WorldWideScience

Sample records for aspartic endopeptidases

  1. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  2. Heterologous expression and characterization of recombinant Lactococcus lactis neutral endopeptidase (Neprilysin)

    NARCIS (Netherlands)

    Lian, W; Wu, D; Konings, W.N; Mierau, I; Hersh, L.B

    1996-01-01

    A neutral endopeptidase (NEP) from Lactococcus lactis has recently been cloned and shown to contain high sequence homology with the human neutral endopeptidase, endopeptidase 24.11 (I. Mierau et al., J. Bacteriol. 175, 2087-2096, 1993). The gene for the neutral endopeptidase from L. lactis was

  3. Hetero- and auto-activation of recombinant glutamyl endopeptidase from Bacillus intermedius.

    Science.gov (United States)

    Gasanov, E V; Demidyuk, I V; Shubin, A V; Kozlovskiy, V I; Leonova, O G; Kostrov, S V

    2008-11-01

    Glutamyl endopeptidase from Bacillus intermedius (BIGEP) is a secretory serine proteinase specifically hydrolyzing peptide bonds involving alpha-carboxyl groups of glutamic and aspartic acids. In this work, different BIGEP forms (full-length precursor, precursor without signal peptide and mature part) were expressed in Escherichia coli and the process of enzyme maturation was studied in vitro. BIGEP precursor renaturation leads to autocatalytic hydrolysis of the propeptide at Glu(-16). At the same time, the enzyme activation requires the complete removal of the prosequence by other proteinases. The mature part of BIGEP cannot be activated, which indicates that the propeptide is required for the active protein formation. The data obtained allowed us to apply directed mutagenesis of the processing site to obtain a BIGEP form that matured autocatalytically. This approach makes it possible to produce the enzyme without extrinsic proteinases, which is a prerequisite for using it in limited hydrolysis of proteins and peptides.

  4. Induced-fit Mechanism for Prolyl Endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Chen, Changqing; Davies, David R.; Chiu, Thang K. (NIH); (LSU); (Chinese Aca. Sci.)

    2010-11-15

    Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate to preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.

  5. Aspartate aminotransferase (AST) blood test

    Science.gov (United States)

    ... gov/ency/article/003472.htm Aspartate aminotransferase (AST) blood test To use the sharing features on this page, please enable JavaScript. The aspartate aminotransferase (AST) blood test measures the level of the enzyme AST in ...

  6. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  7. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation

    National Research Council Canada - National Science Library

    Maschalidi, Sophia; Hässler, Signe; Blanc, Fany; Sepulveda, Fernando E; Tohme, Mira; Chignard, Michel; van Endert, Peter; Si-Tahar, Mustapha; Descamps, Delphyne; Manoury, Bénédicte

    2012-01-01

    .... Here we report that asparagine endopeptidase (AEP) deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8...

  8. [Anti-amnesic effect of prolyl endopeptidase inhibitors in mice].

    Science.gov (United States)

    Nanri, M; Kaneto, H

    1987-06-01

    Based on the results of a previous report that prolyl endopeptidase (PPCE) inhibitors facilitated the acquisition of active avoidance response and retarded the extinction of the response, further studies were made on the effect of PPCE inhibitors on learning and the memory process. Using mice, tests were performed both in the light-dark discrimination Y-maze task and the lever-press task of the water reinforcement schedule, and mice were also tested in the acquisition and retention of one-trial "step-through" passive avoidance task. The effect of PPCE inhibitors were investigated both in control and electroconvulsive shock- or scopolamine-induced amnesic animals. Z-Pro-p, the most potent inhibitor among 5 compounds tested in this study, and arginine vasopressin (AVP) facilitated the learning process and retarded the extinction of the acquired response in all tests. Suc-Pro-p was also effective in the Y-maze and passive avoidance test. Thus, the effect of the test compounds were parallel with their in vitro activities as PPCE inhibitor. These results suggest that the anti-amnesic effect of PPCE inhibitors is partially attributable to their effect on the breakdown of the biologically active peptides which are involved in the memory process, such as AVP, in the brain.

  9. Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2003-05-01

    Full Text Available Abstract Background Hydrogenases catalyze the simplest of all chemical reactions: the reduction of protons to molecular hydrogen or vice versa. Cyanobacteria can express an uptake, a bidirectional or both NiFe-hydrogenases. Maturation of those depends on accessory proteins encoded by hyp-genes. The last maturation step involves the cleavage of a ca. 30 amino acid long peptide from the large subunit by a C-terminal endopeptidase. Until know, nothing is known about the maturation of cyanobacterial NiFe-hydrogenases. The availability of three complete cyanobacterial genome sequences from strains with either only the uptake (Nostoc punctiforme ATCC 29133/PCC 73102, only the bidirectional (Synechocystis PCC 6803 or both NiFe-hydrogenases (Anabaena PCC 7120 prompted us to mine these genomes for hydrogenase maturation related genes. In this communication we focus on the presence and the expression of the NiFe-hydrogenases and the corresponding C-terminal endopeptidases, in the three strains mentioned above. Results We identified genes encoding putative cyanobacterial hydrogenase specific C-terminal endopeptidases in all analyzed cyanobacterial genomes. The genes are not part of any known hydrogenase related gene cluster. The derived amino acid sequences show only low similarity (28–41% to the well-analyzed hydrogenase specific C-terminal endopeptidase HybD from Escherichia coli, the crystal structure of which is known. However, computational secondary and tertiary structure modeling revealed the presence of conserved structural patterns around the highly conserved active site. Gene expression analysis shows that the endopeptidase encoding genes are expressed under both nitrogen-fixing and non-nitrogen-fixing conditions. Conclusion Anabaena PCC 7120 possesses two NiFe-hydrogenases and two hydrogenase specific C-terminal endopeptidases but only one set of hyp-genes. Thus, in contrast to the Hyp-proteins, the C-terminal endopeptidases are the only known

  10. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial......Pregnancy in women with diabetes is associated with an increased risk of obstetric complications and perinatal mortality. Maintenance of near-normal glycemia during pregnancy can bring the prevalence of fetal, neonatal and maternal complications closer to that of the nondiabetic population. Changes...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  11. Activation of asparaginyl endopeptidase leads to Tau hyperphosphorylation in Alzheimer disease.

    Science.gov (United States)

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid

    2013-06-14

    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.

  12. 21 CFR 582.5017 - Aspartic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of use...

  13. Concurrent neutral endopeptidase and ACE inhibition in experimental heart failure: renal and hormonal effects

    DEFF Research Database (Denmark)

    Helin, K

    1993-01-01

    Neutral endopeptidase (NEP) inhibitors have been shown to strengthen the effects of endogenous atrial natriuretic peptide (ANP). It has been well documented that angiotensin I-converting enzyme (ACE) inhibitors act beneficially in chronic congestive heart failure (CHF). In the present study, renal...

  14. PURIFICATION AND CHARACTERIZATION OF AN ENDOPEPTIDASE FROM LACTOCOCCUS-LACTIS SUBSP CREMORIS WG2

    NARCIS (Netherlands)

    TAN, PST; POS, KM; KONINGS, WN

    1991-01-01

    An endopeptidase has been purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that includes diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, hydroxylapatite chromatography, and fast protein liquid chromatography over

  15. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    Science.gov (United States)

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  16. Chromosomal Location by Use of Trisomics and New Alleles of an Endopeptidase in Zea Mays

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel; Scandalios, John G.

    1974-01-01

    An association was found earlier between the Ep1 gene locus coding for an endopeptidase and the endosperm color gene Y1 on chromosome 6 of Zea mays. By employing primary trisomics we have unequivocally placed the Ep1 gene on chromosome 6, closely linked to the Y1 locus. Additionally we describe new...

  17. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira

    2015-01-01

    of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering...

  18. A Comprehensive Review of the Pharmacodynamics, Pharmacokinetics, and Clinical Effects of the Neutral Endopeptidase Inhibitor Racecadotril

    OpenAIRE

    Marion eEberlin; Thomas eMück; Michel, Martin C.

    2012-01-01

    Racecadotril, via its active metabolite thiorphan, is an inhibitor of the enzyme neutral endopeptidase (NEP, EC 3.4.24.11), thereby increasing exposure to NEP including enkephalins and atrial natriuretic peptide. Upon oral administration racecadotril is rapidly and effectively converted into the active metabolite thiorphan, which does not cross the blood-brain-barrier. Racecadotril has mainly been tested in animal models and patients of three therapeutic areas. As an analgesic the effects of ...

  19. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  20. Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A.

    Directory of Open Access Journals (Sweden)

    Jing Tang

    2007-08-01

    Full Text Available Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (K(i (app of 7+/-2.4 microM using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (K(i (app of 3.8+/-0.8 microM with a relatively small increase in molecular weight (16 Da. The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors.

  1. Identification of a vesicular aspartate transporter

    OpenAIRE

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sia...

  2. Identification of a vesicular aspartate transporter

    Science.gov (United States)

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects. PMID:18695252

  3. Purification of balansain I, an endopeptidase from unripe fruits of Bromelia balansae Mez (Bromeliaceae).

    Science.gov (United States)

    Pardo, M F; López, L M; Canals, F; Avilés, F X; Natalucci, C L; Caffini, N O

    2000-09-01

    A new plant endopeptidase was obtained from unripe fruits of Bromelia balansae Mez (Bromeliaceae). Crude extracts were partially purified by ethanol fractionation. This preparation (redissolved ethanol precipitate, REP) showed maximum activity at pH 8.8-9.2, was very stable even at high ionic strength values (no appreciable decrease in proteolytic activity could be detected after 24 h in 1 M sodium chloride solution at 37 degrees C), and exhibited high thermal stability (inactivation required heating for 60 min at 75 degrees C). Anion exchange chromatography allowed the isolation of a fraction purified to mass spectroscopy, SDS-PAGE, and IEF homogeneity, named balansain I, with pI = 5.45 and molecular mass = 23192 (mass spectrometry). The purification factor is low (2.9-fold), but the yield is high (48.3%), a common occurrence in plant organs with high proteolytic activity, where proteases represent the bulk of protein content of crude extracts. Balansain I exhibits a similar but narrower pH profile than that obtained for REP, with a maximum pH value approximately 9.0 and was inhibited by E-64 and other cysteine peptidases inhibitors but not affected by inhibitors of the other catalytic types of peptidases. The alanine and glutamine derivatives of N-alpha-carbobenzoxy-L-amino acid p-nitrophenyl esters was strongly preferred by the enzyme. The N-terminal sequence of balansain I showed a very high homology (85-90%) with other known Bromeliaceae endopeptidases.

  4. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

  5. Comparison of two cysteine endopeptidases from Pseudananas macrodontes (Morr.) Harms (Bromeliaceae).

    Science.gov (United States)

    López, L M; Sequeiros, C; Trejo, S A; Pardo, M F; Caffini, N O; Natalucci, C L

    2001-05-01

    The properties of two cysteine peptidases (macrodontain I and II) isolated from fruits of Pseudananas macrodontes have been compared. The enzymes showed optimum pH ranges near neutrality and were inhibited by E-64 and other cysteine peptidase inhibitors. Molecular masses were 23459 and 23703 kDa, the isoelectric points were 6.1 and 5.9, and the Km values were 13.4 and 8.9 microM (Bz-Phe-Val-Arg-AMC) for macrodontain I and II, respectively. N-alpha-CBZ-L-amino acid p-nitrophenyl esters were tested for both enzymes. The N-terminal sequences of both proteases differed slightly and showed high sequence similarity to other pineapple stem-derived cysteine endopeptidases.

  6. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  7. Structural basis for type VI secreted peptidoglycan dl-endopeptidase function, specificity and neutralization in Serratia marcescens

    Energy Technology Data Exchange (ETDEWEB)

    Srikannathasan, Velupillai; English, Grant [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Bui, Nhat Khai [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Trunk, Katharina; O’Rourke, Patrick E. F.; Rao, Vincenzo A. [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Vollmer, Waldemar [Newcastle University, Newcastle upon Tyne NE2 4HH (United Kingdom); Coulthurst, Sarah J., E-mail: s.j.coulthurst@dundee.ac.uk; Hunter, William N., E-mail: s.j.coulthurst@dundee.ac.uk [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2013-12-01

    Crystal structures of type VI secretion system-associated immunity proteins, a peptidoglycan endopeptidase and a complex of the endopeptidase and its cognate immunity protein are reported together with assays of endopeptidase activity and functional assessment. Some Gram-negative bacteria target their competitors by exploiting the type VI secretion system to extrude toxic effector proteins. To prevent self-harm, these bacteria also produce highly specific immunity proteins that neutralize these antagonistic effectors. Here, the peptidoglycan endopeptidase specificity of two type VI secretion-system-associated effectors from Serratia marcescens is characterized. These small secreted proteins, Ssp1 and Ssp2, cleave between γ-d-glutamic acid and l-meso-diaminopimelic acid with different specificities. Ssp2 degrades the acceptor part of cross-linked tetratetrapeptides. Ssp1 displays greater promiscuity and cleaves monomeric tripeptides, tetrapeptides and pentapeptides and dimeric tetratetra and tetrapenta muropeptides on both the acceptor and donor strands. Functional assays confirm the identity of a catalytic cysteine in these endopeptidases and crystal structures provide information on the structure–activity relationships of Ssp1 and, by comparison, of related effectors. Functional assays also reveal that neutralization of these effectors by their cognate immunity proteins, which are called resistance-associated proteins (Raps), contributes an essential role to cell fitness. The structures of two immunity proteins, Rap1a and Rap2a, responsible for the neutralization of Ssp1 and Ssp2-like endopeptidases, respectively, revealed two distinct folds, with that of Rap1a not having previously been observed. The structure of the Ssp1–Rap1a complex revealed a tightly bound heteromeric assembly with two effector molecules flanking a Rap1a dimer. A highly effective steric block of the Ssp1 active site forms the basis of effector neutralization. Comparisons with Ssp2–Rap2

  8. [Effect of deletion of 3'-noncoding region of the Bacillus intermedius glutamyl endopeptidase gene on the active protein production level in the culture of the B. subtilis cells].

    Science.gov (United States)

    Gasanov, E V; Romanova, D V; Gromova, T Iu; Demidiuk, I V

    2007-01-01

    The Bacillus intermedius glutamyl endopeptidase is a secretory serine proteinase from the subfamily of chymotrypsin. Its gene was previously cloned and sequenced. The enzyme was thoroughly characterized including 3D structure determination. The present work demonstrates that removal of 3'-noncoding region of the enzyme gene resulted in a decrease of the active glutamyl endopeptidase production level in culture of B. subtilis cells. In this 3'-noncoding region, the sequence with all typical features of transcription terminators of the Firmicutes type was found.

  9. Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation

    Science.gov (United States)

    Vincent, Bruno; Jiracek, Jirì; Noble, Florence; Loog, Mart; Roques, Bernard; Dive, Vincent; Vincent, Jean-Pierre; Checler, Frédéric

    1997-01-01

    We have examined a series of novel phosphinic peptides as putative potent and selective inhibitors of endopeptidase 3.4.24.16. The most selective inhibitor, Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 displayed a Ki value of 12 nM towards endopeptidase 3.4.24.16 and was 5540 fold less potent on its related peptidase endopeptidase 3.4.24.15. Furthermore, this inhibitor was 12.5 less potent on angiotensin-converting enzyme and was unable to block endopeptidase 3.4.24.11, aminopeptidases B and M, dipeptidylaminopeptidase IV and proline endopeptidase. The effect of Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2, in vitro and in vivo, on neurotensin metabolism in the central nervous system was examined. Pro-Phe-Ψ(PO2CHH2)-Leu-Pro-NH2 dose-dependently inhibited the formation of neurotensin 1-10 and concomittantly protected neurotensin from degradation by primary cultured neurones from mouse embryos. Intracerebroventricular administration of Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 significantly potentiated the neurotensin-induced antinociception of mice in the hot plate test. Altogether, our study has established Pro-Phe-Ψ(PO2CH2)-Leu-Pro-NH2 as a fully selective and highly potent inhibitor of endopeptidase 3.4.24.16 and demonstrates, for the first time, the contribution of this enzyme in the central metabolism of neurotensin. PMID:9208137

  10. Neutral endopeptidase 24.11 is important for the degradation of both endogenous and exogenous glucagon in anesthetized pigs

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Klarskov, Letty; Olesen, Mette

    2004-01-01

    Glucagon has a short plasma t(1/2) in vivo, with renal extraction playing a major role in its elimination. Glucagon is degraded by neutral endopeptidase (NEP) 24.11 in vitro, but the physiological relevance of NEP 24.11 in glucagon metabolism is unknown. Therefore, the influence of candoxatril, a......-RIA). This study provides evidence that NEP 24.11 is an important mediator of the degradation of both endogenous and exogenous glucagon in vivo....

  11. Lack of genetic association of neutral endopeptidase (NEP) with complex regional pain syndrome (CRPS).

    Science.gov (United States)

    Huehne, Kathrin; Schaal, Ute; Leis, Stefan; Uebe, Steffen; Gosso, M Florencia; van den Maagdenberg, Arn M J M; Maihöfner, Christian; Birklein, Frank; Rautenstrauss, Bernd; Winterpacht, Andreas

    2010-03-12

    Complex regional pain syndrome (CRPS) is a condition that is characterized by severe pain and exaggerated neurogenic inflammation, which may develop after injury or surgery. Neurogenic inflammation is mediated by neuropeptides, such as calcitonin gene-related peptide (CGRP) and substance P (SP) that are released from nociceptors. Genetic factors may play a role in CRPS as was suggested by the occurrence of familial cases and several genetic association studies investigating mainly the human leukocyte antigen (HLA) system. Here we investigated the role of neutral endopeptidase (NEP), a key enzyme in neuropeptide catabolism. NEP dysfunction resulting in reduced inactivation of neuropeptides may be a possible pathomechanism in CRPS. To this end, we tested a GT-repeat polymorphism in the NEP promoter region as well as 18 tag-SNPs in six linkage disequilibrium (LD) blocks in the NEP gene region in 320 CRPS patients and 376 controls. No significant genetic association was observed. Thus, we conclude that the NEP gene does not seem to be a major risk factor for CRPS. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis.

    Science.gov (United States)

    Mylne, Joshua S; Chan, Lai Yue; Chanson, Aurelie H; Daly, Norelle L; Schaefer, Hanno; Bailey, Timothy L; Nguyencong, Philip; Cascales, Laura; Craik, David J

    2012-07-01

    The cyclic miniprotein Momordica cochinchinensis Trypsin Inhibitor II (MCoTI-II) (34 amino acids) is a potent trypsin inhibitor (TI) and a favored scaffold for drug design. We have cloned the corresponding genes and determined that each precursor protein contains a tandem series of cyclic TIs terminating with the more commonly known, and potentially ancestral, acyclic TI. Expression of the precursor protein in Arabidopsis thaliana showed that production of the cyclic TIs, but not the terminal acyclic TI, depends on asparaginyl endopeptidase (AEP) for maturation. The nature of their repetitive sequences and the almost identical structures of emerging TIs suggest these cyclic peptides evolved by internal gene amplification associated with recruitment of AEP for processing between domain repeats. This is the third example of similar AEP-mediated processing of a class of cyclic peptides from unrelated precursor proteins in phylogenetically distant plant families. This suggests that production of cyclic peptides in angiosperms has evolved in parallel using AEP as a constraining evolutionary channel. We believe this is evolutionary evidence that, in addition to its known roles in proteolysis, AEP is especially suited to performing protein cyclization.

  13. A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril.

    Science.gov (United States)

    Eberlin, Marion; Mück, Tobias; Michel, Martin C

    2012-01-01

    Racecadotril, via its active metabolite thiorphan, is an inhibitor of the enzyme neutral endopeptidase (NEP, EC 3.4.24.11), thereby increasing exposure to NEP substrates including enkephalins and atrial natriuretic peptide (ANP). Upon oral administration racecadotril is rapidly and effectively converted into the active metabolite thiorphan, which does not cross the blood-brain-barrier. Racecadotril has mainly been tested in animal models and patients of three therapeutic areas. As an analgesic the effects of racecadotril across animal models were inconsistent. In cardiovascular diseases such as hypertension or congestive heart failure results from animal studies were promising, probably related to increased exposure to ANP, but clinical results have not shown substantial therapeutic benefit over existing treatment options in cardiovascular disease. In contrast, racecadotril was consistently effective in animal models and patients with various forms of acute diarrhea by inhibiting pathologic (but not basal) secretion from the gut without changing gastro-intestinal transit time or motility. This included studies in both adults and children. In direct comparative studies with loperamide in adults and children, racecadotril was at least as effective but exhibited fewer adverse events in most studies, particularly less rebound constipation. Several guidelines recommend the use of racecadotril as addition to oral rehydration treatment in children with acute diarrhea.

  14. A comprehensive review of the pharmacodynamics, pharmacokinetics and clinical effects of the neutral endopeptidase inhibitor racecadotril

    Directory of Open Access Journals (Sweden)

    Marion eEberlin

    2012-05-01

    Full Text Available Racecadotril, via its active metabolite thiorphan, is an inhibitor of the enzyme neutral endopeptidase (NEP, EC 3.4.24.11, thereby increasing exposure to NEP including enkephalins and atrial natriuretic peptide. Upon oral administration racecadotril is rapidly and effectively converted into the active metabolite thiorphan, which does not cross the blood-brain-barrier. Racecadotril has mainly been tested in animal models and patients of three therapeutic areas. As an analgesic the effects of racecadotril across animal models were inconsistent. In cardiovascular diseases such as hypertension or congestive heart failure results from animal studies were promising, probably related to increased exposure to atrial natriuretic peptide, but clinical results have not shown substantial therapeutic benefit over existing treatment options in cardiovascular disease. In contrast, racecadotril was consistently effective in animal models and patients with various forms of acute diarrhea by inhibiting pathologic (but not basal secretion from the gut without changing gastro-intestinal transit time or motility. This included studies in both adults and children. In direct comparative studies with loperamide in adults and children, racecadotril was at least as effective but exhibited fewer adverse events in most studies, particularly less rebound constipation. Several guidelines recommend the use of racecadotril as addition to oral rehydration treatment in children with acute diarrhea.

  15. Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase.

    Science.gov (United States)

    Harris, Karen S; Durek, Thomas; Kaas, Quentin; Poth, Aaron G; Gilding, Edward K; Conlan, Brendon F; Saska, Ivana; Daly, Norelle L; van der Weerden, Nicole L; Craik, David J; Anderson, Marilyn A

    2015-12-18

    Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we report the identification of four asparaginyl endopeptidases (AEPs), proteases implicated in cyclization, from the cyclotide-producing plant Oldenlandia affinis. We recombinantly express OaAEP1b and find it functions preferably as a cyclase by coupling C-terminal cleavage of propeptide substrates with backbone cyclization. Interestingly, OaAEP1b cannot cleave at the N-terminal site of O. affinis cyclotide precursors, implicating additional proteases in cyclotide biosynthesis. Finally, we demonstrate the broad utility of this enzyme by cyclization of peptides unrelated to cyclotides. We propose that recombinant OaAEP1b is a powerful tool for use in peptide engineering applications where increased stability of peptide products is desired.

  16. Improvement of Vitreoscilla hemoglobin function by Bacillus licheformis glutamate-specific endopeptidase treatment.

    Science.gov (United States)

    Ye, Wei; Liu, Min; Ma, Yi; Yang, Juan; Wang, Haiying; Wang, Xinhui; Wang, Jufang; Wang, Xiaoning

    2012-11-01

    Vitreoscilla hemoglobin (VHb) was widely used in metabolic engineering to improve oxygen utilization in the low oxygen environment. It is sometimes necessary to remove affinity tags because they may impede functions of target proteins. Here we report an efficient method employing Glutamate-specific endopeptidase from Bacillus licheformis (GSE-BL) to perform the cleavage between VHb and His-tag. The optimal length of GSE-BL treatment was 15min. Results of SDS-PAGE and western blot demonstrated that the His-tag of VHb-His(6) was nearly completely removed, the purity of VHb was enhanced from 74% to 99.5%, and the yield of tagless VHb from VHb-His(6) was 92.2%. Results of CO difference spectrum suggested that tagless VHb was more prone to bind to CO compared with VHb-His(6). It was observed that tagless VHb displayed higher catalase activity than VHb-His(6). The enhancement of welan gum yield was more significant by addition of tagless VHb compared with addition of VHb-His(6). This method can be utilized to mass-produce tagless VHb, thus widening the application of VHb in various industries. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. PepO, a CovRS-controlled endopeptidase, disrupts Streptococcus pyogenes quorum sensing.

    Science.gov (United States)

    Wilkening, Reid V; Chang, Jennifer C; Federle, Michael J

    2016-01-01

    Group A Streptococcus (GAS, Streptococcus pyogenes) is a human-restricted pathogen with a capacity to both colonize asymptomatically and cause illnesses ranging from pharyngitis to necrotizing fasciitis. An understanding of how and when GAS switches between genetic programs governing these different lifestyles has remained an enduring mystery and likely requires carefully tuned environmental sensors to activate and silence genetic schemes when appropriate. Herein, we describe the relationship between the Control of Virulence (CovRS, CsrRS) two-component system and the Rgg2/3 quorum-sensing pathway. We demonstrate that responses of CovRS to the stress signals Mg(2+) and a fragment of the antimicrobial peptide LL-37 result in modulated activity of pheromone signaling of the Rgg2/3 pathway through a means of proteolysis of SHP peptide pheromones. This degradation is mediated by the cytoplasmic endopeptidase PepO, which is the first identified enzymatic silencer of an RRNPP-type quorum-sensing pathway. These results suggest that under conditions in which the virulence potential of GAS is elevated (i.e. enhanced virulence gene expression), cellular responses mediated by the Rgg2/3 pathway are abrogated and allow individuals to escape from group behavior. These results also indicate that Rgg2/3 signaling is instead functional during non-virulent GAS lifestyles. © 2015 John Wiley & Sons Ltd.

  18. The Roles of Streptozotocin Neurotoxicity and Neutral Endopeptidase in Murine Experimental Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Eric Davidson

    2009-01-01

    Full Text Available We demonstrated that inhibition of neutral endopeptidase (NEP, a protease that degrades vaso- and neuroactive peptides, improves vascular and neural function in diabetic animal models. In this study we explored the role of NEP in neuropathy related to either insulin-deficient diabetes or diet-induced obesity using NEP deficient (−/− mice. Initial studies showed that streptozotocin, in the absence of subsequent hyperglycemia, did not induce nerve conduction slowing or paw thermal hypoalgesia. Glucose disposal was impaired in both C57Bl/6 and NEP −/− mice fed a high fat diet. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and high fat fed C57Bl/6 mice but not in NEP −/− mice exposed to either streptozotocin-induced diabetes or a high fat diet. These studies suggest that streptozotocin does not induce neurotoxicity in mice and that NEP plays a role in regulating nerve function in insulin-deficient diabetes and diet-induced obesity.

  19. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation.

    Directory of Open Access Journals (Sweden)

    Sophia Maschalidi

    Full Text Available Intracellular Toll-like receptors (TLRs expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV, a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+ T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases.

  20. Pharmacologic Comparison of Clinical Neutral Endopeptidase Inhibitors in a Rat Model of Acute Secretory Diarrhea.

    Science.gov (United States)

    Griggs, David W; Prinsen, Michael J; Oliva, Jonathan; Campbell, Mary A; Arnett, Stacy D; Tajfirouz, Deena; Ruminski, Peter G; Yu, Ying; Bond, Brian R; Ji, Yuhua; Neckermann, Georg; Choy, Robert K M; de Hostos, Eugenio; Meyers, Marvin J

    2016-05-01

    Racecadotril (acetorphan) is a neutral endopeptidase (NEP) inhibitor with known antidiarrheal activity in animals and humans; however, in humans, it suffers from shortcomings that might be improved with newer drugs in this class that have progressed to the clinic for nonenteric disease indications. To identify potentially superior NEP inhibitors with immediate clinical utility for diarrhea treatment, we compared their efficacy and pharmacologic properties in a rat intestinal hypersecretion model. Racecadotril and seven other clinical-stage inhibitors of NEP were obtained or synthesized. Enzyme potency and specificity were compared using purified peptidases. Compounds were orally administered to rats before administration of castor oil to induce diarrhea. Stool weight was recorded over 4 hours. To assess other pharmacologic properties, select compounds were orally administered to normal or castor oil-treated rats, blood and tissue samples collected at multiple time points, and active compound concentrations determined by mass spectroscopy. NEP enzyme activity was measured in tissue homogenates. Three previously untested clinical NEP inhibitors delayed diarrhea onset and reduced total stool output, with little or no effect on intestinal motility assessed by the charcoal meal test. Each was shown to be a potent, highly specific inhibitor of NEP. Each exhibited greater suppression of NEP activity in intestinal and nonintestinal tissues than did racecadotril and sustained this inhibition longer. These results suggest that newer clinical-stage NEP inhibitors originally developed for other indications may be directly repositioned for treatment of acute secretory diarrhea and offer advantages over racecadotril, such as less frequent dosing and potentially improved efficacy. Copyright © 2016 The Author(s).

  1. Thiorphan, a neutral endopeptidase inhibitor used for diarrhoea, is neuroprotective in newborn mice.

    Science.gov (United States)

    Medja, Fadia; Lelièvre, Vincent; Fontaine, Romain H; Lebas, Fanny; Leroux, Philippe; Ouimet, Tanja; Saria, Alois; Rougeot, Catherine; Dournaud, Pascal; Gressens, Pierre

    2006-12-01

    Excitotoxic damage appears to be a critical factor in the formation of perinatal brain lesions associated with cerebral palsy (CP). When injected into newborn mice, the glutamatergic analogue, ibotenate, produces cortical lesions and white matter cysts that mimic human perinatal brain lesions. Neuropeptides are neuronal activity modulators and could therefore modulate glutamate-induced lesions. However, neuropeptides are rapidly degraded by peptidases. Racecadotril, which is rapidly metabolized to its active metabolite thiorphan, is a neutral endopeptidase (NEP) inhibitor used in clinical practice for diarrhoea with a remarkable safety profile. This study aimed to test the original hypothesis that thiorphan could be neuroprotective against ibotenate-induced lesions in newborn mice. Intraperitoneal administration of thiorphan reduced ibotenate-induced cortical lesions by up to 57% and cortical caspase-3 cleavage by up to 59%. This neuroprotective effect was long-lasting and was still observed when thiorphan was administered 12 h after the insult, showing a remarkable window for therapeutic intervention. Further supporting the neuroprotective effect of pharmacological blockade of NEP, mouse pups with a genetic deletion of NEP displayed a significantly reduced size of the ibotenate-induced cortical grey matter lesion when compared with wild-type animals. Thiorphan effects were mimicked by substance P (SP) and, in a less potent manner, by neurokinin A. Thiorphan effects were inhibited by blockers of NK1 and NK2 receptors. Real-time reverse transcription-polymerase chain reaction, autoradiography and immunohistochemistry confirmed the expression of NK1 and NK2 receptors in the neonatal murine neocortex. These data demonstrate that thiorphan prevents neonatal excitotoxic cortical damage, an effect largely mediated by SP. Thiorphan could represent a promising drug for the prevention of CP, which remains a challenging disease. In a broader context, these results also raise

  2. Structural studies on the zinc-endopeptidase light chain of tetanus neurotoxin.

    Science.gov (United States)

    De Filippis, V; Vangelista, L; Schiavo, G; Tonello, F; Montecucco, C

    1995-04-01

    Tetanus neurotoxin (TeNT) blocks neuroexocytosis via a zinc-endopeptidase activity highly specific for vescicle-associated membrane protein(VAMP)/synaptobrevin. TeNT is the prototype of clostridial neurotoxins, a new family of metalloproteinases. They consist of three domains and the proteolytic activity is displayed by the 50-kDa light chain (L chain). The L chain was isolated here in the native state from bacterial filtrates of Clostridium tetani and its structure was studied via circular dichroism (CD) and fluorescence spectroscopy. The secondary structure content (27% alpha-helix and 43% beta-sheet), estimated by far-ultraviolet CD measurements, was in reasonable agreement with that obtained by standard predictive methods (25% alpha-helix and 49% beta-sheet). Moreover, the hypothetical zinc-binding motif, encompassing residues His-Glu-Leu-Ile-His, was correctly predicted to be in alpha-helical conformation, as also expected on the basis of the geometrical requirements for a correct coordination of the zinc ion. Both near-ultraviolet CD and fluorescence data strongly suggest that the single Trp43 residue is buried and constrained in a hydrophobic environment, likely distant from the zinc ion located in the active-site cleft. The contribution of the bound zinc ion to the overall conformation of TeNT L chain was investigated by different and complementary techniques, including spectroscopic (far- and near-ultraviolet CD, fluorescence, second derivative absorption spectroscopy) as well as proteolytic probes. The results indicate that the zinc ion plays little, if any, role in determining the structural properties of the L chain molecule. Similarly, the metal-free apo-enzyme and the holo-protein share common stability features evaluated in respect to different physico-chemical parameters (pH, temperature and urea concentration). These results parallel those obtained on thermolysin, a zinc-dependent neutral endoprotease from Bacillus thermoproteolyticus, where both

  3. The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity.

    Science.gov (United States)

    Kiss, András L; Hornung, Balázs; Rádi, Krisztina; Gengeliczki, Zsolt; Sztáray, Bálint; Juhász, Tünde; Szeltner, Zoltán; Harmat, Veronika; Polgár, László

    2007-04-27

    Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.

  4. A neuroprotective brain-penetrating endopeptidase fusion protein ameliorates Alzheimer disease pathology and restores neurogenesis.

    Science.gov (United States)

    Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer

    2014-06-20

    Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Interaction of rose bengal with mung bean aspartate transcarbamylase

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The fluorescein dye, rose bengal in the dark: (i) inhibited the activity of mung bean aspartate transcarbamylase (EC 2.1.3.2) in a non-competitive manner, when aspartate was the varied substrate; (ii) induced a lag in the time course of reaction and this hysteresis was abolished upon preincubation with carbamyl ...

  6. Cloning and expression of a novel prolyl endopeptidase from Aspergillus oryzae and its application in beer stabilization.

    Science.gov (United States)

    Kang, Chao; Yu, Xiao-Wei; Xu, Yan

    2015-02-01

    A novel prolyl endopeptidase gene from Aspergillus oryzae was cloned and expressed in Pichia pastoris. Amino acid sequence analysis of the prolyl endopeptidase from Aspergillus oryzae (AO-PEP) showed that this enzyme belongs to a class serine peptide S28 family. Expression, purification and characterization of AO-PEP were analyzed. The optimum pH and temperature were pH 5.0 and 40 °C, respectively. The enzyme was activated and stabilized by metal ion Ca(2+) and inhibited by Zn(2+), Mn(2+), Al(3+), and Cu(2+). The K m and k cat values of the purified enzyme for different substrates were evaluated. The results implied that the recombinant AO-PEP possessed higher affinity for the larger substrate. A fed-batch strategy was developed for the high-cell-density fermentation and the enzyme activity reached 1,130 U/l after cultivation in 7 l fermentor. After addition of AO-PEP during the fermentation phase of beer brewing, demonstrated the potential application of AO-PEP in the non-biological stability of beer, which favor further industrial development of this new enzyme in beer stabilization, due to its reducing operational costs, as well as no beer losses unlike regeneration process and beer lost with regenerated polyvinylpolypyrrolidone system.

  7. Enhanced expression of neutral endopeptidase (NEP) in airway epithelium in biopsies from steroid- versus nonsteroid-treated patients with atopic asthma

    NARCIS (Netherlands)

    Sont, J. K.; van Krieken, J. H.; van Klink, H. C.; Roldaan, A. C.; Apap, C. R.; Willems, L. N.; Sterk, P. J.

    1997-01-01

    The expression of the endogenous neuropeptide-degrading enzyme, neutral endopeptidase (NEP; CALLA, CD10, E.C.3.4.24.11) on cultured human airway epithelial cells can be upregulated by corticosteroids. We examined whether NEP expression in the airway epithelium or lamina propria in bronchial biopsies

  8. Dual neural endopeptidase/endothelin-converting [corrected] enzyme inhibition improves endothelial function in mesenteric resistance arteries of young spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Lemkens, Pieter; Nelissen, Jelly; Meens, Merlijn J P M T

    2012-01-01

    through cleavage of big ET1 by endothelin-converting enzyme (ECE) and neutral endopeptidase (NEP). METHOD: We investigated whether the dual NEP/ECE inhibitor SOL1 improves resistance artery function and structure in 12 weeks old spontaneously hypertensive rats (SHRs) and whether arterial structural...

  9. STABILITY OF BINARY COMPLEXES OF L-ASPARTIC ACID IN ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Binary complexes, Stability constants, Aspartic acid, Speciation, Dioxan ... Potentiometric study of Fe(II) and Zn(II) was carried out by Ritsma [19], Maker et al. [20],. Gergely and .... The effect of variations in asymmetry potential,.

  10. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    OpenAIRE

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-01-01

    CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto...

  11. cDNA cloning and molecular modeling of procerain B, a novel cysteine endopeptidase isolated from Calotropis procera.

    Science.gov (United States)

    Singh, Abhay Narayan; Yadav, Prity; Dubey, Vikash Kumar

    2013-01-01

    Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.

  12. cDNA cloning and molecular modeling of procerain B, a novel cysteine endopeptidase isolated from Calotropis procera.

    Directory of Open Access Journals (Sweden)

    Abhay Narayan Singh

    Full Text Available Procerain B, a novel cysteine protease (endopeptidase isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U, a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed.

  13. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles

    DEFF Research Database (Denmark)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming

    2017-01-01

    Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production...... processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase...... at 63 °C was higher than 75 %. The enzyme was activated and stabilized by Co2+ and inhibited by Mg2+, K+ and Ca2+ followed by Zn2+, Na+, Mn2+, Al3+, and Cu2+. The Km and kcat values of the purified enzyme for different substrates were evaluated. The ability to degrade immunogenic gluten peptides...

  14. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    Directory of Open Access Journals (Sweden)

    Marilena Oshiro

    Full Text Available CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto Adolfo Lutz. METHODS: Red cell aspartate aminotransferase activity was assayed (before and after in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily. In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. RESULTS: The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. CONCLUSIONS: Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  15. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    Science.gov (United States)

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-03-16

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  16. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  17. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin.

    Science.gov (United States)

    Eugster, Philippe J; Salamin, Karine; Grouzmann, Eric; Monod, Michel

    2015-12-01

    Prolyl endopeptidases are key enzymes in the digestion of proline-rich proteins. Fungal extracts rich in prolyl endopeptidases produced by a species such as Aspergillus oryzae used in food fermentation would be of particular interest for the development of an oral enzyme therapy product in patients affected by intolerance to gluten. Two major A. oryzae secreted prolyl endopeptidases of the MEROPS S28 peptidase family, AoS28A and AoS28B, were identified when this fungus was grown at acidic pH in a medium containing soy meal protein or wheat gliadin as the sole source of nitrogen. AoS28B was produced by 12 reference A. oryzae strains used in food fermentation. AoS28A was secreted by six of these 12 strains. This protease is the orthologue of the previously characterized Aspergillus fumigatus (AfuS28) and Aspergillus niger (AN-PEP) prolyl endopeptidases which are encoded by genes with a similar intron-exon structure. Large amounts of secreted AoS28A and AoS28B were obtained by gene overexpression in A. oryzae. AoS28A and AoS28B are endoproteases able to cleave N-terminally blocked proline substrates. Both enzymes very efficiently digested the proline-rich 33-mer of gliadin, the most representative immunotoxic peptide deriving from gliadin, with some differences in terms of specificity and optimal pH. Digestion of the gliadin peptide in short peptides with both enzymes was found to occur from its N terminus.

  18. In vivo multiplex quantitative analysis of 3 forms of alpha melanocyte stimulating hormone in pituitary of prolyl endopeptidase deficient mice

    Directory of Open Access Journals (Sweden)

    Perroud Bertrand

    2009-06-01

    Full Text Available Abstract Background In vitro reactions are useful to identify putative enzyme substrates, but in vivo validation is required to identify actual enzyme substrates that have biological meaning. To investigate in vivo effects of prolyl endopeptidase (PREP, a serine protease, on alpha melanocyte stimulating hormone (α-MSH, we developed a new mass spectrometry based technique to quantitate, in multiplex, the various forms of α-MSH. Methods Using Multiple Reaction Monitoring (MRM, we analyzed peptide transitions to quantify three different forms of α-MSH. Transitions were first confirmed using standard peptides. Samples were then analyzed by mass spectrometry using a triple quadrupole mass spectrometer, after elution from a reverse phase C18 column by a gradient of acetonitrile. Results We first demonstrate in vitro that PREP digests biological active alpha melanocyte stimulating hormone (α-MSH1–13, by cleaving the terminal amidated valine and releasing a truncated alpha melanocyte stimulating hormone (α-MSH1–12 product – the 12 residues α-MSH form. We then use the technique in vivo to analyze the MRM transitions of the three different forms of α-MSH: the deacetylated α-MSH1–13, the acetylated α-MSH1–13 and the truncated form α-MSH1–12. For this experiment, we used a mouse model (PREP-GT in which the serine protease, prolyl endopeptidase, is deficient due to a genetrap insertion. Here we report that the ratio between acetylated α-MSH1–13 and α-MSH1–12 is significantly increased (P-value = 0.015, N = 6 in the pituitaries of PREP-GT mice when compared to wild type littermates. In addition no significant changes were revealed in the relative level of α-MSH1–13 versus the deacetylated α-MSH1–13. These results combined with the demonstration that PREP digests α-MSH1–13 in vitro, strongly suggest that α-MSH1–13 is an in vivo substrate of PREP. Conclusion The multiplex targeted quantitative peptidomics technique we

  19. A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO.

    Science.gov (United States)

    Pérez Morales, Tiara G; Ratia, Kiira; Wang, Duo-Sheng; Gogos, Artemis; Driver, Tom G; Federle, Michael J

    2017-12-04

    Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metallo-endopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  20. A highly unstable transcript makes CwlO D,L-endopeptidase expression responsive to growth conditions in Bacillus subtilis.

    Science.gov (United States)

    Noone, David; Salzberg, Letal I; Botella, Eric; Bäsell, Katrin; Becher, Dörte; Antelmann, Haike; Devine, Kevin M

    2014-01-01

    The Bacillus subtilis cell wall is a dynamic structure, composed of peptidoglycan and teichoic acid, that is continually remodeled during growth. Remodeling is effected by the combined activities of penicillin binding proteins and autolysins that participate in the synthesis and turnover of peptidoglycan, respectively. It has been established that one or the other of the CwlO and LytE D,L-endopeptidase-type autolysins is essential for cell viability, a requirement that is fulfilled by coordinate control of their expression by WalRK and SigI RsgI. Here we report on the regulation of cwlO expression. The cwlO transcript is very unstable, with its degradation initiated by RNase Y cleavage within the 187-nucleotide leader sequence. An antisense cwlO transcript of heterogeneous length is expressed from a SigB promoter that has the potential to control cellular levels of cwlO RNA and protein under stress conditions. We discuss how a multiplicity of regulatory mechanisms makes CwlO expression and activity responsive to the prevailing growth conditions.

  1. [Experimental models for studying the avoidance response in mice and the anti-amnesic effect of prolyl endopeptidase inhibitors].

    Science.gov (United States)

    Taira, K; Kaneto, H

    1987-05-01

    Prolyl endopeptidase (PPCE) plays an important role in the degradation of biologically active peptides such as vasopressin which facilitates the process of learning and memory. Here, the effect of synthetic PPCE inhibitors (Z-Pro-, Suc-Pro-, Suc-Pyr-, Suc-Sar- and Z-prolinal) on the acquisition and retention of avoidance response was studied. Using mice of the ddY strain, tests were performed both in repeated trials of an active avoidance task and in a newly contrived one-trial passive-active avoidance task. The applicability of both tests for the evaluation of the anti-amnesic effect of the drugs was confirmed by the effect of scopolamine and arginine vasopressin (AVP). The most potent inhibitor, Z-Pro-prolinal, facilitated the acquisition of active avoidance response and retarded the extinction of the response. Other inhibitors also facilitated the retention of the acquired response. In the one-trial passive-active avoidance test, the facilitating effect of the PPCE inhibitors on the acquisition was parallel to their activity as a PPCE inhibitor. Scopolamine-induced amnesia was also improved by the inhibitors. These results suggest that the anti-amnesic effect of PPCE inhibitors is partially attributed to their inhibitory effect on the breakdown of AVP in the brain.

  2. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii.

    Science.gov (United States)

    Hack, E S; Vorobyova, T; Sakash, J B; West, J M; Macol, C P; Hervé, G; Williams, M K; Kantrowitz, E R

    2000-05-26

    The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.

  3. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ghee Chuan Lai

    2017-07-01

    Full Text Available Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG. Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs, preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi

  4. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles.

    Science.gov (United States)

    Shetty, Radhakrishna; Vestergaard, Mike; Jessen, Flemming; Hägglund, Per; Knorr, Verena; Koehler, Peter; Prakash, H S; Hobley, Timothy John

    2017-12-01

    Gluten free products have emerged during the last decades, as a result of a growing public concern and technological advancements allowing gluten reduction in food products. One approach is to use gluten degrading enzymes, typically at low or ambient temperatures, whereas many food production processes occur at elevated temperature. We present in this paper, the discovery, cloning and characterisation of a novel recombinant thermostable gluten degrading enzyme, a proline specific prolyl endoprotease (PEP) from Sphaerobacter thermophiles. The molecular mass of the prolyl endopeptidase was estimated to be 77kDa by using SDS-PAGE. Enzyme activity assays with a synthetic dipeptide Z-Gly-Pro-p-nitroanilide as the substrate revealed that the enzyme had optimal activity at pH 6.6 and was most active from pH 5.0-8.0. The optimum temperature was 63 °C and residual activity after one hour incubation at 63 °C was higher than 75 %. The enzyme was activated and stabilized by Co2+ and inhibited by Mg2+, K+ and Ca2+ followed by Zn2+, Na+, Mn2+, Al3+, and Cu2+. The Km and kcat values of the purified enzyme for different substrates were evaluated. The ability to degrade immunogenic gluten peptides (PQPQLPYPQPQLPY (a-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein)) was also confirmed by enzymatic assays and mass spectrometric analysis of cleavage fragments. Addition of the enzyme during small scale mashing of barley malt reduced the gluten content. The findings here demonstrate the potential of enzyme use during mashing to produce gluten free beer, and provide new insights into the effects of proline specific proteases on gluten degradation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli.

    Science.gov (United States)

    Lai, Ghee Chuan; Cho, Hongbaek; Bernhardt, Thomas G

    2017-07-01

    Bacterial cells are typically surrounded by an net-like macromolecule called the cell wall constructed from the heteropolymer peptidoglycan (PG). Biogenesis of this matrix is the target of penicillin and related beta-lactams. These drugs inhibit the transpeptidase activity of PG synthases called penicillin-binding proteins (PBPs), preventing the crosslinking of nascent wall material into the existing network. The beta-lactam mecillinam specifically targets the PBP2 enzyme in the cell elongation machinery of Escherichia coli. Low-throughput selections for mecillinam resistance have historically been useful in defining mechanisms involved in cell wall biogenesis and the killing activity of beta-lactam antibiotics. Here, we used transposon-sequencing (Tn-Seq) as a high-throughput method to identify nearly all mecillinam resistance loci in the E. coli genome, providing a comprehensive resource for uncovering new mechanisms underlying PG assembly and drug resistance. Induction of the stringent response or the Rcs envelope stress response has been previously implicated in mecillinam resistance. We therefore also performed the Tn-Seq analysis in mutants defective for these responses in addition to wild-type cells. Thus, the utility of the dataset was greatly enhanced by determining the stress response dependence of each resistance locus in the resistome. Reasoning that stress response-independent resistance loci are those most likely to identify direct modulators of cell wall biogenesis, we focused our downstream analysis on this subset of the resistome. Characterization of one of these alleles led to the surprising discovery that the overproduction of endopeptidase enzymes that cleave crosslinks in the cell wall promotes mecillinam resistance by stimulating PG synthesis by a subset of PBPs. Our analysis of this activation mechanism suggests that, contrary to the prevailing view in the field, PG synthases and PG cleaving enzymes need not function in multi-enzyme complexes

  6. Cigarette smoke-induced lung emphysema in mice is associated with prolyl endopeptidase, an enzyme involved in collagen breakdown

    Science.gov (United States)

    Koelink, Pim J.; Henricks, Paul A. J.; Jackson, Patricia L.; Nijkamp, Frans P.; Garssen, Johan; Kraneveld, Aletta D.; Blalock, J. Edwin; Folkerts, Gert

    2011-01-01

    There is increasing evidence that the neutrophil chemoattractant proline-glycine-proline (PGP), derived from the breakdown of the extracellular matrix, plays an important role in neutrophil recruitment to the lung. PGP formation is a multistep process involving neutrophils, metalloproteinases (MMPs), and prolyl endopeptidase (PE). This cascade of events is now investigated in the development of lung emphysema. A/J mice were whole body exposed to cigarette smoke for 20 wk. After 20 wk or 8 wk after smoking cessation, animals were killed, and bronchoalveolar lavage fluid and lung tissue were collected to analyze the neutrophilic airway inflammation, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels. Lung tissue degradation was assessed by measuring the mean linear intercept. Additionally, we investigated the effect of the peptide l-arginine-threonine-arginine (RTR), which binds to PGP sequences, on the smoke-induced neutrophil influx in the lung after 5 days of smoke exposure. Neutrophilic airway inflammation was induced by cigarette smoke exposure. MMP-8 and MMP-9 levels, PE activity, and PGP levels were elevated in the lungs of cigarette smoke-exposed mice. PE was highly expressed in epithelial and inflammatory cells (macrophages and neutrophils) in lung tissue of cigarette smoke-exposed mice. After smoking cessation, the neutrophil influx, the MMP-8 and MMP-9 levels, the PE activity, and the PGP levels were decreased or reduced to normal levels. Moreover, RTR inhibited the smoke-induced neutrophil influx in the lung after 5 days' smoke exposure. In the present murine model of cigarette smoke-induced lung emphysema, it is demonstrated for the first time that all relevant components (neutrophils, MMP-8, MMP-9, PE) involved in PGP formation from collagen are upregulated in the airways. Together with MMPs, PE may play an important role in the formation of PGP and thus in the pathophysiology of lung emphysema. PMID:21112944

  7. Production of aspartic peptidases by Aspergillus spp. using tuna ...

    African Journals Online (AJOL)

    A Kp of 4.5 for ATPS PEG 1450-Pi; in ATPS PEG 8000-Pi, Kp value of the range of 2 to 2.5 was obtained. A purification factor 2 was obtained. The method appears to be suitable as a first step for the purification of these proteins from these complex medium. Key words: Tuna cooked wastewater, aspartic peptidases, aqueous ...

  8. Prognostic significance of the combined expression of neutral endopeptidase and dipeptidyl peptidase IV in intrahepatic cholangiocarcinoma patients after surgery resection

    Directory of Open Access Journals (Sweden)

    Zhu JY

    2014-02-01

    Full Text Available Jianyong Zhu,1,* XiaoDong Guo,2,* Baoan Qiu,1 Zhiyan Li,2 Nianxin Xia,1 Yingxiang Yang,1 Peng Liu1 1Department of Hepatobiliary Surgery, Navy General Hospital, PLA, Beijing, People's Republic of China; 2302 Hospital of PLA, Beijing, People's Republic of China *These authors contributed equally to this work Aim: The aim of this study was to investigate the relationship between the expression of neutral endopeptidase (NEP and dipeptidyl peptidase IV (DPP IV proteins, and the clinical significance of the two proteins in patients with intrahepatic cholangiocarcinomas (IHCC. Methods: Expression patterns and subcellular localizations of NEP and DPP IV proteins in 186 primary IHCC and 60 noncancerous liver tissue specimens were detected by immunohistochemistry. Results: Both the expression of NEP and DPP IV proteins in IHCC tissues were significantly higher than those in noncancerous liver tissues (both P<0.001. Of 186 patients with IHCC, 128 (68.82% highly expressed both NEP and DPP IV proteins. In addition, the coexpression of NEP and DPP IV proteins was significantly associated with advanced tumor stage (P=0.009, positive lymph node metastasis (P=0.016 and distant metastasis (P=0.013, and the presence of recurrence (P=0.027. Moreover, Kaplan–Meier analysis showed that IHCC patients with high NEP expression, high DPP IV expression, and combined overexpression of NEP and DPP IV proteins all had poorer overall survival and early recurrence after surgery. Furthermore, Cox analysis suggested that NEP expression, DPP IV expression, and combined expression of NEP and DPP IV proteins were all independent prognostic markers for overall survival and recurrence-free survival in patients with IHCC. Conclusion: Our data suggest, for the first time, that both the expression of NEP and DPP IV proteins may be upregulated in human IHCC tissues and the combined expression of NEP and DPP IV proteins may play important roles in progression and prognosis of patients

  9. In vivo inhibition of neutral endopeptidase enhances the diagnostic potential of truncated gastrin (111)In-radioligands.

    Science.gov (United States)

    Kaloudi, Aikaterini; Nock, Berthold A; Lymperis, Emmanouil; Sallegger, Werner; Krenning, Eric P; de Jong, Marion; Maina, Theodosia

    2015-11-01

    Radiolabeled gastrin analogs represent attractive candidates for diagnosis and therapy of cholecystokinin subtype-2 receptor (CCK2R)-expressing tumors. Radiolabeled des(Glu)5-gastrins show favorably low renal accumulation, but localize poorly in CCK2R-positive lesions. We introduce herein three truncated [DOTA-DGlu(10)]gastrin(10-17) analogs, with oxidation-susceptible Met(15) replaced by: (1), (2), or (3), and study the profile of [(111)In]1/2/3 during in vivo inhibition of neutral endopeptidase (NEP) in comparison to the non-truncated [ ([(111)In]4) reference. Blood samples collected from mice 5 min postinjection (pi) of [(111)In]1/2/3/4 without or with phosphoramidon (PA) coinjection were analyzed by RP-HPLC. Biodistribution was conducted in SCID mice bearing A431-CCK2R(+) or AR42J xenografts 4h after administration of [(111)In]1/2/3/4 without or with PA coinjection. Firstly, we observed remarkable increases in the amount of radiopeptides detected intact in the blood of PA-treated mice at 5 min pi compared to controls. Secondly, we noted impressive enhancement of [(111)In]1/2/3 localization in AR42J and A431-CCK2R(+) tumors in mice after PA coinjection. Specifically, the uptake of [(111)In]1 at 4h pi increased from 2.6 ± 0.3%ID/g to 13.3 ± 3.5%ID/g in the AR42J tumors and from 4.3 ± 0.6%ID/g to 20.4 ± 3.6%ID/g in the A431-CCK2R(+) xenografts, with comparable improvements noted for [(111)In]2 and [(111)In]3 as well. Thirdly, renal uptake remained favorably low and unaffected by PA (85%ID/g) increased even further by PA (>140%ID/g). In situ inhibition of NEP represents a promising new tool to enhance the diagnostic efficacy of biodegradable gastrin radioligands in the visualization of CCK2R-positive lesions in man. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Specificity and selectivity of HypC chaperonins and endopeptidases in the molecular assembly machinery of [NiFe] hydrogenases of Thiocapsa roseopersicina

    Energy Technology Data Exchange (ETDEWEB)

    Maroti, Gergely [BayGen Institute, Bay Zoltan Foundation for Applied Research, Derkovics fasor 2, Szeged 6726 (Hungary); Rakhely, Gabor; Kovacs, Kornel L. [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62., Szeged 6726 (Hungary); Department of Biotechnology, University of Szeged, Koezep fasor 52., Szeged 6726 (Hungary); Maroti, Judit [Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62., Szeged 6726 (Hungary); Doroghazi, Emma [Department of Biotechnology, University of Szeged, Koezep fasor 52., Szeged 6726 (Hungary); Klement, Eva; Medzihradszky, Katalin F. [Proteomics Research Group, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt. 62., Szeged 6726 (Hungary)

    2010-04-15

    The purple photosynthetic bacterium, Thiocapsa roseopersicina harbours at least three functional [NiFe] hydrogenases. Two of them are attached to the periplasmic membrane (HynSL, HupSL), while the third one is apparently localized in the cytoplasm (HoxEFUYH). Two hypC-type genes, coding for putative small maturation proteins, were found and their roles were studied by activity measurements performed with hypC mutants. Protein-protein interaction experiments confirmed that each HypC-type protein participates in the maturation of at least two [NiFe] hydrogenase large subunits via direct interaction. Endopeptidases perform the last step of the complex [NiFe] hydrogenase maturation process. A separate endopeptidase (HynD, HupD, HoxW) cleaves off the C-terminus of each large subunit and they are strictly specific for their corresponding hydrogenases. The results demonstrate a sophisticated assembly of these functionally active redox metalloenzymes through specific and selective protein-protein interactions and imply some diversity in the hydrogenase assembly machinery among the various microbes. (author)

  11. Proteolytic processing of the streptococcal IgG endopeptidase IdeS modulates the functional properties of the enzyme and results in reduced immunorecognition.

    Science.gov (United States)

    Persson, Helena; Söderberg, Jenny Johansson; Vindebro, Reine; Johansson, Björn P; von Pawel-Rammingen, Ulrich

    2015-12-01

    The important human gram positive bacterial pathogen Streptococcus pyogenes employs various virulence factors to promote inflammation and to facilitate invasive disease progression. In this study we explored the relation of the secreted streptococcal cysteine proteases IdeS and SpeB, and neutrophil (PMN) proteases. We found that SpeB is resistant to proteolytic attack in an inflammatory environment, emphasizing the importance of SpeB for streptococcal pathogenicity, while PMN enzymes and SpeB itself process the IgG degrading endopeptidase IdeS. Processing occurs as NH2-terminal cleavage of IdeS resulting in reduced immunorecognition of the protease by specific antibodies. While the endopeptidase retains IgG cleaving activity, its ability to suppress the generation of reactive oxygen species is abolished. We suggest that the cleavage of NH2-terminal peptides by SpeB and/or neutrophil proteases is a mechanism evolved to prevent early inactivation of this important streptococcal virulence factor, albeit at the cost of impaired functionality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    Science.gov (United States)

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described.

  13. Assembly of catalytic subunits of aspartate transcarbamoylase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.L.; Schachman, H.K.

    1980-10-01

    Although extensive studies have been conducted on the assembly of the allosteric enzyme, aspartate transcarbamoylase (ATCase) from isolate, intact catalytic (C) and regulatory (R) subunits, there has been little research on the formation of these subunits from individual catalytic (c) and regulatory (r) polypeptide chains. Such studies would be useful for evaluating the strengths of the interchain bonding domains within the subunits just as earlier experiments provided valuable data regarding interactions between the subunits in ATCase. The intact enzyme comprising two C trimers and three R dimers is designated as C/sub 2/R/sub 3/ or c/sub 6/r/sub 6/.

  14. Insulin degludec aspart: One-year real world experience

    OpenAIRE

    Sanjay Kalra; Manash P Baruah

    2016-01-01

    Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp) in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men), with mean age of 54.33 ? 9.63 years and mean duration of diabetes of 6.33 ? 2.96 years, started IDegAsp as insulin of initiation (16), as an intensification regime (4), as de-escalation from basal-bolus therapy (16), or as sw...

  15. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles.

    Science.gov (United States)

    Zhang, Peng; Yuan, Kangjun; Li, Cheng; Zhang, Xiaoke; Wu, Wei; Jiang, Xiqun

    2017-12-01

    Cisplatin-rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)-terminated poly(aspartic acid) (Ad-P(Asp)) and the β-cyclodextrin (β-CD)-terminated poly(2-methyl-2-oxazoline). In the formation of the nanoparticles, the β-CD/admantane inclusion complex integrates poly(2-methyl-2-oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin-rich supramolecular nanoparticles have 53% cisplatin-loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near-infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin-rich nanoparticles can target the tumor in vivo effectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Purification, Cloning and Immuno-Biochemical Characterization of a Fungal Aspartic Protease Allergen Rhi o 1 from the Airborne Mold Rhizopus oryzae.

    Science.gov (United States)

    Sircar, Gaurab; Saha, Bodhisattwa; Mandal, Rahul Shubhra; Pandey, Naren; Saha, Sudipto; Gupta Bhattacharya, Swati

    2015-01-01

    Fungal allergy is considered as serious health problem worldwide and is increasing at an alarming rate in the industrialized areas. Rhizopus oyzae is a ubiquitously present airborne pathogenic mold and an important source of inhalant allergens for the atopic population of India. Here, we report the biochemical and immunological features of its 44 kDa sero-reactive aspartic protease allergen, which is given the official designation 'Rhi o 1'. The natural Rhi o 1 was purified by sequential column chromatography and its amino acid sequence was determined by mass spectrometry and N-terminal sequencing. Based on its amino acid sequence, the cDNA sequence was identified, cloned and expressed to produce recombinant Rhi o 1. The allergenic activity of rRhi o 1 was assessed by means of its IgE reactivity and histamine release ability. The biochemical property of Rhi o 1 was studied by enzyme assay. IgE-inhibition experiments were performed to identify its cross-reactivity with the German cockroach aspartic protease allergen Bla g 2. For precise characterization of the cross-reactive epitope, we used anti-Bla g 2 monoclonal antibodies for their antigenic specificity towards Rhi o 1. A homology based model of Rhi o 1 was built and mapping of the cross-reactive conformational epitope was done using certain in silico structural studies. The purified natural nRhi o 1 was identified as an endopeptidase. The full length allergen cDNA was expressed and purified as recombinant rRhi o 1. Purified rRhi o 1 displayed complete allergenicity similar to the native nRhi o 1. It was recognized by the serum IgE of the selected mold allergy patients and efficiently induced histamine release from the sensitized PBMC cells. This allergen was identified as an active aspartic protease functional in low pH. The Rhi o 1 showed cross reactivity with the cockroach allergen Bla g 2, as it can inhibit IgE binding to rBla g 2 up to certain level. The rBla g 2 was also found to cross-stimulate histamine

  17. Purification, Cloning and Immuno-Biochemical Characterization of a Fungal Aspartic Protease Allergen Rhi o 1 from the Airborne Mold Rhizopus oryzae.

    Directory of Open Access Journals (Sweden)

    Gaurab Sircar

    Full Text Available Fungal allergy is considered as serious health problem worldwide and is increasing at an alarming rate in the industrialized areas. Rhizopus oyzae is a ubiquitously present airborne pathogenic mold and an important source of inhalant allergens for the atopic population of India. Here, we report the biochemical and immunological features of its 44 kDa sero-reactive aspartic protease allergen, which is given the official designation 'Rhi o 1'.The natural Rhi o 1 was purified by sequential column chromatography and its amino acid sequence was determined by mass spectrometry and N-terminal sequencing. Based on its amino acid sequence, the cDNA sequence was identified, cloned and expressed to produce recombinant Rhi o 1. The allergenic activity of rRhi o 1 was assessed by means of its IgE reactivity and histamine release ability. The biochemical property of Rhi o 1 was studied by enzyme assay. IgE-inhibition experiments were performed to identify its cross-reactivity with the German cockroach aspartic protease allergen Bla g 2. For precise characterization of the cross-reactive epitope, we used anti-Bla g 2 monoclonal antibodies for their antigenic specificity towards Rhi o 1. A homology based model of Rhi o 1 was built and mapping of the cross-reactive conformational epitope was done using certain in silico structural studies.The purified natural nRhi o 1 was identified as an endopeptidase. The full length allergen cDNA was expressed and purified as recombinant rRhi o 1. Purified rRhi o 1 displayed complete allergenicity similar to the native nRhi o 1. It was recognized by the serum IgE of the selected mold allergy patients and efficiently induced histamine release from the sensitized PBMC cells. This allergen was identified as an active aspartic protease functional in low pH. The Rhi o 1 showed cross reactivity with the cockroach allergen Bla g 2, as it can inhibit IgE binding to rBla g 2 up to certain level. The rBla g 2 was also found to cross

  18. Strains of Lactococcus lactis with a partial pyrimidine requirement show sensitivity toward aspartic acid

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Martinussen, Jan

    2009-01-01

    The growth rate of the widely used laboratory strain Lactococcus lactis subsp. cremoris LM0230 was reduced if aspartic acid were present in the growth medium. The strain LM0230 is a plasmid- and phage-cured derivative of L. lactis subsp. cremoris C2, the ancestor of the original dairy isolate L...... with the wild-type strain, and this varied with the concentration of aspartic acid. The observed effect of aspartate could be explained by the accumulation of the toxic pyrimidine de novo pathway intermediate, carbamoyl aspartate. Assays of the pyrimidine biosynthetic enzymes of L. lactis LM0230 showed....... lactis subsp. cremoris NCDO712. The growth of both C2 and NCDO712 was unaffected by exogenous aspartate. Also, the growth rate of the pyrimidine auxotrophic mutants of L. lactis was affected by exogenous aspartate. The maximum observed reduction in the growth rate was similar to 35% when compared...

  19. Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases.

    Science.gov (United States)

    Li, X C; Jacob, M R; Pasco, D S; ElSohly, H N; Nimrod, A C; Walker, L A; Clark, A M

    2001-10-01

    Assay-guided fractionation of the ethanol extract of the twigs and leaves of Miconia myriantha yielded two new compounds, mattucinol-7-O-[4' ',6' '-O-(S)-hexahydroxydiphenoyl]-beta-D-glucopyranoside (1) and mattucinol-7-O-[4' ',6' '-di-O-galloyl]-beta-D-glucopyranoside (2), along with mattucinol-7-O-beta-D-glucopyranoside (3), ellagic acid (4), 3,3'-di-O-methyl ellagic acid-4-O-beta-D-xylopyranoside, and gallic acid. Complete (1)H and (13)C NMR assignments of compound 1, which possesses a hexahydroxydiphenoyl unit, were achieved using the HMBC technique optimized for small couplings to enhance the four-bond and two-bond H/C correlations. Compounds 1 and 4 showed inhibitory effects against Candida albicans secreted aspartic proteases, with IC(50) of 8.4 and 10.5 microM, respectively.

  20. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    Science.gov (United States)

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation.

  1. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  2. Anti-N-methyl-D-aspartate receptor encephalitis in China

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are mainly distributed in the central nervous system, and play important roles in the mechanisms of learning and memory. A newly discovered disease caused by autoantibody to NMDAR has been described, and is called anti-NMDAR encephalitis. Patients with this disease often suffer from mental disorders, seizures and other encephalitis-like symptoms. Accumulated data suggests that the severity of the disease makes early diagnosis very important. Accurately detecting the autoantibody to NMDAR is considered to be the gist of diagnosis. Good prognosis is predicted in most patients, when treated properly. Immunotherapy is preferred in most cases. In China, this disease has been reported only for a few years, but sporadic case reports are also helpful for profiling.

  3. Anti-N-Methyl-d-Aspartate Receptor Encephalitis

    Directory of Open Access Journals (Sweden)

    Te-Yu Hung

    2011-12-01

    Full Text Available Anti-N-methyl-d-aspartate (NMDA receptor encephalitis is a treatment-responsive encephalitis associated with anti-NMDA receptor antibodies, which bind to the NR1/NR2 heteromers of the NMDA receptors. It is a highly characteristic syndrome evolving in five stages: the prodromal phase (viral infection-like symptoms, psychotic phase, unresponsive phase, hyperkinetic phase, and gradual recovery phase. It has been considered as a paraneoplastic syndrome usually affecting childbearing-age female with ovarian tumors; however, recent reports suggest a much higher incidence of nonparaneoplastic cases in children. We report a 14-year-old girl with anti-NMDA receptor encephalitis without a detectable tumor who showed a nearly complete recovery after intensive immunotherapy.

  4. Effects of a Proline Endopeptidase on the Detection and Quantitation of Gluten by Antibody-Based Methods during the Fermentation of a Model Sorghum Beer.

    Science.gov (United States)

    Panda, Rakhi; Fiedler, Katherine L; Cho, Chung Y; Cheng, Raymond; Stutts, Whitney L; Jackson, Lauren S; Garber, Eric A E

    2015-12-09

    The effectiveness of a proline endopeptidase (PEP) in hydrolyzing gluten and its putative immunopathogenic sequences was examined using antibody-based methods and mass spectrometry (MS). Based on the results of the antibody-based methods, fermentation of wheat gluten containing sorghum beer resulted in a reduction in the detectable gluten concentration. The addition of PEP further reduced the gluten concentration. Only one sandwich ELISA was able to detect the apparent low levels of gluten present in the beers. A competitive ELISA using a pepsin-trypsin hydrolysate calibrant was unreliable because the peptide profiles of the beers were inconsistent with that of the hydrolysate calibrant. Analysis by MS indicated that PEP enhanced the loss of a fragment of an immunopathogenic 33-mer peptide in the beer. However, Western blot results indicated partial resistance of the high molecular weight (HMW) glutenins to the action of PEP, questioning the ability of PEP in digesting all immunopathogenic sequences present in gluten.

  5. A new peptide substrate for enhanced botulinum neurotoxin type B detection by endopeptidase-liquid chromatography-tandem mass spectrometry/multiple reaction monitoring assay.

    Science.gov (United States)

    Rosen, Osnat; Feldberg, Liron; Gura, Sigalit; Zichel, Ran

    2015-03-15

    Botulinum neurotoxins (BoNTs) are the most toxic proteins in nature. Rapid and sensitive detection of BoNTs is achieved by the endopeptidase-mass spectrometry (Endopep-MS) assay. In this assay, BoNT cleaves a specific peptide substrate and the cleaved products are analyzed by MS. Here we describe the design of a new peptide substrate for improved detection of BoNT type B (BoNT/B) in the Endopep-MS assay. Our strategy was based on reported BoNT/B-substrate interactions integrated with analysis method efficiency considerations. Incorporation of the new peptide led to a 5-fold increased sensitivity of the assay both in buffer and in a clinically relevant human spiked serum. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Recovery, viscoelastic and functional properties of Barbel skin gelatine: investigation of anti-DPP-IV and anti-prolyl endopeptidase activities of generated gelatine polypeptides.

    Science.gov (United States)

    Sila, Assaâd; Martinez-Alvarez, Oscar; Haddar, Anissa; Gómez-Guillén, M Carmen; Nasri, Moncef; Montero, M Pilar; Bougatef, Ali

    2015-02-01

    The characteristics and functional properties of gelatine from freshwater fish skin (Barbus callensis) were investigated. The gelatine extraction efficiency was improved by an acid-swelling process in the presence of barbel crude acid protease extract. Barbel skin gelatine (BSG) contained 92.15% protein, 0.31% lipid and 0.72% ash. The amino acid profile of BSG showed a high percentage of imino acids. The electrophoretic profile showed that BSG is mainly composed of α- and β-components. BSG showed an excellent solubility and possessed interfacial properties, which were governed by the protein concentration. Biological activities of the hydrolysates obtained after digestion of BSG with several commercial proteases were evaluated. The results suggested that these hydrolysates are a good source of natural inhibitors of dipeptidyl peptidase-IV and prolyl endopeptidase and could potentially be used as dietary ingredients in the management of type 2-diabetes and/or neuropathological disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Demyelinating disease and anti-N-methyl-D-aspartate receptor immunoglobulin G antibodies: a case report.

    Science.gov (United States)

    Waschbisch, Anne; Kallmünzer, Bernd; Schwab, Stefan; Gölitz, Philipp; Vincent, Angela; Lee, De-Hyung; Linker, Ralf A

    2014-12-23

    Anti-N-methyl-D-aspartate receptor immunoglobulin G antibodies directed against the GluN1 subunit are considered highly specific for anti-N-methyl-D-aspartate receptor encephalitis, a severe clinical syndrome characterized by seizures, psychiatric symptoms, orofacial dyskinesia and autonomic dysfunction. Here we report a 33 year old Caucasian male patient with clinically definite multiple sclerosis who was found to be positive for anti-N-methyl-D-aspartate receptor antibodies. Rituximab therapy was initiated. On the 18 months follow-up visit the patient was found to be clinically stable, without typical signs of anti-N-methyl-D-aspartate receptor encephalitis. Our findings add to the growing evidence for a possible association between anti-N-methyl-D-aspartate receptor encephalitis and demyelinating diseases.

  8. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus.

    Science.gov (United States)

    Petroff, Ognen A C; Errante, Laura D; Kim, Jung H; Spencer, Dennis D

    2003-05-27

    Mesial temporal lobe epilepsy (mTLE) is characterized by hippocampal atrophy, decreased N-acetyl-aspartate, and a low N-acetyl-aspartate/total creatine ratio, often attributed to neuron loss and gliosis. Qualitative studies reported that N-acetyl-aspartate content was significantly lower in hippocampal sclerosis. It was proposed to measure the effects of neuron loss and gliosis on the hippocampal content of N-acetyl-aspartate, total creatine, and myo-inositol in mTLE. Twenty hippocampal specimens were obtained during temporal lobectomy and frozen quickly. Perchloric acid extracts of the small metabolites were prepared and analyzed by proton MRS at 11.75 T. Adjacent samples were used for cell counts. There were no significant associations between hippocampal neuron loss and the cellular content of N-acetyl-aspartate, total creatine, or myo-inositol, despite more than a threefold difference in neuron loss and a twofold increase in glial density. Metabolite concentrations varied two- to fourfold. Variation in the cellular content of total creatine accounted for more than three-quarters of the rank-order variance of the N-acetyl-aspartate concentrations. There were no associations between myo-inositol and N-acetyl-aspartate or total creatine. Overall, mean N-acetyl-aspartate levels were below those reported by in vivo MRS studies of control subjects. These data suggest that decreased N-acetyl-aspartate in mesial temporal lobe epilepsy reflects altered mitochondrial metabolism, not merely neuron loss or gliosis. It is hypothesized that the altered N-acetyl-aspartate and creatine metabolism could reflect mitochondrial dysfunction or proliferation of immature glial cells that could contribute to the epileptogenic state.

  9. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Casablanca cohort of the A1chieve study.

    Science.gov (United States)

    Farouqi, Ahmed; Chadli, Asmae

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Casablanca, Morocco. A total of 495 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 231), insulin detemir (n = 151), insulin aspart (n = 19), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.2%) and insulin user (mean HbA1c: 9.4%) groups. After 24 weeks of treatment, both groups showed improvement in HbA1c (insulin naïve: -2.3%, insulin users: -1.8%). Major hypoglycaemia was observed in the insulin naïve group after 24 weeks. SADRs were reported in 1.2% of insulin naïve and 2.1% of insulin user groups. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  11. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Maharashtra cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Uday Phadke

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Maharashtra, India. Results: A total of 3069 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 2115, insulin detemir (n = 461, insulin aspart (n = 333, basal insulin plus insulin aspart (n = 92 and other insulin combinations (n = 61. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.8 and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.4%, insulin users: −1.4%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  12. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kerala cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sreejith N Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kerala, India. Results: A total of 1732 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1203, insulin detemir (n = 212, insulin aspart (n = 312, basal insulin plus insulin aspart (n = 1 and other insulin combinations (n = 1. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 8.3% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.4%, insulin users: −0.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  13. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kolkata cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Anirban Majumder

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kolkata, India. Results: A total of 576 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 417, insulin detemir (n = 70, insulin aspart (n = 55, basal insulin plus insulin aspart (n = 19 and other insulin combinations (n = 15. At baseline, glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.6% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.3%, insulin users: −1.4%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  14. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    P G Talwalkar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. Results: A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561, insulin detemir (n = 313, insulin aspart (n = 144, basal insulin plus insulin aspart (n = 53 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.7% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.4%, insulin users: −1.8%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  15. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Haryana cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Haryana, India. Results: A total of 345 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 236, insulin detemir (n = 66, insulin aspart (n = 28, basal insulin plus insulin aspart (n = 1 and other insulin combinations (n = 14. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.7% and insulin user (mean HbA 1 c: 10.5% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −3.9%, insulin users: −3.3%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  16. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Chennai cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    J S Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Chennai, India. Results: A total of 1334 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 983, insulin detemir (n = 205, insulin aspart (n = 42, basal insulin plus insulin aspart (n = 41 and other insulin combinations (n = 63. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.4% and insulin users (mean HbA 1 c: 9.3% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.9%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  17. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Delhi cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sudhir Tripathi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Delhi, India. Results: A total of 2242 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1515, insulin detemir (n = 521, insulin aspart (n = 176, basal insulin plus insulin aspart (n = 11 and other insulin combinations (n = 19. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 11.0% groups. After 24 weeks of treatment both the groups showed improvement in HbA 1 c (insulin naïve: −3.1%, insulin users: −3.6%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Casablanca cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Ahmed Farouqi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Casablanca, Morocco. Results: A total of 495 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 231, insulin detemir (n = 151, insulin aspart (n = 19, basal insulin plus insulin aspart (n = 53 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.2% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.3%, insulin users: −1.8%. Major hypoglycaemia was observed in the insulin naïve group after 24 weeks. SADRs were reported in 1.2% of insulin naïve and 2.1% of insulin user groups. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  19. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kuwait cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Alaa Daban

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kuwait. Results: A total of 1185 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 472, insulin detemir (n = 472, insulin aspart (n = 4, basal insulin plus insulin aspart (n = 188 and other insulin combinations (n = 48. At baseline, glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.8% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.4%, insulin users: −1.7%. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.1% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  20. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Oman cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mustafa Al Abousi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Oman. Results: A total of 349 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 121, insulin detemir (n = 171, insulin aspart (n = 2, basal insulin plus insulin aspart (n = 38 and other insulin combinations (n = 17. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.2% and insulin user (mean HbA 1 c: 8.8% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.6%. SADRs including major hypoglycaemic events did not occur in the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia and no weight gain.

  1. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Gujarat cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Banshi Saboo

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Gujarat, India. Results: A total of 812 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 502, insulin detemir (n = 89, insulin aspart (n = 155, basal insulin plus insulin aspart (n = 45 and other insulin combinations (n = 21. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.9% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.2%, insulin users: −2.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  2. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Marrakech cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    El Ansari Nawal

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Marrakech, Morocco. Results: A total of 196 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 71, insulin detemir (n = 83, insulin aspart (n = 5, basal insulin plus insulin aspart (n = 14 and other insulin combinations (n = 23. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.3% and insulin user (mean HbA 1 c: 9.3% groups. After 24 weeks of treatment, both the study groups showed improvement in HbA 1 c (insulin naïve: −2.3%, insulin users: −1.9%. SADR′s including major hypoglycaemic events did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  3. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Bangalore cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    L Srinivasa Murthy

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Bangalore, India. Results: A total of 1533 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1262, insulin detemir (n = 165, insulin aspart (n = 86, basal insulin plus insulin aspart (n = 11 and other insulin combinations (n = 2. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.2% and insulin users (mean HbA 1 c: 8.8% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −1.3%, insulin users: −1.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  4. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Punjab cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Punjab, India. Results: A total of 655 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 587, insulin detemir (n = 28, insulin aspart (n = 24, basal insulin plus insulin aspart (n = 13 and other insulin combinations (n = 3. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.1% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −0.8%, insulin users: −1.0%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  5. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Agadir cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Hicham Boussouf

    2013-01-01

    Full Text Available Background: A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Agadir, Morocco. Results: A total of 201 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 98, insulin detemir (n = 54, insulin aspart (n = 8, basal insulin plus insulin aspart (n = 8 and other insulin combinations (n = 33. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.7% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −1.3%. No major hypoglycaemia was observed at 24 weeks. SADRs were reported in 1.5% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  6. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Gujarat cohort of the A1chieve study.

    Science.gov (United States)

    Saboo, Banshi; Patel, Mayur

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Gujarat, India. A total of 812 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 502), insulin detemir (n = 89), insulin aspart (n = 155), basal insulin plus insulin aspart (n = 45) and other insulin combinations (n = 21). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.9%) and insulin user (mean HbA1c: 9.1%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -2.2%, insulin users: -2.5%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  7. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, Henrik; Galili, G; Knudsen, S

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance the...... as observed in T0 seeds. It is concluded that the aspartate family pathway may be genetically engineered by the introduction of genes coding for feed-back-insensitive enzymes, preferentially giving elevated levels of lysine and methionine.......In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance...... the accumulation of the corresponding amino acids, we have generated transgenic barley plants that constitutively express mutant Escherichia coli genes encoding lysine feed-back insensitive forms of AK and DHPS. As a result, leaves of primary transformants (T0) exhibited a 14-fold increase of free lysine and an 8...

  8. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp YM55-1

    NARCIS (Netherlands)

    Veetil, Vinod Puthan; Raj, Hans; Quax, Wim J.; Janssen, Dick B.; Poelarends, Gerrit J.

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of l-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of l-aspartate to form an enzyme-stabilized enediolate intermediate.

  9. Asparaginyl endopeptidase improves the resistance of microtubule-targeting drugs in gastric cancer through IQGAP1 modulating the EGFR/JNK/ERK signaling pathway

    Directory of Open Access Journals (Sweden)

    Cui Y

    2017-02-01

    Full Text Available Yuehong Cui,1,* Qian Li,1,* Hong Li,1 Yan Wang,1 Hongshan Wang,2 Weidong Chen,2 Shangmin Zhang,3 Jian Cao,3 Tianshu Liu1 1Medical Oncology Department, 2General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China; 3Pathology Department, Yale School of Medicine, New Haven, CT, USA *These authors contributed equally to this work Purpose: In recent years, understanding of the role of asparaginyl endopeptidase (AEP in tumorigenesis has steadily increased. In this study, we investigated whether AEP expression correlates with sensitivity to chemotherapeutic drugs in gastric cancer and explored the mechanism.Patients and methods: AEP expression in the serum of patients’ peripheral blood was measured by enzyme-linked immunosorbent assay. Patient survival time was evaluated using univariate and multivariate analyses. Mass spectrometry and co-immunoprecipitation assays were utilized to discover proteins that interact with AEP. Gastric cancer cell lines were established, in which AEP was overexpressed or knocked out using lentiviral CRISPR. The proliferative abilities of these cell lines in response to chemotherapy agents were evaluated using the Cell Counting Kit-8 method. Gene expression changes in these lines were assessed by real-time polymerase chain reaction and Western blot.Results: Patients with low expression of AEP were significantly more likely to have a good prognosis and experience complete response or partial response after treatment with docetaxel/S-1 regimen. Mass spectrum analysis showed that several proteins in the focal adhesion and mitogen-activated protein kinase signaling pathways interacted with AEP. IQGAP1 was confirmed to be one of the proteins interacting with AEP, and its protein level increased when AEP was knocked out. AEP knockout decreased resistance to microtubule inhibitors, including paclitaxel, docetaxel, and T-DM1. The expression levels of MDR1, p-EGFR, p-JNK, p-ERK, and p

  10. Analysis of the peptidoglycan hydrolase complement of Lactobacillus casei and characterization of the major γ-D-glutamyl-L-lysyl-endopeptidase.

    Directory of Open Access Journals (Sweden)

    Krzysztof Regulski

    Full Text Available Peptidoglycan (PG is the major component of Gram positive bacteria cell wall and is essential for bacterial integrity and shape. Bacteria synthesize PG hydrolases (PGHs which are able to cleave bonds in their own PG and play major roles in PG remodelling required for bacterial growth and division. Our aim was to identify the main PGHs in Lactobacillus casei BL23, a lactic acid bacterium with probiotic properties.The PGH complement was first identified in silico by amino acid sequence similarity searches of the BL23 genome sequence. Thirteen PGHs were detected with different predicted hydrolytic specificities. Transcription of the genes was confirmed by RT-PCR. A proteomic analysis combining the use of SDS-PAGE and LC-MS/MS revealed the main seven PGHs synthesized during growth of L. casei BL23. Among these PGHs, LCABL_02770 (renamed Lc-p75 was identified as the major one. This protein is the homolog of p75 (Msp1 major secreted protein of Lactobacillus rhamnosus GG, which was shown to promote survival and growth of intestinal epithelial cells. We identified its hydrolytic specificity on PG and showed that it is a γ-D-glutamyl-L-lysyl-endopeptidase. It has a marked specificity towards PG tetrapeptide chains versus tripeptide chains and for oligomers rather than monomers. Immunofluorescence experiments demonstrated that Lc-p75 localizes at cell septa in agreement with its role in daughter cell separation. It is also secreted under an active form as detected in zymogram. Comparison of the muropeptide profiles of wild type and Lc-p75-negative mutant revealed a decrease of the amount of disaccharide-dipeptide in the mutant PG in agreement with Lc-p75 activity. As a conclusion, Lc-p75 is the major L. casei BL23 PGH with endopeptidase specificity and a key role in daughter cell separation. Further studies will aim at investigating the role of Lc-p75 in the anti-inflammatory potential of L. casei BL23.

  11. Insulin degludec aspart: One-year real world experience

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men, with mean age of 54.33 ± 9.63 years and mean duration of diabetes of 6.33 ± 2.96 years, started IDegAsp as insulin of initiation (16, as an intensification regime (4, as de-escalation from basal-bolus therapy (16, or as switch from premixed insulin (12. The dose of IDegAsp fell from 43.17 ± 21.18 U/day or 0.56 ± 0.23 U/kg to 37.75 ± 17.13U/day (0.51 ± 0.12 U/kg at 24 weeks and 41.41 ± 15.33 U/day (0.56 ± 0.17 U/kg at 52 weeks. Hemoglobin A1c (HbA1c, which was 9.52 ± 1.27% at the start of therapy, fell to 7.51 ± 0.46% at 26 weeks and to 7.48 ± 0.40% at 52 weeks. Fasting plasma glucose fell from 154.08 ± 33.30 mg% to 108.58 ± 22.26 mg% at 26 weeks and 102.17 ± 12.79 mg% at 52 weeks. Of the 48 subjects, 39 (81.25% achieved a target of HbA1c <7.0% at both 26 and 52 weeks. No episode of hypoglycemia was reported in the 4 weeks preceding the analysis. Conclusion: This communication highlights the efficacy, safety, and tolerability, while providing insight into the usage patterns of IDegAsp.

  12. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Intersubunit communication in the dihydroorotase–aspartate transcarbamoylase complex of Aquifex aeolicus

    National Research Council Canada - National Science Library

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Hachem, Fatme; Brunzelle, Joseph S; Edwards, Brian F.P; Evans, David R

    2014-01-01

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms...

  14. Trapping and structure determination of an intermediate in the allosteric transition of aspartate transcarbamoylase

    National Research Council Canada - National Science Library

    Wenyue Guo; Jay M. West; Andrew S. Dutton; Hiro Tsuruta; Evan R. Kantrowitz

    2012-01-01

    X-ray crystallography and small-angle X-ray scattering (SAXS) in solution have been used to show that a mutant aspartate trans-carbamoylase exists in an intermediate quaternary structure between the canonical T and R structures...

  15. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes

    NARCIS (Netherlands)

    Hahnenkamp, Klaus; Nollet, Joke; van Aken, Hugo K.; Buerkle, Hartmut; Halene, Tobias; Schauerte, Svenja; Hahnenkamp, Anke; Hollmann, Markus W.; Strümper, Danja; Durieux, Marcel E.; Hoenemann, Christian W.

    2004-01-01

    BACKGROUND: Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA)

  16. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    DEFF Research Database (Denmark)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouther L.J.

    2013-01-01

    . Furthermore, LC–MS (MS) measurements indicated that the combination of aspartate buffer and Zn2+ in particular suppressed intermolecular degradation reactions near the Cys1,6 disulfide bridge. These results lead to the hypothesis that in aspartate buffer, Zn2+ changes the conformation of oxytocin...... in such a way that the Cys1,6 disulfide bridge is shielded from its environment thereby suppressing intermolecular reactions involving this region of the molecule. To verify this hypothesis, we investigate here the conformation of oxytocin in aspartate buffer in the presence of Mg2+ or Zn2+, using 2D NOESY......, with the largest chemical shift changes observed for Cys1. Zn2+ causes more extensive changes in oxytocin in aqueous solution than Mg2+. Our findings suggest that the carboxylate group of aspartate neutralizes the positive charge of the N-terminus of Cys1, allowing the interactions with Zn2+ to become more...

  17. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    Science.gov (United States)

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  18. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    OpenAIRE

    Maria Maddalena Di Fiore; Alessandra Santillo; Sara Falvo; Salvatore Longobardi; Gabriella Chieffi Baccari

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances...

  19. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  20. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  1. Rat d-aspartate oxidase is more similar to the human enzyme than the mouse enzyme.

    Science.gov (United States)

    Katane, Masumi; Kuwabara, Hisashi; Nakayama, Kazuki; Saitoh, Yasuaki; Miyamoto, Tetsuya; Sekine, Masae; Homma, Hiroshi

    2017-12-29

    d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia, as well as chronic pain. Thus, appropriate regulation of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Accordingly, much attention has been paid to the role(s) of DDO in the metabolism of d-aspartate in vivo, and the physiological functions of DDO have been actively investigated using experimental rats and mice. However, detailed characterisation of rat DDO has not yet been performed, and little is known about species-specific differences in the properties of mammalian DDOs. In this study, the structural and enzymatic properties of purified recombinant rat, mouse and human DDOs were examined and compared. The results showed that rat DDO is more similar to human DDO than to mouse DDO. This work provides useful insight into the use of rats as an experimental model for investigating the biological significance of human DDO and/or d-aspartate. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Lowered circulating aspartate is a metabolic feature of human breast cancer.

    Science.gov (United States)

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-10-20

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer.

  3. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    Science.gov (United States)

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, K.; Kantrowitz, E

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c{sub 6}r{sub 6}. Dissociation of the native holoenzyme produces catalytically active trimers, c{sub 3}, and nucleotide-binding regulatory dimers, r{sub 2}. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c{sub 6}, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c{sub 6} species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c{sub 6} ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 {angstrom} resolution. The structure of c{sub 6} ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c{sub 6} enzyme, enhancing its activity over the wild-type holoenzyme (c{sub 6}r{sub 6}) and c{sub 3}. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction

  5. A route to anionic hydrophilic films of copolymers of l-leucine, l-aspartic acid and l-aspartic acid esters

    NARCIS (Netherlands)

    Sederel, W.L.; Bantjes, A.; Feijen, Jan

    1975-01-01

    A series of copolymers of l-leucine and β-benzyl-l-aspartate [Leu/Asp(OBz)] covering the range 30–70 mol % of l-leucine, was synthesized by the N-carboxyanhydride (NCA) method. The copolymers were characterized by elemental analysis, infra-red spectroscopy and viscometry. For all compositions high

  6. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rajasthan cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Akhil Joshi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rajasthan, India. Results: A total of 477 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 340, insulin detemir (n = 90, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 7 and other insulin combinations (n = 2. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.4% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −0.9%, insulin users: −1.2%. Major hypoglycaemic events decreased from 0.5 events/patient-year to 0.0 events/patient-year in insulin naïve group while no change from baseline (1.3 events/patients-year was observed for insulin users. SADRs were not reported in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  7. Review of biphasic insulin aspart in the treatment of type 1 and 2 diabetes

    Directory of Open Access Journals (Sweden)

    Nazia Raja-Khan

    2008-01-01

    Full Text Available Nazia Raja-Khan, Sarah S Warehime, Robert A GabbayDivision of Endocrinology, Diabetes, and Metabolism, Penn State Institute for Diabetes and Obesity, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USABackground: Insulin is an effective treatment for achieving glycemic control and preventing complications in patients with diabetes. In order to make insulin therapy more acceptable to patients, newer formulations of insulin have been developed, such as biphasic insulins. Biphasic insulins conveniently provide both prandial and basal insulin in a single injection. One of the most well-studied biphasic insulins is biphasic insulin aspart 70/30.Objective: Our goal was to review the current literature on the safety and efficacy of biphasic insulin aspart in type 1 and type 2 diabetes.Methods: A MEDLINE search was conducted using the terms “biphasic insulin aspart” to identify clinical studies and reviews.Results: Biphasic insulin aspart more effectively reduces post-prandial glucose compared to other biphasic insulins and basal insulins. Compared to biphasic insulin aspart, fasting glucose levels are lower with NPH, similar with glargine, and similar or lower with biphasic human insulin. Treat-to-target trials have shown that a goal HbA1c below 6.5 or 7% can be achieved with biphasic insulin aspart. The risk of hypoglycemia is similar to or less than that seen with other biphasic insulins or NPH insulin.Conclusion: Biphasic insulin aspart 70/30 is a safe and effective treatment option for patients with diabetes.Keywords: biphasic insulin aspart, insulin, diabetes

  8. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  9. Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.

    Science.gov (United States)

    Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth

    2008-11-01

    To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.

  10. Effects of neutral endopeptidase (neprilysin) inhibition on the response to other vasoactive peptides in small human resistance arteries: studies with thiorphan and omapatrilat.

    Science.gov (United States)

    Dalzell, Jonathan R; Seed, Alison; Berry, Colin; Whelan, Carol J; Petrie, Mark C; Padmanabhan, Neal; Clarke, Amanda; Biggerstaff, Fiona; Hillier, Christopher; McMurray, John J V

    2014-02-01

    New compounds with neprilysin or neutral endopeptidase (NEP) inhibiting activity are under clinical investigation in heart failure and hypertension. We investigated the effect of NEP inhibition on the functional vasomotor responses to a range of vasoactive peptides in human blood vessels. Small human resistance arteries from patients with coronary artery disease and preserved left ventricular systolic function were studied. Thiorphan (a NEP inhibitor) was compared with captopril (an ACE inhibitor) and omapatrilat (a dual NEP-ACE inhibitor) with regard to their effects on the response of human arteries to key vasoactive peptides. As expected, both captopril and omapatrilat (but not thiorphan) inhibited the vasoconstrictor effect of angiotensin I (maximal response [SEM]: 27 ± 8% vehicle, 6 ± 2% captopril, 39 ± 10% thiorphan, 8 ± 7% omapatrilat, P < 0.05). Thiorphan, captopril, and omapatrilat all enhanced the vasodilator response to bradykinin (all P < 0.01). Omapatrilat markedly augmented the vasodilator action of adrenomedullin (P < 0.05), whilst thiorphan and captopril did not. None of the three inhibitors studied affected the vasodilator action of c-type natriuretic peptide, calcitonin gene-related peptide, vasoactive intestinal polypeptide or substance P. NEP inhibition with thiorphan modestly augmented the vasodilator action of bradykinin, but did not potentiate the response to adrenomedullin; dual ACE and NEP inhibition with omapatrilat, as expected, markedly augmented the response to bradykinin and also potentiated the effect of adrenomedullin. Thiorphan weakly enhanced the vasoconstrictor response to angiotensin I. Neither omapatrilat nor thiorphan had any effect on the action of a range of other vasoactive peptides including CNP. © 2013 John Wiley & Sons Ltd.

  11. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis is regulated by different stimuli from prey through jasmonates.

    Directory of Open Access Journals (Sweden)

    Michaela Libiaková

    Full Text Available The trap of the carnivorous plant Venus flytrap (Dionaea muscipula catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl and P(K stimulation on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA but jasmonic acid (JA and its isoleucine conjugate (JA-Ile accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA, salicylic acid (SA and abscisic acid (ABA did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

  12. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    Science.gov (United States)

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  13. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q.

    Science.gov (United States)

    Honda-Ogawa, Mariko; Sumitomo, Tomoko; Mori, Yasushi; Hamd, Dalia Talat; Ogawa, Taiji; Yamaguchi, Masaya; Nakata, Masanobu; Kawabata, Shigetada

    2017-03-10

    Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Abundance of cysteine endopeptidase dionain in digestive fluid of Venus flytrap (Dionaea muscipula Ellis) is regulated by different stimuli from prey through jasmonates.

    Science.gov (United States)

    Libiaková, Michaela; Floková, Kristýna; Novák, Ondřej; Slováková, L'udmila; Pavlovič, Andrej

    2014-01-01

    The trap of the carnivorous plant Venus flytrap (Dionaea muscipula) catches prey by very rapid closure of its modified leaves. After the rapid closure secures the prey, repeated mechanical stimulation of trigger hairs by struggling prey and the generation of action potentials (APs) result in secretion of digestive fluid. Once the prey's movement stops, the secretion is maintained by chemical stimuli released from digested prey. We investigated the effect of mechanical and chemical stimulation (NH4Cl, KH2PO4, further N(Cl) and P(K) stimulation) on enzyme activities in digestive fluid. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases were not detected. Acid phosphatase activity was higher in N(Cl) stimulated traps while proteolytic activity was higher in both chemically induced traps in comparison to mechanical stimulation. This is in accordance with higher abundance of recently described enzyme cysteine endopeptidase dionain in digestive fluid of chemically induced traps. Mechanical stimulation induced high levels of cis-12-oxophytodienoic acid (cis-OPDA) but jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) accumulated to higher level after chemical stimulation. The concentration of indole-3-acetic acid (IAA), salicylic acid (SA) and abscisic acid (ABA) did not change significantly. The external application of JA bypassed the mechanical and chemical stimulation and induced a high abundance of dionain and proteolytic activity in digestive fluid. These results document the role of jasmonates in regulation of proteolytic activity in response to different stimuli from captured prey. The double trigger mechanism in protein digestion is proposed.

  15. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    Science.gov (United States)

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe3O4) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preparation and properties of poly(aspartic acid)-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.D. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, J.H. [SungKyunKwan University, Suwon (Korea, Republic of); Kim, S.H.; Kim, Y.H. [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1999-03-01

    High molecular weight polysuccinimide (PSI), as a precursor of poly (aspartic acid), was prepared by thermal polycondensation of L-aspartic acid. The molecular weight was high when phosphoric acid was used as a catalyst, and the ratio to monomer was 0.75 : 1(phosphoric acid : L-aspartic acid). Attempted solution polymerization in various sulfolane/mesitylene mixtures gave only low molecular weight polymers. By the post polymerization of PSI using DCC as a condensing reagent, the molecular weight of PSI could be increased to some extent. Hydrogels was prepared by crosslinking reaction of PSI with diamine, followed by hydrolysis with NaOH either in water or in DMF solution. As high as 104 g water/g-polymer absorption could be obtained from the hydrogel prepared with 3 mol % of hexamethylenediamine. 13 refs., 7 figs., 1 tab.

  17. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH.

    Science.gov (United States)

    Allen, Eric L; Ulanet, Danielle B; Pirman, David; Mahoney, Christopher E; Coco, John; Si, Yaguang; Chen, Ying; Huang, Lingling; Ren, Jinmin; Choe, Sung; Clasquin, Michelle F; Artin, Erin; Fan, Zi Peng; Cianchetta, Giovanni; Murtie, Joshua; Dorsch, Marion; Jin, Shengfang; Smolen, Gromoslaw A

    2016-10-11

    Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    Directory of Open Access Journals (Sweden)

    Eric L. Allen

    2016-10-01

    Full Text Available Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.

  19. Onchocerca volvulus: expression and immunolocalization of a nematode cathepsin D-like lysosomal aspartic protease.

    Science.gov (United States)

    Jolodar, Abbas; Fischer, Peter; Büttner, Dietrich W; Miller, David J; Schmetz, Christel; Brattig, Norbert W

    2004-01-01

    The N-terminal region of the cathepsin D-like aspartic protease from the human filarial parasite Onchocerca volvulus was expressed as His-tag fusion protein. Light and electron microscopic immunohistology using antibodies against the recombinant protein showed labeling of lysosomes in the hypodermis and epithelia of the intestine and the reproductive organs of Onchocerca. While developing oocytes were negative, mature oocytes and early morulae showed strong labeling. In older embryos and mature microfilariae, stained lysosomes were only found in a few cells. Cell death in degenerating microfilariae of patients untreated and treated with microfilaricidal drugs was associated with strong expression of aspartic protease. IgG1, IgG4, and IgE antibodies reactive with the recombinant protein were demonstrated in sera from onchocerciasis patients indicating exposure and recognition of the enzyme by the host's defence system. The aspartic protease of O. volvulus appears to function in intestinal digestion and tissue degradation of the filaria.

  20. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C. (National Institutes of Health, Bethesda, MD (USA)); Lewin, A.H. (Research Triangle Institute, Research Triangle Park, NC (USA))

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive ({sup 3}H)glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action.

  1. High Temperature During Rice Grain Filling Enhances Aspartate Metabolism in Grains and Results in Accumulation of Aspartate-Family Amino Acids and Protein Components

    Directory of Open Access Journals (Sweden)

    Cheng-gang LIANG

    2013-09-01

    Full Text Available Global warming causes the exacerbation of rice growing environment, which seriously affects rice growth and reproduction, and finally results in the decrease of rice yield and quality. We investigated the activities of aspartate metabolism enzymes in grains, and the contents of Aspartate-family amino acids and protein components to further understand the effects of high temperature (HT on rice nutritional quality during rice grain filling. Under HT, the average activities of aspartate aminotransferase (AAT and aspartokinase (AK in grains significantly increased, the amino acid contents of aspartate (Asp, lysine (Lys, threonine (Thr, methionine (Met and isoleucine (Ile and the protein contents of albumin, globulin, prolamin and glutelin also significantly increased. The results indicated that HT enhanced Asp metabolism during rice grain filling and the enhancement of Asp metabolism might play an important role in the increase of Asp-family amino acids and protein components in grains. In case of the partial appraisal of the change of Asp-family amino acids and protein components under HT, we introduced eight indicators (amino acid or protein content, ratio of amino acid or protein, amino acid or protein content per grain and amino acid or protein content per panicle to estimate the effects of HT. It is suggested that HT during rice grain filling was benefit for the accumulation of Asp-family amino acids and protein components. Combined with the improvement of Asp-family amino acid ratio in grains under HT, it is suggested that HT during grain filling may improve the rice nutritional quality. However, the yields of parts of Asp-family amino acids and protein components were decreased under HT during rice grain filling.

  2. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Arévalo-Rodríguez, M; Calderón, I L; Holmberg, S

    1999-01-01

    The HOM3 gene of Saccharomyces cerevisiae encodes aspartate kinase, which catalyses the first step in the branched pathway leading to the synthesis of threonine and methionine from aspartate. Regulation of the carbon flow into this pathway takes place mainly by feedback inhibition of this enzyme...... by threonine. We have isolated and characterized three HOM3 mutants that show growth inhibition by threonine due to a severe, threonine-induced reduction of the carbon flow into the aspartate pathway, leading to methionine limitation. One of the mutants has an aspartate kinase which is 30-fold more strongly...

  3. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Qatar cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mohamed Hasan Daghash

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Qatar. Results: A total of 91 patients were enrolled in the study. Two insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 88, insulin detemir (n = 2, and other insulin combinations (n = 1. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.9% and insulin users (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, all the study groups showed improvement in HbA 1 c (insulin naïve: −1.8%, insulin users: −1.3%. Major hypoglycaemia did not occur in the study patients. SADRs were reported in 1.4% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  4. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N., E-mail: ichi@oist.jp [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 (Japan)

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  5. Isolation of a nanomolar scFv inhibiting the endopeptidase activity of botulinum toxin A, by single-round panning of an immune phage-displayed library of macaque origin

    Directory of Open Access Journals (Sweden)

    Chahboun Siham

    2011-11-01

    Full Text Available Abstract Background Botulinum neurotoxin A (BoNT/A, mainly represented by subtype A1, is the most toxic substance known. It causes naturally-occurring food poisoning, and is among the biological agents at the highest risk of being weaponized. Several antibodies neutralizing BoNT/A by targeting its heavy chain (BoNT/A-H have been isolated in the past. For the first time however, an IgG (4LCA recently isolated by hybridoma technology and targeting the BoNT/A light chain (BoNT/A-L, was shown to inhibit BoNT/A endopeptidase activity and protect in vivo against BoNT/A. In the present study, a phage-displayed library was constructed from a macaque (Macaca fascicularis hyper-immunized with BoNTA/L in order to isolate scFvs inhibiting BoNT/A endopeptidase activity for clinical use. Results Diversity of the scFvs constituting the library was limited due to the frequent presence, within the genes intended to be part of the library, of restriction sites utilized for its construction. After screening with several rounds of increasing stringency, as is usual with phage technology, the library got overwhelmed by phagemids encoding incomplete scFvs. The screening was successfully re-performed with a single round of high stringency. In particular, one of the isolated scFvs, 2H8, bound BoNT/A1 with a 3.3 nM affinity and effectively inhibited BoNT/A1 endopeptidase activity. The sequence encoding 2H8 was 88% identical to human germline genes and its average G-score was -0.72, quantifying the high human-like quality of 2H8. Conclusions The presence of restrictions sites within many of the sequences that were to be part of the library did not prevent the isolation of an scFv, 2H8, by an adapted panning strategy. ScFv 2H8 inhibited toxin endopeptidase activity in vitro and possessed human-like quality required for clinical development. More generally, the construction and screening of phage-displayed libraries built from hyper-immunized non-human primates is an

  6. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice.

    Science.gov (United States)

    Errico, F; D'Argenio, V; Sforazzini, F; Iasevoli, F; Squillace, M; Guerri, G; Napolitano, F; Angrisano, T; Di Maio, A; Keller, S; Vitucci, D; Galbusera, A; Chiariotti, L; Bertolino, A; de Bartolomeis, A; Salvatore, F; Gozzi, A; Usiello, A

    2015-02-17

    Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo(-)(/-)), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo(-/-) mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo(-/-) animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico-hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia.

  7. Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons.

    Science.gov (United States)

    Krashia, Paraskevi; Ledonne, Ada; Nobili, Annalisa; Cordella, Alberto; Errico, Francesco; Usiello, Alessandro; D'Amelio, Marcello; Mercuri, Nicola Biagio; Guatteo, Ezia; Carunchio, Irene

    2016-04-01

    Dopamine neurons in the substantia nigra pars compacta regulate not only motor but also cognitive functions. NMDA receptors play a crucial role in modulating the activity of these cells. Considering that the amino-acid D-Aspartate has been recently shown to be an endogenous NMDA receptor agonist, the aim of the present study was to examine the effects of D-Aspartate on the functional properties of nigral dopamine neurons. We compared the electrophysiological actions of D-Aspartate in control and D-aspartate oxidase gene (Ddo(-/-)) knock-out mice that show a concomitant increase in brain D-Aspartate levels, improved synaptic plasticity and cognition. Finally, we analyzed the effects of L-Aspartate, a known dopamine neuron endogenous agonist in control and Ddo(-/-) mice. We show that D- and L-Aspartate excite dopamine neurons by activating NMDA, AMPA and metabotropic glutamate receptors. Ddo deletion did not alter the intrinsic properties or dopamine sensitivity of dopamine neurons. However, NMDA-induced currents were enhanced and membrane levels of the NMDA receptor GluN1 and GluN2A subunits were increased. Inhibition of excitatory amino-acid transporters caused a marked potentiation of D-Aspartate, but not L-Aspartate currents, in Ddo(-/-) neurons. This is the first study to show the actions of D-Aspartate on midbrain dopamine neurons, activating not only NMDA but also non-NMDA receptors. Our data suggest that dopamine neurons, under conditions of high D-Aspartate levels, build a protective uptake mechanism to compensate for increased NMDA receptor numbers and cell hyper-excitation, which could prevent the consequent hyper-dopaminergia in target zones that can lead to neuronal degeneration, motor and cognitive alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Potent new small-molecule inhibitor of botulinum neurotoxin serotype A endopeptidase developed by synthesis-based computer-aided molecular design.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    Full Text Available Botulinum neurotoxin serotype A (BoNTA causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a K(i (app value of 3.8+/-0.8 microM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC(50 value of 100 microM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 A(2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750-1,500 A(2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a K(i value of 760+/-170 nM using synthesis-based computer-aided molecular design (SBCAMD. This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight

  9. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release

    NARCIS (Netherlands)

    Halmos, Gyorgy; Horvath, T.; Polony, G.; Fekete, A.; Kittel, A.; Vizi, E. S.; van der Laan, B. F. A. M.; Zelles, T.; Lendvai, B.

    2008-01-01

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-D-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [(3)H]DA from isolated mouse

  10. Regulation of aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii compared to Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Sluis, van der C.; Smit, B.A.; Hartmans, S.; Schure, ter E.G.; Tramper, J.; Wijffels, R.H.

    2000-01-01

    To elucidate the growth inhibitory effect of threonine, the regulation of the aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii, an important yeast for the flavor development in soy sauce, was investigated. It was shown that threonine inhibited the growth of Z. rouxii by blocking

  11. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding si...

  12. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    Science.gov (United States)

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  13. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, M.; Flossmann, K.D. (Akademie der Landwirtschaftswissenschaften der DDR, Jena. Inst. fuer Bakterielle Tierseuchenforschung)

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with /sup 14/C- and /sup 3/H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle.

  14. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; Delft, F.L. van; Rutjes, F.P.J.T.

    2007-01-01

    Arginine-glycine-aspartate (RGD) derivatives were prepared by a combination of solid-phase and solution-phase synthesis for selective targeting of alpha vbeta 3 integrin expressed in tumors. In order to evaluate the value of a triazole moiety as a proposed amide isostere, the side chain glycosylated

  15. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke

    NARCIS (Netherlands)

    Stevens, H; Jakobs, C; de Jager, AEJ; Cunningham, RT; Korf, J

    Background After stroke, brain-specific proteins (including neurone-specific enolase) leak into the blood. The question addressed in the present study was whether N-acetyl-aspartate (amino acid derivative localized in cerebral neurones) could also serve as a peripheral marker of ischaemic damage.

  16. SPECIATION OF L-ASPARTIC ACID COMPLEXES OF Co(II), Ni(II ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. Chemical speciation of binary complexes of Co(II), Ni(II), Cu(II) and Zn(II) with L-aspartic acid was investigated pH-metrically in acetonitrile- and ethylene glycol-water mixtures. The stability constants were calculated using the computer program MINIQUAD75. The best-fit chemical models were selected based ...

  17. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    Science.gov (United States)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  18. Hypoglycemia in type 1 diabetic pregnancy: role of preconception insulin aspart treatment in a randomized study

    DEFF Research Database (Denmark)

    Heller, Simon; Damm, Peter; Mersebach, Henriette

    2010-01-01

    OBJECTIVE A recent randomized trial compared prandial insulin aspart (IAsp) with human insulin in type 1 diabetic pregnancy. The aim of this exploratory analysis was to investigate the incidence of severe hypoglycemia during pregnancy and compare women enrolled preconception with women enrolled...

  19. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    NARCIS (Netherlands)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouter L J; Frijlink, Henderik W; Mulder, Frans A A

    2013-01-01

    Oxytocin is a peptide drug used to induce labor and prevent bleeding after childbirth. Due to its instability, transport and storage of oxytocin formulations under tropical conditions is problematic. In a previous study, we have found that the stability of oxytocin in aspartate buffered formulation

  20. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  1. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features

    NARCIS (Netherlands)

    Have, ten A.; Dekkers, E.; Kay, J.; Phylip, L.H.; Kan, van J.A.L.

    2004-01-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal

  2. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    Energy Technology Data Exchange (ETDEWEB)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.; Bennett, David J.; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S.; Chang, Ronald K.; Dubost, David C.; Fay, John F.; Diamond, Tracy L.; Greshock, Thomas J.; Hao, Li; Holloway, M. Katharine; Felock, Peter J.; Gesell, Jennifer J.; Su, Hua-Poo; Manikowski, Jesse J.; McKay, Daniel J.; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M.; Nantermet, Philippe G.; Nadeau, Christian; Sanchez, Rosa I.; Satyanarayana, Tummanapalli; Shipe, William D.; Singh, Sanjay K.; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M.; Vacca, Joseph P.; Crane, Sheldon N.; McCauley, John A. (Merck); (Albany MR)

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  3. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    Science.gov (United States)

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A randomized trial of insulin aspart with intensified basal NPH insulin supplementation in people with Type 1 diabetes

    NARCIS (Netherlands)

    DeVries, J. H.; Lindholm, A.; Jacobsen, J. L.; Heine, R. J.; Home, P. D.

    2003-01-01

    Aims Insulin aspart has been shown to improve post-prandial and overall glycaemic control in people with Type 1 diabetes. We hypothesized that insulin aspart with intensified basal NPH insulin supplementation would result in better overall glycaemic control than human regular insulin with standard

  5. A study on the applicability of L-aspartate alpha-decarboxylase in the biobased production of nitrogen containing chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    -Alanine could serve as an intermediate in the biobased production of nitrogen containing chemicals from L-aspartic acid. Following the biorefinery concept, L-aspartic acid could become widely available from biomass waste streams via the nitrogen storage polypeptide cyanophycin. Since

  6. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.O.; Markby, D.W.; Schachman, H.K.

    1989-02-15

    Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation.

  7. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Hengjia Ni

    2016-01-01

    Full Text Available Background. Oxidative stress is associated with infertility. This study was conducted to determine the effects of glutamate and aspartate on serum antioxidative enzymes, sex hormones, and genital inflammation in boars suffering from oxidative stress. Methods. Boars were randomly divided into 4 groups: the nonchallenged control (CON and H2O2-challenged control (BD groups were fed a basal diet supplemented with 2% alanine; the other two groups were fed the basal diet supplemented with 2% glutamate (GLU or 2% aspartate (ASP. The BD, GLU, and ASP groups were injected with hydrogen peroxide (H2O2 on day 15. The CON group was injected with 0.9% sodium chloride solution on the same day. Results. Dietary aspartate decreased the malondialdehyde (MDA level in serum (P<0.05 compared with the BD group. Additionally, aspartate maintained serum luteinizing hormone (LH at a relatively stable level. Moreover, glutamate and aspartate increased transforming growth factor-β1 (TGF-β1 and interleukin-10 (IL-10 levels in the epididymis and testis (P<0.05 compared with the BD group. Conclusion. Both glutamate and aspartate promoted genital mRNA expressions of anti-inflammatory factors after oxidative stress. Aspartate more effectively decreased serum MDA and prevented fluctuations in serum sex hormones after H2O2 challenge than did glutamate.

  9. Neutron reflectivity and external reflection FTIR studies of DL-aspartic acid crystallization beneath nylon 6 spread films.

    Science.gov (United States)

    Jamieson, Matthew J; Cooper, Sharon J; Miller, Aline F; Holt, Stephen A

    2004-04-27

    The crystallization of DL-aspartic acid beneath nylon 6 spread films has been studied for 150% supersaturated systems using neutron reflectivity and external reflection FTIR. The neutron reflectivity data showed the gradual incorporation of DL-aspartic acid within a nylon 6 spread film layer over a period of 6-8 h, culminating in over 50 vol % of the "film" layer comprising DL-aspartic acid. Accumulation of further DL-aspartic acid material to produce microscopic/macroscopic surface crystals occurred, but on a more limited scale, resulting in approximately 1-5% surface coverage of crystals over the same period. External reflection FTIR studies revealed very weak bands attributable to DL-aspartic acid in surface regions devoid of visible crystals, in agreement with the neutron reflectivity studies. In regions with visible crystals, much larger and sharper DL-aspartic acid bands were seen. Changes in the intensity of the nylon 6 NH stretch band were often observed during the visible crystallization and dissolution of DL-aspartic acid and were consistent with the reversible accumulation of nylon 6 around the growing crystals.

  10. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  11. Improved postprandial glycaemic control with insulin Aspart in type 2 diabetic patients treated with insulin

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Thorsby, P; Kjems, L

    2000-01-01

    The effect on postprandial blood glucose control of an immediately pre-meal injection of the rapid acting insulin analogue Aspart (IAsp) was compared with that of human insulin Actrapid injected immediately or 30 minutes before a test meal in insulin-treated type 2 diabetic patients with residual.......0 nmol/l (range, 0.3-2.5) and diabetes duration 12.5 years (range, 3.0-26.0). Twenty-two patients completed the study. A significantly improved postprandial glucose control was demonstrated with IAsp as compared to Act0, based on a significantly smaller postprandial blood glucose excursion (IAsp, 899......-meal administration of the rapid-acting insulin analogue Aspart in patients with type 2 diabetes resulted in an improved postprandial glucose control compared to Actrapid injected immediately before the meal, but showed similar control compared to Actrapid injected 30 minutes before the meal. These results indicate...

  12. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    K Harris; G Cockrell; D Puleo; E Kantrowitz

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.

  13. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide.

    OpenAIRE

    Huyghues-Despointes, B. M.; Scholtz, J. M.; Baldwin, R. L.

    1993-01-01

    A single aspartate residue has been placed at various positions in individual peptides for which the alanine-based reference peptide is electrically neutral, and the helix contents of the peptides have been measured by circular dichroism. The dependence of peptide helix content on aspartate position has been used to determine the helix propensity (s-value). Both the charged (Asp-) and uncharged (Asp0) forms of the aspartate residue are strong helix breakers and have identical s-values of 0.29...

  14. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    Science.gov (United States)

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria.

  15. Interaction Studies of Secreted Aspartic Proteases (Saps) from Candida albicans : Application for Drug Discovery

    OpenAIRE

    Backman, Dan

    2005-01-01

    This thesis is focused on enzymatic studies of the secreted aspartic proteases (Saps) from Candida albicans as a tool for discovery of anti-candida drugs. C. albicans causes infections in a number of different locations, which differ widely in the protein substrates available and pH. Since C. albicans needs Saps during virulent growth, these enzymes are good targets for drug development. In order to investigate the catalytic characteristics of Saps and their inhibitor affinities, substrate-ba...

  16. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.

    Science.gov (United States)

    Rabinovich, Shiran; Adler, Lital; Yizhak, Keren; Sarver, Alona; Silberman, Alon; Agron, Shani; Stettner, Noa; Sun, Qin; Brandis, Alexander; Helbling, Daniel; Korman, Stanley; Itzkovitz, Shalev; Dimmock, David; Ulitsky, Igor; Nagamani, Sandesh Cs; Ruppin, Eytan; Erez, Ayelet

    2015-11-19

    Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.

  17. Lowered circulating aspartate is a metabolic feature of human breast cancer

    OpenAIRE

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 brea...

  18. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    OpenAIRE

    Eric L. Allen; Danielle B. Ulanet; David Pirman; Christopher E. Mahoney; John Coco; Yaguang Si; Ying Chen; Lingling Huang; Jinmin Ren; Sung Choe; Michelle F. Clasquin; Erin Artin; Zi Peng Fan; Giovanni Cianchetta; Joshua Murtie

    2016-01-01

    Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization,...

  19. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    OpenAIRE

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the p...

  20. Anti-N-methyl-D-aspartate receptor encephalitis with favorable outcome despite prolonged status epilepticus

    OpenAIRE

    Finné Lenoir, Xavier; Sindic, Christian; Van Pesch, Vincent; El Sankari, Souraya; de Tourtchaninoff, Marianne; Denays, Roger; Hantson, Philippe

    2013-01-01

    BACKGROUND: To describe a case of auto-immune encephalitis in an adolescent with favorable outcome despite prolonged status epilepticus. METHODS: A 17 year old Asian man without previous medical history developed alteration of consciousness and partial seizures. The diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was confirmed by the detection of specific antibodies in both cerebrospinal fluid and serum. RESULTS: The clinical course was complicated by prolonged status epilepticus...

  1. In vitro effects of sodium benzoate on the activities of aspartate and ...

    African Journals Online (AJOL)

    The in vitro effects of varying concentrations sodium benzoate on the activities of aspartate (E.C. 2.6.1.1) and alanine (E.C. 2.6.1.2) aminotransferases (AST and ALT, respectively) and alkaline phosphatase (E.C. 3.1.3.1; abbreviated as ALP) from human erythrocytes of different genotypes (HbAA, HbAS and HbSS) were ...

  2. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases.

    Science.gov (United States)

    Goldblum, A; Rayan, A; Fliess, A; Glick, M

    1993-01-01

    The results of crystallographic analysis of a complex between an aspartic proteinase, endothiapepsin, and an inhibitor have been extended through the assignment of protons in the active site, to study various steps in the reaction with a substrate. Mechanistic implications are suggested as a consequence of semiempirical quantum mechanical calculations, indicating that most of the activation energy is required to bring the substrate from an initial binding mode to close distance to a water molecule.

  3. N-(Fluoren-9-ylmethoxycarbonyl-l-aspartic acid 4-tert-butyl ester

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamada

    2009-11-01

    Full Text Available The bond distances and bond angles of the title compound, C23H25NO6, are consistent with values typically found for fluoren-9-ylmethoxycarbonyl-protected amino acids. The conformations of the backbone and the side chain are slightly different from those of l-aspartic acid. The crystal structure exhibits two intermolecular hydrogen bonds, forming a two-dimensional sheet structure parallel to the ab plane.

  4. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  5. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  6. The Pathway of Product Release from the R State of Aspartate Transcarbamoylase

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, K.; Kantrowitz, E

    2010-01-01

    The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-L-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.

  7. Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169

    Directory of Open Access Journals (Sweden)

    Weihong Min

    2015-11-01

    Full Text Available Aspartate kinase (AK is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni2+. Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production.

  8. New insights into the metabolism of aspartate-family amino acids in plant seeds.

    Science.gov (United States)

    Wang, Wenyi; Xu, Mengyun; Wang, Guoping; Galili, Gad

    2018-02-05

    Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.

  9. N-Methyl-D-aspartic Acid (NMDA in the nervous system of the amphioxus Branchiostoma lanceolatum

    Directory of Open Access Journals (Sweden)

    Garcia-Fernàndez Jordi

    2007-12-01

    Full Text Available Abstract Background NMDA (N-methyl-D-aspartic acid is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone in the hypothalamus, and of LH (Luteinizing Hormone and PRL (Prolactin in the pituitary gland. Results In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle. As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp by a NMDA synthase (also called D-aspartate methyl transferase. Conclusion Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.

  10. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  11. Glucocorticoid receptor activation selectively hampers N-methyl-d-aspartate receptor dependent hippocampal synaptic plasticity in vitro.

    NARCIS (Netherlands)

    Wiegert, O.; Pu, Z.; Shor, S.; Joëls, M.; Krugers, H.

    2005-01-01

    Corticosterone and exposure to stressful experiences have been reported to decrease hippocampal synaptic plasticity, in particular when relatively mild stimulation paradigms-presumably activating predominantly N-methyl-d-aspartate receptors-are being used. Using various stimulation paradigms and

  12. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.

    Science.gov (United States)

    McGillewie, Lara; Ramesh, Muthusamy; Soliman, Mahmoud E

    2017-10-01

    Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.

  13. Anesthesia in anti-N-methyl-D-aspartate receptor encephalitis - is general anesthesia a requisite? A case report

    Directory of Open Access Journals (Sweden)

    Sook Hui Chaw

    Full Text Available Abstract Anti-N-methyl-D-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-D-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-D-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-D-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future.

  14. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O

    1981-01-01

    Serum activity of gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase were determined in 316 patients attending an out-patients clinic for treatment of alcoholism. The activity of gamma-glutamyltransferase was raised in 34% and that of aspartate aminotransferase...... and alkaline phosphatase in 18% and 7%. Neither the activity of gamma-glutamyltransferase, aspartate aminotransferase nor alkaline phosphatase showed any significant (P greater than 0.05) correlation with the history of alcohol consumption. The activities of gamma-glutamyltransferase and aspartate...... aminotransferase were raised significantly more often in patients with recent alcohol consumption than in patients who had abstained for more than 9 days. The concentration of alkaline phosphatase was not significantly (P greater than 0.05) different in these groups. The predictive value of raised and normal...

  15. Effects of D-aspartate treatment on D-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues.

    Science.gov (United States)

    Burrone, Lavinia; Di Giovanni, Marcello; Di Fiore, M Maddalena; Baccari, Gabriella Chieffi; Santillo, Alessandra

    2010-06-01

    Although D-aspartate (D-Asp) has been recognized to have a physiological role within different organs, high concentrations could elicit detrimental effects on those same organs. In this study, we examined the D-aspartate oxidase (D-AspO) activity and the expression of superoxide dismutase 1 (SOD1) and caspase 3 in different tissues of the frog Rana esculenta after chronic D-Asp treatment. Our in vivo experiments, consisting of intraperitoneal (ip) injections of D-Asp (2.0 micromol/g b.w.) in frogs for ten consecutive days, revealed that all examined tissues can take up and accumulate D-Asp. Further, in D-Asp treated frogs, i) the D-AspO activity significantly increased in all tissues (kidney, heart, testis, liver, and brain), ii) the SOD1 expression (antioxidant enzyme) significantly increased in the kidney, and iii) the caspase 3 level (indicative of apoptosis) increased in both brain and heart. Particularly, after the D-Asp treatment we found in both brain and heart (which showed the lowest SOD1 levels) a significant increase of the caspase 3 expression and, vice versa, in the kidney (which showed the highest SOD1 expression) a significant decrease of the caspase 3 expression. Therefore, we speculate that, in frog tissue, D-AspO plays an essential role in modulating the D-Asp concentration. In addition, exaggerated D-Asp concentrations activated SOD1 as cytoprotective mechanism in the kidney, whereas, in the brain and in the heart, where the antioxidant action of SOD1 is limited, caspase 3 was activated.

  16. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules.

    Directory of Open Access Journals (Sweden)

    Wajahat Mahmood

    2013-11-01

    Full Text Available BACKGROUND: Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. METHODOLOGY/PRINCIPLE FINDINGS: We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. CONCLUSIONS/SIGNIFICANCE: The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival.

  17. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    Science.gov (United States)

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.

  18. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum.

    Directory of Open Access Journals (Sweden)

    Hyeoncheol Francis Son

    Full Text Available Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup.

  19. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  20. Insulin aspart in patients with gestational diabetes mellitus and pregestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    M C Deepaklal

    2015-01-01

    Full Text Available Aims: This study was undertaken to assess the effectiveness and safety of insulin aspart in patients with gestational and pregestational diabetes. Settings and Design: An open-label, prospective, nonrandomized, comparative, and observational study conducted at single center in India. Subjects and Methods: A total of 276 patients were in gestational diabetes mellitus (GDM group, 79 were in the pre-GDM group. Patients were started on insulin therapy (insulin aspart ± neutral protamine hagedorn once medical nutrition therapy for 2 weeks failed to achieve control, that is., fasting plasma glucose ≥90 mg/dL and/or 1.0 h postprandial plasma glucose ≥130 mg/dL. Insulin dose was titrated to keep the blood glucose values between 90 and 130 mg/dL. Patients were followed once every 4 weeks until the 28 th week, then once every 2 weeks until 32 nd week, then once every week until delivery, and the final visit was on 60 ± 7 days. The final outcome was assessed in terms of incidence of macrosomia (>3.5 kg body weight between the two groups and episodes of confirmed (blood glucose <56 mg/dL minor or major maternal hypoglycemia. Results: There was no statistically significant difference among the two groups in terms of incidence of macrosomia that is., it was 5.1%, 8.9% in GDM, pre-GDM group, respectively. Conclusions: Insulin aspart was found safe in pregnancy, however, more studies with double-blind, standard controlled studies are required to confirm the findings of this study.

  1. Structure of the Catalytic Trimer of Methanococcus jannaschii Aspartate Transcarbamoylase in an Orthorhombic Crystal Form

    Energy Technology Data Exchange (ETDEWEB)

    Vitali,J.; Colaneri, M.

    2008-01-01

    Crystals of the catalytic subunit of Methanococcus jannaschii aspartate transcarbamoylase in an orthorhombic crystal form contain four crystallographically independent trimers which associate in pairs to form stable staggered complexes that are similar to each other and to a previously determined monoclinic C2 form. Each subunit has a sulfate in the central channel. The catalytic subunits in these complexes show flexibility, with the elbow angles of the monomers differing by up to 7.4 between crystal forms. Moreover, there is also flexibility in the relative orientation of the trimers around their threefold axis in the complexes, with a difference of 4 between crystal forms.

  2. A Concise Synthesis of Glycolipids Based on Aspartic Acid Building Blocks

    Directory of Open Access Journals (Sweden)

    Lorna Abbey

    2012-09-01

    Full Text Available L-Aspartic acid building blocks bearing galactosyl moieties were used to synthesise glycolipid mimetics of variable hydrocarbon chain length. The glycolipids were readily prepared through amide bond formation using the TBTU/HOBt coupling methodology. It was observed that, under these conditions, activation of the α-carboxylic acid of the intermediates led to near complete racemisation of the chiral centre if the reaction was carried out in the presence of a base such as triethylamine. The enantiomerically pure glycolipids were obtained after careful consideration of the synthetic sequence and by performing the coupling reactions in the absence of base.

  3. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø

    2008-01-01

    glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools....... For example, 4-propyl NHP5G is an antagonist at the NR1/NR2A subtype but an agonist at the NR1/NR2D subtype. Molecular docking studies indicate that the substituent protrudes into a region that may be further exploited to improve subtype selectivity, thereby opening up a design strategy for ligands which can...

  4. Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice.

    Science.gov (United States)

    Stoye, Diana; Schubert, Claudia; Goihl, Alexander; Guttek, Karina; Reinhold, Annegret; Brocke, Stefan; Grüngreiff, Kurt; Reinhold, Dirk

    2012-06-01

    Zinc is an essential trace element with a critical role in normal growth and development and in immune homeostasis. Zinc deficiency impairs both the innate and the adaptive immune system and can be normalized by zinc supplementation. On the other end of the spectrum, high dosages of zinc diminish immune cell functions similar to zinc deficiency. Here, we investigated the influence of zinc aspartate on proliferation and cytokine production of stimulated human T cells and mouse splenocytes in vitro. Furthermore, the effect of zinc aspartate was examined in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS) with a Th1/Th17 T cell-mediated immunopathogenesis. Zinc aspartate suppressed proliferation as well as IL-2, IL-10 and IL-17 production in stimulated human T cells and mouse splenocytes. Importantly, administration of a medium range dose of 30 μg/day zinc aspartate [1.5 mg/kg body weight (BW)] in a therapeutic manner led to a significant reduction of the clinical severity of the EAE during the first relapse of the disease. A lower zinc aspartate dose (6 μg/day, 0.3 mg/kg BW) had no significant therapeutic effect on the severity of the EAE, while administration of higher zinc aspartate amounts (120 μg/day, 6 mg/kg BW) led to more severe disease. Taken together, our data suggest that zinc aspartate can modulate activation, proliferation and cytokine production of effector T cells in vitro and in vivo and that activated autoreactive T cells may be potential therapeutic targets of tightly controlled zinc supplementation in autoimmune diseases like MS.

  5. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Andhra Pradesh cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mohammed Abubaker

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Andhra Pradesh, India. Results: A total of 3077 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 2452, insulin detemir (n = 308, insulin aspart (n = 226, basal insulin plus insulin aspart (n = 21 and other insulin combinations (n = 68. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.9% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.2%, insulin users: −1.1%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  6. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the North India cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Surender Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from North India. Results: A total of 4912 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 3619, insulin detemir (n = 880, insulin aspart (n = 331, basal insulin plus insulin aspart (n = 37 and other insulin combinations (n = 44. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.8% and insulin user (mean HbA 1 c: 9.8% groups. After 24 weeks of treatment, both the study groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −2.6%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  7. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Eastern Saudi Arabia cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Faisal Hashim

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Eastern Saudi Arabia. Results: A total of 1040 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 489, insulin detemir (n = 360, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 96 and other insulin combinations (n = 57. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −1.7%. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.6% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  8. Clinical experience with insulin detemir type 2 diabetes mellitus, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rabat-Sale-Zemmour-Zaer Region cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Abdelmjid Chraibi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66 726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rabat-Sale-Zemmour-Zaer region, Morocco. Results: A total of 424 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 177, insulin detemir (n = 150, insulin aspart (n = 11, basal insulin plus insulin aspart (n = 45 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.1% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, all the study groups showed improvement in HbA 1 c (insulin naïve: −2.5%, insulin users: −1.8%. Major hypoglycaemia was observed in the insulin user group after 24 weeks (0.1 events/patient-year. SADRs were reported in 0.5% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  9. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  10. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia.

    Science.gov (United States)

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-07-14

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  11. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    Directory of Open Access Journals (Sweden)

    Maria Maddalena Di Fiore

    2016-07-01

    Full Text Available A bulk of evidence suggests that d-aspartate (d-Asp regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA and aurora kinase B (AURKB. Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2 interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  12. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    Science.gov (United States)

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway. © 2015 Wiley Periodicals, Inc.

  13. Design and optimization of aspartate N-acetyltransferase inhibitors for the potential treatment of Canavan disease.

    Science.gov (United States)

    Thangavelu, Bharani; Mutthamsetty, Vinay; Wang, Qinzhe; Viola, Ronald E

    2017-02-01

    Canavan disease is a fatal neurological disorder caused by defects in the metabolism of N-acetyl-l-aspartate (NAA). Recent work has shown that the devastating symptoms of this disorder are correlated with the elevated levels of NAA observed in these patients, caused as a consequence of the inability of mutated forms of aspartoacylase to adequately catalyze its breakdown. The membrane-associated enzyme responsible for the synthesis of NAA, aspartate N-acetyltransferase (ANAT), has recently been purified and examined (Wang et al., Prot Expr Purif. 2016;119:11). With the availability, for the first time, of a stable and soluble form of ANAT we can now report the identification of initial inhibitors against this biosynthetic enzyme, obtained from the screening of several focused compound libraries. Two core structures of these moderate binding compounds have subsequently been optimized, with the most potent inhibitors in these series possessing sub-micromolar inhibition constants (Ki values) against ANAT. Slowing the production of NAA via the inhibition of ANAT will lower the elevated levels of this metabolite and can potentially serve as a treatment option to moderate the symptoms of Canavan disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Arabidopsis aspartic proteases A36 and A39 play roles in plant reproduction.

    Science.gov (United States)

    Gao, Hui; Li, Rui; Guo, Yi

    2017-04-03

    Aspartic proteases (Aps, EC3.4.23) are one of the 4 major mechanistic classes of proteolytic enzymes with the conserved motifs Asp-Thr/Ser-Gly (DT/SG) at the active site and are activated at acidic pH. In Arabidopsis, 69 genes were identified as coding putative aspartic proteinases. However, little is known about most of these enzymes. Recently, we characterized 2 novel Arabidopsis Aps genes, A36 and A39, which encode 2 putative GPI-anchored pollen-high-expressed Aps. a36 a39 mutants display significant abortion. The pollen grains underwent apoptosis-like programmed cell death and the degeneration of female gametes was also appeared in the a36 a39 mutant. Besides, the pollen tube of a36 a39 has compromised micropylar guidance. A36 and A39 were membrane-anchored protein and co-localized with a reported GPI-anchored protein COBRA-LIKE 10 (COBL10). In apical region of a36 a39 pollen tubes cell wall, the abundance of highly methlyestered homogalacturonans and xyloglucans were significantly increased. These results indicated that A36 and A39 are vital factors involved in gametogenesis and pollen guidance in Arabidopsis.

  15. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonized NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.

  16. The Role of N-Methyl D-Aspartate Receptors on Pain Transmission

    Directory of Open Access Journals (Sweden)

    Yasemin Gunes

    2012-02-01

    Full Text Available Aim : In the experimental studies, NMDA (N-methyl-D-aspartate receptors play important role in the mechanism of action among the drugs used for the treatment of pain. The NMDA receptors in the dorsal horn of spinal cord is essential for central sensitization and the central facilitation of pain transmission produced by peripheral injury. The aim of this study was to evaluate the contributions of peripheral NMDA receptor agonist and antagonists in peripheral pain transmission. Material-Method : In the present study, N methyl aspartic acid (NMDA and antagonist ( MK-801 were administered intraplantarily to investigate withdrawal effects, the dose and time dependent latency using thermal plantar test method in rats. Results : MK-801 caused dose-dependent thermal anti-nociceptive effects, whereas NMDA led to reduction in the thermal nociceptive latency and hyperalgesia. Conclusion : Peripheral NMDA receptors may play a dominant role in the transmission of pain information. [Cukurova Med J 2012; 37(1.000: 9-16

  17. Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartic proteinases?

    Science.gov (United States)

    Oefner, C; Binggeli, A; Breu, V; Bur, D; Clozel, J P; D'Arcy, A; Dorn, A; Fischli, W; Grüninger, F; Güller, R; Hirth, G; Märki, H; Mathews, S; M ller, M; Ridley, R G; Stadler, H; Vieira, E; Wilhelm, M; Winkler, F; Wostl, W

    1999-03-01

    The aspartic proteinase renin catalyses the first and rate-limiting step in the conversion of angiotensinogen to the hormone angiotensin II, and therefore plays an important physiological role in the regulation of blood pressure. Numerous potent peptidomimetic inhibitors of this important drug target have been developed, but none of these compounds have progressed past clinical phase II trials. Limited oral bioavailability or excessive production costs have prevented these inhibitors from becoming new antihypertensive drugs. We were interested in developing new nonpeptidomimetic renin inhibitors. High-throughput screening of the Roche compound library identified a simple 3, 4-disubstituted piperidine lead compound. We determined the crystal structures of recombinant human renin complexed with two representatives of this new class. Binding of these substituted piperidine derivatives is accompanied by major induced-fit adaptations around the enzyme's active site. The efficient optimisation of the piperidine inhibitors was facilitated by structural analysis of the renin active site in two renin-inhibitor complexes (some of the piperidine derivatives have picomolar affinities for renin). These structural changes provide the basis for a novel paradigm for inhibition of monomeric aspartic proteinases.

  18. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  19. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O

    1981-01-01

    and alkaline phosphatase in 18% and 7%. Neither the activity of gamma-glutamyltransferase, aspartate aminotransferase nor alkaline phosphatase showed any significant (P greater than 0.05) correlation with the history of alcohol consumption. The activities of gamma-glutamyltransferase and aspartate...... aminotransferase were raised significantly more often in patients with recent alcohol consumption than in patients who had abstained for more than 9 days. The concentration of alkaline phosphatase was not significantly (P greater than 0.05) different in these groups. The predictive value of raised and normal...... activities of gamma-glutamyltransferase, in deciding whether a patient had had recent alcohol consumption or not, was not superior to the predictive value of raised and normal activities of aspartate aminotransferase....

  20. Use of protease sensitivity to probe the conformations of newly synthesised mutant forms of mitochondrial aspartate aminotransferase.

    Science.gov (United States)

    Azzariti, A; Giannattasio, S; Doonan, S; Merafina, R S; Marra, E; Quagliariello, E

    1995-10-24

    Sensitivity to digestion with pronase has been used to show that the precursor form of mitochondrial aspartate aminotransferase, the form lacking the N-terminal presequence, that with a deletion of the first 9 residues and mutants of the mature enzyme in which residue Cys-166 is mutated to alanine or serine, all retain unfolded conformations after synthesis in a reticulocyte lysate. In the presence of lysed mitochondria the various forms of mitochondrial aspartate aminotransferase retained their susceptibilities to pronase in a way that mirrored the efficiencies with which they are imported into intact mitochondria. The results are interpreted as showing that the presequence of mitochondrial aspartate aminotransferase is not uniquely required for interaction with cytosolic factors required to maintain the newly synthesised protein in a form competent for interacting with, and being imported into, mitochondria.

  1. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  2. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  3. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks.

    Science.gov (United States)

    Do, P H; Tran, P V; Bahry, M A; Yang, H; Han, G; Tsuchiya, A; Asami, Y; Furuse, M; Chowdhury, V S

    2017-10-01

    1. The aim of this study was to investigate the effects on the rectal temperature of young chicks of the oral administration of a medium that contained both live bacteria that produce D-aspartate (D-Asp) and D-Asp. 2. In Experiment 1, chicks were subjected to chronic oral administration of either the medium (containing live bacteria and 2.46 μmol D-Asp) or water from 7 to 14 d of age. Plasma-free amino acids as well as mitochondrial biogenic gene expression in the breast muscle were analysed. In Experiment 2, 7-d-old chicks were subjected to acute oral administration of the above medium or of an equimolar amount of D-Asp to examine their effect on changes in rectal temperature. In Experiment 3, after 1 week of chronic oral administration of the medium, 14-d-old chicks were exposed to either high ambient temperature (HT; 40 ± 1°C, 3 h) or control thermoneutral temperature (CT; 30 ± 1°C, 3 h) to monitor the changes in rectal temperature. 3. Chronic, but not acute, oral administration of the medium significantly reduced rectal temperature in chicks, and a chronic effect also appeared under HT conditions. 4. Chronic oral administration of the medium significantly reduced the mRNA abundance of the avian uncoupling protein (avUCP) in the breast muscle, but led to a significant increase in avian adenine nucleotide translocator (avANT) mRNA in the same muscle. 5. (a) These results indicate that the medium can reduce body temperature through the decline in avUCP mRNA expression in the breast muscle that may be involved in reduced mitochondrial proton leaks and heat production. (b) The increase in avANT further suggests a possible enhancement of adenosine triphosphate (ATP) synthesis.

  4. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis.

    Science.gov (United States)

    Cardaci, Simone; Zheng, Liang; MacKay, Gillian; van den Broek, Niels J F; MacKenzie, Elaine D; Nixon, Colin; Stevenson, David; Tumanov, Sergey; Bulusu, Vinay; Kamphorst, Jurre J; Vazquez, Alexei; Fleming, Stewart; Schiavi, Francesca; Kalna, Gabriela; Blyth, Karen; Strathdee, Douglas; Gottlieb, Eyal

    2015-10-01

    Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.

  5. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    Energy Technology Data Exchange (ETDEWEB)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  6. Pseudoallosteric modulation by (+)-MK801 of NMDA (N-methyl-D-aspartate)-coupled phencyclidine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.A.; Monn, J.A.; Jacobson, A.E.; Rice, K.C.; Rothman, R.B. (National Institutes of Health, Bethesda, MD (USA))

    1990-01-01

    Two high affinity phencyclidine (PCP) binding sites, labeled by ({sup 3}H)1-(1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP), have been identified in guinea pig brain, with one site coupled to the N-methyl-D-aspartate (NMDA) receptor (site 1) and the other site associated with the dopamine reuptake carrier complex (site 2). In this study, PCP enhanced the dissociation of ({sup 3}H)TCP from PCP site 1 and site 2, while (+){minus}MK801 only enhanced dissociation of ({sup 3}H)TCP from PCP site 1. Although additional studies will be required to determine the exact mechanism(s) of these effects, these data demonstrate that the interactions of PCP with both site 1 and site 2 are more complex than previously appreciated.

  7. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  8. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection.

    Science.gov (United States)

    Patarata, Eunice; Bernardino, Vera; Martins, Ana; Pereira, Rui; Loureiro, Conceição; Moraes-Fontes, Maria Francisca

    2016-01-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state.

  9. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  10. [Subcellular localization, purification, and various catalitic properties of aspartate aminotransferase from Spirodela polyrhiza].

    Science.gov (United States)

    Rakhmanova, T I; Popova, T N; Semenikhina, A V

    2006-01-01

    Intracellular distribution of aspartate aminotransferase (AAT) in Spirodela polyrhiza (Lemnaceae), strain SJ, has been studied by differential centrifugation. The bulk of the enzyme (73% of total cellular content) was localized in the cytoplasm and 24% activity was localized in chloroplasts. Purified cytoplasmic and chloroplastic isozymes differed by their affinity for substrates. The reaction balance was shifted towards direct and reverse transamination in the cytoplasm and chloroplast, respectively. Competitive inhibition of AAT by excessive substrates and enzyme affinity modulation by certain intermediates of the tricarboxylic acid cycle (isocitrate, succinate, and citrate) were observed. Possible involvement of AAT isozymes in the coordination of carbon and nitrogen metabolism through the regulation of 2-oxoglutarate synthesis and utilization in different cellular compartments is discussed.

  11. Stability of binary complexes of L-aspartic acid in dioxan–water mixtures

    Directory of Open Access Journals (Sweden)

    R.S. Rani

    2013-09-01

    Full Text Available Speciation of binary complexes of Co(II, Ni(II and Cu(II with L-aspartic acid in (0–60% v/v 1,4-dioxan (Dox-water mixtures was studied pH metrically at 303±0.1 K and at an ionic strength of 0.16 M. The models contained ML, ML2, ML2H2, ML2H3 and ML2H4 species. The trend in the variation of stability constants with Dox content was explained on the basis of electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of Dox-water media was also presented.DOI: http://dx.doi.org/10.4314/bcse.v27i3.5

  12. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection

    Directory of Open Access Journals (Sweden)

    Eunice Patarata

    2016-12-01

    Full Text Available Anti-N-methyl-D-aspartate receptor (anti-NMDAR encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state.

  13. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    .2 and 1.8 A, respectively, for complexes of proteinase A with full-length IA3 and with a truncated form consisting only of residues 2-34, reveal an unprecedented mode of inhibitor-enzyme interactions. Neither form of the free inhibitor has detectable intrinsic secondary structure in solution. However......, upon contact with the enzyme, residues 2-32 become ordered and adopt a near-perfect alpha-helical conformation. Thus, the proteinase acts as a folding template, stabilizing the helical conformation in the inhibitor, which results in the potent and specific blockage of the proteolytic activity.......Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  14. Correlation of Global N-Acetyl Aspartate With Cognitive Impairment in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Kahr Mathiesen, Henrik; Jonsson, Agnete; Tscherning, Thomas

    2006-01-01

    than conventional magnetic resonance imaging measures. DESIGN: Survey. SETTING: Research-oriented hospitals.Patients Twenty patients, 16 women and 4 men (mean age, 36 years), with early relapsing-remitting multiple sclerosis (mean Expanded Disability Status Scale score, 2.5). MAIN OUTCOME MEASURES......BACKGROUND: Whole-brain N-acetyl aspartate (NAA), a measure of neuronal function, can be assessed by multislice echo-planar spectroscopic imaging. OBJECTIVE: To test the hypothesis that the global brain NAA/creatine (Cr) ratio is a better predictor of cognitive dysfunction in multiple sclerosis......: Correlation between the global NAA/Cr ratio and a cognitive dysfunction factor comprising 16 measures from an extensive neuropsychological test battery that best distinguished patients with multiple sclerosis from healthy control subjects. RESULTS: A significant partial correlation between the global NAA...

  15. Cumulative effects of mutations in newly synthesised mitochondrial aspartate aminotransferase on uptake into mitochondria.

    Science.gov (United States)

    Marra, E; Azzariti, A; Giannattasio, S; Doonan, S; Quagliariello, E

    1995-09-14

    Mutant genes were constructed which coded for the precursor form of mitochondrial aspartate aminotransferase in which residue cysteine 166 was mutated to either serine or alanine and for forms of the protein lacking both the presequence and residues 1-9 of the mature protein but carrying the same cysteine mutations. The protein products of all of these mutant genes were imported into mitochondria that had been added to the expression system but with varying degrees of efficiency. The results showed that the effects of mutation of cysteine 166 and of deletion of residues 1-9 of the mature protein on sequestration into mitochondria were essentially cumulative, suggesting that these parts of the protein are involved in distinct steps on the recognition/uptake pathway.

  16. Protonation Equilibria of L-Aspartic, Citric and Succinic Acids in Anionic Micellar Media

    Directory of Open Access Journals (Sweden)

    P. Srinivasa Rao

    2009-01-01

    Full Text Available The impact of sodium lauryl sulphate (SLS on the protonation equilibria of L-aspartic acid, citric acid and succinic acid has been studied in various concentrations (0.5-2.5% w/v of SLS solution maintaining an ionic strength of 0.16 mol dm-3 at 303 K. The protonation constants have been calculated with the computer program MINIQUAD75 and the best fit models have been calculated based on statistical parameters. The trend of log values of step-wise protonation constants with mole fraction of the medium has been explained based on electrostatic and non-electrostatic forces operating on the protonation equilibria. The effects of errors on the protonation constants have also been presented.

  17. A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis*

    Science.gov (United States)

    Williams, Sunanda Margrett; Chandran, Anu V.; Vijayabaskar, Mahalingam S.; Roy, Sourav; Balaram, Hemalatha; Vishveshwara, Saraswathi; Vijayan, Mamannamana; Chatterji, Dipankar

    2014-01-01

    Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8–2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release. PMID:24573673

  18. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    Energy Technology Data Exchange (ETDEWEB)

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  19. Proteolysis of the peanut allergen Ara h 1 by an endogenous aspartic protease.

    Science.gov (United States)

    Wilson, Karl A; Tan-Wilson, Anna

    2015-11-01

    The 7S and 11S globulins of peanuts are subjected to proteolysis two days after seed imbibition, with Ara h 1 and the arachin acidic chains being among the first storage proteins to be mobilized. Proteolytic activity was greatest at pH 2.6-3 and is inhibited by pepstatin A, characteristic of an aspartic protease. This activity persists in seedling cotyledons up to at least 8 days after imbibition. In vitro proteolysis of Ara h 1 at pH 2.6 by extracts of cotyledons from seedlings harvested 24 h after seed imbibition generates newly appearing bands on SDS-PAGE. Partial sequences of Ara h 1 that were obtained through LC-MS/MS analysis of in-gel trypsin digests of those bands, combined with information on fragment size, suggest that proteolysis begins in the region that links the two cupin domains to produce two 33/34 kD fragments, each one encompassing an intact cupin domain. The later appearance of two 18 and 10/11 kD fragments can be explained by proteolysis within an exposed site in the cupin domains of each of the 33/34 kD fragments. The same or similar proteolytic activity was observed in developing seeds, but Ara h 1 remains intact through seed maturation. This is partly explained by the observation that acidification of the protein storage vacuoles, demonstrated by vacuolar accumulation of acridine orange that was dissipated by a membrane-permeable base, occurs only after germination. These findings suggest a method for use of the seed aspartic protease in reducing peanut allergy due to Ara h 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Production and Characterization of Monoclonal Antibodies against Aspartate Aminotransferase-P1 from Lupin Root Nodules.

    Science.gov (United States)

    Jones, W. T.; Jones, S. D.; Harvey, D.; Rodber, K. R.; Ryan, G. B.; Reynolds, PHS.

    1994-01-01

    Six hybridoma clones were obtained that secreted monoclonal antibodies against the aspartate aminotransferase-P1 (AAT-P1) isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. This enzyme is found constitutively in the plant cytosol fraction. The monoclonal antibodies produced were all of the immunoglobulin G1 class, recognized two distinct epitopes on the protein, and represented the major paratopes found in the immunoglobulin fraction of sera taken from mice and rabbits immunized with the pure AAT-P1 protein. One of these epitopes was unique to lupin nodule AAT-P1. The other epitope was shown to be present on enzyme from lupin bean, white clover and tobacco leaves, lupin roots and nodules, and potato tubers. Both epitopes were recognized by the appropriate monoclonal antibodies in both their native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium lupini NZP2257, Escherichia coli extracts, or with the inducible aspartate aminotransferase-P2 (AAT-P2) isoform also found in root nodules. A sandwich enzyme-linked immunosorbent assay utilizing two monoclonal antibodies recognizing the two distinct epitopes was developed and was capable of quantitating AAT-P1 in plant extracts. The limit of detection of AAT-P1 was less than 15 pg/mL and AAT-P1 protein could be quantified in the range 80 to 1000 pg/mL. Using this assay, AAT-P1 protein was shown to remain relatively constant during nodule development. Use of an AAT-P2-specific monoclonal antibody that inhibits the enzyme activity of this isoform enabled the direct determination of AAT-P1 enzyme activity in nodule extracts. Using these assays, specific activities of the individual isoforms were calculated; that of the AAT-P1 isoform was shown to be 7.5-fold higher than that of the AAT-P2 isoform. PMID:12232065

  1. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris.

    Science.gov (United States)

    Feijoo-Siota, Lucía; Rama, José Luis R; Sánchez-Pérez, Angeles; Villa, Tomás G

    2018-02-20

    Galium verum, also known as Lady's Bedstraw or Cheese Rennet, is an herbaceous perennial plant traditionally used in cheese-making. We used RACE PCR to isolate novel enzymes from Galium verum with the ability to clot milk. This approach generated two cDNA sequences (named preprogaline A and B) encoding proteins displaying the typical plant aspartic protease primary structure. Preprogaline B was expressed in the yeast Pichia pastoris, after deleting and replacing its original signal peptide with the yeast α-factor signal peptide from Saccharomyces cerevisiae. The secreted recombinant protein was obtained by growing P. pastoris in YPD medium and had the ability to clot milk. The mature form of progaline B is a heterodimeric glycosylated enzyme, with a molecular weight of approximately 48 kDa, that contains a heavy (30.7 kDa) and a light (13.5 kDa) polypeptide chains linked by disulfide bonds. Western blot analysis revealed that progaline B is activated by the acidification of the yeast culture medium and that enzymatic activation requires two steps. First the precursor protein is cleaved into two polypeptide chains by partial removal of the plant-specific insert (PSI) present in plant aspartic proteases; this is later followed by propeptide removal. By altering the pH of the P. pastoris culture medium, we were able to obtain either active or inactive forms of the enzyme. Recombinant progaline B displayed a κ-casein hydrolysis pattern analogous to those produced by the animal and microbial coagulants currently used in the dairy industry, but it exhibited a different digestion profile on α- and β-caseins. The plant protease progaline B displays milk-clotting activities suitable for the production of novel dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase.

    Science.gov (United States)

    Kulecka, Maria; Wierzbicka, Aldona; Paziewska, Agnieszka; Mikula, Michal; Habior, Andrzej; Janczyk, Wojciech; Dabrowska, Michalina; Karczmarski, Jakub; Lazniewski, Michal; Ginalski, Krzysztof; Czlonkowska, Anna; Socha, Piotr; Ostrowski, Jerzy

    2017-11-01

    Macro-aspartate aminotransferase (macro-AST) manifests as a persistent elevation of AST levels, because of association of the protein with immunoglobulins in the circulation. Macro-AST is a rare, benign condition without a previously confirmed genetic basis. Whole exome sequencing (WES)-based screening was performed on 32 participants with suspected familial macro-AST, while validation of variants was performed on an extended cohort of 92 probands and 1,644 healthy controls using Taqman genotyping. A missense variant (p.Gln208Glu, rs374966349) in glutamate oxaloacetate transaminase 1 (GOT1) was found, as a putative causal variant predisposing to familial macro-AST. The GOT1 p.Gln208Glu mutation was detected in 50 (54.3%) of 92 probands from 20 of 29 (69%) families, while its prevalence in healthy controls was only 0.18%. In silico analysis demonstrated that the amino acid at this position is not conserved among different species and that, functionally, a negatively charged glutamate on the GOT1 surface could strongly anchor serum immunoglobulins. Our data highlight that testing for the p.Gln208Glu genetic variant may be useful in diagnosis of macro-AST. Higher than normal levels of aspartate aminotransferase (AST) in the bloodstream may be a sign of a health problem. Individuals with macro-AST have elevated blood AST levels, without ongoing disease and often undergo unnecessary medical tests before the diagnosis of macro-AST is established. We found a genetic variant in the GOT1 gene associated with macro-AST. Genetic testing for this variant may aid diagnosis of macro-AST. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Treatment of both native and deamidated gluten peptides with an endo-peptidase from Aspergillus niger prevents stimulation of gut-derived gluten-reactive T cells from either children or adults with celiac disease.

    Science.gov (United States)

    Toft-Hansen, Henrik; Rasmussen, Karina S; Staal, Anne; Roggen, Erwin L; Sollid, Ludvig M; Lillevang, Søren T; Barington, Torben; Husby, Steffen

    2014-08-01

    Celiac disease (CD) is characterized by an inappropriate immunological reaction against gluten driven by gluten-specific CD4+ T cells. We screened 25 proteases and tested 10 for their potential to degrade gluten in vitro. Five proteases were further tested for their ability to prevent the proliferative response by a gluten-specific CD4+ T cell clone and seven gluten-reactive T cell lines to protease-digested gluten peptides. A proline-specific endo-peptidase from Aspergillus niger (AnP2) was particularly efficient at diminishing proliferation after stimulation with cleaved antigen, and could completely block the response against both native and deamidated gluten peptides. We found that AnP2 was efficient down to a 1:64 protease:substrate ratio (w:w). When AnP2 was tested in assays using seven gluten-reactive T cell lines from individual CD patients (three adults and four children), the response to gluten was diminished in all cases. Our study indicates a therapeutic benefit of AnP2 to CD patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Comparison of a Multiple Daily Insulin Injection Regimen (Glargine or Detemir Once Daily Plus Prandial Insulin Aspart and Continuous Subcutaneous Insulin Infusion (Aspart in Short-Term Intensive Insulin Therapy for Poorly Controlled Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Wen-shan Lv

    2013-01-01

    Full Text Available Aims. To examine the potential differences between multiple daily injection (MDI regimens based on new long-acting insulin analogues (glargine or detemir plus prandial insulin aspart and continuous subcutaneous insulin aspart infusion (CSII in patients with poorly controlled type 2 diabetes. Methods. Patients (n=119 with poorly controlled type 2 diabetes of a duration exceeding five years were randomly assigned into three groups: Group A treated with CSII using insulin aspart; Group B treated with glargine-based MDI and Group C treated with detemir-based MDI. Results. Good glycemic control was achieved by patients in Group A in a significantly shorter duration than patients in Groups B and C. Total daily insulin, basal insulin dose and dose per kg body weight in Group A were significantly less than those in Groups B and C. Daily blood glucose fluctuation in Group A was significantly less than that in Groups B and C. There were no differences between Groups B and C. Conclusions. Aspart-based CSII may achieve good blood glucose control with less insulin doses over a shorter period compared with glargine or detemir-based MDI. No differences between glargine- and detemir-based MDI were detected in poorly controlled subjects with type 2 diabetes.

  5. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Abu Dhabi cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Oula Alhabian

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Abu Dhabi. Results: A total of 383 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 134, insulin detemir (n = 152, insulin aspart (n = 13, basal insulin plus insulin aspart (n = 42 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.4% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.8%. SADRs did not occur in any of the study patients. Major hypoglycaemic events remained same as that of baseline (0.1 events/patient-year for insulin naïve group whereas major hypoglycaemia reduced from 0.1 events/patient-year to 0.0 events/patient-year in insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  6. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid

    NARCIS (Netherlands)

    Sivan, S.-S.; Wachtel, E.; Tsitron, E.; Sakkee, N.; Ham, F. van der; Groot, J.de; Roberts, S.; Maroudas, A.

    2008-01-01

    Knowledge of rates of protein turnover is important for a quantitative understanding of tissue synthesis and catabolism. In this work, we have used the racemization of aspartic acid as a marker for the turnover of collagen obtained from healthy and pathological human intervertebral disc matrices. We

  7. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    Science.gov (United States)

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  8. Inhibition of Calpain Prevents N-Methyl-D-aspartate-Induced Degeneration of the Nucleus Basalis and Associated Behavioral Dysfunction

    NARCIS (Netherlands)

    Nimmrich, Volker; Szabo, Robert; Nyakas, Csaba; Granic, Ivica; Reymann, Klaus G.; Schroeder, Ulrich H.; Gross, Gerhard; Schoemaker, Hans; Wicke, Karsten; Moeller, Achim; Luiten, Paul

    2008-01-01

    N-Methyl-D-aspartate( NMDA) receptor-mediated excitotoxicity is thought to underlie a variety of neurological disorders, and inhibition of either the NMDA receptor itself, or molecules of the intracellular cascade, may attenuate neurodegeneration in these diseases. Calpain, a calcium-dependent

  9. [Anesthesia in anti-N-methyl-d-aspartate receptor encephalitis - is general anesthesia a requisite? A case report].

    Science.gov (United States)

    Chaw, Sook Hui; Foo, Li Lian; Chan, Lucy; Wong, Kang Kwong; Abdullah, Suhailah; Lim, Boon Kiong

    Anti-N-methyl-d-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-d-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-d-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-d-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  11. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Phylip, L H; Lees, W E; Brownsey, B G

    2001-01-01

    The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar se...

  12. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    KEY POINTS: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia and...

  13. Rescue of Na+ and H+ binding in Na+,K+-ATPase M8 aspartate mutants by secondary mutation

    DEFF Research Database (Denmark)

    Holm, Rikke; Einholm, Anja P.; Andersen, Jens Peter

    A mutation replacing the aspartate in transmembrane segment M8 in the a3-isoform of Na,K-ATPase with asparagine has been found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood. This aspartate may be a critical Na+ coordinating residue, but the crystal...

  14. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...

  15. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence.

    Science.gov (United States)

    Chen, Hsien-Jung; Huang, Yu-Hsuan; Huang, Guan-Jhong; Huang, Shyh-Shyun; Chow, Te-Jin; Lin, Yaw-Huei

    2015-05-15

    Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Preoperative Aspartate Aminotransferase-to-Platelet Ratio Index Predicts Perioperative Liver-Related Complications Following Liver Resection for Colorectal Cancer Metastases

    DEFF Research Database (Denmark)

    Amptoulach, S.; Gross, G.; Sturesson, C.

    2017-01-01

    -related). In multivariate regression analysis, the aspartate aminotransferase-to-platelet ratio index was independently associated with liver-related complications (odds ratio: 1.149, p = 0.003) and perioperative liver failure (odds ratio: 1.155, p = 0.012). The latter was also true in the subcohort of patients...... with neoadjuvant chemotherapy (odds ratio: 1.157, p = 0.004) but not in those without such therapy (p = 0.062). The aspartate-to-alanine aminotransferase ratio was not related to liver-related complications (p = 0.929). The area under the receiver operating characteristics curve for the aspartate aminotransferase.......175) or steatosis (p = 0.173) in the nontumorous liver in surgical specimens. Conclusion: The preoperative aspartate aminotransferase-to-platelet ratio index, but not the aspartate-to-alanine aminotransferase ratio, predicts perioperative liver-related complications following hepatectomy due to colorectal cancer...

  17. Endocrine roles of D-aspartic acid in the testis of lizard Podarcis s. sicula.

    Science.gov (United States)

    Raucci, F; D'Aniello, S; Di Fiore, M M

    2005-12-01

    In the lizard Podarcis s. sicula, a substantial amount of D-aspartate (D-Asp) is endogenous to the testis and shows cyclic changes of activity connected with sex hormone profiles during the annual reproductive phases. Testicular D-Asp content shows a direct correlation with testosterone titres and a reverse correlation with 17beta-estradiol titres. In vivo experiments, consisting of i.p. injections of 2.0 micromol/g body weight of D-Asp or other amino acids, in lizards collected during the three main phases of the reproductive cycle (pre-reproductive, reproductive and post-reproductive period), revealed that the testis can specifically take up and accumulate D-Asp alone. Moreover, this amino acid influences the synthesis of testosterone and 17beta-estradiol in all phases of the cycle. This phenomenon is particularly evident during the pre- and post-reproductive period, when endogenous testosterone levels observed in both testis and plasma were the lowest and 17beta-estradiol concentrations were the highest. D-Asp rapidly induces a fall in 17beta-estradiol and a rise in testosterone at 3 h post-injection in the testis and at 6 h post-injection in the blood. In vitro experiments show that testicular tissue converted L-Asp into D-Asp through an aspartate racemase. D-Asp synthesis was measured in all phases of the cycle, but was significantly higher during the reproductive period with a peak at pH 6.0. The exogenous D-Asp also induces a significant increase in the mitotic activity of the testis at 3 h (P proliferation cell nuclear antigen (PCNA). The effects of D-Asp on the testis appear to be specific since they were not seen in lizards injected with other D- or L-forms of amino acids with known excitatory effects on neurosecretion. Our results suggest a regulatory role for D-Asp in the steroido-genesis and spermatogenesis of the testis of the lizard Podarcis s. sicula.

  18. Poly(aspartic acid) with adjustable pH-dependent solubility.

    Science.gov (United States)

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract

  19. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake.

    Science.gov (United States)

    Pollard, Ricquita D; Blesso, Christopher N; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W; Nuradin, Nebil; Francone, Omar L; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J; Sorci-Thomas, Mary G

    2015-06-19

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Enhancement of Pulmozyme activity in purulent sputum by combination with poly-aspartic acid or gelsolin.

    Science.gov (United States)

    Bucki, Robert; Cruz, Katrina; Pogoda, Katarzyna; Eggert, Ashley; Chin, LiKang; Ferrin, Marianne; Imbesi, Giovanna; Hadjiliadis, Denis; Janmey, Paul A

    2015-09-01

    DNase (Pulmozyme) effectiveness in cystic fibrosis treatment is in some cases limited by its inability to access DNA trapped within bundles in highly viscous fluids that also contain actin. Dissociating DNA-containing bundles using actin depolymerizing agents and polyanions has potential to increase DNase efficacy. Fluorescence measurements of YOYO-1 and a rheological creep-recovery test quantified DNA content and viscoelasticity in 150 sputum samples from adult CF patients and their susceptibility to fluidization by DNase1, alone and in combination with gelsolin and poly-aspartate (p-Asp). Fluidization of sputum by these agents is compared to their capacity to increase antibacterial activity in sputum, measured using a luminescent Pseudomonas aeruginosa strain and a bacterial killing assay. The polyanion p-Asp (1-50 μg/g of sputum), the actin severing protein gelsolin (10-90 μg/g) and their combination enhance the ability of DNase 1 to increase the abnormally low mechanical compliance of CF sputum and to promote bacterial killing in sputum by colistin and tobramycin, two antibiotics commonly used to treat CF. Addition of low concentrations of p-ASP or gelsolin can increase the therapeutic value of Pulmozyme (DNase 1). Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  1. Subfield-specific loss of hippocampal N-acetyl aspartate in temporal lobe epilepsy.

    Science.gov (United States)

    Vielhaber, Stefan; Niessen, Heiko G; Debska-Vielhaber, Grazyna; Kudin, Alexei P; Wellmer, Jörg; Kaufmann, Jörn; Schönfeld, Mircea Ariel; Fendrich, Robert; Willker, Wieland; Leibfritz, Dieter; Schramm, Johannes; Elger, Christian E; Heinze, Hans-Jochen; Kunz, Wolfram S

    2008-01-01

    In patients with mesial temporal lobe epilepsy (MTLE) it remains an unresolved issue whether the interictal decrease in N-acetyl aspartate (NAA) detected by proton magnetic resonance spectroscopy ((1)H-MRS) reflects the epilepsy-associated loss of hippocampal pyramidal neurons or metabolic dysfunction. To address this problem, we applied high-resolution (1)H-MRS at 14.1 Tesla to measure metabolite concentrations in ex vivo tissue slices from three hippocampal subfields (CA1, CA3, dentate gyrus) as well as from the parahippocampal region of 12 patients with MTLE. In contrast to four patients with lesion-caused MTLE, we found a large variance of NAA concentrations in the individual hippocampal regions of patients with Ammon's horn sclerosis (AHS). Specifically, in subfield CA3 of AHS patients despite of a moderate preservation of neuronal cell densities the concentration of NAA was significantly lowered, while the concentrations of lactate, glucose, and succinate were elevated. We suggest that these subfield-specific alterations of metabolite concentrations in AHS are very likely caused by impairment of mitochondrial function and not related to neuronal cell loss. A subfield-specific impairment of energy metabolism is the probable cause for lowered NAA concentrations in sclerotic hippocampi of MTLE patients.

  2. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits.

    Science.gov (United States)

    Rocha, Gabriela Fernanda; Kise, Francisco; Rosso, Adriana Mabel; Parisi, Mónica Graciela

    2017-12-15

    An aspartic protease from Salpichroa origanifolia fruits was successfully immobilized onto an activated support of glutaraldehyde agarose. The immobilized enzyme presented higher thermal stability than the free enzyme from 40°C to 50°C and high reusability, retaining 54% of the initial activity after ten cycles of the process. Whey protein concentrates (WPC) were hydrolyzed with both free and immobilized enzyme, reaching a similar degree of hydrolysis of approximately 6-8% after 20h. In addition, the immobilized derivate hydrolyzed α-lactalbumin protein with a higher affinity than β-lactoglobulin. The hydrolysate was ultra-filtrated, and the fractions were evaluated for antioxidant activities with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity method. The fraction containing peptides with a molecular mass below 3kDa demonstrated a strong radical quenching effect (IC50: 0.48mg/ml). These results suggest that hydrolyzed WPC could be considered as a promising source of natural food antioxidants for the development of functional food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid affects Human Cortical Development

    Directory of Open Access Journals (Sweden)

    Inseyah Bagasrawala

    2016-09-01

    Full Text Available Kynurenic acid (KYNA, a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs, enriched from human cerebral cortex at mid-gestation (16-19 gestational weeks. KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia.

  4. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells.

    Science.gov (United States)

    Hänggi, Pascal; Telezhkin, Vsevolod; Kemp, Paul J; Schmugge, Markus; Gassmann, Max; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2015-06-15

    Calcium signaling is essential to support erythroid proliferation and differentiation. Precise control of the intracellular Ca(2+) levels in erythroid precursor cells (EPCs) is afforded by coordinated expression and function of several cation channels, including the recently identified N-methyl-d-aspartate receptor (NMDAR). Here, we characterized the changes in Ca(2+) uptake and electric currents mediated by the NMDARs occurring during EPC differentiation using flow cytometry and patch clamp. During erythropoietic maturation, subunit composition and properties of the receptor changed; in proerythroblasts and basophilic erythroblasts, fast deactivating currents with high amplitudes were mediated by the GluN2A subunit-dominated receptors, while at the polychromatic and orthochromatic erythroblast stages, the GluN2C subunit was getting more abundant, overriding the expression of GluN2A. At these stages, the currents mediated by the NMDARs carried the features characteristic of the GluN2C-containing receptors, such as prolonged decay time and lower conductance. Kinetics of this switch in NMDAR properties and abundance varied markedly from donor to donor. Despite this variability, NMDARs were essential for survival of EPCs in any subject tested. Our findings indicate that NMDARs have a dual role during erythropoiesis, supporting survival of polychromatic erythroblasts and contributing to the Ca(2+) homeostasis from the orthochromatic erythroblast stage to circulating red blood cells. Copyright © 2015 the American Physiological Society.

  5. N-methyl-D-aspartate (NMDA) impairs myogenesis in C2C12 cells.

    Science.gov (United States)

    Auh, Q-SChick; Park, Kyung-Ran; Lee, Myeong-Ok; Hwang, Mi-Jin; Kang, Soo-Kyung; Hong, Jung-Pyo; Yun, Hyung-Mun; Kim, Eun-Cheol

    2017-09-01

    N-methyl-d-aspartate (NMDA) is expressed in sensory neurons and plays important roles in peripheral pain mechanisms. The aim of this study was to examine the effects and molecular mechanisms of NMDA on C2C12 myoblast proliferation and differentiation. Cytotoxicity and differentiation were examined by the MTT assay, reverse transcription-polymerase chain reaction, and immunofluorescence. NMDA had no cytotoxicity (10-500 μM) and inhibited myoblastic differentiation of C2C12 cells, as assessed by F-actin immunofluorescence and levels of mRNAs encoding myogenic markers such as myogenin and myosin heavy-chain 2. It inhibited phosphorylation of mammalian target of rapamycin (mTOR) by inactivating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. It induced reactive oxygen species production. Furthermore, NMDA-suppressed expression of F-actin was reversed by adding the antioxidant N-acetylcysteine. Collectively, these results indicate that NMDA impairs myogenesis or myogenic differentiation in C2C12 cells through the mTOR/MAPK signaling pathways and may lead to skeletal muscle degeneration. Muscle Nerve 56: 510-518, 2017. © 2016 Wiley Periodicals, Inc.

  6. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The putative effects of D-Aspartic acid on blood testosterone levels: A systematic review

    Directory of Open Access Journals (Sweden)

    Farzad Roshanzamir

    2017-08-01

    Full Text Available Background: D-Aspartic acid (D-Asp is in invertebrate and vertebrate neuroendocrine tissues, where it carries out important physiological functions. Recently, it has been reported that D-Asp is involved in the synthesis and release of testosterone and is assumed can be used as a testosterone booster for infertile men, and by athletes to increase muscle mass and strength. Objective: The aim of this review is to summarize available evidence related to the effects of D-Asp on serum testosterone levels. Materials and Methods: We conducted a systematic review of all type studies, which evaluated the effect of the D-Asp on blood testosterone including published papers until October 2015, using PubMed, ISI Web of Science, ProQuest and Scopus database. Results: With 396 retrieved records, 23 animal studies and 4 human studies were included. In vivo and in vitro animal studies revealed the effect of D-Asp depending on species, sex and organ-specific. Our results showed that exogenous D-Asp enhances testosterone levels in male animal’s studies, whereas studies in human yielded inconsistent results. The evidence for this association in man is still sparse, mostly because of limited number and poor quality studies. Conclusion: There is an urgent need for more and well-designed human clinical trials with larger sample sizes and longer duration to investigate putative effects of D-Asp on testosterone concentrations.

  8. Kinetic simulation of malate-aspartate and citrate-pyruvate shuttles in association with Krebs cycle.

    Science.gov (United States)

    Korla, Kalyani; Vadlakonda, Lakshmipathi; Mitra, Chanchal K

    2015-01-01

    In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model.

  9. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease.

    Science.gov (United States)

    Assadi, Mitra; Janson, Christopher; Wang, Dah-Jyuu; Goldfarb, Olga; Suri, Neeti; Bilaniuk, Larissa; Leone, Paola

    2010-07-01

    Our group has previously reported the first clinical application of lithium in a child affected by Canavan disease. In this study, we aimed to assess the effects of lithium on N-acetyl aspartate (NAA) as well as other end points in a larger cohort. Six patients with clinical, laboratory and genetic confirmation of Canavan disease were recruited and underwent treatment with lithium. The battery of safety and efficacy testing performed before and after sixty days of treatment included Gross Motor Function Testing (GMFM), Magnetic Resonance Imaging (MRI) Proton Magnetic Spectroscopy (H-MRS) as well as blood work. The medication was safe without any clinical or laboratory evidence for toxicity. Parental reports indicated improvement in alertness and social interactions. GMFM did not show statistically significant improvement in motor development. H-MRS documented an overall drop in NAA which was statistically significant in the basal ganglia. T1 measurements recorded on MRI studies suggested a mild improvement in myelination in the frontal white matter after treatment. Diffusion Tensor Imaging was available in two patients and suggested micro-structural improvement in the corpus callosum. The results suggest that lithium administration may be beneficial in patients with Canavan disease. Copyright (c) 2009 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    Science.gov (United States)

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10(6) and 3.73×10(6)M(-1), respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. N-Methyl-d-Aspartate Receptor Antibodies in Herpes Simplex Encephalitis

    Science.gov (United States)

    Prüss, Harald; Finke, Carsten; Höltje, Markus; Hofmann, Joerg; Klingbeil, Christine; Probst, Christian; Borowski, Kathrin; Ahnert-Hilger, Gudrun; Harms, Lutz; Schwab, Jan M.; Ploner, Christoph J.; Komorowski, Lars; Stoecker, Winfried; Dalmau, Josep; Wandinger, Klaus-Peter

    2013-01-01

    Objective To determine the presence and kinetics of antibodies against synaptic proteins in patients with herpes simplex virus encephalitis (HSE). Methods Retrospective analysis of 44 patients with polymerase chain reaction-proven HSE for the presence of a large panel of onconeuronal and synaptic receptor antibodies. The effect of patients’ serum was studied in cultures of primary mouse hippocampal neurons. Results N-Methyl-d-aspartate receptor (NMDAR) antibodies of the immunoglobulin (Ig) subtypes IgA, IgG, or IgM were detected in 13 of 44 patients (30%) in the course of HSE, suggesting secondary autoimmune mechanisms. NMDAR antibodies were often present at hospital admission, but in some patients developed after the first week of HSE. Antibody-positive sera resulted in downregulation of synaptic marker proteins in hippocampal neurons. Interpretation Some patients with HSE develop IgA, IgG, or IgM autoantibodies against NMDAR. Sera from these patients alter the density of neuronal synaptic markers, suggesting a potential pathogenic disease-modifying effect. These findings have implications for the understanding of autoimmunity in infectious diseases, and prospective studies should reveal whether the subgroup of patients with HSE and NMDAR antibodies may benefit from immunotherapy. PMID:23280840

  12. Structural Dynamics of the Glycine-binding Domain of the N-Methyl-d-Aspartate Receptor*

    Science.gov (United States)

    Dolino, Drew M.; Cooper, David; Ramaswamy, Swarna; Jaurich, Henriette; Landes, Christy F.; Jayaraman, Vasanthi

    2015-01-01

    N-Methyl-d-aspartate receptors mediate the slow component of excitatory neurotransmission in the central nervous system. These receptors are obligate heteromers containing glycine- and glutamate-binding subunits. The ligands bind to a bilobed agonist-binding domain of the receptor. Previous x-ray structures of the glycine-binding domain of NMDA receptors showed no significant changes between the partial and full agonist-bound structures. Here we have used single molecule fluorescence resonance energy transfer (smFRET) to investigate the cleft closure conformational states that the glycine-binding domain of the receptor adopts in the presence of the antagonist 5,7-dichlorokynurenic acid (DCKA), the partial agonists 1-amino-1-cyclobutanecarboxylic acid (ACBC) and l-alanine, and full agonists glycine and d-serine. For these studies, we have incorporated the unnatural amino acid p-acetyl-l-phenylalanine for specific labeling of the protein with hydrazide derivatives of fluorophores. The single molecule fluorescence resonance energy transfer data show that the agonist-binding domain can adopt a wide range of cleft closure states with significant overlap in the states occupied by ligands of varying efficacy. The difference lies in the fraction of the protein in a more closed-cleft form, with full agonists having a larger fraction in the closed-cleft form, suggesting that the ability of ligands to select for these states could dictate the extent of activation. PMID:25404733

  13. Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Dolino, Drew M; Cooper, David; Ramaswamy, Swarna; Jaurich, Henriette; Landes, Christy F; Jayaraman, Vasanthi

    2015-01-09

    N-Methyl-D-aspartate receptors mediate the slow component of excitatory neurotransmission in the central nervous system. These receptors are obligate heteromers containing glycine- and glutamate-binding subunits. The ligands bind to a bilobed agonist-binding domain of the receptor. Previous x-ray structures of the glycine-binding domain of NMDA receptors showed no significant changes between the partial and full agonist-bound structures. Here we have used single molecule fluorescence resonance energy transfer (smFRET) to investigate the cleft closure conformational states that the glycine-binding domain of the receptor adopts in the presence of the antagonist 5,7-dichlorokynurenic acid (DCKA), the partial agonists 1-amino-1-cyclobutanecarboxylic acid (ACBC) and L-alanine, and full agonists glycine and D-serine. For these studies, we have incorporated the unnatural amino acid p-acetyl-L-phenylalanine for specific labeling of the protein with hydrazide derivatives of fluorophores. The single molecule fluorescence resonance energy transfer data show that the agonist-binding domain can adopt a wide range of cleft closure states with significant overlap in the states occupied by ligands of varying efficacy. The difference lies in the fraction of the protein in a more closed-cleft form, with full agonists having a larger fraction in the closed-cleft form, suggesting that the ability of ligands to select for these states could dictate the extent of activation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Improved postprandial glycaemic control with insulin Aspart in type 2 diabetic patients treated with insulin

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Thorsby, P; Kjems, L

    2000-01-01

    beta-cell function. In a double-blind, double dummy crossover design, patients attended three study days where the following insulin injections in combination with placebo were given in a random order: IAsp (0.15 IU/kg body weight) immediately before the meal, or insulin Actrapid (0.15 IU......The effect on postprandial blood glucose control of an immediately pre-meal injection of the rapid acting insulin analogue Aspart (IAsp) was compared with that of human insulin Actrapid injected immediately or 30 minutes before a test meal in insulin-treated type 2 diabetic patients with residual....../kg) immediately (Act0) or 30 minutes before (Act-30) a test meal. We studied 25 insulin-requiring type 2 diabetic patients, including 14 males and 11 females, with a mean age of 59.7 years (range, 43-71), body mass index 28.3 kg/m2 (range, 21.9-35.0), HbA1c 8.5% (range, 6.8-10.0), glucagon-stimulated C-peptide 1...

  15. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  16. N-methyl-D-aspartate/phencyclidine receptor complex of rat forebrain: Purification and biochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ikin, A.F.; Kloog, Y.; Sokolovsky, M. (Tel Aviv Univ. (Israel))

    1990-03-06

    The N-methyl-D-aspartate NMDA/phencyclidine (PCP) receptor from rat forebrain was solubilized with sodium cholate and purified by affinity chromatography on amino-PCP-agarose. A 3,700-fold purification was achieved. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol revealed four major bands of M{sub r} 67,000, 57,000, 46,000, and 33,000. ({sup 3}H)Azido-PCP was irreversibly incorporated into each of these bands after UV irradiation. The dissociation constant (K{sub d}) of (1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP) binding to the purified NMDA/PCP receptor was 120 nM. The maximum specific binding (B{sub max}) for ({sup 3}H)TCP binding was 3.3 nmol/mg of protein. The pharmacological profile of the purified receptor complex was similar to that of the membranal and soluble receptors. The binding of ({sup 3}H)TCP to the purified receptor was modulated by the NMDA receptor ligands glutamate, glycine, and NMDA.

  17. Strongyloides papillosus: changes in transcript levels of lysozyme and aspartic protease 2 in percutaneously migrated larvae.

    Science.gov (United States)

    Biewener, Valerie; Welz, Claudia; Khumpool, Grisada; Küttler, Ulla; Schnieder, Thomas

    2012-09-01

    The infection of the host is the crucial event in the life-cycle of parasites. To understand the molecular mechanisms of this important step, different methods are used in present studies. For analysis of changes in transcript levels the most sensitive method is the quantitative real-time PCR (qPCR). For an accurate analysis the evaluation of a set of adequate reference genes is necessary. The present study aimed to analyse the transcriptional levels of two genes of interest, the putative aspartic protease Spa-asp-2 and the putative lysozyme Spa-lys, in infective, free-living larvae of Strongyloides papillosus at different ages and from long-term and short-term infections and percutaneously migrated ("parasitic") larvae. Percutaneously migrated larvae were collected using the PERL chamber system and ovine skin in vitro. Reference genes identified as most suitable for transcriptional analysis according to geNorm analysis were genes for the eukaryotic translation elongation factor 1 alpha (Spa-eft-2), actin variation 2 (Spa-act-v2) and beta tubulin (Spa-tbb-1). Transcriptional analysis of the genes in percutaneously migrated larvae showed an upregulation of Spa-asp-2, while Spa-lys was downregulated. Data from the presented study provide a first glance into the changes of transcript levels of S. papillosus induced by percutaneous migration. Copyright © 2012. Published by Elsevier Inc.

  18. Column chromatography and immunoassay compared for measuring the isoenzymes of aspartate aminotransferase in serum.

    Science.gov (United States)

    Sampson, E J; Hannon, W H; McKneally, S S; McKenzie, C; Miller, S A; Whitner, V S; Burtis, C A

    1979-10-01

    We compare a column-chromatographic method and a homogeneous immunoassay method for separately measuring the mitochondrial and cytoplasmic isoenzymes of aspartate aminotransferase. Analytical recovery for the two methods averaged 102% (SD, 2%) and 103% (SD, 4%), respectively, for 11 pools prepared by adding the purified isoenzymes to serum and 102% (SD 8.9%) and 89% (SD, 8.1%) for 26 unaltered specimens of human serum. In comparing the results of the immunoassay method (y) to the chromatographic method (x), our measurements agreed closely for the mitochondrial (y = 0.947 X + 7, r = 0.9991, standard error of estimate = 2.9 U/L) and cytoplasmic (y = 0.92x-6, r = 0.9995, standard error of estimate = 2.1 U/L) isoenzymes in pools prepared from the purified isoenzymes. Similar measurements of the 26 human serum specimens yielded the following results for least-squares evaluation; cytoplasmic isoenzyme y = 1.03x-11, r = 0.994, and standard error of estimate = 6.0 U/L; mitochondrial isoenzyme y = 0.75x+0, r = 0.927, and standard error of estimate = 3.9 U/L.

  19. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.).

    Science.gov (United States)

    Llorente, Berta E; Brutti, Cristina B; Caffini, Néstor O

    2004-12-29

    The study of proteinase expression in crude extracts from different organs of the globe artichoke (Cynara scolymus L.) disclosed that enzymes with proteolytic and milk-clotting activity are mainly located in mature flowers. Maximum proteolytic activity was recorded at pH 5.0, and inhibition studies showed that only pepstatin, specific for aspartic proteinases, presented a significant inhibitory effect. Such properties, in addition to easy enzyme inactivation by moderate heating, make this crude protease extract potentially useful for cheese production. Adsorption with activated carbon, together with anion exchange and affinity chromatography, led to the isolation of a heterodimeric milk-clotting proteinase consisting of 30- and 15-kDa subunits. MALDI-TOF MS of the 15-kDa chain determined a 15.358-Da mass, and the terminal amino sequence presented 96% homology with the smaller cardosin A subunit. The amino terminal sequence of the 30-kDa chain proved to be identical to the larger cardosin A subunit. Electrophoresis evidenced proteinase self-processing that was confirmed by immunoblots presenting 62-, 30-, and 15-kDa bands.

  20. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor

    Directory of Open Access Journals (Sweden)

    Eric H. Chang

    2015-07-01

    Full Text Available Patients with systemic lupus erythematosus (SLE experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR, termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present.

  1. Anti-N-methyl-D-aspartate receptor encephalitis: three cases report and review of literature

    Directory of Open Access Journals (Sweden)

    Guan-en ZHOU

    2014-07-01

    Full Text Available Objective To study the clinical and laboratory features and diagnosis of the patient with anti-N-methyl-D-aspartate receptor (NMDAR encephalitis.  Methods The data of clinical features, laboratory findings, and radiological manifestations of 3 patients with anti-NMDAR encephalitis were reviewed and analyzed. Results Of the 3 patients, 2 were male and one was female. The age was from 33 to 34 years (33.30 years on average. Main symptoms included headache in 2 cases, psychiatric symptoms and speech disorder in 3 cases, different levels of movement disorder in one case and hallucinations in one case. The results of MRI examination revealed gyri swelling, abnormal signal and demyelination of temporal lobe. The EEG showed focal or diffuse slow waves. All cases were confirmed to have the disease by detection of anti-NMDAR antibodies. Both the white blood cell count (3 cases and protein quantification (2 cases elevated. No tumor was detected in any of the patients. All patients were coued after receiving immunotherapy with methylprednisolone and human immunoglobulin.  Conclusions Anti-NMDAR encephalitis is a severe but treatable disorder. The syndrome is highly recognizable clinically and can be confirmed with the demonstration of anti-NMDAR antibodies. Timely diagnosis and treatment may yield a favorable prognosis. doi: 10.3969/j.issn.1672-6731.2014.07.005

  2. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  3. Measurement of Creatine kinase and Aspartate aminotransferase in saliva of dogs: a pilot study.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Barranco, Tomas; Rubio, Monica; Carrillo, Jose Maria; Martinez-Subiela, Silvia; Tecles, Fernando; Carrillo, Juana Dolores; Cerón, José J

    2017-06-09

    Muscle enzymes in saliva have been reported to be possible markers of heart and muscle damage in humans. The aim of this study was to assess if Creatine kinase (CK) and Aspartate aminotransferase (AST) activities could be measured in canine saliva, and to evaluate their possible changes in situations of muscle damage. The spectrophotometric assays for CK and AST measurement in saliva of dogs showed intra- and inter-assay imprecision lower than 1 and 16% and coefficients of correlation close to 1 in linearity under dilution tests. Healthy dogs showed activities in saliva of CK between 27 and 121 U/L and AST between 46 and 144 U/L, whereas in saliva of dogs with muscle damage CK ranged between 132 and 3862 U/L and AST between 154 and 4340 U/L. Positive moderate correlations were found between saliva and serum activities of the two enzymes (CK, r = 0.579; P = 0.001; AST, r = 0.674; P = 0.001). CK and AST activities can be measured in canine saliva with commercially available spectrophotometric assays. In addition these enzymes show higher values in saliva of dogs with muscle damage and their values are moderately correlated with those of serum.

  4. Clinical analysis on anti-N-methyl-D-aspartate receptor encephalitis cases: Chinese experience

    Science.gov (United States)

    Huang, Xiaoqin; Fan, Chunqiu; Wu, Jian; Ye, Jing; Zhan, Shuqin; Song, Haiqing; Liu, Aihua; Su, Yingying; Jia, Jianping

    2015-01-01

    As a kind of autoimmune encephalitis which was just identified, the clinical manifestations of the anti-N methyl-D aspartate (anti-NMDA) receptor encephalitis are complex, diverse and in severe condition. The immunotherapy has shown good effect on the treatment but in generally, the diagnosis and treatment are still in the experience accumulation stage. More clinical research in different population is necessary, for example, in the Chinese population. This study was completed in anti-NMDA receptor encephalitis patients who were diagnosed in Beijing Xuan Wu Hospital (China) during the time from 2011 to 2013. Total 33 patients were involved with the average age of 29.7 years old when the diseases were onset. With diverse clinical manifestations, most patients displayed positively by NMDAR antibody test and 63.6% of them were associated with elevated CSF-lgA. Patients also showed abnormal MRI and EEG. Only three patients had teratomas. With hormone therapy, gamma globulin treatment or plasma exchange, more than three quarters of patients fully recovered and the others had moderate symptoms. Based on our results, we suggest that NMDAR antibody test would be helpful to make a timely diagnosis and to administer immunotherapy. PMID:26770517

  5. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Sanaz Afraei

    2017-07-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis. EAE is mainly mediated by adaptive and innate immune responses that leads to an inflammatory demyelization and axonal damage. The aim of the present research was to examine the therapeutic efficacy of D-aspartic acid (D-Asp on a mouse EAE model. EAE induction was performed in female C57BL/6 mice by myelin 40 oligodendrocyte glycoprotein (35-55 in a complete Freund's adjuvant emulsion, and D-Asp was used to test its efficiency in the reduction of EAE. During the course of study, clinical evaluation was assessed, and on Day 21, post-immunization blood samples were taken from the heart of mice for the evaluation of interleukin 6 and other chemical molecules. The mice were sacrificed, and their brain and cerebellum were removed for histological analysis. Our findings indicated that D-Asp had beneficial effects on EAE by attenuation in the severity and delay in the onset of the disease. Histological analysis showed that treatment with D-Asp can reduce inflammation. Moreover, in D-Asp-treated mice, the serum level of interleukin 6 was significantly lower than that in control animals, whereas the total antioxidant capacity was significantly higher. The data indicates that D-Asp possess neuroprotective property to prevent the onset of the multiple sclerosis.

  6. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  7. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  8. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    Science.gov (United States)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  9. The putative effects of D-Aspartic acid on blood testosterone levels: A systematic review

    Science.gov (United States)

    Roshanzamir, Farzad; Safavi, Seyyed Morteza

    2017-01-01

    Background: D-Aspartic acid (D-Asp) is in invertebrate and vertebrate neuroendocrine tissues, where it carries out important physiological functions. Recently, it has been reported that D-Asp is involved in the synthesis and release of testosterone and is assumed can be used as a testosterone booster for infertile men, and by athletes to increase muscle mass and strength. Objective: The aim of this review is to summarize available evidence related to the effects of D-Asp on serum testosterone levels. Materials and Methods: We conducted a systematic review of all type studies, which evaluated the effect of the D-Asp on blood testosterone including published papers until October 2015, using PubMed, ISI Web of Science, ProQuest and Scopus database. Results: With 396 retrieved records, 23 animal studies and 4 human studies were included. In vivo and in vitro animal studies revealed the effect of D-Asp depending on species, sex and organ-specific. Our results showed that exogenous D-Asp enhances testosterone levels in male animal’s studies, whereas studies in human yielded inconsistent results. The evidence for this association in man is still sparse, mostly because of limited number and poor quality studies. Conclusion: There is an urgent need for more and well-designed human clinical trials with larger sample sizes and longer duration to investigate putative effects of D-Asp on testosterone concentrations. PMID:28280794

  10. Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation.

    Science.gov (United States)

    Hsiong, Susan X; Boontheekul, Tanyarut; Huebsch, Nathaniel; Mooney, David J

    2009-02-01

    The role of morphogens in bone regeneration has been widely studied, whereas the effect of matrix cues, particularly on stem cell differentiation, are less well understood. In this work, we investigated the effects of arginine-glycine-aspartate (RGD) ligand conformation (linear vs cyclic RGD) on primary human bone marrow stromal cell (hBMSC) and D1 stem cell osteogenic differentiation in three-dimensional (3D) culture and compared their response with that of committed MC3T3-E1 preosteoblasts to determine whether the stage of cell differentiation altered the response to the adhesion ligands. Linear RGD densities that promoted osteogenic differentiation of committed cells (MC3T3-E1 preosteoblasts) did not induce differentiation of hBMSCs or D1 stem cells, although matrices presenting the cyclic form of this adhesion ligand enhanced osteoprogenitor differentiation in 3D culture. This may be due to enhanced integrin-ligand binding. These studies indicate that biomaterial design parameters optimized for differentiated cell types may not directly translate to stem cell populations, because less-committed cells may require more instruction than differentiated cells. It is likely that design of synthetic extracellular matrices tailored to promote stem cell differentiation may enhance bone regeneration by transplanted cells.

  11. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  12. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

    Directory of Open Access Journals (Sweden)

    Alex Loukas

    2005-10-01

    Full Text Available Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056 and fecal egg counts (p = 0.018 in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049 and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood.To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.

  13. Kinetic properties and thermal stabilities of mutant forms of mitochondrial aspartate aminotransferase.

    Science.gov (United States)

    Azzariti, A; Vacca, R A; Giannattasio, S; Merafina, R S; Marra, E; Doonan, S

    1998-07-28

    Kinetic properties and thermal stabilities of the precursor form of mitochondrial aspartate aminotransferase, the mature form lacking 9 amino acids from the N-terminus, and forms of the mature protein in which cysteine-166 had been mutated to serine or alanine were compared with those of the mature enzyme. The precursor and the cysteine mutants showed moderately impaired catalytic properties consistent with decreased ability to undergo transition from the open to the closed conformation which is an integral part of the mechanism of action of the enzyme. The deletion mutant had a kcat only 2% of that of the mature enzyme but also much reduced Km values for both substrates. In addition it showed enhanced reactivity of cysteine-166 with 5,5'-dithiobis(2-nitrobenzoate), which is characteristic of the closed form of the enzyme, with no enhancement of reactivity in the presence of substrates. This is taken to show that the deletion mutant adopts a conformation that is significantly different from that of the mature enzyme particularly in respect of the small domain. The deletion mutant was found to be more resistant to thermal inactivation over a range of temperatures than were the other forms of the enzyme consistent with its having a more tightly packed small domain.

  14. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  15. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    Directory of Open Access Journals (Sweden)

    Daniel A Kane

    2014-11-01

    Full Text Available Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH, the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle; it is also proposed that the two shuttles are necessarily interconnected. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the PCr shuttle, would facilitate net cellular lactate oxidation under a variety of conditions.

  16. Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice.

    Science.gov (United States)

    Ye, Xinxin; Li, Hongying; Wang, Qingyun; Chai, Rushan; Ma, Chao; Gao, Hongjian; Mao, Jingdong

    2017-11-01

    The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates. The presence of Asp or Lys influenced the uptake and distribution of GNPs in rice, which depended on the electrical interaction between the coated GNPs and each amino acid. When the electrical charge of the amino acid was the same as that of the surface ligand coated onto the GNPs, the GNPs could disperse well in nutrient solution, resulting in increased uptake of GNPs into rice tissue. The opposite was true where the charge on the surface ligand was different from that on the amino acid, resulting in agglomeration and reduced Au uptake into rice tissue. The behavior of GNPs in the hydroponic nutrient solution was monitored in terms of agglomeration, particle size distribution, and surface charge in the presence and absence of Asp or Lys, which depended strongly on the electrostatic interaction. Results from this study indicated that the species of root exudates must be taken into account in assessing the bioavailability of nanomaterials to plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.

    Science.gov (United States)

    Puthan Veetil, Vinod; Raj, Hans; Quax, Wim J; Janssen, Dick B; Poelarends, Gerrit J

    2009-06-01

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of L-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of L-aspartate to form an enzyme-stabilized enediolate intermediate. Ketonization of this intermediate eliminates ammonia and yields the product, fumarate. Although two crystal structures of aspartases have been determined, details of the catalytic mechanism have not yet been elucidated. In the present study, eight active site residues (Thr101, Ser140, Thr141, Asn142, Thr187, His188, Lys324 and Asn326) were mutated in the structurally characterized aspartase (AspB) from Bacillus sp. YM55-1. On the basis of a model of the complex in which L-aspartate was docked manually into the active site of AspB, the residues responsible for binding the amino group of L-aspartate were predicted to be Thr101, Asn142 and His188. This postulate is supported by the mutagenesis studies: mutations at these positions resulted in mutant enzymes with reduced activity and significant increases in the K(m) for L-aspartate. Studies of the pH dependence of the kinetic parameters of AspB revealed that a basic group with a pK(a) of approximately 7 and an acidic group with a pK(a) of approximately 10 are essential for catalysis. His188 does not play the typical role of active site base or acid because the H188A mutant retained significant activity and displayed an unchanged pH-rate profile compared to that of wild-type AspB. Mutation of Ser140 and Thr141 and kinetic analysis of the mutant enzymes revealed that these residues are most likely involved in substrate binding and in stabilizing the enediolate intermediate. Mutagenesis studies corroborate the essential role of Lys324 because all mutations at this position resulted in mutant enzymes that were completely inactive. The substrate-binding model and kinetic analysis of mutant enzymes suggest that Thr187 and Asn326

  18. Solid-State Synthesis, Characterization, and Biological Activity of the Bioinorganic Complex of Aspartic Acid and Arsenic Triiodide

    Directory of Open Access Journals (Sweden)

    Guo-Qing Zhong

    2013-01-01

    Full Text Available The bioinorganic complex of aspartic acid and arsenic triiodide was synthesized by a solid-state reaction at room temperature. The formula of the complex is AsI3[HOOCCH2CH(NH2COOH]2.5. The crystal structure of the complex belongs to monoclinic system with lattice parameters: a=1.0019 nm, b=1.5118 nm, c=2.1971 nm, and β=100.28°. The infrared spectra can demonstrate the complex formation between the arsenic ion and aspartic acid, and the complex may be a dimer with bridge structure. The result of primary biological test indicates that the complex possesses better biological activity for the HL-60 cells of the leukemia than arsenic triiodide.

  19. Aspartic acid racemization rate in narwhal (Monodon monoceros) eye lens nuclei estimated by counting of growth layers in tusks

    DEFF Research Database (Denmark)

    Garde, Eva; Heide-Jørgensen, Mads Peter; Ditlevsen, Susanne

    2012-01-01

    Ages of marine mammals have traditionally been estimated by counting dentinal growth layers in teeth. However, this method is difficult to use on narwhals (Monodon monoceros) because of their special tooth structures. Alternative methods are therefore needed. The aspartic acid racemization (AAR......) technique has been used in age estimation studies of cetaceans, including narwhals. The purpose of this study was to estimate a species-specific racemization rate for narwhals by regressing aspartic acid D/L ratios in eye lens nuclei against growth layer groups in tusks (n=9). Two racemization rates were...... rate and (D/L)0 value be used in future AAR age estimation studies of narwhals, but also recommend the collection of tusks and eyes of narwhals for further improving the (D/L)0 and 2kAsp estimates obtained in this study....

  20. Cloning and characterization of an endo-b-1,3(4) glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938

    DEFF Research Database (Denmark)

    Villadsen, Ingrid; Bang, M_L; Sandal, T.

    1999-01-01

    We describe the identification and expression cloning of two novel enzymes, a P-glucanase and an aspartic protease, secreted from the basidiomycetous yeast Phaffia rhodozyma. A cDNA library from P. rhodozyma CBS 6938 was constructed, and full-length cDNA encoding an endo-1,3(4)-beta-glucanase (bg1......) and an aspartic protease (pr1) were cloned by expression cloning in Saccharomyces cerevisiae W3124. The bgl cDNA encodes a 424-residue precursor protein with a putative signal peptide. The prl cDNA encodes a 405-residue prepropolypeptide with an 81-residue leader peptide. The aspartic protease was purified...

  1. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-d-aspartic acid receptor activity

    OpenAIRE

    Levine, Eric S; Crozier, Robert A.; Black, Ira B.; Plummer, Mark R.

    1998-01-01

    Neurotrophins (NTs) have recently been found to regulate synaptic transmission in the hippocampus. Whole-cell and single-channel recordings from cultured hippocampal neurons revealed a mechanism responsible for enhanced synaptic strength. Specifically, brain-derived neurotrophic factor augmented glutamate-evoked, but not acetylcholine-evoked, currents 3-fold and increased N-methyl-d-aspartic acid (NMDA) receptor open probability. Activation of trkB NT receptors was critical, as glutamate curr...

  2. Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-d-aspartate receptor subunit 1

    OpenAIRE

    Suen, Piin-Chau; Wu, Kuo; Levine, Eric S; Mount, Howard T. J.; Xu, Jia-Ling; LIN, SIANG-YO; Black, Ira B.

    1997-01-01

    Although neurotrophins have traditionally been regarded as neuronal survival factors, recent work has suggested a role for these factors in synaptic plasticity. In particular, brain-derived neurotrophic factor (BDNF) rapidly enhances synaptic transmission in hippocampal neurons through trkB receptor stimulation and postsynaptic phosphorylation mechanisms. Activation of trkB also modulates hippocampal long-term potentiation, in which postsynaptic N-methyl-d-aspartate glutamate receptors play a...

  3. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis

    OpenAIRE

    Freinkman, Elizaveta; Wang, Tim; Chen, Walter W.; Abu-Remaileh, Monther; Sabatini, David; Birsoy, Kivanc

    2015-01-01

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibitio...

  4. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease

    OpenAIRE

    1991-01-01

    Hemoglobin is an important nutrient source for intraerythrocytic malaria organisms. Its catabolism occurs in an acidic digestive vacuole. Our previous studies suggested that an aspartic protease plays a key role in the degradative process. We have now isolated this enzyme and defined its role in the hemoglobinolytic pathway. Laser desorption mass spectrometry was used to analyze the proteolytic action of the purified protease. The enzyme has a remarkably stringent specificity towards native h...

  5. Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk: An important allosteric enzyme for amino acids production

    Directory of Open Access Journals (Sweden)

    Babu A. Manjasetty

    2014-09-01

    Full Text Available Aspartate kinase (AK is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0 has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%. It is composed of two domains: an N-terminal catalytic domain (kinase domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing bacteria such as Clostridium tetani (64% sequence identity suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  6. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    Science.gov (United States)

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  7. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the aspartate transcarbamoylase domain of human CAD.

    Science.gov (United States)

    Ruiz-Ramos, Alba; Lallous, Nada; Grande-García, Araceli; Ramón-Maiques, Santiago

    2013-12-01

    Aspartate transcarbamoylase (ATCase) catalyzes the synthesis of N-carbamoyl-L-aspartate from carbamoyl phosphate and aspartate in the second step of the de novo biosynthesis of pyrimidines. In prokaryotes, the first three activities of the pathway, namely carbamoyl phosphate synthetase (CPSase), ATCase and dihydroorotase (DHOase), are encoded as distinct proteins that function independently or in noncovalent association. In animals, CPSase, ATCase and DHOase are part of a 243 kDa multifunctional polypeptide named CAD. Up-regulation of CAD is essential for normal and tumour cell proliferation. Although the structures of numerous prokaryotic ATCases have been determined, there is no structural information about any eukaryotic ATCase. In fact, the only detailed structural information about CAD is that it self-assembles into hexamers and trimers through interactions of the ATCase domains. Here, the expression, purification and crystallization of the ATCase domain of human CAD is reported. The recombinant protein, which was expressed in bacteria and purified with good yield, formed homotrimers in solution. Crystallization experiments both in the absence and in the presence of the inhibitor PALA yielded small crystals that diffracted X-rays to 2.1 Å resolution using synchrotron radiation. The crystals appeared to belong to the hexagonal space group P6(3)22, and Matthews coefficient calculation indicated the presence of one ATCase subunit per asymmetric unit, with a solvent content of 48%. However, analysis of the intensity statistics suggests a special case of the P21 lattice with pseudo-symmetry and possibly twinning.

  8. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    Science.gov (United States)

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  9. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    Science.gov (United States)

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. © 2015 The Authors.

  10. A novel potentiometric method for the determination of real crosslinking ratio of poly(aspartic acid) gels.

    Science.gov (United States)

    Torma, Viktória; Gyenes, Tamás; Szakács, Zoltán; Zrínyi, Miklós

    2010-03-01

    In order to obtain nontoxic functional polymer gels for biomedical applications, chemically crosslinked poly(aspartic acid) gels have been prepared using 1,4-diaminobutane as crosslinker. The presence of COOH and amino groups on the network chains renders these gels pH sensitive. Due to the specific hydrophobic-hydrophilic balance, these gels show a significant volume transition at a well-defined pH close to the pK value of uncrosslinked poly(aspartic acid). Since the magnitude of volume change critically depends on the degree of crosslinking, it is an important task to determine the topological characteristics of these networks. A novel method based on potentiometric acid-base titration has been developed to assess the crosslinking ratio, excluding physical crosslinks and entanglements. It turned out that only 25% of all crosslinker molecules forms real crosslinks between the poly(aspartic acid) chains; the rest react with one of its functional groups and forms short pendant side chains. At a nominal crosslinking ratio of 0.1, the number average molecular mass between crosslinks is found to be M(c) = 2300. Copyright 2010. Published by Elsevier Ltd.

  11. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. (NIMH Neuroscience Center, Washington, DC (USA))

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  12. Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

    Science.gov (United States)

    Sohn, Jiho; Bannerman, Peter; Guo, Fuzheng; Burns, Travis; Miers, Laird; Croteau, Christopher; Singhal, Naveen K; McDonough, Jennifer A; Pleasure, David

    2017-01-11

    Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits. Copyright © 2017 the authors 0270-6474/17/370413-09$15.00/0.

  13. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives.

    Science.gov (United States)

    Li, Yanjun; Wei, Hongbo; Wang, Ting; Xu, Qingyang; Zhang, Chenglin; Fan, Xiaoguang; Ma, Qian; Chen, Ning; Xie, Xixian

    2017-12-01

    The l-aspartate amino acids (AFAAs) are constituted of l-aspartate, l-lysine, l-methionine, l-threonine and l-isoleucine. Except for l-aspartate, AFAAs are essential amino acids that cannot be synthesized by humans and most farm animals, and thus possess wide applications in food, animal feed, pharmaceutical and cosmetics industries. To date, a number of amino acids, including AFAAs have been industrially produced by microbial fermentation. However, the overall metabolic and regulatory mechanisms of the synthesis of AFAAs and the recent progress on strain construction have rarely been reviewed. Aiming to promote the establishment of strains of Corynebacterium glutamicum and Escherichia coli, the two industrial amino acids producing bacteria, that are capable of producing high titers of AFAAs and derivatives, this paper systematically summarizes the current progress on metabolic engineering manipulations in both central metabolic pathways and AFAA synthesis pathways based on the category of the five-word strain breeding strategies: enter, flow, moderate, block and exit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals

    Science.gov (United States)

    Errico, F; Nisticò, R; Di Giorgio, A; Squillace, M; Vitucci, D; Galbusera, A; Piccinin, S; Mango, D; Fazio, L; Middei, S; Trizio, S; Mercuri, N B; Teule, M A; Centonze, D; Gozzi, A; Blasi, G; Bertolino, A; Usiello, A

    2014-01-01

    D-aspartate (D-Asp) is an atypical amino acid, which is especially abundant in the developing mammalian brain, and can bind to and activate N-methyl-D-Aspartate receptors (NMDARs). In line with its pharmacological features, we find that mice chronically treated with D-Asp show enhanced NMDAR-mediated miniature excitatory postsynaptic currents and basal cerebral blood volume in fronto-hippocampal areas. In addition, we show that both chronic administration of D-Asp and deletion of the gene coding for the catabolic enzyme D-aspartate oxidase (DDO) trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and CA1 subfield of the hippocampus and promote a cytochalasin D-sensitive form of synaptic plasticity in adult mouse brains. To translate these findings in humans and consistent with the experiments using Ddo gene targeting in animals, we performed a hierarchical stepwise translational genetic approach. Specifically, we investigated the association of variation in the gene coding for DDO with complex human prefrontal phenotypes. We demonstrate that genetic variation predicting reduced expression of DDO in postmortem human prefrontal cortex is mapped on greater prefrontal gray matter and activity during working memory as measured with MRI. In conclusion our results identify novel NMDAR-dependent effects of D-Asp on plasticity and physiology in rodents, which also map to prefrontal phenotypes in humans. PMID:25072322

  15. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    Energy Technology Data Exchange (ETDEWEB)

    Dostál, Ji& #345; í; Brynda, Ji& #345; í; Hrušková-Heidingsfeldová, Olga; Sieglová, Irena; Pichová, Iva; & #344; ezá& #269; ová, Pavlína; (ASCR-ICP)

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolated from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.

  16. Enhanced splicing correction effect by an oligo-aspartic acid-PNA conjugate and cationic carrier complexes.

    Science.gov (United States)

    Bae, Yun Mi; Kim, Myung Hee; Yu, Gwang Sig; Um, Bong Ho; Park, Hee Kyung; Lee, Hyun-il; Lee, Kang Taek; Suh, Yung Doug; Choi, Joon Sig

    2014-02-10

    Peptide nucleic acids (PNAs) are synthetic structural analogues of DNA and RNA. They recognize specific cellular nucleic acid sequences and form stable complexes with complementary DNA or RNA. Here, we designed an oligo-aspartic acid-PNA conjugate and showed its enhanced delivery into cells with high gene correction efficiency using conventional cationic carriers, such as polyethylenimine (PEI) and Lipofectamine 2000. The negatively charged oligo-aspartic acid-PNA (Asp(n)-PNA) formed complexes with PEI and Lipofectamine, and the resulting Asp(n)-PNA/PEI and Asp(n)-PNA/Lipofectamine complexes were introduced into cells. We observed significantly enhanced cellular uptake of Asp(n)-PNA by cationic carriers and detected an active splicing correction effect even at nanomolar concentrations. We found that the splicing correction efficiency of the complex depended on the kind of the cationic carriers and on the number of repeating aspartic acid units. By enhancing the cellular uptake efficiency of PNAs, these results may provide a novel platform technology of PNAs as bioactive substances for their biological and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Redox potentials of dopamine and its supramolecular complex with aspartic acid

    Science.gov (United States)

    Liu, Tao; Han, Ling-Li; Du, Chun-Mei; Yu, Zhang-Yu

    2014-07-01

    Dopamine (DA) can be oxidized to dopamine quinone (DAquinone) through a one-step, two-electron redox reaction. The electron transfer property of DA and its supramolecular complex with aspartic acid (Asp) has been investigated by the theoretical calculations. We calculated the standard redox potentials ( E o) of DA/DAquinone at the MP2/6-31G( d,p)//B3LYP/6-31G( d,p), MP2/6-31+G( d,p)//B3LYP/6-31+G( d,p), MP2/6-31G( d,p)//B3LYP/6-311G( d,p), and MP2/6-311+G( d,p)//B3LYP/6-311+G( d,p) levels. Comparing the experimental value, the redox potentials of DA/DAquinone obtained at MP2//B3LYP/6-311G( d,p) and MP2//B3LYP/6-311+G( d,p) levels can be considered as the upper and lower estimates. DA can form supramolecular complex (DA-Asp) with Asp through hydrogen bond (H-bond). Therefore, the values of 0.631 and 0.628 V obtained at MP2//B3LYP/6-311G( d,p) and MP2//B3LYP/6-311+G( d,p) levels for DA-Asp/DAquinone-Asp can be proposed as the upper and lower estimates of a probable (about 0.630 V) value of the corresponding redox potential. The calculated E o values of DA-Asp/DAquinone-Asp at the four theoretical levels are upper than those of DA/DAquinone, which indicates that the formation of H-bonds weaken the electron-donating ability of DA.

  18. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    Science.gov (United States)

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. N-Methyl D-Aspartic Acid (NMDA Receptors and Depression

    Directory of Open Access Journals (Sweden)

    Enver Yusuf Sivrioglu

    2009-06-01

    Full Text Available The monoaminergic hypothesis of depression has provided the basis for extensive research into the pathophysiology of mood disorders and has been of great significance for the development of effective antidepressants. Current antidepressant treatments not only increase serotonin and/or noradrenaline bioavailability but also originate adaptive changes increasing synaptic plasticity. Novel approaches to depression and to antidepressant therapy are now focused on intracellular targets that regulate neuroplasticity and cell survival. Accumulating evidence indicates that there is an anatomical substrate for such a devastating neuropsychiatric disease as major depression. Loss of synaptic plasticity and hippocampal atrophy appear to be prominent features of this highly prevalent disorder. A combination of genetic susceptibility and environmental factors make hippocampal neurons more vulnerable to stress. Abundant experimental evidence indicates that stress causes neuronal damage in brain regions, notably in hippocampal subfields. Stress-induced activation of glutamatergic transmission may induce neuronal cell death through excessive stimulation of N-methyl-D-aspartic acid (NMDA receptors. Recent studies mention that the increase of nitric oxide synthesis and inflammation in major depression may contribute to neurotoxicity through NMDA receptor. Both standard antidepressants and NMDA receptor antagonists are able to prevent stress-induced neuronal damage. NMDA antagonists are effective in widely used animal models of depression and some of them appear to be effective also in the few clinical trials performed to date. We are still far from understanding the complex cellular and molecular events involved in mood disorders. There appears to be an emerging role for glutamate neurotransmission in the search for the pathogenesis of major depression. Attenuation of NMDA receptor function mechanism appears to be a promising target in the search for a more

  20. Distribution of serum concentrations reported for macroenzyme aspartate aminotransferase (macro-AST).

    Science.gov (United States)

    Rubin, Asa S; Sass, David A; Stickle, Douglas F

    2017-08-01

    The presence of macroenzyme (M) is often the explanation of an isolated elevation of aspartate aminotransferase (AST). Where M is identified, it is reasonable for the clinician to ask where an individual patient's result fits in with known concentrations of M. In this context, we conducted a survey of literature to examine the distribution of reported serum concentrations of macro-AST. We also analyzed the distribution data to examine whether elevations were consistent with simple alteration of circulatory half-life (t1/2) of M relative to normal AST. Distributions of M were compiled from the literature. These distributions were compared to predictions based on fixed changes in t1/2 applied to the reference interval for AST. There was a bimodal distribution of literature values for M (n =51), comprised roughly of populations A (M 200 U/L; 40% of total). The two distributions were reasonably well characterized by a simple projection to the right of the reference interval for AST according to increased t1/2 (A: t1/2 =3.3 days; B: t1/2 =19.8 days) relative to AST (t1/2 =0.7 days). Knowledge of distributions for M may be useful in discussion with clinicians regarding significance of M for individual patients. Distributions for M were consistent with the simplest explanation for elevated AST due strictly to an extended circulatory lifetime for M. Caveats to analysis, however, include selection within literature data mainly for patients with various co-morbidities.

  1. Antipsychotic agents antagonize non-competitive N-methyl-D-aspartate antagonist-induced behaviors.

    Science.gov (United States)

    Corbett, R; Camacho, F; Woods, A T; Kerman, L L; Fishkin, R J; Brooks, K; Dunn, R W

    1995-07-01

    Antipsychotic agents were tested for their ability to antagonize both dopaminergic-induced and non-competitive N-methyl-D-aspartate (NMDA) antagonist-induced behaviors. All of the agents dose-dependently antagonized the apomorphine-induced climbing mouse assay (CMA) and dizocilpine (MK-801)-induced locomotion and falling assay (MK-801-LF) with a CMA/MK-801-LF ratio of less than or equal to 1.6. However, clozapine and its structural analog olanzapine more potently antagonized MK-801-LF (1.1 and 0.05 mg/kg) than the CMA (12.3 and 0.45 mg/kg) and as a result had a CMA/MK-801-LF ratio of 11.2 and 9, respectively. Furthermore, phencyclidine (PCP) (2 mg/kg) can selectively induce social withdrawal in naive rats that were housed in pairs (familiar) for 10 days prior to testing without affecting motor activity. SCH 23390, raclopride, haloperidol, chlorpromazine and risperidone failed to reverse the social withdrawal induced by PCP up to doses which produced significant motor impairment. However, clozapine (2.5 and 5.0 mg/kg) and olanzapine (0.25 and 0.5 mg/kg) significantly reversed this social withdrawal in rats. Therefore, the non-competitive NMDA antagonists PCP and MK-801 can induce behaviors in Rodents which are selectively antagonized by clozapine and olanzapine. Furthermore, assessment of the effects of antipsychotic agents in the CMA, MK-801-LF and PCP-induced social withdrawal assays may provide a preclinical approach to identify novel agents for negative symptoms and treatment resistant schizophrenia.

  2. Comparative analysis of aspartic acid racemization methods using whole-tooth and dentin samples.

    Science.gov (United States)

    Sakuma, Ayaka; Ohtani, Susumu; Saitoh, Hisako; Iwase, Hirotaro

    2012-11-30

    One way to estimate biological age is to use the aspartic acid (Asp) racemization method. Although this method has been performed mostly using enamel and dentin, we investigated whether an entire tooth can be used for age estimation. This study used 12 pairs of canines extracted from both sides of the mandible of 12 individuals of known age. From each pair, one tooth was used as a dentin sample and the other as a whole-tooth sample. Amino acids were extracted from each sample, and the integrated peak areas of D-Asp and L-Asp were determined using a gas chromatograph/mass spectrometer. Statistical analysis was performed using the D/L-Asp ratio. Furthermore, teeth from two unidentified bodies, later identified as Japanese and Brazilian, were examined in the same manner. Results showed that the D/L ratios of whole-tooth samples were higher overall than those of dentin samples. The correlation coefficient between the D/L ratios of dentin samples and their age was r=0.98, and that of the whole-tooth samples was r=0.93. The difference between estimated age and actual chronological age was -0.116 and -6.86 years in the Japanese and Brazilian cases, respectively. The use of whole teeth makes the racemization technique easier and can standardize the sampling site. Additionally, using only a few tooth samples per analysis made it possible to reanalyze known-age samples. Although the difficulty in obtaining a proper control sample has prevented racemization from being widely used, the method described here not only ensures the availability of a control tooth, but also enables the teeth to be used for other purposes such as DNA analysis. The use of a whole tooth will increase the application of the racemization technique for age determination. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Anti-N-methyl-D-aspartate-receptor encephalitis: diagnosis, optimal management, and challenges

    Directory of Open Access Journals (Sweden)

    Mann AP

    2014-07-01

    Full Text Available Andrea P Mann,1 Elena Grebenciucova,2 Rimas V Lukas21Department of Psychiatry and Behavioral Neuroscience, 2Department of Neurology, University of Chicago, Chicago, IL, USAObjective: Anti-N-methyl-D-aspartate-receptor (NMDA-R encephalitis is a new autoimmune disorder, often paraneoplastic in nature, presenting with complex neuropsychiatric symptoms. Diagnosed serologically, this disorder is often responsive to immunosuppressant treatment. The objective of this review is to educate clinicians on the challenges of diagnosis and management of this disorder.Materials and methods: A review of the relevant literature on clinical presentation, pathophysiology, and recommended management was conducted using a PubMed search. Examination of the results identified articles published between 2007 and 2014.Results: The literature highlights the importance of recognizing early common signs and symptoms, which include hallucinations, seizures, altered mental status, and movement disorders, often in the absence of fever. Although the presence of blood and/or cerebrospinal fluid autoantibodies confirms diagnosis, approximately 15% of patients have only positive cerebrospinal fluid titers. Antibody detection should prompt a search for an underlying teratoma or other underlying neoplasm and the initiation of first-line immunosuppressant therapy: intravenous methylprednisolone, intravenous immunoglobulin, or plasmapheresis, or a combination thereof. Second-line treatment with rituximab or cyclophosphamide should be implemented if no improvement is noted after 10 days. Complications can include behavioral problems (eg, aggression and insomnia, hypoventilation, catatonia, and autonomic instability. Those patients who can be managed outside an intensive care unit and whose tumors are identified and removed typically have better rates of remission and functional outcomes.Conclusion: There is an increasing need for clinicians of different specialties, including

  4. Selective vulnerabilities of N-methyl-D-aspartate (NMDA receptors during brain aging

    Directory of Open Access Journals (Sweden)

    Brenna L Brim

    2010-03-01

    Full Text Available N-methyl-D-aspartate (NMDA receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.

  5. Overlapping demyelinating syndromes and anti–N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Titulaer, Maarten J; Höftberger, Romana; Iizuka, Takahiro; Leypoldt, Frank; McCracken, Lindsey; Cellucci, Tania; Benson, Leslie A; Shu, Huidy; Irioka, Takashi; Hirano, Makito; Singh, Gagandeep; Cobo Calvo, Alvaro; Kaida, Kenichi; Morales, Pamela S; Wirtz, Paul W; Yamamoto, Tomotaka; Reindl, Markus; Rosenfeld, Myrna R; Graus, Francesc; Saiz, Albert; Dalmau, Josep

    2014-03-01

    To report the clinical, radiological, and immunological association of demyelinating disorders with anti–Nmethyl- D-aspartate receptor (NMDAR) encephalitis. Clinical and radiological analysis was done of a cohort of 691 patients with anti-NMDAR encephalitis. Determination of antibodies to NMDAR, aquaporin-4 (AQP4), and myelin oligodendrocyte glycoprotein (MOG) was performed using brain immunohistochemistry and cell-based assays. Twenty-three of 691 patients with anti-NMDAR encephalitis had prominent magnetic resonance imaging (MRI) and/or clinical features of demyelination. Group 1 included 12 patients in whom anti-NMDAR encephalitis was preceded or followed by independent episodes of neuromyelitis optica (NMO) spectrum disorder (5 cases, 4 anti-AQP4 positive) or brainstem or multifocal demyelinating syndromes (7 cases, all anti-MOG positive). Group 2 included 11 patients in whom anti-NMDAR encephalitis occurred simultaneously with MRI and symptoms compatible with demyelination (5 AQ4 positive, 2 MOG positive). Group 3 (136 controls) included 50 randomly selected patients with typical anti-NMDAR encephalitis, 56 with NMO, and 30 with multiple sclerosis; NMDAR antibodies were detected only in the 50 anti-NMDAR patients, MOG antibodies in 3 of 50 anti-NMDAR and 1 of 56 NMO patients, and AQP4 antibodies in 48 of 56 NMO and 1 of 50 anti-NMDAR patients (pdemyelinating episodes required more intensive therapy and resulted in more residual deficits. Only 1 of 23 NMDAR patients with signs of demyelination had ovarian teratoma compared with 18 of 50 anti-NMDAR controls (p50.011). Patients with anti-NMDAR encephalitis may develop concurrent or separate episodes of demyelinating disorders, and conversely patients with NMO or demyelinating disorders with atypical symptoms (eg, dyskinesias, psychosis) may have anti-NMDAR encephalitis.

  6. Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease.

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    Full Text Available BACKGROUND: Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap, encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. METHODOLOGY/PRINCIPAL FINDINGS: The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. CONCLUSIONS/SIGNIFICANCE: We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis.

  7. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Debler, Erik W.; Jain, Kanishk; Warmack, Rebeccah A.; Feng, You; Clarke, Steven G.; Blobel, Günter; Stavropoulos, Pete

    2016-02-08

    Trypanosoma brucei PRMT7 (TbPRMT7) is a protein arginine methyltransferase (PRMT) that strictly monomethylates various substrates, thus classifying it as a type III PRMT. However, the molecular basis of its unique product specificity has remained elusive. Here, we present the structure of TbPRMT7 in complex with its cofactor product S-adenosyl-L-homocysteine (AdoHcy) at 2.8 Å resolution and identify a glutamate residue critical for its monomethylation behavior. TbPRMT7 comprises the conserved methyltransferase and β-barrel domains, an N-terminal extension, and a dimerization arm. The active site at the interface of the N-terminal extension, methyltransferase, and β-barrel domains is stabilized by the dimerization arm of the neighboring protomer, providing a structural basis for dimerization as a prerequisite for catalytic activity. Mutagenesis of active-site residues highlights the importance of Glu181, the second of the two invariant glutamate residues of the double E loop that coordinate the target arginine in substrate peptides/proteins and that increase its nucleophilicity. Strikingly, mutation of Glu181 to aspartate converts TbPRMT7 into a type I PRMT, producing asymmetric dimethylarginine (ADMA). Isothermal titration calorimetry (ITC) using a histone H4 peptide showed that the Glu181Asp mutant has markedly increased affinity for monomethylated peptide with respect to the WT, suggesting that the enlarged active site can favorably accommodate monomethylated peptide and provide sufficient space for ADMA formation. In conclusion, these findings yield valuable insights into the product specificity and the catalytic mechanism of protein arginine methyltransferases and have important implications for the rational (re)design of PRMTs.

  8. Role of the Aspartate Transaminase and Platelet Ratio Index in Assessing Hepatic Fibrosis and Liver Inflammation in Adolescent Patients with HBeAg-Positive Chronic Hepatitis B.

    Science.gov (United States)

    Zhijian, Yu; Hui, Li; Weiming, Yao; Zhanzhou, Lin; Zhong, Chen; Jinxin, Zheng; Hongyan, Wang; Xiangbin, Deng; Weizhi, Yang; Duoyun, Li; Xiaojun, Liu; Qiwen, Deng

    2015-01-01

    This study described an index of aspartate aminotransferase-to-platelet ratio index (APRI) to assess hepatic fibrosis with limited expense and widespread availability compared to the liver biopsy in adolescent patients with CHB.

  9. Role of the Aspartate Transaminase and Platelet Ratio Index in Assessing Hepatic Fibrosis and Liver Inflammation in Adolescent Patients with HBeAg-Positive Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Yu Zhijian

    2015-01-01

    Full Text Available This study described an index of aspartate aminotransferase-to-platelet ratio index (APRI to assess hepatic fibrosis with limited expense and widespread availability compared to the liver biopsy in adolescent patients with CHB.

  10. Fetal and perinatal outcomes in type 1 diabetes pregnancy: a randomized study comparing insulin aspart with human insulin in 322 subjects

    DEFF Research Database (Denmark)

    Hod, Moshe; Damm, Peter; Kaaja, Risto

    2008-01-01

    The objective of the study was a comparison of insulin aspart (IAsp) with human insulin (HI) in basal-bolus therapy with neutral protamine Hagedorn for fetal and perinatal outcomes of type 1 diabetes in pregnancy....

  11. Aspartic acid as an internal CO2 reservoir in Zea mays: Effect of oxygen concentration and of far-red illumination.

    Science.gov (United States)

    Créach, E; Michel, J P; Thibault, P

    1974-06-01

    By placing leaf segments first in CO2 in the dark, then in pure nitrogen either in the dark and afterwards in the light or immediately in the light, the existence of internal CO2 pools which can be used for photosynthesis had been demonstrated. In Zea mays L. there are two such pools: one which in the absence of any energy source is short-lived (t1/2 ca. 2 min), and another which is relatively long-lived (t1/2 ca. 50 min).Under different oxygen concentrations the level of the short-lived CO2 pool exibited a parallel variation with the level of aspartic acid. Only a fraction of the total aspartic acid (60%) constituted the active pool, the quantity of which was equal to the short-lived CO2. In the absence of O2 but under far-red irradiation (maximum 740 nm), a net synthesis of aspartic acid was observed; its extent depended on the intensity of the light.The similarity in the response to O2 and to long-wavelength irradiation suggests that aspartate synthesis is regulated by ATP, the high-energy compound common to both oxidative and cyclic phosphorylations. The formation of aspartic acid observed in the dark under N2+1% CO2 immediately following illumination under pure N2 suggests use of ATP accumulated in the preceding light period, in aspartate synthesis.Even though Zea mays is predominantly a "malate former", it appears that aspartate must also be considered as a readily available donor of CO2 since, when aspartate is present, O2 release is always immediate while, when it is not, O2 release is delayed.

  12. Development of a novel fluorescent protein construct by genetically fusing green fluorescent protein to the N-terminal of aspartate dehydrogenase.

    Science.gov (United States)

    Ozyurt, Canan; Evran, Serap; Telefoncu, Azmi

    2013-01-01

    We developed a fluorescent protein construct by genetically fusing green fluorescent protein (GFP) to aspartate dehydrogenase from Thermotoga maritima. The fusion protein was cloned, heterologously expressed in Escherichia coli cells, and purified by Ni-chelate affinity chromatography. It was then introduced into a measurement cuvette to monitor its fluorescence signal. Aspartate dehydrogenase functioned as the biorecognition element, and aspartate-induced conformational change was converted to a fluorescence signal by GFP. The recombinant protein responded to l-aspartate (l-Asp) linearly within the concentration range of 1-50 mM, and it was capable of giving a fluorescence signal in 1 Min. Although a linear response was also observed for l-Glu, the fluorescence signal was 2.7 times lower than that observed for l-Asp. In the present study, we describe two novelties: development of a genetically encoded fluorescent protein construct for monitoring of l-Asp in vitro, and employment of aspartate dehydrogenase scaffold as a biorecognition element. A few genetically encoded amino-acid biosensors have been described in the literature, but to our knowledge, a protein has not been constructed solely for determination of l-Asp. Periplasmic ligand binding proteins offer high binding affinity in the micromolar range, and they are frequently used as biorecognition elements. Instead of choosing a periplasmic l-Asp binding protein, we attempted to use the substrate specificity of aspartate dehydrogenase enzyme. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Comparison of pharmacokinetics between new quinolone antibiotics: the zabofloxacin hydrochloride capsule and the zabofloxacin aspartate tablet.

    Science.gov (United States)

    Han, Hyekyung; Kim, Sung Eun; Shin, Kwang-Hee; Lim, Cheolhee; Lim, Kyoung Soo; Yu, Kyung-Sang; Cho, Joo-Youn

    2013-10-01

    Zabofloxacin is being developed as a new fluoroquinolone antibiotic that is a potent and selective inhibitor of the essential bacterial type II topoisomerases and topoisomerase IV. Zabofloxacin is indicated for community-acquired respiratory infections due to Gram-positive bacteria. The aim of this study was to compare the pharmacokinetics (PK) of the zabofloxacin hydrochloride 400 mg capsule (DW224a, 366.7 mg as zabofloxacin) with the PK of the zabofloxacin aspartate 488 mg tablet (DW224aa, 366.5 mg as zabofloxacin) in healthy Korean male volunteers to assess the bioequivalence between the two drug formulations. A randomized, open-label, single-dose, two-way crossover study was performed. The subjects received either DW224a or DW224aa according to their sequence group. Plasma concentrations of zabofloxacin were determined by liquid chromatography-tandem mass spectrometry. The maximum plasma concentrations (Cmax), the area under the plasma concentration versus time curve (AUC) from the time of dosing to 48 hours post-dosing (AUClast), and the AUC extrapolated to infinity (AUCinf) were determined from the plasma concentration-time profile. (ClinicalTrials.gov identifier: NCT01341249). Twenty-nine of the 32 subjects enrolled completed the study. The Cmax. AUClast, and AUCinf (mean ± SD) values of DW224a were 1889.7 ± 493.4 ng/mL, 11,110  ± 2,005.0 ng h/mL, and 11,287 ± 2,012.6 ng h/mL, respectively, and those of DW224aa were 2005.0 ± 341.3 ng/mL, 11,719  ±  2,507.5 ng h/mL, and 11,913 ± 2,544.8 ng h/mL, respectively. The geometric mean ratios (90% confidence intervals) of the Cmax. AUClast, and AUCinf were 1.08 (1.00-1.17), 1.05 (1.00-1.10), and 1.05 (1.00-1.10), respectively, and were within the bioequivalence acceptance range of 0.8-1.25. Both drugs were well tolerated with no serious adverse events. A single oral dose of DW224a or DW224aa to healthy volunteers appeared to be well tolerated. Both DW224a and DW224aa exhibited

  14. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid.

    Science.gov (United States)

    Röhlen, Désirée L; Pilas, Johanna; Schöning, Michael J; Selmer, Thorsten

    2017-10-01

    Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.

  15. Possible modulation of process extension by N-methyl-D-aspartate receptor expressed in osteocytic MLO-Y4 cells.

    Science.gov (United States)

    Fujita, Hiroyuki; Hinoi, Eiichi; Nakatani, Eri; Yamamoto, Tomomi; Takarada, Takeshi; Yoneda, Yukio

    2012-01-01

    In contrast to osteoblasts, little attention has been paid to expression profiles of different glutamatergic signaling machineries in osteocytes, which are the most abundant cells with a possible role as a mechanical sensor in bone. Here, we show that N-methyl-D-aspartate receptor (NMDAR) is expressed by osteocytic cells in five-weeks-old mouse tibiae in vivo as well as by osteocytic MLO-Y4 cells in vitro. Sustained exposure to the NMDAR antagonist dizocilpine significantly increased the number of cells with processes in cultured MLO-Y4 cells. These results suggest that NMDAR would be expressed by osteocytes with an unidentified role in the process extension.

  16. Anti-Angiogenic Action of Neutral Endopeptidase

    Science.gov (United States)

    2007-11-01

    A, Varella-Garcia M, Korch C, Miller GJ. TSU-Pr1 and JCA-1 cells are derivatives of T24 bladder carcinoma cells and are not of prostatic origin...page. 15. SUBJECT TERMS Angiogenesis, Prostate Cancer, Basic fibroblast growth factor Proteolysis, Vascular endothelial cells , Cell surface...important event in tumor progression. It results from a complex, multistep biochemical cascade that is initiated by the activation of endothelial cells in

  17. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    Science.gov (United States)

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Environment Dictates Dependence on Mitochondrial Complex I for NAD+ and Aspartate Production and Determines Cancer Cell Sensitivity to Metformin.

    Science.gov (United States)

    Gui, Dan Y; Sullivan, Lucas B; Luengo, Alba; Hosios, Aaron M; Bush, Lauren N; Gitego, Nadege; Davidson, Shawn M; Freinkman, Elizaveta; Thomas, Craig J; Vander Heiden, Matthew G

    2016-11-08

    Metformin use is associated with reduced cancer mortality, but how metformin impacts cancer outcomes is controversial. Although metformin can act on cells autonomously to inhibit tumor growth, the doses of metformin that inhibit proliferation in tissue culture are much higher than what has been described in vivo. Here, we show that the environment drastically alters sensitivity to metformin and other complex I inhibitors. We find that complex I supports proliferation by regenerating nicotinamide adenine dinucleotide (NAD)+, and metformin's anti-proliferative effect is due to loss of NAD+/NADH homeostasis and inhibition of aspartate biosynthesis. However, complex I is only one of many inputs that determines the cellular NAD+/NADH ratio, and dependency on complex I is dictated by the activity of other pathways that affect NAD+ regeneration and aspartate levels. This suggests that cancer drug sensitivity and resistance are not intrinsic properties of cancer cells, and demonstrates that the environment can dictate sensitivity to therapies that impact cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Directory of Open Access Journals (Sweden)

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  20. Learning and memory: regional changes in N-methyl-D-aspartate receptors in the chick brain after imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G

    1988-01-01

    An extensive series of experiments has implicated a restricted region of the chick forebrain in the learning process of imprinting. The region is the intermediate and medial part of the hyperstriatum ventrale (IMHV). Previous studies have shown that training is associated with an increase in the area of the postsynaptic density of axospinous synapses in the left but not the right IMHV. The postsynaptic density is a site of high receptor density, and at least some axospinous synapses are excitatory. We found that imprinting is associated with a 59% increase in N-methyl-D-aspartate-sensitive binding of the excitatory amino acid L-[3H]glutamic acid in the left IMHV. The increase is probably due to an increased number of binding sites. The profile of sensitivity of the sites to a series of amino-, phosphono-substituted carboxylic acids (2-amino-3-phosphonopropionate to 2-amino-8-phosphonooctanoate) is characteristic of N-methyl-D-aspartate-type receptors. There were no significant effects of training on binding in the right IMHV. The effect of training on left IMHV binding could not be attributed to light exposure, arousal, or motor activity per se but was a function of how much the chicks learned. The changes in the left IMHV could increase the effectiveness of synaptic transmission in a region crucial for information storage and so form a neural basis for recognition memory. PMID:2833757

  1. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi).

    Science.gov (United States)

    Aoki, Kenji; Matsubara, Sayaka; Umeda, Mayo; Tachibanac, Shusaku; Doi, Mikiharu; Takenaka, Shinji

    2013-04-01

    Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito. © 2012 Society of Chemical Industry.

  2. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    DEFF Research Database (Denmark)

    Bendová, Z; Sumová, A; Mikkelsen, Jens D.

    2009-01-01

    The circadian rhythms of mammals are generated by the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Its intrinsic period is entrained to a 24 h cycle by external cues, mainly by light. Light impinging on the SCN at night causes either advancing or delaying phase...... shifts of the circadian clock. N-methyl-d-aspartate receptors (NMDAR) are the main glutamate receptors mediating the effect of light on the molecular clockwork in the SCN. They are composed of multiple subunits, each with specific characteristics whose mutual interactions strongly determine properties...... of the receptor. In the brain, the distribution of NMDAR subunits depends on the region and developmental stage. Here, we report the circadian expression of the NMDAR1 subunit in the adult rat SCN and depict its splice variants that may constitute the functional receptor channel in the SCN. During ontogenesis...

  3. Effects of the aspartic protease inhibitor from Lupinus bogotensis seeds on the growth and development of Hypothenemus hampei: an inhibitor showing high homology with storage proteins.

    Science.gov (United States)

    Molina, Diana; Patiño, Luisa; Quintero, Mónica; Cortes, José; Bastos, Sara

    2014-02-01

    The coffee berry borer Hypothenemus hampei is a pest that causes great economic damage to coffee grains worldwide. Because the proteins consumed are digested by aspartic proteases in the insect's midgut, the inhibition of these proteases by transferring a gene encoding an aspartic protease inhibitor from Lupinus bogotensis Benth. to coffee plants could provide a promising strategy to control this pest. Five aspartic protease inhibitors from L. bogotensis (LbAPI) were accordingly purified and characterized. The gene encoding the L. bogotensis aspartic protease inhibitor (LbAPI), with the highest inhibitory activity against H. hampei, was expressed in Escherichia coli and the purified recombinant protein (rLbAPI), with a molecular mass of 15 kDa, was subsequently assessed for its ability to inhibit the aspartic protease activity present in the H. hampei midgut in vitro, as well as its effects on the growth and development of H. hampei in vivo. The in vitro experiments showed that rLbAPI was highly effective against aspartic proteases from H. hampei guts, with a half maximal inhibitory concentration (IC50) of 2.9 μg. The in vivo experiments showed that the concentration of rLbAPI (w/w) in the artificial diet necessary to cause 50% mortality (LD50) of the larvae was 0.91%. The amino acid sequence of LbAPI had high homology (52-80%) to the seed storage proteins, vicilin and β-conglutin, suggesting that this protein was generated by evolutionary events from a β-conglutin precursor. Based on these results, LbAPI may have a dual function as storage protein, and as defense protein against H. hampei. These results provide a promising alternative to obtain a coffee plant resistant to H. hampei. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers.

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa

    Full Text Available (68Ga (T 1/2 = 68 min, a generator-produced nuclide has great potential as a radionuclide for clinical positron emission tomography (PET. Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Aspn (n = 2, 5, 8, 11, or 14 with easy-to-handle (67Ga, with the previously described (67Ga-DOTA complex conjugated bisphosphonate, (67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Aspn by a Fmoc-based solid-phase method, complexes were formed with (67Ga, resulting in (67Ga-DOTA-(Aspn with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of (67Ga-DOTA-(Aspn increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, (67Ga-DOTA-(Asp8, (67Ga-DOTA-(Asp11, and (67Ga-DOTA-(Asp14 showed high accumulation in bone (10.5 ± 1.5, 15.1 ± 2.6, and 12.8 ± 1.7% ID/g, respectively but were barely observed in other tissues at 60 min after injection. Although bone accumulation of (67Ga-DOTA-(Aspn was lower than that of (67Ga-DOTA-Bn-SCN-HBP, blood clearance of (67Ga-DOTA-(Aspn was more rapid. Accordingly, the bone/blood ratios of (67Ga-DOTA-(Asp11 and (67Ga-DOTA-(Asp14 were comparable with those of (67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of (68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.

  5. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function.

    Science.gov (United States)

    Giacone, Filippo; Condorelli, Rosita A; Mongioì, Laura M; Bullara, Valentina; La Vignera, Sandro; Calogero, Aldo E

    2017-05-01

    Reactive oxygen species favor reproductive processes at low concentrations, but damage spermatozoa and decrease their fertilizing capacity at high concentrations. During infection and/or inflammation of the accessory sex glands reactive oxygen species overproduction may occur which, in turn, may negatively impact on sperm motility, sperm DNA fragmentation, and lipid peroxidation. A number of nutraceutical formulations containing antioxidant molecules have been developed to counteract the deleterious effects of the oxidative stress. A recent formulation containing zinc, D-aspartic acid, and coenzyme-Q10 is present in the pharmaceutical market. Based on these premises, the aim of the present study was to evaluate the effects of this combination on spermatozoa in vitro. The study was conducted on 24 men (32.2 ± 5.5 years): 12 normozoospermic men and 12 asthenozoospermic patients. Spermatozoa from each sample were divided into two control aliquots (aliquot A and B) and an aliquot incubated with zinc, D-aspartic acid, and coenzyme-Q10 (aliquot C). After 3 h of incubation, the following parameters were evaluated: progressive motility, number of spermatozoa with progressive motility recovered after swim-up, lipid peroxidation, and DNA fragmentation. Incubation with zinc, D-aspartic acid, and coenzyme-Q10 maintained sperm motility in normozoospermic men (37.7 ± 1.2 % vs. 35.8 ± 2.3 % at time zero) and improved it significantly in asthenozoospermic patients (26.5 ± 1.9 % vs. 18.8 ± 2.0 % at time zero) (p coenzyme-Q10 (p < 0.05) in both normozospermic men (1.0 ± 0.4 % vs. 2.4 ± 0.9 %) and asthenozooseprmic patients (0.2 ± 0.1 % vs. 0.6 ± 0.2 %). No statistically significant effect was observed on sperm DNA fragmentation. This nutraceutical formulation may be indicated in vitro during the separation of the spermatozoa in the assisted reproduction techniques, during which the spermatozoa undergo an increased

  6. Insulin degludec/insulin aspart versus biphasic insulin aspart 30 twice daily in insulin-experienced Japanese subjects with uncontrolled type 2 diabetes: Subgroup analysis of a Pan-Asian, treat-to-target Phase 3 Trial.

    Science.gov (United States)

    Taneda, Shinji; Hyllested-Winge, Jacob; Gall, Mari-Anne; Kaneko, Shizuka; Hirao, Koichi

    2017-03-01

    The present study was a subgroup analysis of a Pan-Asian Phase 3 open-label randomized treat-to-target trial evaluating insulin degludec/insulin aspart (IDegAsp) and biphasic insulin aspart 30 (BIAsp 30) in Japanese subjects with type 2 diabetes inadequately controlled on insulin. Eligible subjects (n = 178) were randomized (2: 1) to twice-daily (b.i.d.) IDegAsp or BIAsp 30 with or without metformin for 26 weeks, titrated to a blood glucose target of between 3.9 and <5.0 mmol/L. Changes in HbA1c , the proportion of responders reaching the HbA1c target, and changes in fasting plasma glucose, nine-point self-monitored plasma glucose profiles, and body weight were assessed. At 26 weeks, the decrease in HbA1c was similar in both groups. Fasting plasma glucose was lower with IDegAsp than BIAsp 30 (estimated treatment difference -1.50 mmol/L; 95 % confidence interval [CI] -1.98, -1.01). Overall confirmed hypoglycemia rates were similar; the nocturnal confirmed hypoglycemia rate was lower with IDegAsp than BIAsp 30 (estimated rate ratio 0.44; 95 % CI 0.20, 0.99). No severe hypoglycemic episodes were reported. The results indicate that IDegAsp b.i.d. improves glycemic control and, compared with BIAsp 30, lowers the rate of nocturnal confirmed hypoglycemia. © 2016 The Authors. Journal of Diabetes published John Wiley & Sons Australia, Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.

  7. The growth rate of pyrimidine auxotrophic mutants of Lactococcus lactis MG1363 is reduced in the presence of exogenous aspartate

    DEFF Research Database (Denmark)

    Hansen, Steen Lyders Lerche; Martinussen, Jan

    1998-01-01

    Nucleotide metabolism is important for all cells as supplier of building blocks for the synthesis of nucleic acids and coenzymes. Furthermore, they act as intracellular energy carriers and allosteric effectors in a large number of enzymatic reactions. Nucleotides can either be made de novo or from...... preformed metabolites present in the growth medium. In addition to the obvious phenotype of a mutant in the pyrimidine biosynthetic pathway - requirement for a pyrimidine precursor in the growth medium - pleiotrophic effects are often seen. The work presented here shows, that a mutation in one of the genes...... encoding enzymes in the distal part of the pyrimidine biosynthetic pathway of L. lactis MG1363, results in reduction of the growth rate if exogenous aspartate is supplied to the growth medium. This observation can be explained by an increased accumulation of a toxic intermediate, most likely carbamoyl...

  8. [Anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma: Description of a case and anesthetic implications].

    Science.gov (United States)

    Arteche Andrés, M A; Zugasti Echarte, O; de Carlos Errea, J; Pérez Rodríguez, M; Leyún Pérez de Zabalza, R; Azcona Calahorra, M A

    2015-10-01

    N-methyl-D-aspartate receptor encephalitis is an autoimmune encephalitis relationated or not with a neoplasm. Although its incidence is unknown, probably remains underdiagnosed. Epidemiological studies place it as the second cause of immune-mediated encephalitis and the first in patients aged less of 30 years. It shows neuropsychiatric symptoms and autonomic instability. After diagnosis, based on the detection of antibodies in serum or cerebrospinal fluid, an occult malignancy must be investigated. While increasing number of cases have been diagnosed and the important role of this receptor in general anesthesia mechanisms, the interaction of the disease with anesthetic agents and perioperative stress is unknown. We describe the case of a patient with encephalitis associated to ovarian teratoma that underwent gynaecological laparoscopy. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Effects of mealtime insulin aspart and bedtime NPH insulin on postprandial coagulation and fibrinolysis in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Henriksen, Je; Akram, S

    2012-01-01

    ), 9:30, 11:30, 13:30, and 15:30 and analysed for glucose, activated factor VII (FVIIa), D-dimer, prothrombin fragment 1+2 (F1+2), tissue plasminogen activator antigen (t-PA), and plasminogen activator inhibitor activity (PAI). Results: The postprandial glucose response differed significantly between......: The rapid-acting insulin analogue aspart and the intermediate-acting insulin NPH had similar postprandial effects on markers of coagulation activation and fibrinolysis despite different effects on postprandial glucose response.......Aims: Acute hyperglycaemia induces coagulation activation in diabetes patients. We hypothesized that rapid-acting insulin has a beneficial postprandial effect on coagulation and fibrinolysis compared with intermediate-acting insulin due to its ability to lower postprandial hyperglycaemia. Materials...

  10. Cortical N-acetyl aspartate is a predictor of long-term clinical disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Wu, Xingchen; Hanson, Lars G.; Skimminge, Arnold Jesper Møller

    2014-01-01

    Objective: To evaluate the prognostic value of the cortical N-acetyl aspartate to creatine ratio (NAA/Cr) in early relapsing-remitting multiple sclerosis (RRMS). Methods: Sixteen patients with newly diagnosed RRMS were studied by serial MRI and MR spectroscopic imaging (MRSI) once every 6 months...... for 24 months. Clinical examinations, including the expanded disability status scale (EDSS), were performed at baseline, month 24, and at year 7. Results: Baseline cortical NAA/Cr correlated inversely with EDSS at month 24 (r = -0.61, P = 4 had a lower baseline cortical...... parenchymal fraction (BPF) correlated inversely with EDSS at month 24 (r = -0.61, P disability after 2 and 7 years and may be used as a predictor of long-term disease outcome....

  11. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    Science.gov (United States)

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe3+ hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe3+ hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017. © 2017 Wiley Periodicals, Inc.

  12. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi

    Directory of Open Access Journals (Sweden)

    Vanila F. Palmeira

    2017-05-01

    Full Text Available Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs currently used in the treatment of human immunodeficiency virus (HIV have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i reduction on the conidial granularity; (ii irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv inhibition of ergosterol and lanosterol production; (v reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

  13. Aspartic acid racemization rate in narwhal (Monodon monoceros eye lens nuclei estimated by counting of growth layers in tusks

    Directory of Open Access Journals (Sweden)

    Eva Garde

    2012-11-01

    Full Text Available Ages of marine mammals have traditionally been estimated by counting dentinal growth layers in teeth. However, this method is difficult to use on narwhals (Monodon monoceros because of their special tooth structures. Alternative methods are therefore needed. The aspartic acid racemization (AAR technique has been used in age estimation studies of cetaceans, including narwhals. The purpose of this study was to estimate a species-specific racemization rate for narwhals by regressing aspartic acid d/l ratios in eye lens nuclei against growth layer groups in tusks (n=9. Two racemization rates were estimated: one by linear regression (r2=0.98 based on the assumption that age was known without error, and one based on a bootstrap study, taking into account the uncertainty in the age estimation (r2 between 0.88 and 0.98. The two estimated 2kAsp values were identical up to two significant figures. The 2k Asp value from the bootstrap study was found to be 0.00229±0.000089 SE, which corresponds to a racemization rate of 0.00114−yr±0.000044 SE. The intercept of 0.0580±0.00185 SE corresponds to twice the (d/l0 value, which is then 0.0290±0.00093 SE. We propose that this species-specific racemization rate and (d/l0 value be used in future AAR age estimation studies of narwhals, but also recommend the collection of tusks and eyes of narwhals for further improving the (d/l0 and 2kAsp estimates obtained in this study.

  14. Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells.

    Science.gov (United States)

    Profilo, Emanuela; Peña-Altamira, Luis Emiliano; Corricelli, Mariangela; Castegna, Alessandra; Danese, Alberto; Agrimi, Gennaro; Petralla, Sabrina; Giannuzzi, Giulia; Porcelli, Vito; Sbano, Luigi; Viscomi, Carlo; Massenzio, Francesca; Palmieri, Erika Mariana; Giorgi, Carlotta; Fiermonte, Giuseppe; Virgili, Marco; Palmieri, Luigi; Zeviani, Massimo; Pinton, Paolo; Monti, Barbara; Palmieri, Ferdinando; Lasorsa, Francesco Massimo

    2017-06-01

    The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca 2+ -stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reversible dissociation of a carbomoyl phosphate synthase-aspartate transcarbamoylase-dihydroorotase complex from ovarian eggs of Rana catesbeiana: effect of uridine triphosphate and other modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, R.J.; Lin, R.L.; Sallach, H.J.; Cohen, P.P.

    1975-05-01

    Glutamine-dependent carbamoyl phosphate synthase (ATP:carbamate phosphotransferase (dephosphorylating), EC 2.7.2.9), aspartate transcarbamoylase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) and dihydroorotase (L-5,6-dihydroorotate amidohydrolase, EC 3.5.2.3), are copurified as a high-molecular-weight complex from extracts of unfertilized eggs of Rana catesbeiana. UTP is required to maintain the integrity of the complex during the last two purification steps. Removal of the nucleotide results in dissociation of the complex. Based on sedimentation behavior in glycerol gradients, the dissociated carbamoyl phosphate synthase has an apparent molecular weight of 260,000 +- 20,000 and that of dihydroorotase is estimated at 280,000 +- 20,000. Aspartate transcarbamoylase is broadly distributed over the gradient. The addition of ATP, 5-phosphoribosyl-1-pyrophosphate, Mg/sup + +/, or inorganic phosphate to the dissociated complex results in the appearance of a peak of aspartate transcarbamoylase activity with an apparent molecular weight of 110,000 +- 10,000. Incubation of a mixture of the dissociated enzymes with UTP and Mg/sup + +/ leads to their reassociation into the high-molecular-weight complex.

  16. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describ...

  17. In vivo relaxation of N-acetyl-aspartate, creatine plus phosphocreatine, and choline containing compounds during the course of brain infarction: a proton MRS study

    DEFF Research Database (Denmark)

    Gideon, P; Henriksen, O

    1992-01-01

    the course of infarction can be explained by changes in T1 and T2 relaxation times, eight patients with acute stroke were studied. STEAM sequences with varying echo delay times and repetition times were used to measure T1 and T2 of N-acetyl-aspartate (NAA), creatine plus phosphocreatine (Cr+PCr) and choline...

  18. The concentration of N-acetyl aspartate, creatine + phosphocreatine, and choline in different parts of the brain in adulthood and senium

    DEFF Research Database (Denmark)

    Christiansen, P; Toft, P; Larsson, H B

    1993-01-01

    The fully relaxed water signal was used as an internal standard in a STEAM experiment to calculate the concentrations of the metabolites: N-acetyl aspartate (NAA), creatine + phosphocreatine (Cr + PCr), and choline (Cho) containing compounds in four different parts of the brain in two age groups...

  19. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L..

    Directory of Open Access Journals (Sweden)

    Zongyong Tong

    Full Text Available Alfalfa (Medicago sativa L. is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs, such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  20. N-methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity

    NARCIS (Netherlands)

    Harkany, T.; Mulder, J.; Sasvari, M.; Abraham, I.; Konya, C.; Zarandi, M.; Penke, B; Luiten, P.G.M.; Nyakas, C.

    Previous experimental data indicate the involvement of Ca2+-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step

  1. Counter-regulatory hormone responses to spontaneous hypoglycaemia during treatment with insulin Aspart or human soluble insulin. A double-blinded randomised cross-over study

    DEFF Research Database (Denmark)

    Brock-Jacobsen, Iben; Vind, B F; Korsholm, L

    2011-01-01

    by hospitalization where episodes of spontaneous hypoglycaemia and counter-regulatory hormone responses were evaluated from frequently obtained blood samples. Results: No difference between soluble insulin and insulin Aspart was found regarding HbA1c (7.0 0.2 vs. 7.0 0.2%, ns), hypoglycaemic frequency (1.1 0.2 vs. 0...

  2. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  3. The cost effectiveness of rapid-acting insulin aspart compared with human insulin in type 2 diabetes patients: an analysis from the Japanese third-party payer perspective.

    Science.gov (United States)

    Pollock, R F; Valentine, W J; Pilgaard, T; Nishimura, H

    2011-01-01

    The Nippon Ultra-Rapid Insulin and Diabetic Complication Evaluation Study (NICE Study) (NCT00575172) was a 5-year, open-label, randomised controlled trial which compared cardiovascular outcomes in Japanese type 2 diabetes patients intensively treated with regular human insulin or insulin aspart (NovoRapid; Novo Nordisk A/S, Bagsvaerd, Denmark), a rapid-acting insulin analogue. The aim of the present analysis was to evaluate the cost effectiveness of insulin aspart versus regular human insulin from the perspective of a Japanese third-party healthcare payer. A discrete event-simulation model was developed in Microsoft Excel to assess the within-trial cost effectiveness and make longer-term clinical projections in patients treated with regular human insulin or insulin aspart. In addition to severe hypoglycaemia, the model captured myocardial and cerebral infarction events and percutaneous coronary intervention and coronary artery bypass graft procedures. Within-trial mortality, incidence of severe hypoglycaemia and cardiovascular event probabilities were derived from the annual rates observed during the trial period, while post-trial outcomes were calculated using the event rates from the trial, adjusted for increasing patient age. Event costs were accounted from the healthcare payer perspective and expressed in 2008 Japanese yen (JPY), while health-related quality of life (HRQoL) was captured using event and state utilities. Future costs and clinical benefits were discounted at 3% annually. Life expectancy, quality-adjusted life expectancy, cardiovascular event rates and costs were evaluated over 5- and 10-year time horizons and sensitivity analyses were performed to assess variability in model outcomes. Over 5 years of treatment, insulin aspart dominated human insulin both in incremental life expectancy and in incremental quality-adjusted life-years (QALYS). Insulin aspart was associated with a small improvement in discounted life expectancy of 0.005 years (4.688 vs

  4. D-aspartate dysregulation in Ddo(-/-) mice modulates phencyclidine-induced gene expression changes of postsynaptic density molecules in cortex and striatum.

    Science.gov (United States)

    de Bartolomeis, Andrea; Errico, Francesco; Aceto, Giuseppe; Tomasetti, Carmine; Usiello, Alessandro; Iasevoli, Felice

    2015-10-01

    N-methyl-D-aspartate receptor (NMDAR) hypofunction has been considered a key alteration in schizophrenia pathophysiology. Thus, several strategies aimed at enhancing glutamatergic transmission, included the introduction in therapy of D-amino acids, such as D-serine and D-cycloserine augmentation, have been proposed to counteract difficult-to-treat symptoms or treatment-resistant forms of schizophrenia. Another D-amino acid, D-aspartate, has recently gained increasing interest for its role in NMDAR activation and has been found reduced in post-mortem cortex of schizophrenia patients. NMDAR is the core of the postsynaptic density (PSD), a postsynaptic site involved in glutamate signaling and responsive to antipsychotic treatment. In this study, we investigated striatal and cortical gene expression of key PSD transcripts (i.e. Homer1a, Homer1b/c, and PSD-95) in mice with persistently elevated brain D-aspartate-levels, i.e. the D-aspartate-oxidase knockout mice (Ddo(-/-)). These animal models were analyzed both in naive condition and after phencyclidine (PCP) treatment. Naive Ddo(-/-) mice showed decreased Homer1a expression in the prefrontal cortex, increased Homer1b/c expression in the striatum, and decreased PSD-95 expression in the striatum and in the cortex. Acute PCP treatment restored, and even potentiated, Homer1a expression in the prefrontal cortex of mutant mice, while it had limited effects on the other genes. These results suggest that persistently elevated D-aspartate, by enhancing NMDA transmission, may cause complex adaptive mechanisms affecting Homer1a, which in turn may explain the recently demonstrated protective effects of this D-amino acid against PCP-induced behavioral alterations, such as ataxic behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. SIGNIFICANCE OF LACTATE DEHYDROGENASE AND ASPARTATE TRANSAMINASE AS BIOCHEMICAL MARKERS AND AS PREDICTORS OF SEVERITY OF PREGNANCY-INDUCED HYPERTENSION AND ITS COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ramesh Sonowal

    2017-03-01

    Full Text Available BACKGROUND To compare serum Lactate Dehydrogenase (LDH and serum Aspartate Transaminase (AST of normotensive pregnant women with those of preeclamptic and eclamptic women. To determine the relationship of levels of serum lactate dehydrogenase and serum aspartate transaminase with severity of pregnancy-induced hypertension and its complications. MATERIALSAND METHODS The study was carried out on pregnant hypertensive patients attending outpatient department of Obstetrics and Gynaecology department, AMCH, Dibrugarh, Assam from 1 st July 2013 to 30 th June 2014. Normotensive pregnant women were taken as controls. Each serum sample from both the control group as well as study group was estimated for lactate dehydrogenase and aspartate transaminase using standard methods and a comparison is drawn and analysed using t-test and Chi-square test. RESULTS Serum lactate dehydrogenase and serum aspartate transaminase levels were higher in the study group in comparison to the study groups. The mean serum LDH was 198±30.03U/L in control group, whereas in preeclampsia and eclampsia, mean serum levels of LDH were 817±114U/L and 927±108U/L, respectively. The levels of the serum AST were found to be less than 600U/L in normotensive and preeclampsia patients and more than 600 U/L in eclampsia and other complications of PIH. CONCLUSION Serum lactate dehydrogenase and serum aspartate transaminase levels in patients suffering from preeclampsia and its complications are consistently higher compared to the normotensive pregnant patients. To determine the usefulness of inclusion of these enzymes along with other cardiac enzymes in the panel of investigations of pregnant women universally needs further large scale comparative studies.

  6. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    Science.gov (United States)

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  7. Aspartate Aminotransferase and Alanine Aminotransferase Detection on Paper-Based Analytical Devices with Inkjet Printer-Sprayed Reagents

    Directory of Open Access Journals (Sweden)

    Hsiang-Li Wang

    2016-01-01

    Full Text Available General biochemistry detection on paper-based microanalytical devices (PADs uses pipette titration. However, such an approach is extremely time-consuming for large-scale detection processes. Furthermore, while automated methods are available for increasing the efficiency of large-scale PAD production, the related equipment is very expensive. Accordingly, this study proposes a low-cost method for PAD manufacture, in which the reagent is applied using a modified inkjet printer. The optimal reaction times for the detection of aspartate aminotransferase (AST and alanine aminotransferase (ALT are shown to be 6 and 7 min, respectively, given AST and ALT concentrations in the range of 5.4 to 91.2 U/L (R2 = 0.9932 and 5.38 to 86.1 U/L (R2 = 0.9944. The experimental results obtained using the proposed PADs for the concentration detection of AST and ALT in real human blood serum samples are found to be in good agreement with those obtained using a traditional spectrophotometric detection method by National Cheng Kung University hospital.

  8. Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents

    Directory of Open Access Journals (Sweden)

    Li-Ching Lee

    2016-01-01

    Full Text Available Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213 was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328 was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.

  9. The carriage of the serine-aspartate repeat protein-encoding sdr genes among Staphylococcus aureus lineages.

    Science.gov (United States)

    Liu, Huanle; Lv, Jingnan; Qi, Xiuqin; Ding, Yu; Li, Dan; Hu, Longhua; Wang, Liangxing; Yu, Fangyou

    2015-01-01

    The serine-aspartate repeat proteins (Sdr) are members of a family of surface proteins and contribute to the pathogenicity of Staphylococcus aureus. Among 288 S. aureus isolates including 158 and 130 associated with skin and soft tissue infections and bloodstream infection, respectively; 275 (95.5%) were positive for at least one of three sdr genes tested. The positivity rates for sdrC, sdrD, and sdrE among S. aureus isolates were 87.8% (253/288), 63.9% (184/288), and 68.1% (196/288), respectively. 224 (77.8%) of 288 isolates were concomitantly positive for two or three sdr genes. There was an association between carriage of sdrE and methicillin-resistant S. aureus (MRSA) isolates, while the carriage rates of sdrC and sdrD in MRSA isolates were similar to those in methicillin-sensitive S. aureus (MSSA) isolates. The prevalence of co-existence of sdrC and sdrE among MRSA isolates was significantly higher than that among MSSA isolates (psdr genes. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  10. Spatiotemporal localization of D-amino acid oxidase and D-aspartate oxidases during development in Caenorhabditis elegans.

    Science.gov (United States)

    Saitoh, Yasuaki; Katane, Masumi; Kawata, Tomonori; Maeda, Kazuhiro; Sekine, Masae; Furuchi, Takemitsu; Kobuna, Hiroyuki; Sakamoto, Taro; Inoue, Takao; Arai, Hiroyuki; Nakagawa, Yasuhito; Homma, Hiroshi

    2012-05-01

    Recent investigations have shown that a variety of D-amino acids are present in living organisms and that they possibly play important roles in physiological functions in the body. D-Amino acid oxidase (DAO) and D-aspartate oxidase (DDO) are degradative enzymes stereospecific for D-amino acids. They have been identified in various organisms, including mammals and the nematode Caenorhabditis elegans, although the significance of these enzymes and the relevant functions of D-amino acids remain to be elucidated. In this study, we investigated the spatiotemporal localization of C. elegans DAO and DDOs (DDO-1, DDO-2, and DDO-3) and measured the levels of several D- and L-amino acids in wild-type C. elegans and four mutants in which each gene for DAO and the DDOs was partially deleted and thereby inactivated. Furthermore, several phenotypes of these mutant strains were characterized. The results reported in this study indicate that C. elegans DAO and DDOs are involved in egg-laying events and the early development of C. elegans. In particular, DDOs appear to play important roles in the development and maturation of germ cells. This work provides novel and useful insights into the physiological functions of these enzymes and D-amino acids in multicellular organisms.

  11. Early diagnosis of anti-N-methyl-D-aspartate receptor encephalitis in a young woman with psychiatric symptoms.

    Science.gov (United States)

    Aoki, Hiromichi; Morita, Seiji; Miura, Naoya; Tsuji, Tomoatsu; Ohnuki, Youichi; Nakagawa, Yoshihide; Yamamoto, Isotoshi; Takahashi, Hirohide; Inokuchi, Sadaki

    2012-09-20

    A previously healthy 21-year-old woman, transported to our medical emergency center for excluding organic brain disease, had undergone medical examination 9 days before for trembling in her left hand, which was caused by stress. The patient exhibited fever and strange behaviors, e.g., wandering around, babbling, and making smoking gestures; hence, psychiatric examination was performed. The patient's Glasgow Coma Scale score was 4-3-5, and involuntary movement was observed. Cerebrospinal fluid examination revealed increased cell count; hence, we suspected anti-N-methyl-d-aspartate (NMDA) receptor encephalitis. We conducted an abdominal CT scan, which revealed a neoplastic lesion with calcification in the right ovary. Early steroid pulse therapy was started. On hospital day 25, she tested positive for anti-NMDA receptor antibodies; hence, anti-NMDA receptor encephalitis and concomitant ovarian teratoma was diagnosid. She underwent right adnexectomy; subsequently, immunotherapy was performed. The patient recovered and was discharged on hospital day 105. Anti-NMDA receptor encephalitis is not uncommon; however, this disease must be considered for young encephalitis patients exhibiting psychiatric symptoms. If patients (aged ≤ 30 years) presents with encephalitis of uncertain etiology, psychiatric symptoms, seizures, movement disorders, or psychosis, clinicians should consider anti-NMDA encephalitis as a possible diagnosis. Clinical diagnosis should be waged early to ensure timely treatment.

  12. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells.

    Science.gov (United States)

    Boanini, Elisa; Torricelli, Paola; Gazzano, Massimo; Giardino, Roberto; Bigi, Adriana

    2006-09-01

    The direct synthesis of hydroxyapatite (HA)-aspartic acid (ASP) and HA-glutamic acid (GLU) nanocrystals was carried out in presence of different amounts of the amino acids in solution. ASP and GLU incorporation into HA crystals reduces the coherent length of the perfect crystalline domains along the long dimension (002) and, even more, along the cross section (310) of the apatite crystals, suggesting a specific interaction of the amino acids with the HA structure. FTIR analysis indicates that the carboxylic groups of the acidic amino acids interact with the calcium ions of HA. The relative amount of ASP incorporation into HA nanocrystals is greater than that of GLU, suggesting a greater affinity of ASP for HA. Osteoblast-like, MG63, cells cultured on the composite nanocrystals display good proliferation and increased values of ALP activity, collagen type I, TGF-betaI and osteocalcin production, indicating that the presence of the acidic amino acids enhances osteoblast activation and extra-cellular matrix mineralization processes.

  13. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  14. Glypican 6 Enhances N-Methyl-D-Aspartate Receptor Function in Human-Induced Pluripotent Stem Cell-Derived Neurons.

    Science.gov (United States)

    Sato, Kaoru; Takahashi, Kanako; Shigemoto-Mogami, Yukari; Chujo, Kaori; Sekino, Yuko

    2016-01-01

    The in vitro use of neurons that are differentiated from human induced pluripotent stem cells (hiPSC-neurons) is expected to improve the prediction accuracy of preclinical tests for both screening and safety assessments in drug development. To achieve this goal, hiPSC neurons are required to differentiate into functional neurons that form excitatory networks and stably express N-methyl-D-aspartate receptors (NMDARs). Recent studies have identified some astrocyte-derived factors that are important for the functional maturation of neurons. We therefore examined the effects of the astrocyte-derived factor glypican 6 (GPC6) on hiPSC-neurons. When we pharmacologically examined which receptor subtypes mediate L-glutamate (L-Glu)-induced changes in the intracellular Ca(2+) concentrations in hiPSC neurons using fura-2 Ca(2+) imaging, NMDAR-mediated responses were not detected through 7 days in vitro (DIV). These cells were also not vulnerable to excitotoxicity at 7 DIV. However, a 5-days treatment with GPC6 from 3 DIV induced an NMDAR-mediated Ca(2+) increase in hiPSC-neurons and increased the level of NMDARs on the cell surface. We also found that GPC6-treated hiPSC-neurons became responsive to excitotoxicity. These results suggest that GPC6 increases the level of functional NMDARs in hiPSC-neurons. Glial factors may play a key role in accelerating the functional maturation of hiPSC neurons for drug-development applications.

  15. Costimulation of N-methyl-D-aspartate and muscarinic neuronal receptors modulates gap junctional communication in striatal astrocytes.

    Science.gov (United States)

    Rouach, N; Tencé, M; Glowinski, J; Giaume, C

    2002-01-22

    Cocultures of neurons and astrocytes from the rat striatum were used to determine whether the stimulation of neuronal receptors could affect the level of intercellular communication mediated by gap junctions in astrocytes. The costimulation of N-methyl-D-asparte (NMDA) and muscarinic receptors led to a prominent reduction of astrocyte gap junctional communication (GJC) in coculture. This treatment was not effective in astrocyte cultures, these cells being devoid of NMDA receptors. Both types of receptors contribute synergistically to this inhibitory response, as the reduction in astrocyte GJC was not observed after the blockade of either NMDA or muscarinic receptors. The involvement of a neuronal release of arachidonic acid (AA) in this inhibition was investigated because the costimulation of neuronal NMDA and muscarinic receptors markedly enhanced the release of AA in neuronal cultures and in cocultures. In addition, both the reduction of astrocyte GJC and the release of AA evoked by NMDA and muscarinic receptor costimulation were prevented by mepacrine, a phospholipase A(2) inhibitor, and this astrocyte GJC inhibition was mimicked by the exogenous application of AA. Metabolites of AA formed through the cyclooxygenase pathway seem to be responsible for the effects induced by either the costimulation of NMDA and muscarinic neuronal receptors or the application of exogenous AA because, in both cases, astrocyte GJC inhibition was prevented by indomethacin. Altogether, these data provide evidence for a neuronal control of astrocytic communication and open perspectives for the understanding of the modalities through which cholinergic interneurons and glutamatergic inputs affect local circuits in the striatum.

  16. Equilibrium isotope exchange kinetics of native and site-specific mutant forms of E. coli aspartate transcarbamoylase

    Energy Technology Data Exchange (ETDEWEB)

    Wedler, F.C.; Hsuanyu, Y.; Kantrowitz, E.R.

    1987-05-01

    Isotope exchange kinetics at equilibrium (EIEK) have been used to probe the kinetic and regulatory mechanisms of native aspartate transcarbamoylase (ATCase) from E. coli at pH 7.0, 30/sup 0/. Substrate saturation patterns were most consistent with a preferred order random kinetic mechanism: C-P prior to L-Asp, C-Asp released before Pi, with the Asp in equilibrium C-Asp exchange rate 5X faster than C-P in equilibrium Pi. Computer simulations allow one to fit the EIEK experimental data and to arrive at the best set of kinetic constants for a given enzyme state. These approaches have been applied to modified ATCase. Bound CTP and ATP were observed, respectively, to inhibit and activate differentially Asp in equilibrium C-Asp, but not C-P in equilibrium Pi, indicating that these modifiers alter the association-dissociation rates of L-Asp and C-Asp but not of C-P or Pi. Low levels of PALA activated both exchange rates (due to shifting the T-R equilibrium), but higher (PALA) completely blocked both exchanges. The effects of a site-specific mutation of Tyr240 Phe have been similarly probed by EIEK methods. The Phe240 mutant enzyme exhibited kinetic properties markedly different from native ATCase: the data indicate that Phe240 ATCase is much closer to an R-state enzyme than is native enzyme.

  17. Aspartate aminotransferase-to-platelet ratio index for fibrosis and cirrhosis prediction in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Roberto Gomes da Silva Junior

    Full Text Available In chronic hepatitis C (CHC, liver biopsy is the gold standard method for assessing liver histology, however it is invasive and can have complications. Non-invasive markers have been proposed and aspartate aminotransferase (AST-to-platelet ratio index (APRI has been shown as an easy and inexpensive marker of liver fibrosis. This study evaluated the diagnostic performance of APRI for significant fibrosis and cirrhosis prediction in CHC patients. This study included treatment-naive CHC patients who had undergone liver biopsy from January 2000 to August 2006. All histological slides were reviewed according to the METAVIR system. APRI was calculated based on laboratory results performed within four months from the biopsy. Twenty-eight (56% patients had significant fibrosis (F2-F4 and 13 (26% had cirrhosis (F4. The area under ROC curves of APRI for predicting significant fibrosis and cirrhosis were 0.92 (0.83-1.00 and 0.92 (0.85-1.00, respectively. Using cut-off values recommended by prior studies, significant fibrosis could be identified, in accordance with liver biopsy, in 44% and cirrhosis in 66% of patients. APRI could identify significant fibrosis and cirrhosis at a high degree of accuracy in studied patients.

  18. The relationship between seminal plasma aspartate aminotransferase activity, sperm osmotic resistance test value, and semen quality in boars

    Directory of Open Access Journals (Sweden)

    Jacyno Eugenia

    2013-01-01

    Full Text Available The relationship between the activity of aspartate aminotransferase (AspAT in seminal plasma and the values of the osmotic resistance test (ORT of acrosomal membranes and semen traits was examined on 120 young hybrid Pietrain and Duroc boars. The following semen quality traits were determined: the volume of the ejaculate, the percentage of spermatozoa with progressive motility, sperm concentration and the total number of spermatozoa in the ejaculate, percentage of spermatozoa with normal acrosome, the percentage of spermatozoa with major and minor morphological defects, ORT, and the activity of AspAT in seminal plasma. The activity of AspAT in seminal plasma was negatively correlated (p_0.01 with the spermatozoa concentration and total number per ejaculate, percentage of spermatozoa with progressive motility and percentage of spermatozoa with a normal acrosome, while positively with the percentage of spermatozoa with major (p≤0.001 and minor (p≤0.01 morphological defects. The ORT values negatively correlated with the percentage of spermatozoa with major (p≤0.05 and minor (p≤0.01 morphological defects, while positively (p≤0.001 with the percentage of spermatozoa with a normal acrosome.

  19. Anti-N-methyl-D-aspartate receptor encephalitis associated with acute Toxoplasma gondii infection: A case report.

    Science.gov (United States)

    Cai, Xiaotang; Zhou, Hui; Xie, Yongmei; Yu, Dan; Wang, Zhiling; Ren, Haitao

    2018-02-01

    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis has been recognized as the most frequent autoimmune encephalitis in children. Several infectious agents have been implicated in anti-NMDA encephalitis. A previously healthy immunocompetent 9-year-old girl first presented with seizures, headaches and vomiting. Cerebrospinal fluid and brain magnetic resonance imaging were normal. After one week onset, the patient gradually developed unexplained personality and behavior changes, accompanied by fever and seizures again. Repeated CSF analysis revealed a slightly lymphocytic predominant pleocytosis and positive anti-NMDAR antibody. A variety of pathogenic examinations were negative, except for positive toxoplasma IgM and IgG. The patient was diagnoses for anti-NMDA encephalitis associated with acute acquired toxoplasma gondii infection. The patient received 10 days azithromycin for treatment of acquired toxoplasma infection. The parents refuse immunotherapy because substantial recovery from clinical symptoms. The patient was substantially recovered with residual mild agitation after therapy for acquired toxoplasma gondii infection. Two months later, the patient was completely devoid of symptoms, and the levels of serum IgM and IgG of toxoplasma gondii were decreased. Acquired toxoplasma gondii infection may trigger anti-NMDAR encephalitis in children, which has not been reported previously. Clinicians should assess the possibility of toxoplasma gondii infection when evaluating a patient with anti-NMDA encephalitis.

  20. The effects of polyamine agonists and antagonists on N-methyl-D-aspartate-induced depolarizations of amphibian motoneurons in situ.

    Science.gov (United States)

    Hackman, John C; Holohean, Alice M

    2010-04-14

    Polyamines have been found to reduce proton inhibition of isolated N-methyl-D-aspartate (NMDA) channels recorded in vitro. This study examines the role of polyamine modulation of motoneuronal excitation in situ, with an emphasis on possible interactions with NMDA-mediated depolarization of motoneurons and receptor mediated modulation of NMDA receptors by L-glutamate and serotonin (5-HT). Motoneuron membrane potential changes were electrotonically recorded in situ from the ventral root of isolated, hemisected amphibian spinal cords using sucrose gap techniques. The methods provided highly stable recordings (polyamine antagonist arcaine or the allosteric modulator ifenprodil had no effect on NMDA-induced changes in motoneuron membrane potentials recorded in situ but blocked the effects of spermine. Synthalin did not block spermine enhancement of NMDA-induced depolarization of motoneurons but mimicked Mg(2+) block of the NMDA channel. The data provide evidence that the proton block of the NMDA receptor is maximized in frog motoneurons in situ and also for a spermine specific polyamine site on native NMDA receptors of motoneurons that can enhance NMDA-induced depolarization when activated. Polyamines do not appear to be constitutively active at the motoneurons recorded since polyamine antagonists had no effect on either membrane depolarization or modulation of NMDA receptors. Published by Elsevier B.V.

  1. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  2. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Leeson, P.D.; Carling, R.W.; James, K.; Smith, J.D.; Moore, K.W.; Wong, E.H.; Baker, R. (Merck Sharp Laboratory, Harlow, Essex (England))

    1990-05-01

    Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of the nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.

  3. A general strategy to prepare different types of polysaccharide-graft-poly(aspartic acid) as degradable gene carriers.

    Science.gov (United States)

    Song, Hai-Qing; Dou, Xue-Bo; Li, Rui-Quan; Yu, Bing-Ran; Zhao, Na-Na; Xu, Fu-Jian

    2015-01-01

    Owing to their unique properties such as low cytotoxicity and excellent biocompatibility, poly(aspartic acid) (PAsp) and polysaccharides are good candidates for the development of new biomaterials. In order to construct better gene delivery systems by combining polysaccharides with PAsp, in this work, a general strategy is described for preparing series of polysaccharide-graft-PAsp (including cyclodextrin (CD), dextran (Dex) and chitosan (CS)) gene vectors. Such different polysaccharide-based vectors are compared systematically through a series of experiments including degradability, pDNA condensation capability, cytotoxicity and gene transfection ability. They possess good degradability, which would benefit the release of pDNA from the complexes. They exhibit significantly lower cytotoxicity than the control 'gold-standard' polyethylenimine (PEI, ∼25kDa). More importantly, the gene transfection efficiency of Dex- and CS-based vectors is 12-14-fold higher than CD-based ones. This present study indicates that properly grafting degradable PAsp from polysaccharide backbones is an effective means of producing a new class of degradable biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Genetic association analysis of N-methyl-D-aspartate receptor subunit gene GRIN2B and clinical response to clozapine.

    Science.gov (United States)

    Taylor, Danielle L; Tiwari, Arun K; Lieberman, Jeffrey A; Potkin, Steven G; Meltzer, Herbert Y; Knight, Jo; Remington, Gary; Müller, Daniel J; Kennedy, James L

    2016-03-01

    Approximately 30% of patients with schizophrenia fail to respond to antipsychotic therapy and are classified as having treatment-resistant schizophrenia. Clozapine is the most efficacious drug for treatment-resistant schizophrenia and may deliver superior therapeutic effects partly by modulating glutamate neurotransmission. Response to clozapine is highly variable and may depend on genetic factors as indicated by twin studies. We investigated eight polymorphisms in the N-methyl-D-aspartate glutamate receptor subunit gene GRIN2B with response to clozapine. GRIN2B variants were genotyped using standard TaqMan procedures in 175 European patients with schizophrenia deemed resistant or intolerant to treatment. Response was assessed using change in Brief Psychiatric Rating Scale scores following six months of clozapine therapy. Categorical and continuous response was assessed using chi-squared test and analysis of covariance, respectively. No associations were observed between the variants and response to clozapine. A-allele carriers of rs1072388 responded marginally better to clozapine therapy than GG-homozygotes; however, the difference was not statistically significant (p = 0.067, uncorrected). Our findings do not support a role for these GRIN2B variants in altering response to clozapine in our sample. Investigation of additional glutamate variants in clozapine response is warranted. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    Energy Technology Data Exchange (ETDEWEB)

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  6. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    Science.gov (United States)

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro. Published by Elsevier Ltd.

  7. Apoptotic inducers activate the release of D-aspartate through a hypotonic stimulus-triggered mechanism in PC12 cells.

    Science.gov (United States)

    Furuchi, Takemitsu; Suzuki, Toshiyuki; Sekine, Masae; Katane, Masumi; Homma, Hiroshi

    2009-10-15

    We have characterized release of D-aspartate (D-Asp), a regulator of hormone synthesis and secretion, via a volume-sensitive organic anion channel (VSOC) in PC12 cells by studying its response to apoptotic stimuli. PC12 cells have been demonstrated to endogenously synthesize D-Asp. Apoptotic inducers, including staurosporin (STS), tumor necrosis factor (TNF)-alpha, H(2)O(2), and C2-ceramide, activate the release of D-Asp through a hypotonic stimulus-triggered mechanism. Putative blockers of the anion channel, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 4,4'-diisothiocyanostilbene-2,2'-sulphonic acid (DIDS), significantly inhibited stress-induced D-Asp release under hypotonic conditions following the application of apoptotic inducers. Hypotonic conditions are essential for activation by apoptotic inducers. Phorbol 12-mirystate 13-acetate and the Ca(2+) ionophore A23187 increased D-Asp efflux via the VSOC, implying the involvement of intracellular Ca(2+) in the activation of the D-Asp efflux. However, hypotonic stress and STS had no effect on the concentration of intracellular Ca(2+) in PC12 cells. Furthermore, an unknown EGTA-sensitive factor(s), other than Ca(2+), and peroxynitrite may play pivotal roles in STS-enhanced D-Asp release.

  8. Study of Triclabendazole (TCBZ Effect on Aspartate Transaminase (AST Activity of Fasciola gigantica Parasite and Liver Enzyme Activity Assay

    Directory of Open Access Journals (Sweden)

    Shima Shafaei

    2015-10-01

    Full Text Available  Background: Aspartate transaminase (AST is an important enzyme in parasite and liver tissue. The purpose of this investigation is to evaluate triclabendazole (TCBZ effect on AST activity of Fasciola gigantica parasite. To compare of enzyme level of parasite and its host tissue, enzyme activity of F. gigantica parasite and liver tissues were also determined. Method:The livers were collected from sheep slaughtered in local slaughterhouse and living F. gigantica parasites were isolated. The washed parasites were cultured in buffe rmedia with or without Triclabendazole (Egaten®; 15μg/mL in an incubator at 37° C. Extractions of collected parasites and liver tissues were prepared by homogenizing buffer in a Mortar and pestle. Extraction samples were examined for protein measurement, AST activity assay and protein recognition. Results:The results of AST assay revealed, enzyme activity for treated and untreated is not significant. Healthy liver tissue shows significantly higher enzyme activity than parasite. Enzyme activity for healthy and infected liver tissues was significant. Enzymatic proteins including Cathepsin L & B (Protease were recognized in parasite samples. Conclusion:Although AST could not be concerned as an indicator for efficiency treatment, however may be involved as a biomarker for biochemical comparison of parasite and host tissue.

  9. Biocompatibility of helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials in a rabbit corneal model.

    Science.gov (United States)

    Wang, Liqiang; Ma, Ruijue; Du, Gaiping; Guo, Huiling; Huang, Yifei

    2015-01-01

    Silk proteins represent a unique choice in the selection of biomaterials that can be used for corneal tissue engineering and regenerative medical applications. We implanted helicoidal multilamellar arginine-glycine-aspartic acid-functionalized silk biomaterials into the corneal stroma of rabbits, and evaluated its biocompatibility. The corneal tissue was examined after routine hematoxylin-eosin staining, immunofluorescence for collagen I and III, and fibronectin, and scanning electron microscopy. The silk films maintained their integrity and transparency over the 180-day experimental period without causing immunogenic and neovascular responses or degradation of the rabbit corneal stroma. Collagen I increased, whereas Collagen III and fibronectin initially increased and then gradually decreased. The extracellular matrix deposited on the surface of the silk films, tightly adhered to the biomaterial. We have shown this kind of silk film graft has suitable biocompatibility with the corneal stroma and is an initial step for clinical trials to evaluate this material as a transplant biomaterial for keratoplasty tissue constructs. © 2014 Wiley Periodicals, Inc.

  10. Optimized method for measuring aspartate aminotransferase activity with the CentrifiChem Analyzer, with automatic preincubation of serum.

    Science.gov (United States)

    Ertingshausen, G; Amsellem-Winzelberg, L; Richert, J F; Davids, R

    1978-07-01

    We propose a routine method for the mechanized measurement of aspartate aminotransferase with the CentrifiChem Analyzer, which is based on the recommendations of both the International Federation of Clinical Chemistry and the Société Française de Biologie Clinique. A modification of the CentrifiChem pipettor permits simultaneous pipetting of two reagents, thus achieving automatic preincubation of the serum in the transfer disk. Owing to the fixed reagent volumes dispensed by the pipettor, preincubation conditions had to be modified, but the recommendations for the final reagent concentrations in the assay cuvet were observed. The totally automated method correlates very well with one involving manual pipetting to reproduce the detailed step-by-step recommendations of the International Federation of Clinical Chemistry. Intra-assay precision ranged from 3.4 to 4.9% and interassay precision from 1.7 to 7.5%. We assayed 135 sera and obtained a correlation coefficient of 0.996 (a = 1.025, b = 0.08).

  11. N-methyl-D-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia?

    Science.gov (United States)

    Kantrowitz, Joshua T.; Javitt, Daniel C.

    2010-01-01

    Schizophrenia is a severe mental disorder associated with a characteristic constellation of symptoms and neurocognitive deficits. At present, etiological mechanisms remain relatively unknown, although multiple points of convergence have been identified over recent years. One of the primary convergence points is dysfunction of N-methyl-D-aspartate (NMDAR)-type glutamate receptors. Antagonists of NMDAR produce a clinical syndrome that closely resembles, and uniquely incorporates negative and cognitive symptoms of schizophrenia, along with the specific pattern of neurocognitive dysfunction seen in schizophrenia. Genetic polymorphisms involving NMDAR subunits, particularly the GRIN2B subunit have been described. In addition, polymorphisms have been described in modulatory systems involving the NMDAR, including the enzymes serine racemase and D-amino acid oxidase/G72 that regulate brain D-serine synthesis. Reductions in plasma and brain glycine, D-serine and glutathione levels have been described as well, providing potential mechanisms underlying NMDAR dysfunction. Unique characteristics of the NMDAR are described that may explain the characteristic pattern of symptoms and neurocognitive deficits observed in schizophrenia. Finally, the NMDAR complex represents a convergence point for potential new treatment approaches in schizophrenia aimed at correcting underlying abnormalities in synthesis and regulation of allosteric modulators, as well as more general potentiation of pre- and post-synaptic glutamatergic and NMDAR function. PMID:20417696

  12. Clinical characteristics and outcomes between children and adults with anti-N-Methyl-D-Aspartate receptor encephalitis.

    Science.gov (United States)

    Huang, Qi; Wu, Yuan; Qin, Rongfa; Wei, Xing; Ma, Meigang

    2016-12-01

    Anti-N-Methyl-D-Aspartate receptor (NMDAR) encephalitis is an acute neurological disorder affecting children and adults. We aimed to compare the clinical characteristics, treatments, and outcomes between children and adults with anti-NMDAR encephalitis and to assess the probable risk factors. In this observational study, patients who tested positive for anti-NMDAR antibody in the cerebrospinal fluid were enrolled. The patients were divided into children and adults group on the basis of age (whether adults were examined. The adults more likely manifested status epilepticus, central hypoventilation, and pneumonia but less likely exhibited movement disorder than the children did. All of the patients were subjected to corticosteroid treatment, 11 children and 9 adults were treated with intravenous immunoglobulin, and only the adults received plasma exchange or cyclophosphamide. The children recovered faster than the adults, especially in the first 6 months. Risk factors included age, status epilepticus, changes in consciousness, central hypoventilation, and pneumonia. Adults exhibit worse outcomes than children mostly because of status epilepticus.

  13. [Post-training N-methyl-D-aspartate receptor blockade facilitates retention of acquired spatial memory in rats].

    Science.gov (United States)

    Shinohara, Keisuke; Hata, Toshimichi

    2014-02-01

    We investigated the effect of a post-training chronic infusion of N-methyl-D-aspartate (NMDA) receptor blocker on retention of spatial reference memory in rats. In Experiment 1, we trained 4 groups of rats for 4 days (4 trials/ day) in the Morris water maze task. In a single probe trial after retention intervals of 1, 7, 14, and 28 days, the 1-day group showed more goal crossings than shown by the other 3 groups. In Experiment 2, a chronic infusion of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-AP5) or a control vehicle into the lateral ventricle was initiated 1 day after the training session, and continued for 6 days. In the subsequent probe trial (7 days after training), the rats that had received the D-AP5 infusion showed significantly more goal crossings than the controls. These findings suggest that an NMDA receptor blockade following acquisition facilitates retention of spatial reference memory.

  14. Bacillus thuringiensis Crystal Protein Cry6Aa Triggers Caenorhabditis elegans Necrosis Pathway Mediated by Aspartic Protease (ASP-1)

    Science.gov (United States)

    Zhang, Fengjuan; Peng, Donghai; Cheng, Chunsheng; Zhou, Wei; Ju, Shouyong; Wan, Danfeng; Yu, Ziquan; Shi, Jianwei; Deng, Yaoyao; Wang, Fenshan; Ye, Xiaobo; Hu, Zhenfei; Lin, Jian; Ruan, Lifang; Sun, Ming

    2016-01-01

    Cell death plays an important role in host-pathogen interactions. Crystal proteins (toxins) are essential components of Bacillus thuringiensis (Bt) biological pesticides because of their specific toxicity against insects and nematodes. However, the mode of action by which crystal toxins to induce cell death is not completely understood. Here we show that crystal toxin triggers cell death by necrosis signaling pathway using crystal toxin Cry6Aa-Caenorhabditis elegans toxin-host interaction system, which involves an increase in concentrations of cytoplasmic calcium, lysosomal lyses, uptake of propidium iodide, and burst of death fluorescence. We find that a deficiency in the necrosis pathway confers tolerance to Cry6Aa toxin. Intriguingly, the necrosis pathway is specifically triggered by Cry6Aa, not by Cry5Ba, whose amino acid sequence is different from that of Cry6Aa. Furthermore, Cry6Aa-induced necrosis pathway requires aspartic protease (ASP-1). In addition, ASP-1 protects Cry6Aa from over-degradation in C. elegans. This is the first demonstration that deficiency in necrosis pathway confers tolerance to Bt crystal protein, and that Cry6A triggers necrosis represents a newly added necrosis paradigm in the C. elegans. Understanding this model could lead to new strategies for nematode control. PMID:26795495

  15. Secreted glutamic protease rescues aspartic protease Pep deficiency in Aspergillus fumigatus during growth in acidic protein medium.

    Science.gov (United States)

    Sriranganadane, Dev; Reichard, Utz; Salamin, Karine; Fratti, Marina; Jousson, Olivier; Waridel, Patrice; Quadroni, Manfredo; Neuhaus, Jean-Marc; Monod, Michel

    2011-05-01

    In an acidic protein medium Aspergillus fumigatus secretes an aspartic endoprotease (Pep) as well as tripeptidyl-peptidases, a prolyl-peptidase and carboxypeptidases. In addition, LC-MS/MS revealed a novel glutamic protease, AfuGprA, homologous to Aspergillus niger aspergillopepsin II. The importance of AfuGprA in protein digestion was evaluated by deletion of its encoding gene in A. fumigatus wild-type D141 and in a pepΔ mutant. Either A. fumigatus Pep or AfuGprA was shown to be necessary for fungal growth in protein medium at low pH. Exoproteolytic activity is therefore not sufficient for complete protein hydrolysis and fungal growth in a medium containing proteins as the sole nitrogen source. Pep and AfuGprA constitute a pair of endoproteases active at low pH, in analogy to A. fumigatus alkaline protease (Alp) and metalloprotease I (Mep), where at least one of these enzymes is necessary for fungal growth in protein medium at neutral pH. Heterologous expression of AfuGprA in Pichia pastoris showed that the enzyme is synthesized as a preproprotein and that the propeptide is removed through an autoproteolytic reaction at low pH to generate the mature protease. In contrast to A. niger aspergillopepsin II, AfuGprA is a single-chain protein and is structurally more similar to G1 proteases characterized in other non-Aspergillus fungi.

  16. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Wood, M W; VanDongen, H M; VanDongen, A M

    1997-02-07

    While attempting to map a central region in the M3-M4 linker of the N-methyl-D-aspartate receptor NR1 subunit, we found that mutation of a single position, Ala-714, greatly reduced the apparent affinity for glycine. Proximal N-glycosylation localized this region to the extracellular space. Glycine affinities of additional Ala-714 mutations correlated with side chain volume. Substitution of alanine 714 with cysteine did not alter glycine sensitivity, although this mutant was rapidly inhibited by dithionitrobenzoate. Glycine protected the A714C mutant from modification by dithionitrobenzoate, whereas the co-agonist L-glutamate was ineffective. These experiments place Ala-714 in the glycine binding pocket of the N-methyl-D-aspartate receptor, a determination not predicted by previous structural models based on bacterial periplasmic binding protein homology.

  17. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease.

    Science.gov (United States)

    Esposito, Marilena; Di Pierro, Prospero; Dejonghe, Winnie; Mariniello, Loredana; Porta, Raffaele

    2016-08-01

    Two different milk clotting enzymes, belonging to the aspartic protease family, were extracted from both artichoke leaves and alpine thistle flowers, and the latter was covalently immobilized by using a polyacrylic support containing polar epoxy groups. Our findings showed that the alpine thistle aspartic protease was successfully immobilized at pH 7.0 on Immobeads IB-150P beads and that, under these experimental conditions, an immobilization yield of about 68% and a recovery of about 54% were obtained. Since the enzyme showed an optimal pH of 5.0, a value very similar to the one generally used for milk clotting during cheese making, and exhibited a satisfactory stability over time, the use of such immobilized vegetable rennet for the production of novel dairy products is suggested. Copyright © 2016. Published by Elsevier Ltd.

  18. Effect of L-aspartic acid on the growth, structure and spectral studies of Zinc (tris) Thiourea Sulphate (ZTS) single crystals

    Science.gov (United States)

    Samuel, Bincy Susan; Krishnamurthy, R.; Rajasekaran, R.

    2014-11-01

    Single crystals of pure and L-aspartic acid doped Zinc (Tris) Thiourea Sulphate (ZTS) were grown from aqueous solution by solution growth method. The cell parameters and structure of the grown crystals were determined by X-ray diffraction studies. The presence of functional group in the compound has been confirmed by FTIR and FT-Raman analysis. The optical transparency range has been studied through UV-Vis spectroscopy. TGA/DTA studies show thermal stability of the grown crystals. Microhardness study reveals that the hardness number (Hv) increases with load for pure and doped ZTS crystals. Dielectric studies have been carried out and the results are discussed. The second harmonic generation was confirmed for L-aspartic acid doped ZTS which is greater than pure ZTS.

  19. Optimal dose and timing of insulin Aspart to mimic first phase insulin response in patients with recently onset type 2 diabetes

    DEFF Research Database (Denmark)

    Gredal, C.; Rosenfalck, A.; Dejgaard, A.

    2008-01-01

    design to four standard meal tests with pre-meal injection of insulin Aspart 0.08 IU/kg BW 30 min before the meal, insulin Aspart 0.04 IU/kg BW 30 or 15 min before the meal and placebo. RESULTS: All three insulin regimes significantly reduced postprandial glucose increment (area under the curve AUC(-30...... injection of IAsp 0.08 IU/kg BW. No difference in postprandial glucose profile was demonstrated whether IAsp 0.04 IU/kg BW was administrated 15 or 30 min before mealtime. CONCLUSIONS: IAsp 0.04IU/kg BW injected subcutaneously 15 or 30 min before meal reduced the postprandial blood glucose increment without...

  20. Effect of the N-methyl-D-aspartate NR2B subunit antagonist ifenprodil on precursor cell proliferation in the hippocampus.

    OpenAIRE

    Bunk, Eva C; König, Hans-Georg; Prehn, Jochen HM; Kirby, Brian P

    2014-01-01

    The N-methyl-D-aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA-induced, excitotoxic ...

  1. Time Evolution of the Quaternary Structure of Escherichia Coli Aspartate Transcarbamoylase Upon Reaction With the Natural Substrates And a Slow Tight Binding Inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    West, J.M.; Xia, J.; Tsuruta, H.; Guo, W.; O' Day, E.M.; Kantrowitz, E.R.

    2009-05-26

    Here, we present a study of the conformational changes of the quaternary structure of Escherichia coli aspartate transcarbamoylase, as monitored by time-resolved small-angle X-ray scattering, upon combining with substrates, substrate analogs, and nucleotide effectors at temperatures between 5 and 22 {sup o}C, obviating the need for ethylene glycol. Time-resolved small-angle X-ray scattering time courses tracking the T {yields} R structural change after mixing with substrates or substrate analogs appeared to be a single phase under some conditions and biphasic under other conditions, which we ascribe to multiple ligation states producing a time course composed of multiple rates. Increasing the concentration of substrates up to a certain point increased the T {yields} R transition rate, with no further increase in rate beyond that point. Most strikingly, after addition of N-phosphonacetyl-l-aspartate to the enzyme, the transition rate was more than 1 order of magnitude slower than with the natural substrates. These results on the homotropic mechanism are consistent with a concerted transition between structural and functional states of either low affinity, low activity or high affinity, high activity for aspartate. Addition of ATP along with the substrates increased the rate of the transition from the T to the R state and also decreased the duration of the R-state steady-state phase. Addition of CTP or the combination of CTP/UTP to the substrates significantly decreased the rate of the T {yields} R transition and caused a shift in the enzyme population towards the T state even at saturating substrate concentrations. These results on the heterotropic mechanism suggest a destabilization of the T state by ATP and a destabilization of the R state by CTP and CTP/UTP, consistent with the T and R state crystallographic structures of aspartate transcarbamoylase in the presence of the heterotropic effectors.

  2. Dihydroorotase from the Hyperthermophile Aquifiex aeolicus Is Activated by Stoichiometric Association with Aspartate Transcarbamoylase and Forms a One-Pot Reactor for Pyrimidine Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Martin, Philip D.; Purcarea, Cristina; Vaishnav, Asmita; Brunzelle, Joseph S.; Fernando, Roshini; Guy-Evans, Hedeel I.; Evans, David R.; Edwards, Brian F.P.; (WSU-MED); (IB-Bucharest); (NWU); (E.Mich.U.)

    2009-08-14

    In prokaryotes, the first three enzymes in pyrimidine biosynthesis, carbamoyl phosphate synthetase (CPS), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), are commonly expressed separately and either function independently (Escherichia coli) or associate into multifunctional complexes (Aquifex aeolicus). In mammals the enzymes are expressed as a single polypeptide chain (CAD) in the order CPS-DHO-ATC and associate into a hexamer. This study presents the three-dimensional structure of the noncovalent hexamer of DHO and ATC from the hyperthermophile A. aeolicus at 2.3 {angstrom} resolution. It is the first structure of any multienzyme complex in pyrimidine biosynthesis and is a possible model for the core of mammalian CAD. The structure has citrate, a near isosteric analogue of carbamoyl aspartate, bound to the active sites of both enzymes. Three active site loops that are intrinsically disordered in the free, inactive DHO are ordered in the complex. The reorganization also changes the peptide bond between Asp153, a ligand of the single zinc atom in DHO, and Gly154, to the rare cis conformation. In the crystal structure, six DHO and six ATC chains form a hollow dodecamer, in which the 12 active sites face an internal reaction chamber that is approximately 60 {angstrom} in diameter and connected to the cytosol by narrow tunnels. The entrances and the interior of the chamber are both electropositive, which suggests that the architecture of this nanoreactor modifies the kinetics of the bisynthase, not only by steric channeling but also by preferential escape of the product, dihydroorotase, which is less negatively charged than its precursors, carbamoyl phosphate, aspartate, or carbamoyl aspartate.

  3. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    Science.gov (United States)

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-04

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism.

  4. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    Science.gov (United States)

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  5. A new and concise strategy to the enantioselective synthesis of (S)-2-amino-4-oxo-4-(pyridine-2-yl) butanoic acid from aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Evanoel Crizanto de; Souza, Carolina C. de; Maior, Marta C.L.S.; Costa, Paulo R.R., E-mail: prrcosta@ism.com.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisas de Produtos Naturais; Lima, Paulo G. de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Dias, Ayres G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Quimica

    2010-07-01

    The alpha-amino acid (S)-5 was synthesized using in the key step a chemoselective nucleophilic substitution between a diester derived from L-aspartic acid and 2-lithium pyridine. The overall yield (13%, 5 steps) was similar to those previously described by our group for the R isomer (the first exogen full agonist of the NMDA receptors) from D-mannitol (12%, 10 steps) and by Lovey and Copper for the racemic synthesis (17%, 5 steps). (author)

  6. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  7. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus: Intersubunit Communication in a Pyrimidine Biosynthetic Complex

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Hedeel Guy [Department of Chemistry, Eastern Michigan University, Ypsilanti Michigan 48197; Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit Michigan 48201; Fernando, Roshini [Department of Chemistry, Eastern Michigan University, Ypsilanti Michigan 48197; Vaishnav, Asmita [Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit Michigan 48201; Kotichukkala, Mahalakshmi [Department of Chemistry, Eastern Michigan University, Ypsilanti Michigan 48197; Heyl, Deborah [Department of Chemistry, Eastern Michigan University, Ypsilanti Michigan 48197; Martin, Philip D. [Department of Chemistry, Wayne State University, Detroit Michigan 48202; Hachem, Fatme [Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit Michigan 48201; Brunzelle, Joseph S. [Life Sciences Collaborative Access Team, Northwestern University, Center for Synchrotron Research, Argonne Illinois 60439; Edwards, Brian F. P. [Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit Michigan 48201; Evans, David R. [Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit Michigan 48201

    2013-12-19

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (Ki = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes.

  8. Identification and partial characterization of extracellular aspartic protease genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384.

    Science.gov (United States)

    Reid, Vernita J; Theron, Louwrens W; du Toit, Maret; Divol, Benoit

    2012-10-01

    The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence.

  9. Self-healing Li-Al layered double hydroxide conversion coating modified with aspartic acid for 6N01 Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Caixia; Luo, Xiaohu; Pan, Xinyu; Liao, Liying; Wu, Xiaosong; Liu, Yali, E-mail: yaliliu@hnu.edu.cn

    2017-02-01

    Highlights: • A self-healing chrome-free Li-Al layered double hydroxide conversion coating modified with Aspartic acid was prepared. • One-step conversion coating formed by simple immersion in a conversion solution for a short time and a low temperature. • The conversion coating had excellent corrosion resistance. • The possible mechanism via exchange/self-assembly of the conversion coating was proposed in this paper. - Abstract: A self-healing Li-Al layered double hydroxide conversion coating (LCC) modified with aspartic acid (ALCC) was prepared on 6N01 Al alloy for corrosion protection. Scanning electron microscopy (SEM) showed that a compact thin film has been successfully formed on the alloy. X-ray diffraction (XRD) and FT-IR spectra proved that species of aspartic acid anions were successfully intercalated into LCC. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and neutral salt spray (NSS) testing showed that the resultant ALCC could provide effective corrosion protection for the Al alloy. During immersion of the ALCC-coated alloy in 3.5% NaCl solution, new film was formed in the area of artificially introduced scratch, indicating its self-healing capability. XPS results demonstrated that Cl- anions exchange partial Asp anions according to the change content of element on conversion coating. From the above results, the possible mechanism via exchange/self-assembly was proposed to illustrate the phenomenon of self-healing.

  10. Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.

    Science.gov (United States)

    Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H

    2017-03-15

    Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Comparative characterization of three D-aspartate oxidases and one D-amino acid oxidase from Caenorhabditis elegans.

    Science.gov (United States)

    Katane, Masumi; Saitoh, Yasuaki; Seida, Yousuke; Sekine, Masae; Furuchi, Takemitsu; Homma, Hiroshi

    2010-06-01

    Previously, we cloned cDNAs for four Caenorhabditis elegans genes (F20 Hp, C47Ap, F18Ep, and Y69Ap genes) that were annotated in the database as encoding D-amino acid oxidase (DAO) or D-aspartate oxidase (DDO) proteins. These genes were expressed in Escherichia coli, and the recombinant C47Ap and F18Ep were shown to have functional DDO activities, while Y69Ap had functional DAO activity. In this study, we improved the E. coli culture conditions for the production of recombinant F20 Hp and, following purification of the protein, revealed that it has functional DDO activity. The kinetic properties of recombinant C47Ap (DDO-1), F18Ep (DDO-2), F20 Hp (DDO-3), and Y69Ap (DAO) were also determined and compared with recombinant human DDO and DAO. In contrast to the low catalytic efficiency of human DDO for D-Glu, all three C. elegans DDOs showed higher catalytic efficiencies for D-Glu than D-Asp or N-methyl-D-Asp. The catalytic efficiency of C. elegans DAO for D-Ser was substantially lower than that of human DAO, while the C. elegans DAO was more efficient at deamination of basic D-amino acids (D-Arg and D-His) than human DAO. Collectively, our results indicate that C. elegans contains at least three genes that encode functional DDOs, and one gene encoding a functional DAO, and that these enzymes have different and distinctive properties.

  12. Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors

    Directory of Open Access Journals (Sweden)

    Xu Fenglian

    2012-09-01

    Full Text Available Abstract Background Mercury is a well-known neurotoxin implicated in a wide range of neurological or psychiatric disorders including autism spectrum disorders, Alzheimer’s disease, Parkinson’s disease, epilepsy, depression, mood disorders and tremor. Mercury-induced neuronal degeneration is thought to invoke glutamate-mediated excitotoxicity, however, the underlying mechanisms remain poorly understood. Here, we examine the effects of various mercury concentrations (including pathological levels present in human plasma or cerebrospinal fluid on cultured, rat cortical neurons. Results We found that inorganic mercuric chloride (HgCl2 –at 0.025 to 25 μM not only caused neuronal degeneration but also perturbed neuronal excitability. Whole-cell patch-clamp recordings of pyramidal neurons revealed that HgCl2 not only enhanced the amplitude and frequency of synaptic, inward currents, but also increased spontaneous synaptic potentials followed by sustained membrane depolarization. HgCl2 also triggered sustained, 2–5 fold rises in intracellular calcium concentration ([Ca2+]i. The observed increases in neuronal activity and [Ca2+]i were substantially reduced by the application of MK 801, a non-competitive antagonist of N-Methyl-D-Aspartate (NMDA receptors. Importantly, our study further shows that a pre incubation or co-application of MK 801 prevents HgCl2-induced reduction of cell viability and a disruption of β-tubulin. Conclusions Collectively, our data show that HgCl2-induced toxic effects on central neurons are triggered by an over-activation of NMDA receptors, leading to cytoskeleton instability.

  13. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Ichiro; Kirsch, J.F. [Univ. of California, Berkeley, CA (United States)

    1996-02-13

    The chicken and goose egg white lysozymes (ChEWL and GoEWL) are homologues, but differ in substrate specificity. ChEWL catalyzes the hydrolysis of the glycosidic bonds of bacterial peptidoglycans and chitin-derived substrates, while GoEWL is specific for bacterial peptidoglycans. The active-site aspartate 52 residue of ChEWL, which is postulated to stabilize the oxocarbenium ion intermediate, has no counterpart in GoEWL. The substrate specificity of the D52A ChEWL mutant was compared with those of wild-type ChEWL and GoEWL. D52A ChEWL retains approximately 4% of the wild-type catalytic activity in reactions with three different bacterial cell suspensions. Asp52 therefore is not essential to the catalytic mechanism, accounting for only a 2 kcal/mol decrease in AG. The function of Asp52 in D52A ChEWL- and GoEWL-catalyzed cleavage of (carboxymethyl)chitin may be partially fulfilled by an appropriately positioned carboxyl group on the substrate (substrate-assisted catalysis). D52A ChEWL and GoEWL, unlike wild-type ChEWL, exhibit biphasic kinetics in the clearing of Micrococcus luteus cell suspensions, suggesting preferences for subsets of the linkages in the M. luteus peptidoglycan. These subsets do not exist in the peptidoglycans of Escherichia coli or Sarcina lutea, since neither D52A ChEWL nor GoEWL exhibits initial bursts in reactions with suspensions of these bacteria. We propose that substrate-assisted catalysis occurs in reactions of D52A ChEWL and GoEWL with M. luteus peptidoglycans, with the glycine carboxyl group of uncross-linked peptides attached to N-acetylmuramic acid partially substituting the function of the missing Asp52. 52 refs., 6 figs., 1 tab.

  14. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Science.gov (United States)

    Xue, Huping; Lu, Hong; Zhao, Xin

    2011-01-01

    Horizontal gene transfer (HGT) is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr) family has been compared among different sources of Staphylococcus aureus (S. aureus) to discover sequence diversities within their genomes. Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study), ovine mastitis (ED133), pig (ST398), chicken (ED98), and human methicillin-resistant S. aureus (MRSA) (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9) were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may inadvertently enhance the contact of human and animal bacterial

  15. Protective actions of des-aspartate-angiotensin I in mice model of CEES-induced lung intoxication.

    Science.gov (United States)

    Ng, Eugene Teck-Leong; Sim, Meng-Kwoon; Loke, Weng-Keong

    2011-08-01

    The present study investigated the protective actions of des-aspartate-angiotensin I (DAA-I) in mice that were intranasally administered 2-chloroethyl ethyl sulfide (CEES), a half sulfur mustard. The protection was dose-dependent, and an oral dose of 75 mg kg⁻¹ per day administered 18 h post exposure and for the following 13 days, offered maximum protection that increased survival by a third. DAA-I attenuated the early processes of inflammation seen in the CEES-inoculated mice. DAA-I attenuated (i) elevated pulmonary ROS, and gp91-phox protein of NADPH oxidase, a non phagocytic enzyme that generates superoxide and subsequent ROS; (ii) intercellular adhesion molecule-1 (ICAM⁻¹) that is involved in the extravasation of circulating leucocytes; and (iii) myeloperoxidase activity, which is a surrogate enzymatic measurement of neutrophil infiltration. These actions led to improved histological lung structures, and survival of type-1 pneumocytes. The action of DAA-I on animal survival was blocked by losartan, a selective angiotensin AT1 receptor blocker, indicting that the AT1 receptor mediates the protection. The presence of elevated PGE2 and PGI2 in lung supernatants of DAA-I treated CEES-inoculated mice indicates that the two prostaglandins are involved in signaling the protective actions of DAA-I. This finding complements earlier studies showing that DAA-I acts on an indomethacin-sensitive angiotensin AT1 receptor. The findings of the present study are the first demonstration of an angiotensin peptide as an effective antidote for CEES intoxication. DAA-I is also an effective therapeutic intervention against CEES that was instituted at 18 h post exposure, and challenges conventional assumptions of limited efficacy with delayed action against alkylating agents. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Differential role of ventral tegmental area acetylcholine and N-Methyl-D-Aspartate receptors in cocaine-seeking

    Science.gov (United States)

    Solecki, Wojciech; Wickham, Robert J.; Behrens, Shay; Wang, Jie; Zwerling, Blake; Mason, Graeme F.; Addy, Nii A.

    2013-01-01

    Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Cues evoke burst firing of ventral tegmental area (VTA) dopamine (DA) neurons and phasic DA release in the nucleus accumbens (NAc). Cholinergic and glutamatergic input to the VTA is suggested to gate phasic DA activity. However, the role of VTA cholinergic and glutamatergic receptors in regulating phasic dopamine release and cue-induced drug-seeking in cocaine experienced subjects is not known. In male Sprague-Dawley rats, we found that VTA inactivation strongly inhibited, while VTA stimulation promoted, cocaine-seeking behavior during early withdrawal. Blockade of phasic activated D1 receptors in the NAc core also strongly inhibited cue-induced cocaine-seeking - suggesting an important role of phasic DA activity in the VTA to NAc core circuit. Next, we examined the role of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) in regulating both NAc core phasic DA release and cue-induced cocaine-seeking. In cocaine naïve subjects, VTA infusion of the nicotinic acetylcholine receptor (AChR) antagonist mecamylamine, the muscarinic AChR antagonist scopolamine, or the NMDAR antagonist AP-5, led to robust attenuation of phasic DA release in the NAc core. During early cocaine withdrawal, VTA infusion of AP-5 had limited effects on NAc phasic DA release and cue-induced cocaine-seeking while VTA infusion of mecamylamine or scopolamine robustly inhibited both phasic DA release and cocaine-seeking. The results demonstrate that VTA AChRs, but not NMDARs, strongly regulate cue-induced cocaine-seeking and phasic DA release during early cocaine withdrawal. PMID:23850572

  17. Activation of thalamocortical networks by the N-methyl-D-aspartate receptor antagonist phencyclidine: reversal by clozapine.

    Science.gov (United States)

    Santana, Noemí; Troyano-Rodriguez, Eva; Mengod, Guadalupe; Celada, Pau; Artigas, Francesc

    2011-05-15

    Noncompetitive N-methyl-D-aspartate receptor antagonists are widely used as pharmacological models of schizophrenia. Their neurobiological actions are still poorly understood, although the prefrontal cortex (PFC) appears as a key target area. We examined the effect of phencyclidine (PCP) on neuronal activity of the mediodorsal (MD) and centromedial (CM) thalamic nuclei, reciprocally connected with the PFC, using extracellular recordings (n = 50 neurons from 35 Wistar rats) and c-fos expression. Phencyclidine (.25 mg/kg intravenous [IV]) markedly disorganized the activity of MD/CM neurons, increasing (424%) and decreasing (41%) the activity of 57% and 20% of the recorded neurons, respectively (23% remained unaffected). Phencyclidine reduced delta oscillations (.15-4 Hz) as assessed by recording local field potentials. The subsequent clozapine administration (1 mg/kg IV) reversed PCP effects on neuronal discharge and delta oscillations. Double in situ hybridization experiments revealed that PCP (10 mg/kg intraperitoneal [IP]) markedly increased c-fos expression in glutamatergic neurons of several cortical areas (prefrontal, somatosensory, retrosplenial, entorhinal) and in thalamic nuclei, including MD/CM. Phencyclidine also increased c-fos expression in the amygdala; yet, it had a small effect in the hippocampus. Phencyclidine did not increase c-fos expression in gamma-aminobutyric acidergic cells except in hippocampus, amygdala, somatosensory, and retrosplenial cortices. Clozapine (5 mg/kg IP) had no effect by itself but significantly prevented PCP-induced c-fos expression. Phencyclidine likely exerts its psychotomimetic action by increasing excitatory neurotransmission in thalamo-cortico-thalamic networks involving, among others, PFC, retrosplenial, and somatosensory cortices. The antipsychotic action of clozapine includes, among other actions, an attenuation of the neuronal hyperactivity in thalamocortical networks. Copyright © 2011 Society of Biological

  18. Kinetic characterization of the phencyclidine-N-methyl-D-aspartate receptor interaction: evidence for a steric blockade of the channel

    Energy Technology Data Exchange (ETDEWEB)

    Kloog, Y.; Haring, R.; Sokolovsky, M.

    1988-02-09

    The nature of the interactions between the N-methyl-D-aspartate (NMDA) and the phencyclidine (PCP) receptors was studied in membranes obtained from rat cerebral cortex and washed repeatedly to remove endogenous excitatory amino acids. Binding of (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) to its receptor sites in these membranes proceeded slowly and did not reach equilibrium even after incubation for 4 h at 25/sup 0/C. The dissociation rate of (/sup 3/H)TCP-receptor complexes was also slow. Both association and dissociation followed first-order reaction kinetics. Addition of glutamate and glycine to the washed membranes was immediately followed by a marked increase in the rates of both association of (/sup 3/H)TCP with the receptors and its dissociation from them. Association now followed second-order reaction kinetics. Accelerated association of (/sup 3/H)TCP with its binding sites could also be induced by NMDA or by glutamate alone, and glycine enhanced the effect. The binding data were fitted to a model in which interactions of (/sup 3/H)TCP with the receptor involve a two-step process: the outside ligand must cross a barrier (presumably a closed NMDA receptor channel in the absence of agonists). Once agonists are added, this limitation is removed. The excellent agreement between the kinetic and equilibrium binding parameters with the predictions of the model, as well as with previous electrophysiological data on the mode of noncompetitive blocking of the NMDA receptor channel by PCP-like drugs, suggests that these drugs are steric blockers of the channel and prefer its open state.

  19. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

    Science.gov (United States)

    Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang

    2017-07-01

    Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.

  20. Involvement of the Drosophila taurine/aspartate transporter dEAAT2 in selective olfactory and gustatory perceptions.

    Science.gov (United States)

    Besson, M T; Sinakevitch, I; Melon, C; Iché-Torres, M; Birman, S

    2011-10-01

    Excitatory amino acid transporters (EAATs) are membrane proteins involved in the uptake of neurotransmitter amino acids in the nervous system. The Drosophila dEAAT2 gene was previously described to encode a taurine/aspartate transporter. To analyze further the expression pattern and physiological function of this protein, we generated transgenic flies containing either the dEAAT2 promoter region fused to GAL4 (dEAAT2-GAL4) or a transgene allowing expression of a dEAAT2::GFP fusion protein (UAS-dEAAT2::GFP). We observed that dEAAT2-GAL4 expresses green fluorescent protein (GFP) in neurons in central and peripheral structures of third-instar larvae and adult flies. Labeled neurons were found in olfactory and gustatory pathways, in which dEAAT2::GFP was detected from the dendrites of the sensory neurons up to the first- and second-order centers. dEAAT2-GAL4 is also expressed in mechanosensory neurons. We found that a viable piggyBac insertion strain disrupts dEAAT2 expression. This mutant appears morphologically normal and presents no locomotor or phototaxis impairments; however, its brain taurine level is significantly reduced compared with that of wild-type flies. The dEAAT2 mutant showed decreased avoidance behavior in the presence of high concentration of propionic acid compared with wild-type flies, but no modification of the avoidance response to benzaldehyde. In gustatory tests, both mutant and control flies were normally attracted to sucrose; however, the dEAAT2 mutant presented a higher salt sensitivity, being repulsed by low and high salt concentrations. Therefore, we conclude that dEAAT2 does function as a taurine transporter in vivo and that this protein is physiologically required for the sensory perception of specific environmental molecules. Copyright © 2011 Wiley-Liss, Inc.

  1. Differential effects of TM4 tryptophan mutations on inhibition of N-methyl-d-aspartate receptors by ethanol and toluene.

    Science.gov (United States)

    Smothers, C Thetford; Woodward, John J

    2016-11-01

    The voluntary use and abuse of alcohol and inhalants is a recognized health problem throughout the world. Previous studies have shown that these agents affect brain function in a variety of ways including direct inhibition of key ion channels that regulate neuronal excitability. Among these, the N-methyl-d-aspartate (NMDA) receptor is particularly important given its key role in glutamatergic synaptic transmission, neuronal plasticity and learning and memory. Previous studies from this laboratory and others have identified key residues within transmembrane (TM) domains of the NMDA receptor that appear to regulate its sensitivity to alcohol and anesthetics. In this study, we extend these findings and examine the role of a TM4 residue in modulating sensitivity of recombinant NMDA receptors to ethanol and toluene. HEK293 cells were transfected with GluN1-1a and either wild-type or tryptophan-substituted GluN2(A-D) subunits and whole-cell currents were recorded using patch-clamp electrophysiology in the absence or presence of ethanol or toluene. Both ethanol (100 mM) and toluene (1 or 3 mM) reversibly inhibited glutamate-activated currents from wild-type NMDARs with GluN2B containing receptors showing heightened sensitivity to either agent. Substitution of tryptophan (W) at positions 825, 826, 823 or 850 in the TM4 domain of GluN2A, GluN2B, GluN2C or GluN2D subunits; respectively, significantly reduced the degree of inhibition by ethanol. In contrast, toluene inhibition of glutamate-activated currents in cells expressing the TM4-W mutants was not different from that of the wild-type controls. These data suggest that despite similarities in their action on NMDARs, ethanol and toluene may act at different sites to reduce ion flux through NMDA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Antagonist properties of Conus parius peptides on N-methyl-D-aspartate receptors and their effects on CREB signaling.

    Directory of Open Access Journals (Sweden)

    Shailaja Kunda

    Full Text Available Three members of a family of small neurotoxic peptides from the venom of Conus parius, conantokins (Con Pr1, Pr2, and Pr3, function as antagonists of N-methyl-D-aspartate receptors (NMDAR. We report structural characterizations of these synthetic peptides, and also demonstrate their antagonistic properties toward ion flow through NMDAR ion channels in primary neurons. ConPr1 and ConPr2 displayed moderate increases in α-helicity after addition of Mg(2+. Native apo-ConPr3 possessed an α-helical conformation, and the helicity increased only slightly on addition of Mg(2+. Additionally, these peptides diminished NMDA/Gly-mediated currents and intracellular Ca(2+ (iCa(2+ influx in mature rat primary hippocampal neurons. Electrophysiological data showed that these peptides displayed slower antagonistic properties toward the NMDAR than conantokins from other species of cone snails, e.g., ConT and ConG. Furthermore, to demonstrate selectivity of the C. parius-derived conantokins towards specific NMDAR subunits, cortical neurons from GluN2A(-/- and GluN2B(-/- mice were utilized. Robust inhibition of NMDAR-mediated stimulation in GluN2A(-/--derived mouse neurons, as compared to those isolated from GluN2B(-/--mouse brains, was observed, suggesting a greater selectivity of these antagonists towards the GluN2B subunit. These C. parius conantokins mildly inhibited NMDAR-induced phosphorylation of CREB at Ser(133, suggesting that the peptides modulated iCa(2+ entry and, thereby, activation of CREB, a transcription factor that is required for maintaining long-term synaptic activity. Our data mechanistically show that while these peptides effectively antagonize NMDAR-directed current and iCa(2+ influx, receptor-coupled CREB signaling is maintained. The consequence of sustained CREB signaling is improved neuronal plasticity and survival during neuropathologies.

  3. Antagonist properties of Conus parius peptides on N-methyl-D-aspartate receptors and their effects on CREB signaling.

    Science.gov (United States)

    Kunda, Shailaja; Cheriyan, John; Hur, Michael; Balsara, Rashna D; Castellino, Francis J

    2013-01-01

    Three members of a family of small neurotoxic peptides from the venom of Conus parius, conantokins (Con) Pr1, Pr2, and Pr3, function as antagonists of N-methyl-D-aspartate receptors (NMDAR). We report structural characterizations of these synthetic peptides, and also demonstrate their antagonistic properties toward ion flow through NMDAR ion channels in primary neurons. ConPr1 and ConPr2 displayed moderate increases in α-helicity after addition of Mg(2+). Native apo-ConPr3 possessed an α-helical conformation, and the helicity increased only slightly on addition of Mg(2+). Additionally, these peptides diminished NMDA/Gly-mediated currents and intracellular Ca(2+) (iCa(2+)) influx in mature rat primary hippocampal neurons. Electrophysiological data showed that these peptides displayed slower antagonistic properties toward the NMDAR than conantokins from other species of cone snails, e.g., ConT and ConG. Furthermore, to demonstrate selectivity of the C. parius-derived conantokins towards specific NMDAR subunits, cortical neurons from GluN2A(-/-) and GluN2B(-/-) mice were utilized. Robust inhibition of NMDAR-mediated stimulation in GluN2A(-/-)-derived mouse neurons, as compared to those isolated from GluN2B(-/-)-mouse brains, was observed, suggesting a greater selectivity of these antagonists towards the GluN2B subunit. These C. parius conantokins mildly inhibited NMDAR-induced phosphorylation of CREB at Ser(133), suggesting that the peptides modulated iCa(2+) entry and, thereby, activation of CREB, a transcription factor that is required for maintaining long-term synaptic activity. Our data mechanistically show that while these peptides effectively antagonize NMDAR-directed current and iCa(2+) influx, receptor-coupled CREB signaling is maintained. The consequence of sustained CREB signaling is improved neuronal plasticity and survival during neuropathologies.

  4. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  5. The efficacy of aspartate aminotransferase-toplatelet ratio index for assessing hepatic fibrosis in childhood nonalcoholic steatohepatitis for medical practice

    Directory of Open Access Journals (Sweden)

    Earl Kim

    2013-01-01

    Full Text Available Purpose: Childhood obesity is associated with nonalcoholic fatty liver disease (NAFLD, and it has become one of the most common causes of childhood chronic liver diseases which significant as a cause of liver related mortality and morbidity in children in the United States. The development of simpler and easier clinical indices for medical practice is needed to identify advanced hepatic fibrosis in childhood NAFLD instead of invasive method like liver biopsy. FibroScan and aspartate aminotransferase (AST-to-platelet ratio index (APRI have been proposed as a simple and noninvasive predictor to evaluate hepatic fibrosis in several liver diseases. APRI could be a good alternative to detect pathologic change in childhood NAFLD. The purpose of this study is to validate the efficacy of APRI for assessing hepatic fibrosis in childhood NAFLD based on FibroScan. Methods: This study included 23 children with NAFLD who underwent FibroScan. Clinical, laboratory and radiological evaluation including APRI was performed. To confirm the result of this study, 6 patients received liver biopsy. Results: Factors associated with hepatic fibrosis (stiffness measurement &gt;5.9 kPa Fibroscan were triglyceride, AST, alanine aminotransferase, platelet count, APRI and collagen IV. In multivariate analysis, APRI were correlated with hepatic fibrosis (&gt;5.9 kPa. In receiver operating characteristics curve, APRI of meaningful fibrosis (cutoff value, 0.4669; area under the receiver operating characteristics, 0.875 presented sensitivity of 94%, specificity of 66%, positive predictive value of 94%, and negative predictive value of 64%. Conclusion: APRI might be a noninvasive, simple, and readily available method for medical practice to predict hepatic fibrosis of childhood NAFLD.

  6. AST (Aspartate Aminotransferase) Test

    Science.gov (United States)

    ... different causes of liver damage and to distinguish liver injury from damage to heart or muscle. AST levels are often compared with results of other tests such as alkaline phosphatase (ALP) , total protein , and bilirubin to help determine ...

  7. Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: Role of conformation.

    Science.gov (United States)

    Barbier Saint Hilaire, Pierre; Warnet, Anna; Gimbert, Yves; Hohenester, Ulli Martin; Giorgi, Gianluca; Olivier, Marie-Françoise; Fenaille, François; Colsch, Benoît; Junot, Christophe; Tabet, Jean-Claude

    2017-03-15

    The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO2 as observed in the MS3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH3+CO2) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision energy

  8. Does aspartate 170 of the D1 polypeptide ligate the manganese cluster in photosystem II? An EPR and ESEEM Study.

    Science.gov (United States)

    Debus, Richard J; Aznar, Constantino; Campbell, Kristy A; Gregor, Wolfgang; Diner, Bruce A; Britt, R David

    2003-09-16

    Aspartate 170 of the D1 polypeptide provides part of the high-affinity binding site for the first Mn(II) ion that is photooxidized during the light-driven assembly of the (Mn)(4) cluster in photosystem II [Campbell, K. A., Force, D. A., Nixon, P. J., Dole, F., Diner, B. A., and Britt, R. D. (2000) J. Am. Chem. Soc. 122, 3754-3761]. However, despite a wealth of data on D1-Asp170 mutants accumulated over the past decade, there is no consensus about whether this residue ligates the assembled (Mn)(4) cluster. To address this issue, we have conducted an EPR and ESEEM (electron spin-echo envelope modulation) study of D1-D170H PSII particles purified from the cyanobacterium Synechocystis sp. PCC 6803. The line shapes of the S(1) and S(2) state multiline EPR signals of D1-D170H PSII particles are unchanged from those of wild-type PSII particles, and the signal amplitudes correlate approximately with the lower O(2) evolving activity of the mutant PSII particles (40-60% compared to that of the wild type). These data provide further evidence that the assembled (Mn)(4) clusters in D1-D170H cells function normally, even though the assembly of the (Mn)(4) cluster is inefficient in this mutant. In the two-pulse frequency domain ESEEM spectrum of the 9.2 GHz S(2) state multiline EPR signal of D1-D170H PSII particles, the histidyl nitrogen modulation observed at 4-5 MHz is unchanged from that of wild-type PSII particles and no significant new modulation is observed. Three scenarios are presented to explain this result. (1) D1-Asp170 ligates the assembled (Mn)(4) cluster, but the hyperfine couplings to the ligating histidyl nitrogen of D1-His170 are too large or anisotropic to be detected by ESEEM analyses conducted at 9.2 GHz. (2) D1-Asp170 ligates the assembled (Mn)(4) cluster, but D1-His170 does not. (3) D1-Asp170 does not ligate the assembled (Mn)(4) cluster.

  9. Right Dorsolateral Frontal Lobe N-Acetyl Aspartate and Myoinositol Concentration Estimation in Type 2 Diabetes with Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Nagothu, Rajani Santhakumari; Reddy, Yogananda Indla; Rajagopalan, Archana; Varma, Ravi

    2015-07-01

    Chronic hyperglycaemia in type 2 diabetes, effects the central nervous system by altering the concentrations of brain metabolites like N-acetyl aspartate (NAA) and myoinositol (mI), which are indicators of neuronal integrity and glial cell damage respectively. Dorsolateral frontal lobe is associated with aspects of cognition especially right frontal lobe is involved in episodic memory retrieval, ninety percent of the diabetic cases are type 2 in nature globally and yoga is very effective in stabilizing the brain metabolites by bringing the blood glucose levels to near or within the physiological range in type 2 diabetes. The aim of the study was to observe the effects of yogasana and pranayama on glycosilated haemoglobin (HbA1c) levels and right dorsolateral frontal cortical NAA and mI concentration in type 2 diabetic subjects. It's a case control study. Sixty eight type 2 diabetic subjects of both the sex, aged between 35-65 years are included in the study, subjects are divided in to test and control group 34 each. Test group subjects did the yogasana and pranayama for a period of 6 months, 6 days in a week, 45-60 minutes daily under the supervision of a qualified yoga teacher. Control group subjects are not on any specific exercise regimen. Both the group subjects are taking oral hypoglycaemic agents. HbA1c levels are measured using the Bio-Rad D-10™ haemoglobin A1c program and Magnetic Resonance Spectroscopy (MRS) is used in assessing the metabolite concentrations. Analysis of data was done by using unpaired t-test. P-value for HbA1c level is frontal lobe of control and test group are 1.44 ± 0.15 and 1.54 ± 0.19 respectively. The mI concentrations in the right dorsolateral frontal lobe of control and test group are 0.61 ± 0.22 and 0.47 ± 0.24 respectively. Yogasana and pranayama minimized the neuronal and glial cellular damage in test group, which is evident by minimal changes in right dorsolateral frontal lobe NAA and mI levels in type 2 diabetic subjects.

  10. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  11. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available ACE inhibitors and ARBs (angiotensin receptor blockers have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I, an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p. that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia, and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA

  12. An evaluation on the activity level of Aspartate aminotransferase and Alkaline phosphatase nzymes in peri-implant sulcus fluid

    Directory of Open Access Journals (Sweden)

    Paknegad M. Assistant Professor

    2003-07-01

    Full Text Available Statement of Problem: The correlation between the activity of aspartate aminotransferase (AST and alkaline phosphatase (ALP enzymes in gingival sulcular fluid (GCF with inflammation and periodontal attachment loss has been proved, however there are not adequate studies about dental implants. Purpose: The aim of present study was to investigate the presence and activity level of AST & ALP and their correlation with pocket depth (PD and bleeding of peri-implant slcular fluid (PISF, and to evaluate the possibility of using these assessments as a diagnostic index in oral implantology. Material and Methods: In this study, 41 implants as test group and 41 contralateral teeth as control group, in 21 patients were evaluated. At first visit, the general information about implants and the values of pocket probing depth (PPD, modified sulcus bleeding index (mSBl and modified plaque index (mPI were recorded. At the second visit, samples of GCF/PISF were collected. AST & ALP activity was determined spectrophotometrically and data were analyzed by "t", "Mann-Whitney" tests and Pearson Spearman correlation coefficient."nResults: The results showed that there was a significant difference in the activity of AST between two study groups (P<0.0001. The average activity of ALP in test group was more than control group but the difference was not significant. After elimination of the confounding variables, the average AST in test group was 54.6 (S£=2.3 and in control groups was 44.8 (SE=2.3 (P=0.004. The average ALP in test group (SE=2.2 and in control (SE=2.2 were 36.6 and 35.4, respectively. Values of AST and ALP were positively correlated with other clinical parameters such as PD and mSBI which was significant in test group."nConclusion: The present study suggests that PISF analysis could be considered as a proper diagnostic strategy in the evaluation of dental implant success.

  13. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  14. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis.

    Directory of Open Access Journals (Sweden)

    Sumant Puri

    Full Text Available Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1 phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA, a selective inhibitor of aspartic proteases (Saps. Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ or Sap8 (sap8Δ/Δ resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.

  15. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps

    Science.gov (United States)

    Zawrotniak, Marcin; Bochenska, Oliwia; Karkowska-Kuleta, Justyna; Seweryn-Ozog, Karolina; Aoki, Wataru; Ueda, Mitsuyoshi; Kozik, Andrzej; Rapala-Kozik, Maria

    2017-01-01

    Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans—an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the

  16. Effect of Terminalia Chebula (Haritaki on Serum Aspartate Aminotransferase, Alanine Aminotransferase in Paracetemol induced liver damage in Wister Albino Rats

    Directory of Open Access Journals (Sweden)

    Tania Yeasmin

    2015-06-01

    Full Text Available Background: Liver plays a major role in detoxification and excretion of many endogenous and exogenous compounds. Any injury may lead to severe liver damage and impairment of liver function. Harbal plants such as Terminalia chebula (Haritaki may have free radical scavenging activity thereby can be used for the prevention and treatment of liver damage. Objective: To observe the effect of Terminalia chebula on paracetamol induced changes of serum aspartate aminotransferase (AST and alanine aminotransferase (ALT in Wister albino rats. Methods: This experimental study was carried out in the Department of Physiology, Dhaka Medical College, Dhaka from January to December’ 2013. Total 44 rats with age 90 to 120 days, weighing between 150 to 200 gm were selected. After acclimatization for 14 days, they were divided into base line control (BC, n=11, paracetamol treated control (PC, n=11,Terminalia chebula pretreated and paracetamol treated (TCP-PCT n=11 and paracetamol pretreated and Terminalia chebula treated group (PCP-TCT, n=11. All groups received basal diet for 21 consecutive days. In addition to basal diet, rats of BC received propylene glycol (2ml/kg body weight, orally and PC received single dose of paracetamol suspension (750mg/kg body weight, orally on 21st day. Rats of TCP-PCT received Terminalia chebula extract (200 mg/kg body weight, orally for 21 consecutive days and paracetamol suspension (750mg/kg body weight, orally on 21st day. Again, rats of PCP-TCT received paracetamol suspension (750mg/kg body weight, orally on the 1st day and Terminalia chebula extract (200 mg/kg body weight orally for 21 consecutive days. All rats were sacrificed on 22nd day and then blood samples were collected. For assessment of liver function serum AST and ALT levels were estimated by using standard laboratory kits. The statistical analysis was done by one way ANOVA and post hoc Bonferroni test as applicable. Results: The mean serum AST and ALT levels were

  17. Small Interfering RNA Specific for N-Methyl-D-Aspartate Receptor 2B Offers Neuroprotection to Dopamine Neurons through Activation of MAP Kinase

    Directory of Open Access Journals (Sweden)

    Olivia T.W. Ng

    2012-02-01

    Full Text Available In the present study, N-methyl-D-aspartate receptor 2B (NR2B-specific siRNA was applied in parkinsonian models. Our previous results showed that reduction in expression of N-methyl-D-aspartate receptor 1 (NR1, the key subunit of N-methyl-D-aspartate receptors, by antisense oligos amelio-rated the motor symptoms in the 6-hydroxydopamine (6-OHDA-lesioned rat, an animal model of Parkinson's disease (PD [Lai et al.: Neurochem Int 2004;45:11-22]. To further the investigation on the efficacy of gene silencing, small interference RNA (siRNA specific for the NR2B subunit was designed and administered in the striatum of 6-OHDA-lesioned rats. The present results show that administration of NR2B-specific siRNA decreased the number of apomorphine-induced rotations in the lesioned rats and that there was a significant reduction in NR2B proteins levels after NR2B-specific siRNA administration. Furthermore, attenuation of the loss of dopaminergic neurons was found in both the striatal and substantia nigra regions of the 6-OHDA-lesioned rats that had been continuously infused with siRNA for 7 days. In addition, a significant upregulation of p-p44/42 MAPK (ERK1/2; Thr202/Tyr204 and p-CREB (Ser133 in striatal neurons was found. These results suggest that application of the gene silencing targeting NR2B could be a potential treatment of PD, and they also revealed the possibility of NR2B-specific siRNA being involved in the prosurvival pathway.

  18. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate.

    Science.gov (United States)

    Duszczyk-Budhathoki, Michalina; Olczak, Mieszko; Lehner, Malgorzata; Majewska, Maria Dorota

    2012-02-01

    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity.

  19. Aspartic protease inhibitory and nematocidal activity of phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (Percival dianhydroosazone

    Directory of Open Access Journals (Sweden)

    El Sayed H. El Ashry

    2014-04-01

    Full Text Available We synthesized Phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (compound 3. The structure compound 3 was elucidated with IR, 1H NMR, 13C NMR and EIMS spectra. Compound 3 showed potent inhibitory activity against aspartic proteases, human cathepsin D and Plasmodium falciparum plasmepsin-II with IC50 = 20 μM. Enzyme-inhibitor complexes were predicted to stabilize by electrostatic and hydrophobic interactions between the side chains of amino acid residues at the active center and compound 3. Moreover, compound 3 displayed good nematocidal activity against all developmental stages of C. elegans.

  20. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    Aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) was purified 2000-fold from pig kidney cortex. The essential step in the purification was chromatography on an immunoadsorbent column prepared from a rabbit antiserum raised against pig intestinal aminopeptidase A. Glutamyl and aspartyl...... revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... protein....

  1. Systems biology of synaptic plasticity: a review on N-methyl-D-aspartate receptor mediated biochemical pathways and related mathematical models.

    Science.gov (United States)

    He, Y; Kulasiri, D; Samarasinghe, S

    2014-08-01

    Synaptic plasticity, an emergent property of synaptic networks, has shown strong correlation to one of the essential functions of the brain, memory formation. Through understanding synaptic plasticity, we hope to discover the modulators and mechanisms that trigger memory formation. In this paper, we first review the well understood modulators and mechanisms underlying N-methyl-D-aspartate receptor dependent synaptic plasticity, a major form of synaptic plasticity in hippocampus, and then comment on the key mathematical modelling approaches available in the literature to understand synaptic plasticity as the integration of the established functionalities of synaptic components. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The carriage of the serine-aspartate repeat protein-encoding sdr genes among Staphylococcus aureus lineages

    Directory of Open Access Journals (Sweden)

    Huanle Liu

    2015-09-01

    Full Text Available The serine-aspartate repeat proteins (Sdr are members of a family of surface proteins and contribute to the pathogenicity of Staphylococcus aureus. Among 288 S. aureus isolates including 158 and 130 associated with skin and soft tissue infections and bloodstream infection, respectively; 275 (95.5% were positive for at least one of three sdr genes tested. The positivity rates for sdrC, sdrD, and sdrE among S. aureus isolates were 87.8% (253/288, 63.9% (184/288, and 68.1% (196/288, respectively. 224 (77.8% of 288 isolates were concomitantly positive for two or three sdr genes. There was an association between carriage of sdrE and methicillin-resistant S. aureus (MRSA isolates, while the carriage rates of sdrC and sdrD in MRSA isolates were similar to those in methicillin-sensitive S. aureus (MSSA isolates. The prevalence of co-existence of sdrC and sdrE among MRSA isolates was significantly higher than that among MSSA isolates (p < 0.05. All ST1, ST5, ST7, and ST25 isolates were positive for sdrD. While all ST121 and ST398 isolates were negative for sdrD. All ST59 and ST88 isolates were positive for sdrE. All ST1 isolates were concomitantly positive for sdrC and sdrD. Concomitant carriage of sdrC, sdrD, and sdrE was found among all ST5, 75.0% (9/12 of ST1, 69.2% (9/13 of ST6, 78.6% (11/14 of ST25, and 90.9% (20/22 of ST88 isolates. sdrD was linked to CC5, CC7 and CC88 isolates, especially CC88 isolates. There was a strong association between the presence of sdrE and CC59, CC88, and CC5 isolates. A significant correlation between concomitant carriage of sdrC, sdrD, and sdrE and CC88 isolates was found. sdrC-positive, sdrD-positive and sdrE-negative gene profile was significantly associated with CC7 clone. There was an association between sdrC-positive, sdrD-negative, and sdrE-positive gene profile and CC59 isolates. A correlation between sdrC-positive, sdrD-negative, and sdrE-negative gene profile and CC121 clone was found. More CC59 isolates

  3. Nanoparticle carriers based on copolymers of poly( l-aspartic acid co- l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Science.gov (United States)

    Han, Siyuan; Wang, Huan; Liang, Xingjie; Hu, Liming; Li, Min; Wu, Yan

    2011-09-01

    A novel poly( l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR (1H NMR, 13C NMR, 31P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly( l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  4. EXPERIENCE OF ORNITHINE ASPARTATE (HEPA-MERZ AND PROBIOTICS BIOFLORUM FORTE IN THE TREATMENT OF NON-SEVERE FORMS OF ALCOHOLIC AND NON-ALCOHOLIC FATTY LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    L. Yu. Ilchenko

    2016-01-01

    Full Text Available Aim: to evaluate the efficacy and tolerability of ornithine aspartate, probiotic Bioflorum Forte and their combination with steatosis and steatohepatitis in patients  with alcohol and non-alcoholic  fatty  liver disease. Materials and methods.  An open, randomized,  comparative  clinical study, which included 30 outpatients and inpatients with a diagnosis of steatosis, steatohepatitis. We analyzed the clinical symptoms, functional state of the liver. With the help of questionnaires  (Grids LeGo and post intoxication alcohol syndrome have established the presence of chronic alcohol intoxication. Test transmissions of numbers used to characterize the cognitive function, as well as detection  of minimal hepatic encephalopathy. Quality of life was assessed by questionnaire for patients with chronic liver disease — CLDQ (The chronic liver disease questionnaire. The duration of treatment was4 weeks. Results: all three treatment regimens have demonstrated therapeutic  efficacy: clinical improvement, recovery of liver function and results in cognitive function. When combined therapy also produced a significant improvement  in patients’ quality of life. It is shown that  the safety and tolerability of the means employed, adverse events were not reported. Conclusion: the results obtained allow us to recommend the use of ornithine aspartate (Hepa-Merz, both as monotherapy and as part of complex therapy of steatosis,  steatohepatitis with probiotic Bioflorum Forte in patients with alcoholic and non-alcoholic fatty liver disease.

  5. Biochemical and milk-clotting properties and mapping of catalytic subsites of an extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    da Silva, Ronivaldo Rodrigues; de Oliveira, Lilian Caroline Gonçalves; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rosa, Jose C; Cabral, Hamilton

    2017-06-15

    For a long time, proteolytic enzymes have been employed as key tools of industrial processes, especially in the dairy industry. In the present work, we used Phanerochaete chrysosporium for biochemical characterization and analysis of catalytic specificity of an aspartic peptidase. Our results revealed an aspartic peptidase with molecular mass ∼38kDa, maximal activity at pH 4.5 and 50°C, and stability above 80% in the pH range of 3-8 and temperature up to 55°C for 1h. In a milk-clotting assay, this peptidase showed maximal milk clotting activity at 60-65°C and maintenance of enzymatic activity above 80% in the presence of 20mM CaCl2. In a specificity assay, we observed stronger restriction of catalysis at the S1 subsite, with a preference for lysine, arginine, leucine, tyrosine, and phenylalanine residues. The restricted proteolysis and milk-clotting potential are attractive properties for the use in cheese production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Initiating or Switching to Biphasic Insulin Aspart 30/70 Therapy in Subjects with Type 2 Diabetes Mellitus. An Observational Study

    DEFF Research Database (Denmark)

    Breum, Leif; Almdal, Thomas; Eiken, Pia

    2008-01-01

    OBJECTIVE: To investigate tolerability and glycemic control over 26 weeks in patients with type 2 diabetes (T2D) who initiated insulin with, or switched to, biphasic insulin aspart 30/70 (BIAsp 30) in routine clinical care. METHODS: This was a non-randomized, non-interventional, open-label, obser......OBJECTIVE: To investigate tolerability and glycemic control over 26 weeks in patients with type 2 diabetes (T2D) who initiated insulin with, or switched to, biphasic insulin aspart 30/70 (BIAsp 30) in routine clinical care. METHODS: This was a non-randomized, non-interventional, open......-label, observational study involving patients under the care of approximately 150 insulin-prescribing physicians in Denmark. All patients enrolled were prescribed BIAsp 30 in routine care. Starting dose, dose titration and injection frequency were determined individually by each physician. Information on serious...... adverse drug reactions (SADR), glycemic parameters and hypoglycemic events were obtained from patients' notes, patients' diaries and recall, and transferred to case report forms by physicians at baseline (during 4 weeks prior to BIAsp 30 therapy) and after 12 and 26 weeks of treatment. RESULTS: 421...

  7. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.

    Science.gov (United States)

    Wong, Chi Chun; Qian, Yun; Li, Xiaona; Xu, Jiaying; Kang, Wei; Tong, Joanna H; To, Ka-Fai; Jin, Ye; Li, Weilin; Chen, Huarong; Go, Minnie Y Y; Wu, Jian-Lin; Cheng, Ka Wing; Ng, Simon S M; Sung, Joseph J Y; Cai, Zongwei; Yu, Jun

    2016-11-01

    Many colorectal cancer (CRC) cells contain mutations in KRAS. Analyses of CRC cells with mutations in APC or CTNNB1 and KRAS identified SLC25A22, which encodes mitochondrial glutamate transporter, as a synthetic lethal gene. We investigated the functions of SLC25A22 in CRC cells with mutations in KRAS. We measured levels of SLC25A22 messenger RNA and protein in paired tumor and nontumor colon tissues collected from 130 patients in Hong Kong and 17 patients in China and compared protein levels with patient survival times. Expression of SLC25A22 was knocked down in KRAS mutant CRC cell lines (DLD1, HCT116, LOVO, SW480, SW620, and SW1116) and CRC cell lines without mutations in KRAS (CACO-2, COLO205, HT29, and SW48); cells were analyzed for colony formation, proliferation, glutaminolysis and aspartate synthesis, and apoptosis in Matrigel and polymerase chain reaction array analyses. DLD1 and HCT116 cells with SLC25A22 knockdown were grown as xenograft tumors in nude mice; tumor growth and metastasis were measured. SLC25A22 was expressed ectopically in HCT116 cells, which were analyzed in vitro and grown as xenograft tumors in nude mice. Levels of SLC25A22 messenger RNA and protein were increased in colorectal tumor tissues compared with matched nontumor colon tissues; increased protein levels were associated with shorter survival times of patients (P = .01). Knockdown of SLC25A22 in KRAS mutant CRC cells reduced their proliferation, migration, and invasion in vitro, and tumor formation and metastasis in mice, compared with cells without SLC25A22 knockdown. Knockdown of SLC25A22 reduced aspartate biosynthesis, leading to apoptosis, decreased cell proliferation in KRAS mutant CRC cells. Incubation of KRAS mutant CRC cells with knockdown of SLC25A22 with aspartate increased proliferation and reduced apoptosis, which required GOT1, indicating that oxaloacetate is required for cell survival. Decreased levels of oxaloacetate in cells with knockdown of SLC25A22 reduced

  8. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.

    Science.gov (United States)

    Linh, Nguyen Tb; Paul, Kallyanashis; Kim, Boram; Lee, Byong-Taek

    2016-11-01

    A functionally modified peptide-conjugated hydrogel system was fabricated with oxidized alginate/gelatin loaded with biphasic calcium phosphate to improve its biocompatibility and functionality. Sodium alginate was treated by controlled oxidation to transform the cis-diol group into an aldehyde group in a controlled manner, which was then conjugated to the amine terminus of glycine-arginine-glycine-aspartic. Oxidized alginate glycine-arginine-glycine-aspartic was then combined with gelatin-loaded biphasic calcium phosphate to form a hydrogel of composite oxidized alginate/gelatin/biphasic calcium phosphate that displayed enhanced human adipose stem cell adhesion, spreading and differentiation. 1H nuclear magnetic resonance and electron spectroscopy for chemical analysis confirmed that the glycine-arginine-glycine-aspartic was successfully grafted to the oxidized alginate. Co-delivery of glycine-arginine-glycine-aspartic and human adipose stem cell in a hydrogel matrix was studied with the results indicating that hydrogel incorporated modified with glycine-arginine-glycine-aspartic and seeded with human adipose stem cell enhanced osteogenesis in vitro and bone formation in vivo. © The Author(s) 2016.

  9. The antagonizing effect of aspartic acid on morphine withdrawal and levallorphan-precipitated abstinence syndrome signs and on associated changes in brain levels of free amino acids in the rat.

    Science.gov (United States)

    Koyuncuoğlu, H; Güngör, M; Eroğlu, L; Sağduyu, H

    1979-03-29

    We have previously demonstrated the antagonizing effect of aspartic acid on some effects of morphine and on the development of physical dependence on, and tolerance to, morphine. In the present study, we have withdrawal from morphine or administration of a morphine antagonist. For this purpose sixty five white rats were given morphine and aspartic acid separately and in combination in a 5% saccharose solution instead of drinking water for 30 days. Some of the dependent rats were then withdrawn and others were injected with levallorphan. Flying, jumping, wet-dog shaking, body weight loss and motor activity were estimated and free amino acid levels in the brain were determined. Aspartic acid was found to prevent or antagonize the behavioural signs and the changes in the free amino acid levels in the brain. The results are discussed in the light of the previous data.

  10. The effects of d-aspartic acid supplementation in resistance-trained men over a three month training period: A randomised controlled trial.

    Directory of Open Access Journals (Sweden)

    Geoffrey W Melville

    Full Text Available Research on d-aspartic acid (DAA has demonstrated increases in total testosterone levels in untrained men, however research in resistance-trained men demonstrated no changes, and reductions in testosterone levels. The long-term consequences of DAA in a resistance trained population are currently unknown.To evaluate the effectiveness of DAA to alter basal testosterone levels over 3 months of resistance training in resistance-trained men.Randomised, double-blind, placebo controlled trial in healthy resistance-trained men, aged 18-36, had been performing regular resistance training exercise for at least 3 d.w-1 for the previous 2 years. Randomised participants were 22 men (d-aspartic acid n = 11; placebo n = 11 (age, 23.8±4.9 y, training age, 3.2±1.5 y.D-aspartic acid (6 g.d-1, DAA versus equal-weight, visually-matched placebo (PLA. All participants performed 12 weeks of supervised, periodised resistance training (4 d.w-1, with a program focusing on all muscle groups.Basal hormones, total testosterone (TT, free testosterone (FT, estradiol (E2, sex-hormone-binding globulin (SHBG and albumin (ALB; isometric strength; calf muscle cross-sectional area (CSA; calf muscle thickness; quadriceps muscle CSA; quadriceps muscle thickness; evoked V-wave and H-reflexes, were assessed at weeks zero (T1, after six weeks (T2 and after 12 weeks (T3.No change in basal TT or FT were observed after the intervention. DAA supplementation (n = 10 led to a 16%, 95% CI [-27%, -5%] reduction in E2 from T1-T3 (p<0.01. The placebo group (n = 9 demonstrated improvements in spinal responsiveness (gastrocnemius at the level of the alpha motoneuron. Both groups exhibited increases in isometric strength of the plantar flexors by 17%, 95% CI [7%, 28%] (p<0.05 as well as similar increases in hypertrophy in the quadriceps and calf muscles.The results of this paper indicate that DAA supplementation is ineffective at changing testosterone levels, or positively affecting training

  11. N-methyl D-aspartate receptor synaptonuclear signaling and neuronal migration factor (Nsmf) plays a novel role in myoblast proliferation.

    Science.gov (United States)

    Moon, Hyo Youl

    2015-01-01

    Myogenesis, the formation and regeneration of muscular tissue, is a fundamental factor in embryonic development. N-methyl D-aspartate (NMDA) receptor synaptonuclear signaling and neuronal migration factor (Nsmf) mediates NMDA receptor endocytosis in GnRH neuronal cells. NMDA receptor is involved in myoblast differentiation by regulating Ca2 (+) dependent fusion of myocytes. In this study, we investigated the role of Nsmf in myoblast proliferation and differentiation. Quantitative-PCR, immunoblotting, and immunohistochemistry results showed that the Nsmf expression levels increased during both the differentiation and proliferation of myocytes. Knockdown of Nsmf in myocytes by siRNA did not affect the myocyte differentiation marker myogenin. However, flow cytometry showed that the proliferation rate of the Nsmf-knockdown cells was reduced compared to the control cells. Therefore, our results indicate that Nsmf is a novel myogenic factor that can enhance myoblast proliferation. Furthermore, Nsmf may be an important therapeutic target in diseases associated with aging, muscular dystrophy, or cachexia.

  12. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    Science.gov (United States)

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  13. Construction and expression of aspartic protease from Onchocerca volvulus* as ompA fusion protein in a mutant strain of Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Jolodar Abbas

    2002-01-01

    Full Text Available Two constructions in pHS164 vector were designed to permit expression of OV7A and OV4A inserts encoding the N-terminal and C-terminal portion of an aspartic protease from Onchocerca volvulus, respectively. A novel 39 kD protein ompA-OV7A fusion protein was stably expressed as ompA fusion in a modified strain of Salmonella typhimurium strain SL5000 and E.coli strain JM109. Expression of the fusion protein in bacterial strains harboring the constructs were evaluated by western blotting. E.coli and Salmonella lysates were fractionated by 10% SDS-PAGE gel and then immobilized to nitrocellulose membrane by electroblotting. Primary polyclonal antibody generated in rats against the GST-OV7A fusion protein was used in the Western blots. It remains to be seen whether the fusion protein expressed in vivo will promote effective immune response.

  14. Evaluation of intraosseous sampling for measurements of alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, creatinine kinase, gamma-glutamyl transferase and lactate dehydrogenase.

    Science.gov (United States)

    Eriksson, Mats; Strandberg, Gunnar; Lipcsey, Miklós; Larsson, Anders

    2016-12-01

    Intraosseous (IO) access can be established faster than a venous or arterial access when there is an urgent need for rapid initiation of treatment. The access can also be used to draw marrow samples. The aim of the present study was to evaluate the potential use of IO samples for enzyme determinations using a porcine model. Bilateral tibial intraosseous cannulae and an arterial catheter were used for blood sampling from five healthy anesthetized pigs. Samples were collected at baseline and thereafter hourly for 6 h and analyzed for alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase, creatinine kinase, gamma-glutamyl transferase and lactate dehydrogenase. Creatinine kinase, lactate dehydrogenase and alkaline phosphatase levels decreased over time. The differences between IO and arterial sampling were limited for all studied markers. The correlation between marrow and blood analysis for liver function tests and CK is sufficiently accurate in an emergency situation.

  15. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    Energy Technology Data Exchange (ETDEWEB)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.; Fischer, J.B.; Hamilton, P.N.; Smith, S.M.; Server, A.C.; Finkbeiner, S.; Stevens, C.F.; Jahr, C.; Weber, E. (Univ. of Oregon, Eugene (USA))

    1989-07-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, {sup 3}H-labeled 1-(1-(2-thienyl)cyclohexyl)piperidine and (+)-({sup 3}H)MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the development of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack.

  16. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    Evidence suggests that N-methyl-D-aspartate receptor (NMDAR) antagonists could be efficacious in treating depression and anxiety, but side effects constitute a challenge. This study evaluated the antidepressant-like and anxiolytic-like actions, and cognitive and motor side effects of four NMDAR...... antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty...

  17. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors.

    Science.gov (United States)

    Calugi, Chiara; Guarna, Antonio; Trabocchi, Andrea

    2013-10-01

    The analysis of the structural similarity between Candida albicans Sap2 and HIV-1 aspartic proteases by molecular modeling gave insight into the common requirements for inhibition of both targets. Structure superimposition of Sap2 and HIV-1 protease confirmed the similarity between their active sites and flap regions. HIV-1 protease inhibitors herein investigated can fit the active site of Sap2, adopting very similar ligand-backbone conformations. In particular, key anchoring sites consisting of Gly85 in Sap2 and Ile50 in HIV-1 protease, both belonging to their corresponding flap regions, were found as elements of a similar binding-mode interaction. The knowledge of the molecular basis for binding to both Sap2 and HIV-1 proteases may ultimately lead to the development of single inhibitor acting on both targets.

  18. {sup 68}Gallium-arginine-glycine-aspartic acid and {sup 18}F-fluorodeoxyglucose position emission tomography/computed tomography in chondroblastic osteosarcoma of the skull

    Energy Technology Data Exchange (ETDEWEB)

    Orunmuyi, Akintunde; Modiselle, Moshe; Lengana, Thabo; Ebenhan, Thomas; Vorster, Mariza; Sathekge, Mike [Dept. of Nuclear MedicineUniversity of Pretoria and Steve Biko Academic Hospital, Pretoria (South Africa)

    2017-09-15

    We report the case of a 32 year-old male with Chondroblastic Osteosarcoma of the skull, which was imaged with both {sup 18}[F]fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography/computed tomography (PET/CT) and {sup 68}Gallium-arginine-glycine-aspartic acid ({sup 68}Ga-RGD) PET/CT. The {sup 18}F-FDG PET/CT did not demonstrate the tumour, whereas the {sup 68}Ga-RGD PET/CT clearly depicted a left-sided frontal tumour. {sup 68}Ga-RGD PET/CT may be a clinically useful imaging modality for early detection of recurrent osteosarcoma, considering the limitations of {sup 18}F-FDG PET in a setting of low glycolytic activity.

  19. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Effects of Mealtime Insulin Aspart and Bedtime NPH Insulin on Postprandial Inflammation and Endothelial Cell Function in Patients with Type 2 Diabetes

    DEFF Research Database (Denmark)

    Bladbjerg, Else-Marie; Henriksen, Jan Erik; Akram, Sumarra

    2011-01-01

    collected at 7.40 (fasting), 9.30, 11.30, 13.30 and 15.30 and analysed for glucose, insulin, lipids, intercellular adhesion molecules (ICAM), C-reactive protein (CRP), von Willebrand factor (vWF) and fibrinogen. The postprandial glucose response differed significantly between insulin regimens......WF and fibrinogen. The rapid-acting insulin analogue aspart and the intermediate-acting insulin NPH had different effects on postprandial glucose response but similar postprandial effects on markers of inflammation and endothelial dysfunction.......  Acute hyperglycaemia exerts deleterious effects on the arterial wall. We suggested that rapid-acting insulin has a beneficial postprandial effect on endothelial dysfunction and inflammation compared with intermediate-acting insulin because of its ability to lower postprandial hyperglycaemia...

  1. Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor.

    Science.gov (United States)

    Klein, Pieter J; Chomet, Marion; Metaxas, Athanasios; Christiaans, Johannes A M; Kooijman, Esther; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2016-08-08

    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Maximising metal ions flux across a microdialysis membrane by incorporating poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline and ethylenediaminetetraacetic acid in the perfusion liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mogopodi, Dikabo [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana); Torto, Nelson [University of Botswana, Department of Chemistry, Private Bag UB 00704, Gaborone (Botswana)]. E-mail: torton@mopipi.ub.bw

    2005-04-08

    This paper presents a study of quiescent microdialysis sampling of Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+} and Pb{sup 2+} involving the incorporation of poly-L-aspartic acid, poly-L-histidine, 8-hydroxyquinoline (8-HQ) and ethylenediaminetetraacetic acid (EDTA), in the perfusion liquid as an approach to maximise metal analyte flux across the microdialysis membrane. These chelating agents were individually optimised with respect to microdialysis recovery and subsequently combined in the perfusion liquid. A combination of 20% (w/v) poly-L-histidine, 0.032% (w/v) poly-L-aspartic acid and 1 mM 8-HQ achieved microdialysis recovery up to 90%. Since 1 mM EDTA achieved recoveries greater than 80% for all metals understudy, EDTA was not combined with any of the chelating agents. Under the optimal conditions of maximum metal ion flux across the microdialysis membrane, metal ions from natural and wastewater were sampled and analysed with an electrothermal atomic absorption spectrometer equipped with a Zeeman background corrector. Results showed higher concentrations of detected metal ions after microdialysis sampling compared to direct detection without sample clean-up. Incorporation of chelating agents in the microdialysis perfusion liquid enhanced metal ions recovery in real samples and achieved enrichment factors of up to 42. The study demonstrated that combining chelating agents is a good approach towards maximising metal flux across the dialysis membrane. Given that recoveries between 80 and 90% were achieved under quiescent microdialysis sampling conditions, these findings are an important development for in vivo diagnostic sampling of metal ions.

  3. Mechanism of adenylate kinase. Demonstration of a functional relationship between aspartate 93 and Mg2+ by site-directed mutagenesis and proton, phosphorus-31, and magnesium-25 NMR.

    Science.gov (United States)

    Yan, H G; Tsai, M D

    1991-06-04

    Earlier magnetic resonance studies suggested no direct interaction between Mg2+ ions and adenylate kinase (AK) in the AK.MgATP (adenosine 5'-triphosphate) complex. However, recent NMR studies concluded that the carboxylate of aspartate 119 accepts a hydrogen bond from a water ligand of the bound Mg2+ ion in the muscle AK.MgATP complex [Fry, D.C., Kuby, S.A., & Mildvan, A.S. (1985) Biochemistry 24, 4680-4694]. On the other hand, in the 2.6-A crystal structure of the yeast AK.MgAP5A [P1,P5-bis(5'-adenosyl)pentaphosphate] complex, the Mg2+ ion is in proximity to aspartate 93 [Egner, U., Tomasselli, A.G., & Schulz, G.E. (1987) J. Mol. Biol. 195, 649-658]. Substitution of Asp-93 with alanine resulted in no change in dissociation constants, 4-fold increases in Km, and a 650-fold decrease in kcat. Notable changes have been observed in the chemical shifts of the aromatic protons of histidine 36 and a few other aromatic residues. However, the results of detailed analyses of the free enzymes and the AK.MgAP5A complexes by one- and two-dimensional NMR suggested that the changes are due to localized perturbations. Thus it is concluded that Asp-93 stabilizes the transition state by ca. 3.9 kcal/mol. The next question is how. Since proton NMR results indicated that binding of Mg2+ to the AK.AP5A complex induces some changes in the proton NMR signals of WT but not those of D93A, the functional role of Asp-93 should be in binding to Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Mnemonic Discrimination Deficits in First-Episode Psychosis and a Ketamine Model Suggests Dentate Gyrus Pathology Linked to N-Methyl-D-Aspartate Receptor Hypofunction.

    Science.gov (United States)

    Kraguljac, Nina Vanessa; Carle, Matthew; Frölich, Michael A; Tran, Steve; Yassa, Michael A; White, David Matthew; Reddy, Abhishek; Lahti, Adrienne Carol

    2018-03-01

    Converging evidence from neuroimaging and postmortem studies suggests that hippocampal subfields are differentially affected in schizophrenia. Recent studies report dentate gyrus dysfunction in chronic schizophrenia, but the underlying mechanisms remain to be elucidated. Here we sought to examine if this deficit is already present in first-episode psychosis, and if N-methyl-D-aspartate receptor hypofunction, a putative central pathophysiological mechanism in schizophrenia, experimentally induced by ketamine, would result in a similar abnormality. We applied a mnemonic discrimination task selectively taxing pattern separation in two experiments: 1) a group of 23 first-episode psychosis patients and 23 matched healthy volunteers and 2) a group of 19 healthy volunteers before and during a ketamine challenge (0.27 mg/kg over 10 minutes, then 0.25 mg/kg/hour for 50 minutes, 0.01 mL/s). We calculated response bias-corrected pattern separation and recognition scores. We also examined the relationships between task performance and symptom severity as well as ketamine levels. We report a deficit in pattern separation but not recognition performance in first-episode psychosis patients compared with healthy volunteers (p = .04) and in volunteers during the ketamine challenge compared with baseline (p = .003). Exploratory analyses revealed no correlation between task performance and Repeatable Battery for the Assessment of Neuropsychological Status total scores or positive symptoms in first-episode psychosis patients, or with ketamine serum levels. We observed a mnemonic discrimination deficit but intact recognition in both datasets. Our findings suggest a tentative mechanistic link between dentate gyrus dysfunction in first-episode psychosis and N-methyl-D-aspartate receptor hypofunction. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Essential roles of aspartate aminotransferase 1 and vesicular glutamate transporters in β-cell glutamate signaling for incretin-induced insulin secretion.

    Directory of Open Access Journals (Sweden)

    Naoya Murao

    Full Text Available Incretins (GLP-1 and GIP potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS that requires two critical processes: 1 generation of cytosolic glutamate through the malate-aspartate (MA shuttle in glucose metabolism and 2 glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1, a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively, which participate in glutamate transport into secretory vesicles. Got1 knockout (KO β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.

  6. Functional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains.

    Science.gov (United States)

    Ren, Hong; Salous, Abdelghaffar K; Paul, Jaclyn M; Lamb, Kaitlin A; Dwyer, Donard S; Peoples, Robert W

    2008-03-28

    The N-methyl-D-aspartate receptor is an important mediator of the behavioral effects of ethanol in the central nervous system. Previous studies have demonstrated sites in the third and fourth membrane-associated (M) domains of the N-methyl-D-aspartate receptor NR2A subunit that influence alcohol sensitivity and ion channel gating. We investigated whether two of these sites, Phe-637 in M3 and Met-823 in M4, interactively regulate the ethanol sensitivity of the receptor by testing dual substitution mutants at these positions. A majority of the mutations decreased steady-state glutamate EC(50) values and maximal steady-state to peak current ratios (I(ss)/I(p)), whereas only two mutations altered peak glutamate EC(50) values. Steady-state glutamate EC(50) values were correlated with maximal glutamate I(ss)/I(p) values, suggesting that changes in glutamate potency were attributable to changes in desensitization. In addition, there was a significant interaction between the substituents at positions 637 and 823 with respect to glutamate potency and desensitization. IC(50) values for ethanol among the mutants varied over the approximate range 100-325 mm. The sites in M3 and M4 significantly interacted in regulating ethanol sensitivity, although this was apparently dependent upon the presence of methionine in position 823. Molecular dynamics simulations of the NR2A subunit revealed possible binding sites for ethanol near both positions in the M domains. Consistent with this finding, the sum of the molecular volumes of the substituents at the two positions was not correlated with ethanol IC(50) values. Thus, there is a functional interaction between Phe-637 and Met-823 with respect to glutamate potency, desensitization, and ethanol sensitivity, but the two positions do not appear to form a unitary site of alcohol action.

  7. Cost comparison of insulin glargine with insulin detemir in a basal-bolus regime with mealtime insulin aspart in type 2 diabetes in Germany

    Directory of Open Access Journals (Sweden)

    Dippel, Franz-Werner

    2010-01-01

    Full Text Available Objective: To compare the treatment costs of insulin glargine (IG; Lantus® to detemir (ID; Levemir®, both combined with bolus insulin aspart (NovoRapid® in type 2 diabetes (T2D in Germany. Methods: Cost comparison was based on data of a 1-year randomised controlled trial [1]. IG was administered once daily and ID once (57% of patients or twice daily (43% according to treatment response. At the end of the trial, mean daily basal insulin doses were 0.59 U/kg (IG and 0.82 U/kg (ID. Aspart doses were 0.32 U/kg (IG and 0.36 U/kg (ID. Costs were calculated from the German statutory health insurance (SHI perspective using official 2008 prices. Sensitivity analyses were performed to test robustness of the results. Results: Annual basal and bolus insulin costs per patient were € 1,473 (IG and € 1,940 (ID. The cost of lancets and blood glucose test strips were € 1,125 (IG and € 1,286 (ID. Annual costs for needles were € 393 (IG and € 449 (ID. The total annual cost per patient of administering IG was € 2,991 compared with € 3,675 for ID, translating into a 19% annual cost difference of € 684/patient. Base case results were robust to varying assumptions for insulin dose, insulin price, change in weight and proportion of ID once daily administrations. Conclusion: IG and ID basal-bolus regimes have comparative safety and efficacy, based on the Hollander study, IG however may represent a significantly more cost saving option for T2D patients in Germany requiring basal-bolus insulin analogue therapy with potential annual cost savings of € 684/patient compared to ID.

  8. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji

    2011-11-01

    For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Application of poly(aspartic acid-citric acid copolymer compound inhibitor as an effective and environmental agent against calcium phosphate in cooling water systems

    Directory of Open Access Journals (Sweden)

    Yu-ling Zhang

    2016-12-01

    Full Text Available Poly(aspartic acid-citric acid copolymer (PAC is a new product of poly(carboxylic acid scale inhibitor. The study aims to develop a “green” water treatment agent for calcium phosphate scale. The article compares the efficiency of three polymeric antiscalants, poly(aspartic acid-citric acid copolymer (PAC, polymaleic acid (HPMA and a compound inhibitor (PAC-HPMA, for calcium phosphate scale prevention under varying experimental conditions. Inhibitor concentration, calcium concentration, system pH, temperature and experimental time were varied to determine their influences on inhibitor performance by the static scale inhibition method. The copolymer (PAC was characterized by FTIR, 1H NMR and 13C NMR. The compound inhibitor was applied in the actual circulating cooling water system. An atomic force microscope (AFM, X-ray powder diffraction (XRD and a scale formation process analysis were used to explore the scale inhibition mechanism. The results showed that scale inhibition rates of PAC, HPMA and PAC-HPMA against Ca3(PO42 were, respectively, about 23%, 41.5% and 63% when the dosage was 8 mg/L in the experiment. The compound inhibitor showed the better inhibition performance than the above two kinds of monomers. Under the actual working conditions, the inhibition rate of compound inhibitor was close to 100% and completely met the actual application requirements of scale inhibitor in circulating cooling water systems. The main inhibition mechanism was the decomposition-chelation dispersion effect. The compound inhibitor can be used as an efficient “green” scale inhibitor for calcium phosphate.

  10. Phorbol 12-myristate 13-acetate potentiation of N-methyl-D-aspartate-induced currents in primary cultured cerebellar granule cells is mediated by protein kinase C alpha.

    Science.gov (United States)

    Reneau, Jason C; Reyland, Mary E; Phillips, Jonathan; Kindy, Carissa; Popp, R Lisa

    2009-08-01

    We have previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) results in potentiation of N-methyl-D-aspartate-induced currents (I(NMDA))of receptors contained in primary cultured cerebellar granule cells (CGCs). The purpose of this study was to identify which PKC isoform(s) was responsible for this effect by using the whole-cell patch-clamp technique. Experiments were conducted on CGCs that expressed both the NR2A and NR2B NMDA receptor subunits as well as the PMA-sensitive PKC isoforms alpha, betaI, betaII, delta, epsilon, gamma, and . As observed previously, N-methyl-D-aspartate-induced peak currents (I(Pk)) were enhanced by a 12.5-min, 100 nM PMA exposure at 37 degrees C under normal recording conditions. Potentiation of receptor function was not observed when extracellular Ca(2+) was removed and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid was present inside the cell. PMA-induced potentiation of I(Pk) did not occur when PKCalpha-specific antibody was introduced into the cell via the recording electrode. However, in similar experiments with antibodies specific for PKCbetaII, delta, epsilon, gamma, and , PMA potentiation of I(Pk) was observed. Down-regulation of PMA-sensitive PKC isoforms by an overnight exposure of 100 nM PMA resulted in lack of potentiation by PMA that was rescued when catalytically active PKCalpha was introduced into the cell via the patch electrode. PMA potentiation of I(Pk) was not recovered when catalytically active PKCbetaI, PKCbetaII, or PKCgamma was introduced into the cell via the patch electrode. Collectively, our data provide strong evidence that PMA-enhanced function of native NMDA receptors expressed in primary cultured CGCs is mediated by activation of PKCalpha.

  11. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons.

    Science.gov (United States)

    Llorente-Folch, Irene; Rueda, Carlos B; Amigo, Ignacio; del Arco, Araceli; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina

    2013-08-28

    Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol). Respiration in nonstimulated neurons on 2.5-5 mm glucose depends on ARALAR-malate aspartate shuttle (MAS), with a 46% drop in aralar KO neurons. All stimulation conditions induced increased OCR (oxygen consumption rate) in the presence of Ca2+, which was prevented by BAPTA-AM loading (to preserve the workload), or in Ca2+-free medium (which also lowers cell workload). SCaMC-3 limits respiration only in response to high workloads and robust Ca2+ signals. In every condition tested Ca2+ activation of ARALAR-MAS was required to fully stimulate coupled respiration by promoting pyruvate entry into mitochondria. In aralar KO neurons, respiration was stimulated by veratridine, but not by KCl or carbachol, indicating that the Ca2+ uniporter pathway played a role in the first, but not in the second condition, even though KCl caused an increase in [Ca2+]mit. The results suggest a requirement for ARALAR-MAS in priming pyruvate entry in mitochondria as a step needed to activate respiration by Ca2+ in response to moderate workloads.

  12. A novel insulin combination of insulin degludec and insulin aspart achieves a more stable overnight glucose profile than insulin glargine: results from continuous glucose monitoring in a proof-of-concept trial

    NARCIS (Netherlands)

    Liebl, A.; Davidson, J.; Mersebach, H.; Dykiel, P.; Tack, C.J.J.; Heise, T.

    2013-01-01

    PURPOSE: Insulin degludec coformulated with insulin aspart (as IDegAsp) can cover 24 h basal insulin and postprandial insulin requirements after a main meal with one injection. We compared glycemic stability following IDegAsp or insulin glargine (IGlar) given before the evening meal in patients with

  13. Binding of the ligand [3H]MK-801 to the MK-801 binding site of the N-methyl-D-aspartate receptor during experimental encephalopathy from acute liver failure and from acute hyperammonemia in the rabbit

    NARCIS (Netherlands)

    R.J. de Knegt (Robert); J. Kornhuber (Johannes); S.W. Schalm (Solko); K. Rusche (K.); P.F. Riederer (Peter); J. Tan (J.)

    1993-01-01

    textabstractBinding of the ligand [3H]MK-801 to the MK-801 binding site of the N-methyl-D-aspartate (NMDA) receptor population on brain homogenates in rabbits was studied during experimental encephalopathy from acute liver failure and from acute hyperammonemia in the rabbit. Homogenates were

  14. Biphasic insulin aspart 30 in insulin-naive people with type 2 diabetes in non-western nations: results from a regional comparative multinational observational study (A(1)chieve).

    Science.gov (United States)

    Shah, Siddharth; Yang, Wenying; Hasan, Mohammad Imtiaz; Malek, Rachid; Molskov Bech, Ole; Home, Philip

    2013-11-01

    A1chieve(®) (Novo Nordisk A/S, Bagsværd, Denmark) was a prospective, multicenter, noninterventional study in 66,726 people with type 2 diabetes mellitus (T2DM) in 28 countries beginning biphasic insulin aspart 30 (aspart premix), insulin detemir, or insulin aspart in routine clinical care. A subgroup of 27,594 insulin-naive people began therapy with aspart premix with or without oral agents. Safety and effectiveness data were taken from clinic records at baseline and after 24 weeks. Seven regional country groupings were prespecified. Mean final insulin dose ranged from 0.68±0.26 U/kg/day (Middle East/Gulf) to 0.38±0.14 U/kg/day (South Asia). The baseline glycated hemoglobin (HbA1c) level varied from 10.5±2.0% (Latin America) to 9.2±1.3% (South Asia), with reductions from -2.9±2.1% (Latin America) to -1.9±1.3% (South Asia). The proportion of people reaching an HbA1c level of daily, varying from 91% (North Africa) to 70% (Latin America). Improvement in HbA1c increased with baseline dose frequency (once daily, -1.5±1.4%; twice daily, -2.2±1.6%; three times daily, -2.9±2.2%). Insulin-naive people with T2DM beginning aspart premix insulin in routine clinical practice in non-western nations had clinically useful improvements in blood glucose control after 24 weeks in all seven regions. Improvements from baseline for glucose control variables were greater than cross-regional differences in those variables at 24 weeks.

  15. Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men.

    Science.gov (United States)

    Mikulski, Tomasz; Dabrowski, Jan; Hilgier, Wojciech; Ziemba, Andrzej; Krzeminski, Krzysztof

    2015-01-01

    Our previous studies showed only slight improvement in central fatigue, measured indirectly by psychomotor performance, after branched chain amino acids (BCAA) supplementation during various efforts in healthy men. It is hypothesised that hyperammonaemia resulting from amino acids metabolism may attenuate their beneficial effect on psychomotor performance; therefore, the L-ornithine L-aspartate (OA) as an ammonia decreasing agent was used. The aim of this study was to investigate the effectiveness of oral BCAA + OA supplementation to reduce plasma ammonia concentration and enhance psychomotor performance during exhaustive exercise in healthy men. Eleven endurance-trained men (mean age 32.6 ± 1.9 years) performed two sessions (separated by one week) of submaximal cycloergometer exercise for 90 minutes at 60% of maximal oxygen uptake followed by graded exercise until exhaustion with randomised, double-blind supplementation with a total of 16 g BCAA and 12 g OA (BCAA + OA trial) or flavoured water (placebo trial). Before exercise, during both efforts and after 20 minutes of recovery multiple choice reaction time (MCRT), perceived exertion, heart rate and oxygen uptake were measured and venous blood samples were taken for plasma leucine, valine, isoleucine, ornithine, aspartate, free tryptophan (fTRP), ammonia, lactate and glucose determination. After ingestion, during both efforts and after 20 minutes of recovery the plasma concentrations of all supplemented amino acids were significantly increased, while the fTRP/BCAA ratio decreased in the BCAA + OA trial more than in the placebo trial. At the end of graded exercise plasma fTRP was lower and MCRT shorter in BCAA + OA than in the placebo trial (p BCAA + OA than in placebo trial (p BCAA + OA than in the placebo trial. Plasma ammonia positively correlated with the total plasma BCAA and MCRT only in the BCAA + OA trial. The fTRP/BCAA ratio positively correlated with MCRT only in the placebo trial. Supplementation with

  16. Safety and effectiveness of insulin aspart in type 2 diabetic patients: results from the ASEAN cohort of the A₁chieve study.

    Science.gov (United States)

    Bebakar, Wan Mohamad Wan; Lim-Abrahan, Mary Anne; Jain, Ananá B; Seah, Darren; Soewondo, Pradana

    2013-04-01

    To examine the clinical safety and effectiveness of insulin aspart (IAsp) therapy in type 2 diabetes (T2D) patients from the ASEAN cohort of the international, 24-week, non-interventional A₁chieve study. T2D patients from Indonesia, Malaysia, Philippines and Singapore, who started IAsp therapy with or without oral glucose-lowering drugs, were included. The primary endpoint was the incidence of serious adverse drug reactions (SADRs), including major hypoglycaemic events. Secondary endpoints included hypoglycaemia, glycated haemoglobin A1c [HbA1c], fasting plasma glucose [FPG], postprandial plasma glucose [PPPG], systolic blood pressure [SBP], body weight and lipids. Quality of life (QoL) was assessed using the EQ-5D questionnaire. Overall, 312 T2D patients (222 insulin-naive and 90 insulin-experienced) with a mean ± SD age of 56.6 ± 11.2 years, BMI of 24.2 ± 3.9 kg/m(2) and diabetes duration of 7.0 ± 5.7 years were included. The mean daily IAsp dose was 0.51 ± 0.31 U/kg at baseline titrated up to 0.60 ± 0.29 U/kg at Week 24. No SADRs or major hypoglycaemic events were reported in the entire subgroup. The proportion of patients who reported overall hypoglycaemia decreased from baseline to Week 24 (7.1% vs. 0.3%, p ASEAN cohort. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. [Efficacy and safety of cyclophosphamide as a sequential immunotherapy drug for anti-N-methyl-D-aspartate receptor encephalitis in children].

    Science.gov (United States)

    Zhu, Wei-Wen; Liao, Wei-Ping; Yi, Yong-Hong; Song, Xing-Wang

    2017-06-01

    To evaluate the efficacy and safety of cyclophosphamide as a second-line drug in the treatment of children with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. Six children with anti-NMDAR encephalitis, who showed poor response to steroids and intravenous immunoglobulin, were given cyclophosphamide as a second-line immunotherapy. Follow-up was performed to evaluate the efficacy and safety of cyclophosphamide. After first-line immunotherapy for 1-4 weeks, the six patients had reduced psychiatric symptoms, seizures, and involuntary movements; three patients had an improved level of consciousness and were able to make simple conversations. However, all the patients still showed slow response, as well as cortical dysfunction symptoms such as aphasia, alexia, agraphia, acalculia, apraxia, and movement disorders. The six patients continued to receive cyclophosphamide as a sequential therapy. They were able to answer simple questions 7 days after treatment. Three school-aged patients were able to make simple calculation, had greatly improved reading and writing ability, and almost recovered self-care ability 2-3 weeks later. The cognitive function of the six patients was almost restored to the level before the onset of disease, and their living ability returned to normal 2-3 months later. During the treatment period, there were no adverse reactions or abnormal results of routine blood test and liver and kidney function tests. Children with anti-NMDAR encephalitis should be given appropriate immunotherapy as soon as possible. Cyclophosphamide as a sequential therapy has good efficacy and safety.

  18. The role of the N-methyl-D-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells.

    Science.gov (United States)

    Taylor, Chanel J; He, RongQiao; Bartlett, Perry F

    2014-04-01

    New neurons are continuously generated from resident pools of neural stem and precursor cells (NSPCs) in the adult brain. There are multiple pathways through which adult neurogenesis is regulated, and here we review the role of the N-methyl-D-aspartate receptor (NMDAR) in regulating the proliferation of NSPCs in the adult hippocampus. Hippocampal-dependent learning tasks, enriched environments, running, and activity-dependent synaptic plasticity, all potently up-regulate hippocampal NSPC proliferation. We first consider the requirement of the NMDAR in activity-dependent synaptic plasticity, and the role the induction of synaptic plasticity has in regulating NSPCs and newborn neurons. We address how specific NMDAR agonists and antagonists modulate proliferation, both in vivo and in vitro, and then review the evidence supporting the hypothesis that NMDARs are present on NSPCs. We believe it is important to understand the mechanisms underlying the activation of adult neurogenesis, given the potential that endogenous stem cell populations have for repopulating the hippocampus with functional new neurons. In conditions such as age-related memory decline, neurodegeneration and psychiatric disease, mature neurons are lost or become defective; as such, stimulating adult neurogenesis may provide a therapeutic strategy to overcome these conditions.

  19. Characterization and biocompatibility studies of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders.

    Science.gov (United States)

    Chan-Chan, L H; Tkaczyk, C; Vargas-Coronado, R F; Cervantes-Uc, J M; Tabrizian, M; Cauich-Rodriguez, J V

    2013-07-01

    Polyurethanes are very often used in the cardiovascular field due to their tunable physicochemical properties and acceptable hemocompatibility although they suffer from poor endothelialization. With this in mind, we proposed the synthesis of a family of degradable segmented poly(urea)urethanes (SPUUs) using amino acids (L-arginine, glycine and L-aspartic acid) as chain extenders. These polymers degraded slowly in PBS (pH 7.4) after 24 weeks via a gradual decrease in molecular weight. In contrast, accelerated degradation showed higher mass loss under acidic, alkaline and oxidative media. MTT tests on polyurethanes with L-arginine as chain extenders showed no adverse effect on the metabolism of human umbilical vein endothelial cells (HUVECs) indicating the leachables did not provoke any toxic responses. In addition, SPUUs containing L-arginine promoted higher levels of HUVECs adhesion, spreading and viability after 7 days compared to the commonly used Tecoflex(®) polyurethane. The biodegradability and HUVEC proliferation on L-arginine-based SPUUs suggests that they can be used in the design of vascular grafts for tissue engineering.

  20. Effect of the N-methyl-D-aspartate NR2B subunit antagonist ifenprodil on precursor cell proliferation in the hippocampus.

    Science.gov (United States)

    Bunk, E C; König, H-G; Prehn, J H M; Kirby, B P

    2014-06-01

    The N-methyl-D-aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA-induced, excitotoxic injury to the hippocampus results in an increase in neurogenesis within the dentate gyrus. Here we have characterized adult neurogenesis or proliferation, using BrdU, in an in vivo model of excitotoxic injury to the CA1 subfield of the hippocampus. We demonstrate a peak in neural stem cell proliferation/neurogenesis between 6 and 9 days after the excitotoxic insult. Treatment with ifenprodil, an NR2B subunit-specific NMDA receptor antagonist, without prior injury induction, also increased the number of BrdU-positive cells within the DG and posterior periventricle, indicating that ifenprodil itself could modulate the rate of proliferation. Interestingly, though, the increased level of cell proliferation did not change significantly when ifenprodil was administered following an excitotoxic insult. In conclusion, our results suggest and add to the growing evidence that NR2B subunit-containing NMDA receptors play a role in neural stem cell proliferation. Copyright © 2014 Wiley Periodicals, Inc.

  1. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake.

    Science.gov (United States)

    Hänggi, Pascal; Makhro, Asya; Gassmann, Max; Schmugge, Markus; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2014-10-01

    Recently we showed that N-methyl D-aspartate receptors (NMDARs) are expressed in erythroid precursors (EPCs) and present in the circulating red blood cells (RBCs) of healthy humans, regulating intracellular Ca(2+) in these cells. This study focuses on investigating the possible role of NMDARs in abnormally high Ca(2+) permeability in the RBCs of patients with sickle cell disease (SCD). Protein levels of the NMDAR subunits in the EPCs of SCD patients did not differ from those in EPCs of healthy humans. However, the number and activity of the NMDARs in circulating SCD-RBCs was substantially up-regulated, being particularly high during haemolytic crises. The number of active NMDARs correlated negatively with haematocrit and haemoglobin levels in the blood of SCD patients. Calcium uptake via these non-selective cation channels was induced by RBC treatment with glycine, glutamate and homocysteine and was facilitated by de-oxygenation of SCD-RBCs. Oxidative stress and RBC dehydration followed receptor stimulation and Ca(2+) uptake. Inhibition of the NMDARs with an antagonist memantine caused re-hydration and largely prevented hypoxia-induced sickling. The EPCs of SCD patients showed higher tolerance to memantine than those of healthy subjects. Consequently, NMDARs in the RBCs of SCD patients appear to be an attractive target for pharmacological intervention. © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  2. A placebo-controlled randomized crossover trial of the N-methyl-D-aspartic acid receptor antagonist, memantine, in patients with chronic phantom limb pain.

    Science.gov (United States)

    Wiech, Katja; Kiefer, Ralph-Thomas; Töpfner, Stephanie; Preissl, Hubert; Braun, Christoph; Unertl, Klaus; Flor, Herta; Birbaumer, Niels

    2004-02-01

    In the present study we investigated the effect of the N-methyl-D-aspartic acid (NMDA) receptor antagonist memantine (30 mg/d) on the intensity of chronic phantom limb pain (PLP) and cortical reorganization. In 8 patients with chronic PLP, memantine was tested in a placebo-controlled double-blinded crossover trial of 4 wk duration per trial. The intensity of PLP was rated hourly by the patients on a visual analog scale during baseline and both treatment periods. At the same time points, the functional organization of the primary somatosensory cortex (SI) was determined by neuromagnetic source imaging. In comparison to baseline and placebo, the NMDA receptor antagonist had no effect on the intensity of chronic PLP. In none of the periods were significant changes in the functional organization of SI observed. Although the conclusions regarding the clinical effect are limited because of the small sample size, the data indicate that in the studied dosage the NMDA receptor antagonist memantine is ineffective in the treatment of chronic PLP and is also ineffective for the reduction of associated neural plasticity in the primary SI. NMDA receptors play a substantial role in central nervous system changes underlying neuropathic pain. In a placebo-controlled double-blinded study we tested the effect of 30 mg memantine on chronic phantom limb pain and pain-associated cortical reorganization.

  3. Spinal Tolerance and Dependence: Some Observations on the Role of Spinal N-Methyl-D-Aspartate Receptors and Phosphorylation in the Loss of Opioid Analgesic Responses

    Directory of Open Access Journals (Sweden)

    Tony L Yaksh

    2000-01-01

    Full Text Available The continuous delivery of opiates can lead to a reduction in analgesic effects. In humans, as in other animals, some component of this change in sensitivity seems likely to have a strong pharmacodynamic component. Such loss of effect, deemed to be tolerance in the present article, can be readily demonstrated in animals with repeated bolus and continuous intrathecal infusion of mu and delta opioids and alpha-2 adrenergic agonists. Research has shown that this loss of effect can be diminished by concurrent treatment with N-methyl-D-aspartate (NMDA receptor antagonists and by the suppression of the activity of spinal protein kinase C (PKC. This suggests in part the probable role of PKC-mediated phosphorylation in the right shift in the dose-effect curves observed with continuous opiate or adrenergic exposure. Importantly, this right shift is seen to occur in parallel with an increase in the phosphorylating activity in the dorsal horn and in the expression of several PKC isozymes. The target of this phosphorylation is not certain. Phosphorylation of the NMDA receptor enhances its functionality, while phosphorylation of the opioid receptor or associated channels seems to diminish their activity or to enhance internalization. While the focus is on several specific components, the accumulating data emphasize the biological complexity of these changes in spinal drug reactivity.

  4. N-methyl-D-aspartate receptors in the ventral tegmental area mediate the excitatory influence of Pavlovian stimuli on instrumental performance.

    Science.gov (United States)

    Sommer, Susanne; Hauber, Wolfgang

    2016-12-01

    Pavlovian stimuli predictive of food can markedly amplify instrumental responding for food. This effect is termed Pavlovian-instrumental transfer (PIT). The ventral tegmental area (VTA) plays a key role in mediating PIT, however, it is yet unknown whether N-methyl-D-aspartate (NMDA)-type glutamate receptors in the VTA are involved in PIT. Here, we examined the effects of an NMDA-receptor blockade in the VTA on PIT. Immediately prior to PIT testing, rats were subjected to intra-VTA infusions of vehicle or of the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) (1, 5 µg/side). In rats that received AP-5 at the lower dose, the PIT effect was intact, i.e. presentation of the Pavlovian stimulus enhanced instrumental responding. By contrast, in rats that received AP-5 at the higher dose, the PIT effect was blocked. The data suggest that NMDA receptors in the VTA mediate the activating effects of Pavlovian stimuli on instrumental responding.

  5. Repeated ketamine administration alters N-methyl-d-aspartic acid receptor subunit gene expression: Implication of genetic vulnerability for ketamine abuse and ketamine psychosis in humans

    Science.gov (United States)

    Lipsky, Robert H

    2015-01-01

    For more than 40 years following its approval by the Food and Drug Administration (FDA) as an anesthetic, ketamine, a non-competitive N-methyl-d-aspartic acid (NMDA) receptor antagonist, has been used as a tool of psychiatric research. As a psychedelic drug, ketamine induces psychotic symptoms, cognitive impairment, and mood elevation, which resemble some symptoms of schizophrenia. Recreational use of ketamine has been increasing in recent years. However, little is known of the underlying molecular mechanisms responsible for ketamine-associated psychosis. Recent animal studies have shown that repeated ketamine administration significantly increases NMDA receptor subunit gene expression, in particular subunit 1 (NR1 or GluN1) levels. This results in neurodegeneration, supporting a potential mechanism where up-regulation of NMDA receptors could produce cognitive deficits in chronic ketamine abuse patients. In other studies, NMDA receptor gene variants are associated with addictive behavior. Here, we focus on the roles of NMDA receptor gene subunits in ketamine abuse and ketamine psychosis and propose that full sequencing of NMDA receptor genes may help explain individual vulnerability to ketamine abuse and ketamine-associated psychosis. PMID:25245072

  6. Structure-activity relationships for a series of bis(phenylalkyl)amines: potent subtype-selective inhibitors of N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Tamiz, A P; Whittemore, E R; Zhou, Z L; Huang, J C; Drewe, J A; Chen, J C; Cai, S X; Weber, E; Woodward, R M; Keana, J F

    1998-08-27

    A series of bis(phenylalkyl)amines, structural analogues of ifenprodil and nylidrin, were synthesized and tested for antagonism of N-methyl-D-aspartate (NMDA) receptors. Potency and subunit selectivity were assayed by electrical recordings in Xenopus oocytes expressing three binary combinations of cloned rat NMDA receptor subunits: NR1A expressed in combination with either NR2A, NR2B, or NR2C. The bis(phenylalkyl)amines were selective antagonists of NR1A/2B receptors. Assayed under steady-state conditions, the most potent of these, N-[2-(4-hydroxyphenyl)ethyl]-5-phenylpentylamine hydrochloride (20), has an IC50 value of 8 nM and >1000-fold selectivity with respect to NR1A/2A and NR1A/2C receptors. The structure-activity relationship of the bis(phenylalkyl)amine series indicates that the piperidine ring and alkyl chain substitutions common to NR2B-selective antagonists such as ifenprodil, CP 101,606, and Ro 25-6981 are not necessary to generate potent and selective ligands. The primary determinants of potency are the phenolic OH group, acting as a hydrogen bond donor, the distance between the two rings, and an electrostatic interaction between the receptor and the basic nitrogen atom. This study provides a framework for designing structurally novel NR2B-selective antagonists which may be useful for treatment of a variety of neurological disorders.

  7. Changes in glycemic control and quality of life in pediatric type 1 diabetics with continuous subcutaneous insulin infusion of insulin aspart following multiple daily injection therapy.

    Science.gov (United States)

    Kawamura, Tomoyuki; Urakami, Tatsuhiko; Sugihara, Shigetaka; Kim, Hey Sook; Mochizuki, Mie; Amamiya, Shin

    2008-01-01

    The efficacy of continuous subcutaneous insulin infusion (CSII) of the rapid-acting insulin analogue, insulin aspart, was evaluated in 26 patients with childhood-onset type 1 diabetes aged between 6 and 18 yr who had been on basal-bolus therapy (multiple daily injection (MDI) of regular human insulin or rapid-acting insulin and intermediate/long-acting insulin). The glycemic control in the patients was evaluated based on changes in the clinical parameters and the patient quality of life (QOL) was evaluated by using the insulin therapy-related QOL questionnaire. Twenty two patients continued CSII during the 6-mo study period. The mean HbA1c was 7.8 ± 1.8% at baseline and it decreased to 7.4 ± 0.8% at 6 mo after the start of the CSII. Overall, no decrease of the QOL post-CSII initiation was noted. The possible superiority of CSII as compared to MDI was suggested for patients who "eat out" or "have to look for an appropriate place for insulin injection." Aside from an inadequate indwelling needle placement detected after the initiation of CSII in several patients, no adverse event associated with NovoRapid(®) was seen. In conclusion, CSII of rapid-acting insulin appears to be a useful therapy for patients with childhood-onset type 1 diabetes.

  8. Aspartate-β-semialdeyhyde dehydrogenase as a potential therapeutic target of Mycobacterium tuberculosis H37Rv: Evidence from in-silico elementary mode analysis of biological network model.

    Science.gov (United States)

    Khan, Saif; Somvanshi, Pallavi; Bhardwaj, Tulika; Mandal, Raju K; Dar, Sajad A; Wahid, Mohd; Jawed, Arshad; Lohani, Mohtashim; Khan, Mahvish; Areeshi, Mohammed Y; Haque, Shafiul

    2017-10-25

    The emergence of multi-drug resistant strains and co-occurrence of tuberculosis with HIV creates a major burden to the human health globally. Failure of primary antibacterial therapy necessitates the identification of new mycobacterial drugs. In this study, a comprehensive analysis involving bottom-up systems biology approach was applied wherein we have identified potential therapeutic targets of Mycobacterium tuberculosis infections. Our study prioritized M. tuberculosis therapeutic targets [aspartate-β-semialdeyhde dehydrogenase (ASD), dihydrodipicolinate reductase and diaminopimelate decarboxylase] based on flux and elementary mode analysis using direct mathematical modeling of the relevant metabolic pathways. Molecular docking and simulation studies of the priority target (i.e., ASD) revealed the therapeutic potential of the selected natural products (Huperzine A, Rosmarinic acid and Curcumin) based ASD inhibitors. The study highlights the crucial role of systems biology in conjunction with molecular interaction (docking) for probing novel leads against an increasingly resistant pathogen, M. tuberculousis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Synthesis and characterization of a radiolabeled derivative of the phencyclidine/N-methyl-D-aspartate receptor ligand (+)MK-801 with high specific radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Keana, J.F.W.; Scherz, M.W.; Quarum, M.; Sonders, M.S.; Weber, E.

    1988-01-01

    A (/sup 3/H)-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of (/sup 3/H)-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) (/sup 3/H)MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) (/sup 3/H)MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamate and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) (/sup 3/H)MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.

  10. Interaction of ( sup 3 H)MK-801 with multiple states of the N-methyl-D-aspartate receptor complex of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Javitt, D.C.; Zukin, S.R. (Albert Einstein College of Medicine, Bronx, NY (USA))

    1989-01-01

    N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion of sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.

  11. A novel photoaffinity ligand for the phencyclidine site of the N-methyl-D-aspartate receptor labels a Mr 120,000 polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Sonders, M.S.; Barmettler, P.; Lee, J.A.; Kitahara, Y.; Keana, J.F.; Weber, E. (Oregon Health Sciences Univ., Portland (USA))

    1990-04-25

    A radiolabeled photoaffinity ligand has been developed for the N-methyl-D-aspartate (NMDA)-preferring excitatory amino acid receptor complex. (3H)3-Azido-(5S, 10R)(+)-5-methyl-10,11-dihydro-5H- dibenzo(a,d)cyclohepten-5,10-imine (3H)3-azido-MK-801 demonstrated nearly identical affinity, density of binding sites, selectivity, pH sensitivity, and pharmacological profile in reversible binding assays with guinea pig brain homogenates to those displayed by its parent compound, MK-801. When employed in a photo-labeling protocol designed to optimize specific incorporation, (3H)3-azido-MK-801 labeled a single protein band which migrated in sodium dodecyl sulfate-polyacrylamide gels with Mr = 120,000. Incorporation of tritium into this band was completely inhibited when homogenates and (3H)3-azido-MK-801 were coincubated with 10 microM phencyclidine. These data suggest that the phencyclidine site of the NMDA receptor complex is at least in part comprised of a Mr = 120,000 polypeptide.

  12. mRNA from NCB-20 cells encodes the N-methyl-D-aspartate/phencyclidine receptor: a Xenopus oocyte expression study.

    Science.gov (United States)

    Lerma, J; Kushner, L; Spray, D C; Bennett, M V; Zukin, R S

    1989-01-01

    The mouse neuroblastoma--Chinese hamster brain hybrid cell line NCB-20 is the only clonal cell line in which binding studies indicate the presence of phencyclidine (PCP) receptors. We report here that Xenopus oocytes injected with NCB-20 cell poly(A)+ RNA express N-methyl-D-aspartate (NMDA)-activated channels and that these channels include the PCP receptor site. In injected oocytes, NMDA application evoked a partially desensitizing inward current that was potentiated by glycine, blocked by the competitive antagonist D-2-amino-5-phosphonovaleric acid, blocked by Mg2+ and by Zn2+, and blocked in a use-dependent manner by the PCP receptor ligands PCP and MK-801. There was little or no response to kainate or quisqualate (agonists of the other excitatory amino acid receptors), to gamma-aminobutyric acid (an inhibitory transmitter), or to glycine (an inhibitory transmitter as well as an allosteric potentiator of NMDA channels). Thus, NMDA/PCP receptors expressed from NCB-20 cell mRNA exhibit properties similar to those of the neuronal receptors. The absence of expression of other excitatory amino acid receptors in this system makes it particularly useful for study of NMDA-evoked responses without interference from responses mediated by other receptors. Moreover, NCB-20 mRNA may be an appropriate starting material for cloning the cDNA(s) encoding the NMDA/PCP-receptor complex. PMID:2537982

  13. [Evalution of activity of acid aspartic proteinase in Candida strains isolated from oral cavity of patients with increased risk of mycosis].

    Science.gov (United States)

    Rózga, A; Kurnatowska, A J; Raczyńsak-Witońska, G; Loga, G

    2001-01-01

    We have evaluated the activity of acid aspartic protease in 195 strains of Candida isolated from the oral cavity of three groups of patients. The first group comprised patients with cancer of the larynx qualified for surgery, the second- patients with neoplastic disease ( Hodgkin s disease, lymphoma, acute granulocytic leukaemia, lymphatic leukaemia, lung cancer, multiple myeloma, stomach cancer, breast cancer) who were not treated, the third group- patients with neoplastic diseases treated by chemotherapy. The strains of fungi were differentiated using API 20C and Api 20C AUX tests according to the protocol adopted at the Department of Medical Parasitology and Biology, Medical University of Lódz. The activity of acid protease was studied by Staib method in Rózga modification. Almost all strains showed high and very high proteolytic activity. The rang of proteolysis zone of Candida strains from the three groups of patients varied from 2,5 to 12,5 mm. We have found the mean proteolytic zones of strains isolated from groups I and III differed statistically significantly (p<0,001). Similarly, statisticall sihnificant difference was seen between these parameters for groups II and III (p<0,05), while there was no difference between strains from group I and II.

  14. A conserved Cys-loop receptor aspartate residue in the M3-M4 cytoplasmic loop is required for GABAA receptor assembly.

    Science.gov (United States)

    Lo, Wen-yi; Botzolakis, Emmanuel J; Tang, Xin; Macdonald, Robert L

    2008-10-31

    Members of the Cys-loop superfamily of ligand-gated ion channels, which mediate fast synaptic transmission in the nervous system, are assembled as heteropentamers from a large repertoire of neuronal subunits. Although several motifs in subunit N-terminal domains are known to be important for subunit assembly, increasing evidence points toward a role for C-terminal domains. Using a combination of flow cytometry, patch clamp recording, endoglycosidase H digestion, brefeldin A treatment, and analytic centrifugation, we identified a highly conserved aspartate residue at the boundary of the M3-M4 loop and the M4 domain that was required for binary and ternary gamma-aminobutyric acid type A receptor surface expression. Mutation of this residue caused mutant and partnering subunits to be retained in the endoplasmic reticulum, reflecting impaired forward trafficking. Interestingly although mutant and partnering wild type subunits could be coimmunoprecipitated, analytic centrifugation studies demonstrated decreased formation of pentameric receptors, suggesting that this residue played an important role in later steps of subunit oligomerization. We thus conclude that C-terminal motifs are also important determinants of Cys-loop receptor assembly.

  15. Roles of Intramolecular and Intermolecular Hydrogen Bonding in a Three-Water-Assisted Mechanism of Succinimide Formation from Aspartic Acid Residues

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2014-08-01

    Full Text Available Aspartic acid (Asp residues in peptides and proteins are prone to isomerization to the β-form and racemization via a five-membered succinimide intermediate. These nonenzymatic reactions have relevance to aging and age-related diseases. In this paper, we report a three water molecule-assisted, six-step mechanism for the formation of succinimide from Asp residues found by density functional theory calculations. The first two steps constitute a stepwise iminolization of the C-terminal amide group. This iminolization involves a quintuple proton transfer along intramolecular and intermolecular hydrogen bonds formed by the C-terminal amide group, the side-chain carboxyl group, and the three water molecules. After a conformational change (which breaks the intramolecular hydrogen bond involving the iminol nitrogen and a reorganization of water molecules, the iminol nitrogen nucleophilically attacks the carboxyl carbon of the Asp side chain to form a five-membered ring. This cyclization is accompanied by a triple proton transfer involving two water molecules, so that a gem-diol tetrahedral intermediate is formed. The last step is dehydration of the gem-diol group catalyzed by one water molecule, and this is the rate-determining step. The calculated overall activation barrier (26.7 kcal mol−1 agrees well with an experimental activation energy.