WorldWideScience

Sample records for aspartate kinase activity

  1. Leptin enhances NR2B-mediated N-methyl-D-aspartate responses via a mitogen-activated protein kinase-dependent process in cerebellar granule cells.

    Science.gov (United States)

    Irving, A J; Wallace, L; Durakoglugil, D; Harvey, J

    2006-01-01

    It is well documented that the hormone leptin regulates energy balance via its actions in the hypothalamus. However, evidence is accumulating that leptin plays a key role in numerous CNS functions. Indeed, leptin receptors are expressed in many extrahypothalamic brain regions, with high levels found in the hippocampus and cerebellum. In the hippocampus leptin has been shown to facilitate N-methyl-D-aspartate receptor function and modulate synaptic plasticity. A role for leptin in cerebellar function is also indicated as leptin-deficient rodents display reduced mobility that is unrelated to obesity. Here we show that leptin receptor immunolabeling can be detected in cultured cerebellar granule cells, being expressed at the somatic plasma membrane and also concentrated at synapses. Furthermore, leptin facilitated NR2B N-methyl-D-aspartate receptor-mediated Ca2+ influx in cerebellar granule cells via a mitogen-activated protein kinase-dependent pathway. These findings provide the first direct evidence for a cellular action of leptin in cerebellar neurons. In addition, given that N-methyl-D-aspartate receptor activity in the cerebellum is crucial for normal locomotor function, these data also have important implications for the potential role of leptin in the control of movement.

  2. Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury.

    Science.gov (United States)

    Chen, Shao-Rui; Zhou, Hong-Yi; Byun, Hee Sun; Chen, Hong; Pan, Hui-Lin

    2014-08-01

    Increased N-methyl-d-aspartate receptor (NMDAR) activity and phosphorylation in the spinal cord are critically involved in the synaptic plasticity and central sensitization associated with neuropathic pain. However, the mechanisms underlying increased NMDAR activity in neuropathic pain conditions remain poorly understood. Here we show that peripheral nerve injury induces a large GluN2A-mediated increase in NMDAR activity in spinal lamina II, but not lamina I, neurons. However, NMDAR currents in spinal dorsal horn neurons are not significantly altered in rat models of diabetic neuropathic pain and resiniferatoxin-induced painful neuropathy (postherpedic neuralgia). Inhibition of protein tyrosine kinases or protein kinase C has little effect on NMDAR currents potentiated by nerve injury. Strikingly, casein kinase II (CK2) inhibitors normalize increased NMDAR currents of dorsal horn neurons in nerve-injured rats. In addition, inhibition of calcineurin, but not protein phosphatase 1/2A, augments NMDAR currents only in control rats. CK2 inhibition blocks the increase in spinal NMDAR activity by the calcineurin inhibitor in control rats. Furthermore, nerve injury significantly increases CK2α and CK2β protein levels in the spinal cord. In addition, inhibition of CK2 or CK2β knockdown at the spinal level substantially reverses pain hypersensitivity induced by nerve injury. Our study indicates that neuropathic pain conditions with different etiologies do not share the same mechanisms, and increased spinal NMDAR activity is distinctly associated with traumatic nerve injury. CK2 plays a prominent role in the potentiation of NMDAR activity in the spinal dorsal horn and may represent a new target for treatments of chronic pain caused by nerve injury. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, H.; Galili, G.; Sørensen, K.

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance......, no differences were observed in the composition of total amino acids. The introduced genes were inherited in the T1 generation where enzymic activities revealed a 2.3-fold increase of AK activity and a 4.0-9.5-fold increase for DHPS. T1 seeds of DHPS transformants showed the same changes in free amino acids...... as observed in T0 seeds. It is concluded that the aspartate family pathway may be genetically engineered by the introduction of genes coding for feed-back-insensitive enzymes, preferentially giving elevated levels of lysine and methionine....

  4. Co-Expression of Bacterial Aspartate Kinase and Adenylylsulfate Reductase Genes Substantially Increases Sulfur Amino Acid Levels in Transgenic Alfalfa (Medicago sativa L.)

    OpenAIRE

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesi...

  5. Small Interfering RNA Specific for N-Methyl-D-Aspartate Receptor 2B Offers Neuroprotection to Dopamine Neurons through Activation of MAP Kinase

    Directory of Open Access Journals (Sweden)

    Olivia T.W. Ng

    2012-02-01

    Full Text Available In the present study, N-methyl-D-aspartate receptor 2B (NR2B-specific siRNA was applied in parkinsonian models. Our previous results showed that reduction in expression of N-methyl-D-aspartate receptor 1 (NR1, the key subunit of N-methyl-D-aspartate receptors, by antisense oligos amelio-rated the motor symptoms in the 6-hydroxydopamine (6-OHDA-lesioned rat, an animal model of Parkinson's disease (PD [Lai et al.: Neurochem Int 2004;45:11-22]. To further the investigation on the efficacy of gene silencing, small interference RNA (siRNA specific for the NR2B subunit was designed and administered in the striatum of 6-OHDA-lesioned rats. The present results show that administration of NR2B-specific siRNA decreased the number of apomorphine-induced rotations in the lesioned rats and that there was a significant reduction in NR2B proteins levels after NR2B-specific siRNA administration. Furthermore, attenuation of the loss of dopaminergic neurons was found in both the striatal and substantia nigra regions of the 6-OHDA-lesioned rats that had been continuously infused with siRNA for 7 days. In addition, a significant upregulation of p-p44/42 MAPK (ERK1/2; Thr202/Tyr204 and p-CREB (Ser133 in striatal neurons was found. These results suggest that application of the gene silencing targeting NR2B could be a potential treatment of PD, and they also revealed the possibility of NR2B-specific siRNA being involved in the prosurvival pathway.

  6. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  7. Effect of Orthodontic Tooth Movement on Salivary Aspartate Aminotransferase Activity

    Directory of Open Access Journals (Sweden)

    Steiven Adhitya

    2013-07-01

    Full Text Available 72 1024x768 Aspartate aminotransferase is one of biological indicator in gingival crevicular fluid (CGF. Force orthodontic application could increase activity of aspartate aminotransferase in CGF. However, the increase activity of aspartate aminotransferase in saliva due to orthodontic force and its correlation between aspartate aminotransferase activity and tooth movement remains unclear. Objectives: To evaluate application orthodontic force on the aspartate aminotransferase activity in saliva based on the duration of force and finding correlation between tooth movement and aspartate aminotransferase activity. Methods: Twenty saliva samples collected before extraction of first premolar, at the time of force application for canine retraction and after force application. The canines retraction used 100 grams of interrupted force (module chain for thirty days. The collection of saliva and the measurement of tooth movement were carried out 1 day, 7 days, 14 days, 21 days, and 28 days after force application. The measurement of aspartate aminotransferase activity in saliva was done using spectrophotometer. Results: Application of orthodontic force influences the salivary aspartate aminotransferase activity (F=25.290, p=0.000. Furthermore, tooth movement correlated with aspartate aminotransferase activity (F=0.429, p=0.000. Conclusion: Aspartate aminotransferase activity could be used as tooth movement indicator that related to the duration of force application.DOI : 10.14693/jdi.v20i1.128

  8. Adaptation Mechanism of the Aspartate Receptor: Electrostatics of the Adaptation Subdomain Play a Key Role in Modulating Kinase Activity†

    Science.gov (United States)

    Starrett, Diane J.; Falke, Joseph J.

    2010-01-01

    The aspartate receptor of the Escherichia coli and Salmonella typhimurium chemotaxis pathway generates a transmembrane signal that regulates the activity of the cytoplasmic kinase CheA. Previous studies have identified a region of the cytoplasmic domain that is critical to receptor adaptation and kinase regulation. This region, termed the adaptation subdomain, contains a high density of acidic residues, including specific glutamate residues that serve as receptor adaptation sites. However, the mechanism of signal propagation through this region remains poorly understood. This study uses site-directed mutagenesis to neutralize each acidic residue within the subdomain to probe the hypothesis that electrostatics in this region play a significant role in the mechanism of kinase activation and modulation. Each point mutant was tested for its ability to regulate chemotaxis in vivo and kinase activity in vitro. Four point mutants (D273N, E281Q, D288N, and E477Q) were found to superactivate the kinase relative to the wild-type receptor, and all four of these kinase-activating substitutions are located along the same intersubunit interface as the adaptation sites. These activating substitutions retained the wild-type ability of the attractant-occupied receptor to inhibit kinase activity. When combined in a quadruple mutant (D273N/E281Q/D288N/E477Q), the four charge-neutralizing substitutions locked the receptor in a kinase-superactivating state that could not be fully inactivated by the attractant. Similar lock-on character was observed for a charge reversal substitution, D273R. Together, these results implicate the electrostatic interactions at the intersubunit interface as a major player in signal transduction and kinase regulation. The negative charge in this region destabilizes the local structure in a way that enhances conformational dynamics, as detected by disulfide trapping, and this effect is reversed by charge neutralization of the adaptation sites. Finally, two

  9. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Arévalo-Rodríguez, M; Calderón, I L; Holmberg, S

    1999-01-01

    The HOM3 gene of Saccharomyces cerevisiae encodes aspartate kinase, which catalyses the first step in the branched pathway leading to the synthesis of threonine and methionine from aspartate. Regulation of the carbon flow into this pathway takes place mainly by feedback inhibition of this enzyme...... by threonine. We have isolated and characterized three HOM3 mutants that show growth inhibition by threonine due to a severe, threonine-induced reduction of the carbon flow into the aspartate pathway, leading to methionine limitation. One of the mutants has an aspartate kinase which is 30-fold more strongly...

  10. Switching of N-Methyl-d-aspartate (NMDA) Receptor-favorite Intracellular Signal Pathways from ERK1/2 Protein to p38 Mitogen-activated Protein Kinase Leads to Developmental Changes in NMDA Neurotoxicity*

    Science.gov (United States)

    Xiao, Lin; Hu, Chun; Feng, Chunzhi; Chen, Yizhang

    2011-01-01

    Excitotoxicity mediated by overactivation of N-methyl-d-aspartate receptors (NMDARs) has been implicated in a variety of neuropathological conditions in the central nervous system (CNS). It has been suggested that N-methyl-d-aspartate (NMDA) neurotoxicity is developmentally regulated, but the definite pattern of the regulation has been controversial, and the underlying mechanism remains largely unknown. Here, we show that NMDA treatment leads to significant cell death in mature (9 and 12 days in vitro) hippocampal neurons or hippocampi of young postnatal day 12 and adult rats but not in immature (3 and 6 days in vitro) neurons or embryonic day 18 and neonatal rat hippocampi. In contrast, NMDA promotes survival of immature neurons against tropic deprivation. Interestingly, it is found that NMDA preferentially activates p38 MAPK in mature neuron and adult rat hippocampus, but it favors ERK1/2 activation in immature neuron and postnatal day 0 rat hippocampus. Moreover, it is shown that NMDA neurotoxicity in mature neuron is mediated via p38 MAPK activation, and neuroprotection in immature neuron is mediated via ERK1/2 activation, whereas all these effects are NR2B-containing NMDAR-dependent, as well as Ca2+-dependent. We also revealed that mature and immature neurons showed no difference in the amplitude of NMDA-induced intracellular calcium ([Ca2+]i) increase. However, the basal level of [Ca2+]i is shown to elevate with the maturation of neuron, and this elevation is attributable to the changes in NMDA neurotoxicity but not to the switch of the NMDAR signaling pathway. Taken together, our results suggest that a switch of NMDA receptor-favorite intracellular signal pathways from ERK1/2 to p38 MAPK and the elevated basal level of [Ca2+]i with age might be critical for the developmental changes in NMDA neurotoxicity in the hippocampal neuron. PMID:21474451

  11. Switching of N-methyl-D-aspartate (NMDA) receptor-favorite intracellular signal pathways from ERK1/2 protein to p38 mitogen-activated protein kinase leads to developmental changes in NMDA neurotoxicity.

    Science.gov (United States)

    Xiao, Lin; Hu, Chun; Feng, Chunzhi; Chen, Yizhang

    2011-06-10

    Excitotoxicity mediated by overactivation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in a variety of neuropathological conditions in the central nervous system (CNS). It has been suggested that N-methyl-D-aspartate (NMDA) neurotoxicity is developmentally regulated, but the definite pattern of the regulation has been controversial, and the underlying mechanism remains largely unknown. Here, we show that NMDA treatment leads to significant cell death in mature (9 and 12 days in vitro) hippocampal neurons or hippocampi of young postnatal day 12 and adult rats but not in immature (3 and 6 days in vitro) neurons or embryonic day 18 and neonatal rat hippocampi. In contrast, NMDA promotes survival of immature neurons against tropic deprivation. Interestingly, it is found that NMDA preferentially activates p38 MAPK in mature neuron and adult rat hippocampus, but it favors ERK1/2 activation in immature neuron and postnatal day 0 rat hippocampus. Moreover, it is shown that NMDA neurotoxicity in mature neuron is mediated via p38 MAPK activation, and neuroprotection in immature neuron is mediated via ERK1/2 activation, whereas all these effects are NR2B-containing NMDAR-dependent, as well as Ca(2+)-dependent. We also revealed that mature and immature neurons showed no difference in the amplitude of NMDA-induced intracellular calcium ([Ca(2+)](i)) increase. However, the basal level of [Ca(2+)](i) is shown to elevate with the maturation of neuron, and this elevation is attributable to the changes in NMDA neurotoxicity but not to the switch of the NMDAR signaling pathway. Taken together, our results suggest that a switch of NMDA receptor-favorite intracellular signal pathways from ERK1/2 to p38 MAPK and the elevated basal level of [Ca(2+)](i) with age might be critical for the developmental changes in NMDA neurotoxicity in the hippocampal neuron.

  12. SERUM ACTIVITIES OF ASPARTATE AMINOTRANSFERASE, CREATINE KINASE AND LACTATE DEHYDROGENASE IN HORSES WITH COLIC ATIVIDADE SÉRICA DAS ENZIMAS ASPARTATO AMINOTRANSFERASE, CREATINA QUINASE E LACTATO DESIDROGENASE EM EQÜINOS COM CÓLICA

    Directory of Open Access Journals (Sweden)

    Aureo Evangelista Santana

    2008-12-01

    Full Text Available Seventy equines distributed in two experimental groups were used, G1 (20 healthy equines, and G2 (50 equines with colic. Blood samples were obtained by jugular vein puncture in ten different moments. The variables aspartate aminotransferase (AST, creatine kinase (CK, and lactate dehydrogenase (LDH were determined by spectrophotometric assay using specific reagents. The average values presented by the animals of the G2 for variables CK, AST, and LDH were higher (P<0.05 than the values presented by the animals of the G1 in all the evaluation moments. The results showed for G2 animals suggest the existence of acute muscle injury. The muscle injuries in equines with colic were attributed to the tissue hypoperfusion, and the muscular damage.

    KEY WORDS: Acute abdomen, horses, muscles enzyme. De setenta eqüinos, distribuídos em dois grupos experimentais – G1 (vinte eqüinos hígidos e G2 (cinqüenta eqüinos com cólica –, colheram-se amostras de sangue em dez diferentes momentos, mediante punção da jugular, para a determinação da atividade sérica das enzimas aspartato aminotransferase (AST, creatina quinase (CK e lactato desidrogenase (LDH. Os valores médios apresentados pelos animais do G2, para as variáveis CK, AST e LDH, foram superiores (P<0,05 aos valores médios apresentados pelos animais do G1 em todos os momentos de avaliação. Os resultados apresentados pelos animais com cólica (G2 sugerem a existência de lesão muscular aguda, porém com tendência a cura, e foram atribuídos a hipoperfusão tecidual e a traumas musculares. A análise seriada das enzimas CK, AST e LDH auxilia tanto no diagnóstico de lesões musculares em eqüinos com cólica como no acompanhamento da evolução do processo de cura.

    PALAVRAS-CHAVES: Abdômen agudo, cavalos, enzimas musculares.

  13. Determinação das atividades séricas de creatina quinase, lactato desidrogenase e aspartato aminotransferase em eqüinos de diferentes categorias de atividade Determination of serum activities of creatine kinase, lactate dehydrogenase, and aspartate aminotransferase in horses of different activities classes

    Directory of Open Access Journals (Sweden)

    I.A. Câmara e Silva

    2007-02-01

    Full Text Available The creatine kinase (CK, lactate dehydrogenase (LDH, and aspartate aminotransferase (AST seric activities in horses of different activity classes (athlete, traction, and reproduction, were compared. Fifty-eight horses were alloted into three groups - group 1 with 20 athletes, "vaquejada" competitors; group 2 with 20 breeding horses; and group 3 with 18 draft horses, averaging 10 working hours daily. The average values for CK serum activity were 80.2, 83.9, and 94.4 U/l in groups 1, 2, and 3, respectively. Result of group 3 was significantly different from the other groups. The averages values for LDH were 102.5, 98.6, and 112.8 U/l in groups 1, 2, and 3, respectively, with no statistical difference between groups. The AST averages were 56.8, 33.0, and 50.1 U/l in groups 1, 2, and 3, respectively, with group 2 significantly differing from the others. Clinical biochemistry values of muscular function in horses varied according to activity category.

  14. IRBIT Interacts with the Catalytic Core of Phosphatidylinositol Phosphate Kinase Type Iα and IIα through Conserved Catalytic Aspartate Residues.

    Directory of Open Access Journals (Sweden)

    Hideaki Ando

    Full Text Available Phosphatidylinositol phosphate kinases (PIPKs are lipid kinases that generate phosphatidylinositol 4,5-bisphosphate (PI(4,5P2, a critical lipid signaling molecule that regulates diverse cellular functions, including the activities of membrane channels and transporters. IRBIT (IP3R-binding protein released with inositol 1,4,5-trisphosphate is a multifunctional protein that regulates diverse target proteins. Here, we report that IRBIT forms signaling complexes with members of the PIPK family. IRBIT bound to all PIPK isoforms in heterologous expression systems and specifically interacted with PIPK type Iα (PIPKIα and type IIα (PIPKIIα in mouse cerebellum. Site-directed mutagenesis revealed that two conserved catalytic aspartate residues of PIPKIα and PIPKIIα are involved in the interaction with IRBIT. Furthermore, phosphatidylinositol 4-phosphate, Mg2+, and/or ATP interfered with the interaction, suggesting that IRBIT interacts with catalytic cores of PIPKs. Mutations of phosphorylation sites in the serine-rich region of IRBIT affected the selectivity of its interaction with PIPKIα and PIPKIIα. The structural flexibility of the serine-rich region, located in the intrinsically disordered protein region, is assumed to underlie the mechanism of this interaction. Furthermore, in vitro binding experiments and immunocytochemistry suggest that IRBIT and PIPKIα interact with the Na+/HCO3- cotransporter NBCe1-B. These results suggest that IRBIT forms signaling complexes with PIPKIα and NBCe1-B, whose activity is regulated by PI(4,5P2.

  15. Detection of Aspartic Proteinase Activities Using Gel Zymography.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani

    2017-01-01

    Gel zymography is a two-stage process where the proteins from the test sample are first separated by electrophoresis followed by the detection of the activity of hydrolytic enzymes. Many zymography procedures use sodium dodecyl sulfate (SDS) polyacrylamide gels copolymerized with an appropriate substrate. The procedure described here uses native polyacrylamide gel electrophoresis (PAGE) in the absence of both SDS and substrate. In order to visualize aspartic proteinase activity, the gel is impregnated in bovine hemoglobin at pH 3.0 for 15 min after the electrophoresis procedure. Subsequently, the gel is incubated in a humid container in the absence of hemoglobin for 1 h at 37 °C. At the end, the gel is stained with amido black and destained. Clear areas against a dark background corresponding to aspartic proteinase activities can be detected.

  16. Crystal structure ofClostridium acetobutylicumAspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    Science.gov (United States)

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase ( Ca AK; E.C. 2.7.2.4; Mw =48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. Ca AK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. Ca AK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  17. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L..

    Directory of Open Access Journals (Sweden)

    Zongyong Tong

    Full Text Available Alfalfa (Medicago sativa L. is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs, such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  18. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  19. Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk: An important allosteric enzyme for amino acids production

    Directory of Open Access Journals (Sweden)

    Babu A. Manjasetty

    2014-09-01

    Full Text Available Aspartate kinase (AK is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0 has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%. It is composed of two domains: an N-terminal catalytic domain (kinase domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing bacteria such as Clostridium tetani (64% sequence identity suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  20. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  1. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    Energy Technology Data Exchange (ETDEWEB)

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  2. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I.

    Science.gov (United States)

    Brzeska, H; Knaus, U G; Wang, Z Y; Bokoch, G M; Korn, E D

    1997-02-18

    Acanthamoeba class I myosins are unconventional, single-headed myosins that express actin-activated Mg2+-ATPase and in vitro motility activities only when a single serine or threonine in the heavy chain is phosphorylated by myosin I heavy chain kinase (MIHCK). Some other, but not most, class I myosins have the same consensus phosphorylation site sequence, and the two known class VI myosins have a phosphorylatable residue in the homologous position, where most myosins have an aspartate or glutamate residue. Recently, we found that the catalytic domain of Acanthamoeba MIHCK has extensive sequence similarity to the p21-activated kinase (PAK)/STE20 family of kinases from mammals and yeast, which are activated by small GTP-binding proteins. The physiological substrates of the PAK/STE20 kinases are not well characterized. In this paper we show that PAK1 has similar substrate specificity as MIHCK when assayed against synthetic substrates and that PAK1 phosphorylates the heavy chain (1 mol of P(i) per mol) and activates Acanthamoeba myosin I as MIHCK does. These results, together with the known involvement of Acanthamoeba myosin I, yeast myosin I, STE20, PAK, and small GTP-binding proteins in membrane- and cytoskeleton-associated morphogenetic transformations and activities, suggest that myosins may be physiological substrates for the PAK/STE20 family and thus mediators of these events.

  3. Attractant Regulation of the Aspartate Receptor–Kinase Complex: Limited Cooperative Interactions between Receptors and Effects of the Receptor Modification State†

    OpenAIRE

    Bornhorst, Joshua A.; Falke, Joseph J.

    2000-01-01

    The manner by which the bacterial chemotaxis system responds to a wide range of attractant concentrations remains incompletely understood. In principle, positive cooperativity between chemotaxis receptors could explain the ability of bacteria to respond to extremely low attractant concentrations. By utilizing an in vitro receptor-coupled kinase assay, the attractant-dependent response curve has been measured for the Salmonella typhimurium aspartate chemoreceptor. The attractant chosen, α-meth...

  4. Enzyme activity and allosteric characteristics of gamma-irradiated solid aspartate transcarbamylase

    International Nuclear Information System (INIS)

    Bigler, W.N.; Tolbert, B.M.

    1977-01-01

    Aspartate transcarbamylase purified from E. coli was lyophilized, irradiated in vacuo with γ radiation from a cesium-137 source, redissolved in buffer under a nitrogen atmosphere, and assayed for enzyme activity. Lyophilized and redissolved enzyme had normal catalytic and allosteric kinetic characteristics. The average D 37 observed with saturating substrate, 25 mM aspartate, was 4.1 Mrad. With less than saturating substrate, 5 mM aspartate, the activity increases from zero to 1.6 Mrad and then decreases with a D 37 of 7.2 Mrad. Inclusion of 1 mM CTP, an allosteric inhibitor, in the 5 mM aspartate assays results in a more pronounced maximum in the activity curve occurring at slightly higher dose, 2.2 Mrad. Inhibitability by CTP has a D 37 of 2.3 Mrad with doses below the activity maximum. Enzyme lyophilized in the presence of 1 mM CTP has a D 37 of 2.9 Mrad. ATCase activity changes caused by irradiation of lyophylized bacteria were qualitatively like the changes observed in the detailed studies with the purified enzyme. Apparent radiation sensitivities of ATCase in lyophilized bacteria were observed to vary with the technique used to disrupt the resuspended bacteria

  5. Measuring Kinase Activity-A Global Challenge.

    Science.gov (United States)

    Cann, Marissa L; McDonald, Ian M; East, Michael P; Johnson, Gary L; Graves, Lee M

    2017-11-01

    The kinase enzymes within a cell, known collectively as the kinome, play crucial roles in many signaling pathways, including survival, motility, differentiation, stress response, and many more. Aberrant signaling through kinase pathways is often linked to cancer, among other diseases. A major area of scientific research involves understanding the relationships between kinases, their targets, and how the kinome adapts to perturbations of the cellular system. This review will discuss many of the current and developing methods for studying kinase activity, and evaluate their applications, advantages, and disadvantages. J. Cell. Biochem. 118: 3595-3606, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Attractant Regulation of the Aspartate Receptor–Kinase Complex: Limited Cooperative Interactions between Receptors and Effects of the Receptor Modification State†

    Science.gov (United States)

    Bornhorst, Joshua A.; Falke, Joseph J.

    2010-01-01

    The manner by which the bacterial chemotaxis system responds to a wide range of attractant concentrations remains incompletely understood. In principle, positive cooperativity between chemotaxis receptors could explain the ability of bacteria to respond to extremely low attractant concentrations. By utilizing an in vitro receptor-coupled kinase assay, the attractant-dependent response curve has been measured for the Salmonella typhimurium aspartate chemoreceptor. The attractant chosen, α-methyl aspartate, was originally used to quantitate high receptor sensitivity at low attractant concentrations by Segall, Block, and Berg [(1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8987–8991]. The attractant response curve exhibits limited positive cooperativity, yielding a Hill coefficient of 1.7–2.4, and this Hill coefficient is relatively independent of both the receptor modification state and the mole ratio of CheA to receptor. These results disfavor models in which there are strong cooperative interactions between large numbers of receptor dimers in an extensive receptor array. Instead, the results are consistent with cooperative interactions between a small number of coupled receptor dimers. Because the in vitro receptor-coupled kinase assay utilizes higher than native receptor densities arising from overexpression, the observed positive cooperativity may overestimate that present in native receptor populations. Such positive cooperativity between dimers is fully compatible with the negative cooperativity previously observed between the two symmetric ligand binding sites within a single dimer. The attractant affinity of the aspartate receptor is found to depend on the modification state of its covalent adaptation sites. Increasing the the level of modification decreases the apparent attractant affinity at least 10-fold in the in vitro receptor-coupled kinase assay. This observation helps explain the ability of the chemotaxis pathway to respond to a broad range of

  7. Identification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, J.A.; Taylor, S.S.

    1988-09-20

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of (/sup 14/C)glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.

  8. Identification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Buechler, J.A.; Taylor, S.S.

    1988-01-01

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [ 14 C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified

  9. Identification of aspartate-184 as an essential residue in the catalytic subunit of cAMP-dependent protein kinase.

    Science.gov (United States)

    Buechler, J A; Taylor, S S

    1988-09-20

    The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation [Toner-Webb, J., & Taylor, S. S. (1987) Biochemistry 26, 7371]. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [14C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. In vitro effects of sodium benzoate on the activities of aspartate and ...

    African Journals Online (AJOL)

    The in vitro effects of varying concentrations sodium benzoate on the activities of aspartate (E.C. 2.6.1.1) and alanine (E.C. 2.6.1.2) aminotransferases (AST and ALT, respectively) and alkaline phosphatase (E.C. 3.1.3.1; abbreviated as ALP) from human erythrocytes of different genotypes (HbAA, HbAS and HbSS) were ...

  11. Kinase activity and specificity assay using synthetic peptides.

    Science.gov (United States)

    Wu, Xu Na; Schulze, Waltraud X

    2015-01-01

    Phosphorylation of substrate proteins by protein kinases can lead to activation or inactivation of signaling pathways or metabolic processes. Precise understanding of activity and specificity of protein kinases are important questions in characterization of kinase functions. Here, we describe a procedure to study kinase activity and specificity using kinase-GFP complexes purified from plant material and synthetic peptides as substrates. Magnetic GFP beads allow purifying receptor-like kinase-GFP complexes from microsomal fractions. Kinase-GFP complexes are then incubated with ATP and the synthetic peptides for kinase reaction. Phosphorylation of substrate peptides is then identified and quantified by mass spectrometry.

  12. On the catalytic role of the active site residue E121 of E. coli L-aspartate oxidase.

    Science.gov (United States)

    Tedeschi, Gabriella; Nonnis, Simona; Strumbo, Bice; Cruciani, Gabriele; Carosati, Emanuele; Negri, Armando

    2010-10-01

    L-aspartate oxidase (LASPO) is a flavoenzyme catalyzing the first step in the de novo biosynthesis of NAD+. The enzyme oxidizes L-aspartate both under aerobic and anaerobic conditions using oxygen as well as fumarate as electron acceptor. In accordance with its catalytic activities, LASPO displays strong primary and tertiary structure similarity with the flavin containing subunit of the proteins belonging to the succinate dehydrogenase/fumarate reductase family. The similarity extends to the active site residues, with LASPO differing from the other enzymes of the family only for the presence of a conserved glutamate (E121), which is substituted by apolar amino acids in the other enzymes. Three complementary approaches have been used to define the role of E121 in LASPO: characterization of mutants (E121A, E121Q, E121D and E121K), investigation of the catalytic activities of WT and mutants towards substrates and substrate analogues and molecular docking studies. All mutants retain fumarate reductase activity. On the contrary, all mutants lack L-aspartate oxidase activity, although retaining the ability to bind L-aspartate (except for E121K). These results and investigations on the oxidase activity towards substrate analogues suggest that the roles of E121 in catalysis include orienting L-aspartate in a productive binding mode and favouring proton abstraction from C2 by an active site base. Molecular docking studies of the substrate (L-aspartate), inhibitor (D-aspartate) and product (imino aspartate) in the active site of LASPO confirm that (a) the substrate/product energetically favoured orientation in the active site supports the conclusions reported above, (b) E121 interacts favourably with the charged amino group of the substrate and (c) different ligands might assume different orientations in the active site of the enzyme. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. MEK-1 phosphorylation by MEK kinase, Raf, and mitogen-activated protein kinase: analysis of phosphopeptides and regulation of activity.

    OpenAIRE

    Gardner, A M; Vaillancourt, R R; Lange-Carter, C A; Johnson, G L

    1994-01-01

    MEK-1 is a dual threonine and tyrosine recognition kinase that phosphorylates and activates mitogen-activated protein kinase (MAPK). MEK-1 is in turn activated by phosphorylation. Raf and MAPK/extracellular signal-regulated kinase kinase (MEKK) independently phosphorylate and activate MEK-1. Recombinant MEK-1 is also capable of autoactivation. Purified recombinant wild type MEK-1 and a mutant kinase inactive MEK-1 were used as substrates for MEKK, Raf, and autophosphorylation. MEK-1 phosphory...

  14. The effect of aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations on the expression and activity of vasopressin V2 receptor gene.

    Science.gov (United States)

    Najafzadeh, Hossein; Safaeian, Leila; Mirmohammad Sadeghi, Hamid; Rabbani, Mohammad; Jafarian, Abbas

    2010-01-01

    Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the present study attempted to shed some more light on the role of DRH motif in G protein coupling and V2R function with the use of site-directed mutagenesis. Nested PCR using specific primers was used to produce DNA fragments containing aspartate-lysine-isoleucine and aspartate-arginine-tyrosine mutations with replacements of the arginine to lysine and histidine to tyrosine, respectively. After digestion, these inserts were ligated into the pcDNA3 vector and transformation into E. coli HB101 was performed using heat shock method. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using diethylaminoethyl-dextran method, the adenylyl cyclase activity assay was performed for functional study. The cell surface expression was analyzed by indirect ELISA method. The functional assay indicated that none of these mutations significantly altered cAMP production and cell surface expression of V2R in these cells. Since some substitutions in arginine residue have shown to lead to the inactive V2 receptor, further studies are required to define the role of this residue more precisely. However, it seems that the role of the histidine residue is not critical in the V2 receptor function.

  15. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Molecular Imaging of the ATM Kinase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  17. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  18. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris.

    Science.gov (United States)

    Feijoo-Siota, Lucía; Rama, José Luis R; Sánchez-Pérez, Angeles; Villa, Tomás G

    2018-02-20

    Galium verum, also known as Lady's Bedstraw or Cheese Rennet, is an herbaceous perennial plant traditionally used in cheese-making. We used RACE PCR to isolate novel enzymes from Galium verum with the ability to clot milk. This approach generated two cDNA sequences (named preprogaline A and B) encoding proteins displaying the typical plant aspartic protease primary structure. Preprogaline B was expressed in the yeast Pichia pastoris, after deleting and replacing its original signal peptide with the yeast α-factor signal peptide from Saccharomyces cerevisiae. The secreted recombinant protein was obtained by growing P. pastoris in YPD medium and had the ability to clot milk. The mature form of progaline B is a heterodimeric glycosylated enzyme, with a molecular weight of approximately 48 kDa, that contains a heavy (30.7 kDa) and a light (13.5 kDa) polypeptide chains linked by disulfide bonds. Western blot analysis revealed that progaline B is activated by the acidification of the yeast culture medium and that enzymatic activation requires two steps. First the precursor protein is cleaved into two polypeptide chains by partial removal of the plant-specific insert (PSI) present in plant aspartic proteases; this is later followed by propeptide removal. By altering the pH of the P. pastoris culture medium, we were able to obtain either active or inactive forms of the enzyme. Recombinant progaline B displayed a κ-casein hydrolysis pattern analogous to those produced by the animal and microbial coagulants currently used in the dairy industry, but it exhibited a different digestion profile on α- and β-caseins. The plant protease progaline B displays milk-clotting activities suitable for the production of novel dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice.

    Science.gov (United States)

    Stoye, Diana; Schubert, Claudia; Goihl, Alexander; Guttek, Karina; Reinhold, Annegret; Brocke, Stefan; Grüngreiff, Kurt; Reinhold, Dirk

    2012-06-01

    Zinc is an essential trace element with a critical role in normal growth and development and in immune homeostasis. Zinc deficiency impairs both the innate and the adaptive immune system and can be normalized by zinc supplementation. On the other end of the spectrum, high dosages of zinc diminish immune cell functions similar to zinc deficiency. Here, we investigated the influence of zinc aspartate on proliferation and cytokine production of stimulated human T cells and mouse splenocytes in vitro. Furthermore, the effect of zinc aspartate was examined in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS) with a Th1/Th17 T cell-mediated immunopathogenesis. Zinc aspartate suppressed proliferation as well as IL-2, IL-10 and IL-17 production in stimulated human T cells and mouse splenocytes. Importantly, administration of a medium range dose of 30 μg/day zinc aspartate [1.5 mg/kg body weight (BW)] in a therapeutic manner led to a significant reduction of the clinical severity of the EAE during the first relapse of the disease. A lower zinc aspartate dose (6 μg/day, 0.3 mg/kg BW) had no significant therapeutic effect on the severity of the EAE, while administration of higher zinc aspartate amounts (120 μg/day, 6 mg/kg BW) led to more severe disease. Taken together, our data suggest that zinc aspartate can modulate activation, proliferation and cytokine production of effector T cells in vitro and in vivo and that activated autoreactive T cells may be potential therapeutic targets of tightly controlled zinc supplementation in autoimmune diseases like MS.

  20. p21-activated Kinase1(PAK1) can promote ERK activation in a kinase independent manner

    DEFF Research Database (Denmark)

    Wang, Zhipeng; Fu, Meng; Wang, Lifeng

    2013-01-01

    204) although phosphorylation of b-Raf (Ser445) and c-Raf (Ser 338) remained unchanged. Furthermore, increased activation of the PAK1 activator Rac1 induced the formation of a triple complex of Rac1, PAK1 and Mek1, independent of the kinase activity of PAK1. These data suggest that PAK1 can stimulate...

  1. Creatine kinase activity is associated with blood pressure

    NARCIS (Netherlands)

    Brewster, Lizzy M.; Mairuhu, Gideon; Bindraban, Navin R.; Koopmans, Richard P.; Clark, Joseph F.; van Montfrans, Gert A.

    2006-01-01

    BACKGROUND: We previously hypothesized that high activity of creatine kinase, the central regulatory enzyme of energy metabolism, facilitates the development of high blood pressure. Creatine kinase rapidly provides adenosine triphosphate to highly energy-demanding processes, including cardiovascular

  2. Triazacyclophane (TAC)-scaffolded histidine and aspartic acid residues as mimics of non-heme metalloenzyme active sites

    NARCIS (Netherlands)

    Albada, H.B.; Soulimani, F.; Jacobs, H.J.F.; Versluis, C.; Weckhuysen, B.M.; Liskamp, R.M.J.

    2012-01-01

    We describe the synthesis and coordination behaviour to copper(II) of two close structural triazacyclophane-based mimics of two often encountered aspartic acid and histidine containing metalloenzyme active sites. Coordination of these mimics to copper(I) and their reaction with molecular oxygen

  3. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    Science.gov (United States)

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Activation of oocyte phosphatidylinositol kinase by polyamines

    International Nuclear Information System (INIS)

    Allende, J.E.; Carrasco, D.; Allende, C.C.

    1987-01-01

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [ 32 ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H 1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  5. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Shimotohno, A.; Ohno, R.; Bišová, Kateřina; Sakaguchi, N.; Huang, J.; Koncz, C.; Uchimiya, H.; Umeda, M.

    2006-01-01

    Roč. 47, - (2006), s. 701-710 ISSN 0960-7412 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyclin -dependent kinase * cdk-activating kinase * cyclin Subject RIV: EE - Microbiology, Virology Impact factor: 6.565, year: 2006

  6. Secreted Aspartic Protease Cleavage of Candida albicans Msb2 Activates Cek1 MAPK Signaling Affecting Biofilm Formation and Oropharyngeal Candidiasis

    Science.gov (United States)

    Chadha, Sonia; Tati, Swetha; Conti, Heather R.; Hube, Bernhard; Cullen, Paul J.; Edgerton, Mira

    2012-01-01

    Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence. PMID:23139737

  7. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Science.gov (United States)

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  8. Processing, activity, and inhibition of recombinant cyprosin, an aspartic proteinase from cardoon (Cynara cardunculus).

    Science.gov (United States)

    White, P C; Cordeiro, M C; Arnold, D; Brodelius, P E; Kay, J

    1999-06-11

    The cDNA encoding the precursor of an aspartic proteinase from the flowers of the cardoon, Cynara cardunculus, was expressed in Pichia pastoris, and the recombinant, mature cyprosin that accumulated in the culture medium was purified and characterized. The resultant mixture of microheterogeneous forms was shown to consist of glycosylated heavy chains (34 or 32 kDa) plus associated light chains with molecular weights in the region of 14,000-18,000, resulting from excision of most, but not all, of the 104 residues contributed by the unique region known as the plant specific insert. SDS-polyacrylamide gel electrophoresis under non-reducing conditions indicated that disulfide bonding held the heavy and light chains together in the heterodimeric enzyme forms. In contrast, when a construct was expressed in which the nucleotides encoding the 104 residues of the plant specific insert were deleted, the inactive, unprocessed precursor form (procyprosin) accumulated, indicating that the plant-specific insert has a role in ensuring that the nascent polypeptide is folded properly and rendered capable of being activated to generate mature, active proteinase. Kinetic parameters were derived for the hydrolysis of a synthetic peptide substrate by wild-type, recombinant cyprosin at a variety of pH and temperature values and the subsite requirements of the enzyme were mapped using a systematic series of synthetic inhibitors. The significance is discussed of the susceptibility of cyprosin to inhibitors of human immunodeficiency virus proteinase and particularly of renin, some of which were found to have subnanomolar potencies against the plant enzyme.

  9. Evidence for the presence of proteolytically active secreted aspartic proteinase 1 of Candida parapsilosis in the cell wall

    Czech Academy of Sciences Publication Activity Database

    Vinterová, Zuzana; Šanda, Miloslav; Dostál, Jiří; Hrušková-Heidingsfeldová, Olga; Pichová, Iva

    2011-01-01

    Roč. 20, č. 12 (2011), s. 2004-2012 ISSN 0961-8368 R&D Projects: GA MŠk(CZ) LC531; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Candida parapsilosis * secreted aspartic proteinases * Sapp1p * cell wall * biotin * proteolytic activity Subject RIV: CE - Biochemistry Impact factor: 2.798, year: 2011

  10. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    OpenAIRE

    Maria Maddalena Di Fiore; Alessandra Santillo; Sara Falvo; Salvatore Longobardi; Gabriella Chieffi Baccari

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances...

  11. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    International Nuclear Information System (INIS)

    Ly, A.M.; Michaelis, E.K.

    1991-01-01

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [ 14 C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [ 14 C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA + led to a transient increase in the influx of the lipid-permeable anion probe S 14 CN - . These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the ∼69-kDa protein in the function of these ion channels

  12. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation of subs...... the Arabidopsis thaliana MAPKs MPK3, 4, and 6 and MAP2Ks MKK1, 2, 4, and 5. Future work needs to focus on identifying substrates of MAPKs, and on understanding how specificity is achieved among MAPK signaling pathways.......Eukaryotic mitogen-activated protein kinase (MAPK) cascades have evolved to transduce environmental and developmental signals into adaptive and programmed responses. MAPK cascades relay and amplify signals via three types of reversibly phosphorylated kinases leading to the phosphorylation...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  13. Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates

    DEFF Research Database (Denmark)

    Jers, Carsten; Pedersen, Malene Mejer; Paspaliari, Dafni Katerina

    2010-01-01

    P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine-phosphorylated prote......P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine......-phosphorylated proteins in B. subtilis. We found that the majority of these proteins could be phosphorylated by PtkA in vitro. Among these new substrates, single-stranded DNA exonuclease YorK, and aspartate semialdehyde dehydrogenase Asd were activated by PtkA-dependent phosphorylation. Because enzyme activity...

  14. Effect of K, Mg salts of aspartic acid on neuromuscular activity of mice following chronic irradiation

    International Nuclear Information System (INIS)

    Chlebovsky, O.; Chlebovska, K.; Praslicka, M.; Petrovicova, J.

    1982-01-01

    Female mice were irradiated with gamma radiation at dose rates of 2.3 Gy/day to a total dose of 16.1 Gy. In the drinking water they were given K and Mg salts of aspartic acid. The survival of mice was observed and their weight changes and viability using the test of neuromuscular coordination. At day 30 after irradiation, 89.5% of mice protected with aspartates as against 57.9% of mice unprotected and 100% of non-irradiated mice survived. The physical weight of the protected mice returned to normal by day 15 after irradiation; in unprotected mice at day 30. As concerns the viability test the protected mice were equally successful as non-irradiated, irradiated mice were less successful. (M.D.)

  15. SIRT3-dependent GOT2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth

    Science.gov (United States)

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-01-01

    The malate–aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate–aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD+ redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate–aspartate NADH shuttle activity and oxidative protection. PMID:25755250

  16. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth.

    Science.gov (United States)

    Yang, Hui; Zhou, Lisha; Shi, Qian; Zhao, Yuzheng; Lin, Huaipeng; Zhang, Mengli; Zhao, Shimin; Yang, Yi; Ling, Zhi-Qiang; Guan, Kun-Liang; Xiong, Yue; Ye, Dan

    2015-04-15

    The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection. © 2015 The Authors.

  17. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  18. 2,4-Dimethyl-5(4H)-oxazolone as reagent for activation and coupling of N-substituted aspartic acid.

    Science.gov (United States)

    Benoiton, N L; Chen, F M

    1994-08-01

    Reaction of the title oxazolone with N-benzyloxycarbonyl-L-aspartic acid in dichloromethane followed by addition of phenylalanine methyl ester.HCl and N-methylmorpholine gave a 90% yield of a mixture of alpha- and beta-isomers of Z-aspartylphenylalanine methyl esters in a 7:3 ratio. Reaction of the oxazolone with N-acetyl-L-aspartic acid anhydride gave a 75% yield of crystalline N-acetyl-L-aspartic acid anhydride. tert-Butoxycarbonylaspartic and Z-glutamic acids also underwent activation to give the anhydrides.

  19. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.

    Science.gov (United States)

    Domanova, Westa; Krycer, James; Chaudhuri, Rima; Yang, Pengyi; Vafaee, Fatemeh; Fazakerley, Daniel; Humphrey, Sean; James, David; Kuncic, Zdenka

    2016-01-01

    In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif

  20. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.

    Directory of Open Access Journals (Sweden)

    Westa Domanova

    Full Text Available In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds, making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same

  1. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases.

    Science.gov (United States)

    Marcotte, Douglas J; Liu, Yu-Ting; Arduini, Robert M; Hession, Catherine A; Miatkowski, Konrad; Wildes, Craig P; Cullen, Patrick F; Hong, Victor; Hopkins, Brian T; Mertsching, Elisabeth; Jenkins, Tracy J; Romanowski, Michael J; Baker, Darren P; Silvian, Laura F

    2010-03-01

    Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 A resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 A resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.

  2. Kinase activity ranking using phosphoproteomics data (KARP) quantifies the contribution of protein kinases to the regulation of cell viability.

    Science.gov (United States)

    Wilkes, Edmund H; Casado, Pedro; Rajeeve, Vinothini; Cutillas, Pedro R

    2017-09-01

    Cell survival is regulated by a signaling network driven by the activity of protein kinases; however, determining the contribution that each kinase in the network makes to such regulation remains challenging. Here, we report a computational approach that uses mass spectrometry-based phosphoproteomics data to rank protein kinases based on their contribution to cell regulation. We found that the scores returned by this algorithm, which we have termed kinase activity ranking using phosphoproteomics data (KARP), were a quantitative measure of the contribution that individual kinases make to the signaling output. Application of KARP to the analysis of eight hematological cell lines revealed that cyclin-dependent kinase (CDK) 1/2, casein kinase (CK) 2, extracellular signal-related kinase (ERK), and p21-activated kinase (PAK) were the most frequently highly ranked kinases in these cell models. The patterns of kinase activation were cell-line specific yet showed a significant association with cell viability as a function of kinase inhibitor treatment. Thus, our study exemplifies KARP as an untargeted approach to empirically and systematically identify regulatory kinases within signaling networks. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  4. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Hochachka and Somero 2002). Therefore, some animals have to initiate anaerobic metabolism to meet part of energy needs (Costanzo et al. 2004; Colson-Proch et al. 2009). Adenosine monophosphate-activated protein kinase.

  5. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP

    DEFF Research Database (Denmark)

    Peraldi, P; Frödin, M; Barnier, J V

    1995-01-01

    In PC12 cells, cAMP stimulates the MAP kinase pathway by an unknown mechanism. Firstly, we examined the role of calcium ion mobilization and of protein kinase C in cAMP-stimulated MAP kinase activation. We show that cAMP stimulates p44mapk independently of these events. Secondly, we studied the r...

  6. Auto-thiophosphorylation activity of Src tyrosine kinase.

    Science.gov (United States)

    Cabail, M Zulema; Chen, Emily I; Koller, Antonius; Miller, W Todd

    2016-07-07

    Intermolecular autophosphorylation at Tyr416 is a conserved mechanism of activation among the members of the Src family of nonreceptor tyrosine kinases. Like several other tyrosine kinases, Src can catalyze the thiophosphorylation of peptide and protein substrates using ATPγS as a thiophosphodonor, although the efficiency of the reaction is low. Here, we have characterized the ability of Src to auto-thiophosphorylate. Auto-thiophosphorylation of Src at Tyr416 in the activation loop proceeds efficiently in the presence of Ni(2+), resulting in kinase activation. Other tyrosine kinases (Ack1, Hck, and IGF1 receptor) also auto-thiophosphorylate in the presence of Ni(2+). Tyr416-thiophosphorylated Src is resistant to dephosphorylation by PTP1B phosphatase. Src and other tyrosine kinases catalyze auto-thiophosphorylation in the presence of Ni(2+). Thiophosphorylation of Src occurs at Tyr416 in the activation loop, and results in enhanced kinase activity. Tyr416-thiophosphorylated Src could serve as a stable, persistently-activated mimic of Src.

  7. Rapamycin Induces Mitogen-activated Protein (MAP) Kinase Phosphatase-1 (MKP-1) Expression through Activation of Protein Kinase B and Mitogen-activated Protein Kinase Kinase Pathways*

    Science.gov (United States)

    Rastogi, Ruchi; Jiang, Zhongliang; Ahmad, Nisar; Rosati, Rita; Liu, Yusen; Beuret, Laurent; Monks, Robert; Charron, Jean; Birnbaum, Morris J.; Samavati, Lobelia

    2013-01-01

    Mitogen-activated protein kinase phosphatase-1 (MKP-1), also known as dual specificity phosphatase-1 (DUSP-1), plays a crucial role in the deactivation of MAPKs. Several drugs with immune-suppressive properties modulate MKP-1 expression as part of their mechanism of action. We investigated the effect of mTOR inhibition through rapamycin and a dual mTOR inhibitor (AZD2014) on MKP-1 expression. Low dose rapamycin led to a rapid activation of both AKT and ERK pathways with a subsequent increase in MKP-1 expression. Rapamycin treatment led to phosphorylation of CREB, transcription factor 1 (ATF1), and ATF2, three transcription factors that bind to the cyclic AMP-responsive elements on the Mkp-1 promoter. Inhibition of either the MEK/ERK or the AKT pathway attenuated rapamycin-mediated MKP-1 induction. AZD2014 did not activate AKT but activated the ERK pathway, leading to a moderate MKP-1 induction. Using bone marrow-derived macrophages (BMDMs) derived from wild-type (WT) mice or mice deficient in AKT1 and AKT2 isoforms or BMDM from targeted deficiency in MEK1 and MEK2, we show that rapamycin treatment led to an increased MKP1 expression in BMDM from WT but failed to do so in BMDMs lacking the AKT1 isoform or MEK1 and MEK2. Importantly, rapamycin pretreatment inhibited LPS-mediated p38 activation and decreased nitric oxide and IL-6 production. Our work provides a conceptual framework for the observed immune modulatory effect of mTOR inhibition. PMID:24126911

  8. Profiling bacterial kinase activity using a genetic circuit

    DEFF Research Database (Denmark)

    van der Helm, Eric; Bech, Rasmus; Lehning, Christina Eva

    subtilis kinase PtkA, transmembrane activator TkmA and the repressor FatR to construct a genetic circuit in E. coli. By tuning the repressor and kinase expression level at the same time, we were able to show a 4.2-fold increase in signal upon kinase induction. We furthermore validated that the previously...... reported FatR Y45E mutation1 attenuates operator repression. This genetic circuit provides a starting point for computational protein design and a metagenomic library-screening tool....

  9. Expression, purification and kinase activity analysis of maize ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Kinase activity is essential for a protein kinase to perform its biological function. In previous study we have cloned a novel plant SnRK2 subfamily gene from maize and named it as ZmSPK1. In this study the. cDNA of ZmSPK1 with dHA-His6 tag was amplified by PCR and was subcloned into the yeast.

  10. Diacylglycerol kinase ζ regulates RhoA activation via a kinase-independent scaffolding mechanism

    DEFF Research Database (Denmark)

    Ard, Ryan; Mulatz, Kirk; Abramovici, Hanan

    2012-01-01

    , but the underlying mechanisms are unclear. Diacylglycerol kinase ζ (DGKζ), which phosphorylates diacylglycerol to yield phosphatidic acid, selectively dissociates Rac1 by stimulating PAK1-mediated phosphorylation of RhoGDI on Ser-101/174. Similarly, phosphorylation of RhoGDI on Ser-34 by protein kinase Cα (PKCα...... DGKζ functions as a scaffold to assemble a signaling complex that functions as a RhoA-selective, GDI dissociation factor. As a regulator of Rac1 and RhoA activity, DGKζ is a critical factor linking changes in lipid signaling to actin reorganization....

  11. Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase.

    OpenAIRE

    Albert, K A; Helmer-Matyjek, E; Nairn, A C; Müller, T H; Haycock, J W; Greene, L A; Goldstein, M; Greengard, P

    1984-01-01

    Protein kinase C, purified to homogeneity, was found to phosphorylate and activate tyrosine hydroxylase that had been partially purified from pheochromocytoma PC 12 cells. These actions of protein kinase C required the presence of calcium and phospholipid. This phosphorylation of tyrosine hydroxylase reduced the Km for the cofactor 6-methyltetrahydropterine from 0.45 mM to 0.11 mM, increased the Ki for dopamine from 4.2 microM to 47.5 microM, and produced no change in the Km for tyrosine. Lit...

  12. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, Wolfgang [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Mikkelsen, Nils Egil [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Clausen, Anders Ranegaard [Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden); Willer, Mette [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Eklund, Hans [Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Centre, SE-751 24 Uppsala (Sweden); Gojkovic, Zoran [ZGene A/S, Agern Alle 7, DK-2970 Horsholm (Denmark); Piskur, Jure, E-mail: Jure.Piskur@cob.lu.se [BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby (Denmark); Cell and Organism Biology, Lund University, Soelvegatan 35, SE-22362 Lund (Sweden)

    2009-05-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.

  13. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors.

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-06-18

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-D-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-D-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes.

  14. Synaptic Activity and Nuclear Calcium Signaling Protect Hippocampal Neurons from Death Signal-associated Nuclear Translocation of FoxO3a Induced by Extrasynaptic N-Methyl-d-aspartate Receptors*

    Science.gov (United States)

    Dick, Oliver; Bading, Hilmar

    2010-01-01

    Synaptic activity and the generation of nuclear calcium signals promote neuronal survival through a transcription-dependent process that is not fully understood. Here we show that one mechanism of activity-induced acquired neuroprotection involves the Forkhead transcription factor, FoxO3a, which is known to induce genomic death responses upon translocation from the cytosol to the nucleus. Depletion of endogenous FoxO3a using RNA interference renders hippocampal neurons more resistant to excitotoxic cell death. Using a FoxO3a-green fluorescent protein (GFP) fusion protein to monitor in real time the localization of FoxO3a in hippocampal neurons, we found that several cell death inducing stimuli, including the stimulation of extrasynaptic N-methyl-d-aspartate receptors, growth factor withdrawal, and oxygen-glucose deprivation, caused a swift translocation of FoxO3a-GFP from the cytosol to the cell nucleus. This translocation was inhibited in hippocampal neurons that had undergone prolonged periods of synaptic activity before exposure to cell death-inducing conditions. The activity-dependent protection from death signal-induced FoxO3a-GFP nuclear translocation required synaptic N-methyl-d-aspartate receptor activation and was dependent on nuclear calcium signaling and calcium/calmodulin-dependent protein kinase IV. The modulation of nucleo-cytoplasmic shuttling of FoxO3a may represent one mechanism through which nuclear calcium-induced genomic responses affect cell death processes. PMID:20404335

  15. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    Science.gov (United States)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  16. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    reported. In rat pheochromocytoma PC12 cells, we demonstrate here a stimulation of the MAP kinase isozyme extracellular signal-regulated kinase 1 (ERK1) following elevation of intracellular cAMP after exposure of the cells to isobutylmethylxanthine, cholera toxin, forskolin, or cAMP-analogues. cAMP acted...... upstream activator of ERK1 in the MAP kinase cascade. Supporting this view, forskolin and a cAMP analogue were found to increase the activity of MAP kinase kinase in PC12 cells, alone as well as in combination with phorbol ester. PACAP38 also stimulated in vivo 32P-labeling of ERK1 and MAP kinase kinase...... activity. Finally, cAMP or PACAP38 increased by 3-fold nerve growth factor-stimulated neurite formation in PC12 cells, which may be correlated with the potentiating effect of these agents on nerve growth factor-stimulated ERK1 activity....

  17. Nuclear localization of Lyn tyrosine kinase mediated by inhibition of its kinase activity

    International Nuclear Information System (INIS)

    Ikeda, Kikuko; Nakayama, Yuji; Togashi, Yuuki; Obata, Yuuki; Kuga, Takahisa; Kasahara, Kousuke; Fukumoto, Yasunori; Yamaguchi, Naoto

    2008-01-01

    Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification

  18. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  19. An active form of calcium and calmodulin dependant protein kinase ...

    African Journals Online (AJOL)

    The removal of the auto-inhibitory domain that negatively regulates the kinase activity in M. truncatula results in a constitutively-active form, inducing symbiotic responses in the absence of bacterial signals. In this study, we verified the functionality of a DMI3 variant and its ability to induce spontaneous nodules in M.

  20. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  1. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... to be an allosteric mechanism. Furthermore, we demonstrate that anisomycin- and tumor necrosis factor-alpha-induced phosphorylation of p53 at Ser-392, which is important for the transcriptional activity of this growth suppressor protein, requires p38 MAP kinase and CK2 activities....

  2. Prion protein is a key determinant of alcohol sensitivity through the modulation of N-methyl-D-aspartate receptor (NMDAR activity.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available The prion protein (PrP is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP(-/- mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion to ethanol inhibition of N-methyl-D-aspartate (NMDA receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP(-/- mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP(-/- mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP(-/- mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions.

  3. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    and protein levels of MAPKAPK3 were elevated in both HCV subgenomic replicon cells and cell culture-derived HCV (HCVcc)-infected cells. Silencing of MAPKAPK3 expression resulted in decreases in both protein and HCV infectivity levels but not in the intracellular HCV RNA level. We showed that MAPKAPK3......Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray......, approximately 100 cellular proteins were identified as HCV core-interacting partners. Of these candidates, mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3) was selected for further characterization. MAPKAPK3 is a serine/threonine protein kinase that is activated by stress and growth...

  4. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    subjects presenting with major VOC. Keywords: Serum creatine kinase activity, Serum inorganic phosphate concentration, Sickle cell disease,. Steady state, Vaso‑occlusive crisis. Original Article. Address for correspondence: Dr. John C Aneke,. Department of Hematology,. Nnamdi Azikiwe University Teaching. Hospital ...

  5. Differences in muscle pain and plasma creatine kinase activity after ...

    African Journals Online (AJOL)

    Objective. The aim of this study was to compare the acute changes in muscle pain and plasma creatine kinase (CK) activity following the 'up' and 'down' Comrades marathon. Design. This was a quasi-experimental design. Eleven male runners (39.7±9.3 years) completed the 'up' Comrades marathon, and 11 male runners ...

  6. VHH Activators and Inhibitors for Protein Kinase C Epsilon

    NARCIS (Netherlands)

    Summanen, M.M.I.

    2012-01-01

    Protein kinase C epsilon (PKCε), which is one of the novel PKC isozymes, is widely expressed throughout the body and has important roles in the function of the nervous, cardiovascular and immune systems. In order to better understand PKCε regulated pathways, isozyme specific activity modulators are

  7. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... ... Journal of Genetics; Volume 95; Issue 4. Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. CHENCUI HUANG KUN YU HUIYANG HUANG HAIHUI YE. RESEARCH ARTICLE Volume 95 Issue 4 December 2016 pp ...

  8. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    Background and Objectives: There is the recognition of a pattern of elevations of serum enzymes in hyperthyroid and hypothyroid patients. The aims of this study were to determine the activities of serum creatine kinase (CK) and lactate deydrogenase (LDH) in thyroid disorders, and to evaluate the relationship between CK, ...

  9. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    P = 0.002). Conclusion: The significant elevation in serum CK and LDH activities indicates that these can be used as parameters for screening hypothyroid patients but not hyperthyroid patients. Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase. Date of Acceptance: 28-Aug-2011.

  10. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    CHENCUI HUANG

    Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. CHENCUI HUANG1, KUN YU1, HUIYANG HUANG1,2 and HAIHUI YE1,2∗. 1College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, People's Republic of China.

  11. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... to the understanding of the molecular mechanism of acclimation to cold hardiness in S. paramamosain. [Huang C., Yu K., Huang H. and Ye H. 2016 Adenosine monophosphate-activated protein kinase from the mud crab, Scylla paramamosain: cDNA cloning and profiles under cold stress. J. Genet.

  12. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    Background: Biochemical parameters vary in subjects with different hemoglobin phenotypes, compared with normal controls. Aim: The aim was to evaluate serum creatine kinase (CK) activity and inorganic phosphate concentrations in Nigerian adults with homozygous and heterozygous hemoglobin phenotypes. Subjects ...

  13. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi

    Directory of Open Access Journals (Sweden)

    Vanila F. Palmeira

    2017-05-01

    Full Text Available Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs currently used in the treatment of human immunodeficiency virus (HIV have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i reduction on the conidial granularity; (ii irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv inhibition of ergosterol and lanosterol production; (v reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

  14. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... heat shock, UV irradiation and also to inflammatory cytokines. ERK is mainly activated by growth factors and phorbol esters. (Lewis et al. 1998; Cowan and Storey 2003). The activation of some MAPK family members by. M. tuberculosis H37Rv in human monocytes has already been reported. Song et al.

  15. MAP kinase activity increases during mitosis in early sea urchin embryos.

    Science.gov (United States)

    Philipova, R; Whitaker, M

    1998-09-01

    A MBP kinase activity increases at mitosis during the first two embryonic cell cycles of the sea urchin embryo. The activity profile of the MBP kinase is the same both in whole cell extracts and after immunoprecipitation with an anti-MAP kinase antibody (2199). An in-gel assay of MBP activity also shows the same activity profile. The activity is associated with the 44 kDa protein that cross-reacts with anti-MAP kinase antibodies. The 44 kDa protein shows cross-reactivity to anti-phosphotyrosine and MAP kinase-directed anti-phosphotyrosine/phosphothreonine antibodies at the times that MBP kinase activity is high. The 2199 antibody co-precipitates some histone H1 kinase activity, but the MBP kinase activity cannot be accounted for by histone H1 kinase-dependent phosphorylation of MBP. The MAP kinase 2199 antibody was used to purify the MBP kinase activity. Peptide sequencing after partial digestion shows the protein to be homologous to MAP kinases from other species. These data demonstrate that MAP kinase activation during nuclear division is not confined to meiosis, but also occurs during mitotic cell cycles. MAP kinase activity in immunoprecipitates also increases immediately after fertilization, which in the sea urchin egg occurs at interphase of the cell cycle. Treating unfertilized eggs with the calcium ionophore A23187 stimulates the increase in MAP kinase activity, demonstrating that a calcium signal can activate MAP kinase and suggesting that the activation of MAP kinase at fertilization is due to the fertilization-induced increase in cytoplasmic free calcium concentration. This signalling pathway must differ from the pathway responsible for calcium-induced inactivation of MAP kinase activity that is found in eggs that are fertilized in meiotic metaphase.

  16. Inhibiting MAP kinase activity prevents calcium transients and mitosis entry in early sea urchin embryos.

    Science.gov (United States)

    Philipova, Rada; Larman, Mark G; Leckie, Calum P; Harrison, Patrick K; Groigno, Laurence; Whitaker, Michael

    2005-07-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently, MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos, both kinases show a similar activation profile, peaking at the time of mitosis entry. We tested whether the activity of both kinases is required for mitosis entry and whether either kinase controls mitotic calcium signals. We found that reducing the activity of either mitotic kinase prevents nuclear envelope breakdown, despite the presence of a calcium transient, when cdk1/cyclin B kinase activity is alone inhibited. When MAP kinase activity alone was inhibited, the calcium signal was absent, suggesting that MAP kinase activity is required to generate the calcium transient that triggers nuclear envelope breakdown. However, increasing intracellular free calcium by microinjection of calcium buffers or InsP(3) while MAP kinase was inhibited did not itself induce nuclear envelope breakdown, indicating that additional MAP kinase-regulated events are necessary. After MAP kinase inhibition early in the cell cycle, the early events of the cell cycle (pronuclear migration/fusion and DNA synthesis) were unaffected, but chromosome condensation and spindle assembly are prevented. These data indicate that in sea urchin embryos, MAP kinase activity is part of a signaling complex alongside two components previously shown to be essential for entry into mitosis: the calcium transient and the increase in cdk1/cyclinB kinase activity.

  17. Timeless links replication termination to mitotic kinase activation.

    Directory of Open Access Journals (Sweden)

    Jayaraju Dheekollu

    2011-05-01

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  18. The Recruitment of AMP-activated Protein Kinase to Glycogen Is Regulated by Autophosphorylation*

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Chanda, Dipanjan; Scholz, Roland; Thali, Ramon F.; Tuerk, Roland; Stapleton, David I.; Gooley, Paul R.; Neumann, Dietbert

    2015-01-01

    The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins. PMID:25792737

  19. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation.

    Science.gov (United States)

    Oligschlaeger, Yvonne; Miglianico, Marie; Chanda, Dipanjan; Scholz, Roland; Thali, Ramon F; Tuerk, Roland; Stapleton, David I; Gooley, Paul R; Neumann, Dietbert

    2015-05-01

    The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Activation of ZmMKK10, a maize mitogen-activated protein kinase kinase, induces ethylene-dependent cell death.

    Science.gov (United States)

    Chang, Ying; Yang, Hailian; Ren, Dongtao; Li, Yuan

    2017-11-01

    Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development and stress responses. Here, we report that ZmMKK10, a maize MAP kinase kinase, positively regulates cell death. Sequence comparison to Arabidopsis MKKs has led to ZmMKK10 being classified as a group D MKK. Kinase activity analysis of recombinant ZmMKK10 showed that the Mg 2+ ion was required for its kinase activity. Transient expression of ZmMKK10 WT or ZmMKK10 DD (the active form of ZmMKK10) in maize mesophyll protoplast significantly increased the cell death rate. Inducible expression of ZmMKK10 WT or ZmMKK10 DD in Arabidopsis transgenic plants caused rapid HR-like cell death, whereas induction of ZmMKK10 KR (the inactive form of ZmMKK10) expression in transgenic plants did not yield the same phenotype. Genetic and pharmacological analysis revealed that ZmMKK10-induced cell death in transgenic plants requires the activation of Arabidopsis MPK3 and MPK6 and that it partially depended on ethylene biosynthesis. ZmMPK3 and ZmMPK7, the orthologues of Arabidopsis MPK3 and MPK6, interacted with ZmMKK10 in yeast and ZmMKK10 phosphorylated them both in vitro. Our results demonstrate that ZmMKK10 induces cell death in an ethylene-dependent manner. Furthermore, ZmMPK3 and ZmMPK7 may be the downstream MAPKs in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    Directory of Open Access Journals (Sweden)

    Koul Sweaty

    2004-06-01

    Full Text Available Abstract The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy.

  2. Emerging Roles of AMP-Activated Protein Kinase

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel

    The cellular energy sensor AMP-activated protein kinase (AMPK) is activated, when the energy balance of the cell decreases. AMPK has been proposed to regulate multiple metabolic processes. However, much of the evidence for these general effects of AMPK relies on investigations in cell systems...... exercise appears to inhibit pyruvate dehydrogenase (PDH) activity by an immediate up-regulation of pyruvate dehydrogenase kinase 4 (PDK4) protein content. Consequently, this may inhibit glucose oxidation and thereby generate conditions for increased FA oxidation and glycogen resynthesis in skeletal muscle...... be of importance for prioritising energy dissipation, inhibition of lipid storage pathways and regulation of mitochondrial and metabolic proteins, but this needs further investigations. In addition, we provide evidence that AMPK is regulating autophagic signalling in skeletal muscle. Thus, in skeletal muscle AMPK...

  3. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Science.gov (United States)

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  4. The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21-activated kinase (PAK).

    Science.gov (United States)

    Brzeska, H; Szczepanowska, J; Hoey, J; Korn, E D

    1996-10-25

    Acanthamoeba myosin I heavy chain (MIHC) kinase is a monomeric 97-kDa protein that is activated by binding to acidic phospholipids or by autophosphorylation. Activation by phospholipids is inhibited by Ca2+-calmodulin. In the accompanying paper (Brzeska, H., Martin, B., and Korn, E. D. (1996) J. Biol. Chem. 271, 27049-27055), we identified the catalytic domain as the COOH-terminal 35 kDa produced by trypsin digestion of phosphorylated MIHC kinase. In this paper, we report the cloning and sequencing of the corresponding cDNA and expression of fully active catalytic domain. The expressed catalytic domain has substrate specificity similar to that of native kinase and resistance to trypsin similar to that of fully phosphorylated MIHC kinase. MIHC kinase catalytic domain has only 25% sequence identity to the catalytic domain of protein kinase A and similarly low sequence identity to the catalytic domains of protein kinase C- and calmodulin-dependent kinases, but 50% sequence identity and 70% similarity to the p21-activated kinase (PAK) and STE20 family of kinases. This suggests that MIHC kinase is (at least) evolutionarily related to the PAK family, whose activities are regulated by small GTP-binding proteins. The homology includes the presence of a potential MIHC kinase autophosphorylation site as well as conserved Tyr and Ser/Thr residues in the region corresponding to the P+1 loop of protein kinase A. A synthetic peptide corresponding to this region of MIHC kinase is phosphorylated by both the expressed catalytic domain and native MIHC kinase.

  5. Serum γ-Glutamyltransferase, Alanine Aminotransferase and Aspartate Aminotransferase Activity in Healthy Blood Donor of Different Ethnic Groups in Gorgan.

    Science.gov (United States)

    Marjani, Abdoljalal; Mehrpouya, Masoumeh; Pourhashem, Zeinab

    2016-07-01

    Measure of liver enzymes may help to increase safety of blood donation for both blood donor and recipient. Determination of liver enzymes may prepare valuable clinical information. To assess serum γ-Glutamyltransferase (GGT), Alanine Aminotransferase (ALT), and Aspartate Aminotransferase (AST) activities in healthy blood donors in different ethnic groups in Gorgan. This study was performed in 450 healthy male blood donors, in three ethnic groups (Fars, Sistanee and Turkman) who attended Gorgan blood transfusion center. Liver enzymes (GGT, ALT and AST) were determined. Serum AST and ALT in three ethnic groups were significant except for serum GGT levels. There was significant correlation between family histories of liver disease and systolic blood pressure and AST in Fars, and GGT in Sistanee ethnic groups. Several factors, such as age, family history of diabetes mellitus, family history of liver disease and smoking habit had no effect on some liver enzymes in different ethnic groups in this area. Variation of AST, ALT, and GGT enzyme activities in healthy subjects was associated with some subjects in our study groups. According to our study, it suggests that screening of AST and GGT enzymes in subjects with family history of liver disease is necessary in different ethnic groups.

  6. Protein tyrosine kinase but not protein kinase C inhibition blocks receptor induced alveolar macrophage activation

    Directory of Open Access Journals (Sweden)

    K. Pollock

    1993-01-01

    Full Text Available The selective enzyme inhibitors genistein and Ro 31-8220 were used to assess the importance of protein tyrosine kinase (PTK and protein kinase C (PKC, respectively, in N-formyl-methionyl-leucyl-phenylalanine (FMLP induced generation of superoxide anion and thromboxane B2 (TXB2 in guinea-pig alveolar macrophages (AM. Genistein (3–100 μM dose dependently inhibited FMLP (3 nM induced superoxide generation in non-primed AM and TXB2 release in non-primed or in lipopolysaccharide (LPS (10 ng/ml primed AM to a level > 80% but had litle effect up to 100 μM on phorbol myristate acetate (PMA (10 nM induced superoxide release. Ro 31-8220 inhibited PMA induced superoxide generation (IC50 0.21 ± 0.10 μM but had no effect on or potentiated (at 3 and 10 μM FMLP responses in non-primed AM. In contrast, when present during LPS priming as well as during FMLP challenge Ro 31-8220 (10 μM inhibited primed TXB2 release by > 80%. The results indicate that PTK activation is required for the generation of these inflammatory mediators by FMLP in AM. PKC activation appears to be required for LPS priming but not for transducing the FMLP signal; rather, PKC activation may modulate the signal by a negative feedback mechanism.

  7. Heart 6-phosphofructo-2-kinase activation by insulin requires PKB (protein kinase B), but not SGK3 (serum- and glucocorticoid-induced protein kinase 3).

    OpenAIRE

    Mouton, Veronique; Toussaint, Louise; Vertommen, Didier; Gueuning, Marie-Agnes; Maisin, Liliane; Havaux, Xavier; Sanchez-Canedo, Cossette; Bertrand, Luc; Dequiedt, Franck; Hemmings, Brian A; Hue, Louis; Rider, Mark H

    2010-01-01

    On the basis of transfection experiments using a dominant-negative approach, our previous studies suggested that PKB (protein kinase B) was not involved in heart PFK-2 (6-phosphofructo2-kinase) activation by insulin. Therefore we first tested whether SGK3 (serum- and glucocorticoid-induced protein kinase 3) might be involved in this effect. Treatment of recombinant heart PFK-2 with [gamma-32P]ATP and SGK3 in vitro led to PFK-2 activation and phosphorylation at Ser466 and Ser483. However, in H...

  8. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. K63-Linked Ubiquitination in Kinase Activation and Cancer

    International Nuclear Information System (INIS)

    Wang, Guocan; Gao, Yuan; Li, Liren; Jin, Guoxiang; Cai, Zhen; Chao, Jui-I; Lin, Hui-Kuan

    2012-01-01

    Ubiquitination has been demonstrated to play a pivotal role in multiple biological functions, which include cell growth, proliferation, apoptosis, DNA damage response, innate immune response, and neuronal degeneration. Although the role of ubiquitination in targeting proteins for proteasome-dependent degradation have been extensively studied and well-characterized, the critical non-proteolytic functions of ubiquitination, such as protein trafficking and kinase activation, involved in cell survival and cancer development, just start to emerge, In this review, we will summarize recent progresses in elucidating the non-proteolytic function of ubiquitination signaling in protein kinase activation and its implications in human cancers. The advancement in the understanding of the novel functions of ubiquitination in signal transduction pathways downstream of growth factor receptors may provide novel paradigms for the treatment of human cancers.

  10. INHIBITING MAP KINASE ACTIVITY PREVENTS CALCIUM TRANSIENTS AND MITOSIS ENTRY IN EARLY SEA URCHIN EMBRYOS

    OpenAIRE

    Philipova, Rada; Larman, Mark G.; Leckie, Calum P.; Harrison, Patrick K.; Groigno, Laurence; Whitaker, Michael

    2005-01-01

    A transient calcium increase triggers nuclear envelope breakdown (mitosis entry) in sea urchin embryos. Cdk1/cyclin B kinase activation is also known to be required for mitosis entry. More recently MAP kinase activity has also been shown to increase during mitosis. In sea urchin embryos both kinases show a similar activation profile, peaking at the time of mitosis entry.

  11. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    Science.gov (United States)

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola.

  12. Mitogen-activated protein kinases in the acute diabetic myocardium

    Czech Academy of Sciences Publication Activity Database

    Strnisková, M.; Barančík, M.; Neckář, Jan; Ravingerová, T.

    2003-01-01

    Roč. 249, 1-2 (2003), s. 59-65 ISSN 0300-8177 R&D Projects: GA MŠk LN00A069 Grant - others:VEGA(SK) 2/2063/22 Institutional research plan: CEZ:AV0Z5011922 Keywords : experimental diabetes * ischemia * mitogen-activated protein kinases (MAPK) Subject RIV: ED - Physiology Impact factor: 1.763, year: 2003

  13. Integrative Model for Differential Signaling Pathways of the Ionotropic Glutamate Receptor Activated by N-methyl-D-aspartate

    Directory of Open Access Journals (Sweden)

    Sonia Luz Albarracín, MSc

    2007-09-01

    Full Text Available The ionotropic glutamate receptor activated byN-methyl-D-aspartate (iGluR-NMDA is amultiheteromeric complex constituted from bythree to five subunits belonging to by threedifferent kinds of subunits known as NR1, NR2ADy NR3A y B. It is well established the participationof iGluR-NMDA complexes in a broadrange of physiological, pathological, and as intermediaryin pharmacological processes of neuralsystems.In the CNS, iGluR-NMDA participates inlearning, memory, plasticity, neural differentiation,neural migration, and apoptosis, amongothers. In addition, from the pharmacologicalpoint of view the iGluR-NMDA is playing a rolein excitotoxicity, drugs-addiction and otherdependences. How the same complex can participatein a significant broad group of neuralactivities is a valid question after a literaturereview.A carefully analysis shows that iGluR-NMDAinteracts, at some level, with a big number ofintracellular proteins belonging to signaling proteinsfamily, support proteins, modulatorproteins, cytoskeleton, and enzymes, resultingin interactions with more than a 160 proteins, atdifferent interaction levels and acting with intracellularproteins.In this work we report a proposal for amodel of differential signaling cascade pathwaysgenerated by the iGluR-NMDA gating.The model shows at least the possibility of threedifferent signaling pathways.

  14. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengchang Liao

    2016-01-01

    Full Text Available Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

  15. Aspartate protects Lactobacillus casei against acid stress.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.

  16. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells

    DEFF Research Database (Denmark)

    Frödin, M; Peraldi, P; Van Obberghen, E

    1994-01-01

    Mitogen-activated protein (MAP) kinases are activated in response to a large variety of extracellular signals, including growth factors, hormones, and neurotransmitters, which activate distinct intracellular signaling pathways. Their activation by the cAMP-dependent pathway, however, has not been...... reported. In rat pheochromocytoma PC12 cells, we demonstrate here a stimulation of the MAP kinase isozyme extracellular signal-regulated kinase 1 (ERK1) following elevation of intracellular cAMP after exposure of the cells to isobutylmethylxanthine, cholera toxin, forskolin, or cAMP-analogues. cAMP acted...... synergistically with phorbol ester, an activator of protein kinase C, in the stimulation of ERK1. In accordance with this observation, the peptide neurotransmitter pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), which stimulates cAMP production as well as phosphatidylinositol breakdown in PC12...

  17. Adenosine A1 receptor activation modulates N-methyl-d-aspartate (NMDA) preconditioning phenotype in the brain.

    Science.gov (United States)

    Constantino, Leandra C; Pamplona, Fabrício A; Matheus, Filipe C; Ludka, Fabiana K; Gomez-Soler, Maricel; Ciruela, Francisco; Boeck, Carina R; Prediger, Rui D; Tasca, Carla I

    2015-04-01

    N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral responses in the open field and hot plate tests. NMDA preconditioning increased glutamate uptake into hippocampal slices without altering the expression of glutamate transporter GLT-1. Interestingly, NMDA preconditioning also induced antinociception in the hot plate test and both effects were reversed by post-activation of A1R with the agonist CCPA (0.2mg/kg, i.p.). NMDA preconditioning or A1R modulation did not alter locomotor activity in the open field. Overall, the results described herein provide new evidence that post-activation of A1R modulates NMDA preconditioning-mediated responses, pointing to the importance of the cross-talk between glutamatergic and adenosinergic systems to neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evidence for an Elevated Aspartate pKa in the Active Site of Human Aromatase*

    Science.gov (United States)

    Di Nardo, Giovanna; Breitner, Maximilian; Bandino, Andrea; Ghosh, Debashis; Jennings, Gareth K.; Hackett, John C.; Gilardi, Gianfranco

    2015-01-01

    Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp309 in substrate binding and catalysis. These studies predicted an elevated pKa for Asp309 and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp309 with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp309 based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pKa of 8.2 observed for androstenedione binding to the side chain of Asp309. To our knowledge, this work represents the first experimental assignment of a pKa value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7–8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures. PMID:25425647

  19. A BCR-ABL Kinase Activity-Independent Signaling Pathway in Chronic Myelogenous Leukemia

    National Research Council Canada - National Science Library

    Li, Shaoguang

    2008-01-01

    .... We identified Src kinases as key molecules in this BCR- ABL kinase activity-independent pathway and they are essential for leukemic cells to survive imatinib treatment and for CML transition to lymphoid blast crisis...

  20. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  1. Spinach Pyruvate Kinase Isoforms 1

    Science.gov (United States)

    Baysdorfer, Chris; Bassham, James A.

    1984-01-01

    Pyruvate kinase from spinach (Spinacea oleracea L.) leaves consists of two isoforms, separable by blue agarose chromatography. Both isoforms share similar pH profiles and substrate and alternate nucleotide Km values. In addition, both isoforms are inhibited by oxalate and ATP and activated by AMP. The isoforms differ in their response to three key metabolites; citrate, aspartate, and glutamate. The first isoform is similar to previously reported plant pyruvate kinases in its sensitivity to citrate inhibition. The Ki for this inhibition is 1.2 millimolar citrate. The second isoform is not affected by citrate but is regulated by aspartate and glutamate. Aspartate is an activator with a Ka of 0.05 millimolar, and glutamate is an inhibitor with a Ki of 0.68 millimolar. A pyruvate kinase with these properties has not been previously reported. Based on these considerations, we suggest that the activity of the first isoform is regulated by respiratory metabolism. The second isoform, in contrast, may be regulated by the demand for carbon skeletons for use in ammonia assimilation. PMID:16663425

  2. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We...... investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...... the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S...

  3. Structures of Rhodopsin Kinase in Different Ligand States Reveal Key Elements Involved in G Protein-coupled Receptor Kinase Activation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Puja; Wang, Benlian; Maeda, Tadao; Palczewski, Krzysztof; Tesmer, John J.G. (Case Western); (Michigan)

    2008-10-08

    G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1{center_dot}(Mg{sup 2+}){sub 2} {center_dot}ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

  4. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  5. Activation of the Antiviral Kinase PKR and Viral Countermeasures

    Directory of Open Access Journals (Sweden)

    Bianca Dauber

    2009-10-01

    Full Text Available The interferon-induced double-stranded (dsRNA-dependent protein kinase (PKR limits viral replication by an eIF2α-mediated block of translation. Although many negative-strand RNA viruses activate PKR, the responsible RNAs have long remained elusive, as dsRNA, the canonical activator of PKR, has not been detected in cells infected with such viruses. In this review we focus on the activating RNA molecules of different virus families, in particular the negative-strand RNA viruses. We discuss the recently identified non-canonical activators 5’-triphosphate RNA and the vRNP of influenza virus and give an update on strategies of selected RNA and DNA viruses to prevent activation of PKR.

  6. An evaluation on the activity level of Aspartate aminotransferase and Alkaline phosphatase nzymes in peri-implant sulcus fluid

    Directory of Open Access Journals (Sweden)

    Paknegad M. Assistant Professor

    2003-07-01

    Full Text Available Statement of Problem: The correlation between the activity of aspartate aminotransferase (AST and alkaline phosphatase (ALP enzymes in gingival sulcular fluid (GCF with inflammation and periodontal attachment loss has been proved, however there are not adequate studies about dental implants. Purpose: The aim of present study was to investigate the presence and activity level of AST & ALP and their correlation with pocket depth (PD and bleeding of peri-implant slcular fluid (PISF, and to evaluate the possibility of using these assessments as a diagnostic index in oral implantology. Material and Methods: In this study, 41 implants as test group and 41 contralateral teeth as control group, in 21 patients were evaluated. At first visit, the general information about implants and the values of pocket probing depth (PPD, modified sulcus bleeding index (mSBl and modified plaque index (mPI were recorded. At the second visit, samples of GCF/PISF were collected. AST & ALP activity was determined spectrophotometrically and data were analyzed by "t", "Mann-Whitney" tests and Pearson Spearman correlation coefficient."nResults: The results showed that there was a significant difference in the activity of AST between two study groups (P<0.0001. The average activity of ALP in test group was more than control group but the difference was not significant. After elimination of the confounding variables, the average AST in test group was 54.6 (S£=2.3 and in control groups was 44.8 (SE=2.3 (P=0.004. The average ALP in test group (SE=2.2 and in control (SE=2.2 were 36.6 and 35.4, respectively. Values of AST and ALP were positively correlated with other clinical parameters such as PD and mSBI which was significant in test group."nConclusion: The present study suggests that PISF analysis could be considered as a proper diagnostic strategy in the evaluation of dental implant success.

  7. Elevated cyclin A associated kinase activity promotes sensitivity of metastatic human cancer cells to DNA antimetabolite drug.

    Science.gov (United States)

    Wang, Jin; Yin, Hailin; Panandikar, Ashwini; Gandhi, Varsha; Sen, Subrata

    2015-08-01

    Drug resistance is a major obstacle in successful systemic therapy of metastatic cancer. We analyzed the involvement of cell cycle regulatory proteins in eliciting response to N (phosphonoacetyl)-L-aspartate (PALA), an inhibitor of de novo pyrimidine synthesis, in two metastatic variants of human cancer cell line MDA-MB-435 isolated from lung (L-2) and brain (Br-1) in nude mouse, respectively. L-2 and Br-l cells markedly differed in their sensitivity to PALA. While both cell types displayed an initial S phase delay/arrest, Br-l cells proliferated but most L-2 cells underwent apoptosis. There was distinct elevation in cyclin A, and phosphorylated Rb proteins concomitant with decreased expression of bcl-2 protein in the PALA treated L-2 cells undergoing apoptosis. Markedly elevated cyclin A associated and cdk2 kinase activities together with increased E2F1-DNA binding were detected in these L-2 cells. Induced ectopic cyclin A expression sensitized Br-l cells to PALA by activating an apoptotic pathway. Our findings demonstrate that elevated expression of cyclin A and associated kinase can activate an apoptotic pathway in cells exposed to DNA antimetabolites. Abrogation of this pathway can lead to resistance against these drugs in metastatic variants of human carcinoma cells.

  8. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline...... and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction...... of the inhibitors reduced adrenaline-induced HSL activation in soleus muscle. Both phorbol-12-myristate-13-acetate (PMA), which activates PKC and, in turn, ERK, and caffeine, which increases intracellular Ca2+ without eliciting contraction, increased HSL activity. Activated ERK increased HSL activity in supernatant...

  9. Overexpression of Populus trichocarpa Mitogen-Activated Protein Kinase Kinase4 Enhances Salt Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Chengjun Yang

    2017-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK is one of the factors of cascade reactions affecting responses to signal pathway of environmental stimuli. Throughout the life of plants, MAPK family members participate in signal transduction pathways and regulate various intracellular physiological and metabolic reactions. To gain insights into regulatory function of MAPK kinase (MAPKK in Populus trichocarpa under salt stress, we obtained full-length cDNA of PtMAPKK4 and analyzed different expression levels of PtMAPKK4 gene in leaves, stems, and root organs. The relationship between PtMAPKK4 and salt stress was studied by detecting expression characteristics of mRNA under 150 mM NaCl stress using real-time quantitative polymerase chain reaction. The results showed that expression of PtMAPKK4 increased under salt (NaCl stress in leaves but initially reduced and then increased in roots. Thus, salt stress failed to induce PtMAPKK4 expression in stems. PtMAPKK4 possibly participates in regulation of plant growth and metabolism, thereby improving its salt tolerance. We used Saccharomyces cerevisiae strain INVScI to verify subcellular localization of PtMAPKK4 kinase. The yeast strains containing pYES2-PtMAPKK4-GFP plasmid expressed GFP fusion proteins under the induction of d-galactose, and the products were located in nucleus. These results were consistent with network prediction and confirmed location of PtMAPKK4 enzyme in the nucleus. We tested NaCl tolerance in transgenic tobacco lines overexpressing PtMAPKK4 under the control of 35S promoter at germination stage to detect salt tolerance function of PtMAPKK4. Compared withK326 (a wild-type tobacco, lines overexpressing PtMAPKK4 showed a certain degree of improvement in tolerance, germination, and growth. NaCl inhibited growth of overexpressed line and K326 at the seedling stage. However, statistical analysis showed longer root length, higher fresh weight, and lower MDA content in transgenic lines in

  10. Concentrações de creatino quinase, aspartato aminotransferase e desidrogenase lática em potros do nascimento até os seis meses de idade Concentration of creatine kinase, aspartate aminotransferase and lactate dehydrogenase in foals from birth up to sixth month

    Directory of Open Access Journals (Sweden)

    Elisiane Lourdes Da Cás

    2001-12-01

    Full Text Available Dez potros da raça Puro Sangue de Corrida (PSC, de ambos os sexos, foram avaliados quanto à concentração das enzimas séricas creatino quinase (CK, aspartato aminotransferase (AST e deshidrogenase lática (DHL. Foram colhidas amostras sangüíneas diariamente do 1º ao 7ºdia de vida e depois aos 15, 30, 60, 90, 120, 150 e 180 dias de idade. A concentração da CK mostrou um decréscimo significativo (pTen Thoroughbred foals, male and female, had the seric concentration of creatine kinase (CK, aspartate aminotransferase (AST and lactate dehydrogenase (LDH determined. Blood samples were collected every day from days 1 to 7 and on days 15, 30, 60, 90, 120, 150 and 180 of age. CK activity decreased significantly (p< 0.0003 in the first week and showed significant variation between day 15 and 6 months of age. AST showed a significant (p< 0.0001 increase in its values until 102 days of age, decreasing subsequently until 6 months of age. LDH values decreased significantly (p< 0.0002 between days 15 and 120, increasing subsequently until 6 months of age. At 6 months of age CK, AST and LDH activities were close to those of adult horses.

  11. The effect of ammonium ions on the activity of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase in Cucumis sativus L. seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubiak-Dobosz

    2014-01-01

    Full Text Available Changes in the activity of glutamate dehydrogenase (GDH, alanine aminotransferase (GPT and aspartate aminotransferase (GOT were studied in various organs of Cucumis sativus L. seedlings in relation to the uptake of mineral nitrogen (in form of N03- or NH4+ from the medium. Activity of GDH, GPT, and GOT was higher in young leaves and roots of cucumber seedlings if the plants developed- in an ammonium medium. No similar changes of aminotransferases activity were noted in the cotyledons. Factors affecting varying effect of ammonium ions upon GPT and GOT activity are discussed for particular organs of cucumber seedlings.

  12. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27.

    Science.gov (United States)

    Freshney, N W; Rawlinson, L; Guesdon, F; Jones, E; Cowley, S; Hsuan, J; Saklatvala, J

    1994-09-23

    An IL-1-stimulated protein kinase cascade resulting in phosphorylation of the small heat shock protein hsp27 has been identified in KB cells. It is distinct from the p42 MAP kinase cascade. An upstream activator kinase phosphorylated a 40 kDa kinase (p40) upon threonine and tyrosine residues, which in turn phosphorylated a 50 kDa kinase (p50) upon threonine (and some serine) residues. p50 phosphorylated hsp27 upon serine. p40 and p50 were purified to near homogeneity. All three components were inactivated by protein phosphatase 2A, and p40 was inactivated by protein tyrosine phosphatase 1B. The substrate specificity of p40 differed from that of p42 and p54 MAP kinases. The upstream activator was not a MAP kinase kinase. p50 resembled MAPKAPK-2 and may be identical.

  13. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    International Nuclear Information System (INIS)

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M.

    1990-01-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from [ 14 C]asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from [ 14 C]asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis

  14. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  15. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...... remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim...... was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease...

  16. Unlocking Doors without Keys: Activation of Src by Truncated C-terminal Intracellular Receptor Tyrosine Kinases Lacking Tyrosine Kinase Activity

    Directory of Open Access Journals (Sweden)

    Belén Mezquita

    2014-02-01

    Full Text Available One of the best examples of the renaissance of Src as an open door to cancer has been the demonstration that just five min of Src activation is sufficient for transformation and also for induction and maintenance of cancer stem cells [1]. Many tyrosine kinase receptors, through the binding of their ligands, become the keys that unlock the structure of Src and activate its oncogenic transduction pathways. Furthermore, intracellular isoforms of these receptors, devoid of any tyrosine kinase activity, still retain the ability to unlock Src. This has been shown with a truncated isoform of KIT (tr-KIT and a truncated isoform of VEGFR-1 (i21-VEGFR-1, which are intracellular and require no ligand binding, but are nonetheless able to activate Src and induce cell migration and invasion of cancer cells. Expression of the i21-VEGFR-1 is upregulated by the Notch signaling pathway and repressed by miR-200c and retinoic acid in breast cancer cells. Both Notch inhibitors and retinoic acid have been proposed as potential therapies for invasive breast cancer.

  17. Activation of mitogen-activated protein kinase by heat shock treatment in Drosophila.

    OpenAIRE

    Chen, F; Torres, M; Duncan, R F

    1995-01-01

    Heat shock treatment of Drosophila melanogaster tissue culture cells causes increased tyrosine phosphorylation of several 44 kDa proteins, which are identified as Drosophila mitogen-activated protein (MAP) kinases. Tyrosine phosphorylation occurs within 5 min, and is maintained at high levels during heat shock. It decreases to basal levels during recovery, concurrent with the repression of heat shock transcription and heat-shock-protein synthesis. The increased MAP kinase tyrosine phosphoryla...

  18. Aspartic protease inhibitory and nematocidal activity of phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (Percival dianhydroosazone

    Directory of Open Access Journals (Sweden)

    El Sayed H. El Ashry

    2014-04-01

    Full Text Available We synthesized Phenyl-4-(2-phenylhydrazonohexahydrofuro[3,2-c]pyridazin-7-ol (compound 3. The structure compound 3 was elucidated with IR, 1H NMR, 13C NMR and EIMS spectra. Compound 3 showed potent inhibitory activity against aspartic proteases, human cathepsin D and Plasmodium falciparum plasmepsin-II with IC50 = 20 μM. Enzyme-inhibitor complexes were predicted to stabilize by electrostatic and hydrophobic interactions between the side chains of amino acid residues at the active center and compound 3. Moreover, compound 3 displayed good nematocidal activity against all developmental stages of C. elegans.

  19. Arctigenin protects against steatosis in WRL68 hepatocytes through activation of phosphoinositide 3-kinase/protein kinase B and AMP-activated protein kinase pathways.

    Science.gov (United States)

    Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei

    2018-02-11

    Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2017. Published by Elsevier Inc.

  20. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed...... knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...... replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling....

  1. TPX2 Protein of Arabidopsis Activates Aurora Kinase 1, But Not Aurora Kinase 3 In Vitro

    Czech Academy of Sciences Publication Activity Database

    Tomaštíková, Eva; Demidov, D.; Jeřábková, Hana; Binarová, Pavla; Houben, A.; Doležel, Jaroslav; Petrovská, Beáta

    2015-01-01

    Roč. 33, č. 6 (2015), s. 1988-1995 ISSN 0735-9640 R&D Projects: GA ČR(CZ) GA14-28443S; GA MŠk(CZ) LO1204; GA ČR GAP501/12/2333 Institutional support: RVO:61389030 ; RVO:61388971 Keywords : Aurora kinase * Targeting protein for Xklp2 * In vitro kinase assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.304, year: 2015

  2. High quality, small molecule-activity datasets for kinase research [version 3; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rajan Sharma

    2016-10-01

    Full Text Available Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR data. Bioactivity databases such as the Kinase Knowledgebase (KKB, WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note.

  3. High quality, small molecule-activity datasets for kinase research [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rajan Sharma

    2016-06-01

    Full Text Available Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR data. Bioactivity databases such as the Kinase Knowledgebase (KKB, WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note.

  4. High quality, small molecule-activity datasets for kinase research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Rajan Sharma

    2016-07-01

    Full Text Available Kinases regulate cell growth, movement, and death. Deregulated kinase activity is a frequent cause of disease. The therapeutic potential of kinase inhibitors has led to large amounts of published structure activity relationship (SAR data. Bioactivity databases such as the Kinase Knowledgebase (KKB, WOMBAT, GOSTAR, and ChEMBL provide researchers with quantitative data characterizing the activity of compounds across many biological assays. The KKB, for example, contains over 1.8M kinase structure-activity data points reported in peer-reviewed journals and patents. In the spirit of fostering methods development and validation worldwide, we have extracted and have made available from the KKB 258K structure activity data points and 76K associated unique chemical structures across eight kinase targets. These data are freely available for download within this data note.

  5. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  6. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    Although a number of nucleoside diphosphate kinases (NDPKs) have been reported to act as inhibitors of metastasis or as a transcription factor in mammals, it is not known whether these functions are linked to their enzymatic activity or how this protein is regulated. In this report, we show that ...

  7. Polo-Like Kinase-1 Controls Aurora A Destruction by Activating APC/C-Cdh1

    NARCIS (Netherlands)

    van Leuken, Renske; Clijsters, Linda; van Zon, Wouter; Lim, Dan; Yao, XueBiao; Wolthuis, Rob M. F.; Yaffe, Michael B.; Medema, Rene H.; van Vugt, Marcel A. T. M.

    2009-01-01

    Polo-like kinase-1 (Plk1) is activated before mitosis by Aurora A and its cofactor Bora. In mitosis, Bora is degraded in a manner dependent on Plk1 kinase activity and the E3 ubiquitin ligase SCF-beta TrCP. Here, we show that Plk1 is also required for the timely destruction of its activator Aurora A

  8. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    Directory of Open Access Journals (Sweden)

    Qing-Xiu Hu

    2012-01-01

    Full Text Available A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession, and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities.

  9. Skeletal muscle mitogen-activated protein kinases and ribosomal S6 kinases. Suppression in chronic diabetic rats and reversal by vanadium.

    Science.gov (United States)

    Hei, Y J; Chen, X; Pelech, S L; Diamond, J; McNeill, J H

    1995-10-01

    The mitogen-activated protein (MAP) kinases and ribosomal S6 protein kinases in the skeletal muscle of insulin-resistant long-term (2 and 6 months' duration) diabetic rats were investigated to understand further the changes in insulin intracellular signaling pathways that accompany diabetes. The effects of insulin-mimetic vanadium compounds on the activity of these kinases were also examined. In the insulin-resistant 2-month diabetic rats, the basal activities of MAP kinases were relatively unchanged, while the basal activities of S6 kinases were significantly increased. Intravenous injection of insulin moderately activated both the 42-kDa MAP kinase (p42mapk) and a 44-kDa MAP kinase (p44erk1) in the 2-month control rats but not in the 2-month diabetic rats. Insulin treatment markedly stimulated the activity of a novel 31-kDa S6 kinase and the previously described 90-kDa ribosomal S6 kinase encoded by one of the rsk genes (p90rsk) in the 2-month control rats, while the effect was substantially reduced in the diabetic rats. In the 6-month diabetic rats, the basal phosphotransferase activities of both MAP kinases were depressed threefold or greater. This correlated with reductions in the amount of immunoreactive p42mapk and p44erk1 proteins in extracts from the diabetic rats. The basal activity of the 31-kDa S6 kinase activity was also reduced fourfold in the 6-month diabetic rats. Treatment of the 2-month diabetic rats with vanadyl sulfate resulted in euglycemia, prevented the increase in the basal activity of S6 kinase, and improved the activation of S6 kinase by insulin.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Anomalous constitutive Src kinase activity promotes B lymphoma survival and growth

    OpenAIRE

    Ke, Jiyuan; Chelvarajan, R Lakshman; Sindhava, Vishal; Robertson, Darrell A; Lekakis, Lazaros; Jennings, C Darrell; Bondada, Subbarao

    2009-01-01

    Abstract Background Previously we have shown that B cell receptor (BCR) expression and B cell receptor signaling pathways are important for the basal growth of B lymphoma cells. In particular we have shown that the activation of Syk, a non-src family protein tyrosine kinase and the mitogen activated protein kinases (MAPK), ERK and JNK that mediate BCR signals are required for the constitutive growth of B lymphoma cells. Since src family protein tyrosine kinases (SFKs) like Lyn are known to be...

  11. Subtype activation and interaction of protein kinase C and mitogen-activated protein kinase controlling receptor expression in cerebral arteries and microvessels after subarachnoid hemorrhage

    DEFF Research Database (Denmark)

    Ansar, S.; Edvinsson, L.

    2008-01-01

    BACKGROUND AND PURPOSE: The pathogenesis of cerebral ischemia associated with subarachnoid hemorrhage (SAH) still remains elusive. The aim of this study was to examine the involvement of mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) subtypes in the pathophysiology of cerebral...... ischemia after SAH in cerebral arteries and microvessels and to examine temporal activation of the kinases. We hypothesize that treatment with a MAPK or PKC inhibitor will prevent the SAH-induced kinase activation in brain vessels. METHODS: SAH was induced by injecting 250 microL blood...... into the prechiasmatic cistern in the rat. The activation of different MAPK and PKC isotypes in large circle of Willis cerebral arteries and intracerebral microvessels was examined at 0, 1, 3, 6, 12, 24, and 48 hours after SAH and after intrathecal treatment with PKC or MAPK inhibitor by use of Western blot. RESULTS...

  12. Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks

    KAUST Repository

    Irving, Helen R.

    2012-02-01

    Guanylate cyclase (GC) catalyzes the formation of cGMP and it is only recently that such enzymes have been characterized in plants. One family of plant GCs contains the GC catalytic center encapsulated within the intracellular kinase domain of leucine rich repeat receptor like kinases such as the phytosulfokine and brassinosteroid receptors. In vitro studies show that both the kinase and GC domain have catalytic activity indicating that these kinase-GCs are examples of moonlighting proteins with dual catalytic function. The natural ligands for both receptors increase intracellular cGMP levels in isolated mesophyll protoplast assays suggesting that the GC activity is functionally relevant. cGMP production may have an autoregulatory role on receptor kinase activity and/or contribute to downstream cell expansion responses. We postulate that the receptors are members of a novel class of receptor kinases that contain functional moonlighting GC domains essential for complex signaling roles.

  13. A switch in nucleotide affinity governs activation of the Src and Tec family kinases.

    Science.gov (United States)

    von Raußendorf, Freia; de Ruiter, Anita; Leonard, Thomas A

    2017-12-12

    The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.

  14. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling.

    Directory of Open Access Journals (Sweden)

    Doron Teper

    2018-01-01

    Full Text Available The Gram-negative bacterium Xanthomonas euvesicatoria (Xe is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.

  15. Stimulation of Leishmania tropica protein kinase CK2 activities by platelet-activating factor (PAF).

    Science.gov (United States)

    Dutra, Patricia M L; Vieira, Danielle P; Meyer-Fernandes, Jose R; Silva-Neto, Mario A C; Lopes, Angela H

    2009-09-01

    Leishmania tropica is one of the causative agents of cutaneous leishmaniasis. Platelet-activating factor (PAF) is a phospholipid mediator in diverse biological and pathophysiological processes. Here we show that PAF promoted a three-fold increase on ecto-protein kinase and a three-fold increase on the secreted kinase activity of L. tropica live promastigotes. When casein was added to the reaction medium, along with PAF, there was a four-fold increase on the ecto-kinase activity. When live L. tropica promastigotes were pre-incubated for 30 min in the presence of PAF-plus casein, a six-fold increase on the secreted kinase activity was observed. Also, a protein released from L. tropica promastigotes reacted with polyclonal antibodies for the mammalian CK2 alpha catalytic subunit. Furthermore, in vitro mouse macrophage infection by L. tropica was doubled when promastigotes were pre-treated for 2 h with PAF. Similar results were obtained when the interaction was performed in the presence of purified CK2 or casein. TBB and DRB, CK2 inhibitors, reversed PAF enhancement of macrophage infection by L. tropica. WEB 2086, a competitive PAF antagonist, reversed all PAF effects here described. This study shows for the first time that PAF promotes the activation of two isoforms of CK2, secreted and membrane-bound, correlating these activities to infection of mouse macrophages.

  16. Nitric oxide-induced activation of the AMP-activated protein kinase α2 subunit attenuates IκB kinase activity and inflammatory responses in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Elke Bess

    Full Text Available BACKGROUND: In endothelial cells, activation of the AMP-activated protein kinase (AMPK has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2(-/- mice the interleukin (IL-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2(-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK. Indeed, IKK (more specifically residues Ser177 and Ser181 was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2(+/+ versus AMPKα2(-/- mice. CONCLUSIONS: These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.

  17. Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition

    DEFF Research Database (Denmark)

    Soundararajan, M.; Roos, A.K.; Savitsky, P.

    2013-01-01

    Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK sub...

  18. Roles of Mitogen-Activating Protein Kinase Kinase Kinase Kinase-3 (MAP4K3) in Preterm Skeletal Muscle Satellite Cell Myogenesis and Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Regulation.

    Science.gov (United States)

    Guo, Chu-Yi; Yu, Mu-Xue; Dai, Jie-Min; Pan, Si-Nian; Lu, Zhen-Tong; Qiu, Xiao-Shan; Zhuang, Si-Qi

    2017-07-21

    BACKGROUND Preterm skeletal muscle genesis is a paradigm for myogenesis. The role of mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3) in preterm skeletal muscle satellite cells myogenesis or its relationship to mammalian target of rapamycin complex 1 (mTORC1) activity have not been previously elaborated. MATERIAL AND METHODS Small interfering RNA (siRNA) interference technology was used to inhibit MAP4K3 expression. Leucine stimulation experiments were performed following MAP4K3-siRNA interference. The differentiation of primary preterm skeletal muscle satellite cells was observed after siRNA-MAP4K3 interference. Western blot analysis was used to determine the expression of MAP4K3, MyHC, MyoD, myogenin, p-mTOR, and p-S6K1. The immunofluorescence fusion index of MyHC and myogenin were detected. MAP4K3 effects on preterm rat satellite cells differentiation and its relationship to mTORC1 activity are reported. RESULTS MAP4K3 siRNA knockdown inhibited myotube formation and both MyoD and myogenin expression in primary preterm rat skeletal muscle satellite cells, but MAP4K3 siRNA had no effect on the activity of mTORC1. In primary preterm rat skeletal muscle satellite cells, MAP4K3 knockdown resulted in significantly weaker, but not entirely blunted, leucine-induced mTORC1 signaling. CONCLUSIONS MAP4K3 positively regulates preterm skeletal muscle satellite cell myogenesis, but may not regulate mTORC1 activity. MAP4K3 may play a role in mTORC1 full activation in response to leucine.

  19. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  20. Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3.

    Science.gov (United States)

    Bassi, Rekha; Burgoyne, Joseph R; DeNicola, Gian F; Rudyk, Olena; DeSantis, Vittorio; Charles, Rebecca L; Eaton, Philip; Marber, Michael S

    2017-09-29

    The kinase p38α MAPK (p38α) plays a pivotal role in many biological processes. p38α is activated by canonical upstream kinases that phosphorylate the activation region. The purpose of our study was to determine whether such activation may depend on redox-sensing cysteines within p38α. p38α was activated and formed a disulfide-bound heterodimer with MAP2K3 (MKK3) in rat cardiomyocytes and isolated hearts exposed to H 2 O 2 This disulfide heterodimer was sensitive to reduction by mercaptoethanol and was enhanced by the thioredoxin-reductase inhibitor auranofin. We predicted that Cys-119 or Cys-162 of p38α, close to the known MKK3 docking domain, were relevant for these redox characteristics. The C119S mutation decreased whereas the C162S mutation increased the dimer formation, suggesting that these two Cys residues act as vicinal thiols, consistent with C119S/C162S being incapable of sensing H 2 O 2 Similarly, disulfide heterodimer formation was abolished in H9C2 cells expressing both MKK3 and p38α C119S/C162S and subjected to simulated ischemia and reperfusion. However, the p38α C119S/C162S mutants did not exhibit appreciable alteration in activating dual phosphorylation. In contrast, the anti-inflammatory agent 10-nitro-oleic acid (NO 2 -OA), a component of the Mediterranean diet, reduced p38α activation and covalently modified Cys-119/Cys-162, probably obstructing MKK3 access. Moreover, NO 2 -OA reduced the dephosphorylation of p38α by hematopoietic tyrosine phosphatase (HePTP). Furthermore, steric obstruction of Cys-119/Cys-162 by NO 2 -OA pretreatment in Langendorff-perfused murine hearts prevented the p38-MKK3 disulfide dimer formation and attenuated H 2 O 2 -induced contractile dysfunction. Our findings suggest that cysteine residues within p38α act as redox sensors that can dynamically regulate the association between p38 and MKK3. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Redox regulation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Yingying Han

    2010-11-01

    Full Text Available Redox state is a critical determinant of cell function, and any major imbalances can cause severe damage or death.The aim of this study is to determine if AMP-activated protein kinase (AMPK, a cellular energy sensor, is activated by oxidants generated by Berberine in endothelial cells (EC.Bovine aortic endothelial cells (BAEC were exposed to Berberine. AMPK activity and reactive oxygen species were monitored after the incubation.In BAEC, Berberine caused a dose- and time-dependent increase in the phosphorylation of AMPK at Thr172 and acetyl CoA carboxylase (ACC at Ser79, a well characterized downstream target of AMPK. Concomitantly, Berberine increased peroxynitrite, a potent oxidant formed by simultaneous generation of superoxide and nitric oxide. Pre-incubation of BAEC with anti-oxidants markedly attenuated Berberine-enhanced phosphorylation of both AMPK and ACC. Consistently, adenoviral expression of superoxide dismutase and pretreatment of L-N(G-Nitroarginine methyl ester (L-NAME; a non-selective NOS inhibitor blunted Berberine-induced phosphorylation of AMPK. Furthermore, mitochondria-targeted tempol (mito-tempol pretreatment or expression of uncoupling protein attenuated AMPK activation caused by Berberine. Depletion of mitochondria abolished the effects of Berberine on AMPK in EC. Finally, Berberine significantly increased the phosphorylation of LKB1 at Ser307 and gene silencing of LKB1 attenuated Berberine-enhanced AMPK Thr172 phosphorylation in BAEC.Our results suggest that mitochondria-derived superoxide anions and peroxynitrite are required for Berberine-induced AMPK activation in endothelial cells.

  2. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  3. Effects of FGFR2 kinase activation loop dynamics on catalytic activity.

    Directory of Open Access Journals (Sweden)

    Jerome M Karp

    2017-02-01

    Full Text Available The structural mechanisms by which receptor tyrosine kinases (RTKs regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2 kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.

  4. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502 ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.453, year: 2015

  5. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis

    2005-01-01

    Recent studies have demonstrated that AMP-activated protein kinase (AMPK) in the hypothalamus is involved in the regulation of food intake. Because exercise is known to influence appetite and cause substrate depletion, it may also influence AMPK in the hypothalamus. Male rats that either rested o...

  6. Stromal serine protein kinase activity in spinach chloroplasts

    International Nuclear Information System (INIS)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-01-01

    At least twelve 32 P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with 32 Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with [gamma- 32 P]ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma

  7. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Noda

    Full Text Available BACKGROUND: Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK, a key molecule of metabolic conditions. METHODS AND RESULTS: Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1, with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. CONCLUSIONS: These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that

  8. OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc | Office of Cancer Genomics

    Science.gov (United States)

    Mitogen-activated protein kinase kinase 3 (MKK3) is a dual threonine/tyrosine protein kinase that regulates inflammation, proliferation and apoptosis through specific phosphorylation and activation of the p38 mitogen-activated protein kinase. However, the role of MKK3 beyond p38-signaling remains elusive. Recently, we reported a protein-protein interaction (PPI) network of cancer-associated genes, termed OncoPPi, as a resource for the scientific community to generate new biological models. Analysis of the OncoPPi connectivity identified MKK3 as one of the major hub proteins in the network.

  9. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; Liu, Zhen; Qiu, Wen-Li; Whitham, Steven A.; Qian, Wei-Jun

    2017-09-29

    It is well known that the reactive oxygen species, nitric oxide (NO), can trigger cell death in plants, but the underlying molecular mechanisms are not well understood. Here, we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicon) through inhibiting the phosphoinositide-dependent kinase 1 (PDK1) kinase activity via S-nitrosylation. Biotin-switch assays and LC-MS/MS analyses demonstrated that SlPDK1 was a target of S-nitrosylation modification, which primarily occurred on the cysteine residue at position 128 (Cys128). Accordingly, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione (GSNO) both in vitro and in vivo in a concentration-dependent manner, indicating that SlPDK1 activity is regulated by S-nitrosylation. The inhibition of SlPDK1 kinase activity by GSNO was reversible in the presence of a reducing agent but synergistically enhanced by hydrogen peroxide (H2O2). Mutation of Cys128 to serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for the inhibition of the kinase activity of SlPDK1. In sum, our results established a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1, a conserved negative regulator of cell death in yeasts, mammals and plants. Nitric oxide (NO) potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen species (ROS) (1). However, the molecular mechanism of the NO-induced cell death remains an enigma. One potential mechanism is that the activity of proteins that control cell death may be altered by a post-translational modification, S-nitrosylation. S-nitrosylation is the addition of the NO moiety to thiol groups, including cysteine (Cys) residues in proteins, to form S-nitrosothiols (SNOs). S-nitrosylation is an enzyme-independent post-translational and labile modification that can function as an on/off switch of protein activity (2- 4). Thousands of diverse

  10. Controlling the activity of the Tec kinase Itk by mutation of the phenylalanine gatekeeper residue.

    Science.gov (United States)

    Joseph, Raji E; Andreotti, Amy H

    2011-01-18

    The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2-kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2-kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2-kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.

  11. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  12. Hypoxia inhibits colonic ion transport via activation of AMP kinase.

    LENUS (Irish Health Repository)

    Collins, Danielle

    2012-02-01

    BACKGROUND AND AIMS: Mucosal hypoxia is a common endpoint for many pathological processes including ischemic colitis, colonic obstruction and anastomotic failure. Previous studies suggest that hypoxia modulates colonic mucosal function through inhibition of chloride secretion. However, the molecular mechanisms underlying this observation are poorly understood. AMP-activated protein kinase (AMPK) is a metabolic energy regulator found in a wide variety of cells and has been linked to cystic fibrosis transmembrane conductance regulator (CFTR) mediated chloride secretion in several different tissues. We hypothesized that AMPK mediates many of the acute effects of hypoxia on human and rat colonic electrolyte transport. METHODS: The fluorescent chloride indicator dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide was used to measure changes in intracellular chloride concentrations in isolated single rat colonic crypts. Ussing chamber experiments in human colonic mucosa were conducted to evaluate net epithelial ion transport. RESULTS: This study demonstrates that acute hypoxia inhibits electrogenic chloride secretion via AMPK mediated inhibition of CFTR. Pre-treatment of tissues with the AMPK inhibitor 6-[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine (compound C) in part reversed the effects of acute hypoxia on chloride secretion. CONCLUSION: We therefore suggest that AMPK is a key component of the adaptive cellular response to mucosal hypoxia in the colon. Furthermore, AMPK may represent a potential therapeutic target in diseased states or in prevention of ischemic intestinal injury.

  13. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway.

    Science.gov (United States)

    Cheng, Lihong; Ye, Ying; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua

    2017-01-15

    Neurotrophic factors such as nerve growth factor (NGF) play important roles in nervous system. NGF is a potential therapeutic drug for treatment of neurodegenerative diseases. However, because of physicochemical property, NGF cannot pass through the blood-brain barrier (BBB). Hence, small molecules which exhibit NGF-mimic activity and can pass through the BBB are considered to be promising drug candidates for treatment of such diseases. The present study was designed to isolate NGF-mimic substance from extract of natural products, determine their structures and investigate mechanism of action of the active substance. Extract of Lindernia crustacean was partitioned between water and ethyl acetate to obtain water layer and ethyl acetate layer samples, respectively, and then evaluated their neuritogenic activity in PC12 cells. The active sample was separated by open columns, followed by HPLC purification to obtain active compound. Then, specific inhibitors were used to investigate signaling pathway of neurite outgrowth induced by the active compound. Finally, western blot analysis was performed to confirm the pathway proposed by inhibitor experiments. The ethyl acetate layer sample of extract of Lindernia crustacea exhibited significant neuritogenic activity. Two new compounds, named as linderside A and lindersin B, were isolated; their structures were elucidated by spectroscopic and chemical derivatization methods. Linderside A is a cucurbitane glycoside, whereas lindersin B is a cucurbitane triterpenoid. Each compound has an unusual isopentene unit, namely, a double bond bound to an unmodified isopropyl group at the end of cucurbitane triterpenoid side chain. Among them, lindersin B induced significant neurite outgrowth in PC12 cells, while linderside A was inactive against PC12 cells. Western blotting analysis results showed that lindersin B-induced neuritogenic activity depended on the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal

  14. HCLK2 is required for activity of the DNA damage response kinase ATR

    DEFF Research Database (Denmark)

    Rendtlew Danielsen, Jannie M; Larsen, Dorthe Helena; Schou, Kenneth Bødtker

    2008-01-01

    of ATR kinase activity. We show that HCLK2 forms a complex with ATR-ATRIP and the ATR activator TopBP1. We demonstrate that HCLK2-induced ATR kinase activity toward substrates requires TopBP1 and vice versa and provides evidence that HCLK2 facilitates efficient ATR-TopBP1 association. Consistent with its...... in the same pathway as TopBP1 but that the two proteins regulate different steps in ATR activation....

  15. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  16. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    Science.gov (United States)

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  17. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  18. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running

    Science.gov (United States)

    Fluck, M.; Waxham, M. N.; Hamilton, M. T.; Booth, F. W.

    2000-01-01

    Spikes in free Ca(2+) initiate contractions in skeletal muscle cells, but whether and how they might signal to transcription factors in skeletal muscles of living animals is unknown. Since previous studies in non-muscle cells have shown that serum response factor (SRF) protein, a transcription factor, is phosphorylated rapidly by Ca(2+)/calmodulin (CaM)-dependent protein kinase after rises in intracellular Ca(2+), we measured enzymatic activity that phosphorylates SRF (designated SRF kinase activity). Homogenates from 7-day-hypertrophied anterior latissimus dorsi muscles of roosters had more Ca(2+)-independent SRF kinase activity than their respective control muscles. However, no differences were noted in Ca(2+)/CaM-dependent SRF kinase activity between control and trained muscles. To determine whether the Ca(2+)-independent and Ca(2+)/CaM-dependent forms of Ca(2+)/CaM-dependent protein kinase II (CaMKII) might contribute to some of the SRF kinase activity, autocamtide-3, a synthetic substrate that is specific for CaMKII, was employed. While the Ca(2+)-independent form of CaMKII was increased, like the Ca(2+)-independent form of SRF kinase, no alteration in CaMKII occurred at 7 days of stretch overload. These observations suggest that some of SRF phosphorylation by skeletal muscle extracts could be due to CaMKII. To determine whether this adaptation was specific to the exercise type (i.e., hypertrophy), similar measurements were made in the white vastus lateralis muscle of rats that had completed 2 wk of voluntary running. Although Ca(2+)-independent SRF kinase was increased, no alteration occurred in Ca(2+)/CaM-dependent SRF kinase activity. Thus any role of Ca(2+)-independent SRF kinase signaling has downstream modulators specific to the exercise phenotype.

  19. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions

    Science.gov (United States)

    Stowe, Jessica M.; Sieck, Dylan C.; Ermilov, Leonid G.; Greising, Sarah M.; Zhang, Chao; Shokat, Kevan M.; Sieck, Gary C.

    2014-01-01

    Activation of the tropomyosin-related kinase receptor B (TrkB) by brain-derived neurotrophic factor acutely regulates synaptic transmission at adult neuromuscular junctions (NMJs). The role of TrkB kinase activity in the maintenance of NMJ function and structure at diaphragm muscle NMJs was explored using a chemical-genetic approach that permits reversible inactivation of TrkB kinase activity in TrkBF616A mice by 1NMPP1. Inhibiting TrkB kinase activity for 7 days resulted in significant, yet reversible, impairments in neuromuscular transmission at diaphragm NMJs. Neuromuscular transmission failure following 2 min of repetitive phrenic nerve stimulation increased from 42% in control to 59% in 1NMPP1-treated TrkBF616A mice (P = 0.010). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment improved neuromuscular transmission (P = 0.006). Electrophysiological measurements at individual diaphragm NMJs documented lack of differences in quantal content in control and 1NMPP1-treated mice (P = 0.845). Morphological changes at diaphragm NMJs were modest following inhibition and recovery of TrkB kinase activity. Three-dimensional reconstructions of diaphragm NMJs revealed no differences in volume at motor end plates (labeled by α-bungarotoxin; P = 0.982) or presynaptic terminals (labeled by synaptophysin; P = 0.515). Inhibition of TrkB kinase activity by 1NMPP1 resulted in more compact NMJs, with increased apposition of presynaptic terminals and motor end plates (P = 0.017) and reduced fragmentation of motor end plates (P = 0.005). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment resulted in postsynaptic remodeling likely reflecting increased gutter depth (P = 0.007), without significant presynaptic changes. These results support an essential role for TrkB kinase activity in maintaining synaptic function and structural integrity at NMJs in the adult mouse diaphragm muscle. PMID:25170066

  1. 2-Phenylquinazolinones as dual-activity tankyrase-kinase inhibitors.

    Science.gov (United States)

    Nkizinkiko, Yves; Desantis, Jenny; Koivunen, Jarkko; Haikarainen, Teemu; Murthy, Sudarshan; Sancineto, Luca; Massari, Serena; Ianni, Federica; Obaji, Ezeogo; Loza, Maria I; Pihlajaniemi, Taina; Brea, Jose; Tabarrini, Oriana; Lehtiö, Lari

    2018-01-26

    Tankyrases (TNKSs) are enzymes specialized in catalyzing poly-ADP-ribosylation of target proteins. Several studies have validated TNKSs as anti-cancer drug targets due to their regulatory role in Wnt/β-catenin pathway. Recently a lot of effort has been put into developing more potent and selective TNKS inhibitors and optimizing them towards anti-cancer agents. We noticed that some 2-phenylquinazolinones (2-PQs) reported as CDK9 inhibitors were similar to previously published TNKS inhibitors. In this study, we profiled this series of 2-PQs against TNKS and selected kinases that are involved in the Wnt/β-catenin pathway. We found that they were much more potent TNKS inhibitors than they were CDK9/kinase inhibitors. We evaluated the compound selectivity to tankyrases over the ARTD enzyme family and solved co-crystal structures of the compounds with TNKS2. Comparative structure-based studies of the catalytic domain of TNKS2 with selected CDK9 inhibitors and docking studies of the inhibitors with two kinases (CDK9 and Akt) revealed important structural features, which could explain the selectivity of the compounds towards either tankyrases or kinases. We also discovered a compound, which was able to inhibit tankyrases, CDK9 and Akt kinases with equal µM potency.

  2. Analysis of p21-Activated Kinase Function in Neurofibromatosis Type 2

    Science.gov (United States)

    2010-01-01

    mediated activation ( Abo et al., 1998; Cau et al., 2001; Lee et al., 2002), the basal kinase activity of the group II Paks was not stimulated by Cdc42...Received: November 15, 2007 Revised: February 25, 2008 Accepted: March 3, 2008 Published: April 18, 2008 REFERENCES Abo , A., Qu, J., Cammarano, M.S...et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 2006;9(2):234-42. 53. Reutershan J

  3. Effect of cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle through Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2.

    Science.gov (United States)

    Wu, Tao; Chen, Lin; Wei, Tangqiang; Wang, Yan; Xu, Feng; Wang, Kunjie

    2012-09-01

    To examine the role of Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 in the cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle cells. Human bladder smooth muscle cells were exposed to cyclic hydrodynamic pressures in vitro with defined parameters (static, 100 cmH(2) O, 200 cmH(2) O and 300 cmH(2) O pressure) for 24 h. The proliferation of cells was assessed by flow cytometry. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 messenger ribonucleic acid, and protein expression was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the Rac1 was determined with real-time polymerase chain reaction and Western blot technique with small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766). The proliferation of human bladder smooth muscle cells was increased. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 were activated by 200 and 300 cmH(2) O cyclic hydrodynamic pressure compared with static and 100 cmH(2) O pressure. The "knockdown" of activation of Rac1 using target small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766) decreased proliferation of human bladder smooth muscle cells, and downregulated mitogen-activated protein kinase kinase 1/2, extracellular regulated protein kinases 1/2. The Rac1 pathway is activated in mechanotransduction and regulation of human bladder smooth muscle cell proliferation in response to cyclic hydrodynamic pressure. © 2012 The Japanese Urological Association.

  4. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    transfected with expression plasmids encoding constitutively active forms of Ras, Raf, MAP kinase kinases MEK1 and 2, dominant negative forms of Ras and Raf, and the FAK-related nonkinase. Alternatively, PC12-E2 cells were submitted to treatment with antibodies to the fibroblast growth factor (FGF) receptor......, inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  5. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    Science.gov (United States)

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. IKAP: A heuristic framework for inference of kinase activities from Phosphoproteomics data.

    Science.gov (United States)

    Mischnik, Marcel; Sacco, Francesca; Cox, Jürgen; Schneider, Hans-Christoph; Schäfer, Matthias; Hendlich, Manfred; Crowther, Daniel; Mann, Matthias; Klabunde, Thomas

    2016-02-01

    Phosphoproteomics measurements are widely applied in cellular biology to detect changes in signalling dynamics. However, due to the inherent complexity of phosphorylation patterns and the lack of knowledge on how phosphorylations are related to functions, it is often not possible to directly deduce protein activities from those measurements. Here, we present a heuristic machine learning algorithm that infers the activities of kinases from Phosphoproteomics data using kinase-target information from the PhosphoSitePlus database. By comparing the estimated kinase activity profiles to the measured phosphosite profiles, it is furthermore possible to derive the kinases that are most likely to phosphorylate the respective phosphosite. We apply our approach to published datasets of the human cell cycle generated from HeLaS3 cells, and insulin signalling dynamics in mouse hepatocytes. In the first case, we estimate the activities of 118 at six cell cycle stages and derive 94 new kinase-phosphosite links that can be validated through either database or motif information. In the second case, the activities of 143 kinases at eight time points are estimated and 49 new kinase-target links are derived. The algorithm is implemented in Matlab and be downloaded from github. It makes use of the Optimization and Statistics toolboxes. https://github.com/marcel-mischnik/IKAP.git. marcel.mischnik@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  8. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Science.gov (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  9. Aspartate aminotransferase (AST) blood test

    Science.gov (United States)

    ... gov/ency/article/003472.htm Aspartate aminotransferase (AST) blood test To use the sharing features on this page, please enable JavaScript. The aspartate aminotransferase (AST) blood test measures the level of the enzyme AST in ...

  10. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    International Nuclear Information System (INIS)

    Dey, Nandini; Howell, Brian W.; De, Pradip K.; Durden, Donald L.

    2005-01-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation

  11. Conservation of MAP kinase activity and MSP genes in parthenogenetic nematodes

    Directory of Open Access Journals (Sweden)

    Ndifon Nsah

    2010-05-01

    Full Text Available Abstract Background MAP (mitogen-activated protein kinase activation is a prerequisite for oocyte maturation, ovulation and fertilisation in many animals. In the hermaphroditic nematode Caenorhabditis elegans, an MSP (major sperm protein dependent pathway is utilised for MAP kinase activation and successive oocyte maturation with extracellular MSP released from sperm acting as activator. How oocyte-to-embryo transition is triggered in parthenogenetic nematode species that lack sperm, is not known. Results We investigated two key elements of oocyte-to-embryo transition, MSP expression and MAP kinase signaling, in two parthenogenetic nematodes and their close hermaphroditic relatives. While activated MAP kinase is present in all analysed nematodes irrespective of the reproductive mode, MSP expression differs. In contrast to hermaphroditic or bisexual species, we do not find MSP expression at the protein level in parthenogenetic nematodes. However, genomic sequence analysis indicates that functional MSP genes are present in several parthenogenetic species. Conclusions We present three alternative interpretations to explain our findings. (1 MSP has lost its function as a trigger of MAP kinase activation and is not expressed in parthenogenetic nematodes. Activation of the MAP kinase pathway is achieved by another, unknown mechanism. Functional MSP genes are required for occasionally emerging males found in some parthenogenetic species. (2 Because of long-term disadvantages, parthenogenesis is of recent origin. MSP genes remained intact during this short intervall although they are useless. As in the first scenario, an unknown mechanism is responsible for MAP kinase activation. (3 The molecular machinery regulating oocyte-to-embryo transition in parthenogenetic nematodes is conserved with respect to C. elegans, thus requiring intact MSP genes. However, MSP expression has been shifted to non-sperm cells and is reduced below the detection limits, but is

  12. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  13. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, Anders; On, Stephen L. W.

    2007-01-01

    bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens...

  14. Aspirin Augments IgE-Mediated Histamine Release from Human Peripheral Basophils via Syk Kinase Activation

    Directory of Open Access Journals (Sweden)

    Hiroaki Matsuo

    2013-01-01

    Conclusions: Aspirin enhanced histamine release from basophils via increased Syk kinase activation, and that the augmentation of histamine release by NSAIDs or FAs may be one possible cause of worsening symptoms in patients with chronic urticaria and FDEIA.

  15. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety.

    Science.gov (United States)

    Dow, Robert L; Ammirati, Mark; Bagley, Scott W; Bhattacharya, Samit K; Buckbinder, Leonard; Cortes, Christian; El-Kattan, Ayman F; Ford, Kristen; Freeman, Gary B; Guimarães, Cristiano R W; Liu, Shenping; Niosi, Mark; Skoura, Athanasia; Tess, David

    2018-04-12

    Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.

  16. Discovery of a Stress-Activated Protein Kinase Inhibitor for Lymphatic Filariasis.

    Science.gov (United States)

    Tummalapalli, Sreedhar R; Bhat, Rohit; Chojnowski, Agnieszka; Prorok, Monika; Kreiss, Tamara; Goldberg, Ronald; Canan, Stacie; Hawryluk, Natalie; Mortensen, Deborah; Khetani, Vikram; Zeldis, Jerome; Siekierka, John J; Rotella, David P

    2018-03-08

    Lymphatic filariasis infects over 120 million people worldwide and can lead to significant disfigurement and disease. Resistance is emerging with current treatments, and these therapies have dose limiting adverse events; consequently new targets are needed. One approach to achieve this goal is inhibition of parasitic protein kinases involved in circumventing host defense mechanisms. This report describes structure-activity relationships leading to the identification of a potent, orally bioavailable stress activated protein kinase inhibitor that may be used to investigate this hypothesis.

  17. D-Serine/N-methyl-D-aspartate receptor signaling decreases DNA-binding activity of the transcriptional repressor DREAM in Müller glia from the retina.

    Science.gov (United States)

    Chavira-Suárez, Erika; Ramírez, Mónica; Lamas, Mónica

    2008-02-20

    In the adult retina, N-methyl-D-aspartate (NMDA) neurotoxicity induces Müller cell reactive gliosis which is characterized by changes in gene expression that lead to proliferation and affect retinal physiology. The amino acid D-serine is synthesized in Müller cells and modulates these processes acting as a coagonist of NMDA receptors. We have found that the transcription factor DREAM (downstream regulatory element antagonist modulator), which acts as a transcriptional repressor by binding as a tetramer to regulatory elements located in the promoter region of target genes, is expressed in these cells and that its DNA-binding activity is modulated by NMDA receptor activation. Consistently, immunocytochemical analysis demonstrates that NMDA receptor activation induces changes in the nuclear localization of this transcription factor. DREAM is a pleiotropic transcription factor capable to repress and activate genes involved in several physiological events in different tissues. These results link, for the first time, this transcription factor with NMDA-receptor activation. Given the relevance of glutamatergic transmission in the retina and the remarkable functional plasticity of Müller cells, these findings support the notion that the NMDA receptor-dependent modulation of DREAM activity could play a role in relevant physiological processes ranging from retinal response to injury to differentiation capacity of retinal progenitor cells.

  18. Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions.

    Science.gov (United States)

    Asano, Tomoichiro; Fujishiro, Midori; Kushiyama, Akifumi; Nakatsu, Yusuke; Yoneda, Masayasu; Kamata, Hideaki; Sakoda, Hideyuki

    2007-09-01

    Inositol phospholipids phosphorylated on D3-position of their inositol rings (3-phosphoinositides) are known to play important roles in various cellular events. Activation of PI (phosphatidylinositol) 3-kinase is essential for aspects of insulin-induced glucose metabolism, including translocation of GLUT4 to the cell surface and glycogen synthesis. The enzyme exists as a heterodimer containing a regulatory subunit and one of two widely-distributed isoforms of the p110 catalytic subunit: p110alpha or p110beta. Activation of PI 3-kinase and its downstream AKT has been demonstrated to be essential for almost all of the insulin-induced glucose and lipid metabolism such as glucose uptake, glycogen synthesis, suppression of glucose output and triglyceride synthesis as well as insulin-induced mitogenesis. Accumulated PI(3,4,5)P(3) activates several serine/threonine kinases containing a PH (pleckstrin homology) domain, including Akt, atypical PKCs, p70S6 kinase and GSK. In the obesity-induced insulin resistant condition, JNK and p70S6K are activated and phosphorylate IRS-proteins, which diminishes the insulin-induced tyrosine phosphorylation of IRS-proteins and thereby impairs the PI 3-kinase/AKT activations. Thus, the drugs which restore the impaired insulin-induced PI 3-kinase/AKT activation, for example, by suppressing JNK or p70S6K, PTEN or SHIP2, could be novel agents to treat diabetes mellitus.

  19. Activation of AMP-activated protein kinase by tributyltin induces neuronal cell death

    International Nuclear Information System (INIS)

    Nakatsu, Yusuke; Kotake, Yaichiro; Hino, Atsuko; Ohta, Shigeru

    2008-01-01

    AMP-activated protein kinase (AMPK), a member of the metabolite-sensing protein kinase family, is activated by energy deficiency and is abundantly expressed in neurons. The environmental pollutant, tributyltin chloride (TBT), is a neurotoxin, and has been reported to decrease cellular ATP in some types of cells. Therefore, we investigated whether TBT activates AMPK, and whether its activation contributes to neuronal cell death, using primary cultures of cortical neurons. Cellular ATP levels were decreased 0.5 h after exposure to 500 nM TBT, and the reduction was time-dependent. It was confirmed that most neurons in our culture system express AMPK, and that TBT induced phosphorylation of AMPK. Compound C, an AMPK inhibitor, reduced the neurotoxicity of TBT, suggesting that AMPK is involved in TBT-induced cell death. Next, the downstream target of AMPK activation was investigated. Nitric oxide synthase, p38 phosphorylation and Akt dephosphorylation were not downstream of TBT-induced AMPK activation because these factors were not affected by compound C, but glutamate release was suggested to be controlled by AMPK. Our results suggest that activation of AMPK by TBT causes neuronal death through mediating glutamate release

  20. Acetyl aspartic acid, a novel active ingredient, demonstrates potential to improve signs of skin ageing: from consumer need to clinical proof.

    Science.gov (United States)

    Mavon, A

    2015-10-01

    The megatrend of population ageing is leading to a growing demand for "anti-ageing" treatments, especially to prevent or treat skin ageing. Facing an increasing offer, consumers are choosing more and more skin care products supported by a scientific rationale, active ingredients and clinical proof of efficacy. Considering consumer expectations, this research led to the discovery of acetyl aspartic acid (A-A-A), a novel active ingredient to improve sagging skin and loss of skin firmness. This supplement is featuring seven manuscripts aiming at presenting the research and investigations from consumer insights, discovery of A-A-A, its in vitro activity confirmation, safety assessment, formulation and its dermal absorption to the clinical proof of efficacy, investigated through two pilots' double bind randomized and placebo controlled studies on photo-aged skin. This extensive research enabled us to discover A-A-A, as an active ingredient with potential to repair sign of skin ageing and supported by clinical proof of efficacy. This active ingredient will be soon launched in a commercial innovative skin care range, delivering desirable anti-wrinkle and skin lifting benefits. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation

    DEFF Research Database (Denmark)

    Mancini, Sarah J; White, Anna D; Bijland, Silvia

    2017-01-01

    Inflammation of adipose tissue in obesity is associated with increased IL-1β, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the m...

  2. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia.

    Science.gov (United States)

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-07-14

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  3. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    Directory of Open Access Journals (Sweden)

    Maria Maddalena Di Fiore

    2016-07-01

    Full Text Available A bulk of evidence suggests that d-aspartate (d-Asp regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA and aurora kinase B (AURKB. Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2 interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  4. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  5. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    Science.gov (United States)

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Characterization of the interactions between the active site of a protein tyrosine kinase and a divalent metal activator

    Directory of Open Access Journals (Sweden)

    Ayrapetov Marina K

    2005-11-01

    Full Text Available Abstract Background Protein tyrosine kinases are important enzymes for cell signalling and key targets for anticancer drug discovery. The catalytic mechanisms of protein tyrosine kinase-catalysed phosphorylation are not fully understood. Protein tyrosine kinase Csk requires two Mg2+ cations for activity: one (M1 binds to ATP, and the other (M2 acts as an essential activator. Results Experiments in this communication characterize the interaction between M2 and Csk. Csk activity is sensitive to pH in the range of 6 to 7. Kinetic characterization indicates that the sensitivity is not due to altered substrate binding, but caused by the sensitivity of M2 binding to pH. Several residues in the active site with potential of binding M2 are mutated and the effect on metal activation studied. An active mutant of Asn319 is generated, and this mutation does not alter the metal binding characteristics. Mutations of Glu236 or Asp332 abolish the kinase activity, precluding a positive or negative conclusion on their role in M2 coordination. Finally, the ability of divalent metal cations to activate Csk correlates to a combination of ionic radius and the coordination number. Conclusion These studies demonstrate that M2 binding to Csk is sensitive to pH, which is mainly responsible for Csk activity change in the acidic arm of the pH response curve. They also demonstrate critical differences in the metal activator coordination sphere in protein tyrosine kinase Csk and a protein Ser/Thr kinase, the cAMP-dependent protein kinase. They shed light on the physical interactions between a protein tyrosine kinase and a divalent metal activator.

  7. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  8. Metabotropic glutamate receptor 5 activation enhances tyrosine phosphorylation of the N-methyl-D-aspartate (NMDA) receptor and NMDA-induced cell death in hippocampal cultured neurons.

    Science.gov (United States)

    Takagi, Norio; Besshoh, Shintaro; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2012-01-01

    The activation of group I metabotropic glutamate receptors (mGluRs), which are coupled with Gq-protein, initiates a variety physiological responses in different types of cells. While Gq-protein-coupled receptors can upregulate N-methyl-D-aspartate (NMDA) receptor function, group I mGluR-mediated regulations of NMDA receptor function are not fully understood. To determine biochemical roles of group I mGluRs in the regulation of the NMDA receptor, we have investigated changes in tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B induced by a selective mGluR5 agonist, (RS)-chloro-5-hydroxyphenylglycine (CHPG) in hippocampal neuronal cultures. Activation of mGluR5 by CHPG increased active-forms of Src. CHPG also enhanced tyrosine phosphorylation of NR2A and NR2B in hippocampal neuronal cultures. In addition, NMDA-induced cell death was enhanced by CHPG-induced mGluR5 stimulation at the concentration, which increased tyrosine phosphorylation of Src and NR2A/2B but did not induce cell death. This effect was inhibited by selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The results suggest that in hippocampal neurons, mGluR5 may regulate NMDA receptor activity, involving tyrosine phosphorylation of NR2A and NR2B and may be involved in NMDA receptor-mediated cell injury.

  9. FAK kinase activity is required for the progression of c-Met/β-catenin-driven HCC

    Science.gov (United States)

    Shang, Na; Arteaga, Maribel; Zaidi, Ali; Cotler, Scott J.; Breslin, Peter; Ding, Xianzhong; Kuo, Paul; Nishimura, Michael; Zhang, Jiwang; Qiu, Wei

    2016-01-01

    Background & Aims There is an urgent need to develop new and more effective therapeutic strategies and agents to treat hepatocellular carcinoma (HCC). We have recently found that deletion of Fak in hepatocytes before tumors form inhibits tumor development and prolongs survival of animals in a c-Met (MET)/β-catenin (CAT)-driven HCC mouse model. However, it has yet to be determined whether FAK expression in hepatocytes promotes MET/CAT-induced HCC progression after tumor initiation. In addition, it remains unclear whether FAK promotes HCC development through its kinase activity. Methods We generated hepatocyte-specific inducible Fak-deficient mice (Alb-creERT2; Fakflox/flox) to examine the role of FAK in HCC progression. We re-expressed wild-type and mutant FAK in Fak-deficient mice to determine FAK’s kinase activity in HCC development. We also examined the efficacy of a FAK kinase inhibitor PF-562271 on HCC inhibition. Results We found that deletion of Fak after tumors form significantly repressed MET/CAT-induced tumor progression. Ectopic FAK expression restored HCC formation in hepatocyte-specific Fak-deficient mice. However, overexpression of a FAK kinase-dead mutant led to reduced tumor load compared to mice which express wild-type FAK. Furthermore, PF-562271 significantly suppressed progression of MET/CAT-induced HCC. Conclusion Fak kinase activity is important for MET/CAT-induced HCC progression. Inhibiting FAK kinase activity provides a potential therapeutic strategy to treat HCC. PMID:27142958

  10. Molecular basis for activation of G protein-coupled receptor kinases

    Energy Technology Data Exchange (ETDEWEB)

    Boguth, Cassandra A.; Singh, Puja; Huang, Chih-chin; Tesmer, John J.G. (Michigan)

    2012-03-16

    G protein-coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N-terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N-terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.

  11. Tec family kinases: regulation of FcεRI-mediated mast-cell activation.

    Science.gov (United States)

    Ellmeier, Wilfried; Abramova, Anastasia; Schebesta, Alexandra

    2011-06-01

    Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell. © 2011 The Authors Journal compilation © 2011 FEBS.

  12. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  13. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  14. Thymic Stromal Lymphopoietin Promotes Fibrosis and Activates Mitogen-Activated Protein Kinases in MRC-5 Cells.

    Science.gov (United States)

    Li, Li; Tang, Su; Tang, Xiaodong

    2016-07-06

    BACKGROUND Acute lung injury (ALI) is a life-threatening hypoxemic respiratory disorder with high incidence and mortality. ALI usually manifests as widespread inflammation and lung fibrosis with the accumulation of pro-inflammatory and pro-fibrotic factors and collagen. Thymic stromal lymphopoietin (TSLP) has a significant role in regulation of inflammation but little is known about its roles in lung fibrosis or ALI. This study aimed to define the role and possible regulatory mechanism of TSLP in lung fibrosis. MATERIAL AND METHODS We cultured human lung fibroblast MRC-5 cells and overexpressed or inhibited TSLP by the vector or small interfering RNA transfection. Then, the pro-fibrotic factors skeletal muscle actin alpha (α-SMA) and collagen I, and the 4 mitogen-activated protein kinases (MAPKs) - MAPK7, p38, extracellular signal-regulated kinase 1 (ERK1), and c-Jun N-terminal kinase 1 (JNK1) - were detected by Western blot. RESULTS Results showed that TSLP promoted the production of α-SMA and collagen I (PMRC-5 cell fibrosis. It also activated the expression of MAPK7, p-p38, p-ERK1, and p-JNK1, but the total MAPK7, p-38, ERK1, and JNK1 protein levels were mostly unchanged, indicating the activated MAPK pathways that might contribute to the promotion of cell fibrosis. CONCLUSIONS This study shows the pro-fibrotic role of TSLP in MRC-5 cells, suggesting TSLP is a potential therapeutic target for treating lung fibrosis in ALI. It possibly functions via activating MAPKs. These findings add to our understanding of the mechanism of fibrosis.

  15. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle

    DEFF Research Database (Denmark)

    Hunter, Roger W; Treebak, Jonas Thue; Wojtaszewski, Jørgen

    2011-01-01

    OBJECTIVE During energy stress, AMP-activated protein kinase (AMPK) promotes glucose transport and glycolysis for ATP production, while it is thought to inhibit anabolic glycogen synthesis by suppressing the activity of glycogen synthase (GS) to maintain the energy balance in muscle. Paradoxically......, chronic activation of AMPK causes an increase in glycogen accumulation in skeletal and cardiac muscles, which in some cases is associated with cardiac dysfunction. The aim of this study was to elucidate the molecular mechanism by which AMPK activation promotes muscle glycogen accumulation. RESEARCH DESIGN...... caused a modest inactivation of GS, it stimulated muscle glycogen synthesis that was accompanied by increases in glucose transport and intracellular [G6P]. These effects of AICAR required the catalytic activity of AMPK. Strikingly, AICAR-induced glycogen synthesis was completely abolished in G6P...

  16. Involvement of the mitogen-activated protein kinase kinase 2 in the induction of cell dissociation in pancreatic cancer.

    Science.gov (United States)

    Tan, Xiaodong; Egami, Hiroshi; Kamohara, Hidenobu; Ishikawa, Shinji; Kurizaki, Takashi; Yoshida, Naoya; Tamori, Yasuhiko; Takai, Eiji; Hirota, Masahiko; Ogawa, Michio

    2004-01-01

    In our previous investigation, mitogen-activated protein kinase kinase 2 (MEK2) was detected as a factor which was correlated to the potential of invasion-metastasis. In this study, the immunocytochemical, immunohistochemical and mRNA expressions of MEK2 were examined in pancreatic cancer cell lines and tissue samples, respectively. Constitutive expressions of MEK2 and phosphorylated MEK (p-MEK) were observed in PC-1.0 and ASPC-1 cells, which exhibited a growth pattern of single cells, whereas the relevant expressions were quite faint in PC-1 cells and CAPAN-2 cells, which exhibited a growth pattern of island-like clonies. Simultaneous inductions of MEK2 expressions and cell dissociation were observed after the treatment with a conditioned medium (CM) of PC-1.0 cells. The expression of MEK2 and p-MEK were reduced and the cell aggregation was found in PC-1.0 and ASPC-1 cells after U0126 (a MEK inhibitor) treatment. In vivo, both the MEK2 and p-MEK overexpressed in human pancreatic cancer tissues and p-MEK was found to be more strongly expressed in the invasive front than that in the center of tumor (Pcell dissociation. MEK2 activation is probably involved in the first step of the cascade in the invasion-metastasis of pancreatic cancer.

  17. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  18. Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning.

    Science.gov (United States)

    Farley, J; Auerbach, S

    Phosphorylation of ion channels has been suggested as one molecular mechanism responsible for learning-produced long-term changes in neuronal excitability. Persistent training-produced changes in two distinct K+ currents (IA (ref. 2), IK-Ca (refs 3,4)) and a voltage-dependent calcium current (ICa; refs 3,4) have previously been shown to occur in type B photoreceptors of Hermissenda, as a result of associative learning. But the identity of the phosphorylation pathway(s) responsible for these changes has not as yet been determined. Injections of cyclic AMP-dependent protein kinase reduce a K+ current (IK) in B cells which is different from those changed by training, but fails to reduce IA and IK-Ca. Phosphorylase b kinase (an exogenous calcium/calmodulin-dependent kinase) reduces IA, but whether IK-Ca and ICa are changed in the manner of associative training is not yet known. Another protein kinase present in high concentrations in both mammalian brain and molluscan nervous systems is protein kinase C, which is both calcium- and phospholipid-sensitive. We now present evidence that activation of protein kinase C by the tumour promoter phorbol ester (PDB) and intracellular injection of the enzyme induce conductance changes similar to those caused by associative training in Hermissenda B cells (that is a reduction of IA and IK-Ca, and enhancement of ICa). These results represent the first direct demonstration that protein kinase C affects membrane K+ ion conductance mechanisms.

  19. Xylazine Activates Adenosine Monophosphate-Activated Protein Kinase Pathway in the Central Nervous System of Rats.

    Directory of Open Access Journals (Sweden)

    Xing-Xing Shi

    Full Text Available Xylazine is a potent analgesic extensively used in veterinary and animal experimentation. Evidence exists that the analgesic effect can be inhibited using adenosine 5'-monophosphate activated protein kinase (AMPK inhibitors. Considering this idea, the aim of this study was to investigate whether the AMPK signaling pathway is involved in the central analgesic mechanism of xylazine in the rat. Xylazine was administrated via the intraperitoneal route. Sprague-Dawley rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus and brainstem were collected for determination of liver kinase B1 (LKB1 and AMPKα mRNA expression using quantitative real-time polymerase chain reaction (qPCR, and phosphorylated LKB1 and AMPKα levels using western blot. The results of our study showed that compared with the control group, xylazine induced significant increases in AMPK activity in the cerebral cortex, hippocampus, thalamus and cerebellum after rats received xylazine (P < 0.01. Increased AMPK activities were accompanied with increased phosphorylation levels of LKB1 in corresponding regions of rats. The protein levels of phosphorylated LKB1 and AMPKα in these regions returned or tended to return to control group levels. However, in the brainstem, phosphorylated LKB1 and AMPKα protein levels were decreased by xylazine compared with the control (P < 0.05. In conclusion, our data indicates that xylazine alters the activities of LKB1 and AMPK in the central nervous system of rats, which suggests that xylazine affects the regulatory signaling pathway of the analgesic mechanism in the rat brain.

  20. Activation of p38 and Erk Mitogen-Activated Protein Kinases Signaling in Ocular Rosacea.

    Science.gov (United States)

    Wladis, Edward J; Swamy, Supraja; Herrmann, Alyssa; Yang, Jinhong; Carlson, J Andrew; Adam, Alejandro P

    2017-02-01

    Rosacea-related cutaneous inflammation is a common cause of ocular surface disease. Currently, there are no specific pharmacologic therapies to treat ocular rosacea. Here, we aimed at determining the differences in intracellular signaling activity in eyelid skin from patients with and without ocular rosacea. This was an observational, comparative case series including 21 patients undergoing lower lid ectropion surgery at one practice during 2013 and 2014 (18 patients with rosacea, 13 control patients), and 24 paraffin-embedded archival samples from Albany Medical Center, selected randomly (12 patients with rosacea, 12 control patients). Cutaneous biopsies resulting from elective lower lid ectropion surgery were analyzed by Proteome Profiler Human Phospho-Kinase Array, Western blot, and/or immunohistochemistry. Samples derived from ocular rosacea patients showed increased levels of phosphorylated (active) p38 and Erk kinases. Phosphoproteins were mainly localized to the epidermis of affected eyelids. This finding provides a novel potential therapeutic target for treatment of ocular rosacea and possibly other forms of rosacea. Further testing is required to determine if p38 and Erk activation have a causal role in ocular rosacea. The selective activation of keratinocytes in the affected skin suggests that topical pathway inhibition may be an effective treatment that will ultimately prevent ocular surface damage due to ocular rosacea.

  1. Polyunsaturated fatty acids induce ovarian cancer cell death through ROS-dependent MAP kinase activation.

    Science.gov (United States)

    Tanaka, Aiko; Yamamoto, Akane; Murota, Kaeko; Tsujiuchi, Toshifumi; Iwamori, Masao; Fukushima, Nobuyuki

    2017-11-04

    Free fatty acids not only play a role in cell membrane construction and energy production but also exert diverse cellular effects through receptor and non-receptor mechanisms. Moreover, epidemiological and clinical studies have so far suggested that polyunsaturated fatty acids (PUFAs) could have health benefits and the advantage as therapeutic use in cancer treatment. However, the underlying mechanisms of PUFA-induced cellular effects remained to be cleared. Here, we examined the effects of ω-3 and ω-6 PUFAs on cell death in ovarian cancer cell lines. ω-3 PUFA, docosahexaenoic acid (DHA) and ω-6 PUFA, γ-linolenic acid (γ-LNA) induced cell death in KF28 cells at the levels of physiological concentrations, but not HAC2 cells. Pharmacological and biochemical analyses demonstrated that cell death induced by DHA and γ-LNA was correlated with activation of JNK and p38 MAP kinases, and further an upstream MAP kinase kinase, apoptosis signal-regulating kinase 1, which is stimulated by reactive oxygen species (ROS). Furthermore, an antioxidant vitamin E attenuated PUFA-induced cell death and MAP kinase activation. These findings indicate that PUFA-induced cell death involves ROS-dependent MAP kinase activation and is a cell type-specific action. A further study of the underlying mechanisms for ROS-dependent cell death induced by PUFAs will lead to the discovery of a new target for cancer therapy or diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Structural changes in human cytomegalovirus cytoplasmic assembly sites in the absence of UL97 kinase activity

    International Nuclear Information System (INIS)

    Azzeh, Maysa; Honigman, Alik; Taraboulos, Albert; Rouvinski, Alexander; Wolf, Dana G.

    2006-01-01

    Studies of human cytomegalovirus (HCMV) UL97 kinase deletion mutant (ΔUL97) indicated a multi-step role for this kinase in early and late phases of the viral life cycle, namely, in DNA replication, capsid maturation and nuclear egress. Here, we addressed its possible involvement in cytoplasmic steps of HCMV assembly. Using the ΔUL97 and the UL97 kinase inhibitor NGIC-I, we demonstrate that the absence of UL97 kinase activity results in a modified subcellular distribution of the viral structural protein assembly sites, from compact structures impacting upon the nucleus to diffuse perinuclear structures punctuated by large vacuoles. Infection by either wild type or ΔUL97 viruses induced a profound reorganization of wheat germ agglutinin (WGA)-positive Golgi-related structures. Importantly, the viral-induced Golgi remodeling along with the reorganization of the nuclear architecture was substantially altered in the absence of UL97 kinase activity. These findings suggest that UL97 kinase activity might contribute to organization of the viral cytoplasmic assembly sites

  3. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil; Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Hien, Tran Thi [College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Jeong, Myung Ho [Heart Research Center, Chonnam National University Hospital, Gwangju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyungsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  4. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway......, this requires a conserved domain in ETAA1 that potently and directly stimulates ATR kinase activity independently of TopBP1. Simultaneous loss of ETAA1 and TopBP1 gives rise to synthetic lethality characterized by massive genome instability and abrogation of ATR-dependent signalling. Our findings demonstrate...... that parallel TopBP1- and ETAA1-mediated pathways underlie ATR activation and that their combined action is essential for coping with replication stress....

  5. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    Science.gov (United States)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  6. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  7. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (Bubalus bubalis)

    Science.gov (United States)

    Guha, Anirban; Gera, Sandeep; Sharma, Anshu

    2012-01-01

    Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×105 cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology. PMID:25049573

  8. The antioxidant effects of vitamin C on liver enzymes: aspartate aminotransferase, alanine aminotranferease, alkaline phosphatase and gamma-glutamyltransferase activities in rats under Paraquat insult

    Directory of Open Access Journals (Sweden)

    Benjamin Nnamdi Okolonkwo

    2013-06-01

    Full Text Available Paraquat (PQ is a bipyridylium herbicide; applied around trees in orchards and between crop rows to control broad-leaved and grassy weeds. Its oxidation results in the formation of superoxides which causes damage to cellular components. In this study, we determined the antioxidant effect vitamin C has on the liver enzymes [aspartate aminotransferase (SGOT, alanine aminotranferease (SGPT, alkaline phosphatase (ALP, and gamma-glutamyltransferase (GGT] of rats under this toxic insult. Male rats in groups (A, B, C and D were intraperitoneally injected with different sublethal increasing doses (0, 0.02, 0.04 and 0.06 g/kg body weigh of PQ respectively on monthly basis. Subsequently, the subgroups (A2, B2, C2 and D2 were given orally, 200 mg/L vitamin C, while the subgroups A1, B1, C1, and D1, received only water. Four animals per subgroup were decapitated on monthly basis and blood samples taken for enzyme assay. The parameters studied were - SGOT, SGPT, ALP and GGT - liver enzymes. The dose and time dependent PQ toxicity effect resulted in highly elevated Liver enzymes activities. The subgroups on vitamin C had significantly lower enzyme activities when compared to the same subgroups on only PQ insult. But the values were high when compared to the control subgroups (A1 and A2. These results were indication that vitamin C when given at moderate doses and maintained for a longer period could be a life saving adjunct to toxic insult.

  9. Src-family tyrosine kinase activities are essential for differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Xiong Zhang

    2014-11-01

    Full Text Available Embryonic stem (ES cells are characterized by pluripotency, defined as the developmental potential to generate cell lineages derived from all three primary germ layers. In the past decade, great progress has been made on the cell culture conditions, transcription factor programs and intracellular signaling pathways that control both murine and human ES cell fates. ES cells of mouse vs. human origin have distinct culture conditions, responding to some tyrosine kinase signaling pathways in opposite ways. Previous work has implicated the Src family of non-receptor protein–tyrosine kinases in mouse ES cell self-renewal and differentiation. Seven members of the Src kinase family are expressed in mouse ES cells, and individual family members appear to play distinct roles in regulating their developmental fate. Both Hck and c-Yes are important in self-renewal, while c-Src activity alone is sufficient to induce differentiation. While these findings implicate Src-family kinase signaling in mouse ES cell renewal and differentiation, the role of this kinase family in human ES cells is largely unknown. Here, we explored Src-family kinase expression patterns and signaling in human ES cells during self-renewal and differentiation. Of the eleven Src-related kinases in the human genome, Fyn, c-Yes, c-Src, Lyn, Lck and Hck were expressed in H1, H7 and H9 hES cells, while Fgr, Blk, Srm, Brk, and Frk transcripts were not detected. Of these, c-Yes, Lyn, and Hck transcript levels remained constant in self-renewing human ES cells vs. differentiated EBs, while c-Src and Fyn showed a modest increase in expression as a function of differentiation. In contrast, Lck expression levels dropped dramatically as a function of EB differentiation. To assess the role of overall Src-family kinase activity in human ES cell differentiation, cultures were treated with inhibitors specific for the Src kinase family. Remarkably, human ES cells maintained in the presence of the potent

  10. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  11. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    International Nuclear Information System (INIS)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  12. Is tyrosine kinase activation involved in basophil histamine release in asthma due to western red cedar?

    Science.gov (United States)

    Frew, A; Chan, H; Salari, H; Chan-Yeung, M

    1998-02-01

    Occupational asthma due to western red cedar is associated with histamine release from basophils and mast cells on exposure to plicatic acid (PA), but the mechanisms underlying this response remain unclear. Specific kinase inhibitors were used to study the role of tyrosine and serine/threonine kinases in PA-induced histamine release from human basophils. Pretreatment with the tyrosine kinase inhibitor methyl 2,5-dihydroxy-cinnamate (MDHC) attenuated histamine release from basophils triggered by anti-IgE (29.8% inhibition; n = 15; P < 0.01) or grass pollen (48% inhibition; n = 6; P < 0.01). Inhibition was concentration-dependent and could be reversed by washing the cells in buffer, while the inactive stereoisomer of MDHC did not affect histamine release. In contrast, the protein kinase C inhibitor staurosporine did not affect histamine release by either anti-IgE or grass pollen. Pretreatment with MDHC partially inhibited PA-induced histamine release from basophils of 6/9 patients with red cedar asthma (25.4% vs 33.8%; P = NS). Staurosporine gave a similar level of inhibition of PA-induced histamine release (25.3% vs 33.8%; P = NS). Thus, signal transduction of the human basophil Fc epsilon RI appears to depend upon tyrosine kinase activation, but not on protein kinase C (serine/threonine kinase) activation. The lack of specific effect on plicatic acid-induced histamine release in basophils obtained from patients with occupational asthma due to western red cedar suggests that tyrosine kinases are not as important in this disease as in atopic asthma, and is consistent with the view that histamine release in red cedar asthma is largely IgE-independent.

  13. Implications of compound heterozygous insulin receptor mutations in congenital muscle fibre type disproportion myopathy for the receptor kinase activation

    DEFF Research Database (Denmark)

    Klein, H H; Müller, R; Vestergaard, H

    1999-01-01

    We studied insulin receptor kinase activation in two brothers with congenital muscle fibre type disproportion myopathy and compound heterozygous mutations of the insulin receptor gene, their parents, and their unaffected brother. In the father who has a heterozygote Arg1174-->Gln mutation, in situ...... activation of the receptor kinase in skeletal muscle was reduced about 70%. Selection of only those receptors that bound to anti-phosphotyrosine antibody showed that these receptors had normal kinase activity and that the reduction in overall kinase activity was due to the inability of about 70......% of the receptors to become insulin-dependently activated. The mother carries a point mutation at the last base pair in exon 17 which, due to abnormal alternative splicing, could lead to normally transcribed receptor or truncated receptor lacking the kinase region. Kinase activation was normal in the mother...

  14. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  15. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    Directory of Open Access Journals (Sweden)

    Ly-Thuy-Tram Le

    2013-02-01

    Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors.

  16. Bortezomib induces neuropathic pain through protein kinase C-mediated activation of presynaptic NMDA receptors in the spinal cord.

    Science.gov (United States)

    Xie, Jing-Dun; Chen, Shao-Rui; Chen, Hong; Pan, Hui-Lin

    2017-09-01

    Chemotherapeutic drugs, including bortezomib, often cause painful peripheral neuropathy, which is a severe dose-limiting adverse effect experienced by many cancer patients. The glutamate N-methyl-d-aspartate receptors (NMDARs) at the spinal cord level are critically involved in the synaptic plasticity associated with neuropathic pain. In this study, we determined whether treatment with bortezomib, a proteasome inhibitor, affects the NMDAR activity of spinal dorsal horn neurons. Systemic treatment with bortezomib in rats did not significantly affect postsynaptic NMDAR currents elicited by puff application of NMDA directly to dorsal horn neurons. Bortezomib treatment markedly increased the baseline frequency of miniature excitatory postsynaptic currents (EPSCs), which was completely normalized by the NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5). AP5 also reduced the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation in bortezomib-treated, but not vehicle-treated, rats. Furthermore, inhibition of protein kinase C (PKC) with chelerythrine fully reversed the increased frequency of miniature EPSCs and the amplitude of evoked EPSCs in bortezomib-treated rats. Intrathecal injection of AP5 and chelerythrine both profoundly attenuated mechanical allodynia and hyperalgesia induced by systemic treatment with bortezomib. In addition, treatment with bortezomib induced striking membrane translocation of PKC-βII, PKC-δ, and PKC-ε in the dorsal root ganglion. Our findings indicate that bortezomib treatment potentiates nociceptive input from primary afferent nerves via PKC-mediated tonic activation of presynaptic NMDARs. Targeting presynaptic NMDARs and PKC at the spinal cord level may be an effective strategy for treating chemotherapy-induced neuropathic pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Solubilization of rat brain phencyclidine receptors in an active binding form that is sensitive to N-methyl-D-aspartate receptor ligands.

    Science.gov (United States)

    Ambar, I; Kloog, Y; Sokolovsky, M

    1988-07-01

    Phencyclidine (PCP) receptors were successfully solubilized from rat forebrain membranes with 1% sodium cholate. Approximately 58% of the initial protein and 20-30% of the high-affinity PCP binding sites were solubilized. The high affinity toward PCP-like drugs, the stereo-selectivity of the sites, and the sensitivity to N-methyl-D-aspartate (NMDA) receptor ligands were preserved. Binding of the potent PCP receptor ligand N-[3H][1-(2-thienyl)cyclohexyl] piperidine ([3H]TCP) to the soluble receptors was saturable (KD = 35 nM), and PCP-like drugs inhibited [3H]TCP binding in a rank order of potency close to that observed for the membrane-bound receptors; the most potent inhibitors were TCP (Ki = 31 nM) and the anticonvulsant MK-801 (Ki = 50 nM). The NMDA receptor antagonist 2-amino-5-phosphonovaleric acid inhibited binding of [3H]TCP to the soluble receptors; glutamate or NMDA diminished this inhibition in a dose-dependent manner. Taken together, the results indicate that the soluble PCP receptor preparation contains the glutamate recognition sites and may represent a single receptor complex for PCP and NMDA, as suggested by electrophysiological data. The successful solubilization of the PCP receptors in an active binding form should now facilitate their purification.

  18. Phosphorylation and activation of protamine kinase by two forms of a myelin basic protein kinase from extracts of bovine kidney cortex.

    Science.gov (United States)

    Reddy, S A; Guo, H; Tarun, S Z; Damuni, Z

    1993-07-15

    Two myelin basic protein kinases designated MBPK-1 and MBPK-2 were purified to apparent homogeneity from extracts of bovine kidney cortex. The purified preparations exhibited an apparent M(r) approximately 40,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and approximately 42,000 (MBPK-1) and 45,000 (MBPK-2) by gel permeation chromatography. Up to 0.4 and 1.8 mol of phosphoryl groups were incorporated per mol of MBPK-1 and MBPK-2, respectively, on threonines following incubation with ATP. Autophosphorylation, incubation with protein phosphatase 2A2 (PP2A2), CD45, or T-cell protein tyrosine phosphatase did not affect MBPK-1 activity. Autophosphorylation increased by about 3-fold MBPK-2 activity. This autophosphorylation and activation was reversed by PP2A2 but not by CD45 or T-cell protein tyrosine phosphatase. MBPK-1 and MBPK-2 displayed a positive reaction with an antibody to mitogen-activated protein kinase. Purified preparations of protamine kinase were activated by about 1.5-6-fold and, after inactivation with PP2A2, were reactivated by about 30% by MBPK-1 and MBPK-2. Activation and reactivation correlated with the incorporation, respectively, of 0.1-0.5 and 0.5 mol of phosphoryl groups/mol of the protamine kinase on serines. The results show that MBPK-1 and MBPK-2 are protamine kinase-activating kinases and suggest that MBPK-1 and MBPK-2 may be related to mitogen-activated protein kinase.

  19. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease

    NARCIS (Netherlands)

    Hommes, Daan; van den Blink, Bernt; Plasse, Terry; Bartelsman, Joep; Xu, Cuiping; Macpherson, Bret; Tytgat, Guido; Peppelenbosch, Mailkel; van Deventer, Sander

    2002-01-01

    Background & Aims: We investigated if inhibition of mitogen-activated protein kinases (MAPKs) was beneficial in Crohn's disease. Methods: Inhibition of JNK and p38 MAPK activation with CNI-1493, a guanylhydrazone, was tested in vitro. Twelve patients with severe Crohn's disease (mean baseline, CDAI

  20. Dexamethasone enhances glutamine synthetase activity and reduces N-methyl-D-aspartate neurotoxicity in mixed cultures of neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Edith Debroas

    2015-05-01

    Full Text Available Astrocytes are claimed to protect neurons against excitotoxicity by clearing glutamate from the extracellular space and rapidly converting it into glutamine. Glutamine, is then released into the extracellular medium, taken up by neurons and transformed back into glutamate which is then stored into synaptic vesicles. Glutamine synthetase (GS, the key enzyme that governs this glutamate/glutamine cycle, is known to be upregulated by glucocorticoids. In the present work we have thus studied in parallel the effects of dexamethasone on glutamine synthetase activity and NMDA-induced neuronal death in cultures derived from the brain cortex of murine embryos. We showed that dexamethasone was able to markedly enhance GS activity in cultures of astrocytes but not in near pure neuronal cultures. The pharmacological characteristics of the dexamethasone action strongly suggest that it corresponds to a typical receptor-mediated effect. We also observed that long lasting incubation (72 h of mixed astrocyte-neuron cultures in the presence of 100 nM dexamethasone significantly reduced the toxicity of NMDA treatment. Furthermore we demonstrated that methionine sulfoximine, a selective inhibitor of GS, abolished the dexamethasone-induced increase in GS activity and also markedly potentiated NMDA toxicity. Altogether these results suggest that dexamethasone may promote neuroprotection through a stimulation of astrocyte glutamine synthetase.

  1. Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in Drosophila melanogaster.

    Science.gov (United States)

    Carmena, Mar; Lombardia, Miguel Ortiz; Ogawa, Hiromi; Earnshaw, William C

    2014-11-01

    Cell cycle progression is regulated by members of the cyclin-dependent kinase (CDK), Polo and Aurora families of protein kinases. The levels of expression and localization of the key regulatory kinases are themselves subject to very tight control. There is increasing evidence that crosstalk between the mitotic kinases provides for an additional level of regulation. We have previously shown that Aurora B activates Polo kinase at the centromere in mitosis, and that the interaction between Polo and the chromosomal passenger complex (CPC) component INCENP is essential in this activation. In this report, we show that Polo kinase is required for the correct localization and activity of the CPC in meiosis and mitosis. Study of the phenotype of different polo allele combinations compared to the effect of chemical inhibition revealed significant differences in the localization and activity of the CPC in diploid tissues. Our results shed new light on the mechanisms that control the activity of Aurora B in meiosis and mitosis.

  2. New Insights on the Mechanism of the K+-Independent Activity of Crenarchaeota Pyruvate Kinases

    Science.gov (United States)

    De la Vega-Ruíz, Gustavo; Domínguez-Ramírez, Lenin; Riveros-Rosas, Héctor; Guerrero-Mendiola, Carlos; Torres-Larios, Alfredo; Hernández-Alcántara, Gloria; García-Trejo, José J.; Ramírez-Silva, Leticia

    2015-01-01

    Eukarya pyruvate kinases have glutamate at position 117 (numbered according to the rabbit muscle enzyme), whereas in Bacteria have either glutamate or lysine and in Archaea have other residues. Glutamate at this position makes pyruvate kinases K+-dependent, whereas lysine confers K+-independence because the positively charged residue substitutes for the monovalent cation charge. Interestingly, pyruvate kinases from two characterized Crenarchaeota exhibit K+-independent activity, despite having serine at the equivalent position. To better understand pyruvate kinase catalytic activity in the absence of K+ or an internal positive charge, the Thermofilum pendens pyruvate kinase (valine at the equivalent position) was characterized. The enzyme activity was K+-independent. The kinetic mechanism was random order with a rapid equilibrium, which is equal to the mechanism of the rabbit muscle enzyme in the presence of K+ or the mutant E117K in the absence of K+. Thus, the substrate binding order of the T. pendens enzyme was independent despite lacking an internal positive charge. Thermal stability studies of this enzyme showed two calorimetric transitions, one attributable to the A and C domains (Tm of 99.2°C), and the other (Tm of 105.2°C) associated with the B domain. In contrast, the rabbit muscle enzyme exhibits a single calorimetric transition (Tm of 65.2°C). The calorimetric and kinetic data indicate that the B domain of this hyperthermophilic enzyme is more stable than the rest of the protein with a conformation that induces the catalytic readiness of the enzyme. B domain interactions of pyruvate kinases that have been determined in Pyrobaculum aerophilum and modeled in T. pendens were compared with those of the rabbit muscle enzyme. The results show that intra- and interdomain interactions of the Crenarchaeota enzymes may account for their higher B domain stability. Thus the structural arrangement of the T. pendens pyruvate kinase could allow charge

  3. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice.

    Science.gov (United States)

    Ribaudo, Claudia M; Curá, José A; Cantore, María L

    2017-02-01

    Rice seedlings (Oryza sativa) inoculated with the plant growth-promoting rhizobacteria Azospirillum brasilense FT326 showed an enhanced development of the root system 3 days after inoculation. Later on, a remarkable enlargement of shoots was also evident. An increase in the Ca 2+ -dependent histone kinase activity was also detected as a result of inoculation. The biochemical characterization and Western-blot analysis of the kinase strongly supports the hypothesis that it belongs to a member of the rice CDPK family. The fact that the amount of the protein did not change upon inoculation seems to indicate that a posttranslational activation is responsible for the change in the enzymatic activity. An in-gel kinase experiment identified a 46 kDa CDPK like protein kinase as a putative component of the signal transduction pathway triggered by Azospirillum inoculation. To our knowledge, this is the first report on the possible involvement of a Ca 2+ -dependent protein kinase in promotion of rice plants growth by A. brasilense.

  4. Janus kinase/signal transducer and activator of transcription pathways in spondyloarthritis.

    Science.gov (United States)

    Raychaudhuri, Smriti K; Raychaudhuri, Siba P

    2017-07-01

    Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway represents a group of several intracellular molecules with a key role in signal pathways activated by growth factors and cytokines. These kinase proteins are associated with the signaling process of multiple key cytokines, which regulates various T-cell subpopulations and their effector cytokines. Development of novel drugs to inhibit this kinase cascade is an emerging field in clinical immunology. Thus, it is essential to have insights about the regulatory role of the JAK-STAT cytokine signaling in relation to autoimmune diseases and its applications in spondyloarthritis. JAK-STAT kinase signaling proteins have been extensively studied in rheumatoid arthritis. Initial observations suggest that JAK-STAT kinase signaling cascade regulates activation and proliferation of the IL17 effector memory T cells and thus has a potential role in the pathogenesis of psoriasis, psoriatic arthritis and ankylosing spondylitis. Here, we provide an overview of the clinical rheumatologists about the significance of JAK-STAT signaling system in rheumatic diseases and introduce the potential application of JAK and STAT inhibitors in spondyloarthritis.

  5. Human endotoxemia activates p38 MAP kinase and p42/44 MAP kinase, but not c-Jun N-terminal kinase

    NARCIS (Netherlands)

    van den Blink, B.; Branger, J.; Weijer, S.; Deventer, S. H.; van der Poll, T.; Peppelenbosch, M. P.

    2001-01-01

    All three major members of the MAPK family (i.e., p38 MAPK, p42/p44 MAPK, and c-Jun N terminal kinase (JNK)) have been shown to control cellular responses to inflammation in vitro. Therefore these kinases have been designated suitable targets for anti-inflammatory therapy. However, the extent to

  6. Mururins A-C, three new lignoids from Brosimum acutifolium and their protein kinase inhibitory activity.

    Science.gov (United States)

    Takashima, Junko; Asano, Shoichi; Ohsaki, Ayumi

    2002-07-01

    Two new flavonolignans, mururins A and B ( 1 and 2), and a new lignan, mururin C ( 3), were isolated from the bark of Brosimum acutifolium Huber together with three known lignans. Their structures were elucidated by spectroscopic means and chemical modifications. They were tested for protein kinase A (PKA) and protein kinase C (PKC) inhibitory activity. Mururin A showed 3 % and 63 % inhibition to PKA and PKC, respectively, at 20 microM. Mururin B showed 58 % and 38 % inhibition, respectively. Mururin C did not have significant activity.

  7. The tricarboxylic acid cycle activity in cultured primary astrocytes is strongly accelerated by the protein tyrosine kinase inhibitor tyrphostin 23

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Blumrich, Eva-Maria; Waagepetersen, Helle S

    2017-01-01

    Tyrphostin 23 (T23) is a well-known inhibitor of protein tyrosine kinases and has been considered as potential anti-cancer drug. T23 was recently reported to acutely stimulate the glycolytic flux in primary cultured astrocytes. To investigate whether T23 also affects the tricarboxylic acid (TCA...... production. In addition, T23-treatment strongly increased the molecular carbon labeling of the TCA cycle intermediates citrate, succinate, fumarate and malate, and significantly increased the incorporation of (13)C-labelling into the amino acids glutamate, glutamine and aspartate. These results clearly...... demonstrate that, in addition to glycolysis, also the mitochondrial TCA cycle is strongly accelerated after exposure of astrocytes to T23, suggesting that a protein tyrosine kinase may be involved in the regulation of the TCA cycle in astrocytes....

  8. Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif.

    Science.gov (United States)

    Prosser, Ian; Altug, Iris G; Phillips, Andy L; König, Wilfried A; Bouwmeester, Harro J; Beale, Michael H

    2004-12-15

    The naturally occurring, volatile sesquiterpene hydrocarbon germacrene D has strong effects on insect behaviour and genes encoding enzymes that produce this compound are of interest in the study of plant-insect interactions and in a number of biotechnological approaches to pest control. Goldenrod, Solidago canadensis, is unusual in that it produces both enantiomers of germacrene D. Two new sesquiterpene synthase cDNAs, designated Sc11 and Sc19, have been isolated from goldenrod and functional expression in Escherichia coli identified Sc11 as (+)-germacrene D synthase and Sc19 as (-)-germacrene D synthase. Thus, the enantiomers of germacrene D are the products of separate, but closely related (85% amino-acid identity), enzymes. Unlike other sesquiterpene synthases and the related monoterpene synthases and prenyl transferases, which contain the characteristic amino-acid motif DDXX(D,E), Sc11 is unusual in that this motif occurs as (303)NDTYD. Mutagenesis of this motif to (303)DDTYD gave rise to an enzyme that fully retained (+)-germacrene D synthase activity. The converse mutation in Sc19 (D303N) resulted in a less efficient but functional enzyme. Mutagenesis of position 303 to glutamate in both enzymes resulted in loss of activity. These results indicate that the magnesium ion-binding role of the first aspartate in the DDXXD motif may not be as critical as previously thought. Further amino-acid sequence comparisons and molecular modelling of the enzyme structures revealed that very subtle changes to the active site of this family of enzymes are required to alter the reaction pathway to form, in this case, different enantiomers from the same enzyme-bound carbocationic intermediate.

  9. Comparison of the activation energy barrier for succinimide formation from α- and β-aspartic acid residues obtained from density functional theory calculations.

    Science.gov (United States)

    Nakayoshi, Tomoki; Kato, Koichi; Fukuyoshi, Shuichi; Takahashi, Ohgi; Kurimoto, Eiji; Oda, Akifumi

    2018-01-03

    The l-α-Asp residues in peptides or proteins are prone to undergo nonenzymatic reactions to form l-β-Asp, d-α-Asp, and d-β-Asp residues via a succinimide five-membered ring intermediate. From these three types of isomerized aspartic acid residues, particularly d-β-Asp has been widely detected in aging tissue. In this study, we computationally investigated the cyclization of α- and β-Asp residues to form succinimide with dihydrogen phosphate ion as a catalyst (H 2 PO 4 - ). We performed the study using B3LYP/6-31+G(d,p) density functional theory calculations. The comparison of the activation barriers of both residues is discussed. All the calculations were performed using model compounds in which an α/β-Asp-Gly sequence is capped with acetyl and methylamino groups on the N- and C-termini, respectively. Moreover, H 2 PO 4 - catalyzes all the steps of the succinimide formation (cyclization-dehydration) acting as a proton-relay mediator. The calculated activation energy barriers for succinimide formation of α- and β-Asp residues are 26.9 and 26.0kcalmol -1 , respectively. Although it was experimentally confirmed that β-Asp has higher stability than α-Asp, there was no clear difference between the activation barriers. Therefore, the higher stability of β-Asp residue than α-Asp residue may be caused by an entropic effect associated with the succinimide formation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats.

    Science.gov (United States)

    Wang, YanRui; Yue, ShaoJie; Luo, ZiQiang; Cao, ChuanDing; Yu, XiaoHe; Liao, ZhengChang; Wang, MingJie

    2016-10-21

    Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats.

  11. The activation ofN-methyl-d-aspartate receptors downregulates transient outward potassium and L-type calcium currents in rat models of depression.

    Science.gov (United States)

    Liu, Xin; Shi, Shaobo; Yang, Hongjie; Qu, Chuan; Chen, Yuting; Liang, Jinjun; Yang, Bo

    2017-08-01

    Major depression is an important clinical factor in ventricular arrhythmia. Patients diagnosed with major depression overexpress N -methyl-d-aspartate receptors (NMDARs). Previous studies found that chronic NMDAR activation increases susceptibility to ventricular arrhythmias. We aimed to explore the mechanisms by which NMDAR activation may increase susceptibility to ventricular arrhythmias. Male rats were randomly assigned to either normal environments as control (CTL) group or 4 wk of chronic mild stress (CMS) to produce a major depression disorder (MDD) model group. After 4 wk of CMS, depression-like behaviors were measured in both groups. Varying doses (1-100 μM) of NMDA and 10 μM NMDA antagonist (MK-801) were perfused through ventricular myocytes isolated from MDD rats to measure the L-type calcium current ( I Ca-L ) and transient outward potassium current ( I to ). Structural remodeling was assessed using serial histopathology including Masson's trichrome dye. Electrophysiological characteristics were evaluated using Langendorff perfusion. Depression-like behaviors were observed in MDD rats. MDD rats showed longer action potential durations at 90% repolarization and higher susceptibility to ventricular arrhythmias than CTL rats. MDD rats showed lower I Ca-L and I to current densities than CTL rats. Additionally, NMDA reduced both currents in a concentration-dependent manner, whereas there was no significant impact on the currents when perfused with MK-801. MDD rats exhibited significantly more fibrosis areas in heart tissue and reduced expression of Kv4.2, Kv4.3, and Cav1.2. We observed that acute NMDAR activation led to downregulation of potassium and L-type calcium currents in a rat model of depression, which may be the mechanism underlying ventricular arrhythmia promotion by depression. Copyright © 2017 the American Physiological Society.

  12. Antiepileptic activity of total triterpenes isolated from Poria cocos is mediated by suppression of aspartic and glutamic acids in the brain.

    Science.gov (United States)

    Gao, Yanqiong; Yan, Hua; Jin, Ruirui; Lei, Peng

    2016-11-01

    Triterpenes from Poria cocos Wolf (Polyporaceae) have been used to treat various diseases in traditional Chinese medicine. However, the antiepileptic effects and mechanism are not fully understood. The objective of this study is to investigate the antiepileptic properties of total triterpenes (TTP) from the whole P. cocos. The ethanol extract TTP was identified by HPLC fingerprint analysis. Male ICR mice were gavaged (i.g.) with TTP (5, 20, 80 or 160 mg/kg) or reference drugs twice a day for 7 d. Antiepileptic activities of TTP were evaluated by maximal electroshock (MES)- and pentylenetetrazole (PTZ)-induced seizures in mice for 30 and 60 min, respectively. Locomotor activity and Rota-rod tests were performed for 60 min and 5 min, respectively. The levels of glutamic acid (Glu), aspartic acid (Asp), γ-aminobutyric acid (GABA) and glycine (Gly) in convulsive mice were estimated. The chronic epileptic model of Wistar rats was built to measure expressions of glutamate decarboxylase 65 (GAD65) and GABA A in rat brain after TTP treatment. The LC 50 of TTP (i.g.) was above 6 g/kg. TTP (5-160 mg/kg) protected mice against MES- and PTZ-induced convulsions at 65.0% and 62.5%, respectively, but have no effect on rota-rod treadmill; TTP (20-160 mg/kg) significantly reduced the locomotor activities, shortened the onset of pentobarbital sodium-induced sleep; TTP decreased Glu and Asp levels in convulsive mice, but increased the GAD65 and GABA A expressions in chronic epileptic rats at doses usage. TTP extracted from P. cocos possessed potential antiepileptic properties and is a candidate for further antiepileptic drug development.

  13. Beyond AICA riboside: in search of new specific AMP-activated protein kinase activators.

    Science.gov (United States)

    Guigas, Bruno; Sakamoto, Kei; Taleux, Nellie; Reyna, Sara M; Musi, Nicolas; Viollet, Benoit; Hue, Louis

    2009-01-01

    5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICA riboside) has been extensively used in vitro and in vivo to activate the AMP-activated protein kinase (AMPK), a metabolic sensor involved in both cellular and whole body energy homeostasis. However, it has been recently highlighted that AICA riboside also exerts AMPK-independent effects, mainly on AMP-regulated enzymes and mitochondrial oxidative phosphorylation (OXPHOS), leading to the conclusion that new compounds with reduced off target effects are needed to specifically activate AMPK. Here, we review recent findings on newly discovered AMPK activators, notably on A-769662, a nonnucleoside compound from the thienopyridone family. We also report that A-769662 is able to activate AMPK and stimulate glucose uptake in both L6 cells and primary myotubes derived from human satellite cells. In addition, A-769662 increases AMPK activity and phosphorylation of its main downstream targets in primary cultured rat hepatocytes but, by contrast with AICA riboside, does neither affect mitochondrial OXPHOS nor change cellular AMP:ATP ratio. We conclude that A-769662 could be one of the new promising chemical agents to activate AMPK with limited AMPK-independent side effects.

  14. Protein kinase and phosphatase activities of thylakoid membranes

    International Nuclear Information System (INIS)

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg 2+ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg 2+ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs

  15. Nitric Oxide Binds to and Modulates the Activity of a Pollen Specific Arabidopsis Diacylglycerol Kinase

    KAUST Repository

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  16. Proteinase inhibitors I and II from potatoes specifically block UV-induced activator protein-1 activation through a pathway that is independent of extracellular signal-regulated kinases, c-Jun N-terminal kinases, and P38 kinase

    International Nuclear Information System (INIS)

    Huang, C.S.; Ma, W.Y.; Ryan, C.A.; Dong, Z.G.

    1997-01-01

    Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation

  17. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival.

    Science.gov (United States)

    Jacque, Emilie; Schweighoffer, Edina; Tybulewicz, Victor L J; Ley, Steven C

    2015-06-01

    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase-Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers. © 2015 Jacque et al.

  18. Active p21-Activated Kinase 1 Rescues MCF10A Breast Epithelial Cells from Undergoing Anoikis

    Directory of Open Access Journals (Sweden)

    Raymond E. Menard

    2005-07-01

    Full Text Available The protein kinase, PAKi, is overexpressed in human breast cancer and may contribute to malignancy through induction of proliferation and invasiveness. In this study, we examined the role of PAKi in the survival of detached MCF10A breast epithelial cells to test whether it may also regulate the early stages of neoplasia. MCF10A cells undergo anoikis, as measured by the cleavage of caspase 3 and poly(ADPribose polymerase (PARP, after more than 8 hours of detachment. Endogenous Akt, PAKi, BAD are phosphorylated in attached MCF10A cells, but these phosphorylation events are all lost during the first 8 hours of detachment. Expression of constitutively active PAKi or Akt suppresses the cleavage of caspase 3 and PARP in detached MCF10A cells. Cooverexpression of active PAKi with dominant-negative Akt, or of active Akt with dominant-negative PAKi, still suppresses anoikis. Thus, Akt and PAKi enhance survival through pathways that are at least partially independent. PAKi-dependent regulation of anoikis is likely to occur early in the apoptotic cascade as expression of dominant-negative PAKi increased the cleavage of the upstream caspase 9, while constitutively active PAKi inhibited caspase 9 activation. These results support a role for activated PAKi in the suppression of anoikis in MCF10A epithelial cells.

  19. Active p21-activated kinase 1 rescues MCF10A breast epithelial cells from undergoing anoikis.

    Science.gov (United States)

    Menard, Raymond E; Jovanovski, Andrew P; Mattingly, Raymond R

    2005-07-01

    The protein kinase, PAK1, is overexpressed in human breast cancer and may contribute to malignancy through induction of proliferation and invasiveness. In this study, we examined the role of PAK1 in the survival of detached MCF10A breast epithelial cells to test whether it may also regulate the early stages of neoplasia. MCF10A cells undergo anoikis, as measured by the cleavage of caspase 3 and poly(ADP-ribose) polymerase (PARP), after more than 8 hours of detachment. Endogenous Akt, PAK1, and BAD are phosphorylated in attached MCF10A cells, but these phosphorylation events are all lost during the first 8 hours of detachment. Expression of constitutively active PAK1 or Akt suppresses the cleavage of caspase 3 and PARP in detached MCF10A cells. Co-overexpression of active PAK1 with dominant-negative Akt, or of active Akt with dominant-negative PAK1, still suppresses anoikis. Thus, Akt and PAK1 enhance survival through pathways that are at least partially independent. PAK1-dependent regulation of anoikis is likely to occur early in the apoptotic cascade as expression of dominant-negative PAK1 increased the cleavage of the upstream caspase 9, while constitutively active PAK1 inhibited caspase 9 activation. These results support a role for activated PAK1 in the suppression of anoikis in MCF10A epithelial cells.

  20. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kim, Tae Sung; Shin, Yern-Hyerk; Lee, Hye-Mi; Kim, Jin Kyung; Choe, Jin Ho; Jang, Ji-Chan; Um, Soohyun; Jin, Hyo Sun; Komatsu, Masaaki; Cha, Guang-Ho; Chae, Han-Jung; Oh, Dong-Chan; Jo, Eun-Kyeong

    2017-06-13

    The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster-Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.

  1. Regulation of AMP-activated protein kinase by natural and synthetic activators

    Directory of Open Access Journals (Sweden)

    David Grahame Hardie

    2016-01-01

    Full Text Available The AMP-activated protein kinase (AMPK is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.

  2. MHC class I signaling in T cells leads to tyrosine kinase activity and PLC-gamma 1 phosphorylation

    DEFF Research Database (Denmark)

    Skov, S; Odum, Niels; Claesson, M H

    1995-01-01

    We have studied the biochemical signal pathway leading to a rise in intracellular free calcium concentration ([Ca2+]i) following cross-linking of MHC class I (MHC-I) molecules on human T leukemic Jurkat cells. Evidence is presented that MHC-I signaling is dependent on tyrosine kinase activity......). Collectively, these results indicate that the MHC-I signaling pathway is linked to activation of tyrosine kinase(s) in Jurkat cells....

  3. Evaluation of Milk Trace Elements, Lactate Dehydrogenase, Alkaline Phosphatase and Aspartate Aminotransferase Activity of Subclinical Mastitis as and Indicator of Subclinical Mastitis in Riverine Buffalo (

    Directory of Open Access Journals (Sweden)

    Anirban Guha

    2012-03-01

    Full Text Available Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu, iron (Fe, zinc (Zn, cobalt (Co and manganese (Mn and enzyme activity of lactate dehydrogenase (LDH, alkaline phosphatase (ALP and aspartate aminotransferase (AST in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01 increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×105 cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.

  4. Protein-tyrosine kinase activity profiling in knock down zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Simone Lemeer

    Full Text Available BACKGROUND: Protein-tyrosine kinases (PTKs regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. METHODOLOGY: We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. RESULTS AND CONCLUSION: Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile

  5. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress

    Science.gov (United States)

    Zagórska, Anna; Pozo-Guisado, Eulalia; Boudeau, Jérôme; Vitari, Alberto C.; Rafiqi, Fatema H.; Thastrup, Jacob; Deak, Maria; Campbell, David G.; Morrice, Nick A.; Prescott, Alan R.; Alessi, Dario R.

    2007-01-01

    Mutations within the WNK1 (with-no-K[Lys] kinase-1) gene cause Gordon's hypertension syndrome. Little is known about how WNK1 is regulated. We demonstrate that WNK1 is rapidly activated and phosphorylated at multiple residues after exposure of cells to hyperosmotic conditions and that activation is mediated by the phosphorylation of its T-loop Ser382 residue, possibly triggered by a transautophosphorylation reaction. Activation of WNK1 coincides with the phosphorylation and activation of two WNK1 substrates, namely, the protein kinases STE20/SPS1-related proline alanine–rich kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Small interfering RNA depletion of WNK1 impairs SPAK/OSR1 activity and phosphorylation of residues targeted by WNK1. Hyperosmotic stress induces rapid redistribution of WNK1 from the cytosol to vesicular structures that may comprise trans-Golgi network (TGN)/recycling endosomes, as they display rapid movement, colocalize with clathrin, adaptor protein complex 1 (AP-1), and TGN46, but not the AP-2 plasma membrane–coated pit marker nor the endosomal markers EEA1, Hrs, and LAMP1. Mutational analysis suggests that the WNK1 C-terminal noncatalytic domain mediates vesicle localization. Our observations shed light on the mechanism by which WNK1 is regulated by hyperosmotic stress. PMID:17190791

  6. AMP-activated protein kinase phosphorylation in brain is dependent on method of sacrifice and tissue preparation

    Science.gov (United States)

    Scharf, Matthew T.; Mackiewicz, Miroslaw; Naidoo, Nirinjini; O'Callaghan, James P.; Pack, Allan I.

    2013-01-01

    AMP-activated protein kinase is activated when the catalytic α subunit is phosphorylated on Thr172 and therefore, phosphorylation of the α subunit is used as a measure of activation. However, measurement of α-AMP-activated protein kinase phosphorylation in vivo can be technically challenging. To determine the most accurate method for measuring α-AMP-activated protein kinase phosphorylation in the mouse brain, we compared different methods of sacrifice and tissue preparation. We found that freeze/thawing samples after homogenization on ice dramatically increased α-AMP-activated protein kinase phosphorylation in mice sacrificed by cervical dislocation. Sacrifice of mice by focused microwave irradiation, which rapidly heats the brain and causes enzymatic inactivation, prevented the freeze/thaw-induced increase in α-AMP-activated protein kinase phosphorylation and similar levels of phosphorylation were observed compared to mice sacrificed with cervical dislocation without freeze/thawing of samples. Sonication of samples in hot 1% sodium dodecyl sulfate blocked the freeze/thaw-induced increase in α-AMP-activated protein kinase phosphorylation, but phosphorylation was higher in mice sacrificed by cervical dislocation compared to mice sacrificed by focused microwave irradiation. These results demonstrate that α-AMP-activated protein kinase phosphorylation is dependent on method of sacrifice and tissue preparation and that α-AMP-activated protein kinase phosphorylation can increase in a manner that does not reflect biological alterations. PMID:18088373

  7. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identifie...... for new therapeutic drugs against leishmaniasis....

  8. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...

  9. Involvement of the mitogen-activated protein (MAP kinase signalling pathway in host cell invasion by Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Robert-Gangneux F.

    2000-06-01

    Full Text Available Little is known about signalling in Toxoplasma gondii, but it is likely that protein kinases might play a key role in the parasite proliferation, differentiation and probably invasion. We previously characterized Mitogen-Activated Protein (MAP kinases in T. gondii lysates. In this study, cultured cells were tested for their susceptibility to Toxoplasma gondii infection after tachyzoite pretreatment with drugs interfering with AMP kinase activation pathways. Protein kinases inhibitors, i.e. genistein, R031-8220 and PD098059, reduced tachyzoite infectivity by 38 ± 4.5 %, 85.5 ± 9 % and 56 ± 10 %, respectively. Conversely, protein kinases activators, i.e. bombesin and PMA, markedly increased infectivity (by 202 ± 37 % and 258 ± 14 %, respectively. These results suggest that signalling pathways involving PKC and AAAP kinases play a role in host cell invasion by Toxoplasma.

  10. Activation and translocation of p38 mitogen-activated protein kinase after stimulation of monocytes with contact sensitizers.

    Science.gov (United States)

    Brand, Pia; Plochmann, Sibylle; Valk, Elke; Zahn, Sabine; Saloga, Joachim; Knop, Jürgen; Becker, Detlef

    2002-07-01

    Recently we described the induction of tyrosine phosphorylation by contact sensitizers as an early molecular event during the activation of antigen- presenting cells. In this study, the role of the p38 mitogen-activated protein kinase for the activation of human monocytes after exposure to four structurally unrelated contact sensitizers was analyzed in comparison with the irritant benzalkonium chloride and an inductor of oxidative stress (H2O2) using immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay techniques. Bio chemical analysis revealed a translocation of p38 from the cytoplasm to the detergent-resistant cell fraction only upon stimulation with contact sensitizers. The activity of p38 was studied by quantification of its phosphorylated active form with a specific antibody and by kinase assay. Although all stimulants used in this study led to the activation of p38, a translocation to the detergent-resistant fraction as well phosphorylation of the mitogen-activated protein kinase dependent transcription factor Elk-1 was induced only by contact sensitizers. Evidence for a functional relevance of mitogen-activated protein kinase activation was provided by measurement of the hapten-induced production of the proinflammatory cytokine interleukin-1beta. Its release was inhibited by blocking p38-mediated signaling using the imidazole compounds SB203580 and SB202190. These data show that contact sensitizers are strong activators of the p38 mitogen-activated protein kinase. Although activation of this stress-associated pathway has been reported for many other stimuli, a unique translocation of p38 from the cytoplasm to the detergent-resistant fraction seems to be a specific event during hapten-induced activation of antigen-presenting cells.

  11. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  12. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    Science.gov (United States)

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Resveratrol reduces prostaglandin E1-stimulated osteoprotegerin synthesis in osteoblasts: suppression of stress-activated protein kinase/c-Jun N-terminal kinase.

    Science.gov (United States)

    Yamamoto, Naohiro; Otsuka, Takanobu; Kuroyanagi, Gen; Kondo, Akira; Kainuma, Shingo; Nakakami, Akira; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2015-01-01

    Resveratrol, a natural polyphenol mainly existing in red grapes and berries, possesses beneficial effects on human being. We have previously reported that prostaglandin E1 (PGE1) stimulates vascular endothelial growth factor synthesis via activation of p38 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) but not p44/p42 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the PGE1-effect on osteoprotegerin (OPG) synthesis and the effect of resveratrol on the synthesis in MC3T3-E1 cells. PGE1 induced the expression levels of OPG mRNA and stimulated the OPG release. Resveratrol significantly reduced the PGE1-induced OPG release and the mRNA expression. SRT1720, an activator of SIRT1, suppressed the release of OPG. The protein levels of SIRT1 were not up-regulated by resveratrol with or without PGE1. Both SB203580 and SP600125, a specific p38 MAP kinase inhibitor and a specific SAPK/JNK inhibitor, respectively, but not PD98059, a specific MEK inhibitor, reduced the PGE1-stimulated OPG release. Resveratrol or SRT1720 failed to affect the phosphorylation of p38 MAP kinase. On the contrary, PGE1-induced phosphorylation of SAPK/JNK was significantly attenuated by both resveratrol and SRT1720. Our results strongly suggest that resveratrol inhibits PGE1-stimulated OPG synthesis via suppressing SAPK/JNK but not p38 MAP kinase in osteoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53.

    OpenAIRE

    Chouinard, Nadine; Valerie, Kristoffer; Rouabhia, Mahmoud; Huot, Jacques

    2002-01-01

    Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity ...

  15. Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1

    KAUST Repository

    Muleya, Victor

    2014-09-23

    Background: A number of receptor kinases contain guanylate cyclase (GC) catalytic centres encapsulated in the cytosolic kinase domain. A prototypical example is the phytosulfokine receptor 1 (PSKR1) that is involved in regulating growth responses in plants. PSKR1 contains both kinase and GC activities however the underlying mechanisms regulating the dual functions have remained elusive. Findings: Here, we confirm the dual activity of the cytoplasmic domain of the PSKR1 receptor. We show that mutations within the guanylate cyclase centre modulate the GC activity while not affecting the kinase catalytic activity. Using physiologically relevant Ca2+ levels, we demonstrate that its GC activity is enhanced over two-fold by Ca2+ in a concentration-dependent manner. Conversely, increasing Ca2+ levels inhibits kinase activity up to 500-fold at 100 nM Ca2+. Conclusions: Changes in calcium at physiological levels can regulate the kinase and GC activities of PSKR1. We therefore propose a functional model of how calcium acts as a bimodal switch between kinase and GC activity in PSKR1 that could be relevant to other members of this novel class of ligand-activated receptor kinases.

  16. Phosphatidylinositol 3-Kinase Couples Localised Calcium Influx to Activation of Akt in Central Nerve Terminals.

    Science.gov (United States)

    Nicholson-Fish, Jessica C; Cousin, Michael A; Smillie, Karen J

    2016-03-01

    The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca(2+)]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca(2+)]i increases at active zones, or a calcium ionophore to raise [Ca(2+)]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca(2+)]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.

  17. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation.

    Directory of Open Access Journals (Sweden)

    Erika Pellegrini

    Full Text Available Innate immune receptors NOD1 and NOD2 are activated by bacterial peptidoglycans leading to recruitment of adaptor kinase RIP2, which, upon phosphorylation and ubiquitination, becomes a scaffold for downstream effectors. The kinase domain (RIP2K is a pharmaceutical target for inflammatory diseases caused by aberrant NOD2-RIP2 signalling. Although structures of active RIP2K in complex with inhibitors have been reported, the mechanism of RIP2K activation remains to be elucidated. Here we analyse RIP2K activation by combining crystal structures of the active and inactive states with mass spectrometric characterization of their phosphorylation profiles. The active state has Helix αC inwardly displaced and the phosphorylated Activation Segment (AS disordered, whilst in the inactive state Helix αC is outwardly displaced and packed against the helical, non-phosphorylated AS. Biophysical measurements show that the active state is a stable dimer whilst the inactive kinase is in a monomer-dimer equilibrium, consistent with the observed structural differences at the dimer interface. We conclude that RIP2 kinase auto-phosphorylation is intimately coupled to dimerization, similar to the case of BRAF. Our results will help drug design efforts targeting RIP2 as a potential treatment for NOD2-RIP2 related inflammatory diseases.

  18. Insulin Aspart (rDNA Origin) Injection

    Science.gov (United States)

    ... diabetes, insulin aspart is usually used with another type of insulin, unless it is used in an external insulin ... insulin aspart also may be used with another type of insulin or with oral medication(s) for diabetes. Insulin aspart ...

  19. A comparison of protein kinases inhibitor screening methods using both enzymatic activity and binding affinity determination

    DEFF Research Database (Denmark)

    Rudolf, Amalie Frederikke; Skovgaard, Tine; Knapp, Stefan

    2014-01-01

    Binding assays are increasingly used as a screening method for protein kinase inhibitors; however, as yet only a weak correlation with enzymatic activity-based assays has been demonstrated. We show that the correlation between the two types of assays can be improved using more precise screening...

  20. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.

    2014-01-01

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  1. Overexpression of atypical protein kinase C in HeLa cells facilitates macropinocytosis via Src activation.

    Science.gov (United States)

    Tisdale, Ellen J; Shisheva, Assia; Artalejo, Cristina R

    2014-06-01

    Atypical protein kinase C (aPKC) is the first recognized kinase oncogene. However, the specific contribution of aPKC to cancer progression is unclear. The pseudosubstrate domain of aPKC is different from the other PKC family members, and therefore a synthetic peptide corresponding to the aPKC pseudosubstrate (aPKC-PS) sequence, which specifically blocks aPKC kinase activity, is a valuable tool to assess the role of aPKC in various cellular processes. Here, we learned that HeLa cells incubated with membrane permeable aPKC-PS peptide displayed dilated heterogeneous vesicles labeled with peptide that were subsequently identified as macropinosomes. A quantitative membrane binding assay revealed that aPKC-PS peptide stimulated aPKC recruitment to membranes and activated Src. Similarly, aPKC overexpression in transfected HeLa cells activated Src and induced macropinosome formation. Src-aPKC interaction was essential; substitution of the proline residues in aPKC that associate with the Src-SH3 binding domain rendered the mutant kinase unable to induce macropinocytosis in transfected cells. We propose that aPKC overexpression is a contributing factor to cell transformation by interacting with and consequently promoting Src activation and constitutive macropinocytosis, which increases uptake of extracellular factors, required for altered cell growth and accelerated cell migration. Copyright © 2014. Published by Elsevier Inc.

  2. Protein kinase C activity is a protective modifier of Purkinje neuron degeneration in cerebellar ataxia

    NARCIS (Netherlands)

    Chopra, Ravi; Wasserman, Aaron H; Pulst, Stefan M; De Zeeuw, Chris I; Shakkottai, Vikram G

    2018-01-01

    Among the many types of neurons expressing protein kinase C (PKC) enzymes, cerebellar Purkinje neurons are particularly reliant on appropriate PKC activity for maintaining homeostasis. The importance of PKC enzymes in Purkinje neuron health is apparent as mutations in PRKCG (encoding PKCγ) cause

  3. Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordoma.

    Science.gov (United States)

    Fasig, J H; Dupont, W D; LaFleur, B J; Olson, S J; Cates, J M M

    2008-02-01

    Currently, there are no effective chemotherapeutic protocols for chordoma. Reports of receptor tyrosine kinase (RTK) expression in chordoma suggest that these tumours may respond to kinase inhibitor therapy. However, RTK signalling activity has not been extensively investigated in chordoma. A tissue microarray containing 21 cases of chordoma was analysed for expression of a number of proteins involved in signal transduction from RTKs by immunohistochemistry. Platelet-derived growth factor receptor-beta, epidermal growth factor receptor (EGFR), KIT and HER2 were detected in 100%, 67%, 33% and 0% of cases, respectively. Platelet-derived growth factor receptor-beta staining was of moderate-to-strong intensity in 20 of 21 cases. In contrast, KIT immunoreactivity was weak and focal in each of the seven positive cases. Total EGFR staining was variable; weak staining for phosphorylated EGFR was detected in nine cases. Phosphorylated isoforms of p44/42 mitogen-activated protein kinase, Akt and STAT3, indicative of tyrosine kinase activity, were detected in 86%, 76% and 67% of cases, respectively. Chordomas commonly express RTKs and activated signal transduction molecules. Although there were no statistically significant correlations between the expression of any of the markers studied and disease-free survival or tumour location, the results nonetheless indicate that chordomas may respond to RTK inhibitors or modulators of other downstream signalling molecules.

  4. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  5. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  6. Syndecan-4 proteoglycan regulates the distribution and activity of protein kinase C

    DEFF Research Database (Denmark)

    Oh, E S; Woods, A; Couchman, J R

    1997-01-01

    During cell-matrix adhesion, both tyrosine and serine/threonine kinases are activated. Integrin ligation correlates with tyrosine phosphorylation, whereas the later stages of spreading and focal adhesion and stress fiber formation in primary fibroblasts requires interactions of cell surface...

  7. Role of 5'AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Wojtaszewski, Jørgen F. P.

    2008-01-01

    5'AMP-activated protein kinase (AMPK) is recognized as an important intracellular energy sensor, shutting down energy-consuming processes and turning on energy-generating processes. Discovery of target proteins of AMPK has dramatically increased in the past 10 years. Historically, AMPK was first...

  8. How to awaken your nanomachines: Site-specific activation of focal adhesion kinases through ligand interactions

    KAUST Repository

    Walkiewicz, Katarzyna Wiktoria

    2015-06-17

    The focal adhesion kinase (FAK) and the related protein-tyrosine kinase 2-beta (Pyk2) are highly versatile multidomain scaffolds central to cell adhesion, migration, and survival. Due to their key role in cancer metastasis, understanding and inhibiting their functions are important for the development of targeted therapy. Because FAK and Pyk2 are involved in many different cellular functions, designing drugs with partial and function-specific inhibitory effects would be desirable. Here, we summarise recent progress in understanding the structural mechanism of how the tug-of-war between intramolecular and intermolecular interactions allows these protein ‘nanomachines’ to become activated in a site-specific manner.

  9. A conserved cysteine motif is critical for rice ceramide kinase activity and function.

    Directory of Open Access Journals (Sweden)

    Fang-Cheng Bi

    Full Text Available Ceramide kinase (CERK is a key regulator of cell survival in dicotyledonous plants and animals. Much less is known about the roles of CERK and ceramides in mediating cellular processes in monocot plants. Here, we report the characterization of a ceramide kinase, OsCERK, from rice (Oryza sativa spp. Japonica cv. Nipponbare and investigate the effects of ceramides on rice cell viability.OsCERK can complement the Arabidopsis CERK mutant acd5. Recombinant OsCERK has ceramide kinase activity with Michaelis-Menten kinetics and optimal activity at 7.0 pH and 40°C. Mg2+ activates OsCERK in a concentration-dependent manner. Importantly, a CXXXCXXC motif, conserved in all ceramide kinases and important for the activity of the human enzyme, is critical for OsCERK enzyme activity and in planta function. In a rice protoplast system, inhibition of CERK leads to cell death and the ratio of added ceramide and ceramide-1-phosphate, CERK's substrate and product, respectively, influences cell survival. Ceramide-induced rice cell death has apoptotic features and is an active process that requires both de novo protein synthesis and phosphorylation, respectively. Finally, mitochondria membrane potential loss previously associated with ceramide-induced cell death in Arabidopsis was also found in rice, but it occurred with different timing.OsCERK is a bona fide ceramide kinase with a functionally and evolutionarily conserved Cys-rich motif that plays an important role in modulating cell fate in plants. The vital function of the conserved motif in both human and rice CERKs suggests that the biochemical mechanism of CERKs is similar in animals and plants. Furthermore, ceramides induce cell death with similar features in monocot and dicot plants.

  10. SI113, a Specific Inhibitor of the Sgk1 Kinase Activity that Counteracts Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucia D''Antona

    2015-03-01

    Full Text Available Background/Aims: Published observations on serum and glucocorticoid regulated kinase 1 (Sgk1 knockout murine models and Sgk1-specific RNA silencing in the RKO human colon carcinoma cell line point to this kinase as a central player in colon carcinogenesis and in resistance to taxanes. Methods: By in vitro kinase activity inhibition assays, cell cycle and viability analysis in human cancer model systems, we describe the biologic effects of a recently identified kinase inhibitor, SI113, characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold, that shows specificity for Sgk1. Results: SI113 was able to inhibit in vitro cell growth in cancer cells derived from tumors with different origins. In RKO cells, this kinase inhibitor blocked insulin-dependent phosphorylation of the Sgk1 substrate Mdm2, the main regulator of p53 protein stability, and induced necrosis and apoptosis when used as a single agent. Finally, SI113 potentiated the effects of paclitaxel on cell viability. Conclusion: Since SI113 appears to be effective in inducing cell death in RKO cells, potentiating paclitaxel sensitivity, we believe that this new molecule could be efficiently employed, alone or in combination with paclitaxel, in colon cancer chemotherapy.

  11. In Vitro Assessment of Guanylyl Cyclase Activity of Plant Receptor Kinases

    KAUST Repository

    Raji, Misjudeen

    2017-05-31

    Cyclic nucleotides such as 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are increasingly recognized as key signaling molecules in plants, and a growing number of plant mononucleotide cyclases, both adenylate cyclases (ACs) and guanylate cyclases (GCs), have been reported. Catalytically active cytosolic GC domains have been shown to be part of many plant receptor kinases and hence directly linked to plant signaling and downstream cellular responses. Here we detail, firstly, methods to identify and express essential functional GC domains of receptor kinases, and secondly, we describe mass spectrometric methods to quantify cGMP generated by recombinant GCs from receptor kinases in vitro.

  12. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  13. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  14. Reduced Activity of Mutant Calcium-Dependent Protein Kinase 1 Is Compensated in Plasmodium falciparum through the Action of Protein Kinase G

    Directory of Open Access Journals (Sweden)

    Abhisheka Bansal

    2016-12-01

    Full Text Available We used a sensitization approach that involves replacement of the gatekeeper residue in a protein kinase with one with a different side chain. The activity of the enzyme with a bulky gatekeeper residue, such as methionine, cannot be inhibited using bumped kinase inhibitors (BKIs. Here, we have used this approach to study Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1. The methionine gatekeeper substitution, T145M, although it led to a 47% reduction in transphosphorylation, was successfully introduced into the CDPK1 locus using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9. As methionine is a bulky residue, BKI 1294 had a 10-fold-greater effect in vitro on the wild-type enzyme than on the methionine mutant. However, in contrast to in vitro data with recombinant enzymes, BKI 1294 had a slightly greater inhibition of the growth of CDPK1 T145M parasites than the wild type. Moreover, the CDPK1 T145M parasites were more sensitive to the action of compound 2 (C2, a specific inhibitor of protein kinase G (PKG. These results suggest that a reduction in the activity of CDPK1 due to methionine substitution at the gatekeeper position is compensated through the direct action of PKG or of another kinase under the regulation of PKG. The transcript levels of CDPK5 and CDPK6 were significantly upregulated in the CDPK1 T145M parasites. The increase in CDPK6 or some other kinase may compensate for decrease in CDPK1 activity during invasion. This study suggests that targeting two kinases may be more effective in chemotherapy to treat malaria so as not to select for mutations in one of the enzymes.

  15. Nobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells.

    Science.gov (United States)

    Aoki, Koichi; Yokosuka, Akihito; Mimaki, Yoshihiro; Fukunaga, Kohji; Yamakuni, Tohru

    2013-01-01

    Ras, a small G-protein, physiologically directs cell proliferation and cell cycle via regulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade. Dysregulation of Ras/MEK/ERK signaling has been reported to cause tumorigenesis and gliomas. Nobiletin, a citrus flavonoid, has been shown to have anti-tumor cells action. However, it remains elusive whether nobiletin could affect Ras activity. In this study, we provide the first evidence that nobiletin suppresses the proliferation by inhibiting Ras activity in C6 glioma cells, a rat glioma cell line. First, Ras pull-down assay showed that nobiletin inhibits Ras activity in a concentration-dependent manner in C6 cells. Second, farnesyltransferase inhibitor I, a Ras inhibitor, and U0126, a MEK inhibitor, induced an inhibition of the cell proliferation in C6 cells, while the cell proliferation was inhibited by nobiletin as well. Third, western blotting revealed that nobiletin showed inhibitory effects on MEK and ERK phopsphorylation levels in a concentration-dependent manner. Finally, such an inhibitory effect on the level of ERK phosphorylation by nobiletin was appreciably prevented by Gö6976, a selective inhibitor of conventional protein kinase Cs (PKCs) showing Ca(2+)-sensitivity, while GF109203X, a general inhibitor for PKCs, and BAPTA, a cell-permeable Ca(2+) chelator, to a lesser extent, suppressed a reduction of the phosphorylation. These findings suggest that the proliferation of C6 cells is Ras- and MEK/ERK signaling-dependent, and that nobiletin suppresses the cell proliferation by inhibiting Ras activity and MEK/ERK signaling cascade probably via a Ca(2+)-sensitive PKC-dependent mechanism. Thus, the natural compound has potential to be a therapeutic agent for glioma.

  16. Metabolism of [14C] bicarbonate by Streptococcus lactis: the synthesis, uptake and excretion of aspartate by resting cells

    International Nuclear Information System (INIS)

    Hillier, A.J.; Rice, G.H.; Jago, G.R.

    1978-01-01

    Resting cells of Streptococcus lactis C10 were able to synthesize aspartic acid de novo but could not actively transport aspartic acid into the cell. Intracellular aspartate was excreted from the cell in the presence of glucose but did not exchange with any extracellular amino acids. The results indicate that Str. lactis C10 obtains the aspartic acid it requires for growth by bicarbonate fixation instead of by the utilization of extracellular aspartic acid. (author)

  17. Creatine supplementation: effects on blood creatine kinase activity responses to resistance exercise and creatine kinase activity measurement

    Directory of Open Access Journals (Sweden)

    Marco Machado

    2009-12-01

    Full Text Available The purpose of this study was to determine the effects of creatine supplementation and exercise on the integrity of muscle fiber, as well as the effect of the supplementation on the creatine kinase (CK assay measurement. Forty-nine sedentary individuals participated in a double-blind study and were divided into two groups: C (n=26 received 4x5-day packages of 0.6 g.kg-1 of body weight contained 50% of creatine + 50% of dextrose, and P (n=23 received packages containing only dextrose. On the first day the groups performed a 1RM test for bench press, seated row, leg extension, leg curl and leg press. On D7 they received the supplements. On the fourteenth day, they performed a training session of five exercises, each in three sets of ten repetitions at 75% of 1RM. Blood was collected before (D14 and after the exercise session (D15. Differing levels of blood creatine were tested to determine the influence on the assay measurements of CK. ANOVA and Tukey's post-hoc tests were used to compare groups and different times of study protocol (PO objetivo do presente estudo foi determinar o efeito da suplementação de creatina e do exercício na integridade das fibras musculares e, também, o efeito da suplementação na técnica de mensuração da atividade da creatina kinase (CK. Quarenta e nove sedentários participaram de um estudo duplo-cego e foram divididos em dois grupos: C (n=26 que receberam 4x5 dias embalagens com 0,6 g.kg-1 de massa corporal com 50% de creatina + 50% de dextrose, e P (n=23 que receberam embalagens contendo apenas dextrose. No primeiro dia, eles realizaram o teste de 1RM para os exercícios supino reto, remada sentada, cadeira extensora, mesa flexora, e leg press. No D7 receberam os suplementos. No décimo quarto dia eles realizaram uma sessão de treinos com os cinco exercícios, cada um com 3x10 repetições a 75% de 1RM. Sangue foi coletado antes (D14 e depois da sessão de exercícios (D15. Diferentes concentrações de

  18. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment

    Directory of Open Access Journals (Sweden)

    Bruno Aquino

    2017-05-01

    Full Text Available Kinases are primary regulators of plant metabolism and excellent targets for plant breeding. However, most kinases, including the abundant receptor-like kinases (RLK, have no assigned role. SIRK1 is a leucine-rich repeat receptor-like kinase (LRR-RLK, the largest family of RLK. In Arabidopsis thaliana, SIRK1 (AtSIRK1 is phosphorylated after sucrose is resupplied to sucrose-starved seedlings and it modulates the sugar response by phosphorylating several substrates. In maize, the ZmSIRK1 expression is altered in response to drought stress. In neither Arabidopsis nor in maize has the function of SIRK1 been completely elucidated. As a first step toward the biochemical characterization of ZmSIRK1, we obtained its recombinant kinase domain, demonstrated that it binds AMP-PNP, a non-hydrolysable ATP-analog, and solved the structure of ZmSIRK1- AMP-PNP co-crystal. The ZmSIRK1 crystal structure revealed a unique conformation for the activation segment. In an attempt to find inhibitors for ZmSIRK1, we screened a focused small molecule library and identified six compounds that stabilized ZmSIRK1 against thermal melt. ITC analysis confirmed that three of these compounds bound to ZmSIRK1 with low micromolar affinity. Solving the 3D structure of ZmSIRK1-AMP-PNP co-crystal provided information on the molecular mechanism of ZmSIRK1 activity. Furthermore, the identification of small molecules that bind this kinase can serve as initial backbone for development of new potent and selective ZmSIRK1 antagonists.

  19. Differences between magnesium-activated and manganese-activated pyruvate kinase from the muscle of Concholepas concholepas.

    Science.gov (United States)

    González, R; Carvajal, N; Morán, A

    1984-01-01

    In contrast to the Mg2+-activated enzyme, in the presence of Mn2+ pyruvate kinase exhibits hyperbolic kinetics with respect to the substrate phosphoenolpyruvate and is insensitive to fructose 1,6-biphosphate, phenylalanine and alanine. However, with both metal activated species inhibition by excess ADP is observed. In contrast with Mg2+, which affords significant protection against inactivation caused by 5,5'-dithiobis (2-nitrobenzoic acid), the rate of inactivation by this reagent is increased in the presence of Mn2+. Differences in conformational changes induced by combination of pyruvate kinase with Mg2+ or Mn2+ were indicated by u.v. difference spectra.

  20. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  1. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  2. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  3. Structural insights into the architecture and allostery of full-length AMP-activated protein kinase.

    Science.gov (United States)

    Zhu, Li; Chen, Lei; Zhou, Xiao-Ming; Zhang, Yuan-Yuan; Zhang, Yi-Jiong; Zhao, Jing; Ji, Shang-Rong; Wu, Jia-Wei; Wu, Yi

    2011-04-13

    AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of α catalytic subunit, β scaffolding subunit, and γ regulatory subunit with critical roles in maintaining cellular energy homeostasis. However, the molecular architecture of the intact complex and the allostery associated with the adenosine binding-induced regulation of kinase activity remain unclear. Here, we determine the three-dimensional reconstruction and subunit organization of the full-length rat AMPK (α1β1γ1) through single-particle electron-microscopy. By comparing the structures of AMPK in ATP- and AMP-bound states, we are able to visualize the sequential conformational changes underlying kinase activation that transmits from the adenosine binding sites in the γ subunit to the kinase domain of the α subunit. These results not only make substantial revision to the current model of AMPK assembly, but also highlight a central role of the linker sequence of the α subunit in mediating the allostery of AMPK. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Loss of ATM kinase activity leads to embryonic lethality in mice.

    Science.gov (United States)

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  6. Muscarinic receptor-mediated activation of p70 S6 kinase 1 (S6K1) in 1321N1 astrocytoma cells: permissive role of phosphoinositide 3-kinase.

    OpenAIRE

    Tang, Xiuwen; Wang, Lijun; Proud, Christopher G; Downes, C Peter

    2003-01-01

    In 1321N1 astrocytoma cells, carbachol stimulation of M3 muscarinic cholinergic receptors, coupled to phospholipase C, evoked a persistent 10-20-fold activation of p70 S6 kinase (S6K1). This response was abolished by chelation of cytosolic Ca2+ and reproduced by the Ca2+ ionophore ionomycin, but was not prevented by down-regulation or inhibition of protein kinase C. Carbachol-stimulated activation and phosphorylation of S6K1 at Thr389 were prevented by rapamycin, an inhibitor of mTOR (mammali...

  7. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities.

    Directory of Open Access Journals (Sweden)

    Ru-Huei Fu

    Full Text Available BACKGROUND: Dendritic cells (DCs are major modulators in the immune system. One active field of research is the manipulation of DCs as pharmacological targets to screen novel biological modifiers for the treatment of inflammatory and autoimmune disorders. Acetylcorynoline is the major alkaloid component derived from Corydalis bungeana herbs. We assessed the capability of acetylcorynoline to regulate lipopolysaccharide (LPS-stimulated activation of mouse bone marrow-derived DCs. METHODOLOGY/PRINCIPAL FINDINGS: Our experimental data showed that treatment with up to 20 µM acetylcorynoline does not cause cytotoxicity in cells. Acetylcorynoline significantly inhibited the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also decreased by acetylcorynoline, and the endocytic capacity of LPS-stimulated DCs was restored by acetylcorynoline. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was blocked by acetylcorynoline, and the migratory ability of LPS-stimulated DCs was reduced by acetylcorynoline. Moreover, acetylcorynoline significantly inhibits LPS-induced activation of IκB kinase and mitogen-activated protein kinase. Importantly, administration of acetylcorynoline significantly attenuates 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. CONCLUSIONS/SIGNIFICANCE: Acetylcorynoline may be one of the potent immunosuppressive agents through the blockage of DC maturation and function.

  8. In vivo effects of vanadium in diabetic rats are independent of changes in PI-3 kinase activity in skeletal muscle.

    Science.gov (United States)

    Mohammad, A; Bhanot, S; McNeill, J H

    2001-07-01

    The PI-3 kinase signalling pathway is an important pathway in mediating the glucoregulatory effects of insulin and skeletal muscle (SKM) is the major tissue involved in glucose utilization. In diabetes this pathway is impaired, either due to lack of insulin as in Type I diabetes, or due to insulin resistance as in Type 2 diabetes. Bis(maltolato)-oxovanadium IV (BMOV), an insulin mimetic/enhancing agent, produces a marked glucose lowering effect in models of both types of diabetes. Some in vitro studies have shown that phosphatidylinositol 3 kinase (PI-3 kinase) activity is enhanced by vanadium. In the present study we looked at changes in PI-3 kinase expression and activity in SKM from STZ-diabetic and fa/fa Zucker rats treated with BMOV for 3 weeks. Although BMOV treatment completely normalized glucose levels in STZ-diabetic rats, no effect was observed on basal or insulin-stimulated PI-3 kinase activity. In fatty Zucker rats, activation of PI-3 kinase activity after insulin injection was impaired as compared to age matched lean controls, but BMOV again did not affect the activity. These results suggest that although PI-3 kinase is an important signalling factor in glucose utilization, vanadium treatment does not reduce hyperglycemia through activation of SKM PI-3 kinase in vivo.

  9. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific tec kinases.

    Science.gov (United States)

    Joseph, Raji E; Kleino, Iivari; Wales, Thomas E; Xie, Qian; Fulton, D Bruce; Engen, John R; Berg, Leslie J; Andreotti, Amy H

    2013-08-27

    Itk (interleukin-2-inducible T cell kinase) and Btk (Bruton's tyrosine kinase) are nonreceptor tyrosine kinases of the Tec family that signal downstream of the T cell receptor (TCR) and B cell receptor (BCR), respectively. Despite their high sequence similarity and related signaling roles, Btk is a substantially more active kinase than Itk. We showed that substitution of 6 of the 619 amino acid residues of Itk with the corresponding residues of Btk (and vice versa) was sufficient to completely switch the activities of Itk and Btk. The substitutions responsible for the swap in activity are all localized to the activation segment of the kinase domain. Nuclear magnetic resonance and hydrogen-deuterium exchange mass spectrometry analyses revealed that Itk and Btk had distinct protein dynamics in this region, which could explain the differences in catalytic efficiency between these kinases. Introducing Itk with enhanced activity into T cells led to enhanced and prolonged TCR signaling compared to that in cells with wild-type Itk. These findings imply that evolutionary pressures have led to Tec kinases having distinct enzymatic properties, depending on the cellular context. We suggest that the weaker catalytic activities of T cell-specific kinases serve to regulate cellular activation and prevent aberrant immune responses.

  10. The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway through E-Syt1 Phosphorylation

    OpenAIRE

    Johnson, Hannah; White, Forest M.; Jun, Hyun Jung; Bronson, Roderick T.; de Feraudy, Sebastien; Charest, Alain

    2012-01-01

    Patients with lung cancer often present with metastatic disease and therefore have a very poor prognosis. The recent discovery of several novel ROS receptor tyrosine kinase molecular alterations in non-small-cell lung cancer (NSCLC) presents a therapeutic opportunity for the development of new targeted treatment strategies. Here, we report that the NSCLC-derived fusion CD74-ROS, which accounts for 30% of all ROS fusion kinases in NSCLC, is an active and oncogenic tyrosine kinase. We found tha...

  11. Dual inhibition of MET and SRC kinase activity as a combined targeting strategy for colon cancer.

    Science.gov (United States)

    Song, Na; Qu, Xiujuan; Liu, Shizhou; Zhang, Simeng; Liu, Jing; Qu, Jinglei; Zheng, Huachuan; Liu, Yunpeng; Che, Xiaofang

    2017-08-01

    Hepatocyte growth factor (HGF)/MET signaling is implicated in the development of colorectal cancer (CRC) and possesses therapeutic value for various types of cancer. However, inhibition of MET alone has been demonstrated to have limited efficacy. The present study examined the combined inhibition of MET and SRC kinase activity in colon cancer cells. Furthermore, the role of the HGF/MET pathway in ligand-dependent and -independent activation was demonstrated. The single inhibition of MET by knockdown small interfering RNA or inhibitor indicated a limited anti-viability effects without inhibiting the basal phosphorylation levels of SRC, protein kinase B (AKT) or extracellular signal-regulated kinase (ERK). In view of the strong association between MET and SRC identified by direct regulation, growth factor-induced MET activation was suppressed by pretreatment with the SRC inhibitor, dasatinib, and downstream phosphorylation of AKT and ERK partially decreased, which suggested that SRC activation was essential for ligand-dependent and -independent activation of MET. Considering that both the activation of MET and SRC was required in ligand-dependent and -independent MET activation, the antitumor effect of concurrent inhibition of MET and SRC was examined, and it was demonstrated that combination treatment exerted increased viability inhibition and apoptosis enhancement in mutant and wild type RAS colon cancer cells. Therefore, combinational inhibition of MET and SRC may be a promising strategy for the treatment of CRC.

  12. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  13. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  14. Independence of protein kinase C-delta activity from activation loop phosphorylation: structural basis and altered functions in cells.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Graham, Caroline; Shaw, Stephen

    2006-04-28

    Activation loop phosphorylation plays critical regulatory roles for many kinases. Unlike other protein kinase Cs (PKC), PKC-delta does not require phosphorylation of its activation loop (Thr-507) for in vitro activity. We investigated the structural basis for this unusual capacity and its relevance to PKC-delta function in intact cells. Mutational analysis demonstrated that activity without Thr-507 phosphorylation depends on 20 residues N-terminal to the kinase domain and a pair of phenylalanines (Phe-500/Phe-527) unique to PKC-delta in/near the activation loop. Molecular modeling demonstrated that these elements stabilize the activation loop by forming a hydrophobic chain of interactions from the C-lobe to activation loop to N-terminal (helical) extension. In cells PKC-delta mediates both apoptosis and transcription regulation. We found that the T507A mutant of the PKC-delta kinase domain resembled the corresponding wild type in mediating apoptosis in transfected HEK293T cells. But the T507A mutant was completely defective in AP-1 and NF-kappaB reporter assays. A novel assay in which the kinase domain of PKC-delta and its substrate (a fusion protein of PKC substrate peptide with green fluorescent protein) were co-targeted to lipid rafts revealed a major substrate-selective defect of the T507A mutant in phosphorylating the substrate in cells. In vitro analysis showed strong product inhibition on the T507A mutant with particular substrates whose characteristics suggest it contributes to the substrate selective defect of the PKC-delta T507A mutant in cells. Thus, activation loop phosphorylation of PKC-delta may regulate its function in cells in a novel way.

  15. Mining frequent patterns for AMP-activated protein kinase regulation on skeletal muscle

    OpenAIRE

    Chen, Qingfeng; Chen, Yi-Ping Phoebe

    2006-01-01

    Abstract Background AMP-activated protein kinase (AMPK) has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data ar...

  16. Effect of Concurrent Src Kinase Inhibition with Short-Duration Hypothermia on Ca2+/Calmodulin Kinase IV Activity and Neuropathology after Hypoxia-Ischemia in the Newborn Swine Brain.

    Science.gov (United States)

    Kratimenos, Panagiotis; Koutroulis, Ioannis; Jain, Amit; Malaeb, Shadi; Delivoria-Papadopoulos, Maria

    2018-01-01

    Hypoxia-ischemia (HI) results in increased activation of Ca2+/calmodulin kinase IV (CaM kinase IV) mediated by Src kinase. Therapeutic hypothermia ameliorates neuronal injury in the newborn. Inhibition of Src kinase concurrently with hypothermia further attenuates the hypoxia-induced increased activation of CaM kinase IV compared with hypothermia alone. Ventilated piglets were exposed to HI, received saline or a selective Src kinase inhibitor (PP2), and were cooled to 33°C. Neuropathology, adenosine triphosphate (ATP) and phosphocreatine (PCr) concentrations, and CaM kinase IV activity were determined. The neuropathology mean score (mean ± SD) was 0.4 ± 0.43 in normoxia-normothermia (p Src kinase inhibitor were comparable in the levels of ATP and PCr, indicating that they were similar in their degree of energy failure prior to treatments. Hypothermia or Src kinase inhibitor (PP2) did not restore the ATP and PCr levels. Hypothermia and Src kinase inhibition attenuated apoptotic cell death and improved neuropathology after hypoxia. The combination of short-duration hypothermia with Src kinase inhibition following hypoxia further attenuates the increased activation of CaM kinase IV compared to hypothermia alone in the newborn swine brain. © 2017 S. Karger AG, Basel.

  17. Kinase inhibitors can produce off-target effects and activate linked pathways by retroactivity

    Directory of Open Access Journals (Sweden)

    Wynn Michelle L

    2011-10-01

    Full Text Available Abstract Background It has been shown in experimental and theoretical work that covalently modified signaling cascades naturally exhibit bidirectional signal propagation via a phenomenon known as retroactivity. An important consequence of retroactivity, which arises due to enzyme sequestration in covalently modified signaling cascades, is that a downstream perturbation can produce a response in a component upstream of the perturbation without the need for explicit feedback connections. Retroactivity may, therefore, play an important role in the cellular response to a targeted therapy. Kinase inhibitors are a class of targeted therapies designed to interfere with a specific kinase molecule in a dysregulated signaling pathway. While extremely promising as anti-cancer agents, kinase inhibitors may produce undesirable off-target effects by non-specific interactions or pathway cross-talk. We hypothesize that targeted therapies such as kinase inhibitors can produce off-target effects as a consequence of retroactivity alone. Results We used a computational model and a series of simple signaling motifs to test the hypothesis. Our results indicate that within physiologically and therapeutically relevant ranges for all parameters, a targeted inhibitor can naturally induce an off-target effect via retroactivity. The kinetics governing covalent modification cycles in a signaling network were more important for propagating an upstream off-target effect in our models than the kinetics governing the targeted therapy itself. Our results also reveal the surprising and crucial result that kinase inhibitors have the capacity to turn "on" an otherwise "off" parallel cascade when two cascades share an upstream activator. Conclusions A proper and detailed characterization of a pathway's structure is important for identifying the optimal protein to target as well as what concentration of the targeted therapy is required to modulate the pathway in a safe and effective

  18. MARK/Par1 Kinase Is Activated Downstream of NMDA Receptors through a PKA-Dependent Mechanism.

    Directory of Open Access Journals (Sweden)

    Laura P Bernard

    Full Text Available The Par1 kinases, also known as microtubule affinity-regulating kinases (MARKs, are important for the establishment of cell polarity from worms to mammals. Dysregulation of these kinases has been implicated in autism, Alzheimer's disease and cancer. Despite their important function in health and disease, it has been unclear how the activity of MARK/Par1 is regulated by signals from cell surface receptors. Here we show that MARK/Par1 is activated downstream of NMDA receptors in primary hippocampal neurons. Further, we show that this activation is dependent on protein kinase A (PKA, through the phosphorylation of Ser431 of Par4/LKB1, the major upstream kinase of MARK/Par1. Together, our data reveal a novel mechanism by which MARK/Par1 is activated at the neuronal synapse.

  19. [Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism].

    Science.gov (United States)

    Li, Xin-juan; Zhang, Yan; Xu, Chun-yang; Li, Shuang; Du, Ai-lin; Zhang, Li-bin; Zhang, Rui-ling

    2015-03-01

    To observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism. Forty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method. The abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P alcoholism group (P alcoholism group( P alcoholism group were significantly increased compared with control group (P alcoholism group ( P alcoholism damage may interrelate with regulation of Cdk5 kinase activity.

  20. Structure and Ubiquitination-Dependent Activation of TANK-Binding Kinase 1

    Directory of Open Access Journals (Sweden)

    Daqi Tu

    2013-03-01

    Full Text Available Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1 induces type I interferon expression and modulates nuclear factor κB (NF-κB signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ∊ (IKK∊ but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents.

  1. Structure and ubiquitination-dependent activation of TANK-binding kinase 1.

    Science.gov (United States)

    Tu, Daqi; Zhu, Zehua; Zhou, Alicia Y; Yun, Cai-hong; Lee, Kyung-Eun; Toms, Angela V; Li, Yiqun; Dunn, Gavin P; Chan, Edmond; Thai, Tran; Yang, Shenghong; Ficarro, Scott B; Marto, Jarrod A; Jeon, Hyesung; Hahn, William C; Barbie, David A; Eck, Michael J

    2013-03-28

    Upon stimulation by pathogen-associated inflammatory signals, TANK-binding kinase 1 (TBK1) induces type I interferon expression and modulates nuclear factor κB (NF-κB) signaling. Here, we describe the 2.4 Å-resolution crystal structure of nearly full-length TBK1 in complex with specific inhibitors. The structure reveals a dimeric assembly created by an extensive network of interactions among the kinase, ubiquitin-like, and scaffold/dimerization domains. An intact TBK1 dimer undergoes K63-linked polyubiquitination on lysines 30 and 401, and these modifications are required for TBK1 activity. The ubiquitination sites and dimer contacts are conserved in the close homolog inhibitor of κB kinase ε (IKKε) but not in IKKβ, a canonical IKK that assembles in an unrelated manner. The multidomain architecture of TBK1 provides a structural platform for integrating ubiquitination with kinase activation and IRF3 phosphorylation. The structure of TBK1 will facilitate studies of the atypical IKKs in normal and disease physiology and further the development of more specific inhibitors that may be useful as anticancer or anti-inflammatory agents. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease.

    Science.gov (United States)

    Lim, M A; Selak, M A; Xiang, Z; Krainc, D; Neve, R L; Kraemer, B C; Watts, J L; Kalb, R G

    2012-01-18

    A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease.

  3. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  4. Casein kinase II activity in the brain of an insect, Acheta domesticus: characterization and hormonal regulation.

    Science.gov (United States)

    Degrelle, F; Renucci, M; Charpin, P; Tirard, A

    1997-01-01

    This study documented casein kinase II (CK II) activity in Acheta domesticus brain using specific antibodies and its regulation by polyamines. In control animals a transient decrease in CK II activity at day 3 after imaginal moult was observed in the brain but not in the fat body. If deprived of ecdysone by ovariectomy a different pattern was observed, with CK II activity being significantly higher on days 3 and 4 after emergence. After ecdysone injection in ovariectomized females, CK II activity decreased to levels similar to those in controls. The implications of ecdysone regulation of brain CK II activity are discussed.

  5. Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

    Directory of Open Access Journals (Sweden)

    Silvia Volpe

    Full Text Available BACKGROUND: Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A-adrenoceptor (alpha(2AAR display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET of alpha(2AAR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation. CONCLUSIONS/SIGNIFICANCE: Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the

  6. Light-mediated Reversible Modulation of the Mitogen-activated Protein Kinase Pathway during Cell Differentiation and Xenopus Embryonic Development.

    Science.gov (United States)

    Krishnamurthy, Vishnu V; Turgeon, Aurora J; Khamo, John S; Mondal, Payel; Sharum, Savanna R; Mei, Wenyan; Yang, Jing; Zhang, Kai

    2017-06-15

    Kinase activity is crucial for a plethora of cellular functions, including cell proliferation, differentiation, migration, and apoptosis. During early embryonic development, kinase activity is highly dynamic and widespread across the embryo. Pharmacological and genetic approaches are commonly used to probe kinase activities. Unfortunately, it is challenging to achieve superior spatial and temporal resolution using these strategies. Furthermore, it is not feasible to control the kinase activity in a reversible fashion in live cells and multicellular organisms. Such a limitation remains a bottleneck for achieving a quantitative understanding of kinase activity during development and differentiation. This work presents an optogenetic strategy that takes advantage of a bicistronic system containing photoactivatable proteins Arabidopsis thaliana cryptochrome 2 (CRY2) and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). Reversible activation of the mitogen-activated protein kinase (MAPK) signaling pathway is achieved through light-mediated protein translocation in live cells. This approach can be applied to mammalian cell cultures and live vertebrate embryos. This bicistronic system can be generalized to control the activity of other kinases with similar activation mechanisms and can be applied to other model systems.

  7. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation.

    Science.gov (United States)

    van der Harg, Judith M; Eggels, Leslie; Bangel, Fabian N; Ruigrok, Silvie R; Zwart, Rob; Hoozemans, Jeroen J M; la Fleur, Susanne E; Scheper, Wiep

    2017-07-01

    Alzheimer's disease (AD) is a highly prevalent multifactorial disease for which Diabetes Mellitus (DM) is a risk factor. Abnormal phosphorylation and aggregation of tau is a key hallmark of AD. In animal models, DM induces or exacerbates the phosphorylation of tau, suggesting that DM may influence the risk at AD by directly facilitating tau pathology. Previously we reported that tau phosphorylation induced in response to metabolic stress is reversible. Since identification and understanding of early players in tau pathology is pivotal for therapeutic intervention, we here investigated the mechanism underlying tau phosphorylation in the diabetic brain and its potential for reversibility. To model DM we used streptozotocin-treatment to induce insulin deficiency in rats. Insulin depletion leads to increased tau phosphorylation in the brain and we investigated the activation status of known tau kinases and phosphatases in this model. We identified protein kinase A (PKA) as a tau kinase activated by DM in the brain. The potential relevance of this signaling pathway to AD pathogenesis is indicated by the increased level of active PKA in temporal cortex of early stage AD patients. Our data indicate that activation of PKA and tau phosphorylation are associated with insulin deficiency per se, rather than the downstream energy deprivation. In vitro studies confirm that insulin deficiency results in PKA activation and tau phosphorylation. Strikingly, both active PKA and induced tau phosphorylation are reversed upon insulin treatment in the steptozotocin animal model. Our data identify insulin deficiency as a direct trigger that induces the activity of the tau kinase PKA and results in tau phosphorylation. The reversibility upon insulin treatment underscores the potential of insulin as an early disease-modifying intervention in AD and other tauopathies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. PGD2 stimulates osteoprotegerin synthesis via AMP-activated protein kinase in osteoblasts: Regulation of ERK and SAPK/JNK.

    Science.gov (United States)

    Kainuma, Shingo; Tokuda, Haruhiko; Kuroyanagi, Gen; Yamamoto, Naohiro; Ohguchi, Reou; Fujita, Kazuhiko; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2015-10-01

    AMP-activated protein kinase (AMPK), a key enzyme sensing cellular energy metabolism, is currently known to regulate multiple metabolic pathways. Osteoprotegerin plays a pivotal role in the regulation of bone metabolism by inhibiting osteoclast activation. We have previously reported that prostaglandin D2 (PGD2) stimulates the synthesis of osteoprotegerin through the activation of p38 mitogen-activated protein (MAP) kinase, p44/p42 MAP kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. On the basis of these findings, we herein investigated the implication of AMPK in PGD2-stimulated osteoprotegerin synthesis in these cells. PGD2 induced the phosphorylation of AMPKα (Thr-172) and AMPKβ (Ser-108), and the phosphorylation of acetyl-coenzyme A carboxylase, a direct AMPK substrate. Compound C, an AMPK inhibitor, which suppressed the phosphorylation of acetyl-coenzyme A carboxylase, significantly attenuated both the release and the mRNA levels of osteoprotegerin stimulated by PGD2. The PGD2-induced phosphorylation of p44/p42 MAP kinase and SAPK/JNK but not p38 MAP kinase were markedly inhibited by compound C. These results strongly suggest that AMPK regulates the PGD2-stimulated osteoprotegerin synthesis at a point upstream of p44/p42 MAP kinase and SAPK/JNK in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Diakos, Christos; Prieschl, Eva E.; Saeemann, Marcus D.; Boehmig, Georg A.; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J.

    2006-01-01

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  10. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    Werner's syndrome (WS) is a rare autosomal disease characterized by the premature onset of several age-associated pathologies. The protein defective in patients with WS (WRN) is a helicase/exonuclease involved in DNA repair, replication, transcription and telomere maintenance. In this study, we...... show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...

  11. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells.

    Science.gov (United States)

    Diakos, Christos; Prieschl, Eva E; Säemann, Marcus D; Böhmig, Georg A; Csonga, Robert; Sobanov, Yury; Baumruker, Thomas; Zlabinger, Gerhard J

    2006-10-20

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-alpha transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling.

  12. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation.

    Science.gov (United States)

    Zemans, Rachel L; Arndt, Patrick G

    2009-01-01

    The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH(2) terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta expression are dependent on Tec kinase activity.

  13. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    International Nuclear Information System (INIS)

    Ryu, S.H.; Lee, S.Y.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P 3 ) is an important second-messenger molecule that mobilizes Ca 2+ from intracellular stores in response to the occupancy of receptor by various Ca 2+ -mobilizing agonists. The fate of Ins-1,4,5-P 3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P 3 to Ins-1,3,4,5-P 4 , whereas the latter forms Ins-1,4-P 2 . Recent studies suggest that Ins-1,3,4,5-P 4 might modulate the entry of Ca 2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca 2+ /calmodulin complex. Therefore, they propose that Ca 2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P 3 forms a complex with calmodulin, and that the Ca 2+ /calmodulin complex stimulates the conversion of Ins-1,4,5-P 3 , and intracellular Ca 2+ mobilizer, to Ins-1,3,4,5-P 4 , an extracellular Ca 2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3- 32 P]Ins-1,3,4,5-P 4 and [γ- 32 P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P 3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg 2+ > > Mn 2+ > Ca 2+ ) for the 3-kinase

  14. Kinase activity of ArcB from Escherichia coli is subject to regulation by both ubiquinone and demethylmenaquinone

    NARCIS (Netherlands)

    Sharma, P.; Stagge, S.; Bekker, M.; Bettenbrock, K.; Hellingwerf, K.

    2013-01-01

    Expression of the catabolic network in Escherichia coli is predominantly regulated, via oxygen availability, by the two-component system ArcBA. It has been shown that the kinase activity of ArcB is controlled by the redox state of two critical pairs of cysteines in dimers of the ArcB sensory kinase.

  15. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimu

  16. Safety assessment of a novel active ingredient, acetyl aspartic acid, according to the EU Cosmetics Regulation and the Scientific Committee on Consumer Safety guidelines.

    Science.gov (United States)

    Daly, P; Moran, G

    2015-10-01

    Acetyl aspartic acid (A-A-A) was proposed as a new novel active ingredient for use in cosmetics. The safety of A-A-A was assessed by following an in-house-developed 'New Ingredient Testing Strategy', which was designed in accordance with the Scientific Committee on Consumer Safety (SCCS) notes of guidance and the requirements of Annex I of the EU Cosmetics Regulation. The aim of the project was to determine whether A-A-A was safe for use in cosmetics and to determine a maximum permitted safe level in the formulations. A literature review was conducted, consulting over 40 different information sources. This highlighted a number of gaps which required testing data. A-A-A was tested for phototoxicity according to OECD test guideline 432, skin irritation according to OECD test guideline 439 and eye irritation according to OECD test guideline 437. Dermal absorption of A-A-A was measured according to OECD test guideline 428 and was used to calculate the margin of safety (MoS). Finally, A-A-A was tested in a human repeat insult patch test (HRIPT) and a 14-day in-use tolerance study. A-A-A was non-phototoxic and was non-irritating to skin and eyes in in vitro testing. Dermal absorption was calculated to be 5%. The MoS for A-A-A was 351, at a level of 5%, for all cosmetic product types, indicating no systemic safety toxicity concern. A-A-A at 5% under occlusive patch on a panel of 50 adult volunteers induced no skin irritation or allergic reaction in the HRIPT study. Finally, repeated application of A-A-A to the periocular area, twice per day for 14 days, in 21 female volunteers, demonstrated that 1% A-A-A was well tolerated following dermatological and ophthalmological assessment in a cosmetic formulation. A-A-A was assessed as safe by the cosmetic safety assessor for use in cosmetics at a level of 5% in all cosmetic product types, in line with the requirements of the EU Cosmetics Regulation and in accordance with the SCCS notes of guidance. © 2015 Society of Cosmetic

  17. An Uncharacterized Member of the Ribokinase Family in Thermococcus kodakarensis Exhibits myo-Inositol Kinase Activity*

    Science.gov (United States)

    Sato, Takaaki; Fujihashi, Masahiro; Miyamoto, Yukika; Kuwata, Keiko; Kusaka, Eriko; Fujita, Haruo; Miki, Kunio; Atomi, Haruyuki

    2013-01-01

    Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate. PMID:23737529

  18. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  19. The Cytoplasmic Adaptor Protein Dok7 Activates the Receptor Tyrosine Kinase MuSK via Dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, E.; Hallock, P; Burden, S; Hubbard, S

    2010-01-01

    Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.

  20. Action of mercurials on activity of partially purified soluble protein kinase C from mice brain

    International Nuclear Information System (INIS)

    Inoue, Y.; Saijoh, K.; Sumino, K.

    1988-01-01

    The enzymatic activity of soluble protein kinase C from mice brain was inhibited by mercuric chloride (II) (HgCl 2 ) and organic mercurials, i.e. methyl mercury, phenyl mercury and p-chloromercuribenzoic acid (PCMB). The IC50 was 0.08 μM for HgCl 2 and about 1 μM for organic mercurials. Sulfhydryl blocking reagents such as 5.5'-dithiobis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) were less potent but nevertheless inhibited the enzymic activity of protein kinase C. The Hill coefficients of HgCl 2 , DTNB and NEM were close to unity whereas the values for organic mercurials were 1.3 to 1.5. The inhibition was of a non-competitive type with respect to Hl histone. 3 H-PDBu binding activity was also inhibited by all of the reagents in a non-competitive manner. Mercurials apparently bind to sulfhydryl groups of protein kinase C to inhibit the enzymatic activity. (author)

  1. TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis.

    Science.gov (United States)

    Gruber, Reinhard; Roos, Gilles; Caballé-Serrano, Jordi; Miron, Rick; Bosshardt, Dieter D; Sculean, Anton

    2014-07-01

    Emdogain, containing an extract of fetal porcine enamel matrix proteins, is a potent stimulator of in vitro osteoclastogenesis. The underlying molecular mechanisms are, however, unclear. Here, we have addressed the role of transforming growth factor-beta receptor type 1 (TGF-βRI) kinase activity on osteoclastogenesis in murine bone marrow cultures. Inhibition of TGF-βRI kinase activity with SB431542 abolished the effect of Emdogain on osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand or tumor necrosis factor-alpha. SB431542 also suppressed the Emdogain-mediated increase of OSCAR, a co-stimulatory protein, and dendritic cell-specific transmembrane protein and Atp6v0d2, the latter two being involved in cell fusion. Similar to transforming growth factor-beta1 (TGF-β), Emdogain could not compensate for the inhibition of IL-4 and IFNγ on osteoclast formation. When using the murine macrophage cell line RAW246.7, SB431542 and the smad-3 inhibitor SIS3 blocked Emdogain-stimulated expression of the transcription factor NFATc1. Taken together, the data suggest that TGF-βRI kinase activity is necessary to mediate in vitro effects of Emdogain on osteoclastogenesis. Based on these in vitro data, we can speculate that at least part of the clinical effects of Emdogain on osteoclastogenesis is mediated via TGF-β signaling.

  2. Epidermal Growth Factor Receptor Transactivation Is Required for Mitogen-Activated Protein Kinase Activation by Muscarinic Acetylcholine Receptors in HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Wymke Ockenga

    2014-11-01

    Full Text Available Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR, which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation.

  3. Interaction between Salt-inducible Kinase 2 and Protein Phosphatase 2A Regulates the Activity of Calcium/Calmodulin-dependent Protein Kinase I and Protein Phosphatase Methylesterase-1*

    Science.gov (United States)

    Lee, Chia-Wei; Yang, Fu-Chia; Chang, Hsin-Yun; Chou, Hanyi; Tan, Bertrand Chin-Ming; Lee, Sheng-Chung

    2014-01-01

    Salt-inducible kinase 2 (SIK2) is the only AMP-activated kinase (AMPK) family member known to interact with protein phosphatase 2 (PP2A). However, the functional aspects of this complex are largely unknown. Here we report that the SIK2·PP2A complex preserves both kinase and phosphatase activities. In this capacity, SIK2 attenuates the association of the PP2A repressor, the protein phosphatase methylesterase-1 (PME-1), thus preserving the methylation status of the PP2A catalytic subunit. Furthermore, the SIK2·PP2A holoenzyme complex dephosphorylates and inactivates Ca2+/calmodulin-dependent protein kinase I (CaMKI), an upstream kinase for phosphorylating PME-1/Ser15. The functionally antagonistic SIK2·PP2A and CaMKI and PME-1 networks thus constitute a negative feedback loop that modulates the phosphatase activity of PP2A. Depletion of SIK2 led to disruption of the SIK2·PP2A complex, activation of CaMKI, and downstream effects, including phosphorylation of HDAC5/Ser259, sequestration of HDAC5 in the cytoplasm, and activation of myocyte-specific enhancer factor 2C (MEF2C)-mediated gene expression. These results suggest that the SIK2·PP2A complex functions in the regulation of MEF2C-dependent transcription. Furthermore, this study suggests that the tightly linked regulatory loop comprised of the SIK2·PP2A and CaMKI and PME-1 networks may function in fine-tuning cell proliferation and stress response. PMID:24841198

  4. Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats.

    Science.gov (United States)

    Carvalho, Fabiano B; Mello, Carlos F; Marisco, Patricia C; Tonello, Raquel; Girardi, Bruna A; Ferreira, Juliano; Oliveira, Mauro S; Rubin, Maribel A

    2012-06-05

    Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.

    Science.gov (United States)

    Rewitz, Kim F; Yamanaka, Naoki; Gilbert, Lawrence I; O'Connor, Michael B

    2009-12-04

    Holometabolous insects undergo complete metamorphosis to become sexually mature adults. Metamorphosis is initiated by brain-derived prothoracicotropic hormone (PTTH), which stimulates the production of the molting hormone ecdysone via an incompletely defined signaling pathway. Here we demonstrate that Torso, a receptor tyrosine kinase that regulates embryonic terminal cell fate in Drosophila, is the PTTH receptor. Trunk, the embryonic Torso ligand, is related to PTTH, and ectopic expression of PTTH in the embryo partially rescues trunk mutants. In larvae, torso is expressed specifically in the prothoracic gland (PG), and its loss phenocopies the removal of PTTH. The activation of Torso by PTTH stimulates extracellular signal-regulated kinase (ERK) phosphorylation, and the loss of ERK in the PG phenocopies the loss of PTTH and Torso. We conclude that PTTH initiates metamorphosis by activation of the Torso/ERK pathway.

  6. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation

    DEFF Research Database (Denmark)

    Lotti, L V; Lanfrancone, L; Migliaccio, E

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear...... and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins....... The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein....

  7. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated protein kinase/nuclear... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  8. Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase.

    Science.gov (United States)

    Fu, Xiaoyong; Creighton, Chad J; Biswal, Nrusingh C; Kumar, Vijetha; Shea, Martin; Herrera, Sabrina; Contreras, Alejandro; Gutierrez, Carolina; Wang, Tao; Nanda, Sarmistha; Giuliano, Mario; Morrison, Gladys; Nardone, Agostina; Karlin, Kristen L; Westbrook, Thomas F; Heiser, Laura M; Anur, Pavana; Spellman, Paul; Guichard, Sylvie M; Smith, Paul D; Davies, Barry R; Klinowska, Teresa; Lee, Adrian V; Mills, Gordon B; Rimawi, Mothaffar F; Hilsenbeck, Susan G; Gray, Joe W; Joshi, Amit; Osborne, C Kent; Schiff, Rachel

    2014-09-11

    Activation of the phosphatidylinositol 3-kinase (PI3K) pathway in estrogen receptor α (ER)-positive breast cancer is associated with reduced ER expression and activity, luminal B subtype, and poor outcome. Phosphatase and tensin homolog (PTEN), a negative regulator of this pathway, is typically lost in ER-negative breast cancer. We set out to clarify the role of reduced PTEN levels in endocrine resistance, and to explore the combination of newly developed PI3K downstream kinase inhibitors to overcome this resistance. Altered cellular signaling, gene expression, and endocrine sensitivity were determined in inducible PTEN-knockdown ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer cell and/or xenograft models. Single or two-agent combinations of kinase inhibitors were examined to improve endocrine therapy. Moderate PTEN reduction was sufficient to enhance PI3K signaling, generate a gene signature associated with the luminal B subtype of breast cancer, and cause endocrine resistance in vitro and in vivo. The mammalian target of rapamycin (mTOR), protein kinase B (AKT), or mitogen-activated protein kinase kinase (MEK) inhibitors, alone or in combination, improved endocrine therapy, but the efficacy varied by PTEN levels, type of endocrine therapy, and the specific inhibitor(s). A single-agent AKT inhibitor combined with fulvestrant conferred superior efficacy in overcoming resistance, inducing apoptosis and tumor regression. Moderate reduction in PTEN, without complete loss, can activate the PI3K pathway to cause endocrine resistance in ER-positive breast cancer, which can be overcome by combining endocrine therapy with inhibitors of the PI3K pathway. Our data suggests that the ER degrader fulvestrant, to block both ligand-dependent and -independent ER signaling, combined with an AKT inhibitor is an effective strategy to test in patients.

  9. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    Science.gov (United States)

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  10. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  11. Targeting Mitogen-activated Protein Kinase-activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts to Lead Small Molecule Inhibitors to Clinical Trials

    Science.gov (United States)

    Fiore, Mario; Forli, Stefano; Manetti, Fabrizio

    2015-01-01

    The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway, but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases, to prevent tumor metastasis, and to increase tumor sensitivity to chemotherapeutics. PMID:26502061

  12. The non-receptor tyrosine kinase Tec controls assembly and activity of the noncanonical caspase-8 inflammasome.

    Science.gov (United States)

    Zwolanek, Florian; Riedelberger, Michael; Stolz, Valentina; Jenull, Sabrina; Istel, Fabian; Köprülü, Afitap Derya; Ellmeier, Wilfried; Kuchler, Karl

    2014-12-01

    Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1β. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.

  13. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  14. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling.

    Science.gov (United States)

    Alagramam, Kumar N; Stepanyan, Ruben; Jamesdaniel, Samson; Chen, Daniel H-C; Davis, Rickie R

    2014-01-01

    Noise-induced hearing loss (NIHL) is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL) broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control) or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK) signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  15. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress.

    Science.gov (United States)

    Dutilleul, Christelle; Chavarria, Heidy; Rézé, Nathalie; Sotta, Bruno; Baudouin, Emmanuel; Guillas, Isabelle

    2015-12-01

    Although sphingolipids emerged as important signals for plant response to low temperature, investigations have been limited so far to the function of long-chain base intermediates. The formation and function of ceramide phosphates (Cer-Ps) in chilled Arabidopsis were explored. Cer-Ps were analysed by thin layer chromatography (TLC) following in vivo metabolic radiolabelling. Ceramide kinase activity, gene expression and growth phenotype were determined in unstressed and cold-stressed wild type (WT) and Arabidopsis ceramide kinase mutant acd5. A rapid and transient formation of Cer-P occurs in cold-stressed WT Arabidopsis plantlets and cultured cells, which is strongly impaired in acd5 mutant. Although concomitant, Cer-P formation is independent of long-chain base phosphate (LCB-P) formation. No variation of ceramide kinase activity was measured in vitro in WT plantlets upon cold stress but the activity in acd5 mutant was further reduced by cold stress. At the seedling stage, acd5 response to cold was similar to that of WT. Nevertheless, acd5 seed germination was hypersensitive to cold and abscisic acid (ABA), and ABA-dependent gene expression was modified in acd5 seeds when germinated at low temperature. Our data involve for the first time Cer-P and ACD5 in low temperature response and further underline the complexity of sphingolipid signalling operating during cold stress. © 2015 John Wiley & Sons Ltd.

  16. Ret receptor tyrosine kinase activates extracellular signal-regulated kinase 2 in SK-N-MC cells

    NARCIS (Netherlands)

    van Weering, D. H.; Medema, J. P.; van Puijenbroek, A.; Burgering, B. M.; Baas, P. D.; Bos, J. L.

    1995-01-01

    Ret is a receptor tyrosine kinase predominantly expressed in tissue derived from the neuroectoderm and is involved in multiple endocrine neoplasia type 2A and 2B, familiar medullary thyroid carcinoma, and Hirschsprung's disease. The ligand for the receptor is still unknown. Previously, using a human

  17. Coiled-coil interactions modulate multimerization, mitochondrial binding and kinase activity of myotonic dystrophy protein kinase splice isoforms.

    NARCIS (Netherlands)

    Herpen, R.E.M.A. van; Tjeertes, J.V.; Mulders, S.A.M.; Oude Ophuis, R.J.A.; Wieringa, B.; Wansink, D.G.

    2006-01-01

    The myotonic dystrophy protein kinase polypeptide repertoire in mice and humans consists of six different splice isoforms that vary in the nature of their C-terminal tails and in the presence or absence of an internal Val-Ser-Gly-Gly-Gly motif. Here, we demonstrate that myotonic dystrophy protein

  18. Pharmaceutically inhibiting polo-like kinase 1 exerts a broad anti-tumour activity in retinoblastoma cell lines.

    Science.gov (United States)

    Schwermer, Melanie; Dreesmann, Sabine; Eggert, Angelika; Althoff, Kristina; Steenpass, Laura; Schramm, Alexander; Schulte, Johannes H; Temming, Petra

    2017-04-01

    Retinoblastoma is the most common malignant cancer of the eye in children. Although metastatic retinoblastoma is rare, cure rates for this advanced disease remain below 50%. High-level polo-like kinase 1 expression in retinoblastomas has previously been shown to be correlated with adverse outcome parameters. Polo-like kinase 1 is a serine/threonine kinase involved in cell cycle regulation at the G2/M transition. Polo-like kinase 1 inhibition has been demonstrated to have anti-tumour effects in preclinical models of several paediatric tumours. Here, we assessed its efficacy against retinoblastoma cell lines. Expression of polo-like kinase 1 was determined in a panel of retinoblastoma cell lines by polymerase chain reaction and western blot analysis. We analysed viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT assay), proliferation (5-bromo-2'-deoxyuridine enzyme-linked immunosorbent assay), cell cycle progression (propidium iodid staining) and apoptosis (cell death enzyme-linked immunosorbent assay) in three retinoblastoma cell lines after treatment with two adenosine triphosphate-competitive polo-like kinase 1 inhibitors, BI6727 or GSK461364. Activation of polo-like kinase 1 downstream signalling components including TP53 were assessed. Treatment of retinoblastoma cells with either BI6727 or GSK461364 reduced cell viability and proliferative capacity and induced both cell cycle arrest and apoptosis. Polo-like kinase 1 inhibition also induced the p53 signalling pathway. Analysis of key players in cell cycle control revealed that low nanomolar concentrations of either polo-like kinase 1 inhibitor upregulated cyclin B1 and increased activated cyclin-dependent kinase 1 (phosphorylated at Y15) in retinoblastoma cell lines. These preclinical data indicate that polo-like kinase 1 inhibitors could be useful as components in rationally designed chemotherapy protocols to treat patients with metastasized retinoblastoma in early phase clinical

  19. The contribution of two isozymes to the pyruvate kinase activity of Vibrio cholerae: One K+-dependent constitutively active and another K+-independent with essential allosteric activation.

    Science.gov (United States)

    Guerrero-Mendiola, Carlos; García-Trejo, José J; Encalada, Rusely; Saavedra, Emma; Ramírez-Silva, Leticia

    2017-01-01

    In a previous phylogenetic study of the family of pyruvate kinase EC (2.7.1.40), a cluster with Glu117 and another with Lys117 were found (numbered according to the rabbit muscle enzyme). The sequences with Glu117 have been found to be K+-dependent, whereas those with Lys117 were K+-independent. Interestingly, only γ-proteobacteria exhibit sequences in both branches of the tree. In this context, it was explored whether these phylogenetically distinct pyruvate kinases were both expressed and contribute to the pyruvate kinase activity in Vibrio cholerae. The main findings of this work showed that the isozyme with Glu117 is an active K+-dependent enzyme. At the same substrate concentration, its Vmax in the absence of fructose 1,6 bisphosphate was 80% of that with its effector. This result is in accordance with the non-essential activation described by allosteric ligands for most pyruvate kinases. In contrast, the pyruvate kinase with Lys117 was a K+-independent enzyme displaying an allosteric activation by ribose 5-phosphate. At the same substrate concentration, its activity without the effector was 0.5% of the one obtained in the presence of ribose 5-phosphate, indicating that this sugar monophosphate is a strong activator of this enzyme. This absolute allosteric dependence is a novel feature of pyruvate kinase activity. Interestingly, in the K+-independent enzyme, Mn2+ may "mimic" the allosteric effect of Rib 5-P. Despite their different allosteric behavior, both isozymes display a rapid equilibrium random order kinetic mechanism. The intracellular concentrations of fructose 1,6-bisphosphate and ribose 5-phosphate in Vibrio cholerae have been experimentally verified to be sufficient to induce maximal activation of both enzymes. In addition, Western blot analysis indicated that both enzymes were co-expressed. Therefore, it is concluded that VcIPK and VcIIPK contribute to the activity of pyruvate kinase in this γ-proteobacterium.

  20. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...

  1. Escitalopram Ameliorates Tau Hyperphosphorylation and Spatial Memory Deficits Induced by Protein Kinase A Activation in Sprague Dawley Rats.

    Science.gov (United States)

    Ren, Qing-Guo; Wang, Yan-Juan; Gong, Wei-Gang; Xu, Lin; Zhang, Zhi-Jun

    2015-01-01

    Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.

  2. Microtubules Accelerate the Kinase Activity of Aurora-B by a Reduction in Dimensionality

    Science.gov (United States)

    Noujaim, Michael; Bechstedt, Susanne; Wieczorek, Michal; Brouhard, Gary J.

    2014-01-01

    Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC), a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a “reduction in dimensionality.” We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D) random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates. PMID:24498282

  3. Microtubules accelerate the kinase activity of Aurora-B by a reduction in dimensionality.

    Science.gov (United States)

    Noujaim, Michael; Bechstedt, Susanne; Wieczorek, Michal; Brouhard, Gary J

    2014-01-01

    Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC), a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a "reduction in dimensionality." We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D) random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates.

  4. Microtubules accelerate the kinase activity of Aurora-B by a reduction in dimensionality.

    Directory of Open Access Journals (Sweden)

    Michael Noujaim

    Full Text Available Aurora-B is the kinase subunit of the Chromosome Passenger Complex (CPC, a key regulator of mitotic progression that corrects improper kinetochore attachments and establishes the spindle midzone. Recent work has demonstrated that the CPC is a microtubule-associated protein complex and that microtubules are able to activate the CPC by contributing to Aurora-B auto-phosphorylation in trans. Aurora-B activation is thought to occur when the local concentration of Aurora-B is high, as occurs when Aurora-B is enriched at centromeres. It is not clear, however, whether distributed binding to large structures such as microtubules would increase the local concentration of Aurora-B. Here we show that microtubules accelerate the kinase activity of Aurora-B by a "reduction in dimensionality." We find that microtubules increase the kinase activity of Aurora-B toward microtubule-associated substrates while reducing the phosphorylation levels of substrates not associated to microtubules. Using the single molecule assay for microtubule-associated proteins, we show that a minimal CPC construct binds to microtubules and diffuses in a one-dimensional (1D random walk. The binding of Aurora-B to microtubules is salt-dependent and requires the C-terminal tails of tubulin, indicating that the interaction is electrostatic. We show that the rate of Aurora-B auto-activation is faster with increasing concentrations of microtubules. Finally, we demonstrate that microtubules lose their ability to stimulate Aurora-B when their C-terminal tails are removed by proteolysis. We propose a model in which microtubules act as scaffolds for the enzymatic activity of Aurora-B. The scaffolding activity of microtubules enables rapid Aurora-B activation and efficient phosphorylation of microtubule-associated substrates.

  5. LIM domains regulate protein kinase C activity: a novel molecular function.

    Science.gov (United States)

    Maturana, Andrés D; Nakagawa, Noritaka; Yoshimoto, Nobuo; Tatematsu, Kenji; Hoshijima, Masahiko; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2011-05-01

    Enigma homolog protein 1 (ENH1) acts as a scaffold that selectively associates protein kinases and transcription factors with cytoskeletal elements. ENH1 comprises an N-terminal PDZ domain and three C-terminal LIM domains. Through the LIM domains ENH1 interacts with the N-terminal region of protein kinase C βI (PKCβI). Here, we show that when ENH1 is co-expressed, PKCβI is translocated from the cytoplasm to the plasma membrane in the absence of any other stimulation. Moreover expression of ENH1 markedly increases PKCβI activity in the absence of PKC activators. A similar activation of PKCβI was observed with co-expression of Cypher1 or Enigma, but not other LIM proteins. The region including the three LIM domains of ENH1 (residues 415-591) appears to be sufficient for this PKCβI activation. Finally, interaction with ENH1 also increases the activity of PKCα and PKCγ, whereas it reduces PKCζ activity. These findings provide strong evidence that ENH1 activates conventional PKCs by directly binding through its LIM domains. Thus, LIM domains have a novel molecular function: the regulation of PKC activities in a PKC isoform-specific manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity

    Directory of Open Access Journals (Sweden)

    Hayeß Katrin

    2005-08-01

    Full Text Available Abstract Background Creatine kinase (CK links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1 CK isoform expression and activity in rat extraocular muscles would be higher, and (2 the resistance of these muscles to fatigue would depend on CK activity. Results We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL. Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. Conclusion These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity.

  7. Metformin activates type I interferon signaling against HCV via activation of adenosine monophosphate-activated protein kinase.

    Science.gov (United States)

    Tsai, Wei-Lun; Chang, Tsung-Hsien; Sun, Wei-Chi; Chan, Hoi-Hung; Wu, Chun-Ching; Hsu, Ping-I; Cheng, Jin-Shiung; Yu, Ming-Lung

    2017-11-03

    Activation of the type I interferon (IFN) signaling pathway is essential for the eradication of hepatitis C virus (HCV). Metformin can activate adenosine monophosphate-activated protein kinase (AMPK) to reduce insulin resistance. Cross talks between AMPK and IFN signaling remain unclear. To understand the influence of metformin on the type I IFN signaling pathway and HCV infection, the full-length HCV replicon OR6 cells and the infectious HCV clones JFH1 were used to assess the anti-HCV effect of the insulin sensitizers, metformin and pioglitazone. Immunofluorescence staining and the immunoblotting of HCV viral protein demonstrated that metformin, but not pioglitazone, inhibited HCV replication in OR-6 and JFH-1-infected Huh 7.5.1 cells. Immunoblotting data showed that metformin activated the phosphorylation of STAT-1 and STAT-2 in OR-6 and JFH-1 infected Huh 7.5.1 cells. Metformin enhanced the phosphorylation of AMPK, and the metformin-activated IFN signaling was down-regulated by AMPK inhibitor. After treatment of AMPK inhibitor, the level of HCV core protein decreased by metformin can be rescued. In conclusion, metformin activates type I interferon signaling and inhibits the replication of HCV via activation of AMPK.

  8. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    Science.gov (United States)

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  9. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    Pregnancy in women with diabetes is associated with an increased risk of obstetric complications and perinatal mortality. Maintenance of near-normal glycemia during pregnancy can bring the prevalence of fetal, neonatal and maternal complications closer to that of the nondiabetic population. Changes...... in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...

  10. Structure of protein O-mannose kinase reveals a unique active site architecture.

    Science.gov (United States)

    Zhu, Qinyu; Venzke, David; Walimbe, Ameya S; Anderson, Mary E; Fu, Qiuyu; Kinch, Lisa N; Wang, Wei; Chen, Xing; Grishin, Nick V; Huang, Niu; Yu, Liping; Dixon, Jack E; Campbell, Kevin P; Xiao, Junyu

    2016-11-23

    The 'pseudokinase' SgK196 is a protein O-mannose kinase (POMK) that catalyzes an essential phosphorylation step during biosynthesis of the laminin-binding glycan on α-dystroglycan. However, the catalytic mechanism underlying this activity remains elusive. Here we present the crystal structure of Danio rerio POMK in complex with Mg 2+ ions, ADP, aluminum fluoride, and the GalNAc-β3-GlcNAc-β4-Man trisaccharide substrate, thereby providing a snapshot of the catalytic transition state of this unusual kinase. The active site of POMK is established by residues located in non-canonical positions and is stabilized by a disulfide bridge. GalNAc-β3-GlcNAc-β4-Man is recognized by a surface groove, and the GalNAc-β3-GlcNAc moiety mediates the majority of interactions with POMK. Expression of various POMK mutants in POMK knockout cells further validated the functional requirements of critical residues. Our results provide important insights into the ability of POMK to function specifically as a glycan kinase, and highlight the structural diversity of the human kinome.

  11. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-03

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Insulin resistance in uremia: Insulin receptor kinase activity in liver and muscle from chronic uremic rats

    International Nuclear Information System (INIS)

    Cecchin, F.; Ittoop, O.; Sinha, M.K.; Caro, J.F.

    1988-01-01

    The authors have studied the structure and function of the partially purified insulin receptors from liver and skeletal muscle in a rat model of severe chronic uremia. 125 I-insulin binding was higher in the liver from uremic rats when compared with ad libitum- and pair-fed controls. Furthermore, the ability of insulin to stimulate the autophosphorylation of the β-subunit and insulin receptor kinase activity using Glu 80 , Tyr 20 as exogenous phosphoacceptor was increased in the liver of the uremic animals. The structural characteristics of the receptors, as determined by electrophoretic mobilities of affinity labeled α-subunit and the phosphorylated β-subunit, were normal in uremia. 125 I-insulin binding and insulin receptor kinase activity were similar in the skeletal muscle from uremic and pair- and ad libitum-fed animals. Thus the data are supportive of the hypothesis that in liver and muscle of chronic uremic rats, insulin resistance is due to a defect(s) distal to the insulin receptor kinase

  14. Mitogen-activated protein kinase signaling pathways of the tangerine pathotype of Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Kuang-Ren Chung

    2013-06-01

    Full Text Available Mitogen-activated protein kinase (MAPK- mediated signaling pathways have been known to have important functions in eukaryotic organisms. The mechanisms by which the filamentous fungus Alternaria alternata senses and responds to environmental signals have begun to be elucidated. Available data indicate that A. alternata utilizes the Fus3, Hog1 and Slt2 MAPK-mediated signaling pathways, either separately or in a cooperative manner, for conidia formation, resistance to oxidative and osmotic stress, and pathogenesis to citrus. This review provides an overview of our current knowledge of MAPK signaling pathways, in conjunction with the two-component histidine kinase and the Skn7 response regulator, in the tangerine pathotype of A. alternata.

  15. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  16. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis

    Science.gov (United States)

    Chapman, Timothy M.; Bouloc, Nathalie; Buxton, Roger S.; Chugh, Jasveen; Lougheed, Kathryn E.A.; Osborne, Simon A.; Saxty, Barbara; Smerdon, Stephen J.; Taylor, Debra L.; Whalley, David

    2012-01-01

    A high-throughput screen against PknB, an essential serine–threonine protein kinase present in Mycobacterium tuberculosis (M. tuberculosis), allowed the identification of an aminoquinazoline inhibitor which was used as a starting point for SAR investigations. Although a significant improvement in enzyme affinity was achieved, the aminoquinazolines showed little or no cellular activity against M. tuberculosis. However, switching to an aminopyrimidine core scaffold and the introduction of a basic amine side chain afforded compounds with nanomolar enzyme binding affinity and micromolar minimum inhibitory concentrations against M. tuberculosis. Replacement of the pyrazole head group with pyridine then allowed equipotent compounds with improved selectivity against a human kinase panel to be obtained. PMID:22469702

  17. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease.

    Science.gov (United States)

    Waetzig, Georg H; Seegert, Dirk; Rosenstiel, Philip; Nikolaus, Susanna; Schreiber, Stefan

    2002-05-15

    Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.

  18. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity

    Science.gov (United States)

    Görner, Wolfram; Durchschlag, Erich; Martinez-Pastor, Maria Teresa; Estruch, Francisco; Ammerer, Gustav; Hamilton, Barbara; Ruis, Helmut; Schüller, Christoph

    1998-01-01

    Msn2p and the partially redundant factor Msn4p are key regulators of stress-responsive gene expression in Saccharomyces cerevisiae. They are required for the transcription of a number of genes coding for proteins with stress-protective functions. Both Msn2p and Msn4p are Cys2His2 zinc finger proteins and bind to the stress response element (STRE). In vivo footprinting studies show that the occupation of STREs is enhanced in stressed cells and dependent on the presence of Msn2p and Msn4p. Both factors accumulate in the nucleus under stress conditions, such as heat shock, osmotic stress, carbon-source starvation, and in the presence of ethanol or sorbate. Stress-induced nuclear localization was found to be rapid, reversible, and independent of protein synthesis. Nuclear localization of Msn2p and Msn4p was shown to be correlated inversely to cAMP levels and protein kinase A (PKA) activity. A region with significant homologies shared between Msn2p and Msn4p is sufficient to confer stress-regulated localization to a SV40–NLS–GFP fusion protein. Serine to alanine or aspartate substitutions in a conserved PKA consensus site abolished cAMP-driven nuclear export and cytoplasmic localization in unstressed cells. We propose stress and cAMP-regulated intracellular localization of Msn2p to be a key step in STRE-dependent transcription and in the general stress response. PMID:9472026

  19. Sestrins Inhibit mTORC1 Kinase Activation through the GATOR Complex

    Directory of Open Access Journals (Sweden)

    Anita Parmigiani

    2014-11-01

    Full Text Available The mechanistic target of rapamycin complex 1 (mTORC1 kinase is a sensor of different environmental conditions and regulator of cell growth, metabolism, and autophagy. mTORC1 is activated by Rag GTPases, working as RagA:RagB and RagC:RagD heterodimers. Rags control mTORC1 activity by tethering mTORC1 to the lysosomes where it is activated by Rheb GTPase. RagA:RagB, active in its GTP-bound form, is inhibited by GATOR1 complex, a GTPase-activating protein, and GATOR1 is in turn negatively regulated by GATOR2 complex. Sestrins are stress-responsive proteins that inhibit mTORC1 via activation of AMP-activated protein kinase (AMPK and tuberous sclerosis complex. Here we report an AMPK-independent mechanism of mTORC1 inhibition by Sestrins mediated by their interaction with GATOR2. As a result of this interaction, the Sestrins suppress mTOR lysosomal localization in a Rag-dependent manner. This mechanism is potentially involved in mTORC1 regulation by amino acids, rotenone, and tunicamycin, connecting stress response with mTORC1 inhibition.

  20. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jun [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Ni, Lisheng [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Osinski, Adam [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Tomchick, Diana R. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Brautigam, Chad A. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States; Luo, Xuelian [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States

    2017-10-24

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.

  1. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

    Directory of Open Access Journals (Sweden)

    Kara R Barber

    2017-02-01

    Full Text Available Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated.

  2. Inhibition of the TEF/TEAD transcription factor activity by nuclear calcium and distinct kinase pathways.

    Science.gov (United States)

    Thompson, M; Andrade, V A; Andrade, S J; Pusl, T; Ortega, J M; Goes, A M; Leite, M F

    2003-02-07

    Transcription enhancer factor (TEF/TEAD) is a family of four transcription factors that share a common TEA-DNA binding domain and are involved in similar cellular functions, such as cell differentiation and proliferation. All adult tissues express at least one of the four TEAD genes, so this family of transcription factors may be of widespread importance, yet little is known about their regulation. Here we examine the factors that regulate TEAD activity in CHO cells. RT-PCR indicated the presence of TEAD-1, TEAD-3, and both isoforms of TEAD-4, but not TEAD-2. Quantitative measurements showed that TEAD-4 is most abundant, followed by TEAD-3, then TEAD-1. We examined the relative effects of nuclear and cytosolic Ca(2+) on TEAD activity, since TEAD proteins are localized to the nucleus and since free Ca(2+) within the nucleus selectively regulates transcription in some systems. Chelation of nuclear but not cytosolic Ca(2+) increased TEAD activity two times above control. Inhibition of mitogen-activated protein kinase (MAPK) also increased TEAD activity, while cAMP decreased TEAD activity, and protein kinase C had no effect. Together, these results show that nuclear Ca(2+), MAPK, and cAMP each negatively regulate the activity of the TEAD transcription factor.

  3. Mitogen-activated protein kinases in the porcine retinal arteries and neuroretina following retinal ischemia-reperfusion

    DEFF Research Database (Denmark)

    Gesslein, Bodil; Håkansson, Gisela; Carpio, Ronald

    2010-01-01

    The aim of the present study was to examine changes in the expression of intracellular signal-transduction pathways, specifically mitogen-activated protein kinases, following retinal ischemia-reperfusion....

  4. Negative regulation of active zone assembly by a newly identified SR protein kinase.

    Science.gov (United States)

    Johnson, Ervin L; Fetter, Richard D; Davis, Graeme W

    2009-09-01

    Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila) or ribbon (vertebrates) are believed to facilitate vesicle movement to the active zone (AZ) of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc) that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D). This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp) in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.

  5. Negative regulation of active zone assembly by a newly identified SR protein kinase.

    Directory of Open Access Journals (Sweden)

    Ervin L Johnson

    2009-09-01

    Full Text Available Presynaptic, electron-dense, cytoplasmic protrusions such as the T-bar (Drosophila or ribbon (vertebrates are believed to facilitate vesicle movement to the active zone (AZ of synapses throughout the nervous system. The molecular composition of these structures including the T-bar and ribbon are largely unknown, as are the mechanisms that specify their synapse-specific assembly and distribution. In a large-scale, forward genetic screen, we have identified a mutation termed air traffic controller (atc that causes T-bar-like protein aggregates to form abnormally in motoneuron axons. This mutation disrupts a gene that encodes for a serine-arginine protein kinase (SRPK79D. This mutant phenotype is specific to SRPK79D and is not secondary to impaired kinesin-dependent axonal transport. The srpk79D gene is neuronally expressed, and transgenic rescue experiments are consistent with SRPK79D kinase activity being necessary in neurons. The SRPK79D protein colocalizes with the T-bar-associated protein Bruchpilot (Brp in both the axon and synapse. We propose that SRPK79D is a novel T-bar-associated protein kinase that represses T-bar assembly in peripheral axons, and that SRPK79D-dependent repression must be relieved to facilitate site-specific AZ assembly. Consistent with this model, overexpression of SRPK79D disrupts AZ-specific Brp organization and significantly impairs presynaptic neurotransmitter release. These data identify a novel AZ-associated protein kinase and reveal a new mechanism of negative regulation involved in AZ assembly. This mechanism could contribute to the speed and specificity with which AZs are assembled throughout the nervous system.

  6. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication.

    Science.gov (United States)

    Botting, Carolyn; Lu, Xu; Triezenberg, Steven J

    2016-01-27

    Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.

  7. PTP1B Inhibition Causes Rac1 Activation by Enhancing Receptor Tyrosine Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Ayako Tsuchiya

    2014-04-01

    Full Text Available Background/Aims: The present study investigated the signaling pathway underlying Rac1 activation induced by the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl-cyclopropyl]-octanoic acid (DCP-LA. Methods: Activity of protein tyrosine phosphatase 1B (PTP1B was assayed under cell-free conditions. Western blot was carried out to quantify phosphorylation of insulin receptor substrate-1 (IRS-1 and Akt in PC-12 cells. Rac1 activity was monitored in the föerster resonance energy transfer (FRET analysis using living and fixed PC-12 cells. Results: DCP-LA markedly suppressed PTP1B activity in a concentration (100 pM-100 µM-dependent manner. In the DCP-LA binding assay, fluorescein-conjugated DCP-LA produced a single fluorescent signal band at 60 kDa, corresponding to the molecule of PTP1B, and the signal was attenuated or abolished by co-treatment or pretreatment with non-conjugated DCP-LA. DCP-LA significantly enhanced nerve growth factor (NGF-stimulated phosphorylation of IRS-1 at Tyr1222 and Akt1/2 at Thr308/309 and Ser473/474 in PC-12 cells. In the FRET analysis, DCP-LA significantly enhanced NGF-stimulated Rac1 activation, which is abrogated by the phosphatidylinositol 3 kinase (PI3K inhibitor wortmannin, the 3-phosphoinositide-dependent protein kinase-1 (PDK1 inhibitor BX912, or the Akt inhibitor MK2206. Conclusion: The results of the present study show that DCP-LA-induced PTP1B inhibition, possibly through its direct binding, causes Rac1 activation by enhancing a pathway along a receptor tyrosine kinase (RTK/IRS-1/PI3K/Akt/Rac1 axis.

  8. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

    Directory of Open Access Journals (Sweden)

    Alessi Dario R

    2003-09-01

    Full Text Available Abstract Background The AMP-activated protein kinase (AMPK cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1, but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.

  9. DMPD: A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15809659 A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways...csml) Show A pervasive role of ubiquitin conjugation in activation and termination ofIkappaB kinase pathways... and termination ofIkappaB kinase pathways. Authors Krappmann D, Scheidereit C. Publication EMBO Rep. 2005 A

  10. Molecular Mechanism of Distinct Salt-Dependent Enzyme Activity of Two Halophilic Nucleoside Diphosphate Kinases

    OpenAIRE

    Yamamura, Akihiro; Ichimura, Takefumi; Kamekura, Masahiro; Mizuki, Toru; Usami, Ron; Makino, Tsukasa; Ohtsuka, Jun; Miyazono, Ken-ichi; Okai, Masahiko; Nagata, Koji; Tanokura, Masaru

    2009-01-01

    Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg31 in NDK-q and Cys31 in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt conc...

  11. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  12. The ABCD's of 5'-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy.

    Science.gov (United States)

    Weidling, Ian; Swerdlow, Russell H

    2016-07-01

    This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86. © 2016 International Society for Neurochemistry.

  13. Nitrate Activation of Cytosolic Protein Kinases Diverts Photosynthetic Carbon from Sucrose to Amino Acid Biosynthesis

    Science.gov (United States)

    Champigny, Marie-Louise; Foyer, Christine

    1992-01-01

    The regulation of carbon partitioning between carbohydrates (principally sucrose) and amino acids has been only poorly characterized in higher plants. The hypothesis that the pathway of sucrose and amino acid biosynthesis compete for carbon skeletons and energy is widely accepted. In this review, we suggest a mechanism involving the regulation of cytosolic protein kinases whereby the flow of carbon is regulated at the level of partitioning between the pathways of carbohydrate and nitrogen metabolism via the covalent modulation of component enzymes. The addition of nitrate to wheat seedlings (Triticum aestivum) grown in the absence of exogenous nitrogen has a dramatic, if transient, impact on sucrose formation and on the activities of sucrose phosphate synthase (which is inactivated) and phosphoenolpyruvate carboxylase (which is activated). The activities of these two enzymes are modulated by protein phosphorylation in response to the addition of nitrate, but they respond in an inverse fashion. Sucrose phosphate synthase in inactivated and phosphoenolpyruvate carboxylase is activated. Nitrate functions as a signal metabolite activating the cytosolic protein kinase, thereby modulating the activities of at least two of the key enzymes in assimilate partitioning and redirecting the flow of carbon away from sucrose biosynthesis toward amino acid synthesis. PMID:16653003

  14. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    2010-11-01

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  15. Evolutionary Divergence in the Catalytic Activity of the CAM-1, ROR1 and ROR2 Kinase Domains

    Science.gov (United States)

    Izrael-Tomasevic, Anita; Chalouni, Cécile; Pan, Borlan; Goldsmith, Joshua; Schoen, Alia P.; Quiñones, Gabriel A.; Kelly, Ryan; Lill, Jennie R.; Sandoval, Wendy; Costa, Mike; Polakis, Paul; Arnott, David; Rubinfeld, Bonnee; Ernst, James A.

    2014-01-01

    Receptor tyrosine kinase-like orphan receptors (ROR) 1 and 2 are atypical members of the receptor tyrosine kinase (RTK) family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases. PMID:25029443

  16. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains.

    Directory of Open Access Journals (Sweden)

    Travis W Bainbridge

    Full Text Available Receptor tyrosine kinase-like orphan receptors (ROR 1 and 2 are atypical members of the receptor tyrosine kinase (RTK family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.

  17. N-alkoxycarbonyl-glutamic and aspartic acids. Studies on the activation and cyclodehydration and side-reaction encountered in analysis of glutamic acid using Fmoc-chloride.

    Science.gov (United States)

    Chen, F M; Benoiton, N L

    1992-07-01

    N-Alkoxycarbonylaminodicarboxylic acids were reacted in dichloromethane with N-ethyl-N'-(dimethylaminopropyl)carbodiimide hydrochloride, and with methyl chloroformate in the presence of N-methylmorpholine. Removal of secondary products by washing the mixtures with aqueous solutions gave good yields of the pure crystalline internal anhydrides. Anhydrides of N-benzyloxycarbonyl- (Z) and N-9-fluorenylmethoxycarbonyl-(Fmoc) L-glutamic and L-aspartic acids and of N-tert.-butoxycarbonyl-L-aspartic acid were prepared in this way. The compounds were shown to be amenable to normal phase high-performance liquid chromatography (NP-HPLC) on a CN-column using tert.-butanol-hexane as solvent. The products of the reactions of Z- and Fmoc-glutamic acid with hot acetic anhydride were examined by nuclear magnetic resonance and NP-HPLC before and after methanolysis in an attempt to establish if any of the corresponding pyroglutamates were formed. The reaction of Fmoc-chloride with Fmoc-glutamate was examined for the same reason. It is concluded that the side product generated during the reaction of Fmoc-chloride with glutamic acid which is used for analysis of the latter is the N-protected internal anhydride and not the pyroglutamate as reported in the literature.

  18. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  19. Regulation of proximal tubule vacuolar H+-ATPase by PKA and AMP-activated protein kinase

    Science.gov (United States)

    Al-bataineh, Mohammad M.; Gong, Fan; Marciszyn, Allison L.; Myerburg, Michael M.

    2014-01-01

    The vacuolar H+-ATPase (V-ATPase) mediates ATP-driven H+ transport across membranes. This pump is present at the apical membrane of kidney proximal tubule cells and intercalated cells. Defects in the V-ATPase and in proximal tubule function can cause renal tubular acidosis. We examined the role of protein kinase A (PKA) and AMP-activated protein kinase (AMPK) in the regulation of the V-ATPase in the proximal tubule as these two kinases coregulate the V-ATPase in the collecting duct. As the proximal tubule V-ATPases have different subunit compositions from other nephron segments, we postulated that V-ATPase regulation in the proximal tubule could differ from other kidney tubule segments. Immunofluorescence labeling of rat ex vivo kidney slices revealed that the V-ATPase was present in the proximal tubule both at the apical pole, colocalizing with the brush-border marker wheat germ agglutinin, and in the cytosol when slices were incubated in buffer alone. When slices were incubated with a cAMP analog and a phosphodiesterase inhibitor, the V-ATPase accumulated at the apical pole of S3 segment cells. These PKA activators also increased V-ATPase apical membrane expression as well as the rate of V-ATPase-dependent extracellular acidification in S3 cell monolayers relative to untreated cells. However, the AMPK activator AICAR decreased PKA-induced V-ATPase apical accumulation in proximal tubules of kidney slices and decreased V-ATPase activity in S3 cell monolayers. Our results suggest that in proximal tubule the V-ATPase subcellular localization and activity are acutely coregulated via PKA downstream of hormonal signals and via AMPK downstream of metabolic stress. PMID:24553431

  20. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  1. Anomalous constitutive Src kinase activity promotes B lymphoma survival and growth

    Directory of Open Access Journals (Sweden)

    Robertson Darrell A

    2009-12-01

    Full Text Available Abstract Background Previously we have shown that B cell receptor (BCR expression and B cell receptor signaling pathways are important for the basal growth of B lymphoma cells. In particular we have shown that the activation of Syk, a non-src family protein tyrosine kinase and the mitogen activated protein kinases (MAPK, ERK and JNK that mediate BCR signals are required for the constitutive growth of B lymphoma cells. Since src family protein tyrosine kinases (SFKs like Lyn are known to be needed for the phosphorylation of BCR co-receptors, Ig-α and Ig-β, we hypothesized that one or more SFKs will be constitutively activated in B lymphoma cells and may be necessary for B lymphoma growth. Results Src kinase activity was found to be constitutively high in many murine and human B lymphoma cell lines and primary lymphoma samples. The specific pharmacological inhibitors of SFKs, PP1 and PP2 inhibited the proliferation of a number of both murine and human B lymphomas in a dose-dependent manner. Importantly, dasatinib (BMS-354825, an oral dual BCR-ABL and SFK specific inhibitor inhibited the growth of B lymphomas in the nanomolar range in vitro and strongly inhibited a mouse lymphoma growth in vivo. Among the SFKs, Lyn is predominantly phosphorylated and Lyn-specific small interfering RNA inhibited the growth of B lymphomas, supporting an important role for Lyn in B lymphoma growth. Suppression of SFK activity blocks BCR mediated signaling pathways. PMA or CpG can partially reverse the growth inhibition induced by SFK inhibition. Although blocking SFK activity inhibited the growth of a number of B lymphomas, some lymphomas such as SudHL-4, SudHL-6, OCI-Ly3 and OCI-Ly10 are more resistant due to an increased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Conclusions These studies further support our concept that BCR signaling pathways are important for the continued growth of established B lymphoma cells. Some of the intermediates in this

  2. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  3. Histamine induces activation of protein kinase D that mediates tissue factor expression and activity in human aortic smooth muscle cells

    Science.gov (United States)

    Hao, Feng; Wu, Daniel Dongwei; Xu, Xuemin

    2012-01-01

    Histamine, an inflammatory mediator, has been shown to influence the pathogenesis of vascular wall cells. However, the molecular basis of its influence is not well understood. Our data reveal that histamine markedly induces protein kinase D (PKD) activation in human aortic smooth muscle cells. PKD belongs to a family of serine/threonine protein kinases, and its function in vascular disease is largely unknown. Our data show that histamine-induced PKD phosphorylation is dependent on the activation of histamine receptor 1 and protein kinase C (PKC). To determine the role of PKD in the histamine pathway, we employed a small-interfering RNA approach to downregulate PKD expression and found that PKD1 and PKD2 are key mediators for expression of tissue factor (TF), which is the key initiator of blood coagulation and is important for thrombosis. Our results show that PKD2 predominantly mediates histamine-induced TF expression via the p38 mitogen-activated protein kinase (MAPK) pathway, whereas PKD1 mediates histamine-induced TF expression through a p38 MAPK-independent pathway. We demonstrate that histamine induces TF expression via the PKC-dependent PKD activation. Our data provide the first evidence that PKD is a new component in histamine signaling in live cells and that PKD has a novel function in the histamine signaling pathway leading to gene expression, as evidenced by TF expression. Importantly, our data reveal a regulatory link from histamine to PKD and TF, providing new insights into the mechanisms of coagulation and the development of atherothrombosis. PMID:23001835

  4. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  5. PI-3 kinase activity is required for epithelial-mesenchymal transformation during palate fusion.

    Science.gov (United States)

    Kang, Pei; Svoboda, Kathy K H

    2002-11-01

    Epithelial-mesenchymal transformation (EMT) is the primary mechanism for the disappearance of medial edge epithelia (MEE) during palate fusion. This phenotype transition is highly regulated by growth factors, extracellular matrix, cell surface receptors, and a variety of intracellular signaling. Phosphatidylinositol-3 (PI-3) kinase regulates cytoskeleton reorganization, cell migration, and transforming growth factor (TGF) beta-regulated EMT. Therefore, we investigated the role of PI-3 kinase in EMT during palatal fusion in vitro. Palatal shelves from embryonic (E) 13.5 day mouse embryos were collected and cultured for up to 72 hr. A specific PI-3 kinase inhibitor, LY294002, was added to the medium at concentrations of 100 etaM, 1 microM, and 10 microM. The fate of midline epithelia was traced by carboxyfluorescence labeling and analyzed by confocal microscopy. Harvested tissues were also processed for immunohistochemical analysis of a specific marker for basal lamina (laminin). Palatal fusion stages were scored on a scale of 1 to 5, with 1 equal to complete nonfusion and 5 equal to complete fusion. The mean fusion score (MFS) was calculated for each treatment group. Palatal shelves fused after 72 hr of culture in control and 100 etaM LY294002 inhibitor-treated groups, with MFS of 4.67 and 4.5, respectively. Laminin was absent in the midline and epithelia transformed into mesenchyme. However, when cultured palates were treated with 1 and 10 microM LY294002, MEE persisted in the midline and the basal lamina remained intact after 72 hr. The MFS was significantly less in the 1 and 10 microM LY294002-treated tissues at 2.08 and 1.33, respectively. Our results demonstrate that EMT during palatal fusion in vitro is dependent on PI-3 kinase activity. Copyright 2002 Wiley-Liss, Inc.

  6. Antibacterial and EGFR-Tyrosine Kinase Inhibitory Activities of Polyhydroxylated Xanthones from Garcinia succifolia

    Directory of Open Access Journals (Sweden)

    Susawat Duangsrisai

    2014-11-01

    Full Text Available Chemical investigation of the methanol extract of the wood of Garcinia succifolia Kurz (Clusiaceae led to the isolation of 1,5-dihydroxyxanthone (1, 1,7-dihydroxyxanthone (2, 1,3,7-trihydroxyxanthone (3, 1,5,6-trihydroxyxanthone (4, 1,6,7-trihydroxyxanthone (5, and 1,3,6,7-tetrahydroxyxanthone (6. All of the isolated xanthones were evaluated for their antibacterial activity against bacterial reference strains, two Gram-positive (Staphylococcus aureus ATTC 25923, Bacillus subtillis ATCC 6633 and two Gram-negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, and environmental drug-resistant isolates (S. aureus B1, Enteroccoccus faecalis W1, and E. coli G1, as well as for their epidermal growth factor receptor (EGFR of tyrosine kinase inhibitory activity. Only 1,5,6-trihydroxy-(4, 1,6,7-trihydroxy-(5, and 1,3,6,7-tetrahydroxyxanthones (6 exhibited antibacterial activity against Gram-positive bacteria, however none was active against vancomycin-resistant E. faecalis. Additionally, 1,7-dihydroxyxanthone (2 showed synergism with oxacillin, but not with ampicillin. On the other hand, only 1,5-dihydroxyxanthone (1 and 1,7-dihydroxyxanthone (2 were found to exhibit the EGFR-tyrosine kinase inhibitory activity, with IC50 values of 90.34 and 223 nM, respectively.

  7. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase

    Directory of Open Access Journals (Sweden)

    Lin Yu-Hsin

    2010-04-01

    Full Text Available Abstract Photodynamic therapy (PDT has been developed as an anticancer treatment, which is based on the tumor-specific accumulation of a photosensitizer that induces cell death after irradiation of light with a specific wavelength. Depending on the subcellular localization of the photosensitizer, PDT could trigger various signal transduction cascades and induce cell death such as apoptosis, autophagy, and necrosis. In this study, we report that both AMP-activated protein kinase (AMPK and mitogen-activated protein kinase (MAPK signaling cascades are activated following 5-aminolevulinic acid (ALA-mediated PDT in both PC12 and CL1-0 cells. Although the activities of caspase-9 and -3 are elevated, the caspase inhibitor zVAD-fmk did not protect cells against ALA-PDT-induced cell death. Instead, autophagic cell death was found in PC12 and CL1-0 cells treated with ALA-PDT. Most importantly, we report here for the first time that it is the activation of AMPK, but not MAPKs that plays a crucial role in mediating autophagic cell death induced by ALA-PDT. This novel observation indicates that the AMPK pathway play an important role in ALA-PDT-induced autophagy.

  8. Dibenzoylmethane exerts metabolic activity through regulation of AMP-activated protein kinase (AMPK-mediated glucose uptake and adipogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Nami Kim

    Full Text Available Dibenzoylmethane (DBM has been shown to exert a variety of beneficial effects on human health. However, the mechanism of action is poorly understood. In this study, DBM increased phosphorylation of AMP-activated protein kinase (AMPK and stimulated glucose uptake in a skeletal muscle cell line. Both knockdown of AMPK with siRNA and inhibition with AMPK inhibitor blocked DBM-induced glucose uptake. DBM increased the concentration of intracellular calcium and glucose uptake due to DBM was abolished by STO-609 (a calcium/calmodulin-dependent protein kinase inhibitor. DBM stimulated phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK, which was blocked by pretreatment with compound C, an AMPK inhibitor. The expression of glucose transporter type 4 (GLUT4 was increased by DBM. The translocation of GLUT4 to the plasma membrane was also increased by DBM in AMPK dependently. In addition, DBM suppressed weight gain and prevented fat accumulation in the liver and abdomen in mice fed a high-fat diet. In pre-adipocyte cells, DBM decreased the activity of acetyl-CoA carboxylase (ACC, the rate-limiting enzyme of fatty acid synthesis. Expression of the adipogenic gene, fatty acid synthase (FAS, was suppressed by DBM in an AMPK-dependent manner. These results showed that the beneficial metabolic effects of DBM might be due to regulation of glucose uptake via AMPK in skeletal muscle and inhibition of adipogenesis in pre-adipocytes.

  9. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma.

    Science.gov (United States)

    Zecena, Helma; Tveit, Daniel; Wang, Zi; Farhat, Ahmed; Panchal, Parvita; Liu, Jing; Singh, Simar J; Sanghera, Amandeep; Bainiwal, Ajay; Teo, Shuan Y; Meyskens, Frank L; Liu-Smith, Feng; Filipp, Fabian V

    2018-04-04

    Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance

  10. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1.

    Science.gov (United States)

    Petersen, Jan; Inoue, Shin-Ichiro; Kelly, Sharon M; Sullivan, Stuart; Kinoshita, Toshinori; Christie, John M

    2017-08-18

    Phototropins (phots) are plasma membrane-associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light-absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A'α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A'α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Crystal-induced neutrophil activation: X. Proinflammatory role of the tyrosine kinase Tec.

    Science.gov (United States)

    Popa-Nita, Oana; Marois, Louis; Paré, Guillaume; Naccache, Paul H

    2008-06-01

    Monosodium urate monohydrate (MSU) crystals are among the most potent proinflammatory stimuli, and an innate immune inflammatory response to the crystal surface is involved in the pathogenesis of gouty arthritis. Release of the crystals into the joint cavity promotes an acute inflammation characterized by massive infiltration of neutrophils, which leads to tissue damage. The aim of the present study was to assess the involvement of the tyrosine kinase Tec in MSU crystal-initiated transduction events in human neutrophils. Immunoprecipitation and immunoblotting techniques were used for the cellular signaling studies. Chemotaxis and enzyme-linked immunosorbent assay techniques were used for the functional studies. Silencing of Tec expression using specific small interfering RNA was also performed. MSU crystals induced the phosphorylation and activation of Tec in a Src-dependent manner. This activation was necessary for the MSU crystal-induced secretion of interleukin-1beta (IL-1beta) and IL-8 and for the generation of chemotactic activity in supernatants of MSU crystal-stimulated neutrophils. In addition, colchicine, an effective drug for the treatment of gout, inhibited the MSU crystal-induced tyrosine phosphorylation of Tec, thus modulating its kinase activity. Our findings show that Tec is the principal kinase of the Tec family that plays a major role in the responses of human neutrophils to MSU crystals, which are likely to be involved in the initiation and perpetuation of gout. Our results suggest that the specific inhibition of Tec during the acute phase of MSU crystal-induced inflammation may be considered for the treatment of gouty arthritis.

  12. Glycogen synthase kinase-3β activity and cognitive functioning in patients with bipolar I disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Miskowiak, Kamilla Woznica; Jacoby, Anne Sophie

    2018-01-01

    Cognitive deficits are common in patients with bipolar disorder (BD) in remission and may be associated with glycogen synthase kinase-3 (GSK-3) activity, which is inhibited by lithium. GSK-3 may be a relevant treatment target for interventions tailored at cognitive disturbances in BD...... ratio (serine-9-pGSK-3β /total GSK-3β), was negatively associated with sustained attention (p = 0.009 and p = 0.042, respectively), but not with other cognitive domains or global cognition. A crossover interaction between lithium treatment and the GSK activity was observed, indicating that lower pGSK-3β...... but the relation between GSK-3 activity, cognition and lithium treatment is unknown. We therefore investigated the possible association between GSK-3 activity and cognition and whether lithium treatment moderates this association in patients with BD. In a prospective 6-12 month follow-up study, GSK- 3β activity...

  13. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

    Science.gov (United States)

    Martin, Eric; Mukherjee, Prasenjit; Sullivan, David; Jansen, Johanna

    2011-08-22

    Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be

  14. High Cell Density Upregulates Calcium Oscillation by Increasing Calcium Store Content via Basal Mitogen-Activated Protein Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Morita

    Full Text Available Calcium releases of non-excitable cells are generally a combination of oscillatory and non-oscillatory patterns, and factors affecting the calcium dynamics are still to be determined. Here we report the influence of cell density on calcium increase patterns of clonal cell lines. The majority of HeLa cells seeded at 1.5 x 104/cm2 showed calcium oscillations in response to histamine and ATP, whereas cells seeded at 0.5 x 104/cm2 largely showed transient and sustained calcium increases. Cell density also affected the response of HEK293 cells to ATP in a similar manner. High cell density increased the basal activity of the mitogen-activated protein (MAP kinase and calcium store content, and both calcium oscillation and calcium store content were down-regulated by a MAP kinase inhibitor, U0126. Thus, MAP kinase-mediated regulation of calcium store likely underlie the effect of cell density on calcium oscillation. Calcium increase patterns of HeLa cells were conserved at any histamine concentrations tested, whereas the overexpression of histamine H1 receptor, which robustly increased histamine-induced inositol phospholipid hydrolysis, converted calcium oscillations to sustained calcium increases only at high histamine concentrations. Thus, the consequence of modulating inositol phospholipid metabolism was distinct from that of changing cell density, suggesting the effect of cell density is not attributed to inositol phospholipid metabolism. Collectively, our results propose that calcium increase patterns of non-excitable cells reflect calcium store, which is regulated by the basal MAP kinase activity under the influence of cell density.

  15. The Influence of Red Fruit Oil on Creatin Kinase Level at Maximum Physical Activity

    Science.gov (United States)

    Apollo Sinaga, Fajar; Hotliber Purba, Pangondian

    2018-03-01

    Heavy physical activities can cause the oxidative stress which resulting in muscle damage with an indicator of elevated levels of Creatin Kinase (CK) enzyme. The oxidative stress can be prevented or reduced by antioxidant supplementation. One of natural resources which contain antioxidant is Red Fruit (Pandanus conoideus) Oil (RFO). This study aims to see the effect of Red Fruit Oil on Creatin Kinase (CK) level at maximum physical activity. This study is an experimental research by using the design of randomized control group pretest-posttest. This study was using 24 male mice divided into four groups, the control group was given aquadest, the treatment groups P1, P2, and P3 were given the RFO orally of 0.15 ml/kgBW, 0.3 ml/kgBW, and 0.6 ml/kgBW, respectively, for a month. The level of CK was checked for all groups at the beginning of study and after the maximum physical activity. The obtained data were then tested statistically by using t-test and ANOVA. The result shows the RFO supplementation during exercise decreased the CK level in P1, P2, and P3 groups with pphysical activity.

  16. Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction.

    Science.gov (United States)

    Wang, Ming-Hai; Zhang, Ruiwen; Zhou, Yong-Qing; Yao, Hang-Ping

    2013-09-01

    The RON receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in RON signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to RON signaling activation. Recently, functional crosstalk between RON and signaling proteins such as MET and EFGR has emerged as an additional mechanism for RON activation, which is critical for tumorigenic development. The RON signaling crosstalk acts either as a regulatory feedback loop that strengthens or enhances tumorigenic phenotype of cancer cells or serves as a signaling compensatory pathway providing a growth/survival advantage for cancer cells to escape targeted therapy. Moreover, viral oncoproteins derived from Friend leukemia or Epstein-Barr viruses interact with RON to drive viral oncogenesis. In cancer cells, RON signaling is integrated into cellular signaling network essential for cancer cell growth and survival. These activities provide the molecular basis of targeting RON for cancer treatment. In this review, we will discuss recent data that uncover the mechanisms of RON activation in cancer cells, review evidence of RON signaling crosstalk relevant to cancer malignancy, and emphasize the significance of the RON signaling addiction by cancer cells for tumor therapy. Understanding aberrant RON signaling will not only provide insight into the mechanisms of tumor pathogenesis, but also lead to the development of novel strategies for molecularly targeted cancer treatment.

  17. Tyrosol Suppresses Allergic Inflammation by Inhibiting the Activation of Phosphoinositide 3-Kinase in Mast Cells.

    Directory of Open Access Journals (Sweden)

    In-Gyu Je

    Full Text Available Allergic diseases such as atopic dermatitis, rhinitis, asthma, and anaphylaxis are attractive research areas. Tyrosol (2-(4-hydroxyphenylethanol is a polyphenolic compound with diverse biological activities. In this study, we investigated whether tyrosol has anti-allergic inflammatory effects. Ovalbumin-induced active systemic anaphylaxis and immunoglobulin E-mediated passive cutaneous anaphylaxis models were used for the immediate-type allergic responses. Oral administration of tyrosol reduced the allergic symptoms of hypothermia and pigmentation in both animal models. Mast cells that secrete allergic mediators are key regulators on allergic inflammation. Tyrosol dose-dependently decreased mast cell degranulation and expression of inflammatory cytokines. Intracellular calcium levels and activation of inhibitor of κB kinase (IKK regulate cytokine expression and degranulation. Tyrosol blocked calcium influx and phosphorylation of the IKK complex. To define the molecular target for tyrosol, various signaling proteins involved in mast cell activation such as Lyn, Syk, phosphoinositide 3-kinase (PI3K, and Akt were examined. Our results showed that PI3K could be a molecular target for tyrosol in mast cells. Taken together, these findings indicated that tyrosol has anti-allergic inflammatory effects by inhibiting the degranulation of mast cells and expression of inflammatory cytokines; these effects are mediated via PI3K. Therefore, we expect tyrosol become a potential therapeutic candidate for allergic inflammatory disorders.

  18. [Isolation and identification of proteins with anti-tumor and fibrinolysogen kinase activities from Eisenia foetida].

    Science.gov (United States)

    Zhao, Rui; Ji, Jian-Guo; Tong, Yuan-Peng; Chen, Qian; Pu, Hai; Ru, Bing-Gen

    2002-09-01

    Proteins from Eisenia foetida possess many biological activities. A group of proteins precipitated by ethanol were isolated and purified by Sephadex G-75 and HiPrep 16/60 DEAE columns, then identified by one- or two- dimensional electrophoresis and mass spectrometry. 2D gel experiments displayed that the pI of proteins from Eisenia foetida were mainly from 3.0 to 4.0. Anti-tumor and kinase activities were determined by in vitro experiments. The enthanol fraction D2(8) showed both of the activities. These ethanol-precipitated proteins were identified further by native polyacrylamide electrophoresis, the protein spots were cut off from gels and digested by trypsin, the peptide mass fingerprints (PMFs) were determined by mass spectrometry. PMF, molecular weight, amino acid composition and N-terminus of 6 proteins were characterized, and band 9 was identified as D2(8). The results suggested that there exist proteins in Eisenia foetida possessed both anti-tumor and fibrinolysogen kinase activities. These methods can be used for identification of the natural bioactive proteins.

  19. N-methyl-D-aspartate (NMDA) impairs myogenesis in C2C12 cells.

    Science.gov (United States)

    Auh, Q-SChick; Park, Kyung-Ran; Lee, Myeong-Ok; Hwang, Mi-Jin; Kang, Soo-Kyung; Hong, Jung-Pyo; Yun, Hyung-Mun; Kim, Eun-Cheol

    2017-09-01

    N-methyl-d-aspartate (NMDA) is expressed in sensory neurons and plays important roles in peripheral pain mechanisms. The aim of this study was to examine the effects and molecular mechanisms of NMDA on C2C12 myoblast proliferation and differentiation. Cytotoxicity and differentiation were examined by the MTT assay, reverse transcription-polymerase chain reaction, and immunofluorescence. NMDA had no cytotoxicity (10-500 μM) and inhibited myoblastic differentiation of C2C12 cells, as assessed by F-actin immunofluorescence and levels of mRNAs encoding myogenic markers such as myogenin and myosin heavy-chain 2. It inhibited phosphorylation of mammalian target of rapamycin (mTOR) by inactivating mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. It induced reactive oxygen species production. Furthermore, NMDA-suppressed expression of F-actin was reversed by adding the antioxidant N-acetylcysteine. Collectively, these results indicate that NMDA impairs myogenesis or myogenic differentiation in C2C12 cells through the mTOR/MAPK signaling pathways and may lead to skeletal muscle degeneration. Muscle Nerve 56: 510-518, 2017. © 2016 Wiley Periodicals, Inc.

  20. Transforming growth factor β activated kinase 1: a potential therapeutic target for rheumatic diseases.

    Science.gov (United States)

    Fechtner, Sabrina; Fox, David A; Ahmed, Salahuddin

    2017-07-01

    Pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α are central regulators of autoinflammatory diseases. While targeting these cytokines has proven to be a successful clinical strategy, the long-term challenges such as drug resistance, lack of efficacy and poor clinical outcomes in some patients are some of the limitations faced by these therapies. This has ignited strategies to reduce inflammation by potentially targeting a variety of molecules, including cell surface receptors, signalling proteins and/or transcription factors to minimize cytokine-induced inflammation and tissue injury. In this regard, transforming growth factor β activated kinase 1 (TAK1) is activated in the inflammatory signal transduction pathways in response to IL-1β, TNF-α or toll-like receptor stimulation. Because of its ideal position upstream of mitogen-activated protein kinases and the IκB kinase complex in signalling cascades, targeting TAK1 may be an attractive strategy for treating diseases characterized by chronic inflammation. Here, we discuss the emerging role of TAK1 in mediating the IL-1β, TNF-α and toll-like receptor mediated inflammatory responses in diseases such as RA, OA, gout and SS. We also review evidence suggesting that TAK1 inhibition may have potential therapeutic value. Finally, we focus on the current status of the development of TAK1 inhibitors and suggest further opportunities for testing TAK1 inhibitors in rheumatic diseases. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    Science.gov (United States)

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  2. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity.

    Science.gov (United States)

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-09

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structural Characterizations of Glycerol Kinase: Unraveling Phosphorylation-Induced Long-Range Activation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth; Bourand, Alexa; Darbon, Emmanuelle; Joly, Nathalie; Briozzo, Pierre; Deutscher, Josef; (Pitt); (CNRS-CRMD)

    2009-09-11

    Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft are more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of

  4. FAK Kinase Activity Is Required for the Progression of c-MET/β-Catenin-Driven Hepataocellular Carcinoma.

    Science.gov (United States)

    Shang, Na; Arteaga, Maribel; Zaidi, Ali; Cotler, Scott J; Breslin, Peter; Ding, Xianzhong; Kuo, Paul; Nishimura, Michael; Zhang, Jiwang; Qiu, Wei

    2016-01-01

    There is an urgent need to develop new and more effective therapeutic strategies and agents to treat hepatocellular carcinoma (HCC). We have recently found that deletion of Fak in hepatocytes before tumors form inhibits tumor development and prolongs survival of animals in a c-MET (MET)/β-catenin (CAT)-driven HCC mouse model. However, it has yet to be determined whether FAK expression in hepatocytes promotes MET/CAT-induced HCC progression after tumor initiation. In addition, it remains unclear whether FAK promotes HCC development through its kinase activity. We generated hepatocyte-specific inducible Fak-deficient mice (Alb-creERT2; Fak(flox/flox)) to examine the role of FAK in HCC progression. We reexpressed wild-type and mutant FAK in Fak-deficient mice to determine FAK's kinase activity in HCC development. We also examined the efficacy of a FAK kinase inhibitor PF-562271 on HCC inhibition. We found that deletion of Fak after tumors form significantly repressed MET/CAT-induced tumor progression. Ectopic FAK expression restored HCC formation in hepatocyte-specific Fak-deficient mice. However, overexpression of a FAK kinase-dead mutant led to reduced tumor load compared to mice that express wild-type FAK. Furthermore, PF-562271 significantly suppressed progression of MET/CAT-induced HCC. Fak kinase activity is important for MET/CAT-induced HCC progression. Inhibiting FAK kinase activity provides a potential therapeutic strategy to treat HCC.

  5. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dhawan Gunjan

    2012-07-01

    Full Text Available Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD. One hypothesis is that amyloid beta (Aβ peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA, respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis. Results Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals. Conclusions These data suggest that amyloid

  6. Mitogen-Activated Protein Kinases Are Activated in Placental Injury in Rat Model of Acute Pancreatitis in Pregnancy.

    Science.gov (United States)

    Zuo, Teng; Yu, Jia; Wang, Wei-Xing; Zhao, Kai-Liang; Chen, Chen; Deng, Wen-Hong; He, Xiao-Bo; Wang, Peng; Shi, Qiao; Guo, Wen-Yi

    2016-07-01

    To establish a rat model of acute pancreatitis in pregnancy (APIP) and evaluate its general presentations, assess placental injury, and discuss possible mechanisms. The APIP rat model was induced by sodium taurocholate in Sprague-Dawley rats of later gestation. Normal and sham-operated (SO) rats in later gestation were set as controls, 3 time points were set in SO and APIP groups to determine optimal modeling time. Histological changes of pancreas and placenta were assessed. Placental injury was determined by immunohistochemistry stain of caspase-3. Serum levels of amylase, lipase, and Ca; proinflammatory cytokines as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and anti-inflammatory cytokine IL-10 by enzyme-linked immunosorbent assay; mitogen-activated protein kinases and their phosphorylated forms by Western blotting. Pancreatic necrotizing and placental injury occurred in time-dependent patterns. Serum levels of amylase and lipase significantly increased but Ca decreased; tumor necrosis factor-α, IL-1β, IL-6, and IL-10 were all increased in the APIP group; c-Jun N-terminal kinase, p38, and ERK1/2 were activated but with different distributing patterns in the placenta. Placental injury is involved in the rat model of APIP, and a modeling time of 6 hours is optimal and conducive to further studies; c-Jun N-terminal kinase and p38 may play important roles in placental injury during APIP.

  7. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas

    2012-01-01

    The potassium channel Kv7.1 is expressed in the heart, where it contributes to the repolarization of the cardiac action potential. Additionally, Kv7.1 is expressed in epithelial tissues playing a role in salt and water transport. We recently demonstrated that surface-expressed Kv7.1 is internalized...... in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...

  8. Lyn kinase is activated following thrombopoietin stimulation of the megakaryocytic cell line B1647

    DEFF Research Database (Denmark)

    Santini, Valeria; Scappini, Barbara; Gozzini, Antonella

    2002-01-01

    by thrombopoietin (TPO). DESIGN AND METHODS: We aimed to evaluate the proliferative signal transduction events following the activation of c-mpl and we stimulated B1647 cells with TPO 40 ng/mL for 3, 7, 15 and 30 minutes; cells were then lysed and whole lysates were immunoprecipitated with anti......-phosphotyrosine antibodies. RESULTS: In our hands, TPO stimulation induced phosphorylation of several substrate proteins in B1647 cells. The increase in tyrosine phosphorylation from background spontaneous activation was transient, maximal after 10 minutes and declined to reach constitutive levels after 30 minutes....... In particular, protein substrates between 50 and 140 kDa appeared to be selectively phosphorylated by TPO. We demonstrated that Jak2, Stat3 and Shc were activated in B1647 cells after TPO, as already shown for different cell lines by other authors. Moreover, Lyn kinase activation was detected. Grb2 co...

  9. Stress-Stimulated Mitogen-Activated Protein Kinases Control the Stability and Activity of the Cdt1 DNA Replication Licensing Factor ▿

    Science.gov (United States)

    Chandrasekaran, Srikripa; Tan, Ting Xu; Hall, Jonathan R.; Cook, Jeanette Gowen

    2011-01-01

    DNA replication is tightly coordinated both with cell cycle cues and with responses to extracellular signals to maintain genome stability. We discovered that human Cdt1, an essential origin licensing protein whose activity must be restricted to G1 phase, is a substrate of the stress-activated mitogen-activated protein (MAP) kinases p38 and c-Jun N-terminal kinase (JNK). These MAP kinases phosphorylate Cdt1 both during unperturbed G2 phase and during an acute stress response. Phosphorylation renders Cdt1 resistant to ubiquitin-mediated degradation during S phase and after DNA damage by blocking Cdt1 binding to the Cul4 adaptor, Cdt2. Mutations that block normal cell cycle-regulated MAP kinase-mediated phosphorylation interfere with rapid Cdt1 reaccumulation at the end of S phase. Phosphomimetic mutations recapitulate the stabilizing effects of Cdt1 phosphorylation but also reduce the ability of Cdt1 to support origin licensing. Two other CRL4Cdt2 targets, the cyclin-dependent kinase (CDK) inhibitor p21 and the methyltransferase PR-Set7/Set8, are similarly stabilized by MAP kinase activity. These findings support a model in which MAP kinase activity in G2 promotes reaccumulation of a low-activity Cdt1 isoform after replication is complete. PMID:21930785

  10. Mitogen-activated protein kinase (MEK) inhibitors to treat melanoma alone or in combination with other kinase inhibitors.

    Science.gov (United States)

    Faghfuri, Elnaz; Nikfar, Shekoufeh; Niaz, Kamal; Faramarzi, Mohammad Ali; Abdollahi, Mohammad

    2018-03-01

    Malignant melanoma (MM) is an aggressive disease with a rapidly rising incidence due to neoplasm of melanocytes. Molecular targeted therapies have demonstrated lower toxicity and improved overall survival versus conventional therapies of MM. The revealing of mutations in the BRAF/MEK/ERK pathway has led to the development of BRAF inhibitors such as vemurafenib and dabrafenib for the treatment of cutaneous MM. Though, progression of resistance to these agents has prompted attempts to target downstream proteins in this pathway. Trametinib, a MEK1/2 inhibitor, was approved in 2013 for the treatment of BRAF V600E/K mutation-positive unresectable or metastatic cutaneous melanoma patients. Areas covered: The aim of the current review is to present an update on the role of MEK in progressive melanomas and summarize latest results of clinical studies with innovative MEK inhibitors and/or combined approaches with other kinase inhibitors such as BRAF inhibitors in the treatment of MM. Expert opinion: Two combined treatments (i.e. trametinib plus dabrafenib and vemurafenib plus cobimetinib) target two different kinases in the BRAF/MEK/ERK pathway. The simultaneous prohibition of both MEK and BRAF is associated with more durable response rate than BRAF monotherapy and can overcome acquired resistance.

  11. Identification of a novel multiple kinase inhibitor with potent antiviral activity against influenza virus by reducing viral polymerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yutaka; Kakisaka, Michinori; Chutiwitoonchai, Nopporn [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tajima, Shigeru [Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640 (Japan); Hikono, Hirokazu; Saito, Takehiko [Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan); Aida, Yoko, E-mail: aida@riken.jp [Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-07-18

    Highlights: • Screening of 50,000 compounds and subsequent lead optimization identified WV970. • WV970 has antiviral effects against influenza A, B and highly pathogenic viral strains. • WV970 inhibits viral genome replication and transcription. • A target database search suggests that WV970 may bind to a number of kinases. • KINOMEscan screening revealed that WV970 has inhibitory effects on 15 kinases. - Abstract: Neuraminidase inhibitors are the only currently available influenza treatment, although resistant viruses to these drugs have already been reported. Thus, new antiviral drugs with novel mechanisms of action are urgently required. In this study, we identified a novel antiviral compound, WV970, through cell-based screening of a 50,000 compound library and subsequent lead optimization. This compound exhibited potent antiviral activity with nanomolar IC{sub 50} values against both influenza A and B viruses but not non-influenza RNA viruses. Time-of-addition and indirect immunofluorescence assays indicated that WV970 acted at an early stage of the influenza life cycle, but likely after nuclear entry of viral ribonucleoprotein (vRNP). Further analyses of viral RNA expression and viral polymerase activity indicated that WV970 inhibited vRNP-mediated viral genome replication and transcription. Finally, structure-based virtual screening and comprehensive human kinome screening were used to demonstrate that WV970 acts as a multiple kinase inhibitor, many of which are associated with influenza virus replication. Collectively, these results strongly suggest that WV970 is a promising anti-influenza drug candidate and that several kinases associated with viral replication are promising drug targets.

  12. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Science.gov (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Predicting Kinase Activity in Angiotensin Receptor Phosphoproteomes Based on Sequence-Motifs and Interactions

    DEFF Research Database (Denmark)

    Bøgebo, Rikke; Horn, Heiko; Olsen, Jesper V

    2014-01-01

    Recent progress in the understanding of seven-transmembrane receptor (7TMR) signalling has promoted the development of a new generation of pathway selective ligands. The angiotensin II type I receptor (AT1aR) is one of the most studied 7TMRs with respect to selective activation of the β-arrestin ......Recent progress in the understanding of seven-transmembrane receptor (7TMR) signalling has promoted the development of a new generation of pathway selective ligands. The angiotensin II type I receptor (AT1aR) is one of the most studied 7TMRs with respect to selective activation of the β......-arrestin dependent signalling. Two complimentary global phosphoproteomics studies have analyzed the complex signalling induced by the AT1aR. Here we integrate the data sets from these studies and perform a joint analysis using a novel method for prediction of differential kinase activity from phosphoproteomics data....... The method builds upon NetworKIN, which applies sophisticated linear motif analysis in combination with contextual network modelling to predict kinase-substrate associations with high accuracy and sensitivity. These predictions form the basis for subsequently nonparametric statistical analysis to identify...

  14. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  15. Insulin receptor binding and protein kinase activity in muscles of trained rats

    International Nuclear Information System (INIS)

    Dohm, G.L.; Sinha, M.K.; Caro, J.F.

    1987-01-01

    Exercise has been shown to increase insulin sensitivity, and muscle is quantitatively the most important tissue of insulin action. Since the first step in insulin action is the binding to a membrane receptor, the authors postulated that exercise training would change insulin receptors in muscle and in this study they have investigated this hypothesis. Female rats initially weighing ∼ 100 g were trained by treadmill running for 2 h/day, 6 days/wk for 4 wk at 25 m/min (0 grade). Insulin receptors from vastus intermedius muscles were solubilized by homogenizing in a buffer containing 1% Triton X-100 and then partially purified by passing the soluble extract over a wheat germ agglutinin column. The 4 wk training regimen resulted in a 65% increase in citrate synthase activity in red vastus lateralis muscle, indicating an adaptation to exercise [ 125 I]. Insulin binding by the partially purified receptor preparations was approximately doubled in muscle of trained rats at all insulin concentrations, suggesting an increase in the number of receptors. Training did not alter insulin receptor structure as evidenced by electrophoretic mobility under reducing and nonreducing conditions. Basal insulin receptor protein kinase activity was higher in trained than untrained animals and this was likely due to the greater number of receptors. However, insulin stimulation of the protein kinase activity was depressed by training. These results demonstrate that endurance training does alter receptor number and function in muscle and these changes may be important in increasing insulin sensitivity after exercise training

  16. Fasting potentiates the anticancer activity of tyrosine kinase inhibitors by strengthening MAPK signaling inhibition

    Science.gov (United States)

    Caffa, Irene; D'Agostino, Vito; Damonte, Patrizia; Soncini, Debora; Cea, Michele; Monacelli, Fiammetta; Odetti, Patrizio; Ballestrero, Alberto; Provenzani, Alessandro; Longo, Valter D.; Nencioni, Alessio

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are now the mainstay of treatment in many types of cancer. However, their benefit is frequently short-lived, mandating the search for safe potentiation strategies. Cycles of fasting enhance the activity of chemo-radiotherapy in preclinical cancer models and dietary approaches based on fasting are currently explored in clinical trials. Whether combining fasting with TKIs is going to be potentially beneficial remains unknown. Here we report that starvation conditions increase the ability of commonly administered TKIs, including erlotinib, gefitinib, lapatinib, crizotinib and regorafenib, to block cancer cell growth, to inhibit the mitogen-activated protein kinase (MAPK) signaling pathway and to strengthen E2F-dependent transcription inhibition. In cancer xenografts models, both TKIs and cycles of fasting slowed tumor growth, but, when combined, these interventions were significantly more effective than either type of treatment alone. In conclusion, cycles of fasting or of specifically designed fasting-mimicking diets should be evaluated in clinical studies as a means to potentiate the activity of TKIs in clinical use. PMID:25909220

  17. Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Madec, Edwige; Stensballe, Allan; Kjellström, Sven

    2003-01-01

    the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high...

  18. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp YM55-1

    NARCIS (Netherlands)

    Veetil, Vinod Puthan; Raj, Hans; Quax, Wim J.; Janssen, Dick B.; Poelarends, Gerrit J.

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of l-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of l-aspartate to form an enzyme-stabilized enediolate intermediate.

  19. 21 CFR 582.5017 - Aspartic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of use...

  20. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  1. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P free fatty acid (169.3 +/- 9.5 vs. 1161...

  2. Phosphatidylinositol 3'-kinase and tyrosine-phosphatase activation positively modulate Convulxin-induced platelet activation. Comparison with collagen.

    Science.gov (United States)

    Lagrue, A H; Francischetti, I M; Guimarães, J A; Jandrot-Perrus, M

    1999-04-01

    In this report we have studied the role of phosphatidylinositol 3'-kinase (PI3-K) and tyrosine phosphatase activation on platelet activation by Convulxin (Cvx). Wortmannin, a specific PI3-K inhibitor, and phenylarsine oxide (PAO), a sulfhydryl reagent that inhibits tyrosine phosphatase (PTPase), block Cvx-induced platelet aggregation, granule secretion, inositol phosphate production, and increase in [Ca2+]i. However, PAO does not inhibit Cvx-induced tyrosine phosphorylation of platelet proteins, including Syk and PLCgamma2, but blocked collagen-induced platelet aggregation as well as tyrosine phosphorylation of PLCgamma2. In contrast, Cvx-induced PLCgamma2 tyrosyl phosphorylation was partially inhibited by wortmannin. We conclude that (i) although Cvx and collagen activate platelets by a similar mechanism, different regulatory processes are specific to each agonist; (ii) mechanisms other than tyrosine phosphorylation regulate PLCgamma2 activity; and (iii) besides protein tyrosine kinases, PI3-K (and PTPase) positively modulate platelet activation by both Cvx and collagen, and this enzyme is required for effective transmission of GPVI-Fc receptor gamma chain signal to result in full activation and tyrosine phosphorylation of PLCgamma2 in Cvx-stimulated platelets.

  3. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity.

    Science.gov (United States)

    Hausser, Angelika; Link, Gisela; Hoene, Miriam; Russo, Chiara; Selchow, Olaf; Pfizenmaier, Klaus

    2006-09-01

    Phosphatidylinositol-4-kinase-IIIbeta (PI4KIIIbeta) is activated at the Golgi compartment by PKD-mediated phosphorylation. Subsequent mechanisms responsible for continuous PtdIns(4)P production at Golgi membranes and potential interaction partners of activated PI4KIIIbeta are unknown. Here we identify phosphoserine/-threonine binding 14-3-3 proteins as novel regulators of PI4KIIIbeta activity downstream of this phosphorylation. The PI4KIIIbeta-14-3-3 interaction, evident from GST pulldowns, co-immunoprecipitations and bimolecular fluorescence complementation, was augmented by phosphatase inhibition with okadaic acid. Binding of 14-3-3 proteins to PI4KIIIbeta involved the PKD phosphorylation site Ser294, evident from reduced 14-3-3 binding to a S294A PI4KIIIbeta mutant. Expression of dominant negative 14-3-3 proteins resulted in decreased PI4KIIIbeta Ser294 phosphorylation, whereas wildtype 14-3-3 proteins increased phospho-PI4KIIIbeta levels. This was because of protection of PI4KIIIbeta Ser294 phosphorylation from phosphatase-mediated dephosphorylation. The functional significance of the PI4KIIIbeta-14-3-3 interaction was evident from a reduction of PI4KIIIbeta activity upon dominant negative 14-3-3 protein expression. We propose that 14-3-3 proteins function as positive regulators of PI4KIIIbeta activity by protecting the lipid kinase from active site dephosphorylation, thereby ensuring a continuous supply of PtdIns(4)P at the Golgi compartment.

  4. A Role for Calcium-Activated Adenylate Cyclase and Protein Kinase A in the Lens Src Family Kinase and Na,K-ATPase Response to Hyposmotic Stress.

    Science.gov (United States)

    Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A

    2017-09-01

    Na,K-ATPase activity in lens epithelium is subject to control by Src family tyrosine kinases (SFKs). Previously we showed hyposmotic solution causes an SFK-dependent increase in Na,K-ATPase activity in the epithelium. Here we explored the role of cAMP in the signaling mechanism responsible for the SFK and Na,K-ATPase response. Intact porcine lenses were exposed to hyposmotic Krebs solution (200 mOsm) then the epithelium was assayed for cAMP, SFK phosphorylation (activation) or Na,K-ATPase activity. An increase of cAMP was observed in the epithelium of lenses exposed to hyposmotic solution. In lenses exposed to hyposmotic solution SFK phosphorylation in the epithelium approximately doubled as did Na,K-ATPase activity and both responses were prevented by H89, a protein kinase A inhibitor. The magnitude of the SFK response to hyposmotic solution was reduced by a TRPV4 antagonist HC067047 added to prevent TRPV4-mediated calcium entry, and by a cytoplasmic Ca2+ chelator BAPTA-AM. The Na,K-ATPase activity response in the epithelium of lenses exposed to hyposmotic solution was abolished by BAPTA-AM. As a direct test of cAMP-dependent SFK activation, intact lenses were exposed to 8-pCPT-cAMP, a cell-permeable cAMP analog. 8-pCPT-cAMP caused robust SFK activation. Using Western blot, two calcium-activated adenylyl cyclases, ADCY3 and ADCY8, were detected in lens epithelium. Calcium-activated adenylyl cyclases are expressed in the lens epithelium and SFK activation is linked to a rise of cAMP that occurs upon hyposmotic challenge. The findings point to cAMP as a link between TRPV4 channel-mediated calcium entry, SFK activation, and a subsequent increase of Na,K-ATPase activity.

  5. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket......'-deoxythymidine (AZT) compared with the natural substrate thymidine. The crystal structure of the T163S-mutated HuTK1 reveals a less ordered conformation of the ligand thymidine triphosphate compared with the wild-type structure but the cause of the changed specificity towards AZT is not obvious. Based on its...... highly increased AZT activity relative to thymidine activity this TK1 mutant could be suitable for suicide gene therapy....

  6. Direct binding and activation of protein kinase C isoforms by steroid hormones.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2008-10-01

    The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.

  7. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of T cell activation

    Directory of Open Access Journals (Sweden)

    Loretta eTuosto

    2016-05-01

    Full Text Available Phosphatidylinositol 4,5-biphosphate kinases (PIP5K are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2. PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen presenting cells (APC, spatial organization of the immunological synapse (IS, and costimulation. Moreover, PIP2 serves also as a precursor for the second messengers inositol triphosphate (IP3, diacylglycerol (DAG and phosphatidylinositol 3,4,5-triphosphate (PIP3, which are essential for the activation of signalling pathways regulating cytokine production, cell cycle progression, survival, metabolism and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.

  8. Mitogen-Activated Protein Kinase (MAPK) Pathway Regulates Branching by Remodeling Epithelial Cell Adhesion

    Science.gov (United States)

    Ihermann-Hella, Anneliis; Lume, Maria; Miinalainen, Ilkka J.; Pirttiniemi, Anniina; Gui, Yujuan; Peränen, Johan; Charron, Jean; Saarma, Mart; Costantini, Frank; Kuure, Satu

    2014-01-01

    Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions. PMID:24603431

  9. Mitogen-activated protein kinase (MAPK pathway regulates branching by remodeling epithelial cell adhesion.

    Directory of Open Access Journals (Sweden)

    Anneliis Ihermann-Hella

    2014-03-01

    Full Text Available Although the growth factor (GF signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.

  10. Dioxin modulates expression of receptor for activated C kinase (RACK-1) in developing neurons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.H.; Kim, S.Y.; Lee, H.G.; Kim, M.Y.; Lee, J.H.; Chae, W.G. [Catholic Univ. of Daegu, Dept. of Pharmacology/Toxicology, Daegu (Korea)

    2004-09-15

    TCDD is sensitive to the central nerve system of the developing brain. The TCDD-induced neurodevelopmental deficits include the cognitive disability and motor dysfunction. While TCDD may lead to neurodevelopmental and neurobehavioral deficit, it is not known which molecular substances are intracellular targets for TCDD. Since TCDD accumulates in brain and the brain contains the Ah receptor, it is possible that TCDD may act at the target site such as cerebellum, which is responsible for cognitive abilities and motor function. A recent in vitro studies using cerebellar granule cells demonstrated a translocation of PKC-{alpha} and {epsilon} following the TCDD or PCB exposure. One of the most pivotal second messenger molecules involved in neuronal function and development is protein kinase C (PKC). PKC signaling pathways have been implicated as an important factor in learning and memory processes. PKC signaling events are optimized by the adaptor proteins, which organize PKCs near their selective substrates and away from others. RACK-1(receptor for activated C-kinase) is one of adaptor proteins that anchor the activated PKC at the site of translocation 6. RACKs bind PKC only in the presence of PKC activators. RACKs are 30- and 36-kDa proteins located in cytoskeletal compartment and play a key role in PKC activation and in membrane amchoring. Since different PKC isoforms translocate to distinct subcellular sites on activation, it is suggested that isoform-specific RACK may be present. Activation of certain PKC isoforms (PKC-a and {beta}II) is preferentially associated with RACK-1. While TCDD modulates PKC signaling pathway, role of RACK-1 on TCDD-mediated signaling pathway is not known. To identify the intracellular target for TCDD and understand a mechanism of signaling pathway in the developing brain, the present study attempted to analyze effects of RACK-1 in the cerebellar granule cells following TCDD exposure.

  11. Inhibition of c-Abl kinase activity renders cancer cells highly sensitive to mitoxantrone.

    Directory of Open Access Journals (Sweden)

    Kemal Alpay

    Full Text Available Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl-dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy.

  12. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    International Nuclear Information System (INIS)

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-01-01

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3β activity by reducing Akt-mediated GSK-3β phosphorylation. • Lithium suppresses GSK-3β activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3β. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li 2 CO 3 significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li 2 CO 3 did not affect PI3K-mediated PI(3,4,5)P 3 production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3β activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3β in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li 2 CO 3 on Akt1-induced phosphorylation of GSK-3β at Ser9, but otherwise Li 2 CO 3 significantly reduced GSK-3β-mediated phosphorylation of β-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3β in an Akt-independent manner. In rat hippocampal slices Li 2 CO 3 significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3β at Ser9, and β-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3β activity

  13. Cholesterol crystals activate Syk and PI3 kinase in human macrophages and dendritic cells.

    Science.gov (United States)

    Corr, Emma M; Cunningham, Clare C; Dunne, Aisling

    2016-08-01

    Cholesterol crystals are a key component of atherosclerotic lesions where they promote pro-inflammatory cytokine production and plaque destabilization. Antagonists of inflammatory mediators and agents that dissolve or prevent the formation of cholesterol crystals are being explored as potential therapeutics for atherothrombosis. We sought to identify signalling molecules activated following exposure of immune cells to cholesterol crystals with the view to identifying novel therapeutic targets. Human macrophages and dendritic cells (DC) were exposed to cholesterol crystals and activation of signalling molecules was assessed by immunoblotting. The role of Syk and PI3K in crystal-induced interleukin (IL)-1 production was determined by ELISA using specific kinase inhibitors. Real-time PCR was employed to examine the role of Syk/PI3K in cholesterol crystal-induced expression of S100 proteins and MMPs. Exposure of human macrophages and DC to cholesterol crystals induced robust activation of Syk and PI3K within 2-5 min. Pharmacological inhibition of Syk/PI3K reduced crystal-induced IL-1α/β production by approximately 80%. Activation of the downstream MAP kinases, MEK and ERK, was suppressed following inhibition of Syk and PI3K. Finally, inhibition of both Syk and PI3K significantly reduced cholesterol crystal-induced S100A8 and MMP1 gene expression by >70% while inhibition of PI3K also reduced S100A12 expression. Cholesterol crystals activate specific cell signalling pathways which drive the production of inflammatory cytokines and degradative enzymes known to contribute to disease initiation and progression. These molecular events are dependent on activation of Syk and PI3K, hence, they represent potential therapeutic targets for the treatment of cholesterol crystal-related pathologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation.

    Science.gov (United States)

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-21

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5'-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux.

  15. Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation

    Science.gov (United States)

    Inabe, Kazunori; Ishiai, Masamichi; Scharenberg, Andrew M.; Freshney, Norman; Downward, Julian; Kurosaki, Tomohiro

    2002-01-01

    To elucidate the mechanism(s) by which Vav3, a new member of the Vav family proteins, participates in B cell antigen receptor (BCR) signaling, we have generated a B cell line deficient in Vav3. Here we report that Vav3 influences phosphoinositide 3-kinase (PI3K) function through Rac1 in that phosphatidylinositol-3,4,5-trisphosphate (PIP3) generation was attenuated by loss of Vav3 or by expression of a dominant negative form of Rac1. The functional interaction between PI3K and Rac1 was also demonstrated by increased PI3K activity in the presence of GTP-bound Rac1. In addition, we show that defects of calcium mobilization and c-Jun NH2-terminal kinase (JNK) activation in Vav3-deficient cells are relieved by deletion of a PIP3 hydrolyzing enzyme, SH2 domain-containing inositol polyphosphate 5′-phosphatase (SHIP). Hence, our results suggest a role for Vav3 in regulating the B cell responses by promoting the sustained production of PIP3 and thereby calcium flux. PMID:11805146

  16. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II.

    Science.gov (United States)

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma

    2014-08-01

    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  18. Catalytic reaction pathway for the mitogen-activated protein kinase ERK2.

    Science.gov (United States)

    Prowse, C N; Hagopian, J C; Cobb, M H; Ahn, N G; Lew, J

    2000-05-23

    The structural, functional, and regulatory properties of the mitogen-activated protein kinases (MAP kinases) have long attracted considerable attention owing to the critical role that these enzymes play in signal transduction. While several MAP kinase X-ray crystal structures currently exist, there is by comparison little mechanistic information available to correlate the structural data with the known biochemical properties of these molecules. We have employed steady-state kinetic and solvent viscosometric techniques to characterize the catalytic reaction pathway of the MAP kinase ERK2 with respect to the phosphorylation of a protein substrate, myelin basic protein (MBP), and a synthetic peptide substrate, ERKtide. A minor viscosity effect on k(cat) with respect to the phosphorylation of MBP was observed (k(cat) = 10 +/- 2 s(-1), k(cat)(eta) = 0.18 +/- 0.05), indicating that substrate processing occurs via slow phosphoryl group transfer (12 +/- 4 s(-1)) followed by the faster release of products (56 +/- 4 s(-1)). At an MBP concentration extrapolated to infinity, no significant viscosity effect on k(cat)/K(m(ATP)) was observed (k(cat)/K(m(ATP)) = 0.2 +/- 0.1 microM(-1) s(-1), k(cat)/K(m(ATP))(eta) = -0.08 +/- 0.04), consistent with rapid-equilibrium binding of the nucleotide. In contrast, at saturating ATP, a full viscosity effect on k(cat)/K(m) for MBP was apparent (k(cat)/K(m(MBP)) = 2.4 +/- 1 microM(-1) s(-1), k(cat)/K(m(MBP))(eta) = 1.0 +/- 0.1), while no viscosity effect was observed on k(cat)/K(m) for the phosphorylation of ERKtide (k(cat)/K(m(ERKtide)) = (4 +/- 2) x 10(-3) microM(-1) s(-1), k(cat)/K(m(ERKtide))(eta) = -0.02 +/- 0.02). This is consistent with the diffusion-limited binding of MBP, in contrast to the rapid-equilibrium binding of ERKtide, to form the ternary Michaelis complex. Calculated values for binding constants show that the estimated value for K(d(MBP)) (/= 1.5 mM). The dramatically higher catalytic efficiency of MBP in comparison to that

  19. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts

    DEFF Research Database (Denmark)

    Su, J; Muranjan, M; Sap, J

    1999-01-01

    BACKGROUND: Fyn and c-Src are two of the most widely expressed Src-family kinases. Both are strongly implicated in the control of cytoskeletal organization and in the generation of integrin-dependent signalling responses in fibroblasts. These proteins are representative of a large family...... of tyrosine kinases, the activity of which is tightly controlled by inhibitory phosphorylation of a carboxyterminal tyrosine residue (Tyr527 in chicken c-Src); this phosphorylation induces the kinases to form an inactive conformation. Whereas the identity of such inhibitory Tyr527 kinases has been well...... established, no corresponding phosphatases have been identified that, under physiological conditions, function as positive regulators of c-Src and Fyn in fibroblasts. RESULTS: Receptor protein tyrosine phosphatase alpha (RPTPalpha) was inactivated by homologous recombination. Fibroblasts derived from...

  20. Expression and sequence analysis of the Blumeria graminis mitogen-activated protein kinase genes, mpk1 and mpk2.

    Science.gov (United States)

    Zhang, Z; Gurr, S J

    2001-03-21

    Mitogen-activated protein (MAP) kinases represent a group of serine/threonine kinases which play a pivotal role in signal transduction processes in eukaryotic cells. Using degenerate PCR primer design based on published and aligned MAP kinase sequences we have cloned and characterised two MAP kinase genes from the barley powdery mildew fungus, Blumeria graminis. We have utilised 'step down' PCR to attain the full length mildew genomic clones. The single-copy genes, named mpk1 and mpk2, encode putative proteins of 356 and 410 amino acids and carry three and four introns, respectively. Expression studies, using RT-PCR, reveal a differing pattern of tissue gene expression with mpk1 and mpk2 during germling morphogenesis and this is compared with the constitutive expression of the 'control' beta-tubulin gene.

  1. The First Pentacyclic Triterpenoid Gypsogenin Derivative Exhibiting Anti-ABL1 Kinase and Anti-Chronic Myelogenous Leukemia Activities.

    Science.gov (United States)

    Ciftci, Halil Ibrahim; Ozturk, Safiye Emirdag; Ali, Taha F S; Radwan, Mohamed O; Tateishi, Hiroshi; Koga, Ryoko; Ocak, Zeynep; Can, Mustafa; Otsuka, Masami; Fujita, Mikako

    2018-01-30

    The discovery of the chimeric tyrosine kinase breakpoint cluster region kinase-Abelson kinase (BCR-ABL)-targeted drug imatinib conceptually changed the treatment of chronic myelogenous leukemia (CML). However, some CML patients show drug resistance to imatinib. To address this issue, some artificial heterocyclic compounds have been identified as BCR-ABL inhibitors. Here we examined whether plant-derived pentacyclic triterpenoid gypsogenin and/or their derivatives show inhibitory activity against BCR-ABL. Among the three derivatives, benzyl 3-hydroxy-23-oxoolean-12-en-28-oate (1c) was found to be the most effective anticancer agent on the CML cell line K562, with an IC 50 value of 9.3 µM. In contrast, the IC 50 against normal peripheral blood mononuclear cells was 276.0 µM, showing better selectivity than imatinib. Compound 1c had in vitro inhibitory activity against Abelson kinase 1 (ABL1) (IC 50 =8.7 μM), the kinase component of BCR-ABL. In addition, compound 1c showed a different inhibitory profile against eight kinases compared with imatinib. The interaction between ATP binding site of ABL and 1c was examined by molecular docking study, and the binding mode was different from imatinib and newer generation inhibitors. Furthermore, 1c suppresses signaling downstream of BCR-ABL. This study suggests the possibility that plant extracts may be a source for CML treatment and offer a strategy to overcome drug resistance to known BCR-ABL inhibitors.

  2. The ubiquitin-conjugating enzyme, Ubc1, indirectly regulates SNF1 kinase activity via Forkhead-dependent transcription

    Directory of Open Access Journals (Sweden)

    Rubin Jiao

    2016-11-01

    Full Text Available The SNF1 kinase in Saccharomyces cerevisiae is an excellent model to study the regulation and function of the AMP-dependent protein kinase (AMPK family of serine-threonine protein kinases. Yeast discoveries regarding the regulation of this non-hormonal sensor of metabolic/environmental stress are conserved in higher eukaryotes, including poly-ubiquitination of the α-subunit of yeast (Snf1 and human (AMPKα that ultimately effects subunit stability and enzyme activity. The ubiquitin-cascade enzymes responsible for targeting Snf1 remain unknown, leading us to screen for those that impact SNF1 kinase function. We identified the E2, Ubc1, as a regulator of SNF1 kinase function. The decreased Snf1 abundance found upon deletion of Ubc1 is not due to increased degradation, but instead is partly due to impaired SNF1 gene expression, arising from diminished abundance of the Forkhead 1/2 proteins, previously shown to contribute to SNF1 transcription. Ultimately, we report that the Fkh1/2 cognate transcription factor, Hcm1, fails to enter the nucleus in the absence of Ubc1. This implies that Ubc1 acts indirectly through transcriptional effects to modulate SNF1 kinase activity.

  3. Mice lacking brain-type creatine kinase activity show defective thermoregulation

    Science.gov (United States)

    Streijger, Femke; Pluk, Helma; Oerlemans, Frank; Beckers, Gaby; Bianco, Antonio C.; Ribeiro, Miriam O.; Wieringa, Bé; Van der Zee, Catharina E.E.M.

    2010-01-01

    The cytosolic brain-type creatine kinase and mitochondrial ubiquitous creatine kinase (CK-B and UbCKmit) are expressed during the prepubescent and adult period of mammalian life. These creatine kinase (CK) isoforms are present in neural cell types throughout the central and peripheral nervous system and in smooth muscle containing tissues, where they have an important role in cellular energy homeostasis. Here, we report on the coupling of CK activity to body temperature rhythm and adaptive thermoregulation in mice. With both brain-type CK isoforms being absent, the body temperature reproducibly drops ~1.0°C below normal during every morning (inactive) period in the daily cycle. Facultative non-shivering thermogenesis is also impaired, since CK−−/−− mice develop severe hypothermia during 24 h cold exposure. A relationship with fat metabolism was suggested because comparison of CK−−/−− mice with wildtype controls revealed decreased weight gain associated with less white and brown fat accumulation and smaller brown adipocytes. Also, circulating levels of glucose, triglycerides and leptin are reduced. Extensive physiological testing and uncoupling protein1 analysis showed, however, that the thermogenic problems are not due to abnormal responsiveness of brown adipocytes, since noradrenaline infusion produced a normal increase of body temperature. Moreover, we demonstrate that the cyclic drop in morning temperature is also not related to altered rhythmicity with reduced locomotion, diminished food intake or increased torpor sensitivity. Although several integral functions appear altered when CK is absent in the brain, combined findings point into the direction of inefficient neuronal transmission as the dominant factor in the thermoregulatory defect. PMID:19419668

  4. Alteration of sodium, potassium-adenosine triphosphatase activity in rabbit ciliary processes by cyclic adenosine monophosphate-dependent protein kinase

    International Nuclear Information System (INIS)

    Delamere, N.A.; Socci, R.R.; King, K.L.

    1990-01-01

    The response of sodium, potassium-adenosine triphosphatase (Na,K-ATPase) to cyclic adenosine monophosphate (cAMP)-dependent protein kinase was examined in membranes obtained from rabbit iris-ciliary body. In the presence of the protein kinase together with 10(-5) M cAMP, Na,K-ATPase activity was reduced. No change in Na,K-ATPase activity was detected in response to the protein kinase without added cAMP. Likewise cAMP alone did not alter Na,K-ATPase activity. Reduction of Na,K-ATPase activity was also observed in the presence of the cAMP-dependent protein kinase catalytic subunit. The response of the enzyme to the kinase catalytic subunit was also examined in membranes obtained from rabbit ciliary processes. In the presence of 8 micrograms/ml of the catalytic subunit, ciliary process Na,K-ATPase activity was reduced by more than 50%. To examine whether other ATPases were suppressed by the protein kinase, calcium-stimulated ATPase activity was examined; its activity was stimulated by the catalytic subunit. To test whether the response of the ciliary process Na,K-ATPase is unique, experiments were also performed using membrane preparations from rabbit lens epithelium or rabbit kidney; the catalytic subunit significantly reduced the activity of Na,K-ATPase from the kidney but not the lens. These Na,K-ATPase studies suggest that in the iris-ciliary body, cAMP may alter sodium pump activity. In parallel 86Rb uptake studies, we observed that ouabain-inhibitable potassium uptake by intact pieces of iris-ciliary body was reduced by exogenous dibutryl cAMP or by forskolin

  5. Active p21-Activated Kinase 1 Rescues MCF10A Breast Epithelial Cells from Undergoing Anoikis

    OpenAIRE

    Raymond E. Menard; Andrew P. Jovanovski; Raymond R. Mattingly

    2005-01-01

    The protein kinase, PAKi, is overexpressed in human breast cancer and may contribute to malignancy through induction of proliferation and invasiveness. In this study, we examined the role of PAKi in the survival of detached MCF10A breast epithelial cells to test whether it may also regulate the early stages of neoplasia. MCF10A cells undergo anoikis, as measured by the cleavage of caspase 3 and poly(ADPribose) polymerase (PARP), after more than 8 hours of detachment. Endogenous Akt, PAKi, BAD...

  6. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    Science.gov (United States)

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  7. Synthesis of 1,4-disubstituted 1,2,3-triazole Derivatives Using Click Chemistry and their Src Kinase Activities.

    Science.gov (United States)

    Lebeau, Alexandre; Abrioux, Cyril; Bénimèlis, David; Benfodda, Zohra; Meffre, Patrick

    2016-01-01

    Tyrosine kinases (TK) are enzymes that catalyze the phosphorylation of tyrosine residues on proteins by the transfer of phosphate moiety of ATP. TK are key regulators of various cell functions, such as cellular growth, proliferation, migration, differentiation, and apoptosis. Src mutations and/or overexpression has been correlated with tumor growth, metastasis, and angiogenesis [4,5]. Thus, the design and the discovery of novel Src kinase inhibitors remains critically important. A series of 1,4-disubstituted 1,2,3-triazoles derivatives were designed and prepared as potential inhibitors for Src kinase. In this manuscript, all of the designed compounds were screened via molecular docking using PLANTS as virtual screening software to identify new inhibitors of Src kinase. Subsequently, all of the screened compounds were synthesized via Huisgen's 1,3-dipolar cycloaddition between terminal alkynes (1) and methyl 2-azidoacetate (2) with Cu(I) in excellent yields at room temperature. In the present study, we report the design and the synthesis of a series of 1,4-disubstituted 1,2,3-triazoles involving one pot condensation of methyl 2-azidoacetate and different terminal alkynes. All the synthesized triazoles were characterized by IR, 1 H, 13 C, 19 F NMR, and HRMS. They were investigated as inhibitors of Src kinase. A series of 1,4-disubstituted 1,2,3-triazole compounds were synthesized through an easy, convenient Cu(I) catalyzed click reaction and evaluated for their Src kinase activity. Compound 3m exhibited significant inhibitory activity against Src Kinase. These results, along with molecular design docking observations, are significant evidence to demonstrate the compound 3m could be optimized as a potential Src kinase inhibitor in further studies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Activation of the LRR Receptor-Like Kinase PSY1R Requires Transphosphorylation of Residues in the Activation Loop

    Directory of Open Access Journals (Sweden)

    Christian B. Oehlenschlæger

    2017-11-01

    Full Text Available PSY1R is a leucine-rich repeat (LRR receptor-like kinase (RLK previously shown to act as receptor for the plant peptide hormone PSY1 (peptide containing sulfated tyrosine 1 and to regulate cell expansion. PSY1R phosphorylates and thereby regulates the activity of plasma membrane-localized H+-ATPases. While this mechanism has been studied in detail, little is known about how PSY1R itself is activated. Here we studied the activation mechanism of PSY1R. We show that full-length PSY1R interacts with members of the SERK co-receptor family in planta. We identified seven in vitro autophosphorylation sites on serine and threonine residues within the kinase domain of PSY1R using mass spectrometry. We furthermore show that PSY1R autophosphorylation occurs in trans and that the initia