full Text Available According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran. The highest diameter growth rate was exhibited for all three plant species by the 1:1 treatment with an average of 0.26, 0.22 and 0.16 cm in eight months period for P. euroamericana, P. deltoides and S. alba, respectively. Over a period of eight months a higher growth rate of height was observed in (P and (1:1 treatment for S. alba (33.70 and 15.77 cm, respectively and in (C treatment for P. deltoides (16.51 cm. P. deltoides and S. alba produced significantly (p<0.05 smaller aboveground biomass in (P treatment compared to all species. P. deltoides exhibited greater mean aboveground biomass in the (1:1 treatment compared to other species. There were significant differences (p<0.05 in the growth of roots between P. deltoides, P. euramericana and S. alba in all of the treatments.

  19. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Directory of Open Access Journals (Sweden)

    Xue Han

    2013-01-01

    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  20. Contrasting the patterns of aspen forest and sagebrush shrubland gross ecosystem exchange in montane Idaho, USA

    Science.gov (United States)

    Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.

    2015-12-01

    We investigated the environmental controls on Gross Ecosystem Exchange (GEE) at an aspen forest and a sagebrush shrubland in southwest Idaho. The two sites were situated within a mosaic of vegetation that included temperate deciduous trees, shrublands, and evergreen conifer trees. The distribution of vegetation was presumably linked to water availability; aspen were located in wetter high-elevations sites, topographic drainages, or near snow drifts. Local temperatures have increased by ~2-3 °C over the past 50 years and less precipitation has arrived as snow. These ongoing changes in weather may impact snow water redistribution, plant-water availability, and plant-thermal stress, with associated impacts on vegetation health and production. We used eddy covariance to measure the exchange of water and carbon dioxide above the two sites and partitioned the net carbon flux to determine GEE. The sagebrush record was from 2003-2007 and the aspen record was from 2007-12. The region experienced a modest-to-severe drought in 2007, with ~73% of typical precipitation. We found that aspen were local "hotspots" for carbon exchange; peak rates of aspen GEE were ~ 60% greater than the peak rates of sagebrush GEE. Light, temperature, and water availability were dominant controls on the seasonality of GEE at both sites. Sagebrush and aspen were dormant during winter, limited by cold temperatures during winter and early spring, and water availability during mid-late summer. The onset of summer drought was typically later in the aspen than in the sagebrush. Drifting snow, lateral water redistribution, or increased rooting depths may have increased water availability in the aspen stand. Seasonal patterns of observed soil moisture and evaporation indicated aspen were rooted to >= 1 m. The sagebrush and aspen both responded strongly to the 2007 drought; peak GEE decreased by ~75%, peak GEE shifted to earlier parts of the year, and mid-summer GEE was decreased. We consider potential

  1. Modeling water/lithium bromide absorption chillers in ASPEN Plus

    International Nuclear Information System (INIS)

    Highlights: → Single- and double-effect water/lithium bromide absorption chiller designs are numerically modeled using ASPEN. → The modeling procedure is described and the results are compared to published modeling data to access prediction accuracy. → Predictions for the single- and double-effect designs are within 3% and 5%, respectively of published data for all cycle parameters of interest. → The absorption cycle models presented allow investigation of using absorption chillers for waste heat utilization in the oil and gas industry. -- Abstract: Absorption chillers are a viable option for providing waste heat-powered cooling or refrigeration in oil and gas processing plants, thereby improving energy efficiency. In this paper, single- and double-effect water/lithium bromide absorption chiller designs are numerically modeled using ASPEN. The modeling procedure is described and the results are compared to published modeling data to access prediction accuracy. Predictions for the single- and double-effect designs are within 3% and 5%, respectively of published data for all cycle parameters of interest. The absorption cycle models presented not only allow investigation into the benefits of using absorption chillers for waste heat utilization in the oil and gas industry, but are also generically applicable to a wide range of other applications.

  2. POTENCIJAL JABLANA (Populus nigra var. italica) U FITOREMEDIJACIJI KADMIJA

    OpenAIRE

    Jakovljević, Tamara; Radojčić Redovniković, Ivana; Cvjetko, Marina; Bukovac, Ivana; Sedak, Marija; Đokić, Maja; Bilandžić, Nina

    2015-01-01

    Fitoremedijacija se smatra obećavajućom, jeftinom te estetski prihvatljivom, in situ tehnologijom za remedijaciju teških metala iz onečišćenih tala. Potencijal uporabe drveća u fitoremedijaciji tla prepoznat je zadnjih desetljeća, te je u skladu s tim u ovom radu utvrđen potencijal jablana (Populus nigra var. italica) u fitoremedijaciji kadmija. U tu svrhu ispitan je fitoekstrakcijski potencijal jablana (Populus nigra var. italica), distribucija kadmija u pojedine dijelove biljke (list, stabl...

  3. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  4. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.

    2009-09-01

    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  5. Studying the organization of genes encoding plant cell wall degrading enzymes in Chrysomela tremula provides insights into a leaf beetle genome.

    Science.gov (United States)

    Pauchet, Y; Saski, C A; Feltus, F A; Luyten, I; Quesneville, H; Heckel, D G

    2014-06-01

    The ability of herbivorous beetles from the superfamilies Chrysomeloidea and Curculionoidea to degrade plant cell wall polysaccharides has only recently begun to be appreciated. The presence of plant cell wall degrading enzymes (PCWDEs) in the beetle's digestive tract makes this degradation possible. Sequences encoding these beetle-derived PCWDEs were originally identified from transcriptomes and strikingly resemble those of saprophytic and phytopathogenic microorganisms, raising questions about their origin; e.g. are they insect- or microorganism-derived? To demonstrate unambiguously that the genes encoding PCWDEs found in beetle transcriptomes are indeed of insect origin, we generated a bacterial artificial chromosome library from the genome of the leaf beetle Chrysomela tremula, containing 18 432 clones with an average size of 143 kb. After hybridizing this library with probes derived from 12 C. tremula PCWDE-encoding genes and sequencing the positive clones, we demonstrated that the latter genes are encoded by the insect's genome and are surrounded by genes possessing orthologues in the genome of Tribolium castaneum as well as in three other beetle genomes. Our analyses showed that although the level of overall synteny between C. tremula and T. castaneum seems high, the degree of microsynteny between both species is relatively low, in contrast to the more closely related Colorado potato beetle. PMID:24456018

  6. Effect of technological parameters and wood properties on cutting power in plane milling of juvenile poplar wood

    Directory of Open Access Journals (Sweden)

    Barcík Štefan

    2008-10-01

    Full Text Available This paper presents the results of experimental measurements aimed at observing the effect of technological parameters (cutting speed vc and feed speed vf , type of wood (juvenile wood and mature wood andwood species (aspen Populus tremula, L. and hybrid poplar Populus x Euramericana „Serotina“ on cutting power during plane milling of poplar wood. The results showed the reduction of cutting power with the decrease of cutting speed and feed speed. Lower cutting power was also measured in milling hybrid poplar than in milling aspen. The test also confirmed the effect of different anatomical and chemical structure of juvenile wood in relation to mature wood on different physical and mechanical properties of such wood and hence also on the cutting power in processing juvenile wood.

  7. Inventory of aspen trees in spruce dominated stands in conservation area

    Institute of Scientific and Technical Information of China (English)

    Matti Maltamo; Annukka Pesonen; Lauri Korhonen; Jari Kouki; Mikko Vehmas; Kalle Eerikinen

    2015-01-01

    Background:The occurrence of aspen trees increases the conservation value of mature conifer dominated forests. Aspens typically occur as scattered individuals among major tree species, and therefore the inventory of aspens is challenging. Methods:We characterized aspen populations in a boreal nature reserve using diameter distribution, spatial pattern, and forest attributes:volume, number of aspens, number of large aspen stems and basal area median diameter. The data were collected from three separate forest stands in Koli National Park, eastern Finland. At each site, we measured breast height diameter and coordinates of each aspen. The comparison of inventory methods of aspens within the three stands was based on simulations with mapped field data. We mimicked stand level inventory by locating varying numbers of fixed area circular plots both systematically and randomly within the stands. Additionally, we also tested if the use of airborne laser scanning (ALS) data as auxiliary information would improve the accuracy of the stand level inventory by applying the probability proportional to size sampling to assist the selection of field plot locations. Results:The results showed that aspens were always clustered, and the diameter distributions indicated different stand structures in the three investigated forest stands. The reliability of the volume and number of large aspen trees varied from relative root mean square error figures above 50%with fewer sample plots (5–10) to values of 25%–50%with 10 or more sample plots. Stand level inventory estimates were also able to detect spatial pattern and the shape of the diameter distribution. In addition, ALS-based auxiliary information could be useful in guiding the inventories, but caution should be used when applying the ALS-supported inventory technique. Conclusions:This study characterized European aspen populations for the purposes of monitoring and management of boreal conservation areas. Our results suggest that

  8. Inventory of aspen trees in spruce dominated stands in conservation area

    Directory of Open Access Journals (Sweden)

    Matti Maltamo

    2015-05-01

    Full Text Available Background The occurrence of aspen trees increases the conservation value of mature conifer dominated forests. Aspens typically occur as scattered individuals among major tree species, and therefore the inventory of aspens is challenging. Methods We characterized aspen populations in a boreal nature reserve using diameter distribution, spatial pattern, and forest attributes: volume, number of aspens, number of large aspen stems and basal area median diameter. The data were collected from three separate forest stands in Koli National Park, eastern Finland. At each site, we measured breast height diameter and coordinates of each aspen. The comparison of inventory methods of aspens within the three stands was based on simulations with mapped field data. We mimicked stand level inventory by locating varying numbers of fixed area circular plots both systematically and randomly within the stands. Additionally, we also tested if the use of airborne laser scanning (ALS data as auxiliary information would improve the accuracy of the stand level inventory by applying the probability proportional to size sampling to assist the selection of field plot locations. Results The results showed that aspens were always clustered, and the diameter distributions indicated different stand structures in the three investigated forest stands. The reliability of the volume and number of large aspen trees varied from relative root mean square error figures above 50% with fewer sample plots (5–10 to values of 25%–50% with 10 or more sample plots. Stand level inventory estimates were also able to detect spatial pattern and the shape of the diameter distribution. In addition, ALS-based auxiliary information could be useful in guiding the inventories, but caution should be used when applying the ALS-supported inventory technique. Conclusions This study characterized European aspen populations for the purposes of monitoring and management of boreal conservation areas. Our

  9. Orbital Express Mission Operations Planning and Resource Management using ASPEN

    Science.gov (United States)

    Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Danny

    2008-01-01

    The Orbital Express satellite servicing demonstrator program is a DARPA program aimed at developing "a safe and cost-effective approach to autonomously service satellites in orbit". The system consists of: a) the Autonomous Space Transport Robotic Operations (ASTRO) vehicle, under development by Boeing Integrated Defense Systems, and b) a prototype modular next-generation serviceable satellite, NEXTSat, being developed by Ball Aerospace. Flexibility of ASPEN: a) Accommodate changes to procedures; b) Accommodate changes to daily losses and gains; c) Responsive re-planning; and d) Critical to success of mission planning Auto-Generation of activity models: a) Created plans quickly; b) Repetition/Re-use of models each day; and c) Guarantees the AML syntax. One SRP per day vs. Tactical team

  10. Simulation of IGFC power generation system by Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Rosendahl, Lasse; Sayem, Abu Sadahat;

    2010-01-01

    The solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur free syngas from the gas cleaning unit serves as a fuel for SOFC in IGFC (Integrated gasification Fuel cell) power plant. It converts the chemical energy of the fuel gas directly to electric energy and...... therefore, very high efficiencies can be achieved. The outputs from SOFC can be utilized by HRSG which drives steam turbine for electricity production. The SOFC stack model developed using the process flow sheet simulator Aspen Plus which is of equilibrium type. The results indicate there must be tread off...... efficiency and power with respect to a variety of SOFC inputs. HRSG which is located after the SOFC is also included in current simulation study with various operating parameters. This paper also describes for the IGFC Power Plants, the optimization of the Heat Recovery Steam Generator (HRSG) is of...

  11. Aqueous electrolyte modeling in ASPEN PLUS{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

  12. A new diterpenoid from the stem bark of Populus davidiana

    Institute of Scientific and Technical Information of China (English)

    Xin Feng Zhang; Xiang Li; Byung Sun Min; Ki Hwan Bae

    2008-01-01

    A new diterpenoid, named populusol A (1), was isolated from the methanolic extraction of the stem bark of Populus davidiana. The structure was elucidated on the basis of extensive 1D and 2D NMR as well as HRFAB-MS spectroscopic analysis.

  13. STUDIUM AKUMULACE A TRANSPORTU TĚŽKÝCH KOVŮ KULTURAMI ROSTLIN POPULUS TREMULA X TREMULOIDES A CANNABIS SATIVA V LABORATORNÍCH PODMÍNKÁCH A NA REÁLNÉ LOKALITĚ

    Czech Academy of Sciences Publication Activity Database

    Benešová, Dagmar; Soudek, Petr; Petrová, Šárka; Malá, J.; Najman, M.; Najmanová, P.; Kafka, Z.; Vaněk, Tomáš

    Praha: VŠCHT, 2008, s. 55-59. ISBN 978-80-86832-36-4. [Inovativní sanační technologie ve výzkumu a praxi. Žďár nad Sázavou (CZ), 08.10.2008-09.10.2008] R&D Projects: GA MŠk 2B06187; GA MŠk 1P05OC042 Institutional research plan: CEZ:AV0Z50380511 Keywords : phytoremediation * heavy metals * enegetic woody species Subject RIV: EF - Botanics

  14. Best Practices Case Study: Shaw Construction Burlingame Ranch Ph.1, Aspen, CO

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory & Oak Ridge National Laboratory

    2010-12-01

    Shaw Construction built 84 energy efficient, affordable condominiums forthe City of Aspen that achieved HERS scores of less than 62 with help from Building America’s research team lead Building Science Corporation.

  15. ASPEN: A Framework for Automated Planning and Scheduling of Spacecraft Control and Operations

    Science.gov (United States)

    Yan, David; Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    1997-01-01

    In this paper, we describe ASPEN (Automated Planning/Scheduling Environment), a modular, reconfigurable application framework which is capable of supporting a wide variety of planning and scheduling applications.

  16. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    Science.gov (United States)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  17. Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering.

    OpenAIRE

    Koeduka, Takao; Suzuki, Shiro; Iijima, Yoko; Ohnishi, Toshiyuki; SUZUKI Hideyuki; Watanabe, Bunta; Shibata, Daisuke; UMEZAWA, Toshiaki; Pichersky, Eran; Hiratake, Jun

    2013-01-01

    Eugenol, a volatile phenylpropene found in many plant species, exhibits antibacterial and acaricidal activities. This study attempted to modify the production of eugenol and its glycosides by introducing petunia coniferyl alcohol acetyltransferase (PhCFAT) and eugenol synthase (PhEGS) into hybrid aspen. Gas chromatography analyses revealed that wild-type hybrid aspen produced small amount of eugenol in leaves. The heterologous overexpression of PhCFAT alone resulted in up to 7-fold higher eug...

  18. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  19. Allelopathic interference of Populus deltoides with some winter season crops

    OpenAIRE

    Singh, Harminder; Kohli, Ravinder; Batish, Daizy

    2001-01-01

    Interférence allélopathique de Populus deltoides avec quelques cultures d'hiver. On a étudié dans deux groupes de champs du Punjab (Inde du Nord) les performances des cultures d'hiver suivantes associées avec des allées de Populus deltoides : Triticum aestivum, Lens culinaris, Phaseolus mungo, Avena sativa, Trifolium alexandrinum, Brassica juncea et Helianthus annuus. Dans l'un des groupes le sol d'origine a été conservé (S$_{\\rm p}$), tandis que dans l'autre il a été remplacé par un sol prél...

  20. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  1. Using Populus as a lignocellulosic feedstock for bioethanol.

    Science.gov (United States)

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome. PMID:25676392

  2. Effect of Different Photoperiods on Cold Hardiness in Cherry

    Directory of Open Access Journals (Sweden)

    A.Z. Makaraci

    2009-01-01

    Full Text Available In this research we have investigated the effects of different photoperiods on cold hardiness of cherry trees (Prunus avium cv. Ulster. One year old, cherry trees were exposed 8 hours of day length and 16 hours of dark period for short day conditions and 16 hours of light and 8 hours of dark period for long day conditions. We also compared the acclimatization pattern of cherry trees with hybrid aspen (Populus tremula ×Populus tremuloides trees. LT50 values indicated that short day and long day conditions did not alter the cold hardiness of cherry trees. Under the same experimental conditions hybrid aspen trees were affected from different photoperiods. Aspen trees exposed to short day conditions were hardier than the trees exposed to long day conditions. We also investigated the acclimatization the patterns of basal and apical parts of the branches both in cherry and aspen trees. There were no significant differences in cold hardiness of the basal and apical parts of the branches in aspen and cherry trees.

  3. 76 FR 15306 - Aspen Merchant Energy LP; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-03-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Aspen Merchant Energy LP; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of Aspen Merchant Energy LP's application for market-based rate authority, with...

  4. Stem and merchantable volume equations for hybrid aspen growing on farmland in Sweden

    OpenAIRE

    Johansson, Tord

    2014-01-01

    In this study, stem volume models for hybrid aspen were developed. The study was based on 29 stands located in middle and southern Sweden (latitudes 55 – 60° N.). The mean total age of the hybrid aspen was 22 years (range 15 – 50 years) with a mean stand density of 1006 stems ha-1 (90 – 2402) and a mean diameter at breast height (over bark) of 19.7 cm (8.5 – 40.8 cm). A number of equations were assessed for modeling stem volume. Standing volume was examined in relation to soil type. Multiple ...

  5. Synergetic hydrothermal co-liquefaction of crude glycerol and aspen wood

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Jasiunas, Lukas; Casamassima, Luca; Singh, Shashank; Jensen, Thomas; Rosendahl, Lasse Aistrup

    2015-01-01

    Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co-processing ......Crude glycerol-assisted hydrothermal co-liquefaction of aspen wood was studied in batch micro-reactors. An experimental matrix of 14 experiments was defined to investigate the effects of three different process parameters on the yields of biocrude and char, and on biocrude quality. Co...

  6. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  7. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  8. Polypropylene /Aspen/ liquid polybutadienes composites: maximization of impact strength, tensile and modulus by statistical experimental design

    Czech Academy of Sciences Publication Activity Database

    Kokta, B. V.; Fortelný, Ivan; Kruliš, Zdeněk; Horák, Zdeněk; Michálková, Danuše

    2005-01-01

    Roč. 99, - (2005), s. 10-11. ISSN 0009-2770. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. 10.5.2005-12.5.2005, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : polypropylene * Aspen-PP composite Subject RIV: CD - Macromolecular Chemistry

  9. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Science.gov (United States)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  10. ASPEN Plus in the Chemical Engineering Curriculum: Suitable Course Content and Teaching Methodology

    Science.gov (United States)

    Rockstraw, David A.

    2005-01-01

    An established methodology involving the sequential presentation of five skills on ASPEN Plus to undergraduate seniors majoring in ChE is presented in this document: (1) specifying unit operations; (2) manipulating physical properties; (3) accessing variables; (4) specifying nonstandard components; and (5) applying advanced features. This…

  11. New dimension analyses with error analysis for quaking aspen and black spruce

    Science.gov (United States)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  12. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  13. Risk Communication, Metacommunication, and Rhetorical Stases in the Aspen-EPA Superfund Controversy.

    Science.gov (United States)

    Stratman, James F.; And Others

    1995-01-01

    Explores the relationship between current theoretical definitions of risk communication, the unique national role that EPA plays in defining health and environmental risks, and possible explanations for EPA's inability to persuade Aspen, Colorado, to accept a cleanup plan. Explores ownership messages conveyed through metacommunication conflict…

  14. 75 FR 13805 - Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet...

    Science.gov (United States)

    2010-03-23

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Aspen Group Resources Corp., Commercial Concepts, Inc., Desert Health Products, Inc., Equalnet Communications Corp., Geneva Steel Holdings Corp., Orderpro Logistics, Inc. (n/k/a Securus Renewable Energy, Inc.), and Sepragen Corp.; Order...

  15. Using user models in Matlab® within the Aspen Plus® interface with an Excel® link

    Directory of Open Access Journals (Sweden)

    Javier Fontalvo Alzate

    2014-07-01

    Full Text Available Process intensification and new technologies require tools for process design that can be integrated into well-known simulation software, such as Aspen Plus®. Thus, unit operations that are not included in traditional Aspen Plus software packages can be simulated with Matlab® and integrated within the Aspen Plus interface. In this way, the user can take advantage of all of the tools of Aspen Plus, such as optimization, sensitivity analysis and cost estimation. This paper gives a detailed description of how to implement this integration. The interface between Matlab and Aspen Plus is accomplished by sending the relevant information from Aspen Plus to Excel, which feeds the information to a Matlab routine. Once the Matlab routine processes the information, it is returned to Excel and to Aspen Plus. This paper includes the Excel and Matlab template files so the reader can implement their own simulations. By applying the protocol described here, a hybrid distillation-vapor permeation system has been simulated as an example of the applications that can be implemented. For the hybrid system, the effect of membrane selectivity on membrane area and reboiler duty for the partial dehydration of ethanol is studied. Very high selectivities are not necessarily required for an optimum hybrid distillation and vapor permeation system.

  16. ADVANCING PROTOCOLS FOR POPLARS in vitro PROPAGATION, REGENERATION AND SELECTION OF TRANSFORMANTS

    Directory of Open Access Journals (Sweden)

    Nataliia Kutsokon

    2013-02-01

    Full Text Available Poplars (genus Populus have emerged as a model organism for forest biotechnology, and genetic modification is more advanced for this genus than for any other tree. So far several protocols for microclonal propagation and regeneration for Populus species have been developed. However it is well known that these protocols differ for various species and need to be adapted even for different clones of the same species. This work was focused on developing of protocols for propagation, regeneration and putative transformant´s selection of aspen Populus tremula L. and other two fast-growing Populus species (P. nigra L., P. x canadensis Moench. The regeneration ability for black poplar explants was demonstrated to be three times higher compared to those for aspen and hybrid poplar. It was found that concentration 1 mg/L of phosphinothricin and 25 mg/L of kanamycin is toxic for non- transgenic plant tissues of P. x canadensis and can be applied in transformation experiments when genes of resistance to the corresponding selective agents into the plant genome are introduced.

  17. Cross Breeding of Populus and Its Hybrids for Cold Resistance

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Populus tomentosa was crossed with P. tremuloidis, P. grandidentata, P. alba × P. grandidentata and P. alba × Ulmus pumila in order to maintain its rapid growth and high wood quality and improve its resistance to cold. Two methods were used to increase the germination rate from 1.5% to 41.1% and the remaining rate from 1.7% to 44.2%. Forty crossing combinations were conducted and 2 744 hybrid seedlings were obtained. MX4 × P. grandidentata (G-1-58), MX3 × P. tremuloidis (T-44-60), MX2 × P. tremuloidis (l-13-87-37) and MX2 × (P. alba × P. grandidentata) were regarded as superior combinations after analysis and selection. Thirty seedlings of these combinations and 11 triploid seedlings identified by counting their chromosomes were selected as super plants.

  18. How to Create, Modify, and Interface Aspen In-House and User Databanks for System Configuration 1:

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D W

    2000-10-27

    The goal of this document is to provide detailed instructions to create, modify, interface, and test Aspen User and In-House databanks with minimal frustration. The level of instructions are aimed at a novice Aspen Plus simulation user who is neither a programming nor computer-system expert. The instructions are tailored to Version 10.1 of Aspen Plus and the specific computing configuration summarized in the Title of this document and detailed in Section 2. Many details of setting up databanks depend on the computing environment specifics, such as the machines, operating systems, command languages, directory structures, inter-computer communications software, the version of the Aspen Engine and Graphical User Interface (GUI), and the directory structure of how these were installed.

  19. Carbon gain and bud physiology in Populus tremuloides and Betula papyrifera grown under long-term exposure to elevated concentrations of CO{sub 2} and O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Riikonen, J. [Kuopio Univ., Kuopio (Finland). Dept. of Ecology and Environmental Science; Kets, K.; Sober, A. [Tartu Univ., Tartu (Estonia). Inst. of Botany and Ecology; Darbah, J.; Karnosky, D.F. [Michigan Technical Univ., Houghton, MI (United States). School of Forest Resources and Environmental Science; Oksanen, E. [Joensuu Univ., Joensuu (Finland). Faculty of Biosciences; Vapaavuori, E. [Finnish Forest Research Inst., Suonenjoki (Finland). Suonenjoki Research Inst.; Kubiske, M.E.; Nelson, N. [USDA Forest Service, Rhinelander, WI (United States). Forestry Sciences Laboratory

    2008-02-15

    Elevated carbon dioxide (CO{sub 2}) enhances photosynthesis by increasing carboxylation rates and decreasing the rate of photorespiration. While elevated CO{sub 2} has the potential to increase frost hardiness in trees by increasing bud size and concentrations of cryoprotective soluble sugars in overwintering organs, little is known about the effects of elevated CO{sub 2} on late-season photosynthesis. This study examined 3 trembling aspen (Populus tremuloides) clones and 3 paper birch (Betula papyrifera) grown at a site with elevated CO{sub 2} and ozone (O{sub 3}) applied singly and in combination. Gas exchange was studied throughout the eighth growing season. The study also examined specific leaf area and size in September and final size, carbohydrate, carbon (C), nitrogen (N) and water concentrations in November. The timing of leaf abscission was also studied, as well as bud burst and the development of leaf area index the following Spring. Results of the study showed that net photosynthesis was enhanced by between 49 and 73 per cent with elevated levels of CO{sub 2}, and decreased by between 13 and 30 per cent with elevated O{sub 3}. Elevated CO{sub 2} delayed leaf abscission and increased the ratio of monosaccharides in aspen buds. Total carbon concentrations in overwintering buds were unaffected by the treatments. It was concluded that elevated CO{sub 2} ameliorated the effects of elevated O{sub 2}, but had the potential to alter C metabolism of overwintering buds. 50 refs., 5 tabs., 6 figs.

  20. Identifying and Characterizing Important Trembling Aspen Competitors with Juvenile Lodgepole Pine in Three South-Central British Columbia Ecosystems

    Directory of Open Access Journals (Sweden)

    Teresa A. Newsome

    2012-01-01

    Full Text Available Critical height ratios for predicting competition between trembling aspen and lodgepole pine were identified in six juvenile stands in three south-central British Columbia ecosystems. We used a series of regression analyses predicting pine stem diameter from the density of neighbouring aspen in successively shorter relative height classes to identify the aspen-pine height ratio that maximized R2. Critical height ratios varied widely among sites when stands were 8–12 years old but, by age 14–19, had converged at 1.25–1.5. Maximum R2 values at age 14–19 ranged from 13.4% to 69.8%, demonstrating that the importance of aspen competition varied widely across a relatively small geographic range. Logistic regression also indicated that the risk of poor pine vigour in the presence of aspen varied between sites. Generally, the degree of competition, risk to pine vigour, and size of individual aspen contributing to the models declined along a gradient of decreasing ecosystem productivity.

  1. Modeling and optimization of a regenerative fuel cell system using the ASPEN process simulator

    Science.gov (United States)

    Maloney, Thomas M.; Leibecki, Harold F.

    1990-01-01

    The Hydrogen-Oxygen Regenerative Fuel Cell System was identified as a key component for energy storage in support of future lunar missions. Since the H2-O2 regenerative electrochemical conversion technology has not yet been tested in space applications, it is necessary to implement predictive techniques to develop initial feasible system designs. The ASPEN simulation software furnishes a constructive medium for analyzing and optimizing such systems. A rudimentary regenerative fuel cell system design was examined using the ASPEN simulator and this modular approach allows for easy addition of supplementary ancillary components and easy integration with life support systems. The modules included in the preliminary analyses may serve as the fundamental structure for more complicated energy storage systems.

  2. Effects of Nitrogen Supplements on Degradation of Aspen Wood Lignin and Carbohydrate Components by Phanerochaete chrysosporium.

    Science.gov (United States)

    Reid, I D

    1983-03-01

    A supplement of KH(2)PO(4), MgSO(4), CaCl(2), trace elements, and thiamine accelerated the initial rate of aspen wood decay by Phanerochaete chrysosporium but did not increase the extent of lignin degradation. Asparagine, casein hydrolysate, and urea supplements (1% added N) strongly inhibited lignin degradation and weight loss. The complex nitrogen sources peptone and yeast extract stimulated lignin degradation and weight loss. Albumen and NH(4)Cl had intermediate effects. Conversion of [C]lignin to CO(2) and water-soluble materials underestimated lignin degradation in the presence of the complex N sources. The highest ratio of lignin degradation to total weight loss and the largest increase in cellulase digestibility occurred during the decay of unsupplemented wood. Rotting of aspen wood by P. chrysosporium gives smaller digestibility increases than have been found with some other white-rot fungi. PMID:16346246

  3. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. PMID:27317615

  4. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides × Populus trichocarpa F1 progeny

    OpenAIRE

    Monclus, Romain; Villar, Marc; Barbaroux, Cécile; Bastien, Catherine; Fichot, Régis; Delmotte, Francis; Delay, Didier; Petit, Jean-Michel; Brechet, Claude; Dreyer, Erwin; Brignolas, Franck

    2009-01-01

    Genotypic variability for productivity, wateruse efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh • Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orle´ ans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remaine...

  5. The Effect of Air Preheating in a Biomass CFB Gasifier using ASPEN Plus Simulation

    OpenAIRE

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David

    2009-01-01

    In the context of climate change, increasing efficiency and energy security, biomass gasification is likely to play an important role in energy production. Atmospheric circulating fluidised bed (CFB) technology was selected for the current study. The primary objective of this research is to develop a computer simulation model of a CFB biomass gasifier that can accurately predict gasifier performance under various operating conditions. An original model was developed using ASPEN Plus (Advan...

  6. Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

    2004-11-10

    As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

  7. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Directory of Open Access Journals (Sweden)

    Bobette E Jones

    Full Text Available The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010 involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i Phase 1 in January 2004, (ii Phase 2 in August 2005, and (iii Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management

  8. Aquatic ecosystem response to timber harvesting for the purpose of restoring aspen.

    Science.gov (United States)

    Jones, Bobette E; Krupa, Monika; Tate, Kenneth W

    2013-01-01

    The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003-2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO₃-N, NH₄-N, and PO₄-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO₄-P in Bogard Creek. All nutrient concentrations (NO₃-N, NH₄-N, PO₄-P, K, and SO₄-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices

  9. Aspen Increase Soil Moisture, Nutrients, Organic Matter and Respiration in Rocky Mountain Forest Communities

    OpenAIRE

    Buck, Joshua R.; Samuel B. St. Clair

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were c...

  10. Analysis of aspen-and-birch separated small woods’ vegetation in North Steppe of Ukraine

    OpenAIRE

    N. M. Nazarenko; I. M. Loza

    2010-01-01

    Conducted analysis of forest vegetation has allowed selecting and specifying classification and typological units of the aspen-and-birch separated small woods, which have statistically significant difference of ecotopic and coenotic parameters. Those parameters of studied forest ecosystems are characterised. Existence of the lines of hygrogenic and edaphogenic substitution, and succession rows are described. Phytoindication description of ecological factors’ pivotal conditions is presented. D...

  11. SYNERGISTIC EFFECTS BETWEEN BIRCH CHEMICAL MECHANICAL PULPS AND ASPEN BLEACHED KRAFT PULP

    Institute of Scientific and Technical Information of China (English)

    Eric C. Xu; Yajun Zhou

    2004-01-01

    In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes.The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.

  12. SYNERGISTIC EFFECTS BETWEEN BIRCH CHEMICAL MECHANICAL PULPS AND ASPEN BLEACHED KRAFT PULP

    Institute of Scientific and Technical Information of China (English)

    EricC.Xu; YajunZhou

    2004-01-01

    In this investigation, two different grades of birch chemical mechanical (P-RC APMP) pulps and aspen market bleached kraft pulp were compared by low consistency refining of the pulps separately and in different combinations. In addition, the separately refined pulps were also combined to compare with the pulps from the co-refined pulp blend. The results showed that in both cases there were synergistic effects between the two types of pulps: adding the birch P-RC APMP pulp to the aspen kraft pulp improved pulp properties, and the resultant pulp blends had a higher fiber bonding strength (tensile and tensile energy absorption) than the sum of weighted contributions from the individual components. Understanding this synergistic effect between chemical mechanical (P-RC APMP) and kraft pulps can help to improve their applications and performances in various papermaking processes. The results also showed that introducing, at least up to certain percentage of, the birch P-RC APMP pulp into the aspen bleached kraft pulp not only improves optical and bulk properties, but also maintains or improves tensile strength, even though the P-RC APMP pulp used has lower tensile than the kraft pulp.

  13. Methods to inventory and strip thin in dense stands of aspen root suckers

    Directory of Open Access Journals (Sweden)

    Headlee WL

    2015-10-01

    Full Text Available Aspen and their hybrids have demonstrated high biomass productivity and can produce abundant regeneration in the form of root suckers. This makes aspen particularly intriguing for bio-energy production, because replanting costs can be avoided and additional biomass can be obtained by thinning the regenerating stands. Mechanical strip thinning (removal of stems in parallel strips has been proposed as a fast and efficient method for capturing biomass that would otherwise be lost to mortality in such stands. However, determining the appropriate width for the residual rows is challenging, due to the difficulty of conducting inventories with traditional sampling tools and the variability in gap sizes between root suckers in the residual rows. In this study, we describe the development and testing of a simple inventory tool that may be used to conduct either fixed-area or variable-radius sampling in these stands. Also described is the development and testing of an equation that uses such inventory data along with Poisson distribution theory to predict the size of the largest gap between root suckers within residual rows, which in turn can be used to inform strip thinning operations. Based on the promising results of our limited tests, we encourage further evaluation of these methods with regeneration from planted and natural aspen stands, as well as other root suckering species.

  14. EFFECT OF THERMAL TREATMENT ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF BIRCH AND ASPEN

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2008-05-01

    Full Text Available The high temperature treatment of wood is one of the alternatives to chemical treatment. During this process, the wood is heated to higher temperatures than those of conventional drying. The wood structure changes due to decomposition of hemicelluloses, ramification of lignin, and crystallization of cellulose. The wood becomes less hygroscopic. These changes improve the dimensional stability of wood, increase its resistance to micro-organisms, darken its color, and modify its hardness. However, wood also might loose some of its elasticity. Consequently, the heat treatment conditions have to be optimized. Therefore, it is important to understand the transformation of the chemical structure of wood caused by the treatment. In this study, the modification of the surface composition of the wood was followed with Fourier transform infrared spectroscopy (FTIR and inverse gas chromatography (IGC under different experimental conditions. The effect of maximum treatment temperatures on the chemical composition of Canadian birch and aspen as well as the correlations between their chemical transformation and different mechanical properties are presented. FTIR analysis results showed that the heat treatment affected the chemical composition of birch more compared to that of aspen. The results of IGC tests illustrated that the surfaces of the aspen and birch became more basic with heat treatment. The mechanical properties were affected by degradation of hemicellulose, ramification of lignin and cellulose crystallization.

  15. ANTIOXIDATIVE LOW MOLECULAR WEIGHT EXTRACTIVES FROM TRIPLOID POPULUS TOMENTOSA XYLEM

    Directory of Open Access Journals (Sweden)

    Yong-Hao Ni

    2011-02-01

    Full Text Available Triploid Populus tomentosa Carr. (Salicaceae is a good alternative to meet the increasing need of the global pulp and paper industry. Meanwhile, the xylem of this species could be a useful bioresource to develop low molecular extractives with significant bioactive potential. In the present work, a phytochemical investigation on aqueous EtOH extractives of Triploid P. tomentosa xylem, by systematical performance of Sephadex LH-20 open column chromatography and Thin Layer Chromatography (TLC, resulted in the isolation of two phenolic acids (ρ-coumaric acid (I and caffeic acid (II, two flavonoids (apigenin (III and luteolin (IV, and three phenolic glucosides (salicortin (V, salireposide (VI and populoside (VII. The structure elucidation and determination of the isolated extractives were based on their spectroscopical data and physiochemical evidences. This was the first time to report the low molecular weight extractives of Triploid P. tomentosa. Various low molecular weight extractives from Triploid P. tomentosa xylem exhibited significant antioxidative activities by DPPH and hydroxyl radical scavenging assays.

  16. Lignin Characterization of Triploid Clones of Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)

    Jin Xiao-juan; Pu Jun-wen; Xie Yi-min; Takeshi Furuno; Liu Xin-yu

    2005-01-01

    In order to understand the structural characteristics of lignin in triploid clones ofPopulus tomentosa and its changes in the processes of pulping and bleaching, milled wood lignin (MWL), lignin carbohydrate complex (LCC) and the residual lignin from kraft pulp (KP) and sulfite pulp (SP) were isolated and analyzed by Fourier transform infrared (FTIR) spectrum and 13C nuclear magnetic resonance (NMR). The most diagnostic peaks were assigned and the differences were discussed. The spectral patterns reveal that triploid P. tomentosa shows the specific features of hardwood from temperate areas, but in the spectrum of FTIR, the strength ratio of A1270 cm-1 to A1226 cm-1 is 0.88, higher than the average of hardwood from temperate areas, which will make the lignin delignification more difficult during pulping and bleaching. The LCC from triploid P. tomentosa is mainly composed of xyloglucan and glucuronic acid, and other glucides have much lower ratio. In LCC FTIR, there are three peaks at 1 427, 1 329 and 1046 cm--1, indicating that both semi-cellulose and cellulose could exist in LCC, and that there might be relationships between cellulose and lignin. Compared with the residual lignin from KP and SP, the condensed structure in KP is more than that in SP.

  17. Oxidation behavior of biomass chars: pectin and Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Hong-Shig Shim; Mohammad R. Hajaligol; Vicki L. Baliga [Philip Morris USA, Richmond, VA (United States). Research Center

    2004-08-01

    Biomass chars of pectin and cotton wood (Populus deltoides) were prepared by using a heating rate of about 1{sup o}C/s, peak pyrolysis temperatures of 400-800{sup o}C, and residence times of 10-60 min at peak temperatures. Char samples were pyrolyzed in a helium atmosphere using a thermogravimetric analyzer (TGA). Oxidation reactivity measurements of the same char samples in the TGA were collected after converting the helium atmosphere to an oxygen containing atmosphere. Reactivities were measured using an isothermal method at various reaction temperatures from 400 to 700{sup o}C and oxygen concentrations of 2-21%. Oxidation kinetic parameters such as apparent reaction order and apparent activation energies were obtained. Scanning electron microscopy (SEM) was employed to study morphological and structural development in the char samples as a function of heat treatment temperature. An interesting morphological development on the surface of the char was observed by SEM, which showed evolution of vesicle formation and whisker growth as heat treatment temperatures increased. Its implication on char reactivity is discussed. Preliminary results showed decreasing reactivity with increasing peak heat treatment temperatures. Char reactivity was affected more by the heat treatment temperature than by the hold times (10-60 min). 15 refs., 12 figs., 3 tabs.

  18. Construction of cDNA Library from Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Yu Guangjun; Wang Yiqin; Shen Xin

    2003-01-01

    In order to isolate and clone salt-tolerance involved genes of Populus euphratica, we constructed a cDNA library from salt-treated leaves of P. euphratica. In the experiment, double strand cDNA were synthesized by a beads-based method. The syntheses of the first strand and the second strand cDNA, adapter ligation and restriction reaction for releasing cDNA were all conducted on the beads. The double strand cDNA were released from magnetic beads by digestion with NotI, and cDNA fragments smaller than 500 bp and residual adapters were removed through cDNA size fractionation columns. Finally, double strand cDNA were directionally cloned intoλExcell vector. The results show that the primary titer of the cDNA library is 7.46×106 pfu per mL and the packaging efficiency reaches 1.47×107 recombinants per μg DNA. λDNA extracted from two clones of plaque were digested by EcoR I and NotI, both of the clones contained inserts larger than 900 bp. These results show that the cDNA library of salt-treated P. euphratica leaves has been successfully constructed.

  19. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  20. Establishment of in vitro culture of Populus euphratica Olivier

    Institute of Scientific and Technical Information of China (English)

    Zhao Peng; Dong Zhan-yuan; Sun Hong-bin; Zhao Ju-ying; Wang Hua-fang

    2006-01-01

    The purpose of our study was to establish a regeneration system for micropropagation of Populus euphratica Olivier. On the basis of an analysis of plant leaf mineral nutrients, a special medium was proposed, called MP2. In optimizing media for in vitro plant cultures including MS, B5 and MP2 media we employed hormones, auxin IAA, cytokine benzyladenine (BAP) and gibberellic acid (GA) in our factorial experiments on media. Adventitious shoots were derived from cuttings of adult plants taken from Xingjiang, west China, on selected media with MP2 + 0.5 mg.L-1 BA + 0.1 mg·L-1 NAA. The shoots were elongated on a medium with 0.25mg.L-1 BAP, 0.1 mg.L-1NAA and 2 mg·L-1 GA and were then rooted on a medium with 0.2-0.5 mg·L-1 IBA. All the media were incorporated with 30 g·L-1 sucrose and an adjusted pH at 6.3.

  1. Gamma radiation effect on Populus nigra assimilatory pigments

    International Nuclear Information System (INIS)

    The influence of low intensity gamma radiation on the photosynthesis in young poplar saplings was studied. Black poplar (Populus nigra) was chosen due to its ecological importance, as fast growing tree species with many hybrids, in the frame of a polluted environment. Assimilatory pigments in the leaves of irradiated saplings were assayed using standard spectrophotometric method in acetone extract. Series of five saplings formed the experimental samples. Chlorophyll a and chlorophyll b levels appeared as diminished in exposed samples in comparison to the controls. Linear regression was established in every case, the line slope showing the higher effect in chlorophyll b. Carotene pigments presented a slight increasing tendency in the exposed samples. Assimilatory pigment sum was shown to be affected by the same decreasing tendency. Student t-test was applied (two tailed, pair type) to reveal statistical significance of observed modifications. Though not very deep, the modifications induced by exposure to gamma radiation of low intensity (comparable to the local atmospheric variations, caused by both natural and artificial sources) represent putative inhibitory factors in young plant photosynthesis. The main mechanism of radiation action seems to be water radiolysis, triggering peroxide cascade, generally producing toxic products for the cell metabolism. Nevertheless, living cell ability to repair some damages caused by external stress could be revealed in the present case by the enhancing tendency of the carotenes which sustain photosynthesis as secondary pigments. (authors)

  2. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  3. SEXUAL DEMOGRAPHICS OF RIPARIAN POPULATIONS OF POPULUS DELTOIDES: CAN MORTALITY BE PREDICTED FROM A CHANGE IN REPRODUCTIVE STATUS?

    Science.gov (United States)

    Populus deltoides forests along the Rio Grande river drainage are predicted to disappear within this century. We evaluated stand health over three years by examining the sex ratio, size, and spatial distribution of male, female, and non-reproductive trees in six even-aged stands of Populus deltoide...

  4. SEXUAL DEMOGRAPHICS OF RIPARIN POPULATIONS OF POPULUS DELTOIDES: CAN MORTALITY BE PREDICTED FROM A CHANGE IN REPRODUCTIVE STATUS?

    Science.gov (United States)

    Populus deltoides forests along the Rio Grande river drainage are predicted to disappear within this century. We evaluated stand health over three years by examining the sex ratio, size, and spatial distribution of male, female, and non-reproductive trees in six even-aged stands of Populus deltoide...

  5. Process simulation of oxy-combustion for maximization of energy output using ASPEN plus

    OpenAIRE

    Subhodeep Banerjee, Xiao Zhang, Suraj K. Puvvada, Ramesh K. Agarwal

    2014-01-01

    Oxy-fuel combustion is a next-generation combustion technology that shows promise to address the need of low-cost carbon capture from fossil fueled power plants. Oxy-fuel combustion requires expensive pre-processing in an air separation unit to separate pure oxygen from air for the combustion process, which reduces the overall efficiency of the process. This paper employs ASPEN Plus process simulation software to model a simple oxy-fuel combustor and investigates the effect of various paramet...

  6. DEM modelling, vegetation characterization and mapping of aspen parkland rangeland using LIDAR data

    Science.gov (United States)

    Su, Guangquan

    Detailed geographic information system (GIS) studies on plant ecology, animal behavior and soil hydrologic characteristics across spatially complex landscapes require an accurate digital elevation model (DEM). Following interpolation of last return LIDAR data and creation of a LIDAR-derived DEM, a series of 260 points, stratified by vegetation type, slope gradient and off-nadir distance, were ground-truthed using a total laser station, GPS, and 27 interconnected benchmarks. Despite an overall mean accuracy of +2 cm across 8 vegetation types, it created a RMSE (square root of the mean square error) of 1.21 m. DEM elevations were over-estimated within forested areas by an average of 20 cm with a RMSE of 1.05 m, under-estimated (-12 cm, RMSE = 1.36 m) within grasslands. Vegetation type had the greatest influence on DEM accuracy, while off-nadir distance (P = 0.48) and slope gradient (P = 0.49) did not influence DEM accuracy; however, the latter factors did interact (P physiognomy) including plant height, cover, and vertical or horizontal heterogeneity, are important factors influencing biodiversity. Vegetation over and understory were sampled for height, canopy cover, and tree or shrub density within 120 field plots, evenly stratified by vegetation formation (grassland, shrubland, and aspen forest). Results indicated that LIDAR data could be used for estimating the maximum height, cover, and density, of both closed and semi-open stands of aspen (P < 0.001). However, LIDAR data could not be used to assess understory (<1.5 m) height within aspen stands, nor grass height and cover. Recognition and mapping of vegetation types are important for rangelands as they provide a basis for the development and evaluation of management policies and actions. In this study, LIDAR data were found to be superior to digital classification schedules for their mapping accuracy in aspen forest and grassland, but not shrubland. No single classification schedule created a high classification

  7. An evaluation of steam-treated aspen as a substitute for corn silage in the rations of lactating cows

    OpenAIRE

    Fisher, L J

    1980-01-01

    Fifteen lactating Holsteins were used to test processed aspen added to corn silage at the levels of 0, 10 and 20% (dry matter basis). The experiment was designed as a latin square with three experimental periods each 42 days in length. The forage mixtures were fed free choice to the cows, which were housed in a free-stall barn, and their individual feed intakes were recorded by using electronic doors. The processed aspen contained 45.4% dry matter, 73.7% acid detergent fiber and 0.54% protein...

  8. Analysis of CO2 Separation by Selexol Based on Aspen Plus%基于Aspen Plus对Selexol分离CO2流程的分析

    Institute of Scientific and Technical Information of China (English)

    邱朋华; 李丹丹; 徐宝龙; 呼姚; 杜昌帅; 吴少华

    2014-01-01

    整体煤气化联合循环发电系统可采取燃烧前捕集CO2的方法,处理的合成气量少,能耗低,且能够实现 CO2的近零排放,在 CO2脱除方面具有很大的优势。文中基于Aspen Plus 对 CO2/H2S 联合脱除和分别脱除流程建立了模型,对2流程的能耗、CO2及H2S的脱除效率以及Selexol溶液的再生性能进行了分析。得出:在出口 CO2纯度相同的情况下,CO2/H2S联合脱除流程的能耗仅占CO2/H2S分别脱除的21%左右,CO2脱除效率高于分别脱除流程,2流程Selexol溶液的再生性能相差不大,且H2S脱除效率也可达到95%以上,因此CO2/H2S联合脱除流程更经济。%Integrated gasification combined cycle (IGCC)power generation system can adopt pre-combustion CO2 capture methods, handling with less syngas and have low energy consumption, which can achieve near-zero emissions of CO2, resulting in great advantages in terms of CO2 removal. Based on Aspen Plus, combined removal of CO2/H2S (CRCH) and separate removal of CO2/H2S (SRCH) were modeled . Energy consumption, capture efficiency of CO2 and H2S, as well as the regeneration performance of Selexol were analyzed by the two models. The results indicate that:while keeping the same CO2 purity in outlet stream, the energy consumption of CRCH accounts for only 21% of SRCH; the CO2 capture efficiency is higher than that of SRCH, the regeneration performance of Selexol is almost the same for the two processes, and the capture efficiency of H2S in the two processes can be higher than 95%. All those prove that CRCH is more economic than SRCH.

  9. The obscure events contributing to the evolution of an incipient sex chromosome in Populus A retrospective working hypothesis.

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Chen, Jay [ORNL; Labbe, Jessy L [ORNL; Ranjan, Priya [ORNL; DiFazio, Steven P [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL

    2012-01-01

    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is partially genetically controlled, the precise gender-determining systems remain unclear. The recently-released second draft assembly and annotated gene set of the Populus genome provided an opportunity to re-visit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistances genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found there are gender-specific accumulations of phenolic glycosides. Taken together, these findings provide new insights into the genetic control of gender determination in Populus.

  10. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Tsai, Chung-Jui [Michigan Technological University; Harding, Scott A [Michigan Technological University; Lindroth, richard L [University of Wisconsin, Madison; Yuan, Yinan [Michigan Technological University

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  11. Environmental Influences on Wood Chemistry and Density of Populus and Loblolly Pine

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.

    2006-08-11

    The objectives of the study are to: (1) determine the degree to which physical and chemical wood properties vary in association with environmental and silvicultural practices in Populus and loblolly pine and (2) develop and verify species-specific empirical models in an effort to create a framework for understanding environmental influences on wood quality.

  12. RepPop: a database for repetitive elements in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2009-01-01

    Full Text Available Abstract Background Populus trichocarpa is the first tree genome to be completed, and its whole genome is currently being assembled. No functional annotation about the repetitive elements in the Populus trichocarpa genome is currently available. Results We predicted 9,623 repetitive elements in the Populus trichocarpa genome, and assigned functions to 3,075 of them (31.95%. The 9,623 repetitive elements cover ~40% of the current (partially assembled genome. Among the 9,623 repetitive elements, 668 have copies only in the contigs that have not been assigned to one of the 19 chromosome while the rest all have copies in the partially assembled chromosomes. Conclusion All the predicted data are organized into an easy-to-use web-browsable database, RepPop. Various search capabilities are provided against the RepPop database. A Wiki system has been set up to facilitate functional annotation and curation of the repetitive elements by a community rather than just the database developer. The database RepPop will facilitate the assembling and functional characterization of the Populus trichocarpa genome.

  13. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Goncho T. [West Virginia University; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Steven P [West Virginia University

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.

  14. ADVANCE IN RESEARCH ON DROUGHT RESISTANCE OF POPULUS%杨树抗旱性研究进展

    Institute of Scientific and Technical Information of China (English)

    尹春英; 李春阳

    2003-01-01

    The drought resistance of woody plants, in particular, Populus, was reviewed in this paper. Studies about drought resistance of Populus mostly focused on changes in growth properties, physiological adaptation and biochemical aspects, but a few on molecular biology. The indexes of drought adaptation and productivity were analyzed and these indexes could be employed to identify drought resistance of woody plants. Combination of such different approaches will, hopefully, give us a more complete understanding of the various regulatory mechanisms in trees than what we may have today. With development of the molecular biology of woody plants, the sluties on stress resistance of Populus which was regarded as a model plant, are summarised. Ref 96

  15. 77 FR 31351 - Adequacy Determination for Aspen PM10 and Fort Collins Carbon Monoxide Maintenance Plans' Motor...

    Science.gov (United States)

    2012-05-25

    ... (69 FR 40004). In addition, in certain areas with monitored ambient carbon monoxide (CO) values... the National Ambient Air Quality Standard (NAAQS). The criteria by which we determine whether a SIP... AGENCY Adequacy Determination for Aspen PM and Fort Collins Carbon Monoxide Maintenance Plans'...

  16. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  17. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  18. Geographic Patterns and Stand Variables Influencing Growth and Vigor of Populus tremuloides in the Sierra Nevada (USA)

    OpenAIRE

    Christa M. Dagley; John-Pascal Berrill

    2012-01-01

    Awareness of geographic patterns and stand variables that influence tree growth will help forest managers plan appropriate management and monitoring strategies. We quantified influences of stand location, species composition, stand density, and tree size on aspen tree growth and vigor around the Lake Tahoe Basin in the Sierra Nevada Mountains of California and Nevada, USA. Radial growth data were taken from increment cores. Aspen trees on the south and west sides of the lake grew 20–25% faste...

  19. Simulation and validation of chemical-looping combustion using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Ling Zhou, Zheming Zhang, Ramesh K. Agarwal

    2014-01-01

    Full Text Available Laboratory-scale experimental studies have demonstrated that Chemical-Looping Combustion (CLC is an advanced technology which holds great potential for high-efficiency low-cost carbon capture. The generated syngas in CLC is subsequently oxidized to CO2 and H2O by reaction with an oxygen carrier. In this paper, process-level models of CLC are established in ASPEN Plus code for detailed simulations. The entire CLC process, from the beginning of coal gasification to reduction and oxidation of the oxygen carrier is modeled. The heat content of each major component such as fuel and air reactors and air/flue gas heat exchangers is carefully examined. Large amount of energy is produced in the fuel reactor, but energy needs to be supplied to the air reactor. The overall performance and efficiency of the modeled CLC systems are also evaluated.

  20. Simulation and validation of chemical-looping combustion using ASPEN plus

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ling [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States); Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Laboratory-scale experimental studies have demonstrated that Chemical-Looping Combustion (CLC) is an advanced technology which holds great potential for high-efficiency low-cost carbon capture. The generated syngas in CLC is subsequently oxidized to CO2 and H2O by reaction with an oxygen carrier. In this paper, process-level models of CLC are established in ASPEN Plus code for detailed simulations. The entire CLC process, from the beginning of coal gasification to reduction and oxidation of the oxygen carrier is modeled. The heat content of each major component such as fuel and air reactors and air/flue gas heat exchangers is carefully examined. Large amount of energy is produced in the fuel reactor, but energy needs to be supplied to the air reactor. The overall performance and efficiency of the modeled CLC systems are also evaluated.

  1. A simulation study of Solid Oxide fuel cell for IGCC power generation using Aspen Plus

    DEFF Research Database (Denmark)

    Rudra, Souman; Kim, Hyung Taek

    2010-01-01

    The solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur free syngas from the gas cleaning unit serves as a fuel for SOFC in IGFC (Integrated gasification Fuel cell) power plant. It converts the chemical energy of the fuel gas directly to electric energy and...... more accurate fuel cell model giving an advantage over previous system studies based on simplified SOFC models. The objective of this work is to develop a simulation model of a SOFC for IGFC system, flexible enough for use in future development, capable of predicting system performance under various...... operating conditions and using diverse fuels. The SOFC stack model developed using the chemical process flow sheet simulator Aspen Plus which is of equilibrium type and is based on Gibbs free energy minimization. The SOFC model performs heat and mass balances and considers the ohmic, activation and...

  2. Continuous Hydrothermal Co-liquefaction of Aspen Wood and Glycerol with Water Phase Recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Grigoras, Ionela; Hoffmann, Jessica;

    2016-01-01

    reactors, although a continuous and energy-efficient operation is paramount for such process to be feasible. In this work an experimental campaign in a continuous bench scale unit is presented. The campaign is based on glycerol-assisted hydrothermal liquefaction of aspen wood carried out with the presence...... having a higher heating value of 34.3 MJ/kg. The volatile fraction of the biocrude consisted mostly of compounds having number of carbon atoms in the C6–C12 range similar to gasoline. In terms of process feasibility, it was revealed that total organic carbon (TOC) and ash significantly accumulated in the...... water phase when such is recirculated for the proceeding batch. After four batches the TOC and the ash mass fraction of the water phase were 136.2 [g/L] and 12.6 [%], respectively. Water phase recirculation showed a slight increase in the biocrude quality in terms on an effective hydrogen...

  3. Three Stage Equilibrium Model for Coal Gasification in Entrained Flow Gasifiers Based on Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    KONG Xiangdong; ZHONG Weimin; DU Wenli; QIAN Feng

    2013-01-01

    A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiers based on Aspen Plus to calculate the composition of product gas,carbon conversion,and gasification temperature.The model is divided into three stages including pyrolysis and combustion stage,char gas reaction stage,and gas phase reaction stage.Part of the water produced in the pyrolysis and combustion stage is assumed to be involved in the second stage to react with the unburned carbon.Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature.And the gas product compositions are calculated from gas phase reactions in the third stage.The simulation results are consistent with published experimental data.

  4. Process simulation of oxy-combustion for maximization of energy output using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Subhodeep Banerjee, Xiao Zhang, Suraj K. Puvvada, Ramesh K. Agarwal

    2014-01-01

    Full Text Available Oxy-fuel combustion is a next-generation combustion technology that shows promise to address the need of low-cost carbon capture from fossil fueled power plants. Oxy-fuel combustion requires expensive pre-processing in an air separation unit to separate pure oxygen from air for the combustion process, which reduces the overall efficiency of the process. This paper employs ASPEN Plus process simulation software to model a simple oxy-fuel combustor and investigates the effect of various parameters on the energy output. The composition of the flue gas is carefully examined. The results of this study provide a starting point for optimized oxy-fuel combustion operation for maximum energy output, which will be crucial for future deployment of oxy-fuel combustion technology.

  5. Modeling of a High Temperature Sulfuric Acid Loop using Aspen Plus

    International Nuclear Information System (INIS)

    Hydrogen energy needs are growing with increased demands for alternatives to fossil fuel. Recently, many researchers have been investigating into hydrogen production technologies from a renewable and a nuclear energy. Very High Temperature gas cooled nuclear Reactor (VHTR) is considered to be suitable for massive hydrogen production systems when it coupled with Sulfur-Iodine (SI) thermo-chemical cycle. Kim et al. are developing a hybrid heat exchanger as a process heat exchanger for the sulfur trioxide decomposition. Hong et al. constructed and are operating a small scale sulfuric acid loop for the integrity and feasibility tests of a process heat exchanger coupled with VHTR and SI cycle. In this study, we performed preliminary analysis of small scale sulfuric acid test loop using Aspen Plus chemical process simulator. In addition, we studied the behavior of main component in the sulfuric acid loop on the basis of experimental results

  6. Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar.

    Science.gov (United States)

    Charon, Céline; Vivancos, Julien; Mazubert, Christelle; Paquet, Nicolas; Pilate, Gilles; Dron, Michel

    2010-02-01

    TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species). PMID:19943172

  7. Effects of aspen harvesting on groundwater recharge and water table dynamics in a subhumid climate

    Science.gov (United States)

    Carrera-HernáNdez, J. J.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Smerdon, B. D.

    2011-05-01

    Numerical experiments were developed using different water table depths and soil textures to investigate the impact of aspen harvesting on hydrological processes on the Western Boreal Plain. The effect of harvesting on soil moisture dynamics, fluxes at the water table, and water table fluctuation were compared for different harvesting scenarios simulated under wet and dry climatic cycles. Strong interaction between shallow water tables (i.e., 2 m) and atmospheric variability is observed for all soil textures and is reduced as the vadose zone thickens, particularly after a dry cycle, as a series of positive net atmospheric fluxes are needed to reduce soil moisture storage in order for recharge to occur. Because of harvesting, the water table fluxes can increase by 50 mm month-1, while on a yearly basis, this increase can reach 200 mm yr-1, with rainfall events taking between 1 and 5 years to become recharge (i.e., time lag). Also, the water table is expected to rise between 1 and 3.5 m, with rainfall-water table rise time lags of 1-3 years; however, the peak manifestation of harvesting on water table elevation can take up to 7 years after harvesting. The effects of aspen harvesting are more pronounced during wet cycles, and the development of forestry activities in the Boreal Plain should consider not only preceding precipitation but also the preceding precipitation-reference evapotranspiration ratio, water table depth, and soil texture. The interaction of these factors needs to be considered in order to develop sustainable forestry plans and avoid waterlogging conditions.

  8. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    McKown, Athena [University of British Columbia, Vancouver; Klapste, Jaroslav [University of British Columbia, Vancouver; Guy, Robert [University of British Columbia, Vancouver; Geraldes, Armando [University of British Columbia, Vancouver; Porth, Ilga [University of British Columbia, Vancouver; Hannemann, Jan [University of Victoria, Canada; Friedmann, Michael [University of British Columbia, Vancouver; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; Ehlting, Juergen [University of Victoria, Canada; Cronk, Quentin [University of British Columbia, Vancouver; El-Kassaby, Yousry [University of British Columbia, Vancouver; Mansfield, Shawn [University of British Columbia, Vancouver; Douglas, Carl [University of British Columbia, Vancouver

    2014-01-01

    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  9. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types ▿†

    OpenAIRE

    Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Vilgalys, Rytas; Doktycz, Mitchel J.; Schadt, Christopher W.

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Commun...

  10. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    Energy Technology Data Exchange (ETDEWEB)

    Muchero, Wellington [ORNL; Labbe, Jessy L [ORNL; Priya, Ranjan [University of Tennessee, Knoxville (UTK); DiFazio, Steven P [West Virginia University, Morgantown; Tuskan, Gerald A [ORNL

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  11. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny.

    Science.gov (United States)

    Monclus, R; Villar, M; Barbaroux, C; Bastien, C; Fichot, R; Delmotte, F M; Delay, D; Petit, J-M; Bréchet, C; Dreyer, E; Brignolas, F

    2009-11-01

    Genotypic variability for productivity, water-use efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh x Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orléans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remained irrigated (control). Stem biomass and leaf structure (e.g., specific leaf area and leaf area) were measured in 2004 and 2005 and functional leaf traits (e.g., carbon isotope discrimination, Delta) were measured only in 2004. Tolerance to water deficit was estimated at genotype level as the ability to limit losses in biomass production in water deficit versus control trees. Stem biomass, leaf structure and Delta displayed a significant genotypic variability whatever the irrigation regime. For all traits, genotype ranks remained stable across years for similar irrigation conditions. Carbon isotope discrimination scaled negatively with productivity and leaf nitrogen content in controls. The most productive genotypes were the least tolerant to moderate water deficit. No relationship was evidenced between Delta and the level of tolerance to water deficit. The relationships between traits evidenced in this collection of P. deltoides x P. trichocarpa F1 genotypes contrast with the ones that were previously detected in a collection of P. deltoides x Populus nigra L. cultivars tested in the same field trial. PMID:19773340

  12. Models for the distribution of quaking aspen in geographic and potential evapotranspiration spaces relevant to the Book Cliffs (Utah), 2000-2002

    OpenAIRE

    Sexton, Joseph O.

    2003-01-01

    Quaking aspen is the most widely distributed tree species in North America and an asset to sociological, ecological, and hydrological land values in the western United States. In recognition of these values, land managers seek means to oppose a regional decline of aspen in the Intermountain West—a decline apparently in progress since the close of the Pleistocene and driven by climate change, fire suppression, and increasing ungulate densities. One location of special relevance to this decline...

  13. Pollen development and multi-nucleate microspores of Populus bolleana Lauche

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng-hai; KANG Xiang-yang; WANG Shang-de; LI Dai-li; CHEN Hong-wei

    2008-01-01

    Populus bolleana is a variety of P. alba, commonly used in poplar breeding programs in China. Developmental biology that involves staminate flowers, microsporogenesis and microgametogenesis ofP bolleana is essential for Populus improvement in cross breeding for better characteristics in sexual reproduction. Flower morphology and pollen development were described and illustrated using anatomical, sectioning and stain-clearing techniques. The results show that microsporocytes undergo a regular meioticprocess, but some multi-nucleate microspores occur at the microspore stage. It takes five days for microsporocytes to develop to mature pollen by forcing flower branches under greenhouse conditions. Additionally, an important relationship was found between stages of meiosis and anther colors. Microspore tetrads formed when the anther color turned yellow, whereas, when the pollen matured, the anther was red and the tapetum degenerated completely. When mature pollen grains are formed, flower buds develop into male eatkins. In the end, filament elongated and pollen grains were released from dehisced anthers.

  14. Increase in radiosensitivity with increase in age of Populus tremuloides seed

    International Nuclear Information System (INIS)

    Populus tremuloides seeds from one tree were irradiated with a 260-Ci 137 Cs gamma source to exposures of 0.47, 0.94, 1.4, 1.8, 3.7, 7.5, 15, 22, 30, 45, and 60 kr at increasing time intervals after seed collection. Two methods of seed storage were used prior to irradiation, refrigerator storage at 50C and freezer storage at -190C with vacuum desiccation. Gamma radiation had no effect upon germination percentage. However, marked decreases in the LD/sub 50-30/ of Populus tremuloides seedlings, grown from seed that was gamma irradiated at increasing time intervals after seed collection, indicated that the seed radiosensitivity increases with increasing age of the seed. Seed storage under vacuum desiccation in a freezer at -190C prolonged the viable storage life of the seed over refrigerator storage

  15. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  16. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening

    OpenAIRE

    S. Di Lonardo; Capuana, M.; Arnetoli, M.; R. GABBRIELLI; Gonnelli, C

    2011-01-01

    Abstract Purpose This work was planned for providing a useful screening tool for the selection of Populus alba clones suitable for phytoremediation techniques. To this aim, we investigated variation in arsenic, cadmium, copper, and zinc tolerance, accumulation and translocation in three poplar clones through an in vitro screening. Poplars have been widely proposed for phytoremediation, as they are adaptable to grow on contaminated areas and able to accumulate metals...

  17. PROCESS OPTIMIZATION OF TETRA ACETYL ETHYLENE DIAMINE ACTIVATED HYDROGEN PEROXIDE BLEACHING OF POPULUS NIGRA CTMP

    OpenAIRE

    Qiang Zhao; Junwen Pu; Shulei Mao; Guibo Qi

    2010-01-01

    To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED) was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp con...

  18. Successful Agrobacterium-mediated transformation of Populus tomentosa with apple SPDS gene

    Institute of Scientific and Technical Information of China (English)

    LIU Ting-ting; PANG Xiao-ming; LONG Cui; ZHANG Zhi-yi

    2008-01-01

    The problem of salinized soils has become one of the most serious constraints to agricultural and forest productivity. With the purpose of enhancing salt stress tolerance of Populus tomentosa, we transformed this tree species with spermidine synthase (SPDS) genes derived from an apple by an Agrobacterium-mediatod method. Four transgenic clones were confirmed by PCR and Southern blot analysis. As well, the expression of introduced SPDS genes was analyzed by real-time quantitative PCR.

  19. Morphological study of the leaves of two European black poplar (Populus nigra L.) populations in Slovenia

    OpenAIRE

    Jarni, Kristjan; Vaupotič, Urška; BOŽIČ, Gregor; Brus, Robert

    2015-01-01

    Background and Purpose: Conservation efforts across Europe and a substantial lack of information regarding the present status of black poplar (Populus nigra L.) in Slovenia led us to conduct this research. The objectives were to determine the presence of preserved native black poplar in Slovenia, to evaluate the variation within and between two selected populations, and to evaluate the condition of these populations, which is important for enabling their long-term gene pool conservation. ...

  20. Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress

    OpenAIRE

    Luo, Zhi-Bin; Li, Ke; Jiang, Xiangning; Polle, Andrea

    2009-01-01

    Mycorrhizal fungi and hydrogels (water-absorbing polymers) can improve water availability for trees. The combination of both factors for plant performance under water limitation has not yet been studied. • To investigate the influence of the ectomycorrhizal fungus Paxillus involutus, hydrogel and the combination of both factors, a drought-sensitive poplar, Populus euphratica, was examined in this study. • After 16 weeks of inoculation, no ectomycorrhizas were found. Nevertheles...

  1. Local Selection Across a Latitudinal Gradient Shapes Nucleotide Diversity in Balsam Poplar, Populus balsamifera L

    OpenAIRE

    Keller, Stephen R.; Levsen, Nicholas; Ingvarsson, Pär K.; Olson, Matthew S.; Tiffin, Peter

    2011-01-01

    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleo...

  2. Sub-Soiling and Genotype Selection Improves Populus Productivity Grown on a North Carolina Sandy Soil

    OpenAIRE

    Shawn Dayson Shifflett; Dennis W. Hazel; Elizabeth Guthrie Nichols

    2016-01-01

    This study reports the stem volume of 10 Populus genotypes in a randomized split-plot design with different tillage treatments (disking versus sub-soiling) after two years of growth. Height, diameter at breast height (DBH), stem aboveground volume index, survival, Melampsora rust resistance, leaf area index (LAI), chlorophyll content, and foliar nitrogen concentration (Foliar N) were measured to identify how tillage treatments might alter poplar growth. Stem volume index and LAI were positive...

  3. Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides

    OpenAIRE

    Sandeep Bisht; Piyush Pandey; Anchal Sood; Shivesh Sharma; Bisht, N. S.

    2010-01-01

    Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K) of isolat...

  4. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation. PMID:18246776

  5. Palaeogene fossil Populus leaves from Lanzhou Basin and their palaeoclimatic significance

    Institute of Scientific and Technical Information of China (English)

    SUN Bainian; YAN Defei; XIE Sanping; CONG Peiyun; XIN Cunlin; YUN Fei

    2004-01-01

    An angiosperm compression flora is found in Palaeogene from Lanzhou Basin and the cuticular analysis of Populus davidiana Dode in the flora is carefully made. Furthermore, the fossil cuticles are compared with the epidermal structures of extant Populus leaves growing in different environments, I.e. Moist, semimoist, and semiarid to arid climatic regions. The present experiments indicate that mature leaves of P. Davidiana show leaf size from big to small, leaf cuticles from thick to thin and anticlinal walls of epidermal cells from faintness to clarity along with the increase of latitudes of the plant distributions, the climatic variation from moist to arid, the annual precipitation from more to less and the annual mean temperature from high to low. The fossil P.davidiana differs from the specimens collected from Shandan in semiarid to arid climatic regions but closely resembles the Wushan leaves in a semi-moist climatic area in a lot of features. In a word, the new research may reflect that the flora lives in a semi-moist climatic environment. The present discovery of compression of Paleogene Populus davidiana is of great significance to studying vegetation types, climatic and environmental changes during the primal uplifting of the Qinghai-Tibet Plateau.

  6. Estimating Stem Volume Using QuickBird Imagery and Allometric Relationships for Open Populus xiaohei Plantations

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qing Wang; Zeng-Yuan Li; Xing-E Liu; Guang Deng; Ze-Hui Jiang

    2007-01-01

    There has been a great deal of interest in studying the crown of trees using remote sensing data. In this study, crown width was extracted from high-resolution QuickBird images for open Populus xiaohei plantations. Regression models for predicting the individual stem volumes of Populus xiaohei were established using extracted crown width, as well as estimated tree parameters (i.e. diameter at breast height [DBH] and tree height) as predictors. Our results indicated that crown width could be accurately extracted from QuickBird images using a multi-scale segmentation approach with a mean relative error of 5.74%, especially for wide-spacing stands. Using either extracted crown width alone or with estimated DBH and tree height can successfully estimate individual stem volume of Populus xiaohei with the R2 value ranging from 0.87 to 0.92 depending on different model forms. In particular, the two second-order polynomial models (model2 and model 6), based on QuickBird image-derived crown widths and estimated DBH and tree heights, respectively, were the best at describing the relationship between stem volume and tree characteristics.

  7. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    Science.gov (United States)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor

    2015-10-01

    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  8. Short communication. A review on the efficacy tests and risk analyses conducted on Chondrostereum purpureum, a potential biocontrol agent, in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Hantula, J.; Hamberg, L.; Vartiamaki, H.; Korhonen, K.; Uotila, A.

    2012-11-01

    Hardwood sprouting is a problem in forest regeneration areas, under electric lines, on roadsides and railways. In Finland, isolates of Chondrostereum purpureum were screened by field experiments for their efficiency to control sprouting. The proportion of dead stumps with the best isolates exceeded 80% on birch (Betula pendula and B. pubescens), and C. purpureum was also found to affect the sprouting of aspen (Populus tremula) and rowan (Sorbus aucuparia). The risks of C. purpureum based biocontrol were evaluated by population genetic analysis. It showed that C. purpureum is a geographically undifferentiated species that does not reproduce clonally. The risk of infection of non-target trees was found to be highest in early spring. These findings suggest that the risks of using C. purpureum in biocontrol are small. (Author) 36 refs.

  9. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models

    International Nuclear Information System (INIS)

    The design of a fuel cell system involves both optimization of the fuel cell stack and the balance of plant with respect to efficiency and economics. Many commercially available process simulators, such as AspenPlusTM, can facilitate the analysis of a solid oxide fuel cell (SOFC) system. A SOFC system may include fuel pre-processors, heat exchangers, turbines, bottoming cycles, etc., all of which can be very effectively modelled in process simulation software. The current challenge is that AspenPlusTM or any other commercial process simulators do not have a model of a basic SOFC stack. Therefore, to enable performing SOFC system simulation using one of these simulators, one must construct an SOFC stack model that can be implemented in them. The most common approach is to develop a complete SOFC model in a programming language, such as Fortran, Visual Basic or C++, first and then link it to a commercial process simulator as a user defined model or subroutine. This paper introduces a different approach to the development of a SOFC model by utilizing existing AspenPlusTM functions and existing unit operation modules. The developed ''AspenPlusTM SOFC'' model is able to provide detailed thermodynamic and parametric analyses of the SOFC operation and can easily be extended to study the entire power plant consisting of the SOFC and the balance of plant without the requirement for linking with other software. Validation of this model is performed by comparison to a Siemens-Westinghouse 100 kW class tubular SOFC stack. Sensitivity analyses of major operating parameters, such as utilization factor (Uf), current density (Ic) and steam-carbon ratio (S/C), were performed using the developed model, and the results are discussed in this paper

  10. Comparative simulation study of gas-phase propylene polymerization in fluidized bed reactors using aspen polymers and two phase models

    Directory of Open Access Journals (Sweden)

    Shamiria Ahmad

    2013-01-01

    Full Text Available A comparative study describing gas-phase propylene polymerization in fluidized-bed reactors using Ziegler-Natta catalyst is presented. The reactor behavior was explained using a two-phase model (which is based on principles of fluidization as well as simulation using the Aspen Polymers process simulator. The two-phase reactor model accounts for the emulsion and bubble phases which contain different portions of catalysts with the polymerization occurring in both phases. Both models predict production rate, molecular weight, polydispersity index (PDI and melt flow index (MFI of the polymer. We used both models to investigate the effect of important polymerization parameters, namely catalyst feed rate and hydrogen concentration, on the product polypropylene properties, such as production rate, molecular weight, PDI and MFI. Both the two-phase model and Aspen Polymers simulator showed good agreement in terms of production rate. However, the models differed in their predictions for weight-average molecular weight, PDI and MFI. Based on these results, we propose incorporating the missing hydrodynamic effects into Aspen Polymers to provide a more realistic understanding of the phenomena encountered in fluidized bed reactors for polyolefin production.

  11. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression

    Directory of Open Access Journals (Sweden)

    Yellanki Priyadarshini

    2009-03-01

    Full Text Available Abstract Background Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in the development of plants and their defense against pathogens. The biosynthesis of monolignols, which represent the main component of lignin involves many enzymes. The cinnamyl alcohol dehydrogenase (CAD is a key enzyme in lignin biosynthesis as it catalyzes the final step in the synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa and partially in Populus. This is the first comprehensive study on the CAD gene family in woody plants including genome organization, gene structure, phylogeny across land plant lineages, and expression profiling in Populus. Results The phylogenetic analyses showed that CAD genes fall into three main classes (clades, one of which is represented by CAD sequences from gymnosperms and angiosperms. The other two clades are represented by sequences only from angiosperms. All Populus CAD genes, except PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development (PoptrCAD 4 and PoptrCAD 10 belong to Class I and Class II. Most of the CAD genes are physically distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression modulation under various biological and physiological processes. The CAD genes showed different expression patterns in poplar with only two genes preferentially expressed in xylem tissues during lignin biosynthesis. Conclusion The phylogeny of CAD genes suggests that the radiation of this gene family may have occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus showed that both large scale and tandem duplications contributed significantly to the CAD gene family expansion. The duplication of several CAD genes seems to be associated with a genome duplication

  12. ASPEN: A fully kinetic, reduced-description particle-in-cell model for simulating parametric instabilities

    International Nuclear Information System (INIS)

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented

  13. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  14. A Simulation Study of Downdraft Gasification of Oil-Palm Fronds using ASPEN PLUS

    Directory of Open Access Journals (Sweden)

    Suzana Yusup

    2011-01-01

    Full Text Available The use of biomass gasification for conversion of hydrocarbons to permanent fuel gas mainly composed of carbon monoxide and hydrogen, dates back to late 1700. However, the successful design and operation of gasifiers is not an easy task. No clear cut methods of performance prediction of gasifiers is yet available as the thermodynamics of gasifier operation is less understood and highly dependent on the specific biomass feedstock used. In this study, the performance study of downdraft gasification of oil-palm fronds, is carried out making use of ASPEN PLUS 0process simulator software, to study the effect of operating conditions (zone temperature, operating pressure, air fuel ratio and moisture content on syngas composition. In this study, the pyrolysis yield is calculated from the ultimate analysis (CHNS test values of the oil-palm fronds, rather than approximating typical yield distribution for pyrolysis products. The results of the simulation showed better agreement with the syngas composition results of other authors. From the simulation study it is shown that higher mass fraction of CO and CH4 can be obtained at lower air-fuel ratio and lower pressure (below 5 bars. The mass fraction of CO increases sharply with increase in the oxidation zone temperature, for the temperature range of 500-700C.

  15. Full employment and competition in the Aspen economic model: implications for modeling acts of terrorism.

    Energy Technology Data Exchange (ETDEWEB)

    Sprigg, James A.; Ehlen, Mark Andrew

    2004-11-01

    Acts of terrorism could have a range of broad impacts on an economy, including changes in consumer (or demand) confidence and the ability of productive sectors to respond to changes. As a first step toward a model of terrorism-based impacts, we develop here a model of production and employment that characterizes dynamics in ways useful toward understanding how terrorism-based shocks could propagate through the economy; subsequent models will introduce the role of savings and investment into the economy. We use Aspen, a powerful economic modeling tool developed at Sandia, to demonstrate for validation purposes that a single-firm economy converges to the known monopoly equilibrium price, output, and employment levels, while multiple-firm economies converge toward the competitive equilibria typified by lower prices and higher output and employment. However, we find that competition also leads to churn by consumers seeking lower prices, making it difficult for firms to optimize with respect to wages, prices, and employment levels. Thus, competitive firms generate market ''noise'' in the steady state as they search for prices and employment levels that will maximize profits. In the context of this model, not only could terrorism depress overall consumer confidence and economic activity but terrorist acts could also cause normal short-run dynamics to be misinterpreted by consumers as a faltering economy.

  16. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  17. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  18. ON THE INTERACTIONS BETWEEN CELLULOSE AND XYLAN, A BIOMIMETIC SIMULATION OF THE HARDWOOD CELL WALL

    Directory of Open Access Journals (Sweden)

    Sofia Dammström

    2009-02-01

    Full Text Available The plant cell wall exhibits a hierarchical structure, in which the organization of the constituents on different levels strongly affects the mechanical properties and the performance of the material. In this work, the interactions between cellulose and xylan in a model system consisting of a bacterial cellulose/glucuronoxylan (extracted from aspen, Populus tremula have been studied and compared to that of a delignified aspen fiber material. The properties of the materials were analyzed using Dynamical Mechanical Analysis (DMA with moisture scans together with dynamic Infra Red -spectroscopy at dry and humid conditions. The results showed that strong interactions existed between the cellulose and the xylan in the aspen holocellulose. The same kinds of interactions were seen in a water-extracted bacterial cellulose/xylan composite, while unextracted material showed the presence of xylan not interacting with the cellulose. Based on these findings for the model system, it was suggested that there is in hardwood one fraction of xylan that is strongly associated with the cellulose, taking a similar role as glucomannan in softwood.

  19. Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in populus.

    Science.gov (United States)

    Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2010-03-01

    Salicylate-containing phenolic glycosides (PGs) are abundant and often play a dominant role in plant-herbivore interactions of Populus and Salix species (family Salicaceae), but the biosynthetic pathway to PGs remains unclear. Cinnamic acid (CA) is thought to be a precursor of the salicyl moiety of PGs. However, the origin of the 6-hydroxy-2-cyclohexen-on-oyl (HCH) moiety found in certain PGs, such as salicortin, is not known. HCH is of interest because it confers toxicity and antifeedant properties against herbivores. We incubated Populus nigra leaf tissue with stable isotope-labeled CA, benzoates, and salicylates, and measured isotopic incorporation levels into both salicin, the simplest PG, and salicortin. Labeling of salicortin from [13C6]-CA provided the first evidence that HCH, like the salicyl moiety, is a phenylpropanoid derivative. Benzoic acid and benzaldehyde also labeled both salicyl and HCH, while benzyl alcohol labeled only the salicyl moiety in salicortin. Co-administration of unlabeled benzoates with [13C6]-CA confirmed their contribution to the biosynthesis of the salicyl but not the HCH moiety of salicortin. These data suggest that benzoate interconversions may modulate partitioning of phenylpropanoids to salicyl and HCH moieties, and hence toxicity of PGs. Surprisingly, labeled salicyl alcohol and salicylaldehyde were readily converted to salicin, but did not result in labeled salicortin. Co-administration of unlabeled salicylates with labeled CA suggested that salicyl alcohol and salicylaldehyde may have inhibited salicortin biosynthesis. A revised metabolic grid model of PG biosynthesis in Populus is proposed, providing a guide for functional genomic analysis of the PG biosynthetic pathway. PMID:20177744

  20. Estimation of Power Production Potential from Natural Gas Pressure Reduction Stations in Pakistan Using ASPEN HYSYS

    Directory of Open Access Journals (Sweden)

    Imran Nazir Unar

    2015-07-01

    Full Text Available Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure range of 600-1000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited and SSGCL (Sui Southern Gas Company Limited. The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station. As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in throttle valves where isenthalpic expansion takes place without producing any energy. Pressure potential of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS®7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3.

  1. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    Energy Technology Data Exchange (ETDEWEB)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE/NETL; Ochs, Thomas [U.S. DOE/NETL; Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  2. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Wayne; Reynolds, Anthony; Kennedy, David [Department of Mechanical Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1 (Ireland)

    2009-09-15

    In the context of climate change, efficiency and energy security, biomass gasification is likely to play an important role. Circulating fluidised bed (CFB) technology was selected for the current study. The objective of this research is to develop a computer model of a CFB biomass gasifier that can predict gasifier performance under various operating conditions. An original model was developed using ASPEN Plus. The model is based on Gibbs free energy minimisation. The restricted equilibrium method was used to calibrate it against experimental data. This was achieved by specifying the temperature approach for the gasification reactions. The model predicts syn-gas composition, conversion efficiency and heating values in good agreement with experimental data. Operating parameters were varied over a wide range. Parameters such as equivalence ratio (ER), temperature, air preheating, biomass moisture and steam injection were found to influence syn-gas composition, heating value, and conversion efficiency. The results indicate an ER and temperature range over which hydrogen (H{sub 2}) and carbon monoxide (CO) are maximised, which in turn ensures a high heating value and cold gas efficiency (CGE). Gas heating value was found to decrease with ER. Air preheating increases H{sub 2} and CO production, which increases gas heating value and CGE. Air preheating is more effective at low ERs. A critical air temperature exists after which additional preheating has little influence. Steam has better reactivity than fuel bound moisture. Increasing moisture degrades performance therefore the input fuel should be pre-dried. Steam injection should be employed if a H{sub 2} rich syn-gas is desired. (author)

  3. Experimental Investigation and Aspen Plus Simulation of the MSW Pyrolysis Process

    Science.gov (United States)

    Ansah, Emmanuel

    Municipal solid waste (MSW) is a potential feedstock for producing transportation fuels because it is readily available using an existing collection/transportation infrastructure and fees are provided by the suppliers or government agencies to treat MSW. North Carolina with a population of 9.4 millions generates 3.629 million metric tons of MSW each year, which contains about 113,396,356 TJs of energy. The average moisture content of MSW samples is 44.3% on a wet basis. About 77% of the dry MSW mass is combustible components including paper, organics, textile and plastics. The average heating values of MSW were 9.7, 17.5, and 22.7 MJ/kg on a wet basis, dry basis and dry combustible basis, respectively. The MSW generated in North Carolina can produce 7.619 million barrels of crude bio-oil or around 4% of total petroleum consumption in North Carolina. MSW can be thermally pyrolyzed into bio-oil in the absence of oxygen or air at a temperature of 500°C or above. As bio-oil can be easily stored and transported, compared to bulky MSW, landfill gas and electricity, pyrolysis offers significant logistical and economic advantages over landfilling and other thermal conversion processes such as combustion and gasification. Crude bio-oils produced from the pyrolysis of MSW can be further refined to transportation fuels in existing petroleum refinery facilities. The objective of this research is to analyze the technical and economic feasibility of pyrolyzing MSW into liquid transportation fuels. A combined thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC) instrument, which can serve as a micro-scale pyrolysis reactor, was used to simultaneously determine the degradation characteristics of MSW during pyrolysis. An ASPEN Plus-based mathematical model was further developed to analyze the technical and economic feasibility of pyrolysing of MSW into liquid transportation fuels in fixed bed reactors at varying operating conditions

  4. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm3 y−1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  5. Simulation of the SSC [Superconducting Super Collider] refrigeration system using the ASPEN/SP process simulator

    International Nuclear Information System (INIS)

    The SSC Magnet must maintain at a super conducting temperature of 4 K. The proposed refrigeration cooling processes consist of fairly simple closed cycles which take advantage of the Joule-Thompson effect via a series of expansions and compressions of helium gas which has been precooled by liquid nitrogen. The processes currently under consideration consist of three cycles, the 20 K shield cooling, the 45 K helium refrigerator and the helium liquefier. The process units which are to be employed are compressors, turbines, expanders, mixers, flashes, two stream heat exchangers and multiple stream heat exchangers. The cycles are to be operated at or near steady state. Due to the large number of competing cooling sector designs to be considered and the high capital and operating costs of the proposed processes, the SSC Laboratory requires a software tool for the validation and optimization of the individual designs and for the performance of cost-benefit analyses among competing designs. Since these processes are steady state flow processes involving primarily standard unit operations, a decision was made to investigate the application of a commercial process simulator to the task. Several months of internal evaluations by the SSC Laboratory revealed that while the overall structure and calculation approach of number of the commercial simulators were appropriate for this task, all were lacking essential capabilities in the areas of thermodynamic property calculations for cryogenic systems and modeling of complex, multiple stream heat exchangers. An acceptable thermodynamics model was provided and a series of simple, but representative benchmark problems developed. The model and problems were provided to three software vendors. Based on the results of the benchmark test, the ASPEN/SP process simulator was selected for future modeling work

  6. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  7. The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation

    International Nuclear Information System (INIS)

    In the context of climate change, efficiency and energy security, biomass gasification is likely to play an important role. Circulating fluidised bed (CFB) technology was selected for the current study. The objective of this research is to develop a computer model of a CFB biomass gasifier that can predict gasifier performance under various operating conditions. An original model was developed using ASPEN Plus. The model is based on Gibbs free energy minimisation. The restricted equilibrium method was used to calibrate it against experimental data. This was achieved by specifying the temperature approach for the gasification reactions. The model predicts syn-gas composition, conversion efficiency and heating values in good agreement with experimental data. Operating parameters were varied over a wide range. Parameters such as equivalence ratio (ER), temperature, air preheating, biomass moisture and steam injection were found to influence syn-gas composition, heating value, and conversion efficiency. The results indicate an ER and temperature range over which hydrogen (H2) and carbon monoxide (CO) are maximised, which in turn ensures a high heating value and cold gas efficiency (CGE). Gas heating value was found to decrease with ER. Air preheating increases H2 and CO production, which increases gas heating value and CGE. Air preheating is more effective at low ERs. A critical air temperature exists after which additional preheating has little influence. Steam has better reactivity than fuel bound moisture. Increasing moisture degrades performance therefore the input fuel should be pre-dried. Steam injection should be employed if a H2 rich syn-gas is desired. (author)

  8. Estimation of power production potential from natural gas pressure reduction stations in pakistan using aspen hysys

    International Nuclear Information System (INIS)

    Pakistan is a gas rich but power poor country. It consumes approximately 1, 559 Billion cubic feet of natural gas annually. Gas is transported around the country in a system of pressurized transmission pipelines under a pressure-range of 600-1 000 psig exclusively operated by two state owned companies i.e. SNGPL (Sui Northern Gas Pipelines Limited) and SSGCL (Sui Southern Gas Company Limited). The gas is distributed by reducing from the transmission pressure into distribution pressure up to maximum level of 150 psig at the city gate stations normally called SMS (Sales Metering Station). As a normal practice gas pressure reduction at those SMSs is accomplished in pressure regulators (PCVs or in of natural gas is an untapped energy resource which is currently wasted by its throttling. This pressure reduction at SMS (pressure drop through SMS) may also be achieved by expansion of natural gas in TE, which converts its pressure into the mechanical energy, which can be transmitted any loading device for example electric generator. The aim of present paper is to explore the expected power production potential of various Sales Metering Stations of SSGCL company in Pakistan. The model of sales metering station was developed in a standard flow sheeting software Aspen HYSYS at the rate 7.1 to calculate power and study other parameters when an expansion turbine is used instead of throttling valves. It was observed from the simulation results that a significant power (more than 140 KW) can be produced at pressure reducing stations of SSGC network with gas flows more than 2.2 MMSCFD and pressure ration more than 1.3. (author)

  9. Process optimization for bioethanol conversion to bioethylene using ASPEN PLUS%基于ASPEN PLUS平台的生物乙醇制生物乙烯的工艺优化

    Institute of Scientific and Technical Information of China (English)

    王林; 崔国燊; 徐檬; 谭天伟

    2009-01-01

    生物乙醇与生物乙烯的过程耦合是降低生物乙烯成本的重要途径.在充分分析生物乙醇制乙烯工艺的特点后,以ASPEN PLUS模拟软件为平台,对乙醇分离与乙醇脱水反应过程的耦合进行了优化设计,优化后的工艺流程节省蒸汽73%,节省能耗6%.

  10. Stress Responsive Zinc-finger Protein Gene of Populus euphratica in Tobacco Enhances Salt Tolerance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Populus euphratica stress responsive zinc-finger protein gene PSTZ, which encodes a protein including typical Cys2/His2 zinc finger structure, was isolated by reverse transcription-polymerase chain reaction from P. euphratica.Northern hybridization revealed that its expression was induced under drought and salt stress conditions. To examine its function, cDNA of the PSTZ gene, driven by the cauliflower mosaic virus 35S promoter, was cloned into a plant expression vector pBin438 and introduced into tobacco plants. Transgenic tobacco showed an enhanced salt tolerance, suggesting that PSTZ may play a role in plant responsiveness to salt stress.

  11. Diversity of insect communities with different development phases in natural Populus euphratica forests in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    QIAO Hai-li; LUO You-qing; TIAN Chengming; SUN Jian-hua; FENG Xiaofeng

    2008-01-01

    An investigation method with sample plots was used to study insect communities in four different growth phases of natural Populus euphratica forests, which are juvenile, middle aged, over-mature and degraded forests, in Tarim, Xinjiang in July, 2005 and April, 2006. In our studies, 5,116 insect specimens, belonging to 12 orders, 61 families and 141 species, were collected. Lepidoptera and Coleoptera were the dominant orders. In middle-aged forests, species, individual numbers and diversity indices of insect communities were higher than those in other woodlands. The species richness and diversity indices were lowest in degraded forests because of extremely scarce vegetation.

  12. Reproductive Characteristics of a Populus euphratica Population and Prospects for Its Restoration in China

    OpenAIRE

    Cao, Dechang; Li, Jingwen; Huang, Zhenying; Baskin, Carol C.; Baskin, Jerry M.; Hao, Peng; Zhou, Weilei; Li, Junqing

    2012-01-01

    Populus euphratica is a dominant tree in riparian ecosystems in arid areas of northwest China, but it fails to regenerate in these systems. This study evaluates causes for the failure of sexual and asexual regeneration of this species in the wild. P. euphratica disperses as many as 85743 seeds/m2 during summer, and the seeds germinate to 92.0% in distilled water and to 60.8% on silt. However, very few seeds (3.6%) can germinate on unflooded soil. The seed-rain season is prolonged by temporal ...

  13. Modification of water vapor diffusion in poplar wood (Populus nigra L.) by steaming at high temperatures

    OpenAIRE

    SAYAR, Maedeh; TARMIAN, Asghar

    2013-01-01

    In this investigation, the effect of steaming on the water vapor diffusion coefficient of poplar wood (Populus nigra L.) was studied. Boards with dimensions of 50 × 50 × 150 (W × H × L) mm3 and average moisture content of 12% were steamed at temperatures of 120, 140, 160, and 180 °C for 1, 2, and 3 h. The diffusion coefficients were then measured based on Fick's law of diffusion in steady-state conditions using the cup method. Results showed that the steaming of poplar wood at all mentio...

  14. Generalized allometric regression to estimate biomass of Populus in short-rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Ben Brahim, Mohammed; Gavaland, Andre; Cabanettes, Alain [INRA Centre de Toulouse, Castanet-Tolosane Cedex (France). Unite Agroforesterie et Foret Paysanne

    2000-07-01

    Data from four different stands were combined to establish a single generalized allometric equation to estimate above-ground biomass of individual Populus trees grown on short-rotation coppice. The generalized model was performed using diameter at breast height, the mean diameter and the mean height of each site as dependent variables and then compared with the stand-specific regressions using F-test. Results showed that this single regression estimates tree biomass well at each stand and does not introduce bias with increasing diameter.

  15. Populus spp.: supervivencia y crecimiento en clones implantados en Buenos Aires, Argentina

    OpenAIRE

    Marlats, Raúl M.; Senisterra, Gabriela; Marquina, Jorge; Ciocchini, Gabriel R.

    2009-01-01

    El objetivo de este trabajo fue evaluar la supervivencia, evolución de las alturas y áreas basales de rebrotes de clones de Populus spp. de diferentes procedencias implantados en Argiudoles típicos del borde Sur de la Pampa Ondulada, Buenos Aires, Argentina (34°55' S; 57°57' W; 15 m snm). Los clones evaluados fueron ‘Delta Gold’, ‘Stoneville 71’, ‘Catfish 2’, ‘Harvard’, ‘Onda’ e ‘I-74/51’. Se compararon, para el conjunto de clones, los comportamientos para el primero y segundo corte. Se re...

  16. 2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic Materials, February 5-10, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Joel; Rabe, Karin; Nayak, Chetan; Troyer, Matthias

    2012-05-01

    Aspen Center for Physics Project Summary DOE Budget Period: 10/1/2011 to 9/30/2012 Contract # DE-SC0007479 New Paradigms for Low-Dimensional Electronic Materials The 2012 Aspen Winter Conference on Condensed Matter Physics was held at the Aspen Center for Physics from February 5 to 10, 2012. Seventy-four participants from seven countries, and several universities and national labs attended the workshop titled, New Paradigms for Low-Dimensional Electronic Materials. There were 34 formal talks, and a number of informal discussions held during the week. Talks covered a variety of topics related to DOE BES priorities, including, for example, advanced photon techniques (Hasan, Abbamonte, Orenstein, Shen, Ghosh) and predictive theoretical modeling of materials properties (Rappe, Pickett, Balents, Zhang, Vanderbilt); the full conference schedule is provided with this report. The week's events included a public lecture (Quantum Matters given by Chetan Nayak from Microsoft Research) and attended by 234 members of the public, and a physics caf© geared for high schoolers that is a discussion with physicists conducted by Kathryn Moler (Stanford University) and Andrew M. Rappe (University of Pennsylvania) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by Joel Moore (University of California Berkeley), Chetan Nayak (Microsoft Research), Karin Rabe (Rutgers University), and Matthias Troyer (ETH Zurich). Two organizers who did not attend the conference were Gabriel Aeppli (University College London & London Centre for Nanotechnology) and Andrea Cavalleri (Oxford University & Max Planck Hamburg).

  17. Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA

    Directory of Open Access Journals (Sweden)

    Mercedes Román Dobarco

    2014-04-01

    Full Text Available To assess the potential impact of conifer encroachment on soil organic carbon (SOC dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm across the aspen-conifer ecotones in southern and northern Utah and quantified total SOC stocks, stable SOC (i.e., mineral-associated SOC (MoM, labile SOC (i.e., light fraction (LF, decomposable (CO2 release during long-term aerobic incubations and soluble SOC (hot water extractable organic carbon (HWEOC. Total SOC storage (47.0 ± 16.5 Mg C ha−1 and labile SOC as LF (14.0 ± 7.10 Mg C ha−1, SOC decomposability (cumulative released CO2-C of 5.6 ± 3.8 g C g−1 soil or HWEOC (0.6 ± 0.6 mg C g−1 soil did not differ substantially with vegetation type, although a slight increase in HWEOC was observed with increasing conifer in the overstory. There were statistically significant differences (p = 0.035 in stable MoM storage, which was higher under aspen (31.2 ± 15.1 Mg C ha−1 than under conifer (22.8 ± 9.0 Mg C ha−1, with intermediate values under mixed (25.7 ± 8.8 Mg C ha−1. Texture had the greatest impact on SOC distribution among labile and stable fractions, with increasing stabilization in MoM and decreasing bio-availability of SOC with increasing silt + clay content. Only at lower silt + clay contents (40%–70% could we discern the influence of vegetation on MoM content. This highlights the importance of chemical protection mechanisms for long-term C sequestration.

  18. Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems

    Directory of Open Access Journals (Sweden)

    Hendrik Stark

    2013-11-01

    Full Text Available Nurse crops of widely spaced pioneer trees are a silvicultural approach to protect the regeneration of frost sensitive target tree species. If overstorey nurse crops are harvested, they can provide additional short-term benefits through increased biomass production, e.g., for bioenergy. However, the intensification of biomass exports from forests might impact negatively on ecosystem nutrient pools. Thus, precise allometric biomass equations are required to quantify biomass and nutrient removals. Since an analysis of published allometric equations developed for typical, dense aspen or birch forests showed that the tree height-to-diameter ratio correlated positively and the proportion of branch biomass negatively with stand density, we developed new allometric biomass equations for widely spaced aspen and birch growing at 4 x 4 m spacing. These equations yielded a root mean squared error of 13% when predicting total aboveground woody biomass for our sample trees. In contrast, the corresponding root mean squared error produced by allometric biomass equations from the literature ranged between 17% to 106% of actual dry biomass. Our results show that specific allometric biomass equations are needed for widely spaced pioneer trees both for accurate estimates of biomass and the nutrients contained within.

  19. Aspen Plus Applications in Low Temperature Heat Recyling Technology of Tail Oil of Hydrocracking Unit%Aspen Plus在加氢裂化尾油低温热利用技术改造中的应用

    Institute of Scientific and Technical Information of China (English)

    尤秀伟; 单敏

    2012-01-01

    Recycling and energy consumption. In order using the to enlarge was used to simulate the tail oil heat for tower DA912 in 920 unit was low temperature heat was an important means in oil refining enterprise to reduce energy saving space to recovery the low temperature heat as possible, Aspen Plus exchange proposed in hydrocracking equipment, and the scheme of revamping the heat source to achieve the purpose of saving energy and reducing consumption. The eco- nomic benefit was remarkable, with annual savinz oroduction costs of 4.23 million vuan.%目前炼油企业低温热回收利用是降低能耗的一种重要手段[1]。扬子石化加氢裂化装置为了挖掘节能空间尽量回收低温热,利用Aspen Plus对尾油换热流程进行模拟分析,在此基础上提出了920单元DA912塔再沸器热源技术改造方案,达到了节能降耗的目的。每年可节约生产成本约423万元,经济效益显著。

  20. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China.

    Directory of Open Access Journals (Sweden)

    Dechang Cao

    Full Text Available Populus euphratica is a dominant tree in riparian ecosystems in arid areas of northwest China, but it fails to regenerate in these systems. This study evaluates causes for the failure of sexual and asexual regeneration of this species in the wild. P. euphratica disperses as many as 85743 seeds/m(2 during summer, and the seeds germinate to 92.0% in distilled water and to 60.8% on silt. However, very few seeds (3.6% can germinate on unflooded soil. The seed-rain season is prolonged by temporal variability in seed dispersal among individuals, which ensures that seedling emergence can occur during favorable conditions (i.e., floods and rainfall. As a result of water shortage and river channeling due to water usage and altered river flows, there are no safe sites on river banks for seed germination, which has led to the failure of P. euphratica to regenerate from seed. Root suckers of P. euphratica were present in 86% of the forest gaps investigated. However, extensive grazing has destroyed many of them and thus has reduced this form of regeneration. This research suggests that human activities are resulting in the failure of P. euphratica to regenerate. Changes in land management such as reduced use of concrete canals in Populus forests and/or reduced sheep grazing in these areas may promote their regeneration.

  1. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    Science.gov (United States)

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-10-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world.

  2. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  3. Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    LIU Jia-zhen; CHEN Ya-ning; CHEN Yong-jin; ZHANG Na; LI Wei-hong

    2005-01-01

    To investigate the relationships between the degradation of plant community and groundwater level in the lower reaches of the Tarim River, nine monitored sections were set along the main stream, where there had been no runoff for nearly 30 years. The characteristics of plant communities were analyzed. It was found that the coverage of trees gradually decreased along the groundwater depth gradient, while the coverage of shrubs slightly increased rather than decreased at first and then gradually decreased, and the coverage of herbs steadily decreased at the beginning and then quickly decreased. The species diversity and species richness of both herbs and woody plants showed obvious degrading trends, while the variations in species evenness were slight. The degrading sequences of species were related to their physiological and ecological characteristics, especially their sensitivity to changes of groundwater table. The herbs with shallow roots first degenerated or disappeared when the groundwater table fell, and then did the deep-rooted herbs, and finally the trees and shrubs with strong tolerance to drought degenerated. The Populus euphratica communities showed typical degrading characteristics, namely the dominant species Populus euphratica remained its dominant status during the degradation. Overall, the existence of strongly tolerant-drought species was the obvious indication of plant species degradation; while simplification of community structure and the decrease of species richness were the obvious indication of plant community degradation.

  4. Response of photosynthesis and cellular antioxidants to ozone in Populus leaves

    International Nuclear Information System (INIS)

    Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides x Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but gluthathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while flutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone

  5. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Yunlin Chen

    2013-01-01

    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  6. Ultrastructural and Extracellular Protein Changes in Cell Suspension Cultures of Populus euphratica Associated with Low Temperature-induced Cold Acclimation

    Institute of Scientific and Technical Information of China (English)

    Dai Huanqin; Lu Cunfu; Zhang Hui; Zhang Xujia

    2003-01-01

    Populus euphratica Olive is the only tree species that can grow in the saline land and also survive cold winters in northwest China, and it plays a very important role in stabilizing the vulnerable ecosystem there. A cell suspension culture was initiated from callus derived from plantlets of Populus euphratica. Cold acclimation was induced (LT50 of-17.5 ℃) in cell suspension at 4-5 ℃ in the dark for 30 days and the freezing tolerance increased from LT50 of-12.5 ℃ in nonacclimated cells to LT50 of-17.5 ℃ in cold-acclimated cells. Microvacuolation, cytoplasmic augmentation and accumulation of starch granules were observed in cells that were cold-acclimated by exposure to low temperatures. Several qualitative and quantitative changes in proteins were noted during cold acclimation. Antibodies to carrot extracellular (apoplastic) 36 kD antifreeze protein did not cross react on immunoelectroblots with extracellular proteins in cell suspension culture medium of Populus euphratica, indicating no common epitopes in the carrot 36 kD antifreeze protein and P euphratica extracellular proteins. The relationship of these changes to cold acclimation in Populus euphratica cell cultures was discussed.

  7. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Bisaria, Anjali [ORNL; Tuskan, Gerald A [ORNL; Kalluri, Udaya C [ORNL

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  8. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA.

    Science.gov (United States)

    Hamzeh, Mona; Dayanandan, Selvadurai

    2004-09-01

    The species of the genus Populus, collectively known as poplars, are widely distributed over the northern hemisphere and well known for their ecological, economical, and evolutionary importance. The extensive interspecific hybridization and high morphological diversity in this group pose difficulties in identifying taxonomic units for comparative evolutionary studies and systematics. To understand the evolutionary relationships among poplars and to provide a framework for biosystematic classification, we reconstructed a phylogeny of the genus Populus based on nucleotide sequences of three noncoding regions of the chloroplast DNA (intron of trnL and intergenic regions of trnT-trnL and trnL-trnF) and ITS1 and ITS2 of the nuclear rDNA. The resulting phylogenetic trees showed polyphyletic relationships among species in the sections Tacamahaca and Aigeiros. Based on chloroplast DNA sequence data, P. nigra had a close affinity to species of section Populus, whereas nuclear DNA sequence data suggested a close relationship between P. nigra and species of the section Aigeiros, suggesting a possible hybrid origin for P. nigra. Similarly, the chloroplast DNA sequences of P. tristis and P. szechuanica were similar to that of the species of section Aigeiros, while the nuclear sequences revealed a close affinity to species of the section Tacamahaca, suggesting a hybrid origin for these two Asiatic balsam poplars. The incongruence between phylogenetic trees based on nuclear- and chloroplast-DNA sequence data suggests a reticulate evolution in the genus Populus. PMID:21652373

  9. Differential phylogenetic expansions in BAHD acyltransferases across five angiosperm taxa and evidence of divergent expression among Populus paralogues

    Directory of Open Access Journals (Sweden)

    Johnson Virgil E

    2011-05-01

    Full Text Available Abstract Background BAHD acyltransferases are involved in the synthesis and elaboration of a wide variety of secondary metabolites. Previous research has shown that characterized proteins from this family fall broadly into five major clades and contain two conserved protein motifs. Here, we aimed to expand the understanding of BAHD acyltransferase diversity in plants through genome-wide analysis across five angiosperm taxa. We focus particularly on Populus, a woody perennial known to produce an abundance of secondary metabolites. Results Phylogenetic analysis of putative BAHD acyltransferase sequences from Arabidopsis, Medicago, Oryza, Populus, and Vitis, along with previously characterized proteins, supported a refined grouping of eight major clades for this family. Taxon-specific clustering of many BAHD family members appears pervasive in angiosperms. We identified two new multi-clade motifs and numerous clade-specific motifs, several of which have been implicated in BAHD function by previous structural and mutagenesis research. Gene duplication and expression data for Populus-dominated subclades revealed that several paralogous BAHD members in this genus might have already undergone functional divergence. Conclusions Differential, taxon-specific BAHD family expansion via gene duplication could be an evolutionary process contributing to metabolic diversity across plant taxa. Gene expression divergence among some Populus paralogues highlights possible distinctions between their biochemical and physiological functions. The newly discovered motifs, especially the clade-specific motifs, should facilitate future functional study of substrate and donor specificity among BAHD enzymes.

  10. Conservation and Diversity of MicroRNA-associated Copper-regulatory Networks in Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    Shanfa Lu; Chenmin Yang; Vincent L. Chiang

    2011-01-01

    Plants develop important regulatory networks to adapt to the frequently-changing availability of copper (Cu).However,little is known about miRNA-associated Cu-regulatory networks in plant species other than Arabidopsis.Here,we report that Cu-responsive miRNAs in Populus trichocarpa (Torr.& Gray)include not only conserved miR397,miR398 and miR408,but also Populus-specific miR1444,suggesting the conservation and diversity of Cu-responsive miRNAs in plants.Copper-associated suppression of mature miRNAs is in company with the up-regulation of their target genes encoding Cu-containing proteins in Populus.The targets include miR397-targeted PtLAC5,PtLAC6 and PtLAC110a,miR398-targeted PtCSD1,PtCSD2a and PtCSD2b,miR408-targeted PtPCL1,PtPCL2,PtPCL3 and PtLAC4,and miR1444-targeted PtPPO3 and PtPPO6.Consistently,P.trichocarpa miR408 promoter-directed GUS gene expression is down-regulated by Cu in transgenic tobacco plants.Cu-response elements (CuREs) are found in the promoters of Cu-responsive miRNA genes.We identified 34 SQUAMOSA-promoter binding protein-like (SPL) genes,of which 17 are full-length PtSPL proteins or partial sequences with at least 300 amino acids.Phylogenetic analysis indicates that PtSPL3 and PtSPL4 are CuRE-binding proteins controlling Cu-responsive gene expression.Cu appears to be not involved in the regulation of these transcription factors because neither PtSPL3 nor PtSPL4 is Cu-regulated and no CuRE exists in their promoters.

  11. Genome-wide identification and characterization of novel lncRNAs in Populus under nitrogen deficiency.

    Science.gov (United States)

    Chen, Min; Wang, Chenlu; Bao, Hai; Chen, Hui; Wang, Yanwei

    2016-08-01

    Long non-coding RNAs (lncRNAs) have been identified as important regulatory factors of gene expression in eukaryotic species, such as Homo sapiens, Arabidopsis thaliana, and Oryza sativa. However, the systematic identification of potential lncRNAs in trees is comparatively rare. In particular, the characteristics, expression, and regulatory roles of lncRNAs in trees under nutrient stress remain largely unknown. A genome-wide strategy was used in this investigation to identify and characterize novel and low-nitrogen (N)-responsive lncRNAs in Populus tomentosa; 388 unique lncRNA candidates belonging to 380 gene loci were detected and only seven lncRNAs were found to belong to seven conserved non-coding RNA families indicating the majority of P. tomentosa lncRNAs are species-specific. In total, 126 lncRNAs were significantly altered under low-N stress; 8 were repressed, and 118 were induced. Furthermore, 9 and 5 lncRNAs were detected as precursors of 11 known and 14 novel Populus miRNAs, respectively, whereas 4 lncRNAs were targeted by 29 miRNAs belonging to 5 families, including 22 conserved and 7 non-conserved miRNAs. In addition, 15 antisense lncRNAs were identified to be generated from opposite strands of 14 corresponding protein-coding genes. In total, 111 protein-coding genes with regions complementary to 38 lncRNAs were also predicted with some lncRNAs corresponding to multiple genes and vice versa, and their functions were annotated, which further demonstrated the complex regulatory relationship between lncRNAs and protein-coding genes in plants. Moreover, an interaction network among lncRNAs, miRNAs, and mRNAs was investigated. These findings enrich our understanding of lncRNAs in Populus, expand the methods of miRNA identification. Our results present the first global characterization of lncRNAs and their potential target genes in response to nitrogen stress in trees, which provides more information on low-nutrition adaptation mechanisms in woody plants

  12. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Luke M [West Virginia University, Morgantown; Slavov, Gancho [West Virginia University, Morgantown; Rodgers-Melnick, Eli [West Virginia University, Morgantown; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Ranjan, Priya [ORNL; Muchero, Wellington [ORNL; Brunner, Amy M. [Virginia Polytechnic Institute and State University; Schackwitz, Wendy [U.S. Department of Energy, Joint Genome Institute; Gunter, Lee E [ORNL; Chen, Jay [ORNL; Tuskan, Gerald A [ORNL; Difazio, Stephen P. [West Virginia University, Morgantown

    2014-01-01

    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.

  13. Development of polymorphic microsatellite markers based on expressed sequence tags in Populus cathayana (Salicaceae).

    Science.gov (United States)

    Tian, Z Z; Zhang, F Q; Cai, Z Y; Chen, S L

    2016-01-01

    Populus cathayana occupies a large area within the northern, central, and southwestern regions of China, and is considered to be an important reforestation species in western China. In order to investigate the population genetic structure of this species, 10 polymorphic microsatellite loci were identified based on expressed sequence tags from de novo sequencing on the Illumina HiSeq 2000 platform. All microsatellite primers were tested on 48 P. cathayana individuals from four locations on the Qinghai-Tibet Plateau. The observed heterozygosity ranged from 0.000 to 1.000, and the null-allele frequency ranged from 0.000 to 0.904. These microsatellite markers may be a useful tool in genetic studies on P. cathayana and closely related species. PMID:27525845

  14. Cloning of plasma membrane H+-ATPase gene in Populus euphratica Oliv.

    Institute of Scientific and Technical Information of China (English)

    Ning De-juan; Hou Pei-chen; Hu Zan-min; Shen Xin; Chen Shao-liang

    2006-01-01

    For this paper, the plasma membrane (PM) H+-ATPase gene has been cloned from Populus euphratica Oliv. through a homology based strategy. The isolated 3,210 bp cDNA contains a single 2,862 bp open reading frame (ORF) which encodes a putative H+-ATPase protein of 953 amino acid residues, with a significant homology to plasma membrane H+-ATPase of Prunus persica,Phaseolus vulgaris, Sesbania rostrata and Daucus carota. The predicted protein has a molecular weight of 104,553 Da. The copy number analysis revealed multiple copies of the PM H+-ATPase in the P. euphratica genome after digestion of their genomic DNA by the restriction enzymes EcoRⅠ, NdeⅠ, FbaⅠ and BglⅡ, and Southern blot.

  15. Conversion of water consumption of a single tree and a forest stand of Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-you; MENG Tong-tong; KANG Er-si

    2008-01-01

    Our study dear with the determination of sapwood sap flow of a single Populus euphratica tree by heat pulse technique and the calculation of water consumption of an entire forest stand, given the correlation between sap flow and sapwood area of P. euphratica. The relation between diameter at breast height (DBH) and sapwood area constitutes a powerful model; these variables are highly correlated. By means of an analysis of DBH in the sample plot, the distribution of the sapwood area of the forest land was obtained and the water consumption of this P. euphratica forest, in the lower reaches of the Heihe River, calculated as 214.9 mm by standard specific conductivity of the sample tree.

  16. Dynamics of the volatile defense of winter "dormant" balsam poplar (Populus balsamifera).

    Science.gov (United States)

    Clausen, Thomas P; Chen, Janice; Bryant, John P; Provenza, Frederick D; Villalba, Juan

    2010-05-01

    6-Hydroxycylohex-2-en-1-one (6-HCH) has been reported as a major chemical defense of the winter-dormant internodes of balsam poplar (Populus balsamifera) against feeding by herbivores such as the snowshoe hare (Lepus americanus). We report that the concentration of 6-HCH in the fall internodes is triggered by a single hard frost, and then undergoes an exponential decline through volatilization over the winter that results in barely detectable quantities by early spring. We conclude that the role of 6-HCH in the defense of mature balsam poplar is more complex than simply acting as a toxin. Rather, 6-HCH's role as a defensive agent must evolve over the course of the winter from being a co-toxin to a cue for a conditioned flavor aversion (CFA) to finally having no role by late spring. PMID:20411311

  17. Restriction map and polymorphisms of nuclear ribosomal genes of Populus balsamifera.

    Science.gov (United States)

    Stoehr, M U; Singh, R S

    1993-06-01

    Balsam poplar (Populus balsamifera) clones from five populations, which were collected along a transect from northern Wisconsin to the northern tree line, were evaluated for polymorphisms in nuclear ribosomal DNA. For this purpose, a restriction map was constructed using four six-cutter enzymes in single and double digests of genomic DNA. After electrophoretic separation on agarose gels and Southern transfer, blots were hybridized to non-radioactively labeled heterologous rDNA probes of soybean. Among populations, variation was detected in the length of the intergenic spacer between the tandem repeats of the coding regions and in the degree of methylation of one restriction enzyme recognition site. Based on a comparison of the derived restriction map of balsam poplar and other poplars, high homology was evident in the rDNA coding regions among species, whereas the intergenic spacer varied slightly in both length and number of restriction sites. PMID:14969912

  18. The essential oil of Populus balsamifera buds: its chemical composition and cytotoxic activity.

    Science.gov (United States)

    Piochon-Gauthier, Marianne; Legault, Jean; Sylvestre, Muriel; Pichette, André

    2014-02-01

    The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-alpha-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-alpha-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 microg/mL. (+)-alpha-Bisabolol exhibited pronounced activity (IC50 14 microg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 microg/mL) against human glioma (U251), higher than the one observed for (-)-alpha-bisabolol (IC50 34 microg/mL), which is known for its apoptosis-inducing effect against glioma cells. PMID:24689304

  19. Stomata morphological traits in two different genotypes of Populus nigra L.

    Directory of Open Access Journals (Sweden)

    Russo G

    2015-08-01

    Full Text Available Populus nigra L. (black poplar possesses amphistomatic leaves, with large (giant and normal sized stomata. The role of giant stomata in leaf development, and the consequences on stomatal density in adult leaves remains elusive. This paper describes the characteristics of ordinary and giant stomata in leaves of two black poplar genotypes (58-861 with large leaves from northern Italy, and Poli with small leaves from southern Italy. Stomatal traits in both genotypes were studied using light microscopy on mature leaf adaxial and abaxial epidermal impressions. Moreover, scanning electron microscopy was applied to study giant and normal stomata in early, young, and mature leaves. Leaf abaxial surfaces in the two genotypes revealed variable sizes and patterns of stomata related to differences in intrinsic water use efficiency (Wi. These observations provided evidence of different stomatal types in mature black poplar leaves, and new information regarding the presence and potential role of giant stomata in black poplar leaves.

  20. Interrelationships between leaf heat conductivity and tissue structures of different varieties of Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)

    WANG Min; ZHANG Wen-jie; XIAO Jian; ZHANG Zhi-yi; LIU Jing

    2008-01-01

    Plant heat conductivity largely depends on tissue structure. Different structures lead to different heat conductivity. As well, water transfer also plays a very important role in heat transfer in plants. We have studied leaf heat conductivity and tissue structure of 3- and 30-year-old Populus tomentosa Carr. trees using mildred thermal imaging, steady state heat conductivity surveys and paraffin section and investigated the relationship between leaf heat conductivity, tissue structure and water content of leaves. The results show that the temperature on leaf surfaces among the various varieties of trees was almost the same. Leaf heat conductivity, temperature and water content of leaves are positively correlated. The thicker the leaf tissue structures, the larger the heat resistance. That is, the tighter the cells and the smaller the interspaces, the smaller the heat conductivity, which is not conducive for heat transfer.

  1. Structural Characteristics and Eco-adaptability of Heteromorphic Leaves of Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    Li Zhao-xia; Zheng Cai-xia

    2005-01-01

    The microstructural and ultrastructural traits of three kinds of typical leaves of Populus euphratica Olive, including lanceolate, broad-ovate and dentate broad-ovate leaves, were studied by using electron microscope and optical microscope. The results showed that with the leaves changing from lanceolate shape to dentate broad-ovate shape, their structure obviously tended to be xeromorph: developed palisade tissue, undeveloped spongy tissue, thick cutin layer and sunken stomas. The amount of mitochondria tended to be increased, and the shape of chloroplasts varied from regular spindle to irregular rotundity or oval. The leaves were covered with wax without cilium, and the stomas on the upper and lower epidermis of the leaves opened unevenly. The stomas on the lower epidermis were deeper than those on the upper epidermis under the scanning electron microscope. The results implied that the structural characteristics of the diversiform-leaves of P. euphratica are related to its eco-adaptability.

  2. Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. "2KEN8" mature pollen.

    Science.gov (United States)

    Zhang, Jin; Wu, Li-Shuan; Fan, Wei; Zhang, Xiao-Ling; Jia, Hui-Xia; Li, Yu; Yin, Ya-Fang; Hu, Jian-Jun; Lu, Meng-Zhu

    2015-01-01

    Proteomic analysis was used to generate a map of Populus deltoides CL. "2KEN8" mature pollen proteins. By applying 2-D electrophoresis, we resolved 403 protein spots from mature pollen. Using the matrix-assisted laser desorption/ionization time time-of-flight/time-of-flight tandem mass spectrometry method, we identified 178 distinct proteins from 218 protein spots expressed in mature pollen. Moreover, out of these, 28 proteins were identified as putative allergens. The expression patterns of these putative allergen genes indicate that several of these genes are highly expressed in pollen. In addition, the members of profilin allergen family were analyzed and their expression patterns were compared with their homologous genes in Arabidopsis and rice. Knowledge of these identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with poplar pollen allergy. PMID:26284084

  3. Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2010-12-01

    Full Text Available Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K of isolates were found to increase with successive increase in substrate concentration (0.5 to 1.0 mg/50ml. B. circulans SBA12 and Kurthia SBA4 degraded 87.5% and 86.6% of anthracene while, Kurthia sp. SBA4, B. circulans SBA12, and M. varians SBA8 degraded 85.3 %, 95.8 % and 86.8 % of naphthalene respectively after 6 days of incubation as determined by HPLC analysis.

  4. Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus

    International Nuclear Information System (INIS)

    Graphical abstract: This paper studied the combustion processes of pulverized coal in a 300 MW power plant using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer was obtained. The differences between the two processes were identified, and the parameter influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas were examined by sensitivity analysis. - Highlights: • Combustion processes were studied with Aspen Plus for a 300 MW pulverized coal power plant. • The amount of each flue gas component in coal-fired processes with air or O2/CO2 as oxidizer was obtained. • Differences between the two process models were identified. • The influences of operation parameters on the flue gas components were examined. - Abstract: This work focuses on the amounts and components of flue gas for oxy-fuel combustion in a coal-fired power plant (CFPP). The combustion process of pulverized coal in a 300 MW power plant is studied using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer is obtained. The differences between the two processes are identified, and the influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas are examined by sensitivity analysis. The process simulation results show that replacing atmospheric air by a 21%O2/79%CO2 mixture leads the decrease of the flame temperature from 1789 °C to 1395 °C. The equilibrium amount of NOx declines obviously but the SOx are still at the same level. The mass fraction of CO2 in flue gas increased from 21.3% to 81.5%. The amount of NOx is affected sensitively by the change of temperature and the excess oxygen ratio, but the change of O2/CO2 molar fraction has a little influence to the generation of NOx. With the increasing of O2 concentration, the

  5. Targeted enrichment of the black cottonwood (Populus trichocarpa gene space using sequence capture

    Directory of Open Access Journals (Sweden)

    Zhou Lecong

    2012-12-01

    Full Text Available Abstract Background High-throughput re-sequencing is rapidly becoming the method of choice for studies of neutral and adaptive processes in natural populations across taxa. As re-sequencing the genome of large numbers of samples is still cost-prohibitive in many cases, methods for genome complexity reduction have been developed in attempts to capture most ecologically-relevant genetic variation. One of these approaches is sequence capture, in which oligonucleotide baits specific to genomic regions of interest are synthesized and used to retrieve and sequence those regions. Results We used sequence capture to re-sequence most predicted exons, their upstream regulatory regions, as well as numerous random genomic intervals in a panel of 48 genotypes of the angiosperm tree Populus trichocarpa (black cottonwood, or ‘poplar’. A total of 20.76Mb (5% of the poplar genome was targeted, corresponding to 173,040 baits. With 12 indexed samples run in each of four lanes on an Illumina HiSeq instrument (2x100 paired-end, 86.8% of the bait regions were on average sequenced at a depth ≥10X. Few off-target regions (>250bp away from any bait were present in the data, but on average ~80bp on either side of the baits were captured and sequenced to an acceptable depth (≥10X to call heterozygous SNPs. Nucleotide diversity estimates within and adjacent to protein-coding genes were similar to those previously reported in Populus spp., while intergenic regions had higher values consistent with a relaxation of selection. Conclusions Our results illustrate the efficiency and utility of sequence capture for re-sequencing highly heterozygous tree genomes, and suggest design considerations to optimize the use of baits in future studies.

  6. Native Venturia inopina sp. nov., specific to Populus trichocarpa and its hybrids.

    Science.gov (United States)

    Newcombe, George

    2003-01-01

    Venturia populina, first described on European Populus nigra, has been thought to be the only species of Venturia in Europe and North America to cause leaf and shoot blight of balsam poplars and cottonwoods in Populus sects. Tacamahaca and Aigeiros. The species of Venturia occurring on introduced P. nigra and native P. trichocarpa in the Pacific northwest were examined. Venturia populina was consistently found on P. nigra (i.e. the widespread P. nigra cv. 'italica') in the region, but V. inopina sp. nov. was present on native P. trichocarpa and its hybrids. There were neither examples of V. populina on P. trichocarpa and its hybrids nor of V. inopina on P. nigra cv. 'italica' (27 collections from 16 sites in Oregon, Washington, and Vancouver Island were made during 1995-2002). In an inoculation study, host-range separation was confirmed in that V. inopina caused sporulating leaf lesions on P. trichocarpa and its hybrids, but only non-sporulating lesions on P. nigra cv. 'italica'. These two species of Venturia can readily be distinguished by conidial septation; V. populina is primarily 2-septate, whereas V. inopina is primarily 1-septate. Growth rates on PDA at 15 degrees C, and ITS sequences (2.3% divergence) were also distinct in isolates of these congeners. Conidial shape was of more value in discriminant analysis than conidial length. Venturia inopina is homothallic, given the sexual fertility of cultures of single ascospores that were overwintered under ambient conditions. Its geographic range appears to be restricted even within the Pacific northwest, leaving open the possibility that still other undescribed, native species of Venturia occur elsewhere in North America on sects. Tacamahaca and Aigeiros. PMID:12735251

  7. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    Science.gov (United States)

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides. PMID:17267367

  8. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types.

    Energy Technology Data Exchange (ETDEWEB)

    Gottel, Neil R [ORNL; Castro Gonzalez, Hector F [ORNL; Kerley, Marilyn K [ORNL; Yang, Zamin [ORNL; Pelletier, Dale A [ORNL; Podar, Mircea [ORNL; Karpinets, Tatiana V [ORNL; Uberbacher, Edward C [ORNL; Tuskan, Gerald A [ORNL; Vilgalys, Rytas [Duke University; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  9. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    Science.gov (United States)

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  10. Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus*

    OpenAIRE

    Abraham, Paul; Giannone, Richard J.; Adams, Rachel M.; Kalluri, Udaya; Tuskan, Gerald A.; Hettich, Robert L.

    2012-01-01

    High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval t...

  11. The Tonoplast-Localized Sucrose Transporter in Populus (PtaSUT4) Regulates Whole-Plant Water Relations, Responses to Water Stress, and Photosynthesis

    OpenAIRE

    Frost, Christopher J; Nyamdari, Batbayar; Tsai, Chung-Jui; Harding, Scott A.

    2012-01-01

    The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonoplast sucrose fluxes contribute to the regulation of osmotic gradients between cellular compartments,...

  12. Response of the accumulation of proline in the bodies of Populus euphratica to the change of groundwater level at the lower reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    CHEN Yaning; CHEN Yapeng; LI Weihong; ZHANG Hongfeng

    2003-01-01

    The content of proline in the plant bodies is closely related to the converse-succession-resistant capability of the plants. In this paper, the relationship between the proline accumulation in the bodies of Populus euphratica and the change of groundwater level is analyzed by taking Populus euphratica, the main community-building species of the desert riparian forests along the Tarim River, as the research object. The research results show that the accumulation of proline in the bodies of Populus euphratica is closely related to the change of groundwater level gradient under drought stress, it increases with the drawdown of groundwater level and the increase of moisture stress degree; the accumulation of proline in the bodies of Populus euphratica has two extremely high points at the groundwater depth ranges of 3.64-5.14 m and 9.46-10.16 m. Combining the field investigation and the analysis of the plots, it is considered that the groundwater level of 3.5-4.5 m is rational for the growth of Populus euphratica. The stress groundwater depth for the normal growth and the critical one for the survival of Populus euphratica are below 4.5 m and 9-10 m respectively at the lower reaches of the Tarim River.

  13. Integrated model of G189A and Aspen-plus for the transient modeling of extravehicular activity atmospheric control systems

    Science.gov (United States)

    Kolodney, Matthew; Conger, Bruce C.

    1990-01-01

    A computerized modeling tool, under development for the transient modeling of an extravehicular activity atmospheric control subsystem is described. This subsystem includes the astronaut, temperature control, moisture control, CO2 removal, and oxygen make-up components. Trade studies evaluating competing components and subsystems to guide the selection and development of hardware for lunar and Martian missions will use this modeling tool. The integrated modeling tool uses the Advanced System for Process Engineering (ASPEN) to accomplish pseudosteady-state simulations, and the general environmental thermal control and life support program (G189A) to manage overall control of the run and transient input output, as well as transient modeling computations and database functions. Flow charts and flow diagrams are included.

  14. Application of Aspen in Flare System Design%ASPEN在火炬排放系统设计的应用

    Institute of Scientific and Technical Information of China (English)

    薛茂梅; 奚文杰; 曹枫; 沈红霞; 张世程

    2010-01-01

    火炬排放系统是石油化工及炼油装置不可缺少的安全配套设施.水力工况对系统的安全性有着莺要的影响.由于火炬排放工况的复杂性,水力计算也成为一个比较复杂的问题.本文介绍了Aspen Flare System Analyzer模拟软件及其特点和数学模型,并通过工程实例证明其在火炬排放系统设计中发挥的重要作用.

  15. Colocalization of low-methylesterified pectins and Pb deposits in the apoplast of aspen roots exposed to lead

    International Nuclear Information System (INIS)

    Low-methylesterified homogalacturonans have been suggested to play a role in the binding and immobilization of Pb in CW. Using root apices of hybrid aspen, a plant with a high phytoremediation potential, as a model, we demonstrated that the in situ distribution pattern of low-methylesterified homogalacturonan, pectin epitope (JIM5-P), reflects the pattern of Pb occurrence. The region which indicated high JIM5-P level corresponded with “Pb accumulation zone”. Moreover, JIM5-P was especially abundant in cell junctions, CWs lining the intercellular spaces and the corners of intercellular spaces indicating the highest accumulation of Pb. Furthermore, JIM5-P and Pb commonly co-localized. The observations indicate that low-methylesterified homogalacturonan is the CW polymer that determines the capacity of CW for Pb sequestration. Our results suggest a promising directions for CW modification for enhancing the efficiency of plant roots in Pb accumulation, an important aspect in the phytoremediation of soils contaminated with trace metals. - Highlights: • Co-localization of low-methylesterified pectins and Pb was analysed in situ. • The pattern of Pb accumulation matched low-methylesterified pectins distribution. • Low-methylesterified pectins and Pb commonly co-localized in cell walls. • Low-methylesterified pectins revealed an important compound in Pb sequestration. • We suggest a new direction in enhancing plant efficiency for phytoremediation. - The distribution of lead in developing tissues of aspen root tips exposed to short-term lead treatment mimics the distribution of low-methylesterified pectin epitope

  16. Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen.

    Directory of Open Access Journals (Sweden)

    Anna Karlberg

    2011-11-01

    Full Text Available Day length is a key environmental cue regulating the timing of major developmental transitions in plants. For example, in perennial plants such as the long-lived trees of the boreal forest, exposure to short days (SD leads to the termination of meristem activity and bud set (referred to as growth cessation. The mechanism underlying SD-mediated induction of growth cessation is poorly understood. Here we show that the AIL1-AIL4 (AINTEGUMENTALIKE transcription factors of the AP2 family are the downstream targets of the SD signal in the regulation of growth cessation response in hybrid aspen trees. AIL1 is expressed in the shoot apical meristem and leaf primordia, and exposure to SD signal downregulates AIL1 expression. Downregulation of AIL gene expression by SDs is altered in transgenic hybrid aspen plants that are defective in SD perception and/or response, e.g. PHYA or FT overexpressors. Importantly, SD-mediated regulation of growth cessation response is also affected by overexpression or downregulation of AIL gene expression. AIL1 protein can interact with the promoter of the key cell cycle genes, e.g. CYCD3.2, and downregulation of the expression of D-type cyclins after SD treatment is prevented by AIL1 overexpression. These data reveal that execution of SD-mediated growth cessation response requires the downregulation of AIL gene expression. Thus, while early acting components like PHYA and the CO/FT regulon are conserved in day-length regulation of flowering time and growth cessation between annual and perennial plants, signaling pathways downstream of SD perception diverge, with AIL transcription factors being novel targets of the CO/FT regulon connecting the perception of SD signal to the regulation of meristem activity.

  17. Above-ground Woody Biomass Production of Short-rotation Populus Plantations on Agricultural Land in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, Almir; Verwijst, Theo; Weih, Martin [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Short Rotation Forestry

    2003-09-01

    Although poplars are widely grown in short-rotation forestry in many countries, little is known about poplar growth performance in Sweden. In this study, above-ground biomass production was estimated for several hybrid aspen and poplar clones planted at different initial density at five locations across Sweden. Biomass assessments were based on allometric relationships between total above-ground woody dry weight and the diameter at breast height. According to a common harvest practice, tree biomass was partitioned into pulpwood and biomass for energy purposes. The percentage of pulpwood was strongly determined by clone for DBH >10 cm. The mean annual increment ranged from 3.3 /ha/yr for balsam poplar in the north to 9.2 Mg/ha/yr for 9-yr-old 'Boelare' in southern Sweden. At the same age, hybrid aspen reached 7.9 Mg/ha/yr. The results suggest that poplars and hybrid aspen are superior as biomass producers compared with tree species commonly grown on agricultural land at these latitudes. The results are discussed in the light of future wood supply for pulpwood and energy purposes in Sweden.

  18. Studies on uptake pattern of the phosphorus employing radioisotopes as tracer on the xPopulus albaglandulosa (I)

    International Nuclear Information System (INIS)

    The uptake ratio of supplying P32 labelled double superphosphate and the hastening efficiency of the uptake by addition of magnesium sulfate to the fertilizer were studied on the xPopulus albaglandulosa planted with 0/1 cutting in 1975. The results are summerized as follows. Average 13% of supplying double superphosphate was absorbed into xPopulus albaglandulosa planted on the reddish heavy clay soil in Institute of Forest Genetics. The accumulation of absorbed magnesium was more amount in leaf than in stem. The uptake ratio of supplying double superphosphate was able to increase up to 16%-33% by the addition of magnesium sulfate to the fertilizer. It might be possible to increase the tree growth following the acceleration of photosynthesis due to the increasing amount of magnesium known to be a component of chlorophyll in leaf as well as to hasten the efficiency of uptake of phosphorus by the addition of magnesium to double superphosphate. (Author)

  19. Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa

    OpenAIRE

    Du, Qingzhang; Tian, Jiaxing; Yang, Xiaohui; Pan, Wei; Xu, Baohua; Li, Bailian; Pär K Ingvarsson; Zhang, Deqiang

    2015-01-01

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positiv...

  20. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants

    OpenAIRE

    Han, Yansha; Wang, Wei; Sun, Jian; Ding, Mingquan; Zhao, Rui; Deng, Shurong; Wang, Feifei; Hu, Yue; Wang, Yang; Lu, Yanjun; Du, Liping; Hu, Zanmin; Diekmann, Heike; SHEN, XIN; Polle, Andrea

    2013-01-01

    Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased cap...

  1. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  2. Suppression of PtrDUF579-3 expression causes structural changes of the glucuronoxylan in Populus

    Directory of Open Access Journals (Sweden)

    Dongliang eSong

    2016-04-01

    Full Text Available DUF579 (domain unknown function 579 genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus.

  3. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus.

    Science.gov (United States)

    Song, Dongliang; Gui, Jinshan; Liu, Chenchen; Sun, Jiayan; Li, Laigeng

    2016-01-01

    DUF579 (domain unknown function 579) genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX) synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA) in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus. PMID:27148318

  4. Characteristics of the stem sap flux of Populus euphratica in the lower reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem sap flux of Populus euphratica and its rela-tionship to environmental factors using the thermal dissipation probe(TDP) method.The results showed that(1) daily variation of sap flow of P.euphratica on clear days exhibited an obvious unimodal curve;sap flow rates in June,July,August,and September were 13.39,12.07,12.69,and 5.10 L/d,respectively;(2) the average transpiration of the Populus euphratica from June through September amounted to 1,309.84 L;(3) stem sap flow can be affected by a number of environmental factors that,in terms of the influential degree,can be arranged in the descending order of air temperature,soil moisture,relative humidity,total solar radiation,soil temperature,and wind velocity.

  5. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part I: sites and mechanisms of action.

    Science.gov (United States)

    Martineau, Louis C; Hervé, Jessica; Muhamad, Asim; Saleem, Ammar; Harris, Cory S; Arnason, John T; Haddad, Pierre S

    2010-09-01

    Obesity is an epidemic in most developed countries and novel therapeutic approaches are needed. In the course of a screening project of medicinal plants used by the Eastern James Bay Cree of Canada and having potential for the treatment of diabetes, we have identified several products that inhibit adipogenesis, suggesting potential antiobesity activities. The inhibitory activity of two of these, the extract of the inner bark of the deciduous trees Alnus incana ssp. rugosa (Speckled Alder) and Populus balsamifera L. (Balsam Poplar), was analyzed using the 3T3-L1 cell model of adipogenesis. Intracellular triglyceride accumulation, pre-adipocyte proliferation, and PPAR- γ activity were measured. Alnus incana extracts acted early in the differentiation process but did not affect clonal expansion of pre-adipocytes nor the morphological transformation from fibroblast-like to rounded fat-laden cells. Alnus incana extracts were found to act as partial agonists toward PPAR- γ activity. In contrast, Populus balsamifera extracts completely abrogated adipogenesis, severely limited clonal expansion of pre-adipocytes and generally maintained cells in an undifferentiated fibroblast-like morphology. Populus balsamifera extracts exerted antagonistic action against PPAR- γ activity. It is concluded that, through their actions on the adipocyte, these plant products may be useful for the treatment of obesity and related metabolic diseases. PMID:20301057

  6. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2014-05-01

    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  7. Defining the Boundaries and Characterizing the Landscape of Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Paul E [ORNL; Adams, Rachel M [ORNL; Giannone, Richard J [ORNL; Kalluri, Udaya C [ORNL; Ranjan, Priya [ORNL; Erickson, Brian K [ORNL; Shah, Manesh B [ORNL; Tuskan, Gerald A [ORNL; Hettich, Robert {Bob} L [ORNL

    2012-01-01

    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: 1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, 2) bioinformatics clustering to effectively handle gene duplication, and 3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7,505 identified proteins to a total of 4,226 protein groups, in which 2,016 were singletons. This reduction implies that ~50% of the measured proteins were clustered into groups that shared extensive sequence homology. Using conservative search criteria, we were able to identify 1,354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 proteins that were not previously identified. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an unprecedented level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  8. The absorption, utilization and distribution of nitrate 15N and ammonium 15N in Populus Tomentosa seedlings

    International Nuclear Information System (INIS)

    Effects of different nitrogen sources (NO3-, NH4+) on the absorption, distribution and utilization of nitrogen on Populus tenement's seedlings (clone 50) was studied by using the 15N trace technique. Results showed that the Populus tenement's seedlings had the same nitrogen take up pattern: tissue nitrogen content grew up after fertilization, remarkbaly rising up after one week and reached peak after 28 days. Although the treatments are different, the tissue N content was about the same between 0.6g · plant-1. The maximum absorption of NO3-15N and NH4-15N was 0.26g · plant-1 and 0.12g · plant -1, which accounted for 39.15% and 19.95% of total nitrogen, respectively. The nitrogen use efficiency (NUE) of two nitrogen sources varied gignificantly. The maximum NUE of NO3-15N reached 25.83%, nearly twice of that of NH4-15N (12.03%). Hence we conclude that Populus tomentosa seedlings (clone 50) prefer to absorb NO3-. Nitrogen distribution rate changed obviously among different organs and the trend was leaf>root>stem. In the leaf, the distribution of NO3-15N was higher than that of NH4-15N. (authors)

  9. Tree encroachment dynamics in heathlands of north-west Italy: the fire regime hypothesis

    Directory of Open Access Journals (Sweden)

    Ascoli D

    2010-09-01

    Full Text Available Tree encroachment is one of the primary conservation issues in Calluna-heathlands, a priority habitat in Europe. Improving understanding of the ecological factors that trigger transitions to woodlands is key to developing strategies for heathlands management. The irrational use of fire has been recognized as one of the key factors that drives the loss of heathlands of north-west Italy. The effect of high frequency pastoral burning on the replacement of heathlands by grasslands has been documented by several studies. The relationship between fire and tree encroachment is less clear. The paper examines the effect of the fire regime on the encroachment of Populus tremula L. and Betula pendula Roth. in the heathland. The study was carried out at the Managed Nature Reserve of Vauda (7° 41’ E, 45° 13’ N, which includes one of the most valuable heathlands of north-western Italy. The experimental design consisted of analysing the age structure, dendrometric variables and the species composition of three aspen and birch stands, circular-shaped and isolated within the heathland matrix. From 1986 to 2009 all stands experienced the same fire regime due to pastoral burning. Wildfires of similar behaviour occurred in 1998, 2003 and 2008 and determined the stand structure observed in 2009. The results evidenced that fire acts as a catalyst not only for seedlings establishment, as previously documented, but also for woodland expansion in the heathland. After initial establishment, stands showed a concentric encroachment dynamic, mainly due to aspen root suckering after post-fire stem mortality, whose steps of expansion coincided with the return interval of wildfires. Moreover, aspen determined the loss of heathland characteristic species, whose relative abundances were inversely correlated to aspen density along a gradient from the stands centre to the surrounding heathland. The regulation of current burning practices by prescribed burning, integrated

  10. Genotypic Variation in Nutrient Selectivity in Populus under NaCl Stress

    Institute of Scientific and Technical Information of China (English)

    Chen Shaoliang; Bai Genben; Liu Xiangfen; Li Jinke; Wang Shasheng; Andrea Polle; Aloys Huttermann

    2003-01-01

    We used a salt-resistant poplar genotype Populus euphratica and two salt-sensitive genotypes, Populus ‘popularis35-44' (P. popularis) and the hybrid P. talassica Kom × (P. euphratica + Salix alba L.) to examine genotypic differences in nutrientselectivity under NaCl stress. One-year-old seedlings ofP. euphratica and one-year-old hardwood cuttings ofP. popularis were usedin a short-term study (24 hours), while in a long-term study, up to 4 weeks, two-year-old seedlings ofP. euphratica and the hybrid P.talassica Kom × (P. euphratica + Salix alba L.) were compared. In the short-term study, K+ concentration in the xylem sap ([K+]xylem)of P. euphratica significantly increased after salt stress was initiated, and maintained 1-2 fold higher than control levels during theperiod of salt stress (24 hours). Xylem Ca2+ and Mg2+ concentrations ([Ca2+]xylem, [Mg2+]xylem) in P. euphratica resembled the patternof K+ despite a lesser magnitude in elevation. However, [K+]xylem, [Ca2+]xylem and [Mg2+]xylem in P. popularis exhibited a transient in-crease at the beginning of salt treatment, thereafter, they all returned to control levels at 4 hours and no further rise was observed inthe following hours. Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in P. popularis increased sharply upon NaCl stress and steadily reachedthe maximum at 24 hours. In contrast, xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in NaCl-treated plants of P. euphratica did not signifi-cantly increase during the period of salt stress (24 hours). Noteworthy, Na+/K+ markedly declined after the onset of stress. These re-sults suggest that P. euphratica had a higher nutrient selectivity in face of salinity. A same trend was observed in a 4-week study.Xylem Na+/K+, Na+/Ca2+ and Na+/Mg2+ in salinised plants of the hybrid abruptly increased after 4 days of stress, and then continu-ously increased to reach the highest level at day 8 or day 15. In comparison, the magnitude of Na+/K+, Na+/Ca2+ and Na+/Mg2+ eleva-tion in the xylem of P

  11. [Physiological-ecological effects of Populus davidiana--Quercus liaotungensis mixed forest in Ziwuling forest area].

    Science.gov (United States)

    Qin, Juan; Shangguan, Zhouping

    2006-06-01

    This paper studied the soil physical- properties under Populus davidiana, Quercus liaotungensis, and Populus davidiana--Quercus liaotungensis mixed forest in the Ziwuling forest area of Loess Plateau, and the leaf photosysthetic characteristics of these three types of forests. The results showed that soil moisture content in 0 - 300 cm layer was the highest under P. davidiana forest, and obviously increased below 200 cm in depth under P. davidiana--Q. liaotungensis mixed forest, which was 10.5% - 19.76% higher than that under Q. liaotungensis forest. In 0 - 60 cm layer, P. davidiana forest showed the highest soil bulk density and the lowest soil porosity, while P. davidiana--Q. liaotungensis mixed forest presented the lowest soil bulk density and the highest soil porosity, and both of these indices surpassed their corresponding values under pure forests, which indicated that the mixed forest could make effective use of water in deep soil, and obviously improved soil physical and chemical properties. P. davidiana and Q. liaotungensis had a higher content of leaf chlorophyll than P. davidiana--Q. liaotungensis mixed forest, and Q. liaotungensis presented the highest leaf chlorophyll content. Q. liaotungensis had the highest photosynthetic rate and stomatal conductance, followed by P. davidiana, and by P. davidiana--Q. liaotungensis mixed forest. The water use efficiency of the forests ranked in the decreasing order of Q. liaotungensis in pure forest, Q. liaotungensis in mixed forest, P. davidiana in mixed forest, and P. davidiana in pure forest. Q. liaotungensis in mixed forest presented the highest F(v)/F(m) and F(v)/F(o), and did not remarkably differ from those in pure forest, but in the mixed forest, the F(v)/F(m) and F(v)/F(o) of P. davidiana were markedly lower than those of P. davidiana in pure forest. Both the q(p) and NPQ of P. davidiana and Q. liaotungensis in pure forests were higher than those in mixed forest, respectively. In Ziwuling forest area, Q

  12. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    Science.gov (United States)

    Merritt, David M; Poff, N LeRoy

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  13. 基于Aspen Plus软件的循环流化床烟气脱硫模型%A model of flue gas desulfurization for circulating fluidized bed using Aspen Plus

    Institute of Scientific and Technical Information of China (English)

    颜湘华; 朱廷钰; 王威; 何京东

    2009-01-01

    Model study and flow simulation of circulating fluidized bed flue gas desulfurization (CFB-FGD) were described in this pa-per. The mathematic model of flue gas desulfurization for circulating fluidized bed (CFB) was buih on the basis of element analysis for mass transfer of SO2. The enhancement of the desulfurization reaction in the process of mass transfer of SO2 was analyzed with the doub-le-membrane theory in the model. And the real formation process of slurry droplet was accounted with the theory of inertia collision. And then a simulation study of CFB-FGD was conducted based on Aspen Plus, where a module subroutine was programmed in FOR-TRAN based on this model. The influences of the key parameters such as calcium-to-sulfur ration (Ca/S), flux of spay water, concen-tration of sorbent particles and water drop size on the desulfurization efficiency were analyzed. The modeling results were compared with the experimental data and the comparing results showed that this model could preferably predict the real trends, This paper would help the application of CFB-FGD as references.%本文研究和模拟循环流化床烟气脱硫的流程和模型.以微元分析SO2的传质为基础,建立循环流化床烟气脱硫的数学模型,模型用双膜理论分析脱硫反应对SO2传质过程的增强影响,并采用惯性碰撞理论解释浆滴的形成过程.借助Aspen Plus过程模拟平台,用FORTRAN语言编写基于该模型的用户单元模块,模拟循环流化床烟气脱硫工艺,分析Ca/S、增湿水量、塔内颗粒物浓度、水滴粒径等参数对脱硫的影响,模拟计算结果和实验数据的对比显示模型能如实反映实际的趋势.本文为应用循环流化床烟气脱硫技术提供参考.

  14. Ten-year results from the long-term soil productivity study in aspen ecosystems of the northern Great Lakes region

    OpenAIRE

    Voldseth, Richard; Palik, Brian; Elioff, John

    2011-01-01

    Impacts of organic matter removal and compaction on soil physical and chemical properties and forest productivity are reported from the first 10 years of the Long-Term Soil Productivity Study in Great Lakes aspen ecosystems. Organic matter removal treatments included main bole, total tree harvest, and total tree harvest with forest floor removal. Compaction treatments included no compaction beyond normal levels from harvest, moderate compaction, and heavy compaction. Main bole harvest with...

  15. Online community marketing of ski resorts : an in-depth best practice study of aspen/snowmass and breckenridge ski resort

    OpenAIRE

    Kráľ, Branislav

    2013-01-01

    Online brand community is a novel phenomenon that carries a number of benefits, but lack of clarity in antecedents of its effectiveness as a marketing alternative. Aspen/Snowmass and Breckenridge Ski Resort are two leading players in the ski industry, and this paper analyzes their activity in-depth in order to bring clarity by extracting implications on best practice. For the purpose, a tailor-made methodology is constructed. It consists of combining two analytical frameworks, interviews with...

  16. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii.

    Science.gov (United States)

    Münzenberger, Babette; Bubner, Ben; Wöllecke, Jens; Sieber, Thomas N; Bauer, Robert; Fladung, Matthias; Hüttl, Reinhard F

    2009-09-01

    Relatively few ectomycorrhizal fungal species are known to form sclerotia. Usually, sclerotia are initiated at the extraradical mycelium. In this study, we present anatomical and ultrastructural evidence for the formation of sclerotia directly in the hyphal mantle of the mycorrhizal morphotype Pinirhiza sclerotia. A dark-pigmented fungal strain was isolated from Pinirhiza sclerotia and identified by molecular tools as Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii s.l. As dark septate fungi are known to be mostly endophytic, resyntheses with Pinus sylvestris and A. macrosclerotiorum as well as Populus tremula x Populus tremuloides and A. macrosclerotiorum or P. fortinii s.l. were performed under axenic conditions. No mycorrhizas were found when hybrid aspen was inoculated with A. macrosclerotiorum or P. fortinii. However, A. macrosclerotiorum formed true ectomycorrhizas in vitro with P. sylvestris. Anatomical and ultrastructural features of this ectomycorrhiza are presented. The natural and synthesized ectomycorrhizal morphotypes were identical and characterized by a thin hyphal mantle that bore sclerotia in a later ontogenetic stage. The Hartig net was well-developed and grew up to the endodermis. To our knowledge, this is the first evidence at the anatomical and ultrastructural level that a close relative of P. fortinii s.l. forms true ectomycorrhizas with a coniferous host. PMID:19415343

  17. Assessment of abandoned agricultural land resource for bio-energy production in Estonia

    Energy Technology Data Exchange (ETDEWEB)

    Kukk, Liia; Astover, Alar; Roostalu, Hugo; Suuster, Elsa; Noormets, Merrit; Sepp, Kalev (Estonian Univ. of Life Sciences, Inst. of Agricultural and Environmental Sciences, Tartu (Estonia)); Muiste, Peeter (Estonian Univ. of Life Sciences, Inst. of Forestry and Rural Engineering, Tartu (Estonia))

    2010-03-15

    The current study locates and quantifies abandoned agricultural areas using the Geographic Information System (GIS) and evaluates the suitability of abandoned fields for bio-energy production in Tartumaa (Tartu County) in Estonia. Soils of abandoned areas are generally of low quality and thereby limited suitability for crop production; as a result soil-crop suitability analyses could form the basis of knowledge-based bio-energy planning. The study estimated suitable areas for bio-energy production using willow (Salix sp), grey alder [Alnus incana (L.) Moench], hybrid aspen (Populus tremuloides Michx.Populus tremula L.), reed canary grass (Phalaris arundinacea L.), and Caucasian goat's rue (Galega orientalis Lam.) in separate plantations. A combined land-use strategy is also presented as these crops are partially suitable to the same areas. Reed canary grass and grey alder have the highest energy potentials and each would re-use more than 80% of the available abandoned agricultural land. Energy grasses and short-rotation forestry in combined land-use strategy represents the opportunity of covering approximately a quarter of county's annual energy demand. The study estimates only agronomic potential, so further bio-energy analysis should take into account technical and economic limitations. Developed framework supports knowledge-based decision-making processes from field to regional scale to achieve sustainable bio-energy production

  18. Characteristics and dynamics analysis of Populus euphratica populations in the middle reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    JunXia WU; XiMing ZHANG; ChaoZhou DENG; GuoJun LIU; Hong LI

    2010-01-01

    Populus euphratica Oliv.is widely distributed along the Tarim River.Maintaining stability of P.euphratica population is important to local development.This study explored the static life table,survivorship curves and four function curves(survival rate,cumulative mortality rate,mortality density,and hazard rate),and development index of P.euphratica population in the middle reaches of Tarim River.The results indicated that the age structure of P.euphratica population belonged to positive pyramidal type,which meant young age-class individuals occupied most populations.The number of Ⅰ-Ⅱ age classes accounted for 66.2% of whole population,and this indicated that there were abundant subsequent seedlings resources to support the growth of P.euphratica population in the middle reaches of Tarim River.The survivorship curve of P.euphratica belonged to the Deevey Ⅲ(concave-type)and the development index was 47.72%.Four function curves revealed that the individuals of P.euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve.Time sequence prediction models predicted that the number of midlife individuals would increase in future 10,20,30 years,and P.euphratica population grew steadily as a result of rich saplings.

  19. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    Institute of Scientific and Technical Information of China (English)

    Nadjet Debbache-Benaida; Dina Atmani-Kilani; Valrie Barbara Schini-Keirth; Nouredine Djebbli; Djebbar Atmani

    2013-01-01

    Objective: To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods: Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and-rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results:The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10-1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and-rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions: The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+influx.

  20. Duplication of Locus Coding of Malate Dehydrogenase in Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Horizontal starch-gel electrophoresis was used to study crude enzyme extraction from young leaves of 234 clones of Populus tomentosa Carr. selected from nine provenances in North China. Ten enzyme systems were resolved. One hundred and fifty-six clones showing unusual allozyme band patterns at locus Mdh-1 were found. Three allozyme bands at locus Mdh-1 were 9:6:1 in concentration. Further studies on the electrophoretic patterns of ground mixed pollen extraction of 30 male clones selected at random from the 156 clones were conducted and it was found that allozyme bands at locus Mdh-1 were composed of two dark-stained bands and a weak band. Only one group of the malate dehydrogenase (MDH) zymogram composed of two bands was obtained from the electrophoretic segregation of pollen leachate of the same clones. A comparison of the electrophoretic patterns one another suggested that the locus Mdh-1 coding malate dehydrogenase in diploid species of P. tomentosa was duplicated. The duplicate gene locus possessed three same alleles and was located in mitochondria. The locus duplication of alleles coding malate dehydrogenase in P. tomentosa was discovered and reported for the first time.

  1. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis plantlets exposed to high temperature and drought.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    Full Text Available Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA, dehydrin, and small heat shock proteins (sHSPs, were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.

  2. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    Science.gov (United States)

    Andersen, Douglas C.

    2016-01-01

    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  3. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests

    International Nuclear Information System (INIS)

    Trees can be used to monitor the level of pollution of trace elements in the soil and atmosphere. In this paper, we surveyed the content of eight trace elements (As, Cd, Cu, Fe, Mn, Ni, Pb and Zn) in leaves and stems of white poplar (Populus alba) trees. We selected 25 trees in the riparian forest of the Guadiamar River (S. Spain), one year after this area was contaminated by a mine spill, and 10 trees in non-affected sites. The spill-affected soils had significantly higher levels of available cadmium (mean of 1.25 mg kg-1), zinc (117 mg kg-1), lead (63.3 mg kg-1), copper (58.0 mg kg-1) and arsenic (1.70 mg kg-1), than non-affected sites. The concentration of trace element in poplar leaves was positively and significantly correlated with the soil availability for cadmium and zinc, and to a lesser extent for arsenic (log-log relationship). Thus, poplar leaves could be used as biomonitors for soil pollution of Cd and Zn, and moderately for As

  4. Improved salt tolerance of Populus davidiana × P. bolleana overex-pressed LEA from Tamarix androssowii

    Institute of Scientific and Technical Information of China (English)

    Yanshuang Sun; Su Chen; Haijiao Huang; Jing Jiang; Shuang Bai; Guifeng Liu

    2014-01-01

    Development of transgenic plants with tolerance to environ-mental stress is an important goal of plant biotechnology. Late-embryogenesis-abundant (LEA) proteins accumulate in seeds dur-ing late embryogenesis, where they protect cellular membranes and macromolecules against drought. In this work, we transferred the Tamarix androssowii LEA gene into hybrids of Populus davidiana×P. bolleana. We compared relative rates of height growth, chlorophyll fluo-rescence kinetic parameters, and leaf Na+ levels of six TaLEA-containing lines with non-transferred plants (NT), all grown under 0.8% NaCl stress condition. Survival percentages of transgenic lines were all higher than for NT controls after rehydration and the sur-vival percentage of SL2 was five-fold higher than for NT controls. Seed-ling height increased 48.7%in SL2 (from the onset of induced stress to the end of the growing season), 31% more than for the NT controls. Chlorophyll fluorescence kinetic parameters showed a marked increase in photosynthetic capacity in SL2 and SL5. Na+levels in young leaves of transgenic lines were lower than in control NT leaves, but higher in yel-low and withered leaves, indicating improved salt tolerance in transgenic lines.

  5. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.).

    Science.gov (United States)

    Viger, Maud; Smith, Hazel K; Cohen, David; Dewoody, Jennifer; Trewin, Harriet; Steenackers, Marijke; Bastien, Catherine; Taylor, Gail

    2016-07-01

    Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. 'North eastern' genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ(13)C. In contrast, 'southern' genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1-3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought. PMID:27174702

  6. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam poplar, Populus balsamifera.

    Science.gov (United States)

    Keller, Stephen R; Olson, Matthew S; Silim, Salim; Schroeder, William; Tiffin, Peter

    2010-03-01

    Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range-wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species' range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in-depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies. PMID:20163548

  7. Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.

    Science.gov (United States)

    Keller, Stephen R; Levsen, Nicholas; Ingvarsson, Pär K; Olson, Matthew S; Tiffin, Peter

    2011-08-01

    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps. PMID:21624997

  8. In Silico Identification and Characterization of N-Terminal Acetyltransferase Genes of Poplar (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Hang-Yong Zhu

    2014-01-01

    Full Text Available N-terminal acetyltransferase (Nats complex is responsible for protein N-terminal acetylation (Nα-acetylation, which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS and auxiliary subunits (AS have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A–F, being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  9. Effects of Planting Density on Growth of New Clones in Populus tomentosa

    Institute of Scientific and Technical Information of China (English)

    Zhang Zihui; Zhang Zhiyi; Lin Shanzhi; Li Xinguo

    2003-01-01

    Effects of seven planting densities on the growth and tree form of nine 5-year-old new clones in Populus tomentosa were studied. The plantations, arranged with completely random block design, were located in Wuzhi County, Henan Province. Results indicated that effects of planting density on the diameter at breast height (DBH), individual volume and growing stock increment of all new clones in P. tomentosa were significant at the 1% level of probability, effects of planting density on the tree height increment of new clones B2 and B31 and on the live branches height (LBH) increment of new clones B5 and B30 were significant at the 5% level of probability, while the interaction between planting density and clone was not significant at the 5% level of probability. It was concluded that the degree of differences among new clones within the same planting density was different with different planting densities and traits. For short rotation industrial timber, clones B1, B3, B4, B5, B7, B9, B31 were suitable with the density of 1 000-2 500 trees per hectare, while for bigger diameter timber, clones B1, B3, B4, B7, B9, B31 could be used with the planting density of 660-833 trees per hectare. Clonal repeatability was also different in different planting densities.

  10. MECHANICAL PROPERTIES OF POPLAR WOOD (POPULUS ALBA DRIED BY THREE KILN DRYING SCHEDULES

    Directory of Open Access Journals (Sweden)

    Mahdi Shahverdi,

    2012-01-01

    Full Text Available The influence of three drying schedules on the selected mechanical properties of poplar wood (Populus alba L. was evaluated in terms of suitability for structural applications. For this purpose, 70 mm-thick poplar lumber was conventionally dried by three different moisture content based schedules of T5-D2, T5-D4, and T5-D6. In these schedules, the wet bulb depression was changed as a means of increasing of the drying intensity. After drying, the mechanical properties of the lumber, including bending properties (MOE and MOR, toughness, shear strength parallel to grain, and tensile strength perpendicular to grain, were measured. Results revealed that the severe drying schedule (T5-D6 caused higher reductions in the mechanical properties of the dried boards, particularly the MOE and MOR. Furthermore, toughness and tensile strength perpendicular to grain were not affected by the increasing of the wet bulb depression. The influence of all the three adopted schedules on the mechanical properties was evaluated using the drying rate, final moisture content gradient, and qualitative characteristics of the dried boards.

  11. PROCESS OPTIMIZATION OF TETRA ACETYL ETHYLENE DIAMINE ACTIVATED HYDROGEN PEROXIDE BLEACHING OF POPULUS NIGRA CTMP

    Directory of Open Access Journals (Sweden)

    Qiang Zhao

    2010-02-01

    Full Text Available To enhance the bleaching efficiency, the activator of tetra acetyl ethylene diamine (TAED was used in conventional H2O2 bleaching. The H2O2/TAED bleaching system can accelerate the reaction rate and shorten bleaching time at relative low temperature, which can reduce the production cost. In this research, the process with hydrogen peroxide activated by TAED bleaching of Populus nigra chemi-thermo mechanical pulp was optimized. Suitable bleaching conditions were confirmed as follows: pulp consistency 10%, bleaching temperature 70oC, bleaching time 60 min when the charge of H2O2 was 4%, NaOH charge 2%, and molar ratio of TAED to H2O2 0.3. The pulp brightness gain reached 23.6% ISO with the optimized bleaching conditions. FTIR analysis indicated that the H2O2/TAED bleaching system can decrease carbonyl group further than that of conventional H2O2 bleaching, which contributed to the higher bleaching efficiency and final brightness. The H2O2/TAED bleaching had stronger oxidation ability on lignin than that of H2O2 bleaching.

  12. Map and analysis of microsatellites in the genome of Populus: The first sequenced perennial plant

    Institute of Scientific and Technical Information of China (English)

    LI; ShuXian; YIN; TongMing

    2007-01-01

    We mapped and analyzed the microsatellites throughout 284295605 base pairs of the unambiguously assembled sequence scaffolds along 19 chromosomes of the haploid poplar genome. Totally, we found 150985 SSRs with repeat unit lengths between 2 and 5 bp. The established microsatellite physical map demonstrated trat SSRs were distributed relatively evenly across the genome of Populus. On average, These SSRs occurred every 1883 bp within the poplar genome and the SSR densities in intergenic regions, introns, exons and UTRs were 85.4%, 10.7%, 2.7% and 1.2%, respectively. We took di-, tri-, tetra-and pentamers as the four classes of repeat units and found that the density of each class of SSRs decreased with the repeat unit lengths except for the tetranucleotide repeats. It was noteworthy that the length diversification of microsatellite sequences was negatively correlated with their repeat unit length and the SSRs with shorter repeat units gained repeats faster than the SSRs with longer repeat units. We also found that the GC content of poplar sequence significantly correlated with densities of SSRs with uneven repeat unit lengths (tri- and penta-), but had no significant correlation with densities of SSRs with even repeat unit lengths (di- and tetra-). In poplar genome, there were evidences that the occurrence of different microsatellites was under selection and the GC content in SSR sequences was found to significantly relate to the functional importance of microsatellites.

  13. Influence of climatic factors on fruit morphological traits in Populus euphratica Oliv.

    Directory of Open Access Journals (Sweden)

    Azam Soleimani

    2014-07-01

    Full Text Available Populus euphratica Oliv. is a native species in arid and semi- arid zone of Iran distributing naturally in the vast regions. We studied the variation in fruit morphological traits in P. euphratica trees originating from seven provenances of Iran. P. euphratica samples were prepared from Karaj Research Station. In this study, catkin length, number of capsules in each catkin, capsule length, capsule width, capsule length to capsule width ratio, number of seeds in each capsule, seed length, seed width, seed length to seed width ratio, the weight of 1000 seeds and germination rate were measured. Analysis of variance on all morphological traits except germination showed significant differences (P < 0.05 among provenances. In addition, positive significant correlations were observed in some of the fruit morphological traits. Capsule length, seed length and number of seeds in each capsule showed a significant positive correlation with mean annual  precipitation, mean annual temperature and longitude. Seed width showed a significant negative correlation with longitude and latitude. The results show that morphological fruit characteristics in P. euphratica are mainly influenced by the mean annual temperature of the origins.

  14. Deep annotation of Populus trichocarpa microRNAs from diverse tissue sets.

    Directory of Open Access Journals (Sweden)

    Joshua R Puzey

    Full Text Available Populus trichocarpa is an important woody model organism whose entire genome has been sequenced. This resource has facilitated the annotation of microRNAs (miRNAs, which are short non-coding RNAs with critical regulatory functions. However, despite their developmental importance, P. trichocarpa miRNAs have yet to be annotated from numerous important tissues. Here we significantly expand the breadth of tissue sampling and sequencing depth for miRNA annotation in P. trichocarpa using high-throughput smallRNA (sRNA sequencing. miRNA annotation was performed using three individual next-generation sRNA sequencing runs from separate leaves, xylem, and mechanically treated xylem, as well as a fourth run using a pooled sample containing vegetative apices, male flowers, female flowers, female apical buds, and male apical and lateral buds. A total of 276 miRNAs were identified from these datasets, including 155 previously unannotated miRNAs, most of which are P. trichocarpa specific. Importantly, we identified several xylem-enriched miRNAs predicted to target genes known to be important in secondary growth, including the critical reaction wood enzyme xyloglucan endo-transglycosylase/hydrolase and vascular-related transcription factors. This study provides a thorough genome-wide annotation of miRNAs in P. trichocarpa through deep sRNA sequencing from diverse tissue sets. Our data significantly expands the P. trichocarpa miRNA repertoire, which will facilitate a broad range of research in this major model system.

  15. Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa.

    Science.gov (United States)

    Shao, Yuanhua; Wei, Guo; Wang, Ling; Dong, Qing; Zhao, Yang; Chen, Beijiu; Xiang, Yan

    2011-09-01

    BURP domain-containing proteins have a conserved structure and are found extensively in plants. The functions of the proteins in this family are diverse, but remain unknown in Populus trichocarpa. In the present study, a complete genome of P. trichocarpa was analyzed bioinformatically. A total of 18 BURP family genes, named PtBURPs, were identified and characterized according to their physical positions on the P. trichocarpa chromosomes. A phylogenetic tree was generated from alignments of PtBURP protein sequences, while phylogenetic relationships were also examined between PtBURPs and BURP family genes in other plants, including rice, soybean, maize and sorghum. BURP genes in P. trichocarpa were classified into five classes, namely PG1β-like, BNM2-like, USP-like, RD22-like and BURP V. The multiple expectation maximization for motif elicitation (MEME) and multiple protein sequence alignments of PtBURPs were also performed. Results from the transcript level analyses of 10 PtBURP genes under different stress conditions revealed the expression patterns in poplar and led to a discussion on genome duplication and evolution, expression profiles and function of PtBURP genes. PMID:21767343

  16. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Khaket

    2014-01-01

    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  17. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    Science.gov (United States)

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2014-04-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies. PMID:24739232

  18. Assessment of Rhizospheric Microorganisms of Transgenic Populus tomentosa with Cowpea Trypsin Inhibitor (CpTI) Gene

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To have a preliminary insight into biosafety of genetically transformed hybrid triploid poplars (Populus tomentosa × P. bolleana) × P. tomentosa with the cowpea trypsin inhibitor (CpTI) gene, two layers of rhizospheric soil (from 0 to 20 cm deep and from 20 to 40 cm deep, respectively) were collected for microorganism culture, counting assay and PCR analysis to assess the potential impact of transgenic poplars on non-target microorganism population and transgene dispersal. When the same soil layer of suspension stock solution was diluted at both 1:1 000 and 1:10 000 rates, there were no significant differences in bacterium colony numbers between the inoculation plates of both transgenic and non-transgenic poplars. The uniform results were revealed for both soil layer suspension solutions of identical poplars at both dilution rates except for non-transgenic poplars at 1:10 000 dilution rates from the same type of soil. No significant variation in morphology of both Gram-positive and Gram-negative bacteria was observed under the microscope. The potential transgene dispersal from root exudates or fallen leaves to non-target microbes was repudiated by PCR analysis, in which no CpTI gene specific DNA band was amplified for 15 sites of transgenic rhizospheric soil samples. It can be concluded that transgenic poplar with the CpTI gene has no severe impact on rhizospheric microorganisms and is tentatively safe to surrounding soil micro-ecosystem.

  19. Drying Kinetics of Poplar (Populus Deltoides Wood Particles by a Convective Thin Layer Dryer

    Directory of Open Access Journals (Sweden)

    Hamid Zarea Hosseinabadi

    2012-09-01

    Full Text Available Drying of poplar wood (Populus Deltoides particles was carried out at different drying conditions using a laboratory convective thin layer dryer. Drying curves were plotted and in order to analyze the drying behavior, the curves were fi tted to different semi-theoretical drying kinetics models. The effective moisture diffusivity was also determined from the integrated Fick’s second law equation and correlated with temperature using an Arrhenius- type model to calculate activation energy of diffusion. The results showed that Midilli et al. model was found to satisfactorily describe the drying characteristics of poplar wood particles dried at all temperatures and air flow velocities. In general, the drying rate increases with increasing air temperature and air fl ow velocity. A short constant drying rate period was observed and drying frequently took place at falling rate period in all cases. The effective moisture diffusivity of poplar wood particles increased from 1.01E-10 to 2.53E-10 m2·s-1 as the drying air temperature increased from 65 to 85 °C. The activation energy of diffusion for 1 m·s-1 and 1.5 m·s-1 air flow velocities were calculated as 27.8 kJ·mol-1 and 50.8 kJ·mol-1, respectively.

  20. Temperature Evolution in Poplar (Populus nigra Tension Wood and Normal Wood during a Conventional Drying Process

    Directory of Open Access Journals (Sweden)

    Asghar TARMIAN

    2011-08-01

    Full Text Available In this paper, temperature evolution through tension wood and normal wood in poplar (Populus nigra under a convective drying condition was investigated. Flat-sawn boards with green dimensions 80�40�25 mm were dried at constant dry-bulb temperature of 60�C and relative humidity (RH of 50% to a final moisture content of about 8%. They were coated on four surfaces using aluminum foil bonded with polyurethane (PU glue to confine moisture movement along the board thickness. The measurement of board temperature was carried out at 2.5, 5, 7.5, 10 and 12.5 mm along the board thickness every 20 minutes by means of 1 mm-thermocouples. The pattern of temperature profile was observed to be almost similar for both tension wood and normal wood. However, a slightly steeper temperature gradient occurred in the normal wood compared to the tension wood. In both types of woods, the surface temperature rose progressively from the initial value to the dry-bulb temperature but the core temperature remained at an almost constant value as the wet-bulb temperature even at the end of drying.

  1. Comparison of stomatal characteristics and photosynthesis of polymorphic Populus euphratica leaves

    Institute of Scientific and Technical Information of China (English)

    ZHENG Caixia; QIU Jian; JIANG Chunning; YUE Ning; WANG Xiuqin; WANG Wanfu

    2007-01-01

    The leaf shapes of adult Populus euphratica vary from lanceolate to dentate broad-ovate.In order to find the mechanism regarding the ecological adaptation of the polymorphic leaves,the dentate broad-ovate,broad-ovate,and lanceolate leaves were chosen to study their stomatal and photosynthetic characteristics.It is observed that the stomas on the adaxial and abaxial epidermis of the same leaves open non-uniformly with similar densities.The stomatal densities are different among the three typical leaves,which decrease from broad-ovate to lanceolate leaves.Their stomatal sunken degree varied obviously,decreasing from broad-ovate to lanceolate leaves.The changes of the diurnal photosynthetic rate of the three typical leaves follow a single peak curve.The mean diurnal photosynthetic rates of these leaves rank from high to low as broad-ovate>dentate broad-ovate>lanceolate leaves.The light compensation points are similar in the three typical leaves,while the light saturation points vary obviously.The efficiency of solar energy conversion and potential activity of the PSⅡ in the leaves differ significantly,with the dentate broad-ovate leaves the highest.The results suggest that their leaf shapes,anatomic structures,and photosynthetic characteristics change during the leaf development.

  2. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    Science.gov (United States)

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature. PMID:25809016

  3. Characteristics and dynamics analysis of Populus euphratica populations in the middle reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Populus euphratica Oliv. is widely distributed along the Tarim River. Maintaining stability of P. euphratica population is important to local development. This study explored the static life table, survivorship curves and four function curves (survival rate, cumulative mortality rate, mortality density, and hazard rate), and development index of P. euphratica population in the middle reaches of Tarim River. The results indicated that the age structure of P. euphratica population belonged to positive pyramidal type, which meant young age-class individuals occupied most populations. The number ofⅠ-Ⅱage classes accounted for 66.2% of whole population, and this indicated that there were abundant subsequent seedlings resources to support the growth of P. euphratica population in the middle reaches of Tarim River. The survivorship curve of P. euphratica belonged to the Deevey Ⅲ (concave-type) and the development index was 47.72%. Four function curves revealed that the individuals of P. euphratica sharply decreased at the initial stage and then leveled off at the late stage of survival curve. Time sequence prediction models predicted that the number of midlife individuals would increase in future 10, 20, 30 years, and P. euphratica population grew steadily as a result of rich saplings.

  4. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    Science.gov (United States)

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO. PMID:27116372

  5. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.

    Science.gov (United States)

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-04-01

    This is the first study reporting the presence of endogenous caffeine, theobromine, and theophylline in all organs of poplar plants. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used in order to evaluate the uptake, translocation, and metabolism of caffeine-(trimethyl-(13)C) in Populus alba L. Villafranca clone grown in hydroponic conditions. We investigated the remediation of caffeine since it is one of the most widely consumed drugs and it is frequently detected in wastewater treatment plant effluents, surface water, and groundwater worldwide. Our results demonstrated that poplar can absorb and degrade exogenous caffeine without negative effects on plant health. Data showed that concentrations of all endogenous compounds varied depending on caffeine-(trimethyl-(13)C) treatments. In particular, in control conditions, endogenous caffeine, theobromine, and theophylline were mainly distributed in roots. On the other hand, once caffeine-(trimethyl-(13)C) was provided, this compound and its dimethy-(13)C metabolites are mainly localized at leaf level. In conclusion, our results support the possible use of Villafranca clone in association with other water treatment systems in order to complete the process of caffeine remediation. PMID:26681326

  6. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    Science.gov (United States)

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site. PMID:21548283

  7. Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa

    Institute of Scientific and Technical Information of China (English)

    ZHANG TingTing; SONG YunZhi; LIU YuDong; GUO XingQi; ZHU ChangXiang; WEN FuJiang

    2008-01-01

    The cDNA of AtPLDα (Arabidopsis thaliana Phospholipase Da) gene was introduced into P. tomentosa (Populus tomentosa) under the control of the Cauliflower mosaic virus 35S promoter. Southern and Northern blot analyses suggested that the AtPLDα gene has been transferred into the P. tomentosa genome. No obvious morphological or developmental difference was observed between the transgenic and wild-type (WT) plants. Drought and salt tolerance and gene expression of seedlings of several transgenic lines and WT plants (control) were studied. The results showed that the rhizogenesis rate and the average root-length of transgenic lines were significantly higher than WT plants after mannitol and NaCl treatment under the same growth conditions. Northern blot analysis indicated that the higher the PLDα expression in the transgenic plants, the more tolerant the transgenic plants are to drought and salt treatment. Meanwhile, another group of these transgenic lines and WT plants (control) were treated with PEG6000 and NaCI separately. The contents of chlorophylls and the activities of some antioxidant enzymes (superoxide dismutase, guaiacol peroxidase and catalase) as well as malondialdehyde and relative electrical conductivity were analyzed. Altogether, our results demonstrated that overexpression of the PLDα gene can enhance the drought and salt tolerance in transgenic P. tomentosa plants.

  8. Survey of Plant Drought-Resistance Promoting Bacteria from Populus euphratica Tree Living in Arid Area.

    Science.gov (United States)

    Wang, Shanshan; Ouyang, Liming; Ju, Xiangyang; Zhang, Lili; Zhang, Qin; Li, Yanbin

    2014-12-01

    Two hundred and thirty-two bacterial strains were isolated from the rhizospheric soil of Populus euphratica which is the dominant tree living in extreme arid regions in northwest China. Some strains with plant growth-promoting bacteria related metabolic characteristics were able to promote drought resistance in plants after inoculation. Ten strains with the greatest effects increased the dry weight of wheat shoots from 0.5 to 34.4 %, and the surface area of the root systems from 12.56 to 212.17 % compared to the control after drought treatment whereas no obvious promoting effect was observed in normal water conditions. These 10 strains were identified to be of the genera Pseudomonas, Bacillus, Stenotrophomonas and Serratia by 16S rRNA (rrs) gene sequence alignment. Among these strains, Serratia sp. 1-9 and Pseudomonas sp. 5-23 were the two most effective strains. Both of them produced auxin and the production increased significantly when cultured under simulated drought conditions which are inferred to be the most plausible mechanism for their plant growth-promoting effect under drought stress. PMID:25320440

  9. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others

    1997-08-01

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

  10. 基于Aspen Plus模拟的垃圾衍生燃料富氧燃烧研究%Simulation on oxygen-enriched combustion of refuse derived fuel by aspen plus

    Institute of Scientific and Technical Information of China (English)

    李延吉; 邹科威; 宋政刚; 李润东; 池涌

    2013-01-01

    利用Aspen Plus软件建立了垃圾衍生燃料(RDF)的富氧燃烧模型,对RDF在富氧和空气气氛下的燃烧产物生产进行了对比,研究了燃烧温度T和过氧系数δ对燃烧产物生成量的影响规律.结果表明:气氛对RDF燃烧后SOx及CO2生成量的影响较小;NOx生成量随燃烧温度T的升高和过氧系数δ的增大而逐渐增大;随燃烧温度T的升高SO2生成量逐渐增加而SO3生成量相应减少,而随过氧系数δ的增大二者呈现相反趋势;当燃烧温度T高于1 200℃时,CO生成量急剧增加,而当过氧系数δ大于1.0时,CO生成量急速减少.

  11. Simulation and experimental of refuse derived fuel pyrolysis based on aspen plus%基于aspen plus的垃圾衍生燃料热解模拟与实验

    Institute of Scientific and Technical Information of China (English)

    李延吉; 姜璐; 邹科威; 赵宁; 李玉龙; 李润东; 池涌

    2013-01-01

    采用化工流程模拟软件aspen plus对垃圾衍生燃料(RDF)建立热解反应模型,得出RDF各热解产物产率及气体体积分数.在高温管式炉中进行RDF热解实验,利用气相色谱分析仪测出各气体体积分数.将模拟值与实验值进行比较,结果表明:热解终温增加,热解液和热解气产率增大,半焦产率下降H2体积分数增加,CO2体积分数下降;与添加废石灰的RDF相比,添加污泥的RDF热解液和半焦产率更低,热解气产率更高;生物质质量分数下降,CO2体积分数下降;与添加废石灰RDF相比,添加污泥的RDF的CO2体积分数下降.

  12. Dynamic characteristics of Oxy-CFB combustion system based on Aspen%基于Aspen平台的Oxy-CFB燃烧侧动态特性模拟

    Institute of Scientific and Technical Information of China (English)

    周建新; 邵壮; 李崇; 司风琪; 徐治皋

    2014-01-01

    Taking an oxy-fuel circulating fluidized bed (Oxy-CFB )combustor pilot facility as the simulation object,a steady-state model for the Oxy-CFB combustion system was built with the plat-form of Aspen Plus.After modifying the steady-state model for the dynamic process simulation,a new dynamic model for the combustion system was built based on Aspen Dynamics and the results were validated by the test data.The simulation study on the responses of the bed temperature and the components,including carbon dioxide,oxygen,carbon monoxide,and nitrogen monoxide in the flue gas,was carried out.The research results show that the dynamic model based on Aspen pro-vides a new method to investigate the dynamic characteristics of the Oxy-CFB combustion system. The dynamic response characteristics of bed temperature and gas components for the coal feed and primary air step changes can provide valuable information for design and implementation of the con-trol system of the Oxy-CFB combustion system.%以某循环流化床富氧燃烧中试系统为模拟对象,借助Aspen Plus流程模拟软件搭建了Oxy-CFB燃烧系统的稳态模型。在此基础上针对动态过程模拟进行改进,并利用Aspen Dynam-ics平台建立了该燃烧系统的动态模型,利用试验数据对模拟结果进行了验证。基于动态模型对Oxy-CFB床温以及燃烧排放产物中二氧化碳、氧气、一氧化碳、一氧化氮等进行了仿真研究。研究表明,基于Aspen平台的动态过程模拟为Oxy-CFB锅炉燃烧系统的动态特性分析提供了新的研究手段,模拟所得的床温及烟气各组分随给煤量、一次风量阶跃变化的动态响应规律可为今后Oxy-CFB燃烧系统的控制设计提供重要依据。

  13. Simulation of Synthesis Gas Production from Steam Oxygen Gasification of Colombian Coal Using Aspen Plus®

    Directory of Open Access Journals (Sweden)

    Jorge E. Preciado

    2012-11-01

    Full Text Available A steady state simulation of syngas production from a Steam Oxygen Gasification process using commercial technologies was performed using Aspen Plus®. For the simulation, the average proximate and ultimate compositions of bituminous coal obtained from the Colombian Andean region were employed. The simulation was applied to conduct sensitivity analyses in the O2 to coal mass ratio, coal slurry concentration, WGS operating temperature and WGS steam to dry gas molar ratio (SDG over the key parameters: syngas molar composition, overall CO conversion in the WGS reactors, H2 rich-syngas lower heating value (LHV and thermal efficiency. The achieved information allows the selection of critical operating conditions leading to improve system efficiency and environmental performance. The results indicate that the oxygen to carbon ratio is a key variable as it affects significantly both the LHV and thermal efficiency. Nevertheless, the process becomes almost insensitive to SDG values higher than 2. Finally, a thermal efficiency of 62.6% can be reached. This result corresponds to a slurry solid concentration of 0.65, a WGS process SDG of 0.59, and a LTS reactor operating temperature of 473 K. With these fixed variables, a syngas with H2 molar composition of 92.2% and LHV of 12 MJ Nm−3 was attained.

  14. Global modeling of Hanford tank waste pretreatment alternatives within a total cleanup system using ASPEN PLUS trademark

    International Nuclear Information System (INIS)

    The purpose of this work is to evaluate and compare radionuclide separations/processing technologies being developed or considered as Hanford tank waste pretreatment alternatives. These technologies are integrated into a total cleanup system that includes tank waste retrieval, treatment, and disposal. Current Hanford flowsheets typically include only mature, developed technologies, not new technologies. Thus, this work examines the impact/benefits of inserting new technologies into Hanford flowsheets. Waste treatment must produce disposal fractions which are less troublesome than the original material. Researchers seeking effective treatment methods may lack the tools or expertise to fully understand the implications of their approach in terms of secondary and tertiary waste streams or the extent to which a unique new process will affect upstream or downstream processes. This work has developed and demonstrated mass balance methods that clarify the effect of including individual processes in an integrated waste treatment system, such as the Hanford cleanup system. The methods provide a measure of treatment effectiveness and a format for the researcher to understand waste stream interrelationships and determine how a particular treatment technology can best be used in a cleanup system. A description of the Hanford tank waste cleanup model developed using the ASPEN PLUS flowsheet simulation tool is given. Important aspects of the modeling approach are discussed along with a description of how performance measures were developed and integrated within the simulation to evaluate and compare various Hanford tank waste pretreatment alternatives

  15. Dicty_cDB: VSI691 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available pulus leaf cDNA library Populus tremula x Populus tremuloides cDNA, mRNA sequence. 64 7e-16 2 CB083063 |CB083063.1 hn65h03.g1 Hedyoti...s centranthoides flower - Stage 2 (NYBG) Hedyotis centranthoides cDNA clone hn65h03

  16. Dicty_cDB: SSL840 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available |CB083063.1 hn65h03.g1 Hedyotis centranthoides flower - Stage 2 (NYBG) Hedyotis centranthoides cDNA clone h...ry Populus tremula x Populus tremuloides cDNA, mRNA sequence. 64 6e-16 2 CB083063

  17. EST data: 2995 [RED

    Lifescience Database Archive (English)

    Full Text Available EB3090 C98782 DPlate 032 C03 5' GCA GGC TCA TGA AGA TCT CG 3' 5' TCA AGG AGG CCA TCC ACG TC 3' > ... 81534|pid:g3511285) Populus alba x Populus tremula cellulose ... synthase (cel1) mRNA, complete cds. ...

  18. Drug: D08712 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08712 Mixture, Drug Chimaphila umbellata - populus tremula - pulsatilla pratensis mill - equise ... tum arvense - wheat ... germ oil mixt; Nerset (TN) Chimaphila umbellata, P ... lla pratensis mill, Equisetum arvense [ED:E00782], Wheat ... germ oil Chimaphila umbellata [TAX:93815], Populus ...

  19. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S

    NARCIS (Netherlands)

    Herschbach, C; van der Zalm, E; Schneider, A; Jouanin, L; De Kok, LJ; Rennenberg, H

    2000-01-01

    This study with poplar (Populus tremula x Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated a

  20. Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development.

    Science.gov (United States)

    Cseke, Leland J; Zheng, Jun; Podila, Gopi K

    2003-10-30

    The vascular component of trees possesses some of the most specialized processes active in the formation of roots, stems, and branches, and its wood component continues to be of primary importance to our daily lives. The molecular mechanisms of wood development, however, remain poorly understood with few well-characterized regulatory genes. We have identified a vascular tissue-specific MADS-box gene, Populus tremuloides MADS-box 5 (PTM5) that is expressed in differentiating primary and secondary xylem and phloem. Phylogenetic analysis has shown that PTM5 is a member of the SOC1/TM3 class of MADS-box genes. Temporal expression analysis of PTM5 in staged vascular cambium and other tissues indicated that PTM5 expression is seasonal and is limited to spring wood formation and rapidly expanding floral catkins. Spatial expression analysis using in situ hybridization revealed that PTM5 expression is localized within a few layers of differentiating vascular cambium and xylem tissues as well as the vascular bundles of expanding catkins. Since many MADS-box genes are known to act as transcription factors, these results suggest that the coordinated expression of PTM5 with other vascular developmental genes may be a hallmark of the complex events that lead to the formation of the woody plant body. PMID:14585498

  1. Geochemical peculiarities of black poplar leaves (Populus nigra L.) in the sites with heavy metals intensive fallouts

    Science.gov (United States)

    Yalaltdinova, Albina; Baranovskaya, Natalya; Rikhvanov, Leonid; Matveenko, Irina

    2013-04-01

    The article deals with the content of 28 chemical elements in the leaves ash of black poplar (Populus nigra L.) growing in Ust-Kamenogorsk city area. It is the major industrial center of Kazakhstan Republic on the territory where the industrial giants of non-ferrous metallurgy and nuclear energy are situated. Comparative analysis with the similar data obtained from leaves ash of Populus nigra L. in Tomsk, Ekibastuz, and Pavlodar cities has revealed that in comparison with other urban areas, leaves ash of black poplar (Populus nigra L.) from Ust-Kamenogorsk city is characterized by elevated concentration rates of Ta, U, Zn, Ag, As, Sb, Br, Sr and Na. Within the city, the sites and areas with abnormal contents of typomorphic pollutants have been revealed. In the central part of the city, in the vicinity of lead-zinc plant and Ulba metallurgical plant, the highest concentrations of Ta, U, Zn, Ag, Au, As, Sb, Cr and Fe were marked. In the northeast, where the titanium-magnesium plant is located, elevated concentrations of Br and Sr were stated. Thus, the impact of major city enterprises which are the main sources of heavy metals is reflected in the element composition. Zn, As, Sb, Ag and Au comes from lead-zinc plant and its refinery plants, while Ulba metallurgical plant can be considered source of Ta and U in the environment, producing tantalum and fuel pellets for nuclear power plants. These companies, due to the current objective circumstances, are located in the central part of the city, have a significant negative effect on the environment and form the risk factors for human health.

  2. Growth under field conditions affects lignin content and productivity in transgenic Populus trichocarpa with altered lignin biosynthesis

    International Nuclear Information System (INIS)

    This study evaluated the potential of transgenic Populus trichocarpa with antisense 4CL for reduced total lignin and sense Cald5H for increased S/G ratio in a short rotation woody cropping (SRWC) system for bioethanol production in the Southeast USA. Trees produced from tissue-culture were planted in the Coastal Plain, Piedmont, and Mountain regions of North Carolina, USA. Trees were observed for growth differences and biomass recorded for two coppices. Insoluble lignin and S/G ratio were determined by molecular beam mass spectroscopy after the second coppice. Survival, growth form, and biomass were very consistent within construct lines. Higher total lignin content and S/G ratio were positively correlated with total aboveground biomass. The low-lignin phenotype was not completely maintained in the field, with total lignin content increasing on average more than 30.0% at all sites by the second coppice The capacity to upregulate lignin in the event of environmental stress may have helped some low-lignin lines to survive. More research focused on promising construct lines in appropriate environmental conditions is needed to clarify if a significant reduction in lignin can be achieved on a plantation scale, and whether that reduction will translate into increased efficiency of enzymatic hydrolysis. - Highlights: • We evaluate growth of transgenic Populus in a short rotation system in Southeast USA. • Populus was transformed for reduced total lignin and increased S/G ratio. • Higher total lignin and S/G ratio were positively correlated with biomass. • Total lignin increased on average more than 30.0% at all sites by the second coppice. • Transgenics showed the capacity to upregulate lignin during environmental stress

  3. Response of Coarse Root Distribution of Populus euphratica Oliv. to Soil Moisture in Extreme Arid Region China

    OpenAIRE

    Li, Jianlin; Feng, Qi; SI, Jianhua; CHANG, Zongqiang; Wang, Yan

    2010-01-01

    Generally root systems of tree are divided into coarse root system and fine root system. As well as fine root system, coarse root system is important to well growth of tree too. Based on the data observed at Ejina Banner Inner Mongolia Autonomous Region, China from May to July of 2006, using fractal theory and statistical method, the relationship between coarse root system distribution of Populus euphratica Oliv. and soil moisture in root zone was analyzed. Root system of tree has a typical f...

  4. Isolation of protoplast from callus of Populus euphratica and H+ fluxes across plasma membrane under NaCl stress

    Institute of Scientific and Technical Information of China (English)

    Gao Zhun; Dai Song-xiang; Chen Shao-liang; Shen Xin; Wang Rui-gang

    2007-01-01

    We used callus of Populus euphratica Olive to isolate protoplasts, and H+ fluxes across plasma membrane were investigated. The concentration of enzymes for protoplast isolation, e.g. cellulase, pectolyase, macerozyme, hemicellulase, and sorbitol content, incubation time were systemically studied. High yield and viability of protoplast was achieved after 6-8 hours incubation of P. euphratica callus in enzyme solution containing 1.5% (w:v) cellulase R-10, 0.1% (w:v) pectolyase Y-23, 0.2% (w:v) macerozyme membrane of P. euphratica cells. The shift of H+ flux response to NaCl shock and the relevance to salt tolerance were discussed.

  5. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa

    OpenAIRE

    Li, Dandan; Xu, Xuemei; Hu, Xiaoqing; Liu, Quangang; Wang, Zhanchao; Zhang, Haizhen; Wang, Han; Wei, Ming; Wang, Hanzeng; Liu, Haimei; Li, Chenghao

    2015-01-01

    The heavy metal ATPase (HMA) family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs), of which PtHMA1–PtHMA4 belonged to the zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu)/silver (Ag) subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal ...

  6. Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus×canescens

    OpenAIRE

    Langenfeld-Heyser, R.; Gao, J.; Ducic, T.; Tachd, Ph.; Lu, C F; Fritz, E.; Gafur, Abdul; Polle, Andrea

    2006-01-01

    In order to characterise the effect of ectomycorrhiza on Na+-responses of the salt-sensitive poplar hybrid Populus x canescens, growth and stress responses of Paxillus involutus (strain MAJ) were tested in liquid cultures in the presence of 20 to 500 mM NaCl, and the effects of mycorrhization on mineral nutrient accumulation and oxidative stress were characterised in mycorrhizal and non-mycorrhizal poplar seedlings exposed to 150 mM NaCl. Paxillus involutus was salt tolerant, showing biomass ...

  7. Population genetic structure of Iberian white poplar (Populus alba L.): the role of mating system, hybridization and demographical history

    OpenAIRE

    Macaya Sanz, David

    2015-01-01

    El género Populus representa un caso interesante para el estudio de los sistemas reproductivos y de la evolución. En esta tesis se estudia su filogeografía y su estructura genética espacial en la Península Ibérica, su capacidad para la adaptación local a nivel molecular y fenotípico, el impacto que tiene la clonalidad y la hibridación y se aporta nueva información sobre el desarrollo de su incipiente cromosoma sexual y del hermafroditismo que a veces presenta. Se concluye que (i) ...

  8. Energy dynamics in Populus deltoides G3 Marsh agroforestry systems in eastern India

    International Nuclear Information System (INIS)

    Energy efficiency of Populus deltoides G3 Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the from of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure

  9. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. PMID:27265357

  10. Energy dynamics in Populus deltoides G{sub 3} Marsh agroforestry systems in eastern India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, O.P. [National Research Centre for Agroforestry, Jhansi (India); Das, D.K. [Rajendra Agricultural Univ., Dept. of Forestry, Bihar (India)

    2005-08-01

    Energy efficiency of Populus deltoides G{sub 3} Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the form of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure. (Author)

  11. Sex-specific responses of Populus deltoides to Glomus intraradices colonization and Cd pollution.

    Science.gov (United States)

    Chen, Lianghua; Zhang, Danju; Yang, Wanqin; Liu, Yang; Zhang, Li; Gao, Shun

    2016-07-01

    The positive effects of arbuscular mycorrhizal fungi (AM) on the survival, growth and physiology of plants under various stress conditions have been widely recognized. However, whether sex-dependent susceptibility to AM colonization exists, which can induce a differential tolerance between the sexes to stress conditions, is still unclear. In this study, we investigated the effects of Glomus intraradices on Cd-stressed males and females of Populus deltoides (spiked with 10 mg Cd per kg dry substrate) in terms of morphology, physiology, biochemistry, ultrastructure, and toxin storage and translocation. Exposure to Cd promoted the colonization by G. intraradices in males, but not in females. Generally, females suffered more impairments than males in response to Cd stress, reflected by leaf symptoms, the extent of lipid peroxidation, and integrity of the cellular ultrastructure, whether they were inoculated or not. Inoculation with G. intraradices alleviated the phytotoxic effects of Cd in females by stimulating antioxidant enzymes, decreasing levels of reactive oxygen species (ROS) and restricting Cd transfer to the shoots. In contrast, these beneficial effects induced by AM were not detected in mycorrhizal males compared to non-mycorrhizal males, based on thiobarbituric acid-reactive substances (TBARS) and cellular ultrastructure. Inoculation with AM promoted Cd accumulation in males but not in females, and caused the sequestration of more toxic Cd in the root systems in both sexes. Therefore, our results suggest that inoculated males of P. deltoides are suitable candidates for phytostabilization in Cd-polluted soils, due to their higher accumulation ability and greater tolerance relative to inoculated females. PMID:27115844

  12. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa.

    Science.gov (United States)

    Loth-Pereda, Verónica; Orsini, Elena; Courty, Pierre-Emmanuel; Lota, Frédéric; Kohler, Annegret; Diss, Loic; Blaudez, Damien; Chalot, Michel; Nehls, Uwe; Bucher, Marcel; Martin, Francis

    2011-08-01

    Gene networks involved in inorganic phosphate (Pi) acquisition and homeostasis in woody perennial species able to form mycorrhizal symbioses are poorly known. Here, we describe the features of the 12 genes coding for Pi transporters of the Pht1 family in poplar (Populus trichocarpa). Individual Pht1 transporters play distinct roles in acquiring and translocating Pi in different tissues of mycorrhizal and nonmycorrhizal poplar during different growth conditions and developmental stages. Pi starvation triggered the up-regulation of most members of the Pht1 family, especially PtPT9 and PtPT11. PtPT9 and PtPT12 showed a striking up-regulation in ectomycorrhizas and endomycorrhizas, whereas PtPT1 and PtPT11 were strongly down-regulated. PtPT10 transcripts were highly abundant in arbuscular mycorrhiza (AM) roots only. PtPT8 and PtPT10 are phylogenetically associated to the AM-inducible Pht1 subfamily I. The analysis of promoter sequences revealed conserved motifs similar to other AM-inducible orthologs in PtPT10 only. To gain more insight into gene regulatory mechanisms governing the AM symbiosis in woody plant species, the activation of the poplar PtPT10 promoter was investigated and detected in AM of potato (Solanum tuberosum) roots. These results indicated that the regulation of AM-inducible Pi transporter genes is conserved between perennial woody and herbaceous plant species. Moreover, poplar has developed an alternative Pi uptake pathway distinct from AM plants, allowing ectomycorrhizal poplar to recruit PtPT9 and PtPT12 to cope with limiting Pi concentrations in forest soils. PMID:21705655

  13. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate.

    Science.gov (United States)

    Olson, Matthew S; Levsen, Nicholas; Soolanayakanahally, Raju Y; Guy, Robert D; Schroeder, William R; Keller, Stephen R; Tiffin, Peter

    2013-03-01

    The manner in which organisms adapt to climate change informs a broader understanding of the evolution of biodiversity as well as conservation and mitigation plans. We apply common garden and association mapping approaches to quantify genetic variance and identify loci affecting bud flush and bud set, traits that define a tree's season for height growth, in the boreal forest tree Populus balsamifera L. (balsam poplar). Using data from 478 genotypes grown in each of two common gardens, one near the southern edge and another near the northern edge of P. balsamifera's range, we found that broad-sense heritability for bud flush and bud set was generally high (H(2) > 0.5 in most cases), suggesting that abundant genetic variation exists for phenological response to changes in the length of the growing season. To identify the molecular genetic basis of this variation, we genotyped trees for 346 candidate single nucleotide polymorphisms (SNPs) from 27 candidate genes for the CO/FT pathway in poplar. Mixed-model analyses of variance identified SNPs in 10 genes to be associated with variation in either bud flush or bud set. Multiple SNPs within FRIGIDA were associated with bud flush, whereas multiple SNPs in LEAFY and GIGANTEA 5 were associated with bud set. Although there was strong population structure in stem phenology, the geographic distribution of multilocus association SNP genotypes was widespread except at the most northern populations, indicating that geographic regions may harbour sufficient diversity in functional genes to facilitate adaption to future climatic conditions in many sites. PMID:23094714

  14. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

    Science.gov (United States)

    Keller, Stephen R; Levsen, Nicholas; Olson, Matthew S; Tiffin, Peter

    2012-10-01

    Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution. PMID:22513286

  15. Nitrate and Ammonium Contribute to the Distinct Nitrogen Metabolism of Populus simonii during Moderate Salt Stress.

    Directory of Open Access Journals (Sweden)

    Sen Meng

    Full Text Available Soil salinity is a major abiotic stressor affecting plant growth. Salinity affects nitrification and ammonification in the soil, however, limited information is available on the influence of different N sources on N metabolism during salt stress. To understand the N metabolism changes in response to different N sources during moderate salt stress, we investigated N uptake, assimilation and the transcript abundance of associated genes in Populus simonii seedlings treated with moderate salt stress (75mM NaCl under hydroponic culture conditions with nitrate (NO3- or ammonium (NH4+. Salt stress negatively affected plant growth in both NH4+-fed and NO3--fed plants. Both NH4+ uptake and the total N concentration were significantly increased in the roots of the NH4+-fed plants during salt stress. However, the NO3- uptake and nitrate reductase (NR and nitrite reductase (NiR activity primarily depended on the NO3- supply and was not influenced by salt stress. Salt stress decreased glutamine synthetase (GS and glutamate synthase (GOGAT activity in the roots and leaves. Most genes associated with NO3-uptake, reduction and N metabolism were down-regulated or remained unchanged; while two NH4+ transporter genes closely associated with NH4+ uptake (AMT1;2 and AMT1;6 were up-regulated in response to salt stress in the NH4+-fed plants. The accumulation of different amino acid compounds was observed in the NH4+- and NO3-- fed plants during salt treatment. The results suggested that N metabolism in P. simonii plants exposed to salt enhanced salt resistance in the plants that were fed with NO3- instead of NH4+ as the sole N source.

  16. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Chaiprasongsuk, Minta [University of Tennessee, Knoxville (UTK); Li, Guanglin [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Tschaplinski, Timothy J [ORNL; Guo, Hong [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK)

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  17. Responses of germination and radicle growth of two Populus species to water potential and salinity

    Institute of Scientific and Technical Information of China (English)

    Li Li; Zhang Xi-ming; Michael Runge; Li Xiao-ming; He Xing-yuan

    2006-01-01

    The effects of water potential, NaCl and Na2SO4 on germination and radicle growth of two riparian tree species, Populus euphratica Oliv. and P. pruinosa Schrenk (Salicaceae), were tested. Growth chamber studies revealed an optimum temperature range for seed germination of both species between 15-35℃. The final germination percentage of both species decreases with decreasing water potential in all types of solution applied in the experiments. P. pruinosa was less tolerant to low Ψw stress than P. euphratica,especially in salt solutions. Germination percentages fell below 20% for P. pruinosa at -0.6 MPa (NaCl) or -0.4 MPa (Na2SO4) and for P. euphratica at -1.2 MPa (NaCl) or -0.6 MPa (Na2SO4). Radicle growth of both species was inhibited by high concentrations of PEG, NaCl and Na2SO4. However, growth was enhanced at -0.13 and -0.29 MPa in PEG or at -0.13 MPa in NaCl solutions compared to distilled water. Radicle growth of P. euphratica was higher than that of P. pruinosa. Germination and radicle growth of both species exhibited ion toxicity. Na2SO4 was more toxic than iso-osmotic solutions of NaCl. Radicle growth proved to be more sensitive than seed germination. Thus, flooding does not only yield the necessary soil moisture for germination but also favors seedling establishment of both species through leaching of salts from the soil surface. The different sensitivity of the species during their early growth stages might, moreover, contribute to the observed differences in their distribution in the Talim Basin (northwest China).

  18. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods

    Science.gov (United States)

    Nagler, P.; Jetton, A.; Fleming, J.; Didan, K.; Glenn, E.; Erker, J.; Morino, K.; Milliken, J.; Gloss, S.

    2007-01-01

    Native tree plantations have been proposed for the restoration of wildlife habitat in human-altered riparian corridors of western U.S. rivers. Evapotranspiration (ET) by riparian vegetation is an important, but poorly quantified, term in river water budgets. Native tree restoration plots will potentially increase ET. We used sap flow sensors and satellite imagery to estimate ET in a 8 ha, cottonwood (Populus fremontii) restoration plot on the Lower Colorado River. Biometric methods were used to scale leaf area to whole trees and stands of trees. This technique was used to validate our estimates of ET obtained by scaling from branch level to stand (or plot) level measurements of ET. Cottonwood trees used 6-10 mm day-1 of water during the peak of the growing season as determined by sap flow sensors, and annual rates scaled by time-series MODIS satellite imagery were approximately 1.2 m year-1. Although irrigation was not quantified, the field had been flood irrigated at 2 week intervals during the 3 years prior to the study, receiving approximately 2 m year-1 of water. A frequency-domain electromagnetic induction survey of soil moisture content showed that the field was saturated (26-28% gravimetric water content) at the 90-150 cm soil depth under the field. Trees were apparently rooted into the saturated soil, and considerable saving of water could potentially be achieved by modifying the irrigation regime to take into account that cottonwoods are phreatophytes. The study showed that cottonwood ET can be monitored by remote sensing methods calibrated with ground measurements with an accuracy or uncertainty of 20-30% in western riparian corridors. ?? 2007 Elsevier B.V. All rights reserved.

  19. Effect of tree-crop intercropping on a young Populus tomentosa plantation

    Institute of Scientific and Technical Information of China (English)

    JIANG Yuezhong; QIN Guanghua

    2007-01-01

    In order to study the effect of tree crop intercropping on a young plantation ofPopulus tomentosa in the plains along the Yellow River,field experiments were conducted by observing the growth of the plantation,the nutrient content in leaves,the nutrient and water content in the soil,and the output of crops.The relationship between forest growth and nutrient content in the tree leaves and the soil were analyzed.Results show that tree crop intercropping in young plantations can not only improve soil water content,but also enhance the contents of organic matter and the available nitrogen,phosphorus and potassium in soil resulting in the vigorous growth of the individual trees.Diameter at breast height (DBH) was positively related to the contents of organic matter in the soil,and the contents of N,P and K in the tree leaves had correlation coefficients of 0.967,0.955,0.988 and 0.972,respectively.Whole tree leaf area,crown width,number of branches and the mean length of branches in the intercropped plantation (intercropped with watermelon and vegetables,peanut and winter wheat,and soybean) were,respectively,1.70-3.0 times,2.22-2.47 times,1.0-1.41 times and 1.70-2.32 times of those of CK (without intercropping).Diameter at breast height (DBH) and tree height in the intercropped plantation were 50.5%-136.7% and 27%-59.5% higher than those of the CK,respectively.The study also showed that intercropping with watermelon and vegetables proved to have the highest economic return among the treatments adopted.Tree crop intercropping in young plantations is an effective measure to increase forest growth and economic benefit.

  20. Changes in soil characteristics during landfill leachate irrigation of Populus deltoides.

    Science.gov (United States)

    Zupanc, Vesna; Justin, Maja Zupančič

    2010-11-01

    The effects of wastewater application on electrical conductivity, water retention and water repellency of soils planted with Populus deltoides (eastern cottonwood) and irrigated with different concentrations of landfill leachate and compost wastewater, tap water and nutrient solution were evaluated. Substrate water content at field capacity (-0.033 MPa) and at permanent wilting point (-1.5 MPa) was determined with a pressure plate extractor to assess available water capacity of the substrate. A water drop penetration test was used to determine substrate water repellency. The biomass of nutrient and landfill leachate treatments was significantly (Pfield capacity and at permanent wilting point. Landfill leachate significantly increased available water capacity (up to 52%); treatment with compost wastewater significantly decreased it (25-47%). All substrates showed increased water repellency after the experiment at field capacity and permanent wilting point comparing to the original substrate. The strongest influence on water repellency at both field capacity and permanent wilting point showed irrigation with compost wastewater and tap water. Pronounced influence on substrate's water repellency of compost wastewater could be contributed to a high content of dissolved organic carbon, whereas Mg and Ca cations caused flocculation and consequent water repellency of the substrate irrigated with tap water. The results indicate that soil physical characteristics must be closely monitored when landfill leachate and compost wastewater are used for irrigation to avoid long term detrimental effects on the soil, and consequently on the environment. Due to the complexity of the compost wastewater quality the latter should be applied on open fields only after prior pre-treatment to reduce dissolved organic carbons, or alternatively, compost wastewater should be added only intermittently and in diluted ratios. PMID:20554192

  1. Sex-specific responses of Populus yunnanensis exposed to elevated CO{sub 2} and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Ling Li; Yuanbin Zhang; Chunyang Li [Chinese Academy of Sciences. Chengdu Institute of Biology, Chengdu (Switzerland); Jianxun Luo, Sichuan Academy of Forestry, Chengdu (Switzerland)); Korpelainen, H. [Univ. of Helsinki. Dept. of Agricultural Sciences, Helsinki (Finland)

    2013-04-15

    Populus yunnanensis Dode., a native dioecious woody plant in southwestern China, was employed as a model species to study sex-specific morphological, physiological and biochemical responses to elevated CO{sub 2} and salinity. To investigate the effects of elevated CO{sub 2}, salinity and their combination, the cuttings were exposed to two CO{sub 2} regimes (ambient CO{sub 2} and double ambient CO{sub 2}) and two salt treatments in growth chambers. Males exhibited greater downregulation of net photosynthesis rate (A{sub net}) and carboxylation efficiency (CE) than females at elevated CO{sub 2}, whereas these sexual differences were lessened under salt stress. On the other hand, salinity induced a higher decrease in Anet and CE, more growth inhibition and leaf Cl{sup -} accumulation and more damage to cell organelles in females than in males, whereas the sexual differences in photosynthesis and growth were lessened at elevated CO{sub 2}. Moreover, elevated CO{sub 2} exacerbated membrane lipid peroxidation and organelle damage in females but not in males under salt stress. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under salt stress, and elevated CO{sub 2} lessens the sexual differences in photosynthesis and growth under salt stress; (2) elevated CO{sub 2} tends to aggravate the negative effects of salinity in females; and (3) sex-specific reactions under the combination of elevated CO{sub 2} and salinity are distinct from single-stress responses. Therefore, these results provide evidence for different adaptive responses between plants of different sexes exposed to elevated CO{sub 2} and salinity. (Author)

  2. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa.

    Directory of Open Access Journals (Sweden)

    Yuepeng Song

    Full Text Available Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs. The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.

  3. The role of antioxidant system in freezing acclimation-induced freezing resistance of Populus suaveolens cuttings

    Institute of Scientific and Technical Information of China (English)

    Luo Lei; Lin Shan-zhi; Zheng Hui-quan; Lei Yang; Zhang Qian; Zhang Zhi-yi

    2007-01-01

    We investigated the changes in the contents of H2O2, malonaldehyde (MDA) and endogenous antioxidants, the activities of protective enzymes and some critical enzymes involved in the ascorbate-glutathione (ASA-GSH) cycle as well as freezing resistance(expressed as LT50) and correlations mentioned above, in detail using Populus suaveolens cuttings. The purpose was to explore the physiological mechanism of the enhancement of freezing resistance induced by freezing acclimation at -20℃, and to elucidate the physiological mechanisms by which trees adapt to freezing. The results showed that freezing acclimation enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), monodehydroascorbate reductase (MDAR), ascorbate peroxidase(APX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). And it increased the contents of reduced ascorbate(ASA), reduced glutathione (GSH), dehydroascorbate (DHA) and oxidized glutathione (GSSG). However, H2O2 and MDA contents and LT50 of cuttings were decreased. LT50 in cuttings was found to be closely correlated to the levels of SOD, POD, CAT, APX,DHAR, MDAR, GR, H2O2, MDA, ASA, GSH, DHA and GSSG during freezing acclimation. This suggested that the enhancement of freezing resistance of cuttings induced by freezing acclimation may relate to the distinct increase for the levels of SOD, POD, CAT,APX, DHAR, MDAR,GR,ASA, GSH, DHA, and GSSG. In addition, the observed levels of APX, DHAR, MDAR, GR, ASA, DHA,GSH and GSSG were higher than those of SOD, POD and CAT during freezing acclimation. It indicated that a higher capacity of the ASA-GSH cycle is required for H2O2 detoxification, and growth and development of cuttings. Based on the obtained results, it can be concluded that the ASA-GSH cycle plays an important role in enhancement of freezing resistance of P. suaveolens cuttings during freezing acclimation.

  4. Biomass growth and element uptake by young trembling aspen in relation to site treatments in Northern Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, I.K. [Canadian Forest Service, Ontario (Canada)

    2003-05-01

    A second-growth boreal mixed wood, consisting mainly of trembling aspen and balsam fir, with white spruce, balsam poplar and white birch admixed, defoliated in part by spruce budworm, was harvested in late autumn 1992 by conventional cut-and-skid, whole-tree logging. Four blocks, subdivided into 10-m by 10-m plots, separated by buffer strips, were laid out. The objective of the study was to compare the efficacy and environmental implications of screening (i.e. organic layer removal) versus high-speed mixing (using a prototype forestry rototiller), both applied in strips and across whole plots, versus no treatment (cut control) in terms of regrowth biomass production and nutrient uptake. All plots were quickly occupied by a verdant herbaceous regrowth and, depending upon treatment, hardwood shoots. Screefing generally increased numbers of hardwood shoots relative to the control, whereas mixing generally reduced numbers. Above-ground standing crops including tree and non-tree species by the middle of 1997 ranged from 9500 kgha{sup -1} on cut control plots to 4400 kgha{sup -1} on whole-area mixed plots. Nutrient contents in the aboveground vegetation varied commensurately, ranging up to 91 kgha{sup -1} for N, 11 for P, 79 for K, 94 for Ca, 18 for Mg and 8 for S. Leafy matter recovery on the most responsive treatment (harvest with no further site preparation) was ca. 70% complete within five years and the N, P, K, Ca, Mg, and S contents therein had reached or almost reached the same levels as the precut stand. This implies that nutrient cycling largely resumes within five years of harvest. (author)

  5. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    International Nuclear Information System (INIS)

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni30 and Ni200). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO2] than in control leaves. However chloroplastic [CO2] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni0 (control plants); 2 - Ni200; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  6. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa

    Science.gov (United States)

    Li, Dandan; Xu, Xuemei; Hu, Xiaoqing; Liu, Quangang; Wang, Zhanchao; Zhang, Haizhen; Wang, Han; Wei, Ming; Wang, Hanzeng; Liu, Haimei; Li, Chenghao

    2015-01-01

    The heavy metal ATPase (HMA) family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs), of which PtHMA1–PtHMA4 belonged to the zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu)/silver (Ag) subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8) genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb, and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies. PMID:26779188

  7. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone.

    Science.gov (United States)

    Xin, Yue; Yuan, Xiangyang; Shang, Bo; Manning, William J; Yang, Aizhen; Wang, Younian; Feng, Zhaozhong

    2016-11-01

    A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health. PMID:27424114

  8. Effect of heavy metal treatments on metallothionein expression profiles in white poplar (Populus alba L. cell suspension cultures

    Directory of Open Access Journals (Sweden)

    Anca MACOVEI

    2010-11-01

    Full Text Available Populus species and hybrids are intensively cultivated as sources of woody biomass and are good candidates for phytoremediation because of their rapid growth rate, extensive root system and ease of propagation and transformation. To date, the molecular mechanisms that regulate heavy metal tolerance have not been fully investigated. In the present work, white poplar (Populus alba L. cell suspension cultures were used as model system to investigate the response to heavy metal treatments. The VFMT2 cDNA, encoding a type 2 metallothionein from P. alba, was isolated by RT-PCR approach. The expression profiles of the VFMT2 gene were then investigated by Quantitative Real Time Polymerase Chain Reaction (QRT-PCR under oxidative stress conditions. The latter were induced by exposing the cell suspension cultures to different doses of cadmium (75 and 150 μM CdSO4, copper (50 and 100 μM CuCl2 and zinc (1 and 2 mM ZnSO4. Cell death was evidenced by Evans blue staining. The VFMT2 gene was up-regulated in response to heavy metal treatments and the highest mRNA level (up to 5-fold was observed 4 h following exposure to 100 μM CuCl2.

  9. Comparative analysis of GT14/GT14-like family genes in Arabidopsis, Oryza, Populus, Sorghum and Vitis

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chuyu [ORNL; Li, Ting [ORNL; Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Yang, Xiaohan [ORNL

    2011-01-01

    Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.

  10. Populus nigra (Salicaceae) absolute rich in phenolic acids, phenylpropanoïds and flavonoids as a new potent tyrosinase inhibitor.

    Science.gov (United States)

    Maack, A; Pegard, A

    2016-06-01

    The purpose of this study was to evaluate the tyrosinase inhibitory capacity of Populus nigra buds absolute (PBA) and compare it to kojic acid (KA), controversial reference tyrosinase inhibitor. Populus nigra buds were extracted with hexane and ethanol to obtain PBA. The inhibitory effect of this absolute was first tested on the mushroom Agaricus bisporus tyrosinase. Then the depigmenting potential of PBA was tested on B16F10 murine melanocytes by assaying the activity of tyrosinase and melanin content. Consecutively, a microscopic analysis of intracellular melanin granules was performed. Finally, melanised reconstructed human epidermis (RHE) were used to assess the lightening potential activity of this PBA on human skin. Results show that PBA inhibits A. bisporus tyrosinase (IC50=77±8ppm) and inhibits melanocytes B16F10 tyrosinase (IC50=27±1ppm). PBA decreases intracellular melanin levels, with 50% loss at 39±9ppm. Finally, PBA at 1000ppm lightens RHE and decreases their melanin content of 20%. PBA is a strong inhibitor of tyrosinase and reduces melanogenesis in melanocytes B16F10. Thus, PBA has potential applications in skin-lightening cosmetics. PMID:27091790

  11. Morpho-physiological response of Populus alba to erythromycin: A timeline of the health status of the plant.

    Science.gov (United States)

    Pierattini, Erika Carla; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-11-01

    Populus alba Villafranca clone was chosen for a proof of concept study to determine the potential uptake and accumulation of antibiotics by trees. Plants were grown hydroponically and irrigated with a recirculating Hoagland's nutrient solution (control) and Hoagland's nutrient solution fortified with erythromycin at 0.01, 0.1 and 1mgL(-1). After 3 and 28days of treatment, poplar plants were separated into roots, stem, and leaves. Plants showed good health all over the period of treatment, and no differences in poplar growth for all the concentrations of erythromycin tested were observed. Quantification of erythromycin was performed using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS) in positive ion mode using multiple reaction ion monitoring. Erythromycin was detected in all organs analyzed. Roots showed an erythromycin concentration tenfold higher than leaves. The photochemical efficiency of photosystem II did not show a dose-dependant trend. From the quenching analysis of chlorophyll fluorescence, low nonphotochemical quenching (NPQ) and high photochemical quenching (qP) for the first week of erythromycin exposure was observed, depending on leaves position along the stem. Results suggest a short term adaptation of the photosynthetic apparatus of Populus alba in response to environmental realistic erythromycin concentrations. PMID:27366984

  12. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Dandan eLi

    2015-12-01

    Full Text Available The heavy metal ATPase (HMA family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs, of which PtHMA1–PtHMA4 belonged to the zinc (Zn/cobalt (Co/cadmium (Cd/lead (Pb subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu/silver (Ag subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8 genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.

  13. Genome-wide search for segregation distortion loci associated with the expression of complex traits in Populus tomentosa

    Institute of Scientific and Technical Information of China (English)

    Zhang De-qiang; Zhang Zhi-yi; Yang Kai

    2007-01-01

    Segregation distortion of molecular markers has been reported in a broad range of organisms. It has been detected in an interspecific BC1 Populus pedigree established by controlled crossing between clone "LM50" (Populus tomentosa) and its hybrid clone "TB01" (P. tomentosa×P. bolleana). The study with a total of 150 AFLP markers (approximately 18.9% of the total loci)exhibited significant deviation from the Mendelian ratio (1:1) (p<0.01). Twenty-five percent of the markers were mapped on the parental specific genetic linkage maps of clones "LM50" and "TB01" with a pseudo-test-cross mapping strategy. Twelve linkage groups had markers with skewed segregation ratios, but the major regions were on linkage groups TLG2, TLG4 and TLG6 in the linkage map of clone "LM50". We also analyzed the association between distorted loci and expression of complex traits with Mapmaker/QTL software. A total of 16 putative QTLs affecting 12 traits were identified in the distorted regions on seven linkage groups.Therefore we could detect the distribution of skewed loci along the entire genome and identify the association between quantitative traits and segregation loci via genetic mapping in an interspecific BC1 P. tomentosa family. Furthermore, the genetic nature and possible causes of these segregation distortions for differentiation between female and male parents were also discussed.

  14. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.;

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... hydrolysis are compared. The effects of temperature, acid concentration, composition of organic phase (for sulfuric acid), and pressure (for nitric acid) on the effectiveness of pretreatment were analyzed. It is shown that the use of organosolv with 0.5% sulfuric acid allows us to increase the reactivity of...

  15. Effect of Auxins and Light on Rooting Stem Cuttings of Populus nigra Salix tetrasperma, Ipomea fistulosa and Hibiscus notodus in Relation to Polarity.

    Science.gov (United States)

    Nanda, K K; Purohit, A N; Kochhar, V K

    1969-01-01

    The apical and basal ends of stem cuttings of Populus nigra, Salix tetrasperma, Ipomoea fistulosa and Hibiscus notodus were treated with 10 mg/l solutions of IAA and IBA for 24 hours and were planted either erect or inverted both in light and dark. Observations for the number of cuttings that rooted and the roots produced on them were recorded at weekly intervals. In Salix, Ipomoea and Hibiscus rooting was more on cuttings planted erect, while in populus it did not differ much with the manner of planting. The reduced rooting in inverted cuttings may be ascribed to the low level of endogenous auxin at the apex due to polar transport. An exogenous application of auxins enhanced rooting on inverted cuttings. In dark, roots on Populus and Salix cuttings were produced both above and within the rooting medium. The weak polarity of these two plants may be due to the potential root primordia reported in their stem. The formation of callus occurred on the top of Populus cuttings whether planted erect or inverted but it differentiated into branches on erect cuttings only. In those planted in an inverted position the callus failed to differentiate in spite of the application of kinetin, auxins, TIBA, coumarin and sucrose, and dried ultimately. PMID:20925659

  16. Structure of the genetic diversity in Black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration

    NARCIS (Netherlands)

    Smulders, M.J.M.; Cottrell, J.E.; Lefevre, F.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.; Tabbener, H.E.; Grassi, F.; Fossati, T.; Castiglione, S.; Krystufek, V.; Fluch, S.; Burg, K.; Vornam, B.; Pohl, A.; Gebhardt, K.; Alba, N.; Agúndez, D.; Maestro, C.; Notivol, E.; Volosyanchuck, R.; Pospiskova, M.; Bordacs, S.; Bovenschen, J.; Dam, van B.C.; Koelewijn, H.P.; Halfmaerten, D.; Ivens, B.; Slycken, Van J.; Vanden Broeck, A.; Storme, V.; Boerjan, W.

    2008-01-01

    Black poplar (Populus nigra L.) is a keystone species for riparian ecosystems in Europe. We analysed the structure of genetic diversity of 17 populations from 11 river valleys that are part of seven catchment systems (Danube, Ebro, Elbe, Po, Rhine, Rhone, and Usk) in Europe, in relation to geography

  17. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae).

    Science.gov (United States)

    Huang, Daisie I; Hefer, Charles A; Kolosova, Natalia; Douglas, Carl J; Cronk, Quentin C B

    2014-11-01

    As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar. PMID:25078531

  18. CHANGES OF CUTICLE SURFACE LIPIDS OF POPULUS ITALICA AND BETULA PENDULA CAUSED BY POLLUTION

    Directory of Open Access Journals (Sweden)

    Zubrovskaya O. M.

    2014-08-01

    Full Text Available Arboreal plants intensively accumulate heavy metals, resulting in a corresponding revocation level of physiological processes. The lipid components operate an important role in the formation of plant resistance. Therefore, it was very important to determine the characteristics of lipid peroxidation flow in leaves of arboreal plants, and changes in the composition of cuticle surface lipids at different levels of heavy metal accumulation. Research objects were Populus italica (Du Roi Moench and Betula pendula Roth. of second age group, growing on the industrial site РJSC ‘Kryvyi Rig Factory of minium’ (with strong contamination and in the arboretum of Kryvyi Rig Botanic Garden, National Academy of Science of Ukraine (conventional control. Leaves were taken from the middle of the crown southwest exposure in phase of leaf full separation and 5-10 day of phase finishing point of their growth. It was shown that P. italica maximally accumulated zinc, content of which was increased in the phase of leaf full separation and on 5-10 day of phase of leaf growth finishing point relative to the control to 12,6 and 23 times respectively. The accumulation level of heavy metals was typically less significant for assimilation organs of B. pendula compared to P. italica. Thus, the content of zinc and lead in the leaves during the study increased only in 2 times towards control. The leaves of B. pendula, unlike P. italica, more intensively accumulated cadmium in the phase of leaf full separation and on 5-10 day of phase finishing point of their growth (it was 6 and 15 times higher relative to control respectively. It was obviously connected to the fact that the surface texture of poplar leaves may cause intense sticking of dust particles containing heavy metals and penetration into the leaves. The effect of heavy metals in both phases of leaf morphogenesis caused an increase in lipid peroxidation by 40-52% for P. italica and almost by 3 times for B. pendula

  19. [Evaluation of ecological services of Populus simonii forest on Heerqin sandy land].

    Science.gov (United States)

    Zhang, Hua; Li, Fengrui; Zhang, Tonghui; Zhao, Liya; Yasuhito, Shirato

    2003-10-01

    The main ecological services of the sand-fixed forest are windbreak, soil erosion control, and atmospheric dust retention. In this paper, the ecological services of Populus simonii forest were assessed by simultaneous measurements of wind speeds, daily amount of soil surface wind erosion, and amount of atmospheric dust deposition at different observation sites located within and outside the forestland. The results showed that compared with the control site (mobile sand dune), the daily mean wind velocity at 2 m height was reduced by 18.3, 31.6, 66.1, 66.0, 62.3 and 45.2% for the observation sites over the distances of 6 and 3 H (H meant average tree height) from forest edge of the windward side, forest center, and observation sites over the distances of 0, 6 and 8 H from forest edge of the leeward side, respectively. The greatest reduction in daily mean wind velocity was occurred in both forest center and forest edge of the leeward side. There was a significant positive relationship between leaf area index of the forest and monthly declining index of mean wind speed. The monthly declining index of mean wind speed increased with increasing the forest leaf area index by a cubic function. The daily wind erosion rates of soil surface in observation sites at 6 and 3 H from forest edge of the windward side, forest center, and at 0, 6 and 8 H from forest edge of the leeward side were reduced by as much as 85.2%-99.9%, in comparison with the control site. The greatest reduction in daily wind erosion rate of soil surface occurred in forest edge of the leeward side, followed in decreasing order by forest center, 6 and 8 H from forest edge of the leeward side, 3 and 6 H from forest edge of the windward side. During the observation period, the daily mean dust deposition within the forestland was 13.2 kg.hm-2, compared with 9.9 kg.hm-2 outside the forestland, with a 33% increase. All these results suggested that the poplar forest played an important role in reducing damaging

  20. Characterization and Role of Glucose-6-phosphate Dehydrogenase of Populus suaveolens in Induction of Freezing Resistance

    Institute of Scientific and Technical Information of China (English)

    Lin Yuanzhen; Guo Huan; Liu Wenfeng; Lin Shanzhi; Zhang Qian; Hu Dongmei; Zhu Baoqing; Zhang Zhiyi

    2004-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) was purified from the leaves of 8-week-old Populus suaveolens cuttings. The enzyme activity in the absence and presence of reduced dithiothreitol (DTTred) was determined. The results show that the G6PDH activity is not inactivated by pre-incubation with DTTred, indicating that the purified enzyme probably presented in cytosol of P. suaveolens. The catalytic characteristics and kinetic parameters of cytosolic G6PDH purified from P. suaveolens cuttings were also studied. The results show that G6PDH is characterized by Km value of 360 (mol·L-1 for G6P and 16 (mol·L-1 for NADP, a pH range of 7.3-8.9, and the maximum activity around pH 8.2. The enzyme activity is inhibited by various metabolites such as NADPH, NADH, GTP, UTP, ATP, AMP, ADP, CoA, acetyl CoA, fructose-6-phosphate (F6P), erythrose-4-phosphate (E4P), ribose-5-phosphate (R5P) and 3-phosphoglycerate (3-PG) (all at 1 mmol·L-1 except for NADPH and NADH) to different extents. NADPH is the most effective inhibitor of enzyme activity, with an inhibition of 72.0%. The addition of metal ions such as MgCl2, CaCl2 and KCl (all 1.0 mmol·L-1) to the standard reaction mixture has no remarkable influence on the cytosolic G6PDH activity. However, CdCl2 (1.0 mmol·L-1) causes high inhibitory effect on the enzyme activity. To explore the role of G6PDH on the enhancement of freezing resistance induced by freezing acclimation, the changes in the cytosolic G6PDH activity and freezing resistance (expressed as LT50) of P. suaveolens cuttings during freezing acclimation at -20 °C were investigated. The results reveal that freezing acclimation decreases LT50 of cuttings, and increases the activity of cytosolic G6PDH compared with control ones, while 2 d of de-acclimation at 25 °C result in a decrease in cytosolic G6PDH activity, and caused an increase in LT50. Furthermore, the change in cytosolic G6PDH activity is found to be closely correlated to the degree of freezing

  1. Comparative Study on Antioxidative System in Normal and Vitrified Shoots of Populus suaveolens in Tissue Culture

    Institute of Scientific and Technical Information of China (English)

    Lin Shanzhi; Zhang Zhiyi; Lin Yuanzhen; Liu Wenfeng; Guo Huan; Zhang Wei; Zhang Chong

    2004-01-01

    To explore the physiological and biochemical mechanism of the occurrence of vitrified shoots of Populus suaveolens in tissue culture, the changes in water, chlorphyll, lignin, H2O2, phenylalanine ammonialyase (PAL), malonaldehyde (MDA), protective enzymatic systems, and some key enzymes involved in the ascorbate- glutathione cycle were comparatively studied in both normal and vitrified shoots of P. Suaveolens. The results show that the lower activities of peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and PAL, and the less contents of chlorphyll, lignin, ascorbate (ASA) and reduced glutathione (GSH) as well as the lower ratios of ASA / DHA and GSH / GSSG are observed in vitrified shoots than in normal ones during the whole culture period. While in comparison with normal shoots, the higher activity of superoxide dismutase (SOD) and the more concentrations of water, H2O2, MDA, dehydroascorbate (DHA) and oxidized glutathione (GSSG) are found in vitrified shoots. Statistical analysis indicates that the enhanced activity of SOD and the decreased activities of CAT and POD as well as some enzymes involved in the ascorbate-glutathione cycle might be closely correlated to the accumulation of H2O2. The less regeneration of ASA and GSH and the lower capacity of the ascorbate-glutathione cycle observed in vitrified shoots might be due to a significant decrease in APX, MDAR, DHAR and GR activities and a decline in redox status of ASA and GSH. The decreases in chlorphyll content might result in a decline in photosynthesis. The lower activities of POD and PAL could result in the decrease of lignin synthesis and cell wall ligination, which might be the key factor leading to the increase in water content. It is concluded that the deficiency of detoxification capacity caused by the lower capacity of the ascorbate-glutathione pathway and the decreased activity of protective enzymatic system might lead to the

  2. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Gupta Anjali

    2009-01-01

    Full Text Available Abstract Background Members of major intrinsic proteins (MIPs include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we have investigated Populus MIPs (PtMIPs and compared them with their counterparts in Arabidopsis, rice and maize. Results Fifty five full-length MIPs have been identified in Populus genome. Phylogenetic analysis reveals that Populus has a fifth uncharacterized subfamily (XIPs. Three-dimensional models of all 55 PtMIPs were constructed using homology modeling technique. Aromatic/arginine (ar/R selectivity filters, characteristics of loops responsible for solute selectivity (loop C and gating (loop D and group conservation of small and weakly polar interfacial residues have been analyzed. Majority of the non-XIP PtMIPs are similar to those in Arabidopsis, rice and maize. Additional XIPs were identified from database search and 35 XIP sequences from dicots, fungi, moss and protozoa were analyzed. Ar/R selectivity filters of dicots XIPs are more hydrophobic compared to fungi and moss XIPs and hence they are likely to transport hydrophobic solutes. Loop C is longer in one of the subgroups of dicot XIPs and most probably has a significant role in solute selectivity. Loop D in dicot XIPs has higher number of basic residues. Intron loss is observed on two occasions: once between two subfamilies of eudicots and monocot and in the second instance, when dicot and moss XIPs diverged from fungi. Expression analysis of Populus MIPs indicates that Populus XIPs don't show any tissue-specific transcript abundance. Conclusion Due to whole genome duplication, Populus has the

  3. ¿Son las herramientas recomendadas por la ASPEN y la ESPEN equiparables en la valoración del estado nutricional? Are the tools recommended by ASPEN and ESPEN comparable for assessing the nutritional status?

    Directory of Open Access Journals (Sweden)

    M.ª A. Valero

    2005-08-01

    Full Text Available Introducción: No existe un método de valoración nutricional universalmente aceptado. Los expertos de ASPEN (2002 sugieren utilizar la valoración subjetiva global (VSG, mientras que los de ESPEN (2002 recomiendan el sistema NRS-2002. Objetivos y ámbito: Este estudio transversal tiene como objetivos: 1 conocer la prevalencia de malnutrición al ingreso hospitalario en un hospital terciario y 2 conocer el grado de asociación entre dos herramientas utilizadas para valorar el estado de nutrición: la VSG y el sistema NRS-2002. Material y métodos: Se estudian 135 pacientes (42,2 % mujeres y 58,8 % varones, edad 62,1 ± 14,5 años en los tres primeros días del ingreso hospitalario, ingresados en camas de Medicina Interna y Cirugía. Se analizan diferentes variables del estado nutricional. Se compara las necesidades calóricas (Harris Benedict x factor de agresión y la ingesta calórica del día anterior al ingreso, mediante recordatorio de 24 horas. Se calcula la prevalencia de malnutrición al ingreso con dos herramientas de screening: VSG y el sistema NRS-2002. Resultados: El 42,2 % de los pacientes reconocen haber perdido peso y el 39,3 % ingieren una dieta inferior a sus necesidades al ingreso en el hospital. Según el método utilizado de valoración nutricional, la prevalencia de malnutrición es del 40,7 y del 45,1/100 pacientes ingresados con el VSG y el NRS-2002, respectivamente. Existe una asociación significativa entre los resultados obtenidos con ambas herramientas (p = 0,000. Los niveles de albúmina sérica y linfocitos totales son inferiores en los pacientes malnutridos. Conclusiones: La prevalencia de malnutrición al ingreso hospitalario es elevada. Existe una asociación estrecha entre los resultados obtenidos con la VSG y el sistema NRS-2002. Aunque en la práctica clínica cualquiera de los dos métodos puede ser utilizado para valorar el estado de nutrición, consideramos que el sistema NRS-2002, aunque más complejo, es

  4. The incorporation of an organic soil layer in the Noah-MP Land Surface Model and its evaluation over a Boreal Aspen Forest

    Science.gov (United States)

    Chen, L.; Li, Y.; Chen, F.; Barr, A.; Barlage, M.; Wan, B.

    2015-10-01

    In this study, the multi-parameterization version of the Noah land-surface model (Noah-MP) was used to investigate the impact of adding a forest-floor organic soil layer on the simulated surface energy and water cycle components at a boreal aspen forest. The test site selected is BERMS Old Aspen Flux (OAS) field station in central Saskatchewan, Canada. The selection of different parameterization schemes for each process within the current Noah-MP model significantly affected the simulation results. The best combination options without incorporating organic soil is referred as the control experiment (CTL). By including an organic-soil parameterization within the Noah-MP model for the first time, the verification results (OGN) against site show significantly improved performance of the model in surface energy fluxes and hydrology simulation due to the lower thermal conductivity and greater porosity of the organic soil. The effects of including an organic soil layer on soil temperature are not uniform throughout the soil depth and year, and those effects are more prominent in summer and in deep soils. For drought years, the OGN simulation substantially modified the partition between direct soil evaporation and vegetation transpiration. For wet years, the OGN simulated latent heat fluxes are similar to CTL except for spring season where OGN produced less evaporation. The impact of the organic soil on sub-surface runoff is substantive with much higher runoff throughout the season.

  5. IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Andrew J. [Michigan Technological University; Zak, Donald R. [University of Michigan; Kubiske, Mark E. [USDA Forest Service; Pregitzer, Kurt S. [University of Idaho

    2014-06-30

    Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: “What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems?” From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch

  6. Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Jorge, Veronique [INRA, Nancy, France; Vion, Patrice [INRA, Nancy, France; Marcais, Benoit [INRA, Nancy, France; Bastien, Catherine [INRA, Orleans, France; Tuskan, Gerald A [ORNL; Martin, Francis [INRA, Nancy, France; Le Tacon, F [UMR, France

    2011-01-01

    A Populus deltoides Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases and encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value 0.05; 5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.

  7. Effects of in vitro ozone treatment on proteolysis of purified rubisco from two hybrid poplar clones. [Populus maximowizii x trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Landry, L.G.; Pell, E.J. (Pennsylvania State Univ., University Park (USA))

    1989-04-01

    Plants exposed to ozone (O{sub 3}) exhibited symptoms of premature senescence, including early decline in quantity of rubisco. O{sub 3}-induced oxidation may cause changes in protein conformation of rubisco, resulting in enhanced proteolysis. To test this hypothesis, rubisco was purified from two hybrid clones of Populus maximowizii x trichocarpa, clones 388 and 245, and treated in vitro with O{sub 3} or air. Rubisco was then challenged with bromelain, papain, chymotrypsin, carboxypeptidase A, or endoproteinase Glu-C and percent degradation measured by SDS-PAGE and densitometric scanning of the gels. Degree of rubisco sensitivity to oxidation may be related to available sulfhydryl (SH) groups on the protein. The number of SH groups in native and denatured rubisco was measured for purified rubisco of both clones by DTNB titration method. The relationship between sensitivity to proteolysis and number and availability of SH groups is discussed.

  8. Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. “2KEN8” mature pollen

    Science.gov (United States)

    Zhang, Jin; Wu, Li-Shuan; Fan, Wei; Zhang, Xiao-Ling; Jia, Hui-Xia; Li, Yu; Yin, Ya-Fang; Hu, Jian-Jun; Lu, Meng-Zhu

    2015-01-01

    Proteomic analysis was used to generate a map of Populus deltoides CL. “2KEN8” mature pollen proteins. By applying 2-D electrophoresis, we resolved 403 protein spots from mature pollen. Using the matrix-assisted laser desorption/ionization time time-of-flight/time-of-flight tandem mass spectrometry method, we identified 178 distinct proteins from 218 protein spots expressed in mature pollen. Moreover, out of these, 28 proteins were identified as putative allergens. The expression patterns of these putative allergen genes indicate that several of these genes are highly expressed in pollen. In addition, the members of profilin allergen family were analyzed and their expression patterns were compared with their homologous genes in Arabidopsis and rice. Knowledge of these identified allergens has the potential to improve specific diagnosis and allergen immunotherapy treatment for patients with poplar pollen allergy. PMID:26284084

  9. High Level Expression of Glucose-6-phosphate Dehydrogenase Gene PsG6PDH from Populus suaveolens in E. coli

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the functions of the gene PsG6PDH and the mechanisms underlying freezing tolerance of Populus suaveolens, the recombinant expression vector pET-G (pET30a-G6PDH), which contained full encoding region of PsG6PDH gene, was established. The recombinant was identified by lawn-PCR and double enzyme digestion and then transformed into expression host XA90 and induced by isopropyl-a-D-thiogalactoside (IPTG) to express 100 kD polypeptide of G6PDH fusion protein. The results showed that the expressed amount of the fusion protein culminated after 1 mmol·L-1 IPTG treatment for 4 h and that pET-G product was predominately soluble and not extra-cellular secreting.

  10. Construction and Characterization of cDNA Library from Water-Stressed Plantlets Regenerated in vitro of Populus hopeiensis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to isolate and clone water-stress-responsive genes, total RNA was extracted from water-stressed plantlets regenerated in vitro of Populus hopeiensis using a QIAGEN RNeasy Plant Mini Kit. CDNA, synthesized by LD-PCR with the SMART cDNA Library Construction Kit, was in vitro packaged into a phage λTriplEx2 vector. The resulting primary library and amplified library have a titer of 1.68×106 and 1.69×109 pfu·mL-1 respectively. The combination ratio reached 98.8% and the average size of inserts was about 800 bp. In addition, the percentage of inserted fragments (> 400 bp) was approximately 90%. The results indicate that a cDNA library has been successfully constructed.

  11. Black poplar-tree (Populus nigra L.) bark as an alternative indicator of urban air pollution by chemical elements

    International Nuclear Information System (INIS)

    Capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric air pollution by chemical elements were tested against epiphytic lichens Xanthoria parietina (L.) and Physcia adscendens (Fr.). Concentrations of 40 macro and trace elements were determined using epicadmium and instrumental NAA. The data obtained were processed using non-parametric tests. A good correlation was found between concentrations of majority of elements in bark and lichens. On the accumulation capability bark turned out to be competitive with both lichens examined. The main inorganic components of black poplar-tree bark were revealed. A substrate influence on the concentrations of some elements in epiphytic lichens was established. An optimized procedure of bark pre-irradiation treatment was suggested. (author)

  12. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica.

    Science.gov (United States)

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  13. Cloning and characterization of defense-related genes from Populus szechuanica infected with rust fungus Melampsora larici-populina.

    Science.gov (United States)

    Chen, Z J; Cao, Z M; Yu, Z D; Yu, D

    2016-01-01

    Characterization of defense-related genes is critical for breeding disease-resistant poplar varieties and for better management and control of leaf rust disease. In the present study, full-length cDNAs of five Populus szechuanica defense-related (PsDR) genes, pathogen-related protein 1 (PsPR1), β-1,3-glucanase (PsGns), thaumatin-like protein 1 (PsTLP1), thaumatin-like protein 2 (PsTLP2), and phenylalanine ammonia-lyase (PsPAL), were cloned from the leaves of P. szechuanica infected with Melampsora larici-populina (MLP). PsPR1 (728 bp), PsGns (1189 bp), PsTLP1 (929 bp), PsTLP2 (885 bp), and PsPAL (2586 bp) were predicted to encode 161, 347, 245, 225, and 711 amino acid residue-containing proteins with isoelectric points of 8.53, 4.96, 4.51, 7.32, and 5.87, respectively. Moreover, the deduced PsDR proteins displayed more than 90% similarity to proteins from other Populus species. In response to the avirulent isolate, Sb052, and the virulent isolate, Th053, of MLP, the expression of PsDR genes was rapidly up-regulated in the leaves of P. szechuanica, peaked at 2 or 7 days post-inoculation (dpi), with levels in the incompatible interaction being higher than those in the compatible interaction. Meanwhile, the expression of PsDR genes (except for PsGns) was also differentially up-regulated at 3, 7, or 18 dpi in the petioles of the infected leaves, leaves next to the inoculated leaves, and in the top buds of the infected plants, respectively, compared to that at 0 dpi. These results suggest that these PsDR genes could play distinctive roles in the defense response of poplar against rust infection. PMID:26909999

  14. Physiological and biochemical responses and microscopic structure changes of Populus tomentosa Carr seedlings to 4-BDE exposure.

    Science.gov (United States)

    Cai, Man; Li, Yuling; Li, Yanling; Du, Kejiu

    2015-09-01

    Populus species are very effective in remediation of contaminants. Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants and are known to be persistent environmental pollutants. Numerous studies have shown that PBDEs are rising in human tissues and biota. 4-Monobrominated diphenyl ether (4-BDE), one of the less brominated PBDEs, was served as a model compound for biodegradation of lower brominated congeners. The present study was designed to clarify the effects of 4-BDE stress on morphological, physiological, and biochemical impacts of Populus tomentosa Carr in a tissue culture condition. Different concentrations of 4-BDE (3 and 30 mg L(-1)) were supplied alone or together with 0.5 mg L(-1) IBA in tissue culture media. With the concentration increased, 4-BDE caused negative effects on the microscopic structure of roots, stem, and leaves. The leaf color became shallow in low concentration of 4-BDE treatments and appeared albinism with 4-BDE concentration increased. The chlorophyll content and the leaf mass per area of albino leaves reduced significantly. 4-BDE also caused positive effects on the adventitious root differentiation and the biomass below 30 mg L(-1). With the 4-BDE treatment time increased (23, 47, and 58 days), the peroxidase (POD) activity displayed the decreasing trend. The proline content decreased first and then increased. Exposure to 4-BDE induced the malondialdehyde (MDA) to increase in leaves. Application of 4-BDE affected the endogenous hormone levels of cuttings in their adventitious roots inducing media. Below 0.3 mg L(-1), 4-BDE caused the faint expression of auxin-sensitive DR5::GUS reporter gene in Arabidopsis thaliana. Additionally, P. tomentosa Carr exhibited the better tolerance against 4-BDE in the range of less than 30 mg L(-1). PMID:25971809

  15. Aspen Code Development Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    none,; Cherry, Robert S. [INL; Richard, Boardman D. [INL

    2013-10-03

    Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

  16. Structure and diversity of ground mesofauna inUlmus and Populus consortia in the industrial areas of mining and smelting complex of krivyi rig basin

    Directory of Open Access Journals (Sweden)

    V. V. Kachinskaya

    2010-05-01

    Full Text Available The structure and biological diversity of ground mesofauna on a consortium level of organisation of ecosystems are considered. Indicators of structural organisation and biodiversity of ground mesofauna were analised in Ulmus and Populus consortia in the conditions of industrial territories of mining and smelting complex of Krivyi Rig Basin. It is established that taxonomical structure of ground mesofauna is characterised by insignificant number and quantity of taxonomical groups. Prevalence of hortobionts and herpetobionts in morpho-ecological structure of the community testifies to their attachment to consortium’s determinants and influence of steppe climate on its structure. Dominance of phytophages and polyphages in trophic structure is caused by a combination of consortium determinants specificity and «a zone source» of the fauna formations. The structural organisation of ground mesofauna in consortia of Ulmus and Populus in the conditions of industrial sites is characterised by simplified taxonomical structure with low biodiversity at all levels.

  17. Anti-adipogenic activities of Alnus incana and Populus balsamifera bark extracts, part II: bioassay-guided identification of actives salicortin and oregonin.

    Science.gov (United States)

    Martineau, Louis C; Muhammad, Asim; Saleem, Ammar; Hervé, Jessica; Harris, Cory S; Arnason, John T; Haddad, Pierre S

    2010-10-01

    Among modern day metabolic diseases, obesity has reached epidemic proportions worldwide and novel therapeutic support strategies are urgently needed. Adipocytes are interesting targets in this context. Using ethnobotanical and bioassay screening techniques, we have identified two Boreal Forest plants used by the James Bay Cree that potently inhibit adipogenesis, namely ALNUS INCANA ssp. RUGOSA (Speckled Alder) and POPULUS BALSAMIFERA (Balsam Poplar). The mode of action of this inhibitory activity was reported in a companion paper. The current study report the results of a classical bioassay-guided fractionation approach aimed at identifying the active principles responsible for the inhibition of adipogenesis, as measured using triglyceride accumulation in the 3T3-L1 adipocyte model cell line. The glycosides oregonin and salicortin were isolated and identified as the respective active principles for ALNUS INCANA and POPULUS BALSAMIFERA. These compounds thus offer promise as novel agents to mitigate the incidence or the progression of obesity. PMID:20301058

  18. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    YongmingFan; ZhiyiZhang; YiminXie; dakaiRen; yuanyuanLuo; yuyingWu; jingHe

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Cart. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years, 2-4 years for example, the fiber length at breast highg rows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304 could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4, generally about 0.3), and this ratio increases slightly with the tree grows.

  19. THE FIBER MORPHOLOGY VARIATION OF TRIPLOID CLONE OF POPULUS TOMENTOSA CARR.AND ITS SUPPOSED HARVESTING AGE FOR THE PAPER INDUSTRY

    Institute of Scientific and Technical Information of China (English)

    Yongming Fan; Zhiyi Zhang; Yimin Xie; dakai Ren; yuanyuan Luo; yuying Wu; jing He

    2004-01-01

    The fiber morphology variation of triploid clone of Populus tomentosa Carr. and the supposed harvesting age for the paper industry were investigated in this paper. The results shows that in the first few years,2-4 years for example, the fiber length at breast high grows faster than it does in the later years. But the standard deviation of distribution in fiber length at breast high in mature wood is larger than in the young tree. The technologically harvestable age of triploid clone of Populus tomentosa Carr., BL304could be 4-7 year old to meet the requirement for paper industry. The distribution of fiber length become concentrated within an annual ring as the tree grows. The test results also show that the cloned poplar has a small Runkel ratio value (less than 0.4,generally about 0.3), and this ratio increases slightly with the tree grows.

  20. IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. [Salix tetrasperma, Populus Robusta, Hibiscus rosa-sinensis, Eucalyptus citriodora

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, M.P.; Nanda, K.K.

    1981-01-01

    In rooting tests with stem cuttings, IAA oxidase activity was found to be very high in Salix tetrasperma and Populus 'Robusta' both of which rooted profusely, less in Hibiscus rosa-sinensis which rooted but weakly and insignificant in Eucalyptus citriodora, which did not root at all. Proteins extracted from the stem cuttings of E. citriodora inhibited IAA oxidase activity, and also root formation on hypocotyl cuttings of Phaseolus mungo.

  1. Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus.

    Science.gov (United States)

    Abraham, Paul; Giannone, Richard J; Adams, Rachel M; Kalluri, Udaya; Tuskan, Gerald A; Hettich, Robert L

    2013-01-01

    High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate

  2. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS.

    Science.gov (United States)

    Ozen, Sukran Akkus; Yaman, Mehmet

    2016-08-01

    In this study, HPLC-MS and ICP-MS methods were used for the determination of histidine and nickel in Morus L., Robinia pseudoacacia L., and Populus nigra L. leaves taken from industrial areas including Gaziantep and Bursa cities. In the determination of histidine by HPLC-MS, all of the system parameters such as flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized and found to be 0.2 mL min(-1), 70 V, 15 µL, and 20°C, respectively. Under the optimum conditions, histidine was extracted from plant sample by distilled water at 90°C for 30 min. Concentrations of histidine as mg kg(-1) were found to be between 2-9 for Morus L., 6-13 for Robinia pseudoacacia L., and 2-10 for Populus nigra L. Concentrations of nickel were in the ranges of 5-10 mg kg(-1) for Morus L., 3-10 mg kg(-1) for Robinia pseudoacacia L., and 0.6-4 mg kg(-1) for Populus nigra L. A significant linear correlation (r = 0.78) between histidine and Ni was observed for Populus nigra L., whereas insignificant linear correlation for Robinia pseudoacacia L. (r = 0.22) were seen. Limits of detection (LOD) and quantitation (LOQ) were found to be 0.025 mg Ni L(-1) and 0.075 mg Ni L(-1), respectively. PMID:26709863

  3. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes.

    OpenAIRE

    Tamby Jean-Philippe; Ningre Nathalie; Renou Jean-Pierre; Lelandais Gaëlle; Martin-Magniette Marie-Laure; Balzergue Sandrine; Tisserant Emilie; Bogeat-Triboulot Marie-Béatrice; Cohen David; Le Thiec Didier; Hummel Irène

    2010-01-01

    Abstract Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species design...

  4. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra)

    OpenAIRE

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G.

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D...

  5. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective

    OpenAIRE

    Gupta Anjali; Sankararamakrishnan Ramasubbu

    2009-01-01

    Abstract Background Members of major intrinsic proteins (MIPs) include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we ...

  6. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: Characterization of XIP subfamily of aquaporins from evolutionary perspective

    OpenAIRE

    Gupta, Anjali Bansal; Sankararamakrishnan, Ramasubbu

    2009-01-01

    Background Members of major intrinsic proteins (MIPs) include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we have inve...

  7. Systems analysis of a closed loop ECLSS using the ASPEN simulation tool. Thermodynamic efficiency analysis of ECLSS components. M.S. Thesis

    Science.gov (United States)

    Chatterjee, Sharmista

    1993-01-01

    Our first goal in this project was to perform a systems analysis of a closed loop Environmental Control Life Support System (ECLSS). This pertains to the development of a model of an existing real system from which to assess the state or performance of the existing system. Systems analysis is applied to conceptual models obtained from a system design effort. For our modelling purposes we used a simulator tool called ASPEN (Advanced System for Process Engineering). Our second goal was to evaluate the thermodynamic efficiency of the different components comprising an ECLSS. Use is made of the second law of thermodynamics to determine the amount of irreversibility of energy loss of each component. This will aid design scientists in selecting the components generating the least entropy, as our penultimate goal is to keep the entropy generation of the whole system at a minimum.

  8. Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Paul E [ORNL; Adams, Rachel M [ORNL; Tuskan, Gerald A [ORNL; Hettich, Robert {Bob} L [ORNL

    2013-01-01

    The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6,653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (AlaSer) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well.

  9. Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region

    Science.gov (United States)

    Kurth, Valerie J.; Bradford, John B.; Slesak, Robert A.; D'Amato, Anthony W.

    2014-01-01

    Contemporary forest management practices are increasingly designed to optimize novel objectives, such as maximizing biomass feedstocks and/or maintaining ecological legacies, but many uncertainties exist regarding how these practices influence forest carbon (C) cycling. We examined the responses of soil respiration (Rs) to biomass harvesting and green-tree retention in an effort to empirically assess their impacts on C cycling. We measured Rs and soil microclimatic variables over four growing seasons following implementation of these management practices using a fully replicated, operational-scale experiment in aspen-dominated forests in northern Minnesota. Treatments included three levels of biomass removal within harvested areas: whole-tree harvest (no slash deliberately retained), 20% slash retained, and stem-only harvest (all slash retained), and two levels of green-tree retention: 0.1 ha aggregate or none. The relative amount of biomass removed had a negligible effect on Rs in harvested areas, but treatment effects were probably obscured by heterogeneous slash configurations and rapid post-harvest regeneration of aspen in all of the treatments. Discrete measurements of Rs and soil temperature within green-tree aggregates were not discernible from surrounding harvested areas or unharvested control stands until the fourth year following harvest, when Rs was higher in unharvested controls than in aggregates and harvested stands. Growing season estimates of Rs showed that unharvested control stands had higher Rs than both harvested stands and aggregates in the first and third years following harvest. Our results suggest that retention of larger forest aggregates may be necessary to maintain ecosystem-level responses similar to those in unharvested stands. Moreover, they highlight the innate complexity of operational-scale research and suggest that the initial impacts of biomass harvest on Rs may be indiscernible from traditional harvest in systems where incidental

  10. ASPEN PLUS在氯碱工程设计中的应用——氯氢处理流程模拟开发%Application of ASPEN PLUS in chlorine- alkali engineering design —— Development of imitiative process of chlorine and hydrogen treatment

    Institute of Scientific and Technical Information of China (English)

    杨萍; 邓敏

    2001-01-01

    The binary interaction parameters are derived from gas- liquid equilibrium regression by using the ASPEN PLUS 10. O. Main point in this paper is the introduction of the calculation of mass balance and heat balance in chlorine and hydrogen treatment process in ion - exchange membrane caustic soda production process with the above imitiative flow path software. The calcalation results are compared with actual data from plants,and agreeable results are obtained.%ASPEN PLUS 10.0版中有较为全面的气液平衡回归出来的二元交互作用参数,文中主要介绍了用该流程模拟软件对离子膜烧碱氯氢处理工序进行物料平衡和热量平衡的计算,并与工厂实际数据进行比较,获得满意的结果。

  11. Dicty_cDB: SHA231 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available aelamwvepnigirrltftnryhkrc*F IKTAGRWPWKSVSAKECVTTHLPNGLALKMDDASSGWSMPN--- ---anqml*svnvvgnirllvgdhfql*ti*lia...vtlqfpsgycggwlnsnlyprsaqlf dcrrlsnelgavsfrvafsyeglrlfh*fliisdnitiwvsqmv*kqlesleiteeskdg tinstkrlisvlllkpihsvvppmplvss*adlvskpnnqi...lnctcamknrss*waifgkqnwrcglnqilg*dv*hslidttkgvss lrqqdgghgsryplrsv*qltcqmd*p*kwmtlavdgrcp--- ---qtkcfrv*ml*vt...RNA gene, partial sequence. 190 3e-97 3 AJ645166 |AJ645166.1 Populus tremula x P. tremuloides/Amanita muscar...ia mixed EST library EST, clone ptamabc210057a10. 188 7e-94 3 AJ643225 |AJ643225.1 Populus tremula x P. tremuloides/Aman

  12. Short-rotation plantations of poplars and willows on formerly arable land: Sites, nutritional status, biomass production, and ecological effects

    Energy Technology Data Exchange (ETDEWEB)

    Makeschin, F.; Rehfuess, K.E.; Ruesch, I.; Schoerry, R.

    1989-05-01

    In spring 1983, a short-rotation experiment with poplars and willows was established near Regensburg/Eastern Bavaria as part of an integrated project. The aim of long-term site and nutritional investigations is to test site conditions, nutritional status, and shoot biomass production as well as the ecological consequences of plantation forestry with fast growing deciduous species. In the experiment, the following aspen, balsam poplar, and willow clones are tested: Populus tremula x P. tremuloides cv. Astria, P. trichocarpa cv. Muhle Larsen, P. interamericana cv. Rap, Salix viminalis Klon 722/51. The experimental area consists of an elevated part with well aereated to only moderately moist soils and a wet, groundwater-influenced part. In the spring of 1984 a fertilization trial was started with 9 treatments. After the first rotation of 5 years, poplars and willows were cut in January 1988. The average final top heights of the poplars reached 7-8 m; Salix viminalis was only 5 m tall. The accumulation of shoot biomass during the first two years of growth was only slow, but increased significantly 1985-1987. After 5 years, the poplars showed an accumulated average shoot biomass (without leaves) of 27-30 t DW/ha, while Salix viminalis has produced only 20 t. (orig.).

  13. Wood Species for the Biedermeier Furniture - A Microscopic Characterisation for Scientific Conservation

    Directory of Open Access Journals (Sweden)

    L. Gurau

    2010-03-01

    Full Text Available Wood species identification is an important, compulsory step in the scientific conservation of the historic furniture as a significant part of the cultural heritage. It is known that a visual examination of an investigated sample does not always bring enough information about the original species and that a microscopic approach is more reliable. Species identification can be performed if the microscopic images are interpreted for common, but also for specific features and characteristics, by means of identification keys and in comparison with reference images. This paper provides the microscopic characterization with identification keys for six hardwood species, some of the most common in Biedermeier furniture (elm - Ulmus glabra Huds., cherry - Prunus avium L., walnut - Juglans regia L.,pear - Pyrus communis L., aspen - Populus tremula L., African mahogany - Khaya ivorensis A. Chev.. The characterization can be used for wood identification purposes by laboratories working in the field of cultural heritage wood conservation. This work is part of a recent research project that aims to develop and implement a scientific investigation for furniture conservation.

  14. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.

    Science.gov (United States)

    Hellgren, Jenny M; Olofsson, Kjell; Sundberg, Björn

    2004-05-01

    Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway. PMID:15122024

  15. Adaptation of Forest Management Regimes in Southern Sweden to Increased Risks Associated with Climate Change

    Directory of Open Access Journals (Sweden)

    Narayanan Subramanian

    2015-12-01

    Full Text Available Even though the growth rates of most tree species in Sweden is expected to increase in the near future as a result of climate change, increased risks of damage by storms and various pests and pathogens, notably root rot and bark beetles, may also occur. Thus, forest management practices such as changes to thinning regimes, reductions in rotation lengths, and switching to other species (native or exotic may represent adaptive management strategies to increase the resistance and resilience of Swedish forests to climate change. Clearly, thorough analyses examining the effects of anticipated climatic changes on damage levels, and the potentially relieving effects of possible management adaptations are needed before implementing such changes. In this study, damage caused by storms, root rot and bark beetles (single and in various combinations under selected climate and management scenarios were simulated in Norway spruce (Pice abies L. Karst stands. The results indicate that reductions in thinning intensity and rotation lengths could improve both volume production and profitability in southern Sweden. In addition, cultivation of rapidly growing species, such as hybrid larch (Larix × marschlinsii Coaz. and hybrid aspen (Populus tremula L. × P. tremuloides Michx., could be as profitable as Norway spruce cultivation, or even more profitable. However, slow-growing species, such as Silver birch (Betula pendula Roth, Downy birch (Betula pubescens Ehrh. and European beech (Fagus sylvatica L. indicated low economic output in terms of Land Expectation Value.

  16. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    Science.gov (United States)

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location. PMID:18351436

  17. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar.

    Science.gov (United States)

    Zhang, Jin; Jia, Huixia; Li, Jianbo; Li, Yu; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Heat shock transcription factor (Hsf) family is one of the most important regulators in the plant kingdom. Hsf has been demonstrated to be involved in various processes associated with plant growth, development as well as in response to hormone and abiotic stresses. In this study, we carried out a comprehensive analysis of Hsf family in desert poplar, Populus euphratica. Total of 32 genes encoding Hsf were identified and they were classified into three main classes (A, B, and C). Gene structure and conserved motif analyses indicated that the members in each class were relatively conserved. Total of 10 paralogous pairs were identified in PeuHsf family, in which nine pairs were generated by whole genome duplication events. Ka/Ks analysis showed that PeuHsfs underwent purifying selection pressure. In addition, various cis-acting elements involved in hormone and stress responses located in the promoter regions of PeuHsfs. Gene expression analysis indicated that several PeuHsfs were tissue-specific expression. Compared to Arabidopsis, more PeuHsf genes were significantly induced by heat, drought, and salt stresses (21, 19, and 22 PeuHsfs, respectively). Our findings are helpful in understanding the distinguished adaptability of P. euphratica to extreme environment and providing a basis for functional analysis of PeuHsfs in the future. PMID:27425424

  18. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation

    Science.gov (United States)

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development. PMID:27605130

  19. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  20. Molecular detection and drought resistance analysis of SacB-transgenic poplars (Populus alba ×P.glandulosa)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The propagation of drought-resistant transgenic poplars is one of the more effective ways to improve the ecological state of arid regions.The expression of SacB gene in transgenic lines of Populus alba × P.glandulosa was analyzed by a semi-quantitative RT-PCR.Drought resistance of these transgenic lines was evaluated by water stress trials in a greenhouse.Results showed that the mRNA transcription of SacB was found in all transgenic lines and fructan has accumulated in the leaves of these plants.The growth,biomass and leaf water content of some transgenic lines were significantly higher than those of the control plants under drought stress.Correlation analysis indicated that the said factors were significantly and positively related to the concentration of fructan in the leaves of the transgenic lines.Results revealed that the expression of SacB gene in transgenic poplars enhanced its resistance to water stress.

  1. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  2. [Spatial distribution paittern of Populus euphratica and P. pruinosa1 clonal ramets in Ta.rim River Basin, China].

    Science.gov (United States)

    Zhao, Zheng-shuai; Zheng, Ya-qiong; Liang, Ji-ye; Han, Zhan-jiang; Li, Zhi-jun

    2016-02-01

    Spatial distribution pattern of Populus euphratica and P. pruinosa clonal ramets at three sites was studied, including natural mixed forest of P. euphratica and P. pruinosa in Awati County located in the downstream of Yarkant River, natural P. pruinosa forest in Group 16 of Nongyishi in the Tarim River upstream area, and natural P. euphratica forest in Luntai County located in the middle reach of the Tarim River. The clonal ramets of the three sites showed a cluster distribution pattern at eight sampling scales, i.e., 5 mx5 m, 5 mx10 m, 5 mx15 m, 10 mx10 m, 10 mx15 m, 15 mx15 m, 15 mx20 m, and 20 mX20 m. This pattern revealed that the cluster distribution was a basic property in the spatial distribution pattern of P. euphratica and P. pruinosa populations. At 5 mx5 m scale, negative binomial parameter was minimum, while Cassie index, patchiness inex and aggregation strength were maximum for the two ramet populations at the three sites. PMID:27396111

  3. Analysis on water potential of Populus euphratica oliv and its meaning in the lower reaches of Tarim River, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    FU Aihong; CHEN Yaning; LI Weihong

    2006-01-01

    s Combined with materials measured on leaves water potential of Populus euphratica oliv in the process of ecological water delivery in the lower reaches of Tarim River, the influence of ground-water depths and soil salinity on leaves water potential of P.euphratica was analyzed. We found that there was evident negative correlation between the leaves water potential of P. euphratica and ground-water depths. The deeper the ground-water depths were,the lower the leaves water potential of P. euphratica was, the more serious drought stress P. euphratica suffered from. Besides, there was evident negative correlation between the soil salinity and the leaves water potential of P. euphratica. The bigger the soil salinity was, the lower the leaves water potential of P.euphratica was, the more serious drought stress was indicated from which P. euphratica suffered. For sections rather distant for Daxihaizi Reservoir as well as for those places of wells rather distant from the river course, ground-water depths and the soil salinity were high; the leaves water potential of P. euphratica was low. The leaves water potential of P. euphratica can reflect the degree at which P. euphratica suffers from drought and salt stress, and has an important reference meaning in analyzing proper ground-water depths for the survival and growth of P. euphratic in the lower reaches of Tarim River.

  4. Foliar Carbon Isotope Composition (δ13C) and Water Use Efficiency of Different Populus deltoids Clones Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengjun; Gao Rongfu; Shen Yingbai; Su Xiaohua; Zhang Bingyu

    2006-01-01

    Foliar carbon isotope composition (δ13C),total dry biomass,and long-term water use efficiency (WUEL)of 12 Populus deltoids clones were studied under water stress in a greenhouse.Total dry biomass of clones decreased greatly,while δ13C increased.Single-element variance analysis in the same water treatment indicated that WUEL difference among clones was significant.Clones J2,J6,J7,J8,and J9 were excellent with high WUEL.Extremely significant δ13C differences among water treatments and clones were revealed by two-element variance analysis.Water proved to be the primary factor affecting δ13C under water stress.It showed that there was a good positive correlation between δ13C and WUEL in the same water treatment,and that a high WUEL always coincided with a high δ13C.δ13C might be a reliable indirect index to estimate WUEL among P.deltoids clones.

  5. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar

    Science.gov (United States)

    Zhang, Jin; Jia, Huixia; Li, Jianbo; Li, Yu; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Heat shock transcription factor (Hsf) family is one of the most important regulators in the plant kingdom. Hsf has been demonstrated to be involved in various processes associated with plant growth, development as well as in response to hormone and abiotic stresses. In this study, we carried out a comprehensive analysis of Hsf family in desert poplar, Populus euphratica. Total of 32 genes encoding Hsf were identified and they were classified into three main classes (A, B, and C). Gene structure and conserved motif analyses indicated that the members in each class were relatively conserved. Total of 10 paralogous pairs were identified in PeuHsf family, in which nine pairs were generated by whole genome duplication events. Ka/Ks analysis showed that PeuHsfs underwent purifying selection pressure. In addition, various cis-acting elements involved in hormone and stress responses located in the promoter regions of PeuHsfs. Gene expression analysis indicated that several PeuHsfs were tissue-specific expression. Compared to Arabidopsis, more PeuHsf genes were significantly induced by heat, drought, and salt stresses (21, 19, and 22 PeuHsfs, respectively). Our findings are helpful in understanding the distinguished adaptability of P. euphratica to extreme environment and providing a basis for functional analysis of PeuHsfs in the future. PMID:27425424

  6. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  7. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Orendovici-Best, T. [School of Forest Resources, Pennsylvania State University, University Park, PA 16802 (United States); Skelly, J.M. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Davis, D.D. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States); Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddd2@psu.edu; Ferdinand, J.A.; Savage, J.E. [Penn State Institutes of the Environment, Pennsylvania State University, University Park, PA 16802 (United States); Stevenson, R.E. [Department of Plant Pathology, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-01-15

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury.

  8. A comparative study of four approaches to assess phenology of Populus in a short-rotation coppice culture

    Directory of Open Access Journals (Sweden)

    Vanbeveren SPP

    2016-05-01

    Full Text Available We compared four approaches to assess phenology in a short-rotation coppice culture with 12 poplar (Populus genotypes. The four approaches quantified phenology at different spatial scales and with different temporal resolutions: (i visual observations of bud phenology; (ii measurements of leaf area index; (iii webcam images; and (iv satellite images. For validation purposes we applied the four approaches during two years: the year preceding a coppice event and the year following the coppice event. The delayed spring greenup and the faster canopy development in the year after coppicing (as compared to the year before coppicing were similarly quantified by the four approaches. The four approaches detected very similar seasonal changes in phenology, although they had different spatial scales and a different temporal resolution. The onset of autumn senescence after coppicing remained the same as in the year before coppicing according to the bud set observations, but it started earlier according to the webcam images, and later according to the MODIS images. In comparison to the year before coppicing, the growing season - in terms of leaf area duration - was shorter in the year after coppicing, while the leaf area index was higher.

  9. Genome-wide analysis of basic leucine zipper transcription factor families in Arabidopsis thaliana, Oryza saliva and Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    JI Qian; ZHANG Liang-sheng; WANG Yi-fei; WANG Jian

    2009-01-01

    The basic leucine zipper (bZIP) transcription factors form a large gene family that is important in pathogen defense, light and stress signaling, etc. The Completed whole genome sequences of model plants Arabidopsis (Arabidopsis thaliana), rice (Oryza saliva) and poplar (Populus trichocarpa) constitute a valuable resource for genome-wide analysis and genomic comparative analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. In this study, bioinformatics analysis identified 74, 89 and 88 bZIP genes respectively in Arabidopsis, rice and poplar. Moreover, a comprehensive overview of this gene family is presented, including the gene structure, phylogeny, chromosome distribution, conserved motifs. As a result, the plant bZIPs were organized into 10 subfamilies on basis of phylogenetic relationship. Gene duplication events during the family evolution history were also investigated. And it was further concluded that chromosomal/segmental duplication might have played a key role in gene expansion of bZIP gene family.

  10. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation.

    Science.gov (United States)

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-01-01

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development. PMID:27605130

  11. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    Science.gov (United States)

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-01

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa. PMID:26325666

  12. Parameterization of a coupled CO2 and H2O gas exchange model at the leaf scale of Populus euphratica

    Directory of Open Access Journals (Sweden)

    Y. H. Su

    2010-03-01

    Full Text Available The following two models were combined to simultaneously predict CO2 and H2O gas exchange at the leaf scale of Populus euphratica: a Farquhar et al. type biochemical sub-model of photosynthesis (Farquhar et al., 1980 and a Ball et al. type stomatal conductance sub-model (Ball et al., 1987. The photosynthesis parameters [including maximum carboxylation rate allowed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco carboxylation rate (Vcmax, potential light-saturated electron transport rate (Jmax, triose phosphate utilization (TPU and day respiration (Rd] were determined by using the genetic algorithm (GA method based on A/Ci data. Values of Vcmax and Jmax standardized at 25 °C were 75.09±1.36 (mean ± standard error, 117.27±2.47, respectively. The stomatal conductance sub-model was calibrated independently. Prediction of net photosynthesis by the coupled model agreed well with the validation data, but the model tended to underestimate transpiration rates. Overall, the combined model generally captured the diurnal patterns of CO2 and H2O exchange resulting from variation in temperature and irradiation.

  13. Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development.

    Science.gov (United States)

    Lu, Min; Zhang, Pingdong; Kang, Xiangyang

    2013-03-01

    In order to produce triploid plants, 2n female gametes were induced by treating female buds and developing embryo sacs of Populus adenopoda Maxim with high temperature exposure. During megasporogenesis, tests were conducted on the relationship between female gametophyte development and morphological changes of female catkins. In the resulting progeny, 12 triploids were produced, and the highest rate of triploid production was 40%. Cytological observation revealed that the pachytene to diakinesis phase of meiotic stages may be a suitable period for inducing megaspore chromosome doubling through high temperature exposure. On the other hand, catkins of 6-72 h after pollination were treated for inducing embryo sac chromosome doubling. In the offspring seedlings, 51 triploids were detected and the highest efficiency of triploid production was 83.33%. Correlation analysis between the proportion of each embryo sac's developmental stage and the percentage of triploid production indicated that the second mitotic division may be the most effective stage for 2n female gamete induction. Our findings showed that high temperature exposure is an ideal method for 2n female gamete induction. Heterozygous offspring are valuable for breeding programs of P. adenopoda. PMID:23641186

  14. Comparative field performance of some agricultural crops under a ca-nopy of Populus deltoides and Ulmus wallichiana

    Institute of Scientific and Technical Information of China (English)

    Tariq Hussian Masoodi; Nasir Ahmad Masoodi; Sajad Ahmad Gangoo; Shah Murtaza Mushtaq; Hillal Ahmad

    2013-01-01

    The performance of maize, beans and sunflower was evalu-ated under a canopy of Populus deltoides and Ulmus wallichiana at Fac-ulty of Agriculture, Wadura. The germination, growth and yield of the three test crops were suppressed under both tree species. The reduction, however, decreased when the cultivation of test crops was continued for three years. The inhibition potential generally is in the order of P. del-toides U. wallichiana for beans. Available soil N, P and K increased under the canopy of the selected tree species. The soils under U. wallichiana were more fertile than those under P. deltoides. Chromatographic investigation of extracts showed that the soils under P. deltoides and U. wallichiana differed in their composition of phenolic acids and phenolic glycocides. Except for caffic acid, all other allelochemicals disappeared and were no longer recovered in soil samples obtained after the second or third year of cultivation. Tree-crop compatibility can be explored in greater detail for improved management of traditional agro-ecosystems in Kashmir to increase the overall productivity of the land.

  15. Prokaryotic expression analysis of an NBS-type PtDRGO1 gene isolated from Populus tomentosa Carr.

    Institute of Scientific and Technical Information of China (English)

    Yan LI; Qian ZHANG; Xing RAO; Haixia LI; Tingting LIU; Xinmin AN; Zhiyi ZHANG

    2009-01-01

    In order to investigate the protein features of an NBS gene (PtDRGOl, EF157840) isolated from Populus tomentosa Carr., the full-length open reading frame was fused into a prokaryotic expression vector pGEX-KG. PCR analysis and double endonuclease digestion showed that the recombinant vector was successfully constructed and transferred into an expression host E. coli strain XA90. It was indicated by SDS-PAGE analysis that IPTG treatment successfully induced the expression of a fusion protein of about 79 kD, which was consistent with the predicted value. In addition, the prokaryotic expression system was also optimized. The result suggests that lmmol/L IPTG treatment for 4h at 37 C was most effective, and the product was predominately soluble and not extra-cellular secreting. Moreover, the fusion protein was purified with an affinity chromatography column using Glutathione Sepharose 4B. This work will lay a foundation for further studies on biological functions of the PtDRGOl gene.

  16. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency. PMID:26842668

  17. Litter Quality of Populus Species as Affected by Free-Air CO2 Enrichment and N-Fertilization

    International Nuclear Information System (INIS)

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter samples. Litter of P. euramerica was clearly different from that of P. nigra and P. alba. The latter two had higher contents of proteins, polysaccharides, and cutin/cutan, while the former had higher contents of phenols and benzofurans/pyrans. The difference between replications was at least as large as the effect of treatments, so that no systematic chemical changes were attributable to CO2 effect or N-fertilization effect. The chemistry of SOM under the various species and treatments did not show significant changes either. The low number of available replicates that is two was clearly insufficient to overcome the effect of spatial variation on litter chemistry and detect small differences in molecular litter chemistry.

  18. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S.

    Directory of Open Access Journals (Sweden)

    Eric D. Vance

    2014-05-01

    Full Text Available Short rotation woody crops (SRWC, fast growing tree species that are harvested on short, repeated intervals, can augment traditional fiber sources. These crops have economic and environmental benefits stemming from their capability of supplying fiber on a reduced land base in close proximity to users and when sensitive sites cannot be accessed. Eucalyptus and Populus appear to be genera with the greatest potential to provide supplemental fiber in the U.S. Optimal productivity can be achieved through practices that overcome site limitations and by choosing the most appropriate sites, species, and clones. Some Eucalyptus species are potentially invasive, yet field studies across multiple continents suggest they are slower to disperse than predicted by risk assessments. Some studies have found lower plant and animal diversity in SRWC systems compared to mature, native forests, but greater than some alterative land uses and strongly influenced by stand management, land use history, and landscape context. Eucalyptus established in place of grasslands, arable lands, and, in some cases, native forests can reduce streamflow and lower water tables due to higher interception and transpiration rates but results vary widely, are scale dependent, and are most evident in drier regions.

  19. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis.

    Directory of Open Access Journals (Sweden)

    Yunqiang Yang

    Full Text Available Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3, Mitogen-activated protein kinase 6 (MPK6 and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.

  20. 工业级催化重整装置的全流程模拟与优化%Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform

    Institute of Scientific and Technical Information of China (English)

    侯卫锋; 苏宏业; 胡永有; 褚健

    2006-01-01

    A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is optimized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.