WorldWideScience

Sample records for aspartate aminotransferases

  1. Effect of Orthodontic Tooth Movement on Salivary Aspartate Aminotransferase Activity

    Directory of Open Access Journals (Sweden)

    Steiven Adhitya

    2013-07-01

    Full Text Available 72 1024x768 Aspartate aminotransferase is one of biological indicator in gingival crevicular fluid (CGF. Force orthodontic application could increase activity of aspartate aminotransferase in CGF. However, the increase activity of aspartate aminotransferase in saliva due to orthodontic force and its correlation between aspartate aminotransferase activity and tooth movement remains unclear. Objectives: To evaluate application orthodontic force on the aspartate aminotransferase activity in saliva based on the duration of force and finding correlation between tooth movement and aspartate aminotransferase activity. Methods: Twenty saliva samples collected before extraction of first premolar, at the time of force application for canine retraction and after force application. The canines retraction used 100 grams of interrupted force (module chain for thirty days. The collection of saliva and the measurement of tooth movement were carried out 1 day, 7 days, 14 days, 21 days, and 28 days after force application. The measurement of aspartate aminotransferase activity in saliva was done using spectrophotometer. Results: Application of orthodontic force influences the salivary aspartate aminotransferase activity (F=25.290, p=0.000. Furthermore, tooth movement correlated with aspartate aminotransferase activity (F=0.429, p=0.000. Conclusion: Aspartate aminotransferase activity could be used as tooth movement indicator that related to the duration of force application.DOI : 10.14693/jdi.v20i1.128

  2. Radioimmunoassay of aspartate aminotransferase isoenzymes in human serum

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.Y.; Niblock, A.E.; Henderson, A.R.

    1984-08-01

    A description is given of the development of a sensitive, specific radioimmunoassay for the cytoplasmic and mitochondrial isoenzymes of human aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase; EC 2.6.1.1). Isoenzymes from human heart tissue were purified to homogeneity and used to raise high-titer antisera in rabbits. The antisera were partly purified by selective column chromatography. The Bolton-Hunter reagent was used to radioiodinate the isoenzymes. The assay requires 100 microL of serum, includes a solid-phase second-antibody separation, and can be completed in less than 3 h. There was no cross reactivity between the two isoenzymes. As little as 5 micrograms (50 pmol) of each aspartate aminotransferase can be measured per liter of serum.

  3. Aspartate Aminotransferase - Bridging Carbohydrate and Energy Metabolism in Plasmodium Falciparum

    NARCIS (Netherlands)

    Wrenger, Carsten; Mueller, Ingrid B.; Silber, Ariel M.; Jordanova, Rositsa; Lamzin, Victor S.; Groves, Matthew R.

    2012-01-01

    In this mini-review we briefly examine and summarize evidence on the role of the plasmodial aspartate aminotransferase (AspAT) of the malarial parasite. Recent data have provided information on the products of the purine salvage pathway as well as the glycolytic and oxidative phosphorylation pathway

  4. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  5. Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Robinson, H.; Cai, T.; Tagle, D. A.; Li, J.

    2011-10-01

    Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have KAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  6. Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2011-10-01

    Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have KAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  7. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    Science.gov (United States)

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  8. Serum γ-glutamyltransferase, alanine aminotransferase, and aspartate aminotransferase activity in Iranian healthy blood donor men

    Institute of Scientific and Technical Information of China (English)

    Hossein Khedmat; Nasrin Zarei; Farahnaz Fallahian; Hassan Abolghasemi; Bashir Hajibeigi; Zohre Attarchi; Farshid Alaeddini; Mohammad Taghi Holisaz; Masoumeh Pourali; Shahin Sharifi

    2007-01-01

    AIM: To determine serum γ-glutamyltransferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity, and to assess their correlation with demographic and clinical findings in healthy blood donors.METHODS: This cross-sectional study was performed in 934 male blood donors, aged 18 to 68 years, who consecutively attended Tehran blood transfusion service in 2006. All participants were seronegative for HBV or HCV infections, non alcohol users, and all underwent a standard interview and anthropometric tests. Clinical and biochemical parameters including AST, ALT, and GGT activities were determined. Patients taking drugs known to cause hepatic fat deposition were excluded. For AST, ALT, and GGT variables, we used 33.33 and 66.66 percentiles, so that each of them was divided into three tertiles.RESULTS: Mean AST, ALT, and GGT activities were 25.26 ± 12.58 U/L (normal range 5-35 U/L), 33.13 ± 22.98 (normal range 5-35 U/L), and 25.11 ± 18.32 (normal range 6-37 U/L), respectively. By univariate analyses, there were significant associations between increasing AST, ALT, or GGT tertiles and age, body weight, body mass index, and waist and hip circumferences (P < 0.05). By multiple linear regression analyses, ALT was found to be positively correlated with dyslipidemia (B = 6.988, P = 0.038), whereas ALT and AST were negatively correlated with age. AST, ALT, and GGT levels had positive correlation with family history of liver disease (B = 15.763, P < 0.001), (B = 32.345, P < 0.001), (B =24.415, P < 0.001), respectively.CONCLUSION: Although we did not determine the cutoffs of the upper normal limits for AST, ALT, and GGT levels, we would suggest screening asymptomatic patients with dyslipidemia and also subjects with a family history of liver disease.

  9. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O;

    1981-01-01

    Serum activity of gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase were determined in 316 patients attending an out-patients clinic for treatment of alcoholism. The activity of gamma-glutamyltransferase was raised in 34% and that of aspartate aminotransferase and alk...

  10. The effect of ammonium ions on the activity of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase in Cucumis sativus L. seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubiak-Dobosz

    2014-02-01

    Full Text Available Changes in the activity of glutamate dehydrogenase (GDH, alanine aminotransferase (GPT and aspartate aminotransferase (GOT were studied in various organs of Cucumis sativus L. seedlings in relation to the uptake of mineral nitrogen (in form of N03- or NH4+ from the medium. Activity of GDH, GPT, and GOT was higher in young leaves and roots of cucumber seedlings if the plants developed- in an ammonium medium. No similar changes of aminotransferases activity were noted in the cotyledons. Factors affecting varying effect of ammonium ions upon GPT and GOT activity are discussed for particular organs of cucumber seedlings.

  11. Structures of aspartate aminotransferases from Trypanosoma brucei, Leishmania major and Giardia lamblia.

    Science.gov (United States)

    Abendroth, Jan; Choi, Ryan; Wall, Abigail; Clifton, Matthew C; Lukacs, Christine M; Staker, Bart L; Van Voorhis, Wesley; Myler, Peter; Lorimer, Don D; Edwards, Thomas E

    2015-05-01

    The structures of three aspartate aminotransferases (AATs) from eukaryotic pathogens were solved within the Seattle Structural Genomics Center for Infectious Disease (SSGCID). Both the open and closed conformations of AAT were observed. Pyridoxal phosphate was bound to the active site via a Schiff base to a conserved lysine. An active-site mutant showed that Trypanosoma brucei AAT still binds pyridoxal phosphate even in the absence of the tethering lysine. The structures highlight the challenges for the structure-based design of inhibitors targeting the active site, while showing options for inhibitor design targeting the N-terminal arm.

  12. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain.

    Science.gov (United States)

    Guidetti, Paolo; Amori, Laura; Sapko, Michael T; Okuno, Etsuo; Schwarcz, Robert

    2007-07-01

    The tryptophan metabolite kynurenic acid (KYNA), which is produced enzymatically by the irreversible transamination of l-kynurenine, is an antagonist of alpha7 nicotinic and NMDA receptors and may thus modulate cholinergic and glutamatergic neurotransmission. Two kynurenine aminotransferases (KAT I and II) are currently considered the major biosynthetic enzymes of KYNA in the brain. In this study, we report the existence of a third enzyme displaying KAT activity in the mammalian brain. The novel KAT had a pH optimum of 8.0 and a low capacity to transaminate glutamine or alpha-aminoadipate (the classic substrates of KAT I and KAT II, respectively). The enzyme was inhibited by aspartate, glutamate, and quisqualate but was insensitive to blockade by glutamine or anti-KAT II antibodies. After purification to homogeneity, the protein was sequenced and the enzyme was identified as mitochondrial aspartate aminotransferase (mitAAT). Finally, the relative contributions of KAT I, KAT II, and mitAAT to total KAT activity were determined in mouse, rat, and human brain at physiological pH using anti-mitAAT antibodies. KAT II was most abundant in rat and human brain, while mitAAT played the major role in mouse brain. It remains to be seen if mitAAT participates in cerebral KYNA synthesis under physiological and/or pathological conditions in vivo.

  13. Pseudolinkage of the duplicate loci for supernatant aspartate aminotransferase in brook trout, Salvelinus fontinalis.

    Science.gov (United States)

    Wright, J E; May, B; Stoneking, M; Lee, G M

    1980-01-01

    Electrophoretic variation involving three alleles is described for the duplicated loci for supernatant aspartate aminotransferase (AAT-1,2), from muscle extracts of brook trout. Both loci exhibit largely disomic inheritance. Exceptional progeny types are proposed to be the result of a form of tetrasomic inheritance. Nonrandom segregation was found among the progeny of males doubly heterozygous for AAT markers; where so-called linkage phase was known, this nonrandom assortment was shown to be pseudolinkage (78.9 percent recombination). Analyses of joint segregation of triply heterozygous males for the AAT-(1,2) loci and for the single alpha glycerophosphate dehydrogenase locus (AGP-1) revealed true linkage of AGP-1 with one AAT locus (mean r = 11 percent), but pseudolinkage with the other AAT locus (r = 74 percent). Intraindividual variation for homoeologous multivalent pairing of two acrocentric with two metacentric chromosomes in males, but with bivalent pairing in females, is proposed to account for pseudolinkage and for the tetrasomically inherited types.

  14. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Silvia Sookoian; Carlos J Pirola

    2012-01-01

    Although new research technologies are constantly used to look either for genes or biomarkers in the prediction of metabolic syndrome (MS),the pathogenesis and pathophysiology of this complex disease remains a major challenge.Interestingly,Cheng et al recently investigated possible pathways underlying MS by high-throughput metabolite profiling in two large and well characterized community-based cohorts.The authors explored by liquid chromatography and mass spectrometry the plasma concentrations of 45distinct metabolites and examined their relation to cardiometabolic risk,and observed that metabolic risk factors such as obesity,insulin resistance (IR),high blood pressure,and dyslipidemia were associated with several metabolites,including branched-chain amino acids,other hydrophobic amino acids,tryptophan breakdown products,and nucleotide metabolites.In addition,the authors found a significant association of IR traits with glutamine,glutamate and the glutamineto-glutamate ratio.These data provide new insight into the pathogenesis of MS-associated phenotypes and introduce a crucial role of glutamine-cycling pathway as prominently involved in the development of metabolic risk.We consider that the hypothesis about the role of abnormal glutamate metabolism in the pathogenesis of the MS is certainly challenging and suggests the critical role of the liver in the global metabolic modulation as glutamate metabolism is linked with aminotransferase reactions.We discuss here the critical role of the "liver metabolism" in the pathogenesis of the MS and IR,and postulate that before fatty liver develops,abnormal levels of liver enzymes,such as alanine and aspartate aminotransferases might reflect high levels of hepatic transamination of amino acids in the liver.

  15. Estimation of gingival crevicular fluid aspartate aminotransferase levels in periodontal health and disease

    Directory of Open Access Journals (Sweden)

    Priti B Patil

    2011-01-01

    Full Text Available Background: Various enzymes have been assessed as biochemical markers and aspartate aminotransferase (AST is one such marker that has received considerable attention recently. Analysis of gingival crevicular fluid (GCF has been pursued as a means of identifying the sites undergoing active disease. A problem central to periodontology today is the inability to detect actively deteriorating sites and highly susceptible patients other than by longitudinal observations of attachment. Hence, AST levels from samples of GCF can be taken as an indication for active periodontal tissue destruction. Aim: To estimate the levels of AST in the GCF in periodontal health and disease. Materials and Methods: This study was an in vivo, case control, and clinico-biochemical assay. Eighty samples were selected which were divided into four groups of 20 patients each based on Russell′s Periodontal Index. Statistical analysis: The values obtained for AST level in the different groups were subjected to Student′s " t" test. Results: The mean of AST level showed an increase from Group I to Group IV. These values ran parallel with the values of clinical index, i.e. more severe the inflammation, higher the index score and higher was the AST level. Conclusions: It was concluded that as the severity of inflammation increases, there is a significant increase in the AST levels suggesting that there is a direct relationship between the AST levels in the GCF and periodontal destruction.

  16. Infrared spectroscopic study of a phosphoryl-containing enzyme: cytosolic aspartate aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ruiz, J.M.; Martinez-Carrion, M.

    1986-05-01

    A Fourier Transform Infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out in order to determine the ionization state of the phosphate group of the bound pyridoxal phosphate. The band arising from the symmetric stretching of the dianionic phosphate monoester has been identified in holoenzyme spectra in solution. Its integrated intensity does not change with pH in the range 5.3-8.6, the value being close to the integrated intensity of the same band in free pyridoxal phosphate in solution at pH 8-9. On the other hand, for free cofactor, the integrated intensity changes with pH according to the pK expected for a 5'-phosphate group in solution. It appears, therefore, that the 5'-phosphate group of the bound cofactor remains mostly dianionic in the pH range 5.3-8.6, and a small /sup 31/P-NMR chemiCal shift/pH titration dependent curve observed in holoenzyme solutions seems due to the phosphate group in the protein, likely the Lys 258-pyridoxal phosphate Schiff's base. These results also show Fourier Transform Infrared Spectroscopy as a valuable technique in the study of phosphoryl-containing proteins.

  17. Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.

    Science.gov (United States)

    Kish, S J; Dixon, L M; Sherwin, A L

    1988-01-01

    Increased concentration of the excitatory neurotransmitter aspartic acid in actively spiking human epileptic cerebral cortex was recently described. In order to further characterise changes in the aspartergic system in epileptic brain, the behaviour of aspartic acid aminotransferase (AAT), a key enzyme involved in aspartic acid metabolism has now been examined. Electrocorticography performed during surgery was employed to identify cortical epileptic spike foci in 16 patients undergoing temporal lobectomy for intractable seizures. Patients with spontaneously spiking lateral temporal cortex (n = 8) were compared with a non-spiking control group (n = 8) of patients in whom the epileptic lesions were confined to the hippocampus sparing the temporal convexity. Mean activity of AAT in spiking cortex was significantly elevated by 16-18%, with aspartic acid concentration increased by 28%. Possible explanations for the enhanced AAT activity include increased proliferation of cortical AAT-containing astrocytes at the spiking focus and/or a generalised increase in neuronal or extraneuronal metabolism consequent to the ongoing epileptic discharge. It is suggested that the data provide additional support for a disturbance of central excitatory aspartic acid mechanisms in human epileptic brain. PMID:2898010

  18. Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia)

    Energy Technology Data Exchange (ETDEWEB)

    Blasco, J.; Puppo, J. [Instituto de Ciencias Marinas de Andalucia, Campus Univ. Rio S. Pedro, 11510 Puerto Real, Cadiz (Spain)

    1999-02-01

    The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200-600 {mu}g{center_dot}l{sup -1}), Pb (350-700 {mu}g{center_dot}l{sup -1}) and Cu (10-20 {mu}g{center_dot}l{sup -1}) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 {mu}g{center_dot}l{sup -1}, 7 days) and copper (20 {mu}g{center_dot}l{sup -1}, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 {mu}g{center_dot}l{sup -1}. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Impact of elevated aspartate and alanine aminotransferase on metabolic syndrome and its components among adult people living in Ningxia, China

    Institute of Scientific and Technical Information of China (English)

    Kun-Peng He; Chuan Zhao; Yan Qiang; He-Rong Liu; Nan Chen; Xiu-Juan Tao; Li-Li Chen; Hui Song

    2015-01-01

    Objective: Metabolic syndrome (MS) is a combination of medical disorders that increase the risk for cardiovascular disease and diabetes mellitus. It suggests an association between an elevated serum aminotransferase level and MS. Little data show the relationship between the levels of serum aminotransferase and the incidence of MS in Ningxia, China. Methods: A total of 5415 subjects who received medical health checkups from 2007 to 2009 were enrolled in the study. The participants were interviewed by trained health workers under a structured questionnaire. MS was defined according to the modified ATPIII criteria for Asian Americans by the American Heart Association (AHA-ATP III). Results: The prevalence of elevated aspartate aminotransferase (AST) and ALT (>40 U/L) were 7.1%and 22.2%in males, and 2.1%and 4.8%in females respectively. The prevalence of MS was 32.1%in males and 15.4%in females. The components of MS were significantly more in the group with elevated aminotransferase levels than in the group with normal amino-transferase levels. The odds ratios (95%CI) for elevated AST were 1.90 (1.49, 2.42), 2.59 (2.01, 3.39), 1.68 (1.32, 2.15), and 1.81 (1.36, 2.42) in the adults with abdominal obesity, high serum triglycerides levels, high blood pressure, and high plasma glucose levels respectively. After adjustment for age, the odds ratios (95%CI) for elevated ALT were 3.08 (2.63, 3.61), 4.30 (3.64, 5.08), 1.26 (1.08, 1.48), 2.16 (1.93, 2.65) and 2.38 (1.96, 2.87) in adults with abdominal obesity, high serum tri-glycerides levels, low serum high-density lipoproteincholesterol (HDL-C), high blood pressure, and high plasma glucose levels respectively. The odds ratios (95%CI) for elevated AST were 1.67 (1.06, 2.63), 2.28 (1.46, 3.63), 2.59 (1.59, 4.21) and for elevated ALT 2.02 (1.50, 2.73), 2.68 (1.96, 3.65), 3.94 (2.86, 5.43) for the subjects with 1, 2, and ?3 risk factors after adjustment for age, gender, and BMI. Conclusion: The serum aminotransferase levels were

  20. Comparative study of dynamic structure of pig and chicken aspartate aminotransferases by measuring the rotational correlation time.

    Science.gov (United States)

    Timofeev, V P; Dudich, I V; Volkenstein, M V

    1980-01-01

    The rotational correlation time of two homologous cytoplasmic aspartate aminotransferase molecules isolated from pig and chicken hearts was obtained by spin-labeling technique. The maleimide and iodoacetamide spin-labels modifying external SH-groups of a protein were used. In the interpretation of ESR spectra a rotational motion of nitroxide group relative to the protein molecule was taken into account. To determine the macromolecule rotational correlation time two methods of the immobilization of a protein molecule were used: 1) by means of increasing protein solution viscosity and 2) by fixation of the protein molecule on adsorbent. From comparison of experimental and theoretical values of rotational correlation time it was conclude that the both enzymes exhibits an intramolecular flexibility.

  1. An easy method for diagnosing macro-aspartate aminotransferase: a case series.

    Science.gov (United States)

    Beşer, Omer Faruk; Laçinel, Sibel; Gülcü, Didem; Kutlu, Tufan; Cullu Çokuğraş, Fügen; Erkan, Tülay

    2014-10-01

    Macro-aspartate transaminase (macro-AST) must be considered when the aspartate transaminase (AST) level is chronically high without any liver, cardiac, or muscle disease. Many specialized laboratory techniques have been recommended for diagnosing macro-AST, including the polyethylene glycol immune precipitate technique, which is simple. This study presents a considerably easier method based on the studies of Davidson and Watson and Castiella et al. Our method is based on the decrease in the plasma AST level after storage of the macroenzyme at 2-8 °C for 5 days, and has the advantages of low cost, reliability, and practicality at any health center. In our eight cases of macro-AST, the AST activity at day 6 had decreased by more than 50% from day 1. This method is practical for primary healthcare facilities because of its easy application and accurate results, and obviated the need for unnecessary tests after diagnosis.

  2. Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain.

    Science.gov (United States)

    Najlerahim, A; Harrison, P J; Barton, A J; Heffernan, J; Pearson, R C

    1990-05-01

    In situ hybridization histochemistry (ISHH) using synthetic oligonucleotide probes has been used to identify cells containing the mRNAs coding for glutaminase (GluT), aspartate aminotransferase (AspT) and glutamic acid decarboxylase (GAD). The distribution of GAD mRNA confirms previous descriptions and matches the distribution of GAD detected using specific antibodies. AspT mRNA is widely distributed in the brain, but is present at high levels in GABAergic neuronal populations, some that may be glutamatergic, and in a subset of neurons which do not contain significant levels of either GAD or GluT mRNA. Particularly prominent are the neurons of the magnocellular division of the red nucleus, the large cells in the deep cerebellar nuclei and the vestibular nuclei and neurons of the lateral superior olivary nucleus. GluT mRNA does not appear to be present at high levels in all GAD-containing neurons, but is seen prominently in many neuronal populations that may use glutamate as a neurotransmitter, such as neocortical and hippocampal pyramidal cells, the granule cells of the cerebellum and neurons of the dentate gyrus of the hippocampus. The heaviest labelling of GluT mRNA is seen in the lateral reticular nucleus of the medulla. ISHH using probes directed against the mRNAs encoding these enzymes may be an important technique for identifying glutamate and aspartate using neuronal populations and for examining their regulation in a variety of experimental and pathological circumstances.

  3. Hepatitis A virus genotype IA-infected patient with marked elevation of aspartate aminotransferase levels.

    Science.gov (United States)

    Miura, Yoshifumi; Kanda, Tatsuo; Yasui, Shin; Takahashi, Koji; Haga, Yuki; Sasaki, Reina; Nakamura, Masato; Wu, Shuang; Nakamoto, Shingo; Arai, Makoto; Nishizawa, Tsutomu; Okamoto, Hiroaki; Yokosuka, Osamu

    2017-02-01

    We describe a case of acute liver failure (ALF) without hepatic encephalopathy with marked elevation of aminotransferase due to hepatitis A, according to the revised Japanese criteria of ALF. This liver biopsy of the patient showed compatible to acute viral hepatitis and she immediately recovered without intensive care. She had no comorbid disorders. Of interest, phylogenetic tree analysis using almost complete genomes of hepatitis A virus (HAV) demonstrated that the HAV isolate from her belonged to the HAV subgenotype IA strain and was similar to the HAJFF-Kan12 strain (99% nucleotide identity) or FH1 strain (98% nucleotide identity), which is associated with severe or fulminant hepatitis A. Careful interpretation of the association between HAV genome variations and severity of hepatitis A is needed and the mechanism of the severe hepatitis should be explored.

  4. Characterization of five putative aspartate aminotransferase genes in the N2-fixing heterocystous cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Xu, Xinyi; Gu, Liping; He, Ping; Zhou, Ruanbao

    2015-06-01

    Aspartate and glutamate are two key amino acids used in biosynthesis of many amino acids that play vital role in cellular metabolism. Aspartate aminotransferases (AspATs) are required for channelling nitrogen (N(2)) between Glu and Asp in all life forms. Biochemical and genetic characterization of AspATs have been lacking in N(2)-fixing cyanobacteria. In this report, five putative AspAT genes (alr1039, all2340, alr2765, all4327 and alr4853) were identified in the N(2)-fixing heterocystous cyanobacterium Anabaena sp. PCC 7120. Five recombinant C-terminal hexahistidine-tagged AspATs (AspAT-H(6)) were overexpressed in Escherichia coli and purified to homogeneity. Biochemical analysis demonstrated that these five putative AspATs have authentic AspAT activity in vitro using aspartate as an amino donor. However, the enzymic activities of the five AspATs differed in vitro. Alr4853-H(6) showed the highest AspAT activity, while the enzymic activity for the other four AspATs ranged from 6.5 to 53.7 % activity compared to Alr4853 (100 %). Genetic characterization of the five AspAT genes was also performed by inactivating each individual gene. All of the five AspAT knockout mutants exhibited reduced diazotrophic growth, and alr4853 was further identified to be a Fox gene (requiring fixed N(2) for growth in the presence of oxygen). Four out of five P(aspAT)-gfp transcriptional fusions were constitutively expressed in both diazotrophic and nitrate-dependent growth conditions. Quantitative reverse transcriptase PCR showed that alr4853 expression was increased by 2.3-fold after 24 h of N(2) deprivation. Taken together, these findings add to our understanding of the role of AspATs in N(2)-fixing within heterocystous cyanobacteria.

  5. Aspartate aminotransferase-immunoglobulin complexes in patients with chronic liver disease

    Institute of Scientific and Technical Information of China (English)

    Masahiko Tameda; Katsuya Shiraki; Kinue Ooi; Koujirou Takase; Yoshitane Kosaka; Tsutomu Nobori; Yukihiko Tameda

    2005-01-01

    AIM: To determine the complex of AST and immunoglobulin and to investigate its clinical significance in patients with liver disease.METHODS: The complex of AST and immunoglobulin was determined by encounter immunoelectrophoresis and its clinical significance was investigated in 128 patients with liver disease.RESULTS: AST was bound to immunoglobulin of antiimmunoglobulin A (IgA) class, but any binding to antiimmunoglobulin G and anti-immunoglobulin M classes was not observed. Although the incidence of ASTimmunoglobulin complex was 41.8% in chronic hepatitis (CH), the incidences in liver cirrhosis and hepatocellular carcinoma were 62.2 and 90.0%, respectively. In alcoholic liver disease with high level of serum IgA, the incidence of the complex was 66.7%, which was higher than that in CH. The ratio of binding to lambda-chain of IgA was higher than that to kappa-chain of IgA. The serum level of IgA and the ratio of AST/alanine aminotransferase (ALT) were significantly higher in patients with AST-IgA complex than in those without complex.CONCLUSION: These results suggest that AST-IgA complex in patients with progressive liver diseases and alcoholic liver injury can lead to elevation of the ratio of AST/ALT.

  6. Associations of White Blood Cell Count,Alanine Aminotransferase,and Aspartate Aminotransferase in the First Trimester withGestational Diabetes Mellitus.

    Science.gov (United States)

    2016-06-10

    Objective To explore the associations of white blood cell (WBC) count,alanine aminotransferase (ALT),and aspartate aminotransferase(AST) in the first trimester of pregnancy with gestational diabetes mellitus (GDM). Methods Totally 725 GDM women and 935 women who remained euglycemic throughout pregnancy were enrolled in this study. Pre-pregnancy weight/height were recorded. WBC,ALT,and AST levels were detected between 8 and 12 weeks of pregnancy.At 24 to 28 weeks of pregnancy,the glucose and insulin levels were measured. The WBC,ALT,and AST levels were compared between two groups,and the associations of WBC,ALT,and AST levels with the blood glucose and insulin levels were retrospectively analyzed. Meanwhile,the potential associations of those factors with the occurrence of GDM were analzyed. Results WBC count [9.41(8.15,10.84)?10(9)/L vs. 9.04 (7.64,10.37)?10(9)/L,P=1.0?10(-5)] and ALT levels [18.00(12.00,30.00)U/L vs. 16.00 (11.00,26.00)U/L,P=0.004] in the first trimester of pregnancy were significantly increased in GDM subjects than in normal glucose tolerance(NGT)subjects;however,the AST level showed no significant difference between these two groups [41.00 (26.00,43.00)U/L vs. 41.00 (23.00,43.00)U/L,P=0.588]. Logistic regression analysis illustrated that elevated WBC count was an independent risk factor for GDM after adjustment for age,pre-pregnancy body mass index,blood pressure,and family history of diabetes(OR=1.119,P=0.001). The ROC curve revealed that threshold of WBC count was 7.965?10(9)/L(AUC=0.566,P=1?10(-5)),which had a sensitivity of 79.4% and a specificity of 31.3%. Multivariate linear regression analysis showed that homeostasis model assessment of insulin resistance was positively correlated with WBC count(B=0.051,P=0.022,R(2)=0.083);1-hour blood glucose after oral 50 grams of sugar (B=0.044,P=0.001,R(2)=0.044) and fasting plasma true insulin(B=0.214,P=0.032,R(2)=0.066) were positively correlated with WBC count;1-hour true insulin after 100 grams

  7. The efficacy of aspartate aminotransferase-toplatelet ratio index for assessing hepatic fibrosis in childhood nonalcoholic steatohepatitis for medical practice

    Directory of Open Access Journals (Sweden)

    Earl Kim

    2013-01-01

    Full Text Available Purpose: Childhood obesity is associated with nonalcoholic fatty liver disease (NAFLD, and it has become one of the most common causes of childhood chronic liver diseases which significant as a cause of liver related mortality and morbidity in children in the United States. The development of simpler and easier clinical indices for medical practice is needed to identify advanced hepatic fibrosis in childhood NAFLD instead of invasive method like liver biopsy. FibroScan and aspartate aminotransferase (AST-to-platelet ratio index (APRI have been proposed as a simple and noninvasive predictor to evaluate hepatic fibrosis in several liver diseases. APRI could be a good alternative to detect pathologic change in childhood NAFLD. The purpose of this study is to validate the efficacy of APRI for assessing hepatic fibrosis in childhood NAFLD based on FibroScan. Methods: This study included 23 children with NAFLD who underwent FibroScan. Clinical, laboratory and radiological evaluation including APRI was performed. To confirm the result of this study, 6 patients received liver biopsy. Results: Factors associated with hepatic fibrosis (stiffness measurement &gt;5.9 kPa Fibroscan were triglyceride, AST, alanine aminotransferase, platelet count, APRI and collagen IV. In multivariate analysis, APRI were correlated with hepatic fibrosis (&gt;5.9 kPa. In receiver operating characteristics curve, APRI of meaningful fibrosis (cutoff value, 0.4669; area under the receiver operating characteristics, 0.875 presented sensitivity of 94%, specificity of 66%, positive predictive value of 94%, and negative predictive value of 64%. Conclusion: APRI might be a noninvasive, simple, and readily available method for medical practice to predict hepatic fibrosis of childhood NAFLD.

  8. Relationship of creatine kinase, aspartate aminotransferase, lactate dehydrogenase, and proteinuria to cardiomyopathy in the owl monkey (Aotus vociferans)

    Energy Technology Data Exchange (ETDEWEB)

    Gozalo, Alfonso S.; Chavera, Alfonso; Montoya, Enrique J.; Takano, Juan; Weller, Richard E.

    2008-02-01

    The purpose of this study was to determine serum reference values for crea- tine kinase (CK), aspartate aminotransferase (AST), and lactate dehydroge- nase (LDH) in captive-born and wild-caught owl monkeys to assess their usefulness for diagnosing myocardial disease. Urine samples were also collected and semi-quantitative tests performed. There was no statistically significant difference between CK, AST, and LDH when comparing both groups. However, when comparing monkeys with proteinuria to those without proteinuria, a statistically significant difference in CK value was observed (P = 0.021). In addition, the CK/AST ratio revealed that 29% of the animals included in this study had values suggesting cardiac infarction. Grossly, cardiac concentric hypertrophy of the left ventricle and small, pitted kidneys were the most common findings. Microscopically, myocardial fibrosis, contraction band necrosis, hypertrophy and hyperplasia of coronary arteries, medium-sized renal arteries, and afferent glomerular arteriolae were the most significant lesions, along with increased mesangial matrix and hypercellularity of glomeruli, Bowman’s capsule, and peritubular space fibroplasia. These findings suggest that CK, AST, and LDH along with urinalysis provide a reliable method for diagnosing cardiomyopathies in the owl monkey. In addition, CK/AST ratio, proteinuria, and the observed histological and ultrastructural changes suggest that Aotus vociferans suffer from arterial hypertension and chronic myocardial infarction.

  9. Aspartate aminotransferase-to-platelet ratio index for fibrosis and cirrhosis prediction in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Roberto Gomes da Silva Junior

    2008-02-01

    Full Text Available In chronic hepatitis C (CHC, liver biopsy is the gold standard method for assessing liver histology, however it is invasive and can have complications. Non-invasive markers have been proposed and aspartate aminotransferase (AST-to-platelet ratio index (APRI has been shown as an easy and inexpensive marker of liver fibrosis. This study evaluated the diagnostic performance of APRI for significant fibrosis and cirrhosis prediction in CHC patients. This study included treatment-naive CHC patients who had undergone liver biopsy from January 2000 to August 2006. All histological slides were reviewed according to the METAVIR system. APRI was calculated based on laboratory results performed within four months from the biopsy. Twenty-eight (56% patients had significant fibrosis (F2-F4 and 13 (26% had cirrhosis (F4. The area under ROC curves of APRI for predicting significant fibrosis and cirrhosis were 0.92 (0.83-1.00 and 0.92 (0.85-1.00, respectively. Using cut-off values recommended by prior studies, significant fibrosis could be identified, in accordance with liver biopsy, in 44% and cirrhosis in 66% of patients. APRI could identify significant fibrosis and cirrhosis at a high degree of accuracy in studied patients.

  10. In situ detection of myocardial infarction in pig by measurements of aspartate aminotransferase (ASAT) activity in the interstitial fluid.

    Science.gov (United States)

    Kennergren, C; Nyström, B; Nyström, U; Berglin, E; Larsson, G; Mantovani, V; Lönnroth, P; Hamberger, A

    1997-01-01

    Microdialysis probes permeable to large molecules (m.w. cut-off > 200 kD) were introduced into the myocardium of anaesthetized pigs in order to evaluate their potential for early detection of myocardial ischaemia and enzyme markers for infarction. The left anterior descending coronary artery was occluded for 30 min and the myocardium was reperfused for 3 h. The concentrations of aspartate aminotransferase (ASAT), lactate, glucose and selected free amino acids were measured. The levels in the interstitium of ischaemic and non-ischaemic myocardium were compared with those in plasma from the coronary sinus as well as from a peripheral vein. Twelve probes were inserted in six pigs and withdrawn after 8-72 hours of sampling. No complications occurred. Simultaneous 100% increase of ASAT and lactate was found in myocardial dialysates after 30 min of ischaemia. ASAT activity remained at that level until the end of reperfusion. The plasma peak ASAT level was not attained until after 3 h. Glutamate was the only amino acid which increased significantly in the myocardial interstitium during ischaemia, peaking after 30 min of reperfusion. Dialysates from the unaffected myocardium showed no effects on lactate, ASAT or glutamate. The use of myocardial microdialysis for pre- and postoperative recordings in man is discussed.

  11. Effect of mammals’ excretory function on aspartate aminotransferase activity in Glechoma hederacea leaves in conditions of Cd pollution

    Directory of Open Access Journals (Sweden)

    O. M. Vasilyuk

    2014-07-01

    Full Text Available The paper includes analysis of research of Cd impact on the activity of the enzyme of aspartate aminotransferase (AST nitrogen metabolism and the content of water-soluble protein fraction (albumin in Glechoma hederacea L. leaves, which dominated in the research area (in natural floodplain oak forest with Stellaria holostea L.. Cd was introduced in the form of salts of Cd(NO32 in the range of concentrations of: 0.25, 1.25, 2.5 g/m2, equivalent to the inclusion of Cd in 1, 5, 10 doses of MAC. Increase (P < 0.05 in the activity of AST 2.6–3.0 times (with adding Cd salts at a dose of 1 and 5 МAС and albumin content by 37% (with adding Cd salts at a dose of 10 МAС compared to control (the area without Cd pollution and excretory activity of mammals was shown. Using of excreta of some representatives of mammals (for example, Capreolus capreolus L. contributed to reduction of Cd toxic effects and restoring of the functional metabolic activity of AST by 23% (with Cd 1 МAС and by 34% (Cd 5 МAС. It is the evidence of protective function of mammals and their normalization effect at the above concentrations of Cd. Whereas the adding of Cd salts at a dose of 10 МAС led to 3 times’ inhibition of AST activity, the toxic effect of metal by excretory function of mammals was not reduced. Observations revealed the albumin content normalization by 22% in the presence of Cd 1MAC respectively (with the introduction of C. capreolus excreta and to the control level (the area without Cd pollution and excretory activity of mammals with the excreta of Sus scrofa L. in the setting of Cd 10 MAC. It proves the need to use the different mammal species for integrated and comprehensive normalization of ecosystems under conditions of uncontrolled anthropogenic pollution.

  12. 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake.

    OpenAIRE

    1995-01-01

    To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate co...

  13. root uv-b sensitive Mutants Are Suppressed by Specific Mutations in ASPARTATE AMINOTRANSFERASE2 and by Exogenous Vitamin B6

    Institute of Scientific and Technical Information of China (English)

    Colin D. Leasure; Hong-Yun Tong; Xue-Wen Hou; Amy Shelton; Mike Minton; Raymond Esquerra; Sanja Roje; Hanjo Hellmann; Zheng-Hui He

    2011-01-01

    Vitamin B6 (vitB6)serves as an essential cofactor for more than 140 enzymes. Pyridoxal 5'-phosphate (PLP),active cofactor form of vitB6, can be photolytically destroyed by trace amounts of ultraviolet-B (UV-B). How sun-exposed organisms cope with PLP photosensitivity and modulate vitB6 homeostasis is currently unknown. We previously reported on two Arabidopsis mutants, rusl and rus2, that are hypersensitive to trace amounts of UV-B light. We performed mu-tagenesis screens for second-site suppressors of the rus mutant phenotype and identified mutations in the ASPARTATE AMINOTRANSFERASE2 (ASP2)gene. ASP2 encodes for cytosolic aspartate aminotransferase (AAT), a PLP-dependent en-zyme that plays a key role in carbon and nitrogen metabolism. Genetic analyses have shown that specific amino acid substitutions in ASP2 override the phenotypes of rusl and rus2 single mutants as well as rusl rus2 double mutant. These substitutions, all shown to reside at specific positions in the PLP-binding pocket, resulted in no PLP binding. Additional asp2 mutants that abolish AAT enzymatic activity, but which alter amino acids outside of the PLP-binding pocket, fail to suppress the rus phenotype. Furthermore, exogenously adding vitB6 in growth media can rescue both rusl and rus2. Our data suggest that AAT plays a role in vitB6 homeostasis in Arabidopsis.

  14. Corticosterone, cortisol, triglycerides, aspartate aminotransferase and uric acid plasma concentrations during foie gras production in male mule ducks (Anas platyrhynchos × Cairina moschata).

    Science.gov (United States)

    Flament, A; Delleur, V; Poulipoulis, A; Marlier, D

    2012-01-01

    1. Corticosterone, cortisol, triglycerides, aspartate aminotransferase (AST) and uric acid (UA) plasma concentration were measured at 8 (7 days after group housing), 12 (after 7 days of force feeding) and 13 weeks of age (at slaughter after 12 days of force feeding), and 45 min after an adrenocorticotrophic hormone (ACTH) stimulation test at 8 weeks of age in 12 male mule ducks in an on-farm experiment. 2. No significant increase of corticosterone was found during the force-feeding period compared with the concentration after housing. 3. Comparison of corticosterone and cortisol values indicates that cortisol can be considered as a reliable acute stress indicator in future routine examinations. 4. Plasma concentrations of triglycerides and aspartate aminotransferase increased progressively from pre-force feeding period to slaughtering. 5. Plasma concentrations of uric acid increased from the start at 8 weeks of age to the mid-force feeding period but no difference was noticed between the mid-force feeding period and slaughtering. 6. It is concluded that acute stress induced by force-feeding is similar at the beginning and end of the commercial production of foie gras.

  15. Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of C alpha-labeled amino acids with solvent

    Energy Technology Data Exchange (ETDEWEB)

    Julin, D.A.; Wiesinger, H.; Toney, M.D.; Kirsch, J.F. (Univ. of California, Berkeley (USA))

    1989-05-02

    The existence of the postulated quinonoid intermediate in the cytoplasmic aspartate amino-transferase catalyzed transamination of aspartate to oxaloacetate was probed by determining the extent of transfer of tritium from the C alpha position of tritiated L-aspartate to pyridoxamine 5'-phosphate in single turnover experiments in which washout from the back-reaction was obviated by product trapping. The maximum amount of transferred tritium observed was 0.7%, consistent either with a mechanism in which a fraction of the net transamination reaction proceeds through a quinonoid intermediate or with a mechanism in which this intermediate is formed off the main reaction pathway. It is shown that transfer of labeled hydrogen from the amino acid to cofactor cannot be used to differentiate a stepwise from a concerted transamination mechanism. The amount of tritium transferred is a function of the rate constant for torsional equilibration about the epsilon-amino group of Lys-258, the presumptive abstractor of the C alpha proton; the relative rate constants for hydrogen exchange with solvent versus cofactor protonation; and the tritium isotope effect on this ratio. The free energy barriers facing the covalent intermediate between aldimine and keto acid product (i.e., ketimine and possibly quinonoid) were evaluated relatively by comparing the rates of C alpha-hydrogen exchange in starting amino acid with the rates of keto acid formation. The value of theta (= kexge/kprod) was found to be 2.6 for the reaction of cytoplasmic isozyme with aspartate and ca. 0.5 for that of the mitochondrial form with glutamate.

  16. PsAAT3, an oomycete-specific aspartate aminotransferase, is required for full pathogenicity of the oomycete pathogen Phytophthora sojae.

    Science.gov (United States)

    Wang, Rongbo; Zhang, Meixiang; Liu, Hong; Xu, Jing; Yu, Jia; He, Feng; Zhang, Xiong; Dong, Suomeng; Dou, Daolong

    2016-04-01

    Pathogen nutrient acquisition and metabolism are critical for successful infection and colonization. However, the nutrient requirements and metabolic pathways related to pathogenesis in oomycete pathogens are unknown. In this study, we bioinformatically identified Phytophthora sojae aspartate aminotransferases (AATs), which are key enzymes that coordinate carbon and nitrogen metabolism. We demonstrated that P. sojae encodes more AATs than the analysed fungi. Some of the AATs contained additional prephenate dehydratase and/or prephenate dehydrogenase domains in their N-termini, which are unique to oomycetes. Silencing of PsAAT3, an infection-inducible expression gene, reduced P. sojae pathogenicity on soybean plants and affected the growth under N-starving condition, suggesting that PsAAT3 is involved in pathogen pathogenicity and nitrogen utilisation during infection. Our results suggest that P. sojae and other oomycete pathogens may have distinct amino acid metabolism pathways and that PsAAT3 is important for its full pathogenicity.

  17. Aspartate aminotransferase catalyzed oxygen exchange with solvent from oxygen-18-enriched alpha-ketoglutarate: Evidence for slow exchange of enzyme-bound water

    Energy Technology Data Exchange (ETDEWEB)

    McLeish, M.J.; Julin, D.A.; Kirsch, J.F. (Univ. of California, Berkeley (USA))

    1989-05-02

    Partitioning of the ketimine (or ketimine + quinonoid) intermediate(s) in the mitochondrial aspartate aminotransferase reactions was investigated by following the rates of loss of {sup 18}O from carbonyl-{sup 18}O-enriched alpha-ketoglutarate together with the rate of L-glutamate formation. The ratio of these rate constants was found to equal 1 at 10{degree}C, implying that the above intermediate(s) face(s) equal barriers with respect to the forward and reverse reactions. This partition ratio of 1 together with that measured from the alpha-amino acid side of the reaction suggests that the rate constant for exchange of alpha-ketoglutarate-derived H{sub 2}(18)O from the ketimine (or ketimine + quinonoid) form(s) of the enzyme with solvent is comparable with that for kcat.

  18. SERUM ACTIVITIES OF ASPARTATE AMINOTRANSFERASE, CREATINE KINASE AND LACTATE DEHYDROGENASE IN HORSES WITH COLIC ATIVIDADE SÉRICA DAS ENZIMAS ASPARTATO AMINOTRANSFERASE, CREATINA QUINASE E LACTATO DESIDROGENASE EM EQÜINOS COM CÓLICA

    Directory of Open Access Journals (Sweden)

    Aureo Evangelista Santana

    2008-12-01

    Full Text Available Seventy equines distributed in two experimental groups were used, G1 (20 healthy equines, and G2 (50 equines with colic. Blood samples were obtained by jugular vein puncture in ten different moments. The variables aspartate aminotransferase (AST, creatine kinase (CK, and lactate dehydrogenase (LDH were determined by spectrophotometric assay using specific reagents. The average values presented by the animals of the G2 for variables CK, AST, and LDH were higher (P<0.05 than the values presented by the animals of the G1 in all the evaluation moments. The results showed for G2 animals suggest the existence of acute muscle injury. The muscle injuries in equines with colic were attributed to the tissue hypoperfusion, and the muscular damage.

    KEY WORDS: Acute abdomen, horses, muscles enzyme. De setenta eqüinos, distribuídos em dois grupos experimentais – G1 (vinte eqüinos hígidos e G2 (cinqüenta eqüinos com cólica –, colheram-se amostras de sangue em dez diferentes momentos, mediante punção da jugular, para a determinação da atividade sérica das enzimas aspartato aminotransferase (AST, creatina quinase (CK e lactato desidrogenase (LDH. Os valores médios apresentados pelos animais do G2, para as variáveis CK, AST e LDH, foram superiores (P<0,05 aos valores médios apresentados pelos animais do G1 em todos os momentos de avaliação. Os resultados apresentados pelos animais com cólica (G2 sugerem a existência de lesão muscular aguda, porém com tendência a cura, e foram atribuídos a hipoperfusão tecidual e a traumas musculares. A análise seriada das enzimas CK, AST e LDH auxilia tanto no diagnóstico de lesões musculares em eqüinos com cólica como no acompanhamento da evolução do processo de cura.

    PALAVRAS-CHAVES: Abdômen agudo, cavalos, enzimas musculares.

  19. Kinetic isotope effect studies on aspartate aminotransferase: Evidence for a concerted 1,3 prototropic shift mechanism for the cytoplasmic isozyme and L-aspartate and dichotomy in mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Julin, D.A.; Kirsch, J.F. (Univ. of California, Berkeley (USA))

    1989-05-02

    The C alpha primary hydrogen kinetic isotope effects (C alpha-KIEs) for the reaction of the cytoplasmic isozyme of aspartate aminotransferase (cAATase) with (alpha-2H)-L-aspartate are small and only slightly affected by deuterium oxide solvent (DV = 1.43 +/- 0.03 and DV/KAsp = 1.36 +/- 0.04 in H{sub 2}O; DV = 1.44 +/- 0.01 and DV/KAsp = 1.61 +/- 0.06 in D{sub 2}O). The D{sub 2}O solvent KIEs (SKIEs) are somewhat larger and are essentially independent of deuterium at C alpha (D{sub 2}OV = 2.21 +/- 0.07 and D{sub 2}OV/KAsp = 1.70 +/- 0.03 with ({alpha}-1H)-L-aspartate; D{sub 2}OV = 2.34 +/- 0.12 and D{sub 2}OV/KAsp = 1.82 +/- 0.06 with ({alpha}-2H)-L- aspartate). The C alpha-KIEs on V and on V/KAsp are independent of pH from pH 5.0 to pH 10.0. These results support a rate-determining concerted 1,3 prototropic shift mechanism by the multiple KIE criteria. The large C alpha-KIEs for the reaction of mitochondrial AATase (mAATase) with L-glutamate (DV = 1.88 +/- 0.13 and DV/KGlu = 3.80 +/- 0.43 in H{sub 2}O; DV = 1.57 +/- 0.05 and DV/KGlu = 4.21 +/- 0.19 in D{sub 2}O) coupled with the relatively small SKIEs (D{sub 2}OV = 1.58 +/- 0.04 and D{sub 2}OV/KGlu = 1.25 +/- 0.05 with ({alpha}-1H)-L-glutamate; D{sub 2}OV = 1.46 +/- 0.06 and D{sub 2}OV/KGlu = 1.16 +/- 0.05 with (alpha-2H)-L-glutamate) are most consistent with a two-step mechanism for the 1,3 prototropic shift for this isozyme-substrate pair.

  20. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase

    Directory of Open Access Journals (Sweden)

    Leif Hertz

    2017-02-01

    Full Text Available The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT and its degradation by glutamate dehydrogenase (GDH. Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA. Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.

  1. Aspartate aminotransferase-lymphocyte ratio index and systemic immune-inflammation index predict overall survival in HBV-related hepatocellular carcinoma patients after transcatheter arterial chemoembolization.

    Science.gov (United States)

    Yang, Zongguo; Zhang, Jianliang; Lu, Yunfei; Xu, Qingnian; Tang, Bozong; Wang, Qiang; Zhang, Wensi; Chen, Shishi; Lu, Lingqing; Chen, Xiaorong

    2015-12-15

    It has been suggested that lymphocytes play central roles in host antitumor immune responses and control cancer outcome. We reviewed the clinical parameters of 189 hepatocellular carcinoma (HCC) patients and investigated the prognostic significance of lymphocyte-related scores in HCC patients following transcatheter arterial chemoembolization (TACE). Survival analysis revealed that an elevated aspartate aminotransferase-lymphocyte ratio index (ALRI) > 57 and a systemic immune-inflammation index (SII) > 300 were negatively associated with overall survival in HBV-related HCC (HR = 2.181, P = 0.003 and HR = 2.453, P = 0.003; respectively). Spearman chi-square analysis showed that ALRI had a specificity of 82.4% and that SII index had a sensitivity of 71.9% for HCC overall survival. ALRI and SII had negative predictive values of 74.6% and 80%, respectively for HCC overall survival. Additionally, Barcelona Clinic Liver Cancer (BCLC) stage C patients had significantly higher ALRI and SII scores (both P SII scores (P SII should be used as negative predictive factors for overall survival in HBV-related HCC in clinical practice.

  2. The antioxidant effects of vitamin C on liver enzymes: aspartate aminotransferase, alanine aminotranferease, alkaline phosphatase and gamma-glutamyltransferase activities in rats under Paraquat insult

    Directory of Open Access Journals (Sweden)

    Benjamin Nnamdi Okolonkwo

    2013-06-01

    Full Text Available Paraquat (PQ is a bipyridylium herbicide; applied around trees in orchards and between crop rows to control broad-leaved and grassy weeds. Its oxidation results in the formation of superoxides which causes damage to cellular components. In this study, we determined the antioxidant effect vitamin C has on the liver enzymes [aspartate aminotransferase (SGOT, alanine aminotranferease (SGPT, alkaline phosphatase (ALP, and gamma-glutamyltransferase (GGT] of rats under this toxic insult. Male rats in groups (A, B, C and D were intraperitoneally injected with different sublethal increasing doses (0, 0.02, 0.04 and 0.06 g/kg body weigh of PQ respectively on monthly basis. Subsequently, the subgroups (A2, B2, C2 and D2 were given orally, 200 mg/L vitamin C, while the subgroups A1, B1, C1, and D1, received only water. Four animals per subgroup were decapitated on monthly basis and blood samples taken for enzyme assay. The parameters studied were - SGOT, SGPT, ALP and GGT - liver enzymes. The dose and time dependent PQ toxicity effect resulted in highly elevated Liver enzymes activities. The subgroups on vitamin C had significantly lower enzyme activities when compared to the same subgroups on only PQ insult. But the values were high when compared to the control subgroups (A1 and A2. These results were indication that vitamin C when given at moderate doses and maintained for a longer period could be a life saving adjunct to toxic insult.

  3. N-(5′-Phosphopyridoxyl)glutamic acid and N-(5′-phosphopyridoxyl)-2-oxopyrrolidine-5-carboxylic acid and their action on the apoenzyme of aspartate aminotransferase

    Science.gov (United States)

    Khomutov, Radiǐ M.; Dixon, Henry B. F.; Vdovina, Lyudmila V.; Kirpichnikov, Mikhaǐl P.; Morozov, Yuriǐ V.; Severin, Evgeniǐ S.; Khurs, Elena N.

    1971-01-01

    1. N-(5′-Phosphopyridoxyl)-l-glutamic acid (P-Pxy-Glu, compound I) is readily converted at pH3 into a substance (P-Pxy-Glp, compound II) characterized as N-(5′-phosphopyridoxyl)-2-oxopyrrolidine-5-carboxylic acid. 2. The u.v., i.r. and fluorescence spectra of P-Pxy-Glu and P-Pxy-Glp have been determined; from the u.v. spectra their pK values have been found and compared. 3. The apoenzyme of aspartate aminotransferase is rapidly and irreversibly inactivated by P-Pxy-Glu, but is inactivated more slowly by P-Pxy-Glp. The complex with P-Pxy-Glp is stable enough to be isolated, but it is slowly reactivated in the presence of excess of pyridoxal phosphate. 4. The u.v. spectrum of the complex of apoenzyme and P-Pxy-Glp suggests that it contains a hydrogen bond between the phenolic hydroxyl group and the pyrrolidone nitrogen; this specifies the conformation of most of the molecule of P-Pxy-Glp. This conformation is similar to that previously postulated for the enzyme–glutamate complex except for the side chain of glutamate. Hence both the affinity of P-Pxy-Glp for the apoenzyme and the fact that it is more easily removed than P-Pxy-Glu are explicable. PMID:5126478

  4. Preincubation of serum aspartate aminotransferase with pyridoxal 5'-phosphate in the SMAC: comparison with revised DuPont aca method and recommended IFCC method.

    Science.gov (United States)

    Garber, C C; Feldbruegge, D H; Hoessel, M

    1981-04-01

    The method for continuous-flow assay of aspartate aminotransferase with the Technicon SMAC was modified to include preincubation of the serum enzyme with pyridoxal 5'-phosphate, to be consistent with the recommendations of IFCC and the Standards Committee of AACC. Preliminary estimates of the imprecision of the modified method on SMAC gave day-to-day standard deviations of 5.3 U/L at mean of 48 U/L (n = 66) and 6.2 U/L at 155 U/L (n = 61). Added bilirubin, sodium pyruvate, ascorbic acid, and endogenous lipids did not interfere. Comparison of results for 50 samples by this method with those by the manual IFCC method gave y = 1.1113x - 0.3 U/L, Sy/x = 4.4 U/L, and r = 0.997. Similar data are presented for the revised AST method for the DuPont aca discrete analyzer. Clinical data show that AST activities increase by as much as 200% when the serum is preincubated with pyridoxal 5'-phosphate.

  5. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. II. The influence on aspartate aminotransferase (AspAT) and alanine aminotransferase (AiAt) activities in the liver of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Tokarz, A.; Stanosek, J.; Ludyga, K.; Kochanski, L.

    1981-01-01

    The behaviour of aspartate aminotransferase (AspAT) an alanine aminotransferase (AIAT) in the whole homogenate and subcellular liver fractions of guinea pigs exposed to combustion exhaust gases and the neutralization products of these gases is presented in this paper. In the liver of animals exposed to the chronic action of combustion exhaust gases a decrease of both enzyme activities in the whole homogenate as well as in the subcellular fractions could be noted. Statistically significant changes are shown by AspAT. In the group of animals subjected to the action of neutralization products an increase of AIAT activity was observed. The activity of AspAT still shows a decrease, but less distinct in comparison with group I.

  6. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. II. The influence on aspartate aminotransferase (AspAT) and alanine aminotransferase (AiAt) activities in the liver of guinea pig.

    Science.gov (United States)

    Lewandowska-Tokarz, A; Stanosek, J; Ludyga, K; Kochanski, L

    1981-01-01

    The behaviour of aspartate aminotransferase (AspAT) an alanine aminotransferase (AIAT) in the whole homogenate and subcellular liver fractions of guinea pigs exposed to combustion exhaust gases and the neutralization products of these gases is presented in this paper. In the liver of animals exposed to the chronic action of combustion exhaust gases a decrease of both enzyme activities in the whole homogenate as well as in the subcellular fractions could be noted. Statistically significant changes are shown by AspAT. In the group of animals subjected to the action of neutralization products an increase of AIAT activity was observed. The activity of AspAT still shows a decrease, but less distinct in comparison with group I. An exception here is the mitochondrial fraction in which the AspAT activity is distinctly increased.

  7. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seetharamappa, Jaldappagari [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka State (India); Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Overton, Ian M.; Niekirk, C. A. Johannes van [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F. [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Barton, Geoffrey J. [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Coote, Peter J.; Naismith, James H., E-mail: naismith@st-andrews.ac.uk [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom)

    2007-05-01

    As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported. Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P2{sub 1}2{sub 1}2{sub 1}. A complete data set was collected to 2.5 Å resolution.

  8. Concentrações de creatino quinase, aspartato aminotransferase e desidrogenase lática em potros do nascimento até os seis meses de idade Concentration of creatine kinase, aspartate aminotransferase and lactate dehydrogenase in foals from birth up to sixth month

    Directory of Open Access Journals (Sweden)

    Elisiane Lourdes Da Cás

    2001-12-01

    Full Text Available Dez potros da raça Puro Sangue de Corrida (PSC, de ambos os sexos, foram avaliados quanto à concentração das enzimas séricas creatino quinase (CK, aspartato aminotransferase (AST e deshidrogenase lática (DHL. Foram colhidas amostras sangüíneas diariamente do 1º ao 7ºdia de vida e depois aos 15, 30, 60, 90, 120, 150 e 180 dias de idade. A concentração da CK mostrou um decréscimo significativo (pTen Thoroughbred foals, male and female, had the seric concentration of creatine kinase (CK, aspartate aminotransferase (AST and lactate dehydrogenase (LDH determined. Blood samples were collected every day from days 1 to 7 and on days 15, 30, 60, 90, 120, 150 and 180 of age. CK activity decreased significantly (p< 0.0003 in the first week and showed significant variation between day 15 and 6 months of age. AST showed a significant (p< 0.0001 increase in its values until 102 days of age, decreasing subsequently until 6 months of age. LDH values decreased significantly (p< 0.0002 between days 15 and 120, increasing subsequently until 6 months of age. At 6 months of age CK, AST and LDH activities were close to those of adult horses.

  9. Determinação das atividades séricas de creatina quinase, lactato desidrogenase e aspartato aminotransferase em eqüinos de diferentes categorias de atividade Determination of serum activities of creatine kinase, lactate dehydrogenase, and aspartate aminotransferase in horses of different activities classes

    Directory of Open Access Journals (Sweden)

    I.A. Câmara e Silva

    2007-02-01

    Full Text Available The creatine kinase (CK, lactate dehydrogenase (LDH, and aspartate aminotransferase (AST seric activities in horses of different activity classes (athlete, traction, and reproduction, were compared. Fifty-eight horses were alloted into three groups - group 1 with 20 athletes, "vaquejada" competitors; group 2 with 20 breeding horses; and group 3 with 18 draft horses, averaging 10 working hours daily. The average values for CK serum activity were 80.2, 83.9, and 94.4 U/l in groups 1, 2, and 3, respectively. Result of group 3 was significantly different from the other groups. The averages values for LDH were 102.5, 98.6, and 112.8 U/l in groups 1, 2, and 3, respectively, with no statistical difference between groups. The AST averages were 56.8, 33.0, and 50.1 U/l in groups 1, 2, and 3, respectively, with group 2 significantly differing from the others. Clinical biochemistry values of muscular function in horses varied according to activity category.

  10. Aspartate aminotransferase to platelet ratio index and sustained virologic response are associated with progression from hepatitis C associated liver cirrhosis to hepatocellular carcinoma after treatment with pegylated interferon plus ribavirin

    Directory of Open Access Journals (Sweden)

    Ng KJ

    2016-08-01

    Full Text Available Khai-Jing Ng,1,2,* Chih-Wei Tseng,1–4,* Ting-Tsung Chang,5,6 Shinn-Jia Tzeng,7 Yu-Hsi Hsieh,1,2 Tsung-Hsing Hung,1,2 Hsiang-Ting Huang,8 Shu-Fen Wu,9 Kuo-Chih Tseng1,2 1Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 2School of Medicine, Tzu Chi University, Hualien, 3Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 4School of Medicine, National Yang-Ming University, Taipei, 5Department of Internal Medicine, National Cheng Kung University Medical College and Hospital, Tainan, 6Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 7Department of Agronomy, National Chiayi University, Chia-Yi, 8Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, 9Institute of Molecular Biology, National Chung Cheng University, Chia-Yi, Taiwan *These authors contributed equally to this work Background: The aim of this study was to evaluate the clinically significant predictors of hepatocellular carcinoma (HCC development among hepatitis C virus (HCV cirrhotic patients receiving combination therapy.Patients and methods: One hundred and five compensated cirrhosis patients who received pegylated interferon plus ribavirin between January 2005 and December 2011 were enrolled. All the patients were examined with abdominal sonography and liver biochemistry at baseline, end of treatment, and every 3–6 months posttreatment. The occurrence of HCC was evaluated every 3–6 months posttreatment.Results: A total of 105 patients were enrolled (mean age 58.3±10.4 years. The average follow-up time for each patient was 4.38 years (standard deviation 1.73 years; range 1.13–9.27 years. Fifteen (14.3% patients developed HCC during follow-up period. Thirteen of them had high baseline aspartate aminotransferase to platelet ratio index (APRI (ie, an APRI >2.0. Multivariate analysis showed that those

  11. Porcine cytosolic aspartate aminotransferase reconstituted with (4 prime - sup 13 C)pyridoxal phosphate. pH- and ligand-induced changes of the coenzyme observed by sup 13 C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tsuyoshi (Kumamoto Univ. College of Medical Science (Japan) Kumamoto Univ. Medical School (Japan)); Tanase, Sumio; Nagashima, Fujio; Morino, Yoshimasa (Kumamoto Univ. Medical School (Japan)); Scott, A.I.; Williams, H.J.; Stolowich, N.J. (Texas A and M Univ., College Station (United States))

    1991-03-05

    Apoenzyme samples of aspartate aminotransferase (AspAT) purified from the cytosolic fraction of pig heart were reconstituted with (4{prime}-{sup 13}C)pyridoxal 5{prime}-phosphate (pyridoxal-P). The {sup 13}C NMR spectra of AspAT samples thus generated established the chemical shift of 165.3 ppm for C4{prime} of the coenzyme bound as an internal aldimine with lysine 258 of the enzyme at pH 5. In the absence of ligands the chemical shift of C4{prime} was shown to be pH dependent, shifting 5 ppm upfield to a constant value of 160.2 ppm above pH 8, the resulting pK{sub a} of 6.3 in agreement with spectrophotometric titrations. The addition of the competitive inhibitor succinate to the internal aldimine raises the pK{sub a} of the imine to 7.8, consistent with the theory of charge neutralization in the active site. In the presence of saturating concentrations of 2-methylaspartic acid the C4{prime} signal of the coenzyme was shown to be invariant with pH and located at 162.7 ppm, midway between the observed chemical shifts of the protonated and unprotonated forms of the internal aldimine. Finally, the line widths of the C4{prime} resonance under the various conditions were measured and qualitatively compared. The results are discussed in terms of the current mechanism and molecular models of the active site of AspAT.

  12. Aspartic acid

    Science.gov (United States)

    Aspartic acid is a nonessential amino acids . Amino acids are building blocks of proteins. "Nonessential" means that our ... this amino acid from the food we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps ...

  13. Assessement of glycaemia and serum activities of aspartate aminotransferase, creatinekinase, gamma glutamyltransferase and lactate dehydrogenase in thoroughbred horses submitted to exercise of different intensities/ Avaliação da glicemia e da atividade sérica de aspartato aminotransferase, creatinoquinase, gama-glutamiltransferase e lactato desidrogenase em eqüinos puro sangue inglês (PSI submetidos a exercícios de diferentes intensidades

    Directory of Open Access Journals (Sweden)

    Joandes Henrique Fonteque

    2005-06-01

    Full Text Available In order to evaluate the influence of exercise of different intensities on biochemical parameters in Thoroughbred horses blood was collected from 60 animals, 30 males and 30 females.The animals were subdivided in two groups : 30 horses, 15 males and 15 females with 24 to 36 months of age and not in training, and after 12 months of training; 30 horses, 15 males and 15 females with 36 to 48 months of age in training. Blood samples were collected before and after trot and gallop. Plasmatic glucose was analyzed through a colorimetric method, while aspartate aminotransferase (AST, creatine kinase (CK, lactate dehydrogenase (LDH and gammaglutamyltransferase (GGT were analyzed through kinetic methods. Results show a statistically significant increase in plasmatic glucose after trot and gallop independent of gender, while the increases in CK and LDH were different for males and females. Variations for AST and GGT were not statistically significant.O objetivo do presente estudo foi avaliar as alterações na bioquímica sérica em eqüinos PSI submetidos a exercícios de diferentes intensidades. Foram colhidas amostras de sangue de 60 eqüinos PSI, distribuídos nos seguintes grupos: 30 animais sendo 15 machos e 15 fêmeas, com idade de 24 a 36 meses, não submetidos a treinamento e após um período de 12 meses de treinamento e 30 eqüinos de 36 a 48 meses, em fase de treinamento, antes e após o trote . Dos animais de 36 a 48 meses foram selecionados 20 machos e 10 fêmeas e colhido sangue antes e após o galope. Determinou-se, por métodos colorimétricos, os valores da glicose plasmática e, por métodos cinéticos, as enzimas aspartato aminotransferase (AST, creatinoquinase (CK, lactato desidrogenase (LDH e gama-glutamiltransferase (GGT. A análise estatística dos resultados comprovou a ocorrência de aumento significativo (p < 0,05 dos valores da glicose plasmática após o trote e galope para ambos os sexos. Para as enzimas CK e LDH ocorreram

  14. Non-alcoholic steatohepatitis with normal aminotransferase values

    Institute of Scientific and Technical Information of China (English)

    H(u)eyin Saadettin Uslusoy; Selim Giray Nak; Macit G(u)lten; Zeynep Biyikli

    2009-01-01

    AIM: To investigate the aspects of liver histology in patients with non-alcoholic steatohepatitis (NASH) who had normal aminotransferase levels. METHODS: Thirty-four patients diagnosed with liver steatosis by ultrasonographic examination participated in the study. We compared all nonalcoholic fatty liver disease and NASH cases, according to aminotransferase level, aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio and presence of metabolic syndrome. RESULTS: Si x t e en of 25 pa t i ent s wi th high aminotransferase levels were diagnosed with NASH and nine with simple fatty liver according to liver histology. Among the nine patients with normal aminotransferase levels, seven had NASH and two had simple fatty liver. The patients with normal and high liver enzyme levels had almost the same prevalence of NASH and metabolic syndrome. Liver histology did not reveal any difference according to aminotransferase levels and AST/ALT ratio. CONCLUSION: Aminotransferase levels and AST/ALT ratio do not seem to be reliable predictors for NASH. Despite numerous non-invasive biomarkers, all patients with fatty liver should undergo liver biopsy.

  15. Inverse linear associations between liver aminotransferases and incident cardiovascular disease risk : The PREVEND study

    NARCIS (Netherlands)

    Kunutsor, Setor K.; Bakker, Stephan J. L.; Kootstra-Ros, Jenny E.; Blokzijl, Hans; Gansevoort, Ronald T.; Dullaart, Robin P. F.

    2015-01-01

    Background: Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) have been linked with an increased risk of type 2 diabetes, but their relationships with cardiovascular disease (CVD) are uncertain. We aimed to assess the associations of ALT and AST with CVD risk and determine their po

  16. PROPERTIES OF AMINOTRANSFERASES FROM TELADORSAGIA CIRCUMCINCTA

    Directory of Open Access Journals (Sweden)

    Noorzaid MUHAMAD

    2014-12-01

    Full Text Available Activities of several aminotransferases were measured in L3 and adult Teladorsagia circumcincta, but most of these had maximal activity of less than 8 nmol min-1 mg-1 protein. Only aspartate aminotransferase (AspAT and alanine aminotransferase (AlaAT activities exceeded this value and some kinetic properties of these enzymes were characterised. For L3 AspAT, the apparent Kms were 1.2 mM, 0.13 mM, 0.11 mM and 0.04 mM for aspartate, -ketoglutarate, glutamate and oxaloacetate, respectively, and the apparent Vmaxs were 960 nmol min-1 mg-1 protein for aspartate deamination and 420 nmol min-1 mg-1 protein in the direction of glutamate deamination. For L3 AlaAT, the apparent Kms were 5.2 mM, 0.5 mM, 0.5 mM and 1.2 mM for alanine, -ketoglutarate, glutamate and pyruvate, respectively, and apparent Vmaxs were 107 nmol min-1 mg-1 protein for alanine deamination and 48 nmol min-1 mg-1 protein for alanine formation. Both enzymes required exogenous pyridoxal 5′-phosphate for optimal activity. The equilibrium constants for the AspAT and AlaAT reactions were consistent with those estimated from the estimated kinetic parameters. From these parameters we infer that T. circumcincta AlaAT is present predominantly as a mitochondrial enzyme favouring pyruvate formation while AspAT is predominantly a cytosolic enzyme favouring glutamate formation.

  17. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  18. Measurement and analysis of alkaline phosphatase and aspartate aminotransferase activity levels in gingival cervical fluid after treatment of telescope retained fixed bridge%套筒冠式固定桥基牙龈沟液中碱性磷酸酶和天冬氨酸转氨酶的检测分析

    Institute of Scientific and Technical Information of China (English)

    武峰; 赵彬; 姚蔚

    2011-01-01

    Objective To explore the role of telescopic crown retainers fixed bridge in periodontal maintenance. Methods A total of 64 abutment teeth were selected from 16 patients and divided into experimental and control groups (n=32 each). The gingival index and sulcus bleeding index of abutments in the both two groups were detected at 6 and 12 months before and after repair. The alkaline phosphatase (ALP) and aspartate aminotransferase (AST) activity levels in gingival cervical fluid were measured using automatic biochemistry analyzer. Results There were significant differences in Gl and SBI between the experimental and control groups, as well as in ALP and AST activity levels (P<0.05). Conclusion Telescope retained fixed bridge might help protect the periodontal tissue of abutment teeth.%目的 探索套筒冠固位式固定桥对于牙周维护的作用.方法 选择16例患者共64颗基牙,分为实验组和对照组,每组32颗基牙.在修复前以及修复后6 、12个月,对基牙进行牙龈指数(GI)和龈沟出血指数(SBI)的检测,利用全自动生化分析仪检测基牙龈沟液中碱性磷酸酶(ALP)和天冬氨酸转氨酶(AST)活性水平.结果 在修复前与修复后12 个月实验组与对照组之间GI、SBI比较差异有统计学意义(P<0.05),ALP、AST活性水平差异也有统计学意义(P<0.05).结论 套筒冠式固定桥有利于基牙牙周组织的保护.

  19. 2-(hydroxymethyl)aspartic acid: synthesis, crystal structure, and reaction with a transaminase

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.; Metzler, D.E.; Powell, D.; Jacobson, R.A.

    1980-11-05

    The synthesis and x-ray crystal structure of 2-(hydroxymethyl) aspartic acid and the preliminary evaluation of its interaction with cytosolic aspartate aminotransferase of pig heart are described. A dissociation constant 1.4 mM for the L-2-(hydroxymethyl) aspartate complex with the enzyme was obtained. 2 figures. (DP)

  20. Efeito da adição de cloreto de cálcio sobre a qualidade espermática e atividade da aspartato amino transferase no sêmen resfriado de suíno Effect of adding calcium chloride on the spermatic quality and aminotransferase aspartate in cool swine semen

    Directory of Open Access Journals (Sweden)

    Fernanda Pinheiro Lima

    2007-10-01

    Full Text Available O experimento foi realizado com o objetivo de testar dois processos de resfriamento de sêmen suíno, analisar o efeito da adição de CaCl2 ao diluidor BTS e testar o método de avaliação do perfil enzimático da Aspartato Aminotransferase (AAT sobre a qualidade espermática. Foram utilizados 12 ejaculados suínos de animais procedentes do setor de Suinocultura - DZO/UFLA. Estes ejaculados foram diluídos e receberam diferentes concentrações de CaCl2 (A: 0,0; B: 2,5; C: 5,0 e D: 7,5 mM. As amostras dos ejaculados foram submetidas a três processos de resfriamento (1: convencional - 15º C ; 2: lento - 15º C/5º C; 3: rápido - 5º C, sendo que cada ejaculado ficou armazenado por um período de 72 horas para avaliações da qualidade espermática, constituindo os tratamentos experimentais. Os parâmetros seminais avaliados foram motilidade e vigor espermáticos e perfil enzimático da AAT. Houve diferença significativa (P0,05. Conclui-se que a adição de CaCl2 melhora a motilidade espermática das amostras dos ejaculados suínos e que o processo de resfriamento lento substitui o processo convencional sem afetar a qualidade espermática do sêmen submetido à refrigeração. A avaliação da AAT não é válida para sêmen resfriado.The study was carried out with objective to test two swine semen cooling processes and verify the effects of adding chloride of calcium (CaCl2 on semen dilutor BTS and also to test the evaluation method of Aspartate Aminotransferase (AAT enzymatic profile on the cooled swine semen spermatic quality. Were used twelve samples of ejaculation of breeders supplied by the Swine Breeding section at the DZO/UFLA. The samples were diluted and received different concentrations of CaCl2 (A: 0.0; B: 2.5; C 5.0; D 7.5mM. The samples of ejaculation were submitted to three processes of cooling: 1 - standard cooling (15º C; 2 - slow cooling (15º C/ 5º C; 3 - fast cooling (5º C, and each sample of ejaculation was stored for

  1. Cloning and expression analysis of aspartate aminotransferase cDNA in Fenneropenaeus chinensis following ambient ammonia stresses%中国明对虾天门冬氨酸转氨酶基因的克隆及氨氮胁迫对其时空表达的影响

    Institute of Scientific and Technical Information of China (English)

    李少飞; 何玉英; 李吉涛; 李健; 刘萍; 葛倩倩

    2014-01-01

    利用 RACE 技术克隆获得中国明对虾(Fenneropenaeus chinensis)天门冬氨酸转氨酶 GOT 基因(FcGOT)。FcGOT 基因cDNA全长为1910 bp,其中,开放阅读框1284 bp,编码427个氨基酸。同源性分析表明,中国明对虾天门冬氨酸转氨酶 GOT氨基酸序列与其他节肢动物高度保守,与克氏原螯虾(Procambarus clarkii)和桔粉蚧壳虫(Planococcus citri)的同源性分别为78%和73%。系统进化分析表明, FcGOT基因氨基酸序列与克氏原螯虾GOT聚为一支。组织表达分析发现FcGOT基因在肝胰腺、鳃、血细胞、肌肉、心脏、淋巴中均有表达,其中肝胰腺中表达量最高。氨氮胁迫后,荧光定量PCR分析结果表明, FcGOT基因在肝胰腺和鳃组织中的表达与对照组相比具有显著差异(P<0.05),表明 FcGOT 基因在氨氮代谢方面具有重要的作用,参与了中国明对虾机体的急性氨氮胁迫应答反应。%Fenneropenaeus chinensis is an important mariculture species in China. In aquaculture environments ammo-nia is a common toxic substance. In recent years, higher frequencies of ammonia nitrogen toxicity in shrimps have been reported. Therefore, it is necessary to investigate ammonia metabolism by F. chinensis. As an important member of the AAT-like family, the enzyme aspartate aminotransferase (GOT) is involved in many aspects of ammonia metabolism including participating in inosine monophosphate transdeamination, and the urea and citric acid cycles. Therefore, de-tailed understanding of the regulation of GOT is of great significance. In this study, we successfully cloned the aspartate aminotransferase cDNA of F. chinensis (FcGOT). The FcGOT cDNA, which was 1 910 bp in length, contained a 5′-untranslated region(UTR) of 83 bp, a 3′UTR of 543 bp, and an open reading frame (ORF) of 1 284 bp, encoded a 427 amino-acid polypeptide. FcGOT protein exhibited typical AAT-like family features, including a Lys catalytic residue and 10 pyridoxal-5

  2. AMINOTRANSFERASE ACTIVITY IN THE LIVER OF RAINBOW TROUT (ONCORHYNCHUS MYKISS UNDER VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    L. Dragan

    2015-10-01

    Full Text Available Purpose. To study the effect of the use of indirect (express- method for the detection of infectious pancreatic necrosis virus of trout by investigating aspartate aminotransferase and alanine aminotransferase activities in fish liver, as the most sensitive enzymes for the diagnostics of many pathological conditions of human and animal organisms associated with liver diseases. Methodology. The determination of aspartate aminotransferase and alanine aminotransferase activities in trout liver was performed by Reitman-Frankel method. The functional status of liver was also evaluated using De Ritis coefficient (AST/ALT ratio, which serves as an integral index of the changes related to the degree of the damage of this organ. Findings. The determination of aspartate aminotransferase and alanine aminotransferase activities in the liver of rainbow trout (Oncorhynchus mykiss found out a considerable increase in the activity of these enzymes under the effect of the virus of infectious pancreatic necrosis. It is set that direction of aspartate aminotransferase reactions in the conditions of viral infection takes place mainly in the side of formation of keto-acids, providing the synthesis of glucose which is needed above all things for energetic supply of synthetic processes. The increase of activity of AsAT plays an important role in synchronization of energetic and nitrous exchange which is carried out at the level of mitochondrias. Increase of DeRitisa (DRr coefficient in the conditions of our experiment characteristic for viral hepatitis and can specify on activating of synthesis of glucose which is needed for support of adequate level in the conditions of viral intoxication and determines the orientation of metabolic streams toward predominance of catabolytic reactions. According to the results of the performed tests, the most informative was the test of the determination of alanine aminotransferase activity. Originality. Evaluation of the effect of

  3. Using the absorbance difference of biochemical analyzer response curve to calculate high concentrations of aspartate aminotransferase%运用生化分析仪反应曲线吸光度差异计算高浓度天冬氨酸氨基转移酶的值

    Institute of Scientific and Technical Information of China (English)

    芮星; 徐俊荣

    2012-01-01

    目的 运用生化分析仪反应曲线上呈线性段的吸光度变化直接计算高浓度天冬氨酸氨基转移酶(AST)活力.方法 当标本中AST浓度过高时,往往由于底物耗尽导致仪器测不出结果,可以选择适当的已知浓度AST作为对照,利用AST反应曲线,运用公式计算AST的浓度:AST值(U/L)=[△A(计算)/ △A(对照)] ×对照物的浓度,可以计算出高浓度AST的值.结果 直接计算的值和通过稀释后再测的值相对偏差小于10%,符合美国临床检验修正法规1988(CLIA.'88)许可范围,证明AST的计算值可以作为临床参考.结论当仪器直接检测高浓度AST,由于超线性范围而测不出结果,但临床又急需报告或标本量不足不能稀释重测时,可以运用生化反应曲线直接计算出结果,及时发放报告.%Objective This experiment intended to directly calculate the activity of aspartate aminotransferase ( AST ) with a high concentration based on the absorbance changes presented by the linear section on the reaction curve of a biochemical analyzer. Methods When biochemical analyzer failed to detect very high concentration of AST in the samples due to the depletion of substrates, the value of high concentration of AST was determined with the use of known concentrations of AST as the control, and AST reaction curve. AST concentration was calculated with the formula : AST value (U/L) = [ A A ( calculated )/ A A ( control) J ] x concentration of the control. Results The relative deviation between the directly calculated value and the calculated value after the dilution was less than 10% , which was consistent with the CLIA 88 permission scope. Therefore, the calculated value of AST was verified competent as clinical references. Conclusion When the biochemical analyzer is directly used to detect AST with a high concentration or the retest is not available due to insufficient sample volume, the results are undetectable due to the surpassed linear range and fail to

  4. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II.

    Science.gov (United States)

    Han, Qian; Cai, Tao; Tagle, Danilo A; Robinson, Howard; Li, Jianyong

    2008-08-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  5. Substrate Specificity and Structure of Human Aminoadipate Aminotransferase/kynurenine Aminotransferase II

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Cai, T.; Tagle, D.; Robinson, H.; Li, J.

    2008-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to a-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested a-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with a-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  6. Substrate Specificity and Structure of Human aminoadipate aminotransferase/kynurenine aminotransferase II

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Cai, T; Tagle, D; Robinson, H; Li, J

    2009-01-01

    KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.

  7. Effects of pyridoxine on growth performance and plasma aminotransferases and homocysteine of white pekin ducks.

    Science.gov (United States)

    Xie, Ming; Tang, Jing; Wen, Zhiguo; Huang, Wei; Hou, Shuisheng

    2014-12-01

    A dose-response experiment with seven supplemental pyridoxine levels (0, 0.66, 1.32, 1.98, 2.64, 3.30, and 3.96 mg/kg) was conducted to investigate the effects of pyridoxine on growth performance and plasma aminotransferases and homocysteine of White Pekin ducks and to estimate pyridoxine requirement for these birds. A total of 336 one-day-old male White Pekin ducks were divided to 7 experimental treatments and each treatment contained 8 replicate pens with 6 birds per pen. Ducks were reared in raised wire-floor pens from hatch to 28 d of age. At 28 d of age, the weight gain, feed intake, feed/gain, and the aspartate aminotransferase, alanine aminotransferase, and homocysteine in plasma of ducks from each pen were all measured. In our study, the pyridoxine deficiency of ducks was characterized by growth depression, decreasing plasma aspartate aminotransferase activity and increasing plasma homocysteine. The ducks fed vitamin B6-deficient basal diets had the worst weight gain and feed/gain among all birds and this growth depression was alleviated (ppyridoxine was supplemented to basal diets. On the other hand, plasma aspartate aminotransferase and homocysteine may be the sensitive indicators for vitamin B6 status of ducks. The ducks fed basal diets had much lower aspartate aminotransferase activity and higher homocysteine level in plasma compared with other birds fed pyridoxine-supplemented diets (ppyridoxine requirements of Pekin ducks from hatch to 28 days of age was 2.44 mg/kg for feed/gain and 2.08 mg/kg for plasma aspartate aminotransferase and the corresponding total requirements of this vitamin for these two criteria were 4.37 and 4.01 mg/kg when the pyridoxine concentration of basal diets was included, respectively. All data suggested that pyridoxine deficiency could cause growth retardation in ducks and the deficiency of this vitamin could be indicated by decreasing plasma aspartate aminotransferase activity and increasing plasma homocysteine.

  8. The sodium effect of Bacillus subtilis growth on aspartate.

    Science.gov (United States)

    Whiteman, P; Marks, C; Freese, E

    1980-08-01

    aspH mutants of Bacillus subtilis have a constitutive aspartase activity and grow well on aspartate as sole carbon source. aspH aspT mutants, which are deficient in high affinity aspartate transport as a result of the aspT mutation, grow as well as aspH mutants in medium containing high concentrations of aspartate and Na+. This Na+ effect is not due to an enhancement of aspartate transport but is the result of increased cellular metabolism. The ability to grow rapidly in sodium aspartate is induced by prior growth in the presence of Na+. In potassium aspartate, the addition of arginine, citrulline, ornithine, delta 1-pyrroline-5-carboxylase or proline instead of Na+ also allows rapid growth; but in a mutant deficient in ornithine--oxo-acid aminotransferase, only pyrroline-carboxylate or proline can replace Na+. The amino acid pool of cells growing slowly in potassium aspartate contains proline at a low concentration which increases upon addition of proline (but not Na+) to the medium. Thus, Na+ addition does not increase the synthesis of proline, but proline or pyrroline-carboxylate acts similarly to Na+ either in preventing some inhibitory effect (by aspartate or the accumulating NH4+) or in overcoming some deficiency (e.g. in further proline metabolism.

  9. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis

    OpenAIRE

    Radford Cynthia L; Knodel Marvin H; Venos Erik S; Berger Bradley J

    2004-01-01

    Abstract Background Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending...

  10. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains.

    Science.gov (United States)

    Han, Qian; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2010-02-01

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  11. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    Energy Technology Data Exchange (ETDEWEB)

    Q Han; T Cai; D Tagle; J Li

    2011-12-31

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

  12. STUDY OF SERUM AMINOTRANSFERASE LEVELS IN DENGUE FEVER

    Directory of Open Access Journals (Sweden)

    Jnaneshwari

    2014-03-01

    aspartate aminotransferase was significantly raised compared to alanine aminotransferase levels in all forms of dengue infection. The degree of affection of serum albumin and prothrombin time which are absolute indicators of liver cell function correlated with severity of dengue infection.

  13. Effect of Eight Weeks Forced Swimming Training with Methadone Supplementation on Aspartate Aminotransferase, Alanine Aminotransferase, and Alkaline Phosphatase of Rats

    Directory of Open Access Journals (Sweden)

    Seyed Ali Hoseini

    2016-12-01

    Full Text Available Background & Objective: Narcotics abuse can induce liver disorders; nevertheless, exercises improve liver disorders. The present research aimed to review the effect of eight weeks forced swimming training with methadone supplementation on liver enzymes of rats. Material & Method: In this experimental research, 48 rats were selected, and after one week adaptation to lab environment, they were randomly divided into four groups of 12 rats including (1 forced swimming training, (2 methadone supplementation, (3 forced swimming training with methadone supplementation, and (4 control. Groups 2 and 3 used 2 mg/kg methadone daily for 8 weeks. Also, groups 1 and 3 swam for 8 weeks, three sessions per week and each session for 30 minutes. For statistical analysis of data, one way ANOVA and Tukey post hoc tests were used (α≤0.05. Results: Findings showed that forced swimming training, methadone supplementation, and forced swimming training with methadone supplementation had no significant effect on AST (P=0.90 and ALT (P=0.99 enzymes; forced swimming training had significant effect on increase of ALP (P=0.001; also, forced swimming training, compared with methadone supplementation and combination of forced swimming training with methadone supplementation, had significant effect on increase of ALP (P=0.001. Conclusion: Accordingly, 8 weeks of forced swimming training with methadone has possibly no significant effect on liver enzymes.

  14. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  15. Relationship Between Serum Aminotransferase Levels and Metabolic Disorders in Northern China

    Directory of Open Access Journals (Sweden)

    Jq Niu

    2012-02-01

    Full Text Available Background: Increasing evidence suggests an association between ele­vated serum aminotransferase levels and metabolic disorders (metabolic syndrome, hyperlipemia and diabetes mellitus. However, the significance of relatively low levels of aminotransferases in relation to metabolic disorders has not been fully investigated in the general population. We inves­tigated the association between serum amiontransferase levels and metabolic disorders using data from a survey in Jilin province, China.Methods: In 2007, a survey was conducted throughout Jilin, China, covering both urban and rural areas. A total of 3835 people, 18 to 79 years old including 1761 men and 2074 women, underwent real-time ultrasonography, blood tests including aspartate aminotransferase and alanine aminotransferase, and had interviews with a structured questionnaire.Results: Serum aminotransferase levels within the normal range were asso­ciated with metabolic syndrome independent of age, occupation, cultural and educational level, income, body mass index, waist circumference, smoking, and alcohol intake. Compared with the lowest level (50 IU/L were 1.92, 2.50, 2.97, and 3.52 in men, and 1.38 , 1.54, 3.06, and 2.62 in women, respectively. Near-normal serum aminotransferase levels asso­ciated with hyperlipemia, NAFLD, DM were also found in the study.Conclusions: Normal to near-normal serum aminotransferase levels are associated with metabolic disorders. Serum ALT levels of 21-25 IU/L for men, and 17-22 IU/L for women are suggested as cutoff levels that detect metabolic disorders affecting the liver.

  16. Thermal stability, pH dependence and inhibition of four murine kynurenine aminotransferases

    Directory of Open Access Journals (Sweden)

    Tagle Danilo A

    2010-05-01

    Full Text Available Abstract Background Kynurenine aminotransferase (KAT catalyzes the transamination of kynunrenine to kynurenic acid (KYNA. KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains. Results This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65°C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5°C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively. Conclusion The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases.

  17. The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II.

    Science.gov (United States)

    Sivaraman, Sharada; Kirsch, Jack F

    2006-05-01

    Human tyrosine aminotransferase (hTATase) is the pyridoxal phosphate-dependent enzyme that catalyzes the reversible transamination of tyrosine to p-hydrophenylpyruvate, an important step in tyrosine metabolism. hTATase deficiency is implicated in the rare metabolic disorder, tyrosinemia type II. This enzyme is a member of the poorly characterized Igamma subfamily of the family I aminotransferases. The full length and truncated forms of recombinant hTATase were expressed in Escherichia coli, and purified to homogeneity. The pH-dependent titration of wild-type reveals a spectrum characteristic of family I aminotransferases with an aldimine pK(a) of 7.22. I249A mutant hTATase exhibits an unusual spectrum with a similar aldimine pK(a) (6.85). hTATase has very narrow substrate specificity with the highest enzymatic activity for the Tyr/alpha-ketoglutarate substrate pair, which gives a steady state k(cat) value of 83 s(-1). In contrast there is no detectable transamination of aspartate or other cosubstrates. The present findings show that hTATase is the only known aminotransferase that discriminates significantly between Tyr and Phe: the k(cat)/K(m) value for Tyr is about four orders of magnitude greater than that for Phe. A comparison of substrate specificities of representative Ialpha and Igamma aminotransferases is described along with the physiological significance of the discrimination between Tyr and Phe by hTATase as applied to the understanding of the molecular basis of phenylketonuria.

  18. Weaning Induced Hepatic Oxidative Stress, Apoptosis, and Aminotransferases through MAPK Signaling Pathways in Piglets

    Science.gov (United States)

    Luo, Zhen; Zhu, Wei; Guo, Qi; Luo, Wenli; Zhang, Jing; Xu, Weina

    2016-01-01

    This study investigated the effects of weaning on the hepatic redox status, apoptosis, function, and the mitogen-activated protein kinase (MAPK) signaling pathways during the first week after weaning in piglets. A total of 12 litters of piglets were weaned at d 21 and divided into the weaning group (WG) and the control group (CG). Six piglets from each group were slaughtered at d 0 (d 20, referred to weaning), d 1, d 4, and d 7 after weaning. Results showed that weaning significantly increased the concentrations of hepatic free radicals H2O2 and NO, malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), while significantly decreasing the inhibitory hydroxyl ability (IHA) and glutathione peroxidase (GSH-Px), and altered the level of superoxide dismutase (SOD). The apoptosis results showed that weaning increased the concentrations of caspase-3, caspase-8, caspase-9 and the ratio of Bax/Bcl-2. In addition, aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT) in liver homogenates increased after weaning. The phosphorylated JNK and ERK1/2 increased, while the activated p38 initially decreased and then increased. Our results suggested that weaning increased the hepatic oxidative stress and aminotransferases and initiated apoptosis, which may be related to the activated MAPK pathways in postweaning piglets.

  19. Branched-chain amino acid aminotransferase and methionine formation in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Radford Cynthia L

    2004-10-01

    Full Text Available Abstract Background Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending on the particular species examined. Results The gene encoding for branched-chain amino acid aminotransferase in Mycobacterium tuberculosis H37Rv has been cloned, expressed, and characterised. The enzyme was found to be a member of the aminotransferase IIIa subfamily, and closely related to the corresponding aminotransferase in Bacillus subtilis, but not to that found in B. anthracis or B. cereus. The amino donor preference for the formation of methionine from ketomethiobutyrate was for isoleucine, leucine, valine, glutamate, and phenylalanine. The enzyme catalysed branched-chain amino acid and ketomethiobutyrate transamination with a Km of 1.77 – 7.44 mM and a Vmax of 2.17 – 5.70 μmol/min/mg protein, and transamination of ketoglutarate with a Km of 5.79 – 6.95 mM and a Vmax of 11.82 – 14.35 μmol/min/mg protein. Aminooxy compounds were examined as potential enzyme inhibitors, with O-benzylhydroxylamine, O-t-butylhydroxylamine, carboxymethoxylamine, and O-allylhydroxylamine yielding mixed-type inhibition with Ki values of 8.20 – 21.61 μM. These same compounds were examined as antimycobacterial agents against M. tuberculosis and a lower biohazard M. marinum model system, and were found to completely prevent cell growth. O-Allylhydroxylamine was the most effective growth inhibitor with an MIC of 78 μM against M. marinum and one of 156 ��M against M. tuberculosis. Conclusion Methionine formation from ketomethiobutyrate is catalysed by a

  20. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme

    Energy Technology Data Exchange (ETDEWEB)

    Jomrit, Juntratip [Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400 (Thailand); Center of Excellence for Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok (Thailand); Summpunn, Pijug [Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400 (Thailand); Meevootisom, Vithaya [Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400 (Thailand); Center of Excellence for Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok (Thailand); Wiyakrutta, Suthep, E-mail: scsvy@mahidol.ac.th [Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400 (Thailand); Center of Excellence for Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok (Thailand)

    2011-02-25

    Research highlights: {yields} Stereochemical mechanism of PLP enzymes is important but difficult to determine. {yields} This new method is significantly less complicated than the previous ones. {yields} This assay is as sensitive as the radioactive based method. {yields} LC-MS/MS positively identify the analyte coenzyme. {yields} The method can be used with enzyme whose apo form is unstable. -- Abstract: A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in {sup 2}H{sub 2}O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-{sup 2}H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The {sup 2}H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the {sup 2}H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of {sup 2}H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2 mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay.

  1. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin;

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  2. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Stefan, Norbert; Lindsay, Robert S

    2002-01-01

    with prospective changes in liver or whole-body insulin sensitivity and/or insulin secretion and whether these elevated enzymes predict the development of type 2 diabetes in Pima Indians. We measured ALT, AST, and GGT in 451 nondiabetic (75-g oral glucose tolerance test) Pima Indians (aged 30 +/- 6 years, body fat......It has been proposed that liver dysfunction may contribute to the development of type 2 diabetes. The aim of the present study was to examine whether elevated hepatic enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST], or gamma -glutamyltranspeptidase [GGT]) are associated...... were available. At baseline, ALT, AST, and GGT were related to percent body fat (r = 0.16, 0.17, and 0.11, respectively), M (r = -0.32, - 0.28, and -0.24), and HGO (r = 0.27, 0.12, and 0.14; all P fat, M, and AIR, higher ALT...

  3. Alanine aminotransferase controls seed dormancy in barley

    Science.gov (United States)

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  4. Longitudinal Changes in Liver Aminotransferases Predict Metabolic Syndrome in Chinese Patients with Nonviral Hepatitis

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi Cai; XIAO Juan; ZHANG Peng Peng; CHEN Li Li; CHEN Xiao Xiao; WANG Shu Mei

    2016-01-01

    ObjectiveThis study exploredthe correlation of longitudinal changes in serumalanine aminotransferase (ALT) and aspartate aminotransferase (AST)levels with the incidence of metabolic syndrome (Mets)based on a dynamic health examination cohort. MethodsA Mets-free dynamic cohortinvolving 4541 participants who underwent at leastthree health examinations from 2006 to 2011 was included in the study. Mets was defined according to the Chinese Medical Association Diabetes Branch definitionthat included hypertension, obesity, hyperlipidemia, and hyperglycemia. Generalized estimating equation (GEE) model was used to analyze multivariate relative risk (RR) of repeated observations ofALT and AST in quartiles for Mets or its components according to gender. ResultsIn all, 826Mets cases were reported. Adjustmentof relevant parameters indicated that time-varyingchanges in ALT and ASTlevels were positively associated with the incidenceof Mets in a dose-response manner. Positive association between high ALT levels and fatty liver was much stronger than that between high AST levels and fatty liver, particularly in maleparticipants. These associations were consistently observed in the following subgroups: participants with ALT and ASTlevels of ConclusionThese results suggested that elevated serum ALT and AST levels wereearly biomarkers of Mets or its components.

  5. Clinical relevance and discriminatory value of elevated liver aminotransferase levels for dengue severity.

    Directory of Open Access Journals (Sweden)

    Linda K Lee

    Full Text Available BACKGROUND: Elevation of aspartate aminotransferase (AST and alanine aminotransferase (ALT is prominent in acute dengue illness. The World Health Organization (WHO 2009 dengue guidelines defined AST or ALT ≥ 1000 units/liter (U/L as a criterion for severe dengue. We aimed to assess the clinical relevance and discriminatory value of AST or ALT for dengue hemorrhagic fever (DHF and severe dengue. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively studied and classified polymerase chain reaction positive dengue patients from 2006 to 2008 treated at Tan Tock Seng Hospital, Singapore according to WHO 1997 and 2009 criteria for dengue severity. Of 690 dengue patients, 31% had DHF and 24% severe dengue. Elevated AST and ALT occurred in 86% and 46%, respectively. Seven had AST or ALT ≥ 1000 U/L. None had acute liver failure but one patient died. Median AST and ALT values were significantly higher with increasing dengue severity by both WHO 1997 and 2009 criteria. However, they were poorly discriminatory between non-severe and severe dengue (e.g., AST area under the receiver operating characteristic [ROC] curve=0.62; 95% confidence interval [CI]: 0.57-0.67 and between dengue fever (DF and DHF (AST area under the ROC curve=0.56; 95% CI: 0.52-0.61. There was significant overlap in AST and ALT values among patients with dengue with or without warning signs and severe dengue, and between those with DF and DHF. CONCLUSIONS: Although aminotransferase levels increased in conjunction with dengue severity, AST or ALT values did not discriminate between DF and DHF or non-severe and severe dengue.

  6. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.

    Science.gov (United States)

    Marienhagen, Jan; Kennerknecht, Nicole; Sahm, Hermann; Eggeling, Lothar

    2005-11-01

    Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.

  7. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-06-01

    Full Text Available Kynurenine aminotransferase isozymes (KATs 1–4 are members of the pyridoxal-5’-phosphate (PLP-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN to kynurenic acid (KYNA, a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70% in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies.

  8. Perfil da aspartato aminotransferase e alanina aminotransferase e biometria do fígado de codornas japonesas

    OpenAIRE

    Barbosa,Anderson de Almeida; Müller,Elisa Sialino; Moraes,George Henrique Kling de; Umigi,Regina Tie; Barreto,Sergio Luiz de Toledo; Ferreira,Ronaldo Martins

    2010-01-01

    Objetivou-se determinar o perfil da aspartato aminotransferase e alanina aminotransferase e a biometria do fígado de codornas poedeiras (Coturnix coturnix japonica) de 1 a 25 dias de idade. Avaliaram-se o peso vivo e o peso do fígado e as atividades das aspartato e alanina aminotransferases no fígado utilizando-se 90 codornas de 1 dia de idade. O delineamento experimental foi inteiramente casualizado com seis idades e cinco repetições, considerando cada animal uma unidade experimental. Aos 1,...

  9. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    Pregnancy in women with diabetes is associated with an increased risk of obstetric complications and perinatal mortality. Maintenance of near-normal glycemia during pregnancy can bring the prevalence of fetal, neonatal and maternal complications closer to that of the nondiabetic population. Changes...... hyperglycemia with a tendency towards fewer episodes of severe hypoglycemia compared with human insulin. Treatment with insulin aspart was associated with a tendency toward fewer fetal losses and preterm deliveries than treatment with human insulin. Insulin aspart could not be detected in the fetal circulation...

  10. Comparison of blood aminotransferase methods for assessment of myopathy and hepatopathy in Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Harr, Kendal E; Allison, Kathryn; Bonde, Robert K; Murphy, David; Harvey, John W

    2008-06-01

    Muscle injury is common in Florida manatees (Trichechus manatus latirostris). Plasma aspartate aminotransferase (AST) is frequently used to assess muscular damage in capture myopathy and traumatic injury. Therefore, accurate measurement of AST and alanine aminotransferase (ALT) is important in managed, free-ranging animals, as well as in those rehabilitating from injury. Activities of these enzymes, however, are usually not increased in manatees with either acute or chronic muscle damage, despite marked increases in plasma creatine kinase activity. It is hypothesized that this absence of response is due to apoenzymes in the blood not detected by commonly used veterinary assays. Addition of coenzyme pyridoxal-5-phosphate (P5P or vitamin B6) should, therefore, result in higher measured enzyme activities. The objective of this study was to determine the most accurate, precise, and diagnostically useful method for aminotransferase measurement in manatees that can be used in veterinary practices and diagnostic laboratories. Additionally, appropriate collection and storage techniques were assessed. The use of an optimized commercial wet chemical assay with 100 micromol P5P resulted in a positive bias of measured enzyme activities in a healthy population of animals. However, AST and ALT were still much lower than that typically observed in domestic animals and should not be used alone in the assessment of capture myopathy and muscular trauma. Additionally, the dry chemistry analyzer, typically used in clinics, reported significantly higher and less precise AST and ALT activities with poor correlation to those measured with wet chemical methods found in diagnostic laboratories. Therefore, these results cannot be clinically compared. Overall, the optimized wet chemical method was the most precise and diagnostically useful measurement of aminotransferase in samples. Additionally, there was a statistically significant difference between paired serum and plasma measurement

  11. Elevated Serum Aminotransferases Secondary to Rippling Muscle Disease

    Directory of Open Access Journals (Sweden)

    Kumanan Nalankilli

    2013-05-01

    Full Text Available A 43-year-old man was referred by his general practitioner to the hepatology clinic with deranged serum aminotransferases, discovered as part of routine blood tests. The objective was to identify the cause of elevated serum aminotransferases in this patient in a systematic manner. Thorough history and physical examination revealed a background history of rippling muscle disease secondary to caveolin-3 protein deficiency, with typical clinical signs. There was a positive family history of musculoskeletal disease in the patient's father and brother. Previous diagnostic tests performed to investigate the patient's musculoskeletal symptoms, including muscle biopsies, were revisited. Subsequent systematic investigations such as blood tests, liver ultrasound scan and Fibroscan® were performed to exclude potential causes of the deranged serum aminotransferases. Liver biopsy was not performed. A consistent pattern of chronic low-grade elevations of serum aminotransferases, less than three times the upper limit of the normal range, was found. This was associated with a consistently elevated serum creatine kinase and normal renal function tests. Previous muscle biopsies had revealed chronic degenerative and regenerative changes suggestive of a focal necrotizing myopathy. Liver ultrasound scan and Fibroscan® were normal. With exclusion of other liver diseases and identification of profoundly elevated serum creatine kinase concentration, the deranged aminotransferases were attributed to rippling muscle disease.

  12. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    Science.gov (United States)

    Cha, Hyung Jin; Jeong, Jae-Hee; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-01-01

    YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP) as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  13. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Cha

    Full Text Available YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  14. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites.

  15. AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences.We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (pppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant.The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.

  16. Effect of weak electromagnetic field on cardiac work, concentration of thyroid hormones and blood aminotransferase level in the chick embryo.

    Science.gov (United States)

    Pawlak, Krzysztof; Sechman, Andrzej; Nieckarz, Zenon; Wojtysiak, Dorota

    2013-09-01

    The aim of the study was to determine the effect of alternating electromagnetic field (EMF; 50 Hz frequency, 50 and 100 μT induction) on cardiac work of the chick embryo. Eggs from the experimental groups were exposed to EMF throughout incubation. During the experiment, heart rate (ballistocardiographic method), thyroxine (T4) and triiodothyronine (T3) concentrations, heart weight, ventricle wall thickness, and levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. The results show, for the first time, that the exposure of chick embryos to EMF augments the heart rate, especially from 17 days of incubation. The increased heart rate in the embryos exposed to EMF was associated with considerable increases in plasma T4 and T3 concentrations, which were recorded during the final stage of embryogenesis. The significant effect of the 100-μT field on heart weight and blood AST levels in the embryos suggests that EMF has a direct effect on the physiological function of cardiac muscle.

  17. Correlation between Aminotransferase Ratio (AST/ALT and Other Biochemical Parameters in Chronic Liver Disease of Viral Origin

    Directory of Open Access Journals (Sweden)

    Shah Md Fazlul Karim

    2015-03-01

    Full Text Available Background: In recent years the ratio of aspartate aminotransferase (AST to alanine aminotransferase (ALT in patients of chronic liver disease (CLD of various origins has gained much attention. This variable is readily available, easy to interpret, and inexpensive and the clinical utility of the AST/ALT ratio in the diagnostic workup of patients with CLD is quite promising. Objective: The present study was designed to find out the link between aminotransferase (AST/ALT ratio with commonly measured biochemical parameters of liver function tests in CLD of viral origin. Materials and method: This cross sectional study was carried out in the department of Biochemistry, Sir Salimullah Medical College, Dhaka, Bangladesh. Forty four biopsy proven diagnosed subjects of chronic viral hepatitis without cirrhosis of both sex were selected purposively. With aseptic precaution 5 mL venous blood was collected from each subject and common liver function tests (serum AST, ALT, AST/ALT ratio, alkaline phosphatase, total bilirubin, serum total protein, serum albumin, serum globulin, serum albumin/globulin ratio, prothrombin time and viral serology (HBsAg, Anti HDV antibody, Anti HCV antibody were performed. Data were analyzed by SPSS version 19 for Windows. Pearson’s correlation test was done to determine association between AST/ALT with other biochemical parameters. Results: Mean(±SD age of the study subjects was 32.55±10.55 years (range 20-50 years with 48 (77.7% male and 14 (22.6% female subjects. Pearson’s correlation test was done between AST to ALT ratio with other biochemical parameters and prothrombin time showed significant positive correlation (p <0.01. Conclusion: In our study we found significant positive correlation between AST/ALT with prothrombin time in CLD subjects without cirrhosis.

  18. 21 CFR 582.5017 - Aspartic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5017 Aspartic acid. (a)...

  19. Comparison of blood aminotransferase methods for assessment of myopathy and hepatopathy in Florida manatees (Trichechus manatus latirostris)

    Science.gov (United States)

    Harr, K.E.; Allison, K.; Bonde, R.K.; Murphy, D.; Harvey, J.W.

    2008-01-01

    Muscle injury is common in Florida manatees (Trichechus manatus latirostris). Plasma aspartate amino-transferase (AST) is frequently used to assess muscular damage in capture myopathy and traumatic injury. Therefore, accurate measurement of AST and alanine aminotransferase (ALT) is important in managed, free-ranging animals, as well as in those rehabilitating from injury. Activities of these enzymes, however, are usually not increased in manatees with either acute or chronic muscle damage, despite marked increases in plasma creatine kinase activity. It is hypothesized that this absence of response is due to apoenzymes in the blood not detected by commonly used veterinary assays. Addition of coenzyme pyridoxal-5-phosphate (P5P or vitamin B6) should, therefore, result in higher measured enzyme activities. The objective of this study was to determine the most accurate, precise, and diagnostically useful method for aminotransferase measurement in manatees that can be used in veterinary practices and diagnostic laboratories. Additionally, appropriate collection and storage techniques were assessed. The use of an optimized commercial wet chemical assay with 100 ??mol P5P resulted in a positive bias of measured enzyme activities in a healthy population of animals. However, AST and ALT were still much lower than that typically observed in domestic animals and should not be used alone in the assessment of capture myopathy and muscular trauma. Additionally, the dry chemistry analyzer, typically used in clinics, reported significantly higher and less precise AST and ALT activities with poor correlation to those measured with wet chemical methods found in diagnostic laboratories. Therefore, these results cannot be clinically compared. Overall, the optimized wet chemical method was the most precise and diagnostically useful measurement of aminotransferase in samples. Additionally, there was a statistically significant difference between paired serum and plasma measurement

  20. Crystal structures of the PLP- and PMP-bound forms of BtrR, a dual functional aminotransferase involved in butirosin biosynthesis.

    Science.gov (United States)

    Popovic, Bojana; Tang, Xiao; Chirgadze, Dimitri Y; Huang, Fanglu; Blundell, Tom L; Spencer, Jonathan B

    2006-10-01

    The aminotransferase (BtrR), which is involved in the biosynthesis of butirosin, a 2-deoxystreptamine (2-DOS)-containing aminoglycoside antibiotic produced by Bacillus circulans, catalyses the pyridoxal phosphate (PLP)-dependent transamination reaction both of 2-deoxy-scyllo-inosose to 2-deoxy-scyllo-inosamine and of amino-dideoxy-scyllo-inosose to 2-DOS. The high-resolution crystal structures of the PLP- and PMP-bound forms of BtrR aminotransferase from B. circulans were solved at resolutions of 2.1 A and 1.7 A with R(factor)/R(free) values of 17.4/20.6 and 19.9/21.9, respectively. BtrR has a fold characteristic of the aspartate aminotransferase family, and sequence and structure analysis categorises it as a member of SMAT (secondary metabolite aminotransferases) subfamily. It exists as a homodimer with two active sites per dimer. The active site of the BtrR protomer is located in a cleft between an alpha helical N-terminus, a central alphabetaalpha sandwich domain and an alphabeta C-terminal domain. The structures of the PLP- and PMP-bound enzymes are very similar; however BtrR-PMP lacks the covalent bond to Lys192. Furthermore, the two forms differ in the side-chain conformations of Trp92, Asp163, and Tyr342 that are likely to be important in substrate selectivity and substrate binding. This is the first three-dimensional structure of an enzyme from the butirosin biosynthesis gene cluster.

  1. The hydrothermal reaction kinetics of aspartic acid

    Science.gov (United States)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  2. Determination of aspartate kinase activity in maize tissues

    OpenAIRE

    Ferreira,Renato Rodrigues; Vendemiatti,Ariane; Gratão, Priscila Lupino; Lea, Peter John; Azevedo, Ricardo Antunes

    2005-01-01

    Lysine, threonine, methionine and isoleucine are synthesized from aspartate in a branched pathway in higher plants. Aspartate kinase plays a key role in the control of the aspartate pathway. The enzyme is very sensitive to manipulation and storage and the hydroxamate assay normally used to determine aspartate kinase activity has to be altered according to the plant species and tissue to be analyzed. We have optimized the assay for the determination of aspartate kinase in maize plants callus c...

  3. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;

    2016-01-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  4. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  5. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  6. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

  7. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate

    Directory of Open Access Journals (Sweden)

    Miguel Angel Moreno

    2014-12-01

    Full Text Available Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.

  8. Critical aspartic acid residues in pseudouridine synthases.

    Science.gov (United States)

    Ramamurthy, V; Swann, S L; Paulson, J L; Spedaliere, C J; Mueller, E G

    1999-08-01

    The pseudouridine synthases catalyze the isomerization of uridine to pseudouridine at particular positions in certain RNA molecules. Genomic data base searches and sequence alignments using the first four identified pseudouridine synthases led Koonin (Koonin, E. V. (1996) Nucleic Acids Res. 24, 2411-2415) and, independently, Santi and co-workers (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762) to group this class of enzyme into four families, which display no statistically significant global sequence similarity to each other. Upon further scrutiny (Huang, H. L., Pookanjanatavip, M., Gu, X. G., and Santi, D. V. (1998) Biochemistry 37, 344-351), the Santi group discovered that a single aspartic acid residue is the only amino acid present in all of the aligned sequences; they then demonstrated that this aspartic acid residue is catalytically essential in one pseudouridine synthase. To test the functional significance of the sequence alignments in light of the global dissimilarity between the pseudouridine synthase families, we changed the aspartic acid residue in representatives of two additional families to both alanine and cysteine: the mutant enzymes are catalytically inactive but retain the ability to bind tRNA substrate. We have also verified that the mutant enzymes do not release uracil from the substrate at a rate significant relative to turnover by the wild-type pseudouridine synthases. Our results clearly show that the aligned aspartic acid residue is critical for the catalytic activity of pseudouridine synthases from two additional families of these enzymes, supporting the predictive power of the sequence alignments and suggesting that the sequence motif containing the aligned aspartic acid residue might be a prerequisite for pseudouridine synthase function.

  9. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.

    Science.gov (United States)

    Mehere, Prajwalini; Han, Qian; Lemkul, Justin A; Vavricka, Christopher J; Robinson, Howard; Bevan, David R; Li, Jianyong

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  10. Biochemical and structural properties of mouse kynurenine aminotransferase III.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2009-02-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60 degrees C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  11. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III▿

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A.; Li, Jianyong

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60°C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain. PMID:19029248

  12. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  13. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT, E.C. 2.6.1.2, is a pyridoxal-5'-phosphate-dependent (PLP enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1 knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s previously observed.

  14. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  15. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  16. Normal serum alanine aminotransferase activity in uncomplicated obesity

    Institute of Scientific and Technical Information of China (English)

    Gianluca Iacobellis; Antonio Moschetta; Maria Cristina Ribaudo; Alessandra Zappaterreno; Concetta Valeria Iannucci; Frida Leonetti

    2005-01-01

    AIM: To evaluate serum alanine aminotransferase (ALT)activity in a well-characterized group of uncomplicated obese subjects and its correlation with insulin resistance,plasma adiponectin, and leptin concentrations.METHODS: One hundred and five uncomplicatedobese subjects (87 women, 18 men, age 34.3±9.6 years,BMI 39.9±8.3 kg/m2)were studied. Serum ALT activity was evaluated. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp (M index) and fasting insulin. Plasma leptin and adiponectin levels were also measured.RESULTS: Serum ALT concentration in the whole group of uncomplicated obese subjects was 17.73±6.33 U/L with none of the subjects presenting ALT levels greater than 43 U/L and only 9 (11%) women and 3 (19%) men showed ALT levels >19 and >30 U/L for women and men,respectively. No significant difference was detected in serum ALT levels between severe obese subjects (BMI >40 kg/m2) and those with BMI <40 kg/m2 (18.63±6.25 vs 17.26±6.02 U/L). ALT was significantly correlated with fasting insulin (r = 0.485, P = 0.02) and triglycerides (r= 0.358, P= 0.03).CONCLUSION: Serum ALT activity is practically normal in uncomplicated obese subjects, independently of their obesity degree. These findings suggest the role of obesityrelated comorbidities and not of BMI as main risk factors for elevated ALT levels in obese subjects.

  17. A COMPARATIVE STUDY ON THE ACTIVITY OF ALANIN-AMINOTRANSFERASE IN HYPOPHTHALMICHTHYS MOLITRIX AND ARISTICHTHYS NOBILIS

    Directory of Open Access Journals (Sweden)

    Gabriela Vasile

    2006-08-01

    Full Text Available The present paper represents a comparative study on the activity of one aminotransferase - alaninaminotransferase, in the digestive tube of Hypophthalmichthys molitrix (silver carp and Aristichthys nobilis (bighead carp. The enzymatic activity has been determined colorimetrically, with 2, 4 - dinitrophenyl hydrazine, the results obtained being expressed as UE / g / min. It was observed that, comparatively with the alanin-aminotransferase activity recorded in silver carp, in the case of bighead carp, the values recorded are much lower.

  18. Properties of serine: glyoxylate aminotransferase purified from Arabidopsis thaliana leaves

    Institute of Scientific and Technical Information of China (English)

    Maria Kendziorek; Andrzej Paszkowski

    2008-01-01

    The photorespiratory enzyme L-serine: glyoxylate aminotransferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The final enzyme was approximately 80% pure as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis.The molecular mass estimated by gel filtration chromatography on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa,42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum Ph value was 9.2. The enzyme activity was inhibited by aminooxyacetate and β-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55% of that observed with L-serine and glyoxylate, The lower Km value (1.25 Mm) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approximately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 Mm for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1: 7 for the recombinant SGAT

  19. Alanine aminotransferase, gamma-glutamyltransferase (GGT) and all-cause mortality: results from a population-based Danish twins study alanine aminotransferase, GGT and mortality in elderly twins

    DEFF Research Database (Denmark)

    Fraser, Abigail; Thinggaard, Mikael; Christensen, Kaare;

    2009-01-01

    Abstract Background/Aims: Alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) are widely used markers of liver disease. Several population-based cohort studies have found associations of these liver enzymes with all-cause mortality. None of these studies controlled for genetic...

  20. Crystal structure of putrescine aspartic acid complex

    OpenAIRE

    Ramaswamy, S.; Murthy, MRN

    1990-01-01

    Polyamines, putrescine, spermidine and spermine are ubiquitous biogenic cations believed to be important for a variety of cellular processes. In order to obtain structural information on the interaction of these amines with other biomolecules, the structure of a complex of putrescine with aspartic acid was determined using single crystal X-ray diffraction methods. The crystals belong monoclinic space group $C_2$ with $a = 21.504 \\AA$, $b = 4.779 \\AA$, $c = 8.350 \\AA$ and $\\beta = {97.63}^{\\ci...

  1. Studies on the cyclization reaction of D-aspartic acid

    Institute of Scientific and Technical Information of China (English)

    Yu Chuan Li; Si Ping Pang; Yong Zhong Yu

    2007-01-01

    The cyclization reaction of D-aspartic acid was studied, the carboxyl groups of D-aspartic acid were protected by benzyl alcohol to give compound D-dibenzyl aspartate. Then (4R)-benzyl azetidine-2-one-4-carboxylate and meso-3,6-disubstituted piperazine2,5-diones were synthesized via intramolecular cyclization and intermolecular cyclization of D-dibenzyl aspartate, respectively, and their structures were confirmed by 1H NMR and MS. Both cyclization reaction conditions were also investigated in detail.

  2. The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure.

    Science.gov (United States)

    Duff, Stephen M G; Rydel, Timothy J; McClerren, Amanda L; Zhang, Wenlan; Li, Jimmy Y; Sturman, Eric J; Halls, Coralie; Chen, Songyang; Zeng, Jiamin; Peng, Jiexin; Kretzler, Crystal N; Evdokimov, Artem

    2012-12-01

    In this paper we describe the expression, purification, kinetics and biophysical characterization of alanine aminotransferase (AlaAT) from the barley plant (Hordeum vulgare). This dimeric PLP-dependent enzyme is a pivotal element of several key metabolic pathways from nitrogen assimilation to carbon metabolism, and its introduction into transgenic plants results in increased yield. The enzyme exhibits a bi-bi ping-pong reaction mechanism with a K(m) for alanine, 2-oxoglutarate, glutamate and pyruvate of 3.8, 0.3, 0.8 and 0.2 mM, respectively. Barley AlaAT catalyzes the forward (alanine-forming) reaction with a k(cat) of 25.6 s(-1), the reverse (glutamate-forming) reaction with k(cat) of 12.1 s(-1) and an equilibrium constant of ~0.5. The enzyme is also able to utilize aspartate and oxaloacetate with ~10% efficiency as compared to the native substrates, which makes it much more specific than related bacterial/archaeal enzymes (that also have lower K(m) values). We have crystallized barley AlaAT in complex with PLP and l-cycloserine and solved the structure of this complex at 2.7 Å resolution. This is the first example of a plant AlaAT structure, and it reveals a canonical aminotransferase fold similar to structures of the Thermotoga maritima, Pyrococcus furiosus, and human enzymes. This structure bridges our structural understanding of AlaAT mechanism between three kingdoms of life and allows us to shed some light on the specifics of the catalysis performed by these proteins.

  3. Selected Cytokines Serve as Potential Biomarkers for Predicting Liver Inflammation and Fibrosis in Chronic Hepatitis B Patients With Normal to Mildly Elevated Aminotransferases.

    Science.gov (United States)

    Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang

    2015-11-01

    Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase (AST) to platelet ratio index (APRI) and FIB-4 score for significant fibrosis. In conclusion, CXCL-11 was independently associated with at least moderate inflammation, whereas IL-2R and TGF-α were independent indicators of significant fibrosis in both, total CHB patients and patients with normal or mildly elevated ALT. An IL-2R and TGF-α based score (fib-index) was superior to APRI and FIB-4 for the diagnosis

  4. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    Science.gov (United States)

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  5. Biochemical properties and crystal structure of a β-phenylalanine aminotransferase from Variovorax paradoxus.

    Science.gov (United States)

    Crismaru, Ciprian G; Wybenga, Gjalt G; Szymanski, Wiktor; Wijma, Hein J; Wu, Bian; Bartsch, Sebastian; de Wildeman, Stefaan; Poelarends, Gerrit J; Feringa, Ben L; Dijkstra, Bauke W; Janssen, Dick B

    2013-01-01

    By selective enrichment, we isolated a bacterium that can use β-phenylalanine as a sole nitrogen source. It was identified by 16S rRNA gene sequencing as a strain of Variovorax paradoxus. Enzyme assays revealed an aminotransferase activity. Partial genome sequencing and screening of a cosmid DNA library resulted in the identification of a 1,302-bp aminotransferase gene, which encodes a 46,416-Da protein. The gene was cloned and overexpressed in Escherichia coli. The recombinant enzyme was purified and showed a specific activity of 17.5 U mg(-1) for (S)-β-phenylalanine at 30°C and 33 U mg(-1) at the optimum temperature of 55°C. The β-specific aminotransferase exhibits a broad substrate range, accepting ortho-, meta-, and para-substituted β-phenylalanine derivatives as amino donors and 2-oxoglutarate and pyruvate as amino acceptors. The enzyme is highly enantioselective toward (S)-β-phenylalanine (enantioselectivity [E], >100) and derivatives thereof with different substituents on the phenyl ring, allowing the kinetic resolution of various racemic β-amino acids to yield (R)-β-amino acids with >95% enantiomeric excess (ee). The crystal structures of the holoenzyme and of the enzyme in complex with the inhibitor 2-aminooxyacetate revealed structural similarity to the β-phenylalanine aminotransferase from Mesorhizobium sp. strain LUK. The crystal structure was used to rationalize the stereo- and regioselectivity of V. paradoxus aminotransferase and to define a sequence motif with which new aromatic β-amino acid-converting aminotransferases may be identified.

  6. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Ealick, Steven E. (Cornell)

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  7. D-aspartate and NMDA, but not L-aspartate, block AMPA receptors in rat hippocampal neurons

    DEFF Research Database (Denmark)

    Gong, Xiang-Qun; Frandsen, Anne; Lu, Wei-Yang;

    2005-01-01

    -independent in the tested voltage range (-80 to +60 mV). 3 The estimated EC50 of the L-glutamate-induced AMPAR current was increased in the presence of D-aspartate, while the estimated maximum L-glutamate-induced AMPAR current was not changed. D-aspartate concentration-dependently shifted the dose-response curve of kainate...

  8. Structural studies of Pseudomonas and Chromobacterium ω-aminotransferases provide insights into their differing substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, Christopher; Isupov, Michail N.; Westlake, Aaron; Littlechild, Jennifer A., E-mail: j.a.littlechild@exeter.ac.uk [University of Exeter, Stocker Road, Exeter EX4 4QD (United Kingdom)

    2013-04-01

    The X-ray structures of two ω-aminotransferases from P. aeruginosa and C. violaceum in complex with an inhibitor offer the first detailed insight into the structural basis of the substrate specificity of these industrially important enzymes. The crystal structures and inhibitor complexes of two industrially important ω-aminotransferase enzymes from Pseudomonas aeruginosa and Chromobacterium violaceum have been determined in order to understand the differences in their substrate specificity. The two enzymes share 30% sequence identity and use the same amino acceptor, pyruvate; however, the Pseudomonas enzyme shows activity towards the amino donor β-alanine, whilst the Chromobacterium enzyme does not. Both enzymes show activity towards S-α-methylbenzylamine (MBA), with the Chromobacterium enzyme having a broader substrate range. The crystal structure of the P. aeruginosa enzyme has been solved in the holo form and with the inhibitor gabaculine bound. The C. violaceum enzyme has been solved in the apo and holo forms and with gabaculine bound. The structures of the holo forms of both enzymes are quite similar. There is little conformational difference observed between the inhibitor complex and the holoenzyme for the P. aeruginosa aminotransferase. In comparison, the crystal structure of the C. violaceum gabaculine complex shows significant structural rearrangements from the structures of both the apo and holo forms of the enzyme. It appears that the different rigidity of the protein scaffold contributes to the substrate specificity observed for the two ω-aminotransferases.

  9. Structural Determinants of the beta-Selectivity of a Bacterial Aminotransferase

    NARCIS (Netherlands)

    Wybenga, Gjalt G.; Crismaru, Ciprian G.; Janssen, Dick B.; Dijkstra, Bauke W.

    2012-01-01

    Chiral beta-amino acids occur as constituents of various natural and synthetic compounds with potentially useful bioactivities. The pyridoxal 5'-phosphate (PLP)-dependent S-selective transaminase from Mesorhizobium sp. strain LUK (MesAT) is a fold type I aminotransferase that can be used for the pre

  10. Biochemical Properties and Crystal Structure of a β-Phenylalanine Aminotransferase from Variovorax paradoxus

    NARCIS (Netherlands)

    Crismaru, Ciprian G.; Wybenga, Gjalt G.; Szymanski, Wiktor; Wijma, Hein J.; Wu, Bian; Bartsch, Sebastian; de Wildeman, Stefaan; Poelarends, Gerrit J.; Feringa, Ben L.; Dijkstra, Bauke; Janssen, Dick B.

    2013-01-01

    By selective enrichment, we isolated a bacterium that can use beta-phenylalanine as a sole nitrogen source. It was identified by 16S rRNA gene sequencing as a strain of Variovorax paradoxus. Enzyme assays revealed an aminotransferase activity. Partial genome sequencing and screening of a cosmid DNA

  11. Parvovirus B19-Induced Constellation of Acute Renal Failure, Elevated Aminotransferases and Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Iain W McAuley

    1997-01-01

    Full Text Available This report details a case of acute renal failure and elevated aminotransferases with subsequent development of congestive heart failure in a patient with history of exposure to parvovirus B19 and serological evidence of acute infection with this agent. This constellation of organ involvement has not been previously reported in the literature.

  12. Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry

    DEFF Research Database (Denmark)

    Brody, S; Andersen, Jens S.; Kannangara, C G

    1995-01-01

    Glutamate 1-semialdehyde aminotransferase produces delta-aminolevulinate for the synthesis of chlorophyll, heme, and other tetrapyrrole pigments. The native enzyme from Synechococcus is pale yellow and has absorption maxima at 338 and 418 nm from vitamin B6. Yellow, colorless, and pink forms...

  13. A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast

    DEFF Research Database (Denmark)

    Andersen, Gorm; Andersen, Birgit; Dobritzsch, D.

    2007-01-01

    In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue...

  14. Liver alanine aminotransferase, insulin resistance and endothelial dysfunction in normotriglyceridaemic subjects with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Schindhelm, RK; Diamant, M; Bakker, SJL; van Dijk, RAJM; Scheffer, PG; Teerlink, T; Kostense, PJ; Heine, RJ

    2005-01-01

    Background Plasma levels of liver transaminases, including alanine aminotransferase (ALT), are elevated in most cases of nonalcoholic fatty liver disease (NAFLD). Elevated ALT levels are associated with insulin resistance, and subjects with NAFLD have features of the metabolic syndrome that confer h

  15. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Jessen, Holly Jean; Liao, Hans H; Gort, Steven John; Selifonova, Olga V

    2014-11-18

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  16. Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Jessen, Holly Jean [Chanhassen, MN; Liao, Hans H [Eden Prairie, MN; Gort, Steven John [Apple Valley, MN; Selifonova, Olga V [Plymouth, MN

    2011-10-04

    The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.

  17. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Pranav R. Prabhu

    2010-01-01

    Full Text Available The aminotransferase gene family in the model plant Arabidopsis thaliana consists of 44 genes. Twenty six of these enzymes are classified as characterized meaning that the reaction(s that the enzyme catalyzes are documented using experimental means. The remaining 18 enzymes are uncharacterized and are therefore deemed putative. Our laboratory is interested in elucidating the function(s of the remaining putative aminotransferase enzymes. To this end, we have identified and partially characterized an aminotransferase (TAT enzyme from Arabidopsis annotated by the locus tag At5g36160. The full-length cDNA was cloned and the purified recombinant enzyme was characterized using in vitro and in vivo experiments. In vitro analysis showed that the enzyme is capable of interconverting L-Tyrosine and 4-hydroxyphenylpyruvate, and L-Phenylalanine and phenylpyruvate. In vivo analysis by functional complementation showed that the gene was able to complement an E. coli with a background of aminotransferase mutations that confers auxotrophy for L-Tyrosine and L-Phenylalanine.

  18. Late onset of dietary restriction reverses age-related decline of malate-aspartate shuttle enzymes in the liver and kidney of mice.

    Science.gov (United States)

    Goyary, Danswrang; Sharma, Ramesh

    2008-02-01

    Dietary restriction (DR) influences several physiological processes, retards the incidences and severity of various age-related diseases and extends lifespan of various animal species. The effect of DR on the activities of malate-aspartate shuttle enzymes, viz. cytosolic and mitochondrial aspartate aminotransferase (c- and m-AsAT) and malate dehydrogenase (c- and m-MDH) was investigated in the liver and kidney of adult (5-months) and old (21-months) male mice. The results show that the activity (U/mg protein) of both c- and m-MDH and AsAT is decreased significantly in the liver and kidney of old mice compared to adult ones. However, DR in old mice reverses significantly the enzyme activities to a level closer to adult animals. Polyacrylamide gel electrophoresis (PAGE) and specific staining of c-AsAT, one of the selected isoenzymes of the shuttle, showed a similar pattern of activity expression as observed by activity measurements in both the tissues studied. Slot blot analysis of c-AsAT confirmed the lower protein content of this isoenzyme in old mice compared to adult ones and a higher level in old-dietary restricted mice. Thus, our results suggest that the late onset of DR in older mice reverses decline in malate-aspartate shuttle enzymes and that it may allow a better metabolic regulation in older animals.

  19. Combined acoustic radiation force impulse, aminotransferase to platelet ratio index and Forns index assessment for hepatic fibrosis grading in hepatitis B

    Institute of Scientific and Technical Information of China (English)

    Chang-Feng; Dong; Jia; Xiao; Ling-Bo; Shan; Han-Ying; Li; Yong-Jia; Xiong; Gui-Lin; Yang; Jing; Liu; Si-Min; Yao; Sha-Xi; Li; Xiao-Hua; Le; Jing; Yuan; Bo-Ping; Zhou; George; L; Tipoe; Ying-Xia; Liu

    2016-01-01

    AIM: To investigate the combined diagnostic accuracy of acoustic radiation force impulse(ARFI), aspartate aminotransferase to platelet ratio index(APRI) and Forns index for a non-invasive assessment of liver fibrosis in patients with chronic hepatitis B(CHB). METHODS: In this prospective study, 206 patients had CHB with liver fibrosis stages F0-F4 classified by METAVIR and 40 were healthy volunteers were measured by ARFI, APRI and Forns index separately or combined as indicated. RESULTS: ARFI, APRI or Forns index demonstrated a significant correlation with the histological stage(all P < 0.001). According to the AUROC of ARFI and APRI for evaluating fibrotic stages more than F2, ARFI showed an enhanced diagnostic accuracy than APRI(P < 0.05). The combined measurement of ARFI and APRI exhibited better accuracy than ARFI alone when evaluating ≥ F2 fibrotic stage(Z = 2.77, P = 0.006). Combination of ARFI, APRI and Forns index did not obviously improve the diagnostic accuracy compared to the combination of ARFI and APRI(Z = 0.958, P = 0.338). CONCLUSION: ARFI + APRI showed enhanced diagnostic accuracy than ARFI or APRI alone for significant liver fibrosis and ARFI + APRI + Forns index shows the same effect with ARFI + APRI.

  20. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. International Federation of Clinical Chemistry and Laboratory Medicine. Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase.

    Science.gov (United States)

    Schumann, Gerhard; Bonora, Roberto; Ceriotti, Ferruccio; Férard, Georges; Ferrero, Carlo A; Franck, Paul F H; Gella, F Javier; Hoelzel, Wieland; Jørgensen, Poul Jørgen; Kanno, Takashi; Kessner, Art; Klauke, Rainer; Kristiansen, Nina; Lessinger, Jean-Marc; Linsinger, Thomas P J; Misaki, Hideo; Panteghini, Mauro; Pauwels, Jean; Schiele, Françoise; Schimmel, Heinz G; Weidemann, Gerhard; Siekmann, Lothar

    2002-07-01

    This paper is the fourth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of Gamma-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on in Appendix 2.

  1. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  2. Non-enzymic beta-decarboxylation of aspartic acid.

    Science.gov (United States)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  3. Crystal Structure of Ll-Diaminopimelate Aminotransferase From 'Arabidopsis Thaliana': a Recently-Discovered Enzyme in the Biosynthesis of L-Lysine By Plants And 'Chlamydia'

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N.; Cherney, M.M.; van Belkum, M.J.; Marcus, S.L.; Flegel, M.D.; Clay, M.D.; Deyholos, M.K.; Vederas, J.C.; James, M.N.G.

    2007-07-13

    The essential biosynthetic pathway to l-Lysine in bacteria and plants is an attractive target for the development of new antibiotics or herbicides because it is absent in humans, who must acquire this amino acid in their diet. Plants use a shortcut of a bacterial pathway to l-Lysine in which the pyridoxal-5-phosphate (PLP)-dependent enzyme ll-diaminopimelate aminotransferase (LL-DAP-AT) transforms l-tetrahydrodipicolinic acid (L-THDP) directly to LL-DAP. In addition, LL-DAP-AT was recently found in Chlamydia sp., suggesting that inhibitors of this enzyme may also be effective against such organisms. In order to understand the mechanism of this enzyme and to assist in the design of inhibitors, the three-dimensional crystal structure of LL-DAP-AT was determined at 1.95 Angstroms resolution. The cDNA sequence of LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT) was optimized for expression in bacteria and cloned in Escherichia coli without its leader sequence but with a C-terminal hexahistidine affinity tag to aid protein purification. The structure of AtDAP-AT was determined using the multiple-wavelength anomalous dispersion (MAD) method with a seleno-methionine derivative. AtDAP-AT is active as a homodimer with each subunit having PLP in the active site. It belongs to the family of type I fold PLP-dependent enzymes. Comparison of the active site residues of AtDAP-AT and aspartate aminotransferases revealed that the PLP binding residues in AtDAP-AT are well conserved in both enzymes. However, Glu97* and Asn309* in the active site of AtDAP-AT are not found at similar positions in aspartate aminotransferases, suggesting that specific substrate recognition may require these residues from the other monomer. A malate-bound structure of AtDAP-AT allowed LL-DAP and L-glutamate to be modeled into the active site. These initial three-dimensional structures of LL-DAP-AT provide insight into its substrate specificity and catalytic mechanism.

  4. Inhibition mechanism of aspartic acid on crystal growth of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2007-01-01

    The effects of aspartic acid on the crystal growth, morphology of hydroxyapatite(HAP) crystal were investigated, and the inhibition mechanism of aspartic acid on the crystal growth of hydroxyapatite was studied. The results show that the crystal growth rate of HAP decreases with the increase of the aspartic acid concentration, and the HAP crystal is thinner significantly compared with that without amino acid, which is mainly due to the (10(-)10) surface of HAP crystal being inhibited by the aspartic acids. The calculation analysis indicates that the crystal growth mechanism of HAP, following surface diffusion controlled mechanism, is not changed due to the presence of aspartic acid. AFM result shows that the front of terrace on vicinal growth hillocks is pinned, which suggests that the aspartic acid is adsorbed onto the (10(-)10) surface of HAP and interacts with the Ca2+ ions of HAP surface, so as to block the growth active sites and result in retarding of the growth of HAP crystal.

  5. Alanine aminotransferase is an inadequate surrogate marker for detecting lamivudine resistance

    Institute of Scientific and Technical Information of China (English)

    Lee; Guan; Lim; Myat; Oo; Aung; Bee; Leng; Seet; Cindy; Tan; Yock; Young; Dan; Yin; Mei; Lee; Dede; Selamat; Sutedja; Mark; Fernandes; Guan; Huei; Lee; Evelyn; Koay; Seng; Gee; Lim

    2010-01-01

    AIM: To investigate the accuracy of serum alanine aminotransferase (ALT) in diagnosing lamivudine resistance and factors that contributed to abnormal serum ALT.METHODS: This was a retrospective study of chronic hepatitis B patients on lamivudine therapy who were followed for 3-mo with liver function tests and hepatitis B virus (HBV) DNA measurement. Lamivudine resistance was defined as HBV DNA ≥ 1 log from nadir on at least 2 occasions, confirmed by genotyping. Serum ALT levels in patients with lamivudine r...

  6. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings

    Science.gov (United States)

    Xu, Zhiru; Ma, Jing; Qu, Chunpu; Hu, Yanbo; Hao, Bingqing; Sun, Yan; Liu, Zhongye; Yang, Han; Yang, Chengjun; Wang, Hongwei; Li, Ying; Liu, Guanjun

    2017-01-01

    Alanine aminotransferase (AlaAT, E.C.2.6.1.2) catalyzes the reversible conversion of pyruvate and glutamate to alanine and α-oxoglutarate. The AlaAT gene family has been well studied in some herbaceous plants, but has not been well characterized in woody plants. In this study, we identified four alanine aminotransferase homologues in Populus trichocarpa, which could be classified into two subgroups, A and B. AlaAT3 and AlaAT4 in subgroup A encode AlaAT, while AlaAT1 and AlaAT2 in subgroup B encode glutamate:glyoxylate aminotransferase (GGAT), which catalyzes the reaction of glutamate and glyoxylate to α-oxoglutarate and glycine. Four AlaAT genes were cloned from P. simonii × P. nigra. PnAlaAT1 and PnAlaAT2 were expressed predominantly in leaves and induced by exogenous nitrogen and exhibited a diurnal fluctuation in leaves, but was inhibited in roots. PnAlaAT3 and PnAlaAT4 were mainly expressed in roots, stems and leaves, and was induced by exogenous nitrogen. The expression of PnAlaAT3 gene could be regulated by glutamine or its related metabolites in roots. Our results suggest that PnAlaAT3 gene may play an important role in nitrogen metabolism and is regulated by glutamine or its related metabolites in the roots of P. simonii × P. nigra. PMID:28378825

  7. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    Directory of Open Access Journals (Sweden)

    Angel L. Pey

    2013-01-01

    Full Text Available Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis.

  8. Analysis of the enzymatic properties of a broad family of alanine aminotransferases.

    Directory of Open Access Journals (Sweden)

    Chandra H McAllister

    Full Text Available Alanine aminotransferase (AlaAT has been studied in a variety of organisms due to the involvement of this enzyme in mammalian processes such as non-alcoholic hepatocellular damage, and in plant processes such as C4 photosynthesis, post-hypoxic stress response and nitrogen use efficiency. To date, very few studies have made direct comparisons of AlaAT enzymes and fewer still have made direct comparisons of this enzyme across a broad spectrum of organisms. In this study we present a direct kinetic comparison of glutamate:pyruvate aminotransferase (GPAT activity for seven AlaATs and two glutamate:glyoxylate aminotransferases (GGAT, measuring the K(M values for the enzymes analyzed. We also demonstrate that recombinant expression of AlaAT enzymes in Eschericia coli results in differences in bacterial growth inhibition, supporting previous reports of AlaAT possessing bactericidal properties, attributed to lipopolysaccharide endotoxin recognition and binding. A probable lipopolysaccharide binding region within the AlaAT enzymes, homologous to a region of a lipopolysaccharide binding protein (LBP in humans, was also identified in this study. The AlaAT enzyme differences identified here indicate that AlaAT homologues have differentiated significantly and the roles these homologues play in vivo may also have diverged significantly. Specifically, the differing kinetics of AlaAT enzymes and how this may alter the nitrogen use efficiency in plants is discussed.

  9. Identification of ω-aminotransferase from Caulobacter crescentus and site-directed mutagenesis to broaden substrate specificity.

    Science.gov (United States)

    Hwang, Bum-Yeol; Ko, Seung-Hyun; Park, Hyung-Yeon; Seo, Joo-Hyun; Lee, Bon-Su; Kim, Byung-Gee

    2008-01-01

    A putative aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the aminotransferase was investigated. AptA showed high activity for short-chain beta-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase PDB ID: 1DGE) as a template. Then, the aminotransferase was rationally redesigned to increase the activity for 3-amino- 3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type.

  10. Biodegradability and tissue reaction of random copolymers of L-leucine, L-aspartic acid, and L-aspartic acid esters

    NARCIS (Netherlands)

    Marck, K.W.; Wildevuur, Ch.R.H.; Sederel, W.L.; Bantjes, A.; Feijen, J.

    1977-01-01

    A series of copoly(α-amino acids) with varying percentages of hydrophilic (l-aspartic acid) and hydrophobic monomers (l-leucine, ß-methyl-l-aspartate, and ß-benzyl-l-aspartate) were implanted subcutaneously in rats and the macroscopic degradation behavior was studied. Three groups of materials (A, B

  11. Toxoplasma gondii aspartic protease 1 is not essential in tachyzoites.

    Science.gov (United States)

    Polonais, Valerie; Shea, Michael; Soldati-Favre, Dominique

    2011-08-01

    Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.

  12. Value of two noninvasive methods to detect progression of fibrosis among HCV carriers with normal aminotransferases.

    Science.gov (United States)

    Colletta, Cosimo; Smirne, Carlo; Fabris, Carlo; Toniutto, Pierluigi; Rapetti, Rachele; Minisini, Rosalba; Pirisi, Mario

    2005-10-01

    The course of hepatitis C virus (HCV) infection carriers with normal/near-normal aminotransferases (NALT) is usually mild; however, in a few, fibrosis progression occurs. We aimed to verify whether monitoring by liver biopsy might be replaced by noninvasive methods and to identify factors associated with fibrosis progression in patients with persistently normal alanine aminotransferases. We studied 40 untreated HCV-RNA-positive subjects (22 male; median age, 44 years), who underwent two liver biopsies, with a median interval of 78.5 months, during which alanine aminotransferase concentrations (median number of determinations: 12) never exceeded 1.2 times the upper normal limit. Within 9 months from the second biopsy, they were tested by the shear elasticity probe (Fibroscan) and the artificial intelligence algorithm FibroTest. METAVIR fibrosis scores were analyzed in relationship to demographic, clinical, and viral parameters. Weighted kappa analysis was used to verify whether the results of noninvasive methods agreed with histology. Significant fibrosis (> or = F2), present at the first biopsy in only one patient (2.5%), was observed at the second biopsy in 14 patients (35%). At multivariate analysis, excess alcohol consumption in the past (>20 g/d; P = .017) and viral load (>8.0 x 10(6) copies/mL; P = .021) were independent predictors of progression. In identifying patients with significant fibrosis, inter-rater agreement was excellent for Fibroscan (weighted kappa = 1.0), and poor for FibroTest (weighted kappa = -0.041). In conclusion, among HCV carriers with NALT, Fibroscan is superior to the FibroTest in the noninvasive identification of fibrosis, for which excess alcohol consumption in the past and high viral load represent risk factors.

  13. Propylthiouracyl-induced severe liver toxicity: An indication for alanine aminotransferase monitoring?

    Institute of Scientific and Technical Information of China (English)

    M Benyounes; C Sempoux; C Daumerie; J Rahier; AP Geubel

    2006-01-01

    Propylthiouracyl (PTU)-related liver toxicity is likely to occur in about 1% of treated patients. In case of acute or subacute hepatitis, liver failure may occur in about one third. We report two further cases of PTU-induced subacute hepatitis, in whom the delay between occurrence of liver damage after the initiation of treatment, the underestimation of its severity and the delayed withdrawal of the drug were all likely responsible for liver failure.The high incidence of liver toxicity related to PTU, its potential severity and delayed occurrence after initiation of treatment are in favor of monthly alanine aminotransferase monitoring, at least during the first six months of therapy.

  14. Adrenal hormones and increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity after immobilization in rats.

    Science.gov (United States)

    Németh, S; Vigas, M

    1975-06-01

    In adrenomedullectomized rats the postimmobilization increase of liver tyrosine aminotransferase and tryptophan pyrrolase activity was similar as in intact animals, wherease in adrenalectomized rats this response was completely absent. In intact animals a positive correlation between the magnitude of the response of both enzymes and the duration of immobilization and/or the extent of plasma corticosterone increase was observedmit is concluded that the postimmobilization hyperactivity of both enzymes arises exclusively as a consequence of hypercorticosteronaemia, catecholamines and other hormones being without any influence on this response.

  15. Crystal structure of caesium hydrogen (L)-aspartate and an overview of crystalline compounds of aspartic acid with inorganic constituents

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, M. [Universitaet Wien (Austria). Institut fuer Mineralogie und Kristallographie; Emmerich, R.; Bohaty, L. [Universitaet zu Koeln (Austria). Institut fuer Kristallographie

    2010-08-15

    The crystal structure of the new polar compound caesium hydrogen (L)-aspartate, Cs(C{sub 4}H{sub 6}NO{sub 4}), (abbreviated: Cs(L -AspH)) was determined from single crystal X-ray diffraction data; it comprises two crystallographically different L -AspH anions that are connected via caesium cations to form a three dimensional framework. The Cs ions are irregularly sevenfold[Cs1O{sub 7}] respectively eightfold[Cs2O{sub 8}] coordinated to all {alpha}- and {beta}- carboxylate oxygen atoms. Cs(L -AspH) represents a novel structure type of its own, as do most compounds of (L)-aspartic acid with inorganic constituents. A brief summary of such structurally known aspartates is given. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II.

    Science.gov (United States)

    Natt, E; Kida, K; Odievre, M; Di Rocco, M; Scherer, G

    1992-10-01

    Tyrosinemia type II (Richner-Hanhart syndrome, RHS) is a disease of autosomal recessive inheritance characterized by keratitis, palmoplantar hyperkeratosis, mental retardation, and elevated blood tyrosine levels. The disease results from deficiency in hepatic tyrosine aminotransferase (TAT; L-tyrosine:2-oxoglutarate aminotransferase, EC 2.6.1.5), a 454-amino acid protein encoded by a gene with 12 exons. To identify the causative mutations in five TAT alleles cloned from three RHS patients, chimeric genes constructed from normal and mutant TAT alleles were tested in directing TAT activity in a transient expression assay. DNA sequence analysis of the regions identified as nonfunctional revealed six different point mutations. Three RHS alleles have nonsense mutations at codons 57, 223, and 417, respectively. One "complex" RHS allele carries a GT----GG splice donor mutation in intron 8 together with a Gly----Val substitution at amino acid 362. A new splice acceptor site in intron 2 of the fifth RHS allele leads to a shift in reading frame.

  17. Structural Insight into the Mechanism of Substrate Specificity of Aedes Kynurenine Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Gao, Y.; Robinson, H.; Li, J.

    2008-01-01

    Aedes aegypti kynurenine aminotransferase (AeKAT) is a multifunctional aminotransferase. It catalyzes the transamination of a number of amino acids and uses many biologically relevant a-keto acids as amino group acceptors. AeKAT also is a cysteine S-conjugate {beta}-lyase. The most important function of AeKAT is the biosynthesis of kynurenic acid, a natural antagonist of NMDA and {alpha}7-nicotinic acetylcholine receptors. Here, we report the crystal structures of AeKAT in complex with its best amino acid substrates, glutamine and cysteine. Glutamine is found in both subunits of the biological dimer, and cysteine is found in one of the two subunits. Both substrates form external aldemines with pyridoxal 5-phosphate in the structures. This is the first instance in which one pyridoxal 5-phosphate enzyme has been crystallized with cysteine or glutamine forming external aldimine complexes, cysteinyl aldimine and glutaminyl aldimine. All the units with substrate are in the closed conformation form, and the unit without substrate is in the open form, which suggests that the binding of substrate induces the conformation change of AeKAT. By comparing the active site residues of the AeKAT-cysteine structure with those of the human KAT I-phenylalanine structure, we determined that Tyr286 in AeKAT is changed to Phe278 in human KAT I, which may explain why AeKAT transaminates hydrophilic amino acids more efficiently than human KAT I does.

  18. A better parameter in predicting insulin resistance: Obesity plus elevated alanine aminotransferase

    Institute of Scientific and Technical Information of China (English)

    Ping-Hao Chen; Jong-Dar Chen; Yu-Cheng Lin

    2009-01-01

    AIM: To investigate the association of obesity and elevated alanine aminotransferase with insulin resistance and compare these factors with metabolic syndrome.METHODS: We enrolled a total of 1308 male workers aged from 22 to 63 years. Data was extracted from the workers’ periodic health check-ups in hospitals. All cases were from the community of northern Taiwan.This was a cross-sectional observational study from July to September in 2004. We grouped all cases into four groups, based on the quartile of homeostasis model assessment. The top fourth quartile group was defined as the group with insulin resistance. We performed multivariate logistic regression analysis for the odds ratio of the risk factors for insulin resistance.RESULTS: Compared with metabolic syndrome, the coexistence of both factors had a 4.3-fold (95% CI: 2.7-6.8) increased risk, which was more than metabolic syndrome with a 3.6-fold (95% CI: 2.6-5.0) increased risk. The two factors had a synergistic effect. The synergistic index of obesity and elevated alanine aminotransferase (ALT) was 2.1 (95% CI: 1.01-4.3).CONCLUSION: Obesity and elevated ALT are associatedwith insulin resistance. The effects are synergistic.Coexistence of them is better than metabolic syndrome in predicting insulin resistance.

  19. Conformational heterogeneity of the aspartate transporter Glt(Ph)

    NARCIS (Netherlands)

    Hänelt, Inga; Wunnicke, Dorith; Bordignon, Enrica; Steinhoff, Heinz-Juergen; Slotboom, Dirk Jan

    2013-01-01

    Glt(Ph) is a Pyrococcus horikoshii homotrimeric Na+-coupled aspartate transporter that belongs to the glutamate transporter family. Each protomer consists of a trimerization domain involved in subunit interaction and a transporting domain with the substrate-binding site. Here, we have studied the co

  20. The aspartic proteinase family of three Phytophthora species

    NARCIS (Netherlands)

    Kay, J.; Meijer, H.J.G.; Have, ten A.; Kan, van J.A.L.

    2011-01-01

    Background - Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs) are produced in a wide variety of species (from bacteria to

  1. Análise sérica das enzimas aspartato aminotransferase, alanina aminotransferase e gama glutamiltranspeptidase de coelhos adultos tratados com extrato bruto de própolis

    Directory of Open Access Journals (Sweden)

    J. N. Ribeiro

    2009-01-01

    Full Text Available

    Diversos trabalhos têm atribuído a própolis inúmeras propriedades farmacológicas, dentre elas podemos citar, como exemplo, efeitos antibacteriano, antiviral, antiinflamatório, regenerador do tecido cartilaginoso, inibidor da formação de radicais livres e redutor de níveis sangüíneo de glicose e triacilglicerol. Alguns efeitos colaterais são atribuídos à própolis principalmente em doses elevadas. Muitos efeitos tóxicos da própolis são atribuídos ao álcool etílico presente no extrato.Dentre alguns efeitos tóxicos citados em literatura como realmente da própolis temos a dermatite e o aumento da uréia sangüínea. O presente estudo teve como objetivo investigar se o extrato bruto de própolis ocasiona algum efeito adverso nos níveis séricos de alanina aminotransferase, aspartato aminotransferase e gama – glutamiltranspeptidase de coelhos saudáveis. O experimento teve 30 dias de duração, sendo as dosagens dos constituintes do sangue (alanina aminotransferase, aspartato aminotransferase e gama – glutamiltranspeptidase realizadas a 0, 15 e 30 dias. Os resultados indicaram que, de o extrato bruto de própolis na forma testadea, não ocasionou alteração relevante nos níveis séricos das enzimas marcadoras de metabolismo hepático. Palavras-chave: Própolis, alanina aminotransferase, aspartato aminotransferase, gama glutamiltranpeptidase, toxicologia.

  2. Concentração sérica das enzimas creatinoquinase, aspartato aminotransferase e dehidrogenase lática em equinos da raça crioula CK, ASTand LDH seric concentration in crioulo breed horses

    Directory of Open Access Journals (Sweden)

    Elisiane Lourdes Da Cás

    2000-08-01

    Full Text Available A concentração de creatinoquinase (CK, aspartato aminotransferase (AST e dehidrogenase lática (LDH foi determinada em amostras de soro obtidas de 60 equinos da raça Crioula: 20 éguas mantidas no pasto (Grupo A, 20 equinos em treinamento (Grupo B e 20 participantes da competição do "Freio de Ouro de 1997" em Esteio - RS (Grupo C, dos quais foram colhidas amostras 24 a 48 horas antes do início da competição e 24 e 48 horas após a mesma. Não houve variação significativa na LDH. O grupo B apresentou concentrações de CK e AST mais elevadas (pCreatine Kinase (CK, Aspartate Aminotransferase (AST and Lactic Dehidrogenase (LDH concentration was determined in serum samples obtained from 60 horses of the Criollo breed: 20 mares managed on pasture (Group A, 20 horses in training (Group B and 20 horses participating of the Freio de Ouro 1997 competition (Group C, where samples were collected 24-48 hours before competition and 24 and 48 hours there after. There was no difference in LDH values between groups. Group B horses had higher (p<0.05 CK and AST serum concentrations than horses in groups A and C, indicating an adaptation to exercise. Forty eight hours after competition, CK values were lowest and AST highest. CK and AST were more informative than LDH in evaluating muscular function. Females had higher CK activity (p<0.05 than males. There were significam diferences related to final outcome of competition with a trena of lower values in the first places, indicating the athletic condition of the best horses.

  3. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    Science.gov (United States)

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.

  4. Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats.

    Science.gov (United States)

    Liu, Yang; Xu, Huihui; Yuan, Xinpu; Rossiter, Stephen J; Zhang, Shuyi

    2012-06-01

    The enzyme alanine-glyoxylate aminotransferase 1 (AGT) functions to detoxify glyoxylate before it is converted into harmful oxalate. In mammals, mitochondrial targeting of AGT in carnivorous species versus peroxisomal targeting in herbivores is controlled by two signal peptides that correspond to these respective organelles. Differential expression of the mitochondrial targeting sequence (MTS) is considered an adaptation to diet-specific subcellular localization of glyoxylate precursors. Bats are an excellent group in which to study adaptive changes in dietary enzymes; they show unparalleled mammalian dietary diversification as well as independent origins of carnivory, frugivory, and nectarivory. We studied the AGT gene in bats and other mammals with diverse diets and found that the MTS has been lost in unrelated lineages of frugivorous bats. Conversely, species exhibiting piscivory, carnivory, insectivory, and sanguinivory possessed intact MTSs. Detected positive selection in the AGT of ancestral fruit bats further supports adaptations related to evolutionary changes in diet.

  5. Differential redox potential between the human cytosolic and mitochondrial branched-chain aminotransferase

    Institute of Scientific and Technical Information of China (English)

    Steven J. Coles; John T. Hancock; Myra E. Conway

    2012-01-01

    The human branched-chain aminotransferase (hBCAT) isoenzymes are CXXC motif redox sensitive homodimers central to glutamate metabolism in the central nervous system.These proteins respond differently to oxidation by H2O2,NO,and S-glutathionylation,suggesting that the redox potential is distinct between isoenzymes.Using various reduced to oxidized glutathione ratios (GSH:GSSG) to alter the redox environment,we demonstrate that hBCATc (cytosolic) has an overall redox potential that is 30 mV lower than hBCATm (mitochondrial).Furthermore,the CXXC motif of hBCATc was estimated to be 80 mV lower,suggesting that hBCATm is more oxidizing in nature.Western blot analysis revealed close correlations between hBCAT S-glutathionylation and the redox status of the assay environment,offering the hBCAT isoenzymes as novel biomarkers for cytosolic and mitochondrial oxidative stress.

  6. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG.

    Directory of Open Access Journals (Sweden)

    Albertus J Viljoen

    Full Text Available Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT and glutamate dehydrogenase (GDH, respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB and small (gltD subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine.

  7. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase.

    Science.gov (United States)

    Yoo, Heejin; Widhalm, Joshua R; Qian, Yichun; Maeda, Hiroshi; Cooper, Bruce R; Jannasch, Amber S; Gonda, Itay; Lewinsohn, Efraim; Rhodes, David; Dudareva, Natalia

    2013-01-01

    Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.

  8. The retarded hair growth (rhg mutation in mice is an allele of ornithine aminotransferase (Oat

    Directory of Open Access Journals (Sweden)

    Jason J. Bisaillon

    2014-01-01

    Full Text Available Because of the similar phenotypes they generate and their proximate reported locations on Chromosome 7, we tested the recessive retarded hair growth (rhg and frizzy (fr mouse mutations for allelism, but found instead that these defects complement. To discover the molecular basis of rhg, we analyzed a large intraspecific backcross panel that segregated for rhg and restricted this locus to a 0.9 Mb region that includes fewer than ten genes, only five of which have been reported to be expressed in skin. Complementation testing between rhg and a recessive null allele of fibroblast growth factor receptor 2 eliminated Fgfr2 as the possible basis of the retarded hair growth phenotype, but DNA sequencing of another of these candidates, ornithine aminotransferase (Oat, revealed a G to C transversion specifically associated with the rhg allele that would result in a glycine to alanine substitution at residue 353 of the gene product. To test whether this missense mutation might cause the mutant phenotype, we crossed rhg/rhg mice with mice that carried a recessive, perinatal-lethal, null mutation in Oat (designated OatΔ herein. Hybrid offspring that inherited both rhg and OatΔ displayed markedly delayed postnatal growth and hair development, indicating that these two mutations are allelic, and suggesting strongly that the G to C mutation in Oat is responsible for the retarded hair growth phenotype. Comparisons among +/+, +/rhg, rhg/rhg and rhg/OatΔ mice showed plasma ornithine levels and ornithine aminotransferase activities (in liver lysates consistent with this assignment. Because histology of 7- and 12-month-old rhg/rhg and rhg/OatΔ retinas revealed chorioretinal degeneration similar to that described previously for OatΔ/OatΔ mice, we suggest that the rhg mutant may offer an ideal model for gyrate atrophy of the choroid and retina (GACR in humans, which is also caused by the substitution of glycine 353 in some families.

  9. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata.

    Science.gov (United States)

    Brunke, Sascha; Seider, Katja; Richter, Martin Ernst; Bremer-Streck, Sibylle; Ramachandra, Shruthi; Kiehntopf, Michael; Brock, Matthias; Hube, Bernhard

    2014-06-01

    The ability to acquire nutrients during infections is an important attribute in microbial pathogenesis. Amino acids are a valuable source of nitrogen if they can be degraded by the infecting organism. In this work, we analyzed histidine utilization in the fungal pathogen of humans Candida glabrata. Hemiascomycete fungi, like C. glabrata or Saccharomyces cerevisiae, possess no gene coding for a histidine ammonia-lyase, which catalyzes the first step of a major histidine degradation pathway in most other organisms. We show that C. glabrata instead initializes histidine degradation via the aromatic amino acid aminotransferase Aro8. Although ARO8 is also present in S. cerevisiae and is induced by extracellular histidine, the yeast cannot use histidine as its sole nitrogen source, possibly due to growth inhibition by a downstream degradation product. Furthermore, C. glabrata relies only on Aro8 for phenylalanine and tryptophan utilization, since ARO8, but not its homologue ARO9, was transcriptionally activated in the presence of these amino acids. Accordingly, an ARO9 deletion had no effect on growth with aromatic amino acids. In contrast, in S. cerevisiae, ARO9 is strongly induced by tryptophan and is known to support growth on aromatic amino acids. Differences in the genomic structure of the ARO9 gene between C. glabrata and S. cerevisiae indicate a possible disruption in the regulatory upstream region. Thus, we show that, in contrast to S. cerevisiae, C. glabrata has adapted to use histidine as a sole source of nitrogen and that the aromatic amino acid aminotransferase Aro8, but not Aro9, is the enzyme required for this process.

  10. Vesicular uptake and exocytosis of l-aspartate is independent of sialin

    Science.gov (United States)

    Morland, Cecilie; Nordengen, Kaja; Larsson, Max; Prolo, Laura M.; Farzampour, Zoya; Reimer, Richard J.; Gundersen, Vidar

    2013-01-01

    The mechanism of release and the role of l-aspartate as a central neurotransmitter are controversial. A vesicular release mechanism for l-aspartate has been difficult to prove, as no vesicular l-aspartate transporter was identified until it was found that sialin could transport l-aspartate and l-glutamate when reconstituted into liposomes. We sought to clarify the release mechanism of l-aspartate and the role of sialin in this process by combining l-aspartate uptake studies in isolated synaptic vesicles with immunocyotchemical investigations of hippocampal slices. We found that radiolabeled l-aspartate was taken up into synaptic vesicles. The vesicular l-aspartate uptake, relative to the l-glutamate uptake, was twice as high in the hippocampus as in the whole brain, the striatum, and the entorhinal and frontal cortices and was not inhibited by l-glutamate. We further show that sialin is not essential for exocytosis of l-aspartate, as there was no difference in ATP-dependent l-aspartate uptake in synaptic vesicles from sialin-knockout and wild-type mice. In addition, expression of sialin in PC12 cells did not result in significant vesicle uptake of l-aspartate, and depolarization-induced depletion of l-aspartate from hippocampal nerve terminals was similar in hippocampal slices from sialin-knockout and wild-type mice. Further, there was no evidence for nonvesicular release of l-aspartate via volume-regulated anion channels or plasma membrane excitatory amino acid transporters. This suggests that l-aspartate is exocytotically released from nerve terminals after vesicular accumulation by a transporter other than sialin.—Morland, C., Nordengen, K., Larsson, M., Prolo, L. M., Farzampour, Z., Reimer, R. J., Gundersen, V. Vesicular uptake and exocytosis of l-aspartate is independent of sialin. PMID:23221336

  11. Behavior of aspartic acid as a corrosion inhibitor for steel

    Energy Technology Data Exchange (ETDEWEB)

    Kalota, D.J.; Silverman, D.C. (Monsanto Co., St. Louis, MO (United States))

    1994-02-01

    Corrosion inhibition of steel by aspartic acid (C[sub 4]H[sub 7]NO[sub 4]), an amino acid of low molecular weight, was found to depend strongly on pH. At a pH less than the ionization constant at [approximately]9.5 to 10 (measured at 25 C), C[sub 4]H[sub 7]NO[sub 4] appeared to accelerate corrosion. Above the pH, it acted as a corrosion inhibitor for steel. A specially constructed potential-pH diagram for iron (Fe) that incorporated C[sub 4]H[sub 7]NO[sub 4] showed the change in behavior was accompanied by the most stable thermodynamic state changing from an iron aspartate complex to iron oxide. Polymerized C[sub 4]H[sub 7]NO[sub 4] (polyaspartic acid) behaved in a similar manner. Some other amino acids of low molecular weight behaved similarly.

  12. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)

    Anupama Ghosh; R A Sanguramath

    2008-01-01

    Three-dimensional achiral coordination polymers of the general formula M2(D, L-NHCH (COO)CH2COO)2.C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO).3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO)CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

  13. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  14. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.

    Science.gov (United States)

    Mhatre, B S; Dutta, S; Reinicker, A; Karagoz, B; Gellman, A J

    2016-12-01

    Aspartic acid adsorbed on Cu surfaces is doubly deprotonated. On chiral Cu(643)(R&S) its enantiomers undergo enantiospecific decomposition via an autocatalytic explosion. Once initiated, the decomposition mechanism proceeds via sequential cleavage of the C3-C4 and C1-C2 bonds each yielding CO2, followed by conversion of the remaining species into N[triple bond, length as m-dash]CCH3.

  15. On the solvation of L-aspartic acid

    Science.gov (United States)

    Paxton, A. T.; Harper, J. B.

    2004-01-01

    We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

  16. [Aspartate kinase from the cyanobacteriium Plectonema boryanum infected with the cyanophage LPP-3].

    Science.gov (United States)

    Perepelitsa, S I; Koltukova, N V; Mendzhul, M I

    1995-01-01

    The effect of development of cyanophage infection on the activity of aspartate kinase of Plectonema boryanum has been studied. It has been determined that activity of aspartate kinase increased during early period of reproduction of cyanophage. It coincided in time with the increase of the level of amino acids of aspartate family. Isoenzymes of aspartate kinase were isolated from the infected cells purified and studied. Expression of viral genome is accompanied with the appearance of four new isoenzymes determined by virus. The revealed aspartate kinases are not subject of regulation by amino acids (the end-products of biosynthesis) according to the principle of feed-back inhibition.

  17. Age estimation based on aspartic acid racemization in human sclera.

    Science.gov (United States)

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  18. Microbial aspartic proteases: current and potential applications in industry.

    Science.gov (United States)

    Theron, Louwrens W; Divol, Benoit

    2014-11-01

    Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines' organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.

  19. The effect of portacaval anastomosis on the expression of glutamine synthetase and ornithine aminotransferase in perivenous hepatocytes.

    Science.gov (United States)

    da Silva, Robin; Levillain, Oliver; Brosnan, John T; Araneda, Silvia; Brosnan, Margaret E

    2013-05-01

    There is functional zonation of metabolism across the liver acinus, with glutamine synthetase restricted to a narrow band of cells around the terminal hepatic venules. Portacaval anastomosis, where there is a major rerouting of portal blood flow from the portal vein directly to the vena cava bypassing the liver, has been reported to result in a marked decrease in the activity of glutamine synthetase. It is not known whether this represents a loss of perivenous hepatocytes or whether there is a specific loss of glutamine synthetase. To answer this question, we have determined the activity of glutamine synthetase and another enzyme from the perivenous compartment, ornithine aminotransferase, as well as the immunochemical localization of both glutamine synthetase and ornithine aminotransferase in rats with a portacaval shunt. The portacaval shunt caused a marked decrease in glutamine synthetase activity and an increase in ornithine aminotransferase activity. Immunohistochemical analysis showed that the glutamine synthetase and ornithine aminotransferase proteins maintained their location in the perivenous cells. These results indicate that there is no generalized loss of perivenous hepatocytes, but rather, there is a significant alteration in the expression of these proteins and hence metabolism in this cell population.

  20. Increased alanine aminotransferase levels and associated characteristics among newly diagnosed type 2 diabetes patients: Results from the DD2 study

    DEFF Research Database (Denmark)

    Mor, Anil; Thomsen, Reimar W.; Rungby, Jørgen

    Objectives: Elevated levels of serum alanine aminotransferase (ALAT) have been linked with non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), insulin resistance and the metabolic syndrome in type 2 diabetes (T2D) patients. We examined ALAT levels in newly diagnosed T2D...

  1. Comparison of a soluble co-formulation of insulin degludec/insulin aspart vs biphasic insulin aspart 30 in type 2 diabetes

    DEFF Research Database (Denmark)

    Niskanen, Leo; Leiter, Lawrence A; Franek, Edward;

    2012-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a soluble co-formulation of insulin degludec (70%) and insulin aspart (IAsp: 30%). Here, we compare the efficacy and safety of IDegAsp, an alternative IDegAsp formulation (AF: containing 45% IAsp), and biphasic IAsp 30 (BIAsp 30)....

  2. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    Science.gov (United States)

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  3. Structural Insight into the Inhibition of Human Kynurenine Aminotransferase I/Glutamine transaminase K∥

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A.; Li, Jianyong

    2010-01-01

    Human kynurenine aminotransferase I (hKAT I) catalyzes the formation of kynurenic acid, a neuroactive compound. Here, we report three high-resolution crystal structures (1.50–1.55 Å) of hKAT I that are in complex with glycerol and each of two inhibitors of hKAT I: indole-3-acetic acid (IAC) and Tris. Because Tris is able to occupy the substrate binding position, we speculate that this may be the basis for hKAT I inhibition. Furthermore, the hKAT/IAC complex structure reveals that the binding moieties of the inhibitor are its indole ring and a carboxyl group. Six chemicals with both binding moieties were tested for their ability to inhibit hKAT I activity; 3-indolepropionic acid and DL-indole-3-lactic acid demonstrated the highest level of inhibition, and as they cannot be considered as substrates of the enzyme, these two inhibitors are promising candidates for future study. Perhaps even more significantly, we report the discovery of two different ligands located simultaneously in the hKAT I active center for the first time. PMID:19338303

  4. Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2009-05-14

    Human kynurenine aminotransferase I (hKAT I) catalyzes the formation of kynurenic acid, a neuroactive compound. Here, we report three high-resolution crystal structures (1.50-1.55 A) of hKAT I that are in complex with glycerol and each of two inhibitors of hKAT I: indole-3-acetic acid (IAC) and Tris. Because Tris is able to occupy the substrate binding position, we speculate that this may be the basis for hKAT I inhibition. Furthermore, the hKAT/IAC complex structure reveals that the binding moieties of the inhibitor are its indole ring and a carboxyl group. Six chemicals with both binding moieties were tested for their ability to inhibit hKAT I activity; 3-indolepropionic acid and DL-indole-3-lactic acid demonstrated the highest level of inhibition, and as they cannot be considered as substrates of the enzyme, these two inhibitors are promising candidates for future study. Perhaps even more significantly, we report the discovery of two different ligands located simultaneously in the hKAT I active center for the first time.

  5. Structural Insight into the Inhibition of Human Kynurenine Aminotransferase I/Glutamine Transaminase K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Human kynurenine aminotransferase I (hKAT I) catalyzes the formation of kynurenic acid, a neuroactive compound. Here, we report three high-resolution crystal structures (1.50-1.55 A) of hKAT I that are in complex with glycerol and each of two inhibitors of hKAT I: indole-3-acetic acid (IAC) and Tris. Because Tris is able to occupy the substrate binding position, we speculate that this may be the basis for hKAT I inhibition. Furthermore, the hKAT/IAC complex structure reveals that the binding moieties of the inhibitor are its indole ring and a carboxyl group. Six chemicals with both binding moieties were tested for their ability to inhibit hKAT I activity; 3-indolepropionic acid and dl-indole-3-lactic acid demonstrated the highest level of inhibition, and as they cannot be considered as substrates of the enzyme, these two inhibitors are promising candidates for future study. Perhaps even more significantly, we report the discovery of two different ligands located simultaneously in the hKAT I active center for the first time.

  6. Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha-ketoglutarate in cooperation with kynurenine.

    Directory of Open Access Journals (Sweden)

    Ken Okada

    Full Text Available Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT, which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN to kynurenic acid (KYNA. We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5'-phosphate (PLP, KYN and α-ketoglutaric acid (2OG or oxaloacetic acid (OXA. 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor.

  7. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells

    Directory of Open Access Journals (Sweden)

    Conseiller Emmanuel

    2008-01-01

    Full Text Available Abstract Background Colorectal cancer (CRC is one of the most common causes of cancer death throughout the world. In this work our aim was to study the role of the phosphoserine aminotransferase PSAT1 in colorectal cancer development. Results We first observed that PSAT1 is overexpressed in colon tumors. In addition, we showed that after drug treatment, PSAT1 expression level in hepatic metastases increased in non responder and decreased in responder patients. In experiments using human cell lines, we showed that ectopic PSAT1 overexpression in colon carcinoma SW480 cell line resulted in an increase in its growth rate and survival. In addition, SW480-PSAT1 cells presented a higher tumorigenic potential than SW480 control cells in xenografted mice. Moreover, the SW480-PSAT1 cell line was more resistant to oxaliplatin treatment than the non-transfected SW480 cell line. This resistance resulted from a decrease in the apoptotic response and in the mitotic catastrophes induced by the drug treatment. Conclusion These results show that an enzyme playing a role in the L-serine biosynthesis could be implicated in colon cancer progression and chemoresistance and indicate that PSAT1 represents a new interesting target for CRC therapy.

  8. Targeting kynurenine aminotransferase II in psychiatric diseases: promising effects of an orally active enzyme inhibitor.

    Science.gov (United States)

    Wu, Hui-Qiu; Okuyama, Masahiro; Kajii, Yasushi; Pocivavsek, Ana; Bruno, John P; Schwarcz, Robert

    2014-03-01

    Increased brain levels of the tryptophan metabolite kynurenic acid (KYNA) have been linked to cognitive dysfunctions in schizophrenia and other psychiatric diseases. In the rat, local inhibition of kynurenine aminotransferase II (KAT II), the enzyme responsible for the neosynthesis of readily mobilizable KYNA in the brain, leads to a prompt reduction in extracellular KYNA levels, and secondarily induces an increase in extracellular glutamate, dopamine, and acetylcholine levels in several brain areas. Using microdialysis in unanesthetized, adult rats, we now show that the novel, systemically active KAT II inhibitor BFF-816, applied orally at 30 mg/kg in all experiments, mimics the effects of local enzyme inhibition. No tolerance was seen when animals were treated daily for 5 consecutive days. Behaviorally, daily injections of BFF-816 significantly decreased escape latency in the Morris water maze, indicating improved performance in spatial and contextual memory. Thus, systemically applied BFF-816 constitutes an excellent tool for studying the neurobiology of KYNA and, in particular, for investigating the mechanisms linking KAT II inhibition to changes in glutamatergic, dopaminergic, and cholinergic function in brain physiology and pathology.

  9. A Micro-Platinum Wire Biosensor for Fast and Selective Detection of Alanine Aminotransferase

    Directory of Open Access Journals (Sweden)

    Tran Nguyen Thanh Thuy

    2016-05-01

    Full Text Available In this study, a miniaturized biosensor based on permselective polymer layers (overoxidized polypyrrole (Ppy and Nafion® modified and enzyme (glutamate oxidase (GlutOx immobilized micro-platinum wire electrode for the detection of alanine aminotransferase (ALT was fabricated. The proposed ALT biosensor was measured electrochemically by constant potential amperometry at +0.7 V vs. Ag/AgCl. The ALT biosensor provides fast response time (~5 s and superior selectivity towards ALT against both negatively and positively charged species (e.g., ascorbic acid (AA and dopamine (DA, respectively. The detection range of the ALT biosensor is found to be 10–900 U/L which covers the range of normal ALT levels presented in the serum and the detection limit and sensitivity are found to be 8.48 U/L and 0.059 nA/(U/L·mm2 (N = 10, respectively. We also found that one-day storage of the ALT biosensor at −20 °C right after the sensor being fabricated can enhance the sensor sensitivity (1.74 times higher than that of the sensor stored at 4 °C. The ALT biosensor is stable after eight weeks of storage at −20 °C. The sensor was tested in spiked ALT samples (ALT activities: 20, 200, 400, and 900 U/L and reasonable recoveries (70%~107% were obtained.

  10. Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases.

    Science.gov (United States)

    Wang, Fengbin; Singh, Shanteri; Xu, Weijun; Helmich, Kate E; Miller, Mitchell D; Cao, Hongnan; Bingman, Craig A; Thorson, Jon S; Phillips, George N

    2015-09-18

    Sugar aminotransferases (SATs) are an important class of tailoring enzymes that catalyze the 5'-pyridoxal phosphate (PLP)-dependent stereo- and regiospecific installation of an amino group from an amino acid donor (typically L-Glu or L-Gln) to a corresponding ketosugar nucleotide acceptor. Herein we report the strategic structural study of two homologous C4 SATs (Micromonospora echinospora CalS13 and Escherichia coli WecE) that utilize identical substrates but differ in their stereochemistry of aminotransfer. This study reveals for the first time a new mode of SAT sugar nucleotide binding and, in conjunction with previously reported SAT structural studies, provides the basis from which to propose a universal model for SAT stereo- and regiochemical control of amine installation. Specifically, the universal model put forth highlights catalytic divergence to derive solely from distinctions within nucleotide sugar orientation upon binding within a relatively fixed SAT active site where the available ligand bound structures of the three out of four representative C3 and C4 SAT examples provide a basis for the overall model. Importantly, this study presents a new predictive model to support SAT functional annotation, biochemical study and rational engineering.

  11. Healthy ranges of serum alanine aminotransferase levels in Tranian blood donors

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mohamadnejad; Akram Pourshams; Reza Malekzadeh; Ashraf Mohamadkhani; Afsaneh Rajabiani; Ali Ali Asgari; Seyed Meysam Alimohamadi; Hadi Razjooyan; Mamar-Abadi

    2003-01-01

    AIM:The healthy ranges for serum alanine aminotransferase (ALT) levels are less well studied. The aim of this study was to define the upper limit of normal (ULN) for serum ALT levels, and to assess factors associated with serum ALT activity in apparently healthy blood donors.METHODS: A total of 1 939 blood donors were included.ALT measurements were performed for all cases using the same laboratory method. Healthy ranges for ALT levels were computed from the population at the lowest risk for liver disease. Univariate and multivariate analyses were performed to evaluate associations between clinical factors and ALT levels.RESULTS: Serum ALT activity was independently associated with body mass index (BMI) and male gender, but not associated with age. Association of ALT with BMI was more prominent in males than in females. Upper limit of normal for non-overweight women (BMI of less than 25) was 34 U/L,and for non-overweight men was 40 U/L.CONCLUSION: Serum ALT is strongly associated with sex and BMI. The normal range of ALT should be defined for male and female separately.

  12. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes.

    Science.gov (United States)

    Yoshikawa, Takanori; Ito, Momoyo; Sumikura, Tsuyoshi; Nakayama, Akira; Nishimura, Takeshi; Kitano, Hidemi; Yamaguchi, Isomaro; Koshiba, Tomokazu; Hibara, Ken-Ichiro; Nagato, Yasuo; Itoh, Jun-Ichi

    2014-06-01

    Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.

  13. Clinical significance of serum alanine aminotransferase and lifestyle intervention in children with nonalcoholic fatty liver disease

    Science.gov (United States)

    Kwon, Kyoung Ah; Chun, Peter

    2016-01-01

    Purpose This study aimed to investigate the clinical significance of serum alanine aminotransferase (ALT) levels in children with nonalcoholic fatty liver disease (NAFLD) and the effect of lifestyle intervention on NAFLD. Methods The clinical data of 86 children diagnosed with NAFLD were reviewed retrospectively. Forty-six patients belonged to the elevated ALT group and 40 to the normal ALT group. The clinical parameters of patients with NAFLD were also compared based on the status of ALT levels after lifestyle intervention. Results Patients with elevated ALT had significantly higher body mass index (BMI) scores than those with normal ALT (P<0.05). Of all the patients with elevated ALT, 89% exhibited moderate or severe degree of fatty change in the liver on ultrasonographic examination, whereas most patients with normal ALT exhibited mild or moderate degree changes. Liver biopsy was performed in 15 children with elevated ALT and all showed mild histological changes. Of all patients with elevated ALT, 49% achieved normal ALT levels after lifestyle intervention. Those with more severe histological changes tended to have continuously increasing ALT levels. There was no correlation between the normalization of posttreatment ALT level and BMI, as well as ultrasonographic findings at diagnosis. Conclusion ALT elevation in NAFLD is highly associated with higher BMI scores and more severe degree of fatty changes on ultrasonographic examination. Lifestyle intervention can significantly improve ALT in children with NAFLD. The degree of histologic changes appears to be a predictor of the treatment response to NAFLD.

  14. Toxicity assessment of repeated intravenous injections of arginine–glycine–aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Wang YW

    2014-10-01

    Full Text Available You-Wei Wang, Kai Yang, Hong Tang, Dan Chen, Yun-Long Bai Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Background: Nanotechnology-based near-infrared quantum dots (NIR QDs have many excellent optical properties, such as high fluorescence intensity, good fluorescence stability, and strong tissue-penetrating ability. Integrin αvß3 is highly and specifically expressed in tumor angiogenic vessel endothelial cells of almost all carcinomas. Recent studies have shown that NIR QDs linked to peptides containing the arginine–glycine–aspartic acid (RGD sequence (NIR QDs-RGD can specifically target integrin αvß3 expressed in endothelial cells of tumor angiogenic vessels in vivo, and they offer great potential for early cancer diagnosis, in vivo tumor imaging, and tumor individualized therapy. However, the toxicity profile of NIR QDs-RGD has not been reported. This study was conducted to investigate the toxicity of NIR QDs-RGD when intravenously administered to mice singly and repeatedly at the dose required for successful tumor imaging in vivo.Materials and methods: A NIR QDs-RGD probe was prepared by linking NIR QDs with the maximum emission wavelength of 800 nm (QD800 to the RGD peptide (QD800-RGD. QD800-RGD was intravenously injected to BALB/C mice once or twice (200 pmol equivalent of QD800 for each injection. phosphate-buffered saline solution was used as control. Fourteen days postinjection, toxicity tests were performed, including complete blood count (white blood cell, red blood cell, hemoglobin, platelets, lymphocytes, and neutrophils and serum biochemical analysis (total protein, albumin, albumin/globulin, aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen. The coefficients of liver, spleen, kidney, and lung weight to body weight were measured, as well as their oxidation and antioxidation indicators, including

  15. Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions

    Science.gov (United States)

    Kulikova, Galina A.

    2008-01-01

    Interaction between aspartic acid and d-glucose, d-galactose, and d-fructose has been studied by isothermal titration calorimetry, calorimetry of dissolution, and densimetry. It has been found that d-glucose and d-fructose form thermodynamically stable associates with aspartic acid, in contrast to d-galactose. The selectivity in the interaction of aspartic acid with monosaccharides is affected by their stereochemical structures. PMID:19669542

  16. Extraction of L-Aspartic Acid with Reverse Micelle System

    Directory of Open Access Journals (Sweden)

    Özlem AYDOĞAN

    2009-02-01

    Full Text Available The aim of this study is to investigate the extraction L-aspartic acid which is a hydrophobic amino acid with reverse micelle system. Production of amino acids by fermentation has been more important in recent years. These amino acids are obtained in dilute aqueous solutions and have to be separated from excess substrate, inorganic salts and by-products. Recently, separation of amino acids from fermentation media by reverse micelle extraction has received a great deal of attention. In this study, reverse micelle phase includes aliquat-336 as a surfactant, 1-decanol as a co-surfactant and isooctane as an apolar solvent. Experiments were performed at 150 rpm stirring rate, at 30 oC, for 30 min extraction time with equal volumes of reverse micelle and aqueous phases. Concentration of L-aspartic acid was analyzed by liquid chromatography (HPLC. The extraction yield increased with increasing pH and aliquat-336 concentration and with decreasing initial amino acid concentration. Maximum ekstraction yield (68 % was obtained at pH of 12, surfactant concentration of 200 mM and an initial amino acid concentration of 5 mM.

  17. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    Science.gov (United States)

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  18. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  19. Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chung-Der; Huang, Tien-Feng [Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Lin, Chih-Hao [Institute of Biological Chemistry, National Taiwan University, Taipei 110,Taiwan (China); Guan, Hong-Hsiang; Hsieh, Yin-Cheng [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Lin, Yi-Hung; Huang, Yen-Chieh; Liu, Ming-Yih [Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China); Chang, Wen-Chang, E-mail: wchang@ntu.edu.tw [Institute of Biological Chemistry, National Taiwan University, Taipei 110,Taiwan (China); Chen, Chun-Jung, E-mail: wchang@ntu.edu.tw [Department of Physics, National Tsing-Hua University, Hsinchu 30013,Taiwan (China); Life Science Group, Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076,Taiwan (China)

    2007-06-01

    The crystallization of branched-chain aminotransferase from D. radiodurans is described. The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.

  20. Growth and characterization of KDP crystals doped with L-aspartic acid

    Science.gov (United States)

    Krishnamurthy, R.; Rajasekaran, R.; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal.

  1. Alanine Aminotransferase Elevation in Obese Infants and Children: A Marker of Early Onset Non Alcoholic Fatty Liver Disease

    OpenAIRE

    Engelmann, Guido; Hoffmann, Georg Friedrich; Grulich-Henn, Juergen; Teufel, Ulrike

    2014-01-01

    Background: Elevated aminotransferases serve as surrogate markers of non-alcoholic fatty liver disease, a feature commonly associated with the metabolic syndrome. Studies on the prevalence of fatty liver disease in obese children comprise small patient samples or focus on those patients with liver enzyme elevation. Objectives: We have prospectively analyzed liver enzymes in all overweight and obese children coming to our tertiary care centre. Patients and Methods: In a prospective study 224 h...

  2. Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus

    DEFF Research Database (Denmark)

    Beck, Hans Christian

    2005-01-01

    Fatty acid biosynthesis by a mutant strain of Staphylococcus carnosus deficient in branched-chain amino acid aminotransferase (IlvE) activity was analysed. This mutant was unable to produce the appropriate branched-chain alpha-ketoacid precursors for branched-chain fatty acid biosynthesis from...... for 2-methylpropanoic acid production, revealing that the IlvE protein plays an important, but not essential role in the biosynthesis of branched-chain fatty acids and secondary metabolites in S. carnosus....

  3. The Association of Elevated Serum Alanine Aminotransferase with Metabolic Syndrome in A Military Population in Southern Iran

    Directory of Open Access Journals (Sweden)

    B Sabayan

    2010-06-01

    Full Text Available Background: Metabolic syndrome (MetS is rapidly rising at an alarming rate through all parts of the world. Elevated serum aminotransferase was proposed as a marker for early detection of MetS. In this investigation we primarily aimed to evaluate the prevalence of MetS and its components among army and secondly to explore the association between elevated serum aminotransferase and the components of metabolic syndrome. Methods: A total of 380 army personnel from a military camp in Southern Iran participated in this cross-sectional study. Life style related characteristics, anthropometric features, serum aminotransferase and components of MetS, based on National Cholesterol Education Program—Adult Treatment Panel III, were measured. Statistical significant was set as p value less than 0.05. Results: The mean age of participants was 35.0± 7.5 year-old and the prevalence of metabolic syndrome was 8.1%. The prevalence of the components of MetS including; central obesity, abnormal fasting blood glucose, hypertension, hypertriglycridemia and low HDL cholesterol level was 8.6%, 10.4%, 18.5%, 31%, and 45.5% respectively. MetS had significant relationship with obesity (P<0.001 and abnormal Waist Circumferance/Hip Circumference ratio (P<0.001. Twenty-six percent of subjects had ALT ≥ 41 U/L and 4.9% of them had ALT ≥ 81. Elevated serum aminotransferase had significant association with presence of MetS (P= 0.007. Conclusion: Although prevalence of metabolic syndrome among the studied army population was not high, life style modification of army members is recommended. Liver function tests should be included in routine health checkup of military personnel.

  4. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1.

    Directory of Open Access Journals (Sweden)

    Krisztián Fodor

    Full Text Available Alanine-glyoxylate aminotransferase is a peroxisomal enzyme, of which various missense mutations lead to irreversible kidney damage via primary hyperoxaluria type 1, in part caused by improper peroxisomal targeting. To unravel the molecular mechanism of its recognition by the peroxisomal receptor Pex5p, we have determined the crystal structure of the respective cargo-receptor complex. It shows an extensive protein/protein interface, with contributions from residues of the peroxisomal targeting signal 1 and additional loops of the C-terminal domain of the cargo. Sequence segments that are crucial for receptor recognition and hydrophobic core interactions within alanine-glyoxylate aminotransferase are overlapping, explaining why receptor recognition highly depends on a properly folded protein. We subsequently characterized several enzyme variants in vitro and in vivo and show that even minor protein fold perturbations are sufficient to impair Pex5p receptor recognition. We discuss how the knowledge of the molecular parameters for alanine-glyoxylate aminotransferase required for peroxisomal translocation could become useful for improved hyperoxaluria type 1 treatment.

  5. Overexpression, purification and crystallization of lysine ∊-aminotransferase (Rv3290c) from Mycobacterium tuberculosis H37Rv

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Sarvind Mani; Ramachandran, Ravishankar, E-mail: ravi-anitha@yahoo.com [Molecular and Structural Biology Division, Central Drug Research Institute, PO Box 173, Chattar Manzil, Mahatma Gandhi Marg, Lucknow 226001 (India)

    2006-06-01

    Lysine ∊-aminotransferase from M. tuberculosis has been crystallized. Preliminary crystallographic analysis shows that there is one monomer in the asymmetric unit of the crystal. Lysine ∊-aminotransferase (LAT) is a protein involved in lysine catabolism; it belongs to the aminotransferase family of enzymes, which use pyridoxal 5′-phosphate (PLP) as a cofactor. LAT probably plays a significant role during the persistent/latent phase of Mycobacterium tuberculosis, as observed by its up-regulation by ∼40-fold during this stage. Crystals of recombinant LAT have been grown in 0.1 M trisodium citrate dihydrate solution containing 0.2 M ammonium acetate and 25% PEG 4000 in the pH range 5.4–6.0. Diffraction data extending to 1.98 Å were collected at room temperature from a single crystal. Crystals are trigonal in shape and belong to space group P3{sub 1}21, with unit-cell parameters a = 103.26, b = 103.26, c = 98.22 Å. The crystals contain a monomer in the asymmetric unit, which corresponds to a Matthews coefficient (V{sub M}) of 3.1 Å{sup 3} Da{sup −1}.

  6. Novel and recurrent tyrosine aminotransferase gene mutations in tyrosinemia type II.

    Science.gov (United States)

    Hühn, R; Stoermer, H; Klingele, B; Bausch, E; Fois, A; Farnetani, M; Di Rocco, M; Boué, J; Kirk, J M; Coleman, R; Scherer, G

    1998-03-01

    Tyrosinemia type II (Richner-Hanhart syndrome, RHS) is a disorder of autosomal recessive inheritance characterized by keratitis, palmoplantar hyperkeratosis, mental retardation, and elevated blood tyrosine levels. The disease results from deficiency in hepatic tyrosine aminotransferase (TAT). We have previously described one deletion and six different point mutations in four RHS patients. We have now analyzed the TAT genes in a further seven unrelated RHS families from Italy, France, the United Kingdom, and the United States. We have established PCR conditions for the amplification of all twelve TAT exons and have screened the products for mutations by direct sequence analysis or by first performing single-strand conformation polymorphism analysis. We have thus identified the presumably pathological mutations in eight RHS alleles, including two nonsense mutations (R57X, E411X) and four amino acid substitutions (R119W, L201R, R433Q, R433W). Only the R57X mutation, which was found in one Scottish and two Italian families, has been previously reported in another Italian family. Haplotype analysis indicates that this mutation, which involves a CpG dinucleotide hot spot, has a common origin in the three Italian families but arose independently in the Scottish family. Two polymorphisms have also been detected, viz., a protein polymorphism, P15S, and a silent substitution S103S (TCG-->TCA). Expression of R433Q and R433W demonstrate reduced activity of the mutant proteins. In all, twelve different TAT gene mutations have now been identified in tyrosinemia type II.

  7. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice.

    Science.gov (United States)

    Yu, Ping; Di Prospero, Nicholas A; Sapko, Michael T; Cai, Tao; Chen, Amy; Melendez-Ferro, Miguel; Du, Fu; Whetsell, William O; Guidetti, Paolo; Schwarcz, Robert; Tagle, Danilo A

    2004-08-01

    Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.

  8. Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family.

    Science.gov (United States)

    Yu, Ping; Li, Zhengsheng; Zhang, Ling; Tagle, Danilo A; Cai, Tao

    2006-01-03

    Kynurenine aminotransferase (KAT) is an enzyme responsible for synthesis of kynurenic acid (KYNA), a well established neuroprotective and anticonvulsant agent, involved in synaptic transmission and implicated in the pathophysiology of schizophrenia, Huntington's disease and other neurological disorders. We have shown previously that kat2-/- mice had lower hippocampal KYNA levels and were more hyperactive than wild-type mice. However, these abnormalities occur early and are transitory coinciding with restoration of KYNA levels, suggesting that compensatory changes or ontogenetic expression of another unknown homolog may account for the normalization of KYNA levels in the adult kat2-/- mice brain. Here, we report the isolation of a novel KAT molecule, kat3, from mouse and human brain cDNA libraries. The encoded 454 amino acids of human KAT III share 64.8% similarity to that of KAT I and 30.1% to KAT II. Northern blot analysis demonstrated that kat3 mRNA is widely expressed but with higher expression levels in liver, kidney, heart, and neuroendocrine tissues. RT-PCR and Northern analysis showed that kat3 expression starts as early as postnatal day (PND) 7 and peaks in adult. The mRNA level of kat3 and kat1 when measured together is significantly higher at PND 60 in kat2-/- mice than those of wild-type mice indicating possible co-regulation of expression levels. RNA-interference (RNAi) directed towards transcripts for either R03A10.4 or F28H6.3 in Caenorhabditis elegans which are kat1 and kat3 orthologs, respectively, did not result in any gross abnormalities. Our results show that upregulation of kat3 and kat1 may be responsible for the phenotypic rescue on kat2-/- mice.

  9. Persistent alanine aminotransferase elevation among the general Iranian population: Prevalence and causes

    Institute of Scientific and Technical Information of China (English)

    Raika Jamali; Mohammad Reza Deyhim; Houri Rezvan; Akram Pourshams; Mahmoodreza Khonsari; Shahin Merat; Masoud Khoshnia; Elham Jafari; Alireza Bahram Kalhori; Hassan Abolghasemi; Sedighe Amini; Mahtab Maghsoudlu

    2008-01-01

    AIM: To determine the prevalence and causes of persistently elevated alanine aminotransferase (ALT)levels among the general population in northern Iran.METHODS: A total of 2292 (1376 female, aged 18-75year), were selected by systematic clustered random sampling from the cities and villages of Gonbad and Kalaleh in Golestan Province and invited to participate in the study. A comprehensive history regarding alcohol drinking and medication was taken. Body mass index (BMI), viral markers and ALT levels were measured. If ALT level was ≥ 40 U/L, it was rechecked twice within 6 mo. Those with ≥ 2 times elevation of ALT were considered as having persistently elevated ALT level.Non-alcoholic fatty liver disease (NAFLD) was diagnosed based on evidence of fatty liver upon sonography and excluding other etiology.RESULTS: A total of 2049 (1351 female) patients participated in the study, 162 (7.9%) had elevated ALT level at the first measurement. Persistently elevated ALT level was detected in 64 (3.1%) participants, with 51 (79.6%) with no obvious etiology, six (9.3%) with Hepatitis B, four (6.2%) with Hepatitis C virus (HCV)infection and three (4.6%) with alcoholic hepatitis.The prevalence of NAFLD and alcoholic hepatitis was 2.04% (42 patients) and 0.1% (three), respectively.There was correlation between NAFLD and male gender,overweight, diabetes and living in an urban area [odds ratio = 3.03 (95% CI: 1.6-5.72), 4.21 (95% CI:1.83-9.68), 2.86 (95% CI: 1.05-7.79) and 2.04 (95% CI:1.00-4.16) respectively].CONCLUSION: NAFLD is the most common cause of persistently elevated serum ALT level among the general population of Iran.

  10. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae).

    Science.gov (United States)

    Shen, Bin; Fang, Tao; Yang, Tianxiao; Jones, Gareth; Irwin, David M; Zhang, Shuyi

    2014-01-01

    Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  11. Relaxed evolution in the tyrosine aminotransferase gene tat in old world fruit bats (Chiroptera: Pteropodidae.

    Directory of Open Access Journals (Sweden)

    Bin Shen

    Full Text Available Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae and two New World fruit bats (Phyllostomidae. Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.

  12. L,L-diaminopimelate aminotransferase from Chlamydomonas reinhardtii: a target for algaecide development.

    Directory of Open Access Journals (Sweden)

    Renwick C J Dobson

    Full Text Available In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL (E.C. 2.6.1.83 is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA to L,L-diaminopimelate (L,L-DAP, in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL. The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.

  13. Inhibition of kynurenine aminotransferase II reduces activity of midbrain dopamine neurons.

    Science.gov (United States)

    Linderholm, Klas R; Alm, Maximilian Tufvesson; Larsson, Markus K; Olsson, Sara K; Goiny, Michel; Hajos, Mihaly; Erhardt, Sophie; Engberg, Göran

    2016-03-01

    Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan, is elevated in the brain of patients with psychotic disorders. Therefore, lowering brain KYNA levels might be a novel approach in the treatment of psychotic disorders. The present in vivo electrophysiological study aimed to investigate the effect of an inhibitor of kynurenine aminotransferase (KAT) II, the primary enzyme for KYNA synthesis, on dopamine (DA) neurons in the ventral tegmental area (VTA). Acute administration of the KAT II inhibitor PF-04859989 (5 or 10 mg/kg) was associated with a short-onset, time-dependent decrease in firing rate and burst activity of DA neurons, both parameters reaching a 50% reduction within 45 min. Furthermore, PF-04859989 reduced the number of spontaneously active DA cells as measured 4-6 after administration. Pretreatment with d-cycloserine (30 mg/kg) or CGP-52432 (10 mg/kg) prevented the inhibitory action of PF-04859989 (5 mg/kg) on firing rate and burst firing activity. In contrast, pretreatment with methyllycaconitine (MLA, 4 mg/kg) did not change the response, whereas picrotoxin (4.5 mg/kg) partially prevented the inhibitory effects of PF-04859989 (5 mg/kg, i.v.). Our results show that a specific inhibition of KAT II is associated with a marked reduction in VTA DA firing activity. This effect appears to be specifically executed by NMDA-receptors and mediated indirectly via a GABA(B)-receptor-induced disinhibition of DA neurons. Our findings are in line with the view that endogenous KYNA, by modulation of the NMDA-receptor, exerts important physiological roles in the brain.

  14. A community-based epidemiological study of elevated serum alanine aminotransferase levels in Kinmen, Taiwan

    Institute of Scientific and Technical Information of China (English)

    Chi-Ming Liu; Tao-Hsin Tung; Jorn-Hon Liu; Victor Tze-Kai Chen; Ching-Heng Lin; Chung-Te Hsu; Pesus Chou

    2005-01-01

    AIM: To explore any gender-related differences in prevalence of and condition-associated factors related to an elevated serum alanine aminotransferase (ALT) level amongst residents of Kinmen, Taiwan.METHODS: A total of 11 898 of a potential 20 112 regional residents aged 30 years or more completed a related questionnaire that was carried out by the Yang-Ming Crusade between 1991 and 1994 inclusively, with blood samples being collected by public nurses. The overall questionnaire response rate was 59.3% (52.4% for males and 66.0% for females).RESULTS: The prevalence of an elevated serum ALT level for this sub-population was found to be 7,2%, the prevalence revealing a statistically significant decrease with increasing population age (P<0.0001). Males exhibited a greater prevalence of elevated serum ALT level than did females (9.4% vs 5.3%, P<0.0001). Using multiple logistic regression analysis, in addition to male gender, a younger age, greater waist circumference,presence of type-2 diabetes and hyperuricemia were the significant factors associated with an elevated serum ALT level for both males and females. Gender-related differences as regards associated factors were also revealed. For males, obesity was significantly related to an elevated serum ALT level (OR = 1.28, 95%CI: 1.00-1.66)but this was not so for females (OR = 1.09, 95%CI:0.84-1.42). Hypertriglyceridemia (OR = 1.80, 95%CI:1.36-2.39) and hyperuricemia (OR = 1.61, 95%CI:1.03-2.52) were significantly related to elevated serum ALT levels only for females.CONCLUSION: Several gender-related differences were noted pertaining to the prevalence of and relationship between obesity, hypertriglyceridemia and hyperuricemia and elevated serum ALT level in the present study.(c)2005 The WJG Press and Elsevier Ihc. All rights reserved.

  15. Alanine aminotransferase and risk of the metabolic syndrome: a linear dose-response relationship.

    Directory of Open Access Journals (Sweden)

    Setor K Kunutsor

    Full Text Available BACKGROUND: Elevated baseline circulating alanine aminotransferase (ALT level has been demonstrated to be associated with an increased risk of the metabolic syndrome (MetS, but the nature of the dose-response relationship is uncertain. METHODS: We performed a systematic review and meta-analysis of published prospective cohort studies to characterize in detail the nature of the dose-response relationship between baseline ALT level and risk of incident MetS in the general population. Relevant studies were identified in a literature search of MEDLINE, EMBASE, and Web of Science up to December 2013. Prospective studies in which investigators reported relative risks (RRs of MetS for 3 or more categories of ALT levels were eligible. A potential nonlinear relationship between ALT levels and MetS was examined using restricted cubic splines. RESULTS: Of the 489 studies reviewed, relevant data were available on 29,815 non-overlapping participants comprising 2,125 incident MetS events from five prospective cohort studies. There was evidence of a linear association (P for nonlinearity=0.38 between ALT level and risk of MetS, characterised by a graded increase in MetS risk at ALT levels 6-40 U/L. The risk of MetS increased by 14% for every 5 U/L increment in circulating ALT level (95% CI: 12-17%. Evidence was lacking of heterogeneity and publication bias among the contributing studies. CONCLUSIONS: Baseline ALT level is associated with risk of the MetS in a linear dose-response manner. Studies are needed to determine whether the association represents a causal relationship.

  16. Altered Expression of Human Mitochondrial Branched Chain Aminotransferase in Dementia with Lewy Bodies and Vascular Dementia.

    Science.gov (United States)

    Ashby, Emma L; Kierzkowska, Marta; Hull, Jonathon; Kehoe, Patrick G; Hutson, Susan M; Conway, Myra E

    2017-01-01

    Cytosolic and mitochondrial human branched chain aminotransferase (hBCATc and hBCATm, respectively) play an integral role in brain glutamate metabolism. Regional increased levels of hBCATc in the CA1 and CA4 region of Alzheimer's disease (AD) brain together with increased levels of hBCATm in frontal and temporal cortex of AD brains, suggest a role for these proteins in glutamate excitotoxicity. Glutamate toxicity is a key pathogenic feature of several neurological disorders including epilepsy associated dementia, AD, vascular dementia (VaD) and dementia with Lewy bodies (DLB). To further understand if these increases are specific to AD, the expression profiles of hBCATc and hBCATm were examined in other forms of dementia including DLB and VaD. Similar to AD, levels of hBCATm were significantly increased in the frontal and temporal cortex of VaD cases and in frontal cortex of DLB cases compared to controls, however there were no observed differences in hBCATc between groups in these areas. Moreover, multiple forms of hBCATm were observed that were particular to the disease state relative to matched controls. Real-time PCR revealed similar expression of hBCATm mRNA in frontal and temporal cortex for all cohort comparisons, whereas hBCATc mRNA expression was significantly increased in VaD cases compared to controls. Collectively our results suggest that hBCATm protein expression is significantly increased in the brains of DLB and VaD cases, similar to those reported in AD brain. These findings indicate a more global response to altered glutamate metabolism and suggest common metabolic responses that might reflect shared neurodegenerative mechanisms across several forms of dementia.

  17. Liver fibrosis progression in HIV/hepatitis C virus coinfected patients with normal aminotransferases levels

    Directory of Open Access Journals (Sweden)

    Fábio Heleno de Lima Pace

    2012-08-01

    Full Text Available INTRODUCTION: Approximately 30% of hepatitis C virus (HCV monoinfected patients present persistently normal alanine aminotransferase (ALT levels. Most of these patients have a slow progression of liver fibrosis. Studies have demonstrated the rate of liver fibrosis progression in hepatitis C virus-human immunodeficiency virus (HCV-HIV coinfected patients is faster than in patients infected only by HCV. Few studies have evaluated the histological features of chronic hepatitis C in HIV-infected patients with normal ALT levels. METHODS: HCV-HIV coinfected patients (HCV-RNA and anti-HIV positive with known time of HCV infection (intravenous drugs users were selected. Patients with hepatitis B surface antigen (HBsAg positive or hepatitis C treatment before liver biopsy were excluded. Patients were considered to have a normal ALT levels if they had at least 3 normal determinations in the previous 6 months prior to liver biopsy. All patients were submitted to liver biopsy and METAVIR scale was used. RESULTS: Of 50 studied patients 40 (80% were males. All patients were treated with antiretroviral therapy. The ALT levels were normal in 13 (26% patients. HCV-HIV co-infected patients with normal ALT levels had presented means of the liver fibrosis stages (0.77±0.44 versus 1.86±1.38; p<0.001 periportal inflammatory activity (0.62±0.77 versus 2.24±1.35; p<0.001 and liver fibrosis progression rate (0.058±0.043 fibrosis unit/year versus 0.118±0.102 fibrosis unit/year significantly lower as compared to those with elevated ALT. CONCLUSIONS: HCV-HIV coinfected patients with persistently normal ALTs showed slower progression of liver fibrosis. In these patients the development of liver cirrhosis is improbable.

  18. γ-glutamyl transpeptidase in men and alanine aminotransferase in women are the most suitable parameters among liver function tests for the prediction of metabolic syndrome in nonviral hepatitis and nonfatty liver in the elderly

    Directory of Open Access Journals (Sweden)

    Dee Pei

    2015-01-01

    Full Text Available Background/Aims: Nonalchoholic fatty liver disease (NAFLD has been reported as a hepatic manifestation of metabolic syndrome (MetS; it is common and accounts for 80% of the cases with abnormal liver function tests (LFTs. In addition, several studies have proved that there is a correlation between abnormal LFTs and MetS. Therefore, LFTs may represent the abnormal metabolic status of livers in the patients with MetS. To identify the early state of metabolic dysfunction, we investigate the value of LFTs for the future MetS development in the relatively healthy (non-NAFLD elderly. Patients and Methods: A total of 16,912 subjects met the criteria for analysis. In the first stage of this study, subjects were enrolled in the cross-sectional study in order to find out the optimal cutoff value in different LFTs with higher chances to have MetS. In the second stage of the present study, subjects with MetS at baseline were excluded from the same study group, and a median 5.6-year longitudinal study was conducted on the rest of the group. Results: Among all LFTs, only aspartate aminotransferase in both genders and the α-fetal protein in women failed to show the significance in distinguishing subjects with MetS by the receiver operating characteristic curve. In the Kaplan-Meier plot, only γ-glutamyl transpeptidase (γ-GT in men and the alanine aminotransferase (ALT in women could be used to successfully separate subjects with higher risk of developing the MetS from those with lower risk. Finally, in the multivariant Cox regression model, similar results were identified. Still, the hazard ratio (HR to have future MetS, γ-GT in men, and ALT in women showed significance (HR = 1.511 in men and 1.504 in women. Conclusion: Among all the different LFTs, γ-GT (>16 U/L in male and ALT (>21 U/L in female were the best predictors for the development of MetS in healthy elderly. These two liver markers could be an ancillary test in predicting future MetS development

  19. Preparation and enantiosorption of L-aspartic acid pillared hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    PENG Xia-hui; HUANG Ke-long

    2007-01-01

    L-aspartic acid (Asp) pillared hydrotalcites were prepared by direct reaction of the L-Asp anion with layered double hydroxides (LDHs). The obtained samples were characterized by X-ray diffractometry (XRD), Fourier transform infrared (FTIR),and thermogravimetric and differential thermal analysis (TG/DTA). The results show that the initial interlayer carbonate ions can be completely replaced by the L-Asp anion under the controlled conditions. The pillared hydrotalcites have a crystallized supramolecular structure and thermal stability. The L-Asp pillared LDHs were used in the enantiosorption of enantiopure phenylalanine (Phe), the results suggest that L-Asp pillared LDHs exhibit an excellent enantiosorption capability for D-Phe, and the adsorption isotherm fits Freundlich equation.

  20. Sorption of aspartic and glutamic aminoacids on calcined hydrotalcite.

    Science.gov (United States)

    Silvério, Fabiano; Dos Reis, Márcio José; Tronto, Jairo; Valim, João Barros

    2013-12-01

    Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.

  1. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid

    Science.gov (United States)

    2013-01-01

    Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pKa values that are ∼1 unit lower than those of DTT and forms a disulfide with a similar E°′ value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution. PMID:22353145

  2. D-aspartic acid in aged mouse skin and lens

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Noriko; Muraoka, Shiro; Harada, Kaoru; Tamanoi, Itsuro; Joshima, Hisamasa; Kashima, Masatoshi

    1987-03-01

    D-aspartic acid (D-Asp) was detected in the skin and lens from naturally aged mice. An analysis of the amino acid composition indicated that D-Asp did not derive from collagen. An immunological analysis using Oucterlony's agar diffusion method also confirmed that the protein containing D-Asp was not a serum protein. The process producing D-Asp is regarded as one other than racemization because the life span of mice is not long enough to permit D-Asp by racemization. Continuous low-dose-rate gamma-irradiation (37R per day) for 102 to 112 days did not increase significantly the amount of D-Asp in skin and lens of mice.

  3. Analysis of the aspartic acid metabolic pathway using mutant genes.

    Science.gov (United States)

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  4. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  5. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Science.gov (United States)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  6. Reversible Helix Sense Inversion in Surface-Grafted Poly(β-phenethyl-L-aspartate) Films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(β-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of β-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and quartz s

  7. Reversible helix sense inversion in surface-grafted poly(beta-phenethyl-L-aspartate) films

    NARCIS (Netherlands)

    Luijten, Jeroen; Vorenkamp, Eltjo J.; Schouten, Arend J.

    2007-01-01

    The reversible manipulation of the helix screw sense in surface-grafted poly(beta-phenethyl-L-aspartate) (PPELA) films by means of external stimuli was investigated. Ringopening polymerization of beta-phenethyl-L-aspartate N-carboxyanhydride initiated from primary amino-functionalized silicon and qu

  8. Na+ : Aspartate Coupling Stoichiometry in the Glutamate Transporter Homologue Glt(Ph)

    NARCIS (Netherlands)

    Groeneveld, Maarten; Slotboom, Dirk-Jan

    2010-01-01

    The Na+ aspartate symporter Glt(Ph) from Pyrococcus horikoshil is the only member of the glutamate transporter family for which crystal structures have been determined. The cation:aspartate coupling stoichiometry is unknown, thus hampering the elucidation of the ion coupling mechanism. Here we measu

  9. Relationship between alanine aminotransferase levels and metabolic syndrome in nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Zhou-wen CHEN; Li-ying CHEN; Hong-lei DAI; Jian-hua CHEN; Li-zheng FANG

    2008-01-01

    Objective:To investigate the relationship between alanine aminotransferase (ALT)levels and metabolic syndrome (MS)in nonalcoholic fatty liver disease(NAFLD).Methods:A total of 26527 subjects who received medical health checkup in our hospital from January 2005 to July 2007 were enrolled in the study.The diagnosis of fatty liver was based on ultrasound imaging.MS Was defined according to the criteria of the Adult Treatment Panel Ⅲ.ALT,triglyceride(TG),high density lipoprotein cholesterol(HDL-c),fasting plasma glucose(FPG),height,weight,waist circumference(WC),systolic blood pressure (SBP)and diastolic blood pressure(DBP)were measured in each subject to analyze the relationship between MS and ALT activity.Results:(1)The prevalence of NAFLD in men(30.94%)was significantly higher than that in women(15.65%);(2)The incidence of MS in NAFLD(33.83%)was significantly greater than that in non-NAFLD(10.62%);(3)Of the 6470 subjects with NAFLD,in the age-adjusted partial correlation analysis,there were statistically significant correlations between the ALT levels and most metabolic risk factors in each sex(P<0.01),except that ALT levels had no correlation with HDL-c in women.Moreover,in the multiple stepwise regression analysis,SBP lost its significance,and WC,body mass index(BMI),age,DBP,TG and FPG were independently associated with ALT levels in both sexes (P<0.05).HDL-c remained significant and was independently related to ALT leveis in men;(4)ALT levels were significantly higher in subjects with MS compared to those without MS(P<0.001).Mean ALT levels increased with the number of MS cornponents in each sex (P.<0.05 for trend).Conelusion:We found a strong relationship between ALT leveIs and MS in NAFLD and revealed that the cluster of MS components might be the predictor for ALT elevations.

  10. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    Science.gov (United States)

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  11. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH)

    Science.gov (United States)

    Diab, Houssein; Limami, Anis M.

    2016-01-01

    In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function. PMID:27258319

  12. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT and Glutamate Dehydrogenase (GDH

    Directory of Open Access Journals (Sweden)

    Houssein Diab

    2016-05-01

    Full Text Available In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress, received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants’ growth and yield—even under conditions of low oxygen availability (e.g., submergence and waterlogging. The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD+ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH and 2-oxoglutarate to maintain the cycle function.

  13. Effects of Nordic Walking and Pilates training programs on aminotransferase activity in overweight and obese elderly women

    OpenAIRE

    Hagner-Derengowska, Magdalena; Kałużny, Krystian; Budzyński, Jacek

    2015-01-01

    Hagner-Derengowska Magdalena, Kałużny Krystian, Budzyński Jacek. Effects of Nordic Walking and Pilates training programs on aminotransferase activity in overweight and obese elderly women. Journal of Education, Health and Sport. 2015;5(12):563-580. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.44248 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%2812%29%3A563-580 http://pbn.nauka.gov.pl/works/687148 Formerly Journal of Health Sciences. ISSN 1429-9623 / 2300-665...

  14. Branched-chain Amino Acid Metabolon: INTERACTION OF GLUTAMATE DEHYDROGENASE WITH THE MITOCHONDRIAL BRANCHED-CHAIN AMINOTRANSFERASE (BCATm)*

    OpenAIRE

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R. Max; Mobley, James A.; Chuang, David T.; Hutson, Susan M.

    2009-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain α-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain α-keto acids from BCATm to E1. The protein complex also contains glut...

  15. Ultradian rhythmicity of tyrosine aminotransferase activity in Euglena gracillis: Analysis by cosine and non-sinusoidal fitting procedures

    Science.gov (United States)

    Neuhaus-Steinmetz, Ulrich; Balzer, Ivonne; Hardeland, Rüdiger

    1990-03-01

    Although the geophysical periodicity of the earth's rotation corresponds to a biological cyclicity of ca. 24 h, cellular temporal organization comprises a multifrequency time structure, in which ultradian rhythms may be regarded as subelements of the circadian oscillator. In Euglena gracilis kept under conditons in which various cellular functions oscillate with a circadian period, tyrosine aminotransferase activity exhibited predominantly an ultradian cycle, whereas its circadian frequency was only weakly expressed. Ultradian period lengths were in the range of 4 5 h, as demonstrated by least squares fitting of cosines and of a non-sinusoidal regression function.

  16. Purification and characterization of a branched-chain amino acid aminotransferase from Lactobacillus paracasei subsp paracasei CHCC 2115

    DEFF Research Database (Denmark)

    Thage, B.V.; Rattray, F.P.; Laustsen, M.W.;

    2004-01-01

    Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. Methods and Results: The purification protocol consisted of anion exchange chromatography, affinity chromatography...... of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. Conclusions: The results suggest...

  17. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Hyderabad cohort of the A1chieve study

    Science.gov (United States)

    Santosh, R.; Mehrotra, Ravi; Sastry, N. G.

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Hyderabad, India. Results: A total of 1249 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 893), insulin detemir (n = 158), insulin aspart (n = 124), basal insulin plus insulin aspart (n = 19) and other insulin combinations (n = 54). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 9.0%) and insulin user (mean HbA1c: 9.5%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: −0.9%, insulin users: −1.1%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404501

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Karnataka cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Neeta Deshpande

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Karnataka, India. Results: A total of 2243 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1855, insulin detemir (n = 211, insulin aspart (n = 111, basal insulin plus insulin aspart (n = 16 and other insulin combinations (n = 40. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.2% and insulin user (mean HbA 1 c: 9.0% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.4%, insulin users: −1.7%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  19. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kerala cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sreejith N Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kerala, India. Results: A total of 1732 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1203, insulin detemir (n = 212, insulin aspart (n = 312, basal insulin plus insulin aspart (n = 1 and other insulin combinations (n = 1. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 8.3% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.4%, insulin users: −0.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  20. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  1. Adsorption of Aspartic Acid onto Rutile: Implications for Biochirality

    Science.gov (United States)

    Estrada, C. F.; Jonsson, C. M.; Jonsson, C. L.; Sverjensky, D. A.; Hazen, R. M.

    2008-12-01

    Mineral surfaces may have facilitated the concentration and polymerization of simple biomolecules into macromolecules while promoting the development of biochirality. In this study, rutile and aspartic acid (Asp) were investigated as a possible system in this scenario. Batch adsorption experiments were performed to examine the adsorption of Asp as a function of total concentration and pH. A constant background electrolyte of 0.1 M NaCl was applied to the system, and all solutions were purged with argon gas to eliminate carbon dioxide contamination. Asp adsorbs onto rutile to the highest extent over the pH range 3-5.5 suggesting that an acidic environment is required for the adsorption between Asp and rutile to occur in significant amounts. This pH range of maximum adsorption is constrained between the isoelectric point of Asp and the point of zero charge of rutile, which indicates that electrostatic effects are influencing Asp adsorption. Both the L- and D- enantiomers of Asp were individually adsorbed onto the rutile surface to determine the potential of the system for chiral selection. Preliminary results indicate that D-Asp may possibly adsorb in greater amounts than L-Asp at higher Asp total concentrations. This trend is unexpected as the growth planes dominating the rutile are achiral, and a more thorough study is required to validate this difference in adsorption. Nevertheless, this result may provide insight on the emergence of chiral selection in macromolecules within what might be a predominantly achiral prebiotic system.

  2. 肝脏转氨酶与空腹血糖受损和2型糖尿病的关系研究%Study on the relationship between impaired fasting glucose and type 2 diabetes mellitus with serum aminotransferase activities

    Institute of Scientific and Technical Information of China (English)

    赵立芸; 李雪; 冯任南; 孔庆滨; 李颖

    2013-01-01

    目的 探讨人群中肝脏转氨酶与空腹血糖受损(impaired fasting glucose,IFG)和2型糖尿病(type 2 diabetes mellitus,T2DM)的关系.方法 通过对2 402名18 ~ 75岁成年人进行体格检查,检测血清谷丙转氨酶(alanine aminotransferase,ALT)、天门冬氨酸氨基转移酶(aspartate aminotransferase,AST)、谷氨酰转肽酶(gamma-glutamyltransferase,GGT)、血糖、血脂等血清学指标.对ALT、AST、GGT从低到高按四分位间距分组(Q1到Q4),分析3种转氨酶与IFG、T2DM之间的关系.结果 ALT、AST、GGT各自四分位分组中,Q4组与Q1组相比,空腹血糖,年龄、体质指数(body mass index,BMI)、收缩压、舒张压、总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、低密度脂蛋白指标间差异均有统计学意义(均有P <0.05).多元Logistic回归分析表明,在校正了BMI、吸烟、饮酒、咖啡的因素之后,ALT、GGT是IFG和T2DM独立的危险因素,与Q1相比,Q4组ALT与IFG、T2DM的OR值分别为:1.74(1.30~2.34),1.47(1.09 ~2.41);Q4组GGT与IFG、T2DM的OR值分别为:3.15(2.01 ~4.45),4.08(1.88 ~7.65).结论 高水平的血清ALT、GGT与多种代谢异常密切相关,两者是IFG、T2DM患病的危险因素.%Objective To investigate the relationships between impaired fasting glucose (IFG) and type 2 diabetes mellitus (T2DM) with the elevated serum aminotransferase activities. Methods The association between IFG and T2DM with serum aminotransferase activities was examined by detecting serum alanine aminotransferase (ALT) , gamma-glutamyltransferase (GGT) , and aspartate aminotransferase (AST). 2 402 adults aged from 18 to 75 were selected to conduct physical examinations and questionnaire surveys. Then the values of serum aminotransferases were divided into four groups according to interquartiles range to analyze the associations of these 3 aminotransferases with IFG and T2DM. Re-sults Compared with Q1, fasting blood glucose (FBG) , age, body mass index (BMI

  3. Modifiable clinical and lifestyle factors are associated with elevated alanine aminotransferase levels in newly diagnosed type 2 diabetes patients

    DEFF Research Database (Denmark)

    Mor, Anil; Svensson, Elisabeth; Rungby, Jørgen;

    2014-01-01

    />21 drinks per week for women/men) (aPR: 1.60, 95% CI: 1.03-2.50), and in those with no regular physical activity (aPR: 1.42, 95% CI: 1.04-1.93). Obesity and metabolic syndrome per se showed no association with elevated ALT when adjusted for other markers, whereas we found positive associations of ALT...... aminotransferase (ALT) levels as a marker of NAFLD in new T2DM patients. METHODS: Alanine aminotransferase levels were measured in 1026 incident T2DM patients enrolled in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort. We examined prevalence of elevated ALT (>38 IU/L for women...... and >50 IU/L for men) and calculated prevalence ratios associated with clinical and lifestyle factors using Poisson regression. We examined the association with other biomarkers by linear regression. RESULTS: The median value of ALT was 24 IU/L (interquartile range: 18-32 IU/L) in women and 30 IU...

  4. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    OpenAIRE

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of ...

  5. Comparison of the tyrosine aminotransferase cDNA and genomic DNA sequences of normal mink and mink affected with tyrosinemia type II.

    Science.gov (United States)

    Leib, S R; McGuire, T C; Prieur, D J

    2005-01-01

    Type II tyrosinemia, designated Richner-Hanhart syndrome in humans, is a hereditary metabolic disorder with autosomal recessive inheritance characterized by a deficiency of tyrosine aminotransferase activity. Mutations occur in the human tyrosine aminotransferase gene, resulting in high levels of tyrosine and disease. Type II tyrosinemia occurs in mink, and our hypothesis was that it would also be associated with mutation(s) in the tyrosine aminotransferase gene. Therefore, the transcribed cDNA and the genomic tyrosine aminotransferase gene were sequenced from normal and affected mink. The gene extended over 11.9 kb and had 12 exons coding for a predicted 454-amino-acid protein with 93% homology with human tyrosine aminotransferase. FISH analysis mapped the gene to chromosome 8 using the Mandahl and Fredga (1975) nomenclature and chromosome 5 using the Christensen et al. (1996) nomenclature. The hypothesis was rejected because sequence analysis disclosed no mutations in either cDNA or introns that were associated with affected mink. This suggests that an unlinked gene regulatory mutation may be the cause of tyrosinemia in mink.

  6. The effect of isotretinoin on triglycerides and liver aminotransferases Influência da isotretinoína nas transaminases hepáticas e triglicerídeos

    Directory of Open Access Journals (Sweden)

    Andreia Salezze Vieira

    2012-06-01

    Full Text Available BACKGROUND: Isotretinoin has been used to treat the most severe cases of acne; however, it may provoke adverse events in mucocutaneous and hepatic tissues, lead to alterations in lipid levels and cause teratogenicity. OBJECTIVE: The objective of this study was to evaluate the profile of changes in alanine aminotransferase (ALT, aspartate aminotransferase (AST and triglyceride levels in patients who had been treated with oral isotretinoin dispensed by the São Mateus/ES pharmacy for special drugs. METHODS: A retrospective, observational, longitudinal study was conducted by carrying out a secondary analysis of each patient's data. RESULTS: Of the 130 patients who received isotretinoin between January and December 2009, only 70 were actually treated for 3 months or more and handed in the results of their laboratory tests. Of these 70 patients, 39 (55.7% were female. The mean age of the women (23.9 years was higher than the mean age of the men (20.1 years. There was a statistically significant increase in the levels of triglycerides (87.01 ± 48.25 versus 105.32 ± 48.76 mg/dL, AST (20.44 ± 6.26 versus 24.38 ± 11.92 U/L and ALT (18.24 ± 8.31 versus 23.34 ± 20.03 U/L performed prior to and 3 months or more after oral isotretinoin treatment. After treatment with oral isotretinoin, triglyceride levels had increased beyond the normal range in 11% of the patients, while 8.6% had elevated AST levels and 7.3% had increased ALT levels. CONCLUSION: The results in this population show that the use of oral isotretinoin for the treatment of acne may result in altered triglyceride, AST and ALT levels. These findings are in accordance with data published previously in the scientific literature, confirming the need to monitor these patients.FUNDAMENTOS: A isotretinoína tem sido usada no tratamento dos casos mais graves de acne, embora possa induzir reações adversas nos tecidos mucocutâneos e hepáticos, alterações nos níveis lipídicos e

  7. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.

    Science.gov (United States)

    Dostál, Jiří; Pecina, Adam; Hrušková-Heidingsfeldová, Olga; Marečková, Lucie; Pichová, Iva; Řezáčová, Pavlina; Lepšík, Martin; Brynda, Jiří

    2015-12-01

    The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor. The atomic resolution of 0.83 Å allowed the protonation states of the active-site residues to be inferred. A detailed comparison of the structure of Sapp2p with the structure of Sapp1p, the most abundant C. parapsilosis secreted aspartic protease, was performed. The analysis, which included advanced quantum-chemical interaction-energy calculations, uncovered molecular details that allowed the experimentally observed equipotent inhibition of both isoenzymes by pepstatin A to be rationalized.

  8. [Aspartate kinase complex of Anabaena variabilis during the early period of development of cyanophage A-1].

    Science.gov (United States)

    Koltukova, N V; Kadyrova, G Kh; Lysenko, T G; Mendzhul, M I

    1994-01-01

    Aspartate kinase activity in cells of A. variabilis has been studied in the dynamics of development of virus infection. An early period of reproduction of cyanophage A-1 has been determined to be conjugated with the increase of biosynthesis of amino acids from aspartate family. Five isoenzymes of aspartate kinase were isolated and purified from A. variabilis cells during early development period of cyanophage A-1. Physicochemical properties and influence of amino acids of aspartate family on the activity of homogeneous isoenzymes have been studied. Retroinhibition effect was not observed in infected cyanobacteria cells, which probably enables one to increase 2-7 times the concentration of amino acids in a cell. Such an increase of the amino acids pool is apparently necessary for realization of viral genome strategy.

  9. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  10. Aspartic Acid Racemization and Age-Depth Relationships for Organic Carbon in Siberian Permafrost

    Science.gov (United States)

    Brinton, Karen L. F.; Tsapin, Alexandre I.; Gilichinsky, David; McDonald, Gene D.

    2002-03-01

    We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of ~25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19°C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13°C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.

  11. Pharmacology of triheteromeric N-Methyl-D-Aspartate Receptors.

    Science.gov (United States)

    Cheriyan, John; Balsara, Rashna D; Hansen, Kasper B; Castellino, Francis J

    2016-03-23

    The N-Methyl-D-Aspartate Receptors (NMDARs) are heteromeric cation channels involved in learning, memory, and synaptic plasticity, and their dysregulation leads to various neurodegenerative disorders. Recent evidence has shown that apart from the GluN1/GluN2A and GluN1/GluN2B diheteromeric ion channels, the NMDAR also exists as a GluN1/GluN2A/GluN2B triheteromeric channel that occupies the majority of the synaptic space. These GluN1/GluN2A/GluN2B triheteromers exhibit pharmacological and electrophysiological properties that are distinct from the GluN1/GluN2A and GluN1/GluN2B diheteromeric subtypes. However, these receptors have not been characterized with regards to their inhibition by conantokins, as well as their allosteric modulation by polyamines and extracellular protons. Here, we show that the GluN1/GluN2A/GluN2B triheteromeric channels showed less sensitivity to GluN2B-specific conantokin (con)-G and con-RlB, and subunit non-specific con-T, compared to the GluN2A-specific inhibitor TCN-201. Also, spermine modulation of GluN1/GluN2A/GluN2B triheteromers switched its nature from potentiation to inhibition in a pH dependent manner, and was 2.5-fold slower compared to the GluN1/GluN2B diheteromeric channels. Unraveling the distinctive functional attributes of the GluN1/GluN2A/GluN2B triheteromers is physiologically relevant since they form an integral part of the synapse, which will aid in understanding spermine/pH-dependent potentiation of these receptors in pathological settings.

  12. LENTIL SEED ASPARTATE APvIINOTRANSFERASE ISOENZYMES I. ISOLATION and PARTIAL PURIFICATION

    OpenAIRE

    R. YANARDAĞ**, N. AKEV*, A. CAN*

    2015-01-01

    Three electrophoretically distinct aspartate minotransferase isoenzymes named AAT-1, AAT-2and AAT-3, were separated from lentil (Lens culinaris Medik.) seeds by extraction, ammonium sulphate precipitation, hydroxylapatite and DEAE cellulose column chromatographies. AAT-1 was purified 228, AAT-2,42 and AAT-3, 3.8 fold. The isoenzymes were examined by means of polyacrylamide gel electrophoresis.Key words: Lentil, Lens culinaris Medik., aspartate minotransferase, isoenzymes

  13. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  14. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    Science.gov (United States)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  15. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  16. A route to anionic hydrophilic films of copolymers of l-leucine, l-aspartic acid and l-aspartic acid esters

    NARCIS (Netherlands)

    Sederel, W.L.; Bantjes, A.; Feijen, J.

    1975-01-01

    A series of copolymers of l-leucine and β-benzyl-l-aspartate [Leu/Asp(OBz)] covering the range 30–70 mol % of l-leucine, was synthesized by the N-carboxyanhydride (NCA) method. The copolymers were characterized by elemental analysis, infra-red spectroscopy and viscometry. For all compositions high m

  17. Effect of streptococcal preparation (picibanil on the postoperative rise in serum alanine aminotransferase activity in patients with urogenital cancer.

    Directory of Open Access Journals (Sweden)

    Taketa,Kazuhisa

    1980-12-01

    Full Text Available The effect of Picibanil, a streptococcal agent, on the development of liver injury after operations for urogenital cancer was studied retrospectively in the light of serum alanine aminotransferase (ALT activity. The series comprised 32 cases receiving Picibanil and 33 controls with otherwise comparable clinical backgrounds. Picibanil reduced the incidence of postoperative ALT rise over 50 U/l within 6 weeks but increased it thereafter. The increase in ALT activity after 6 weeks was relatively small and was seen more often in patients given blood transfusions. It was interpreted as retardation and suppression of ALT rise and as being related to the induction of interferon or to immunopotentiation. Other antihepatotoxic effects of Picibanil, due to its antioxidant activity, for example, may also account for the prevention of the early postoperative rise in ALT activity.

  18. Cloning and inactivation of a branched-chain-amino-acid aminotransferase gene from Staphylococcus carnosus and characterization of the enzyme

    DEFF Research Database (Denmark)

    Madsen, Søren M; Beck, Hans Christian; Ravn, Peter

    2002-01-01

    Staphylococcus carnosus and Staphylococcus xylosus are widely used as aroma producers in the manufacture of dried fermented sausages. Catabolism of branched-chain amino acids (BCAAs) by these strains contributes to aroma formation by production of methyl-branched aldehydes and carboxy acids....... The first step in the catabolism is most likely a transamination reaction catalyzed by BCAA aminotransferases (IlvE proteins). In this study, we cloned the ilvE gene from S. carnosus by using degenerate oligonucleotides and PCR. We found that the deduced amino acid sequence was 80% identical...... to that of the corresponding enzyme in Staphylococcus aureus and that the ilvE gene was constitutively expressed as a monocistronic transcript. To study the influence of ilvE on BCAA catabolism, we constructed an ilvE deletion mutant by gene replacement. The IlvE protein from S. carnosus was shown mainly to catalyze...

  19. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    Science.gov (United States)

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe.

  20. L-aspartic acid transport by cat erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  1. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  2. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    Science.gov (United States)

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  3. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rajasthan cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Akhil Joshi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rajasthan, India. Results: A total of 477 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 340, insulin detemir (n = 90, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 7 and other insulin combinations (n = 2. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.4% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −0.9%, insulin users: −1.2%. Major hypoglycaemic events decreased from 0.5 events/patient-year to 0.0 events/patient-year in insulin naïve group while no change from baseline (1.3 events/patients-year was observed for insulin users. SADRs were not reported in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  4. Structural implications of a G170R mutation of alanine:glyoxylate aminotransferase that is associated with peroxisome-to-mitochondrion mistargeting

    OpenAIRE

    Djordjevic, Snezana; Zhang, Xiaoxuan; Bartlam, Mark; Ye, Sheng; Rao, Zihe; Danpure, Christopher J

    2010-01-01

    The crystal structure of the G170R mutant form of human alanine:glyoxylate aminotransferase has been determined at 2.6 Å resolution. This mutation is associated with enzyme mistargeting in the hereditary kidney-stone disease primary hyperoxaluria type 1.

  5. Lactococcal aminotransferases AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese

    NARCIS (Netherlands)

    Rijnen, L.; Yvon, M.; Kranenburg, van R.; Courtin, P.; Verheul, A.; Chambellon, E.; Smit, G.

    2003-01-01

    Amino acid catabolism plays a major role in cheese aroma development. Previously, we showed that the lactococcal aminotransferases AraT and BcaT initiate the conversion of aromatic amino acids, branched-chain amino acids and methionine to aroma compounds. In this study, we evaluated the importance o

  6. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  7. L-(4-/sup 11/C)aspartic acid: enzymatic synthesis, myocardial uptake, and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, J.R.; Egbert, J.E.; Henze, E.; Schelbert, H.R.; Baumgartner, F.J.

    1982-01-01

    Sterile, pyrogen-free L-(4-/sup 11/C)aspartic acid was prepared from /sup 11/CO/sub 2/ using phosphoenolpyruvate carboxylase and glutamic/oxaloacetic acid transaminase immobilized on Sepharose supports to determine if it is a useful indicator for in vivo, noninvasive determination of myocardial metabolism. An intracoronary bolus injection of L-(4-/sup 11/C)aspartic acid into dog myocardium showed a triexponential clearance curve with maximal production of /sup 11/CO/sub 2/ 100 s after injection. Inactivation of myocardial transaminase activity modified the tracer clearance and inhibited the production of /sup 11/CO/sub 2/. Positron-computed tomography imaging showed that the /sup 11/C activities retained in rhesus monkey myocardium are higher than those observed in dog heart after intravenous injection of L-(4-/sup 11/C)aspartic acid. These findings demonstrated the rapid incorporation of the carbon skeleton of L-aspartic acid into the tricarboxylic acid cycle after enzymatic transamination in myocardium and suggested that L-(4-/sup 11/C)aspartic acid could be of value for in vivo, noninvasive assessment of local myocardial metabolism.

  8. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    Science.gov (United States)

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  9. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid.

    Science.gov (United States)

    Weis, R M; Koshland, D E

    1988-01-01

    The chemotaxis of wild-type cells of Escherichia coli and double mutants lacking the methyltransferase and the methylesterase activities of the receptor modification system has been compared in spatial gradients of aspartic acid. Previous studies showing that a chemotactic response can be observed for the mutant raised questions about the role of methylation in the bacterial memory. To clarify the role of methylation, the redistribution of bacteria in stabilized defined gradients of aspartic acid was monitored by light scattering. There was no redistribution of the mutant cells in nonsaturating gradients of aspartic acid, but over the same range these mutant bacteria were observed to respond and to adapt during tethering experiments. In large saturating gradients of aspartate, slight movement of the mutant up the gradient was observed. These results show that dynamic receptor methylation is required for the chemotactic response to gentle gradients of aspartic acid and that methylation resets to zero and is part of the normal wild-type memory. There are certain gradients, however, in which the methylation-deficient mutants show chemotactic ability, thus explaining the apparent anomaly. Images PMID:2829179

  10. Interaction between L-aspartate and the brucite [Mg(OH)2]-water interface

    Science.gov (United States)

    Estrada, Charlene F.; Sverjensky, Dimitri A.; Pelletier, Manuel; Razafitianamaharavo, Angélina; Hazen, Robert M.

    2015-04-01

    The interaction of biomolecules at the mineral-water interface could have played a prominent role in the emergence of more complex organic species in life's origins. Serpentinite-hosted hydrothermal vents may have acted as a suitable environment for this process to occur, although little is known about biomolecule-mineral interactions in this system. We used batch adsorption experiments and surface complexation modeling to study the interaction of L-aspartate onto a thermodynamically stable product of serpentinization, brucite [Mg(OH)2], over a wide range of initial aspartate concentrations at four ionic strengths governed by [Mg2+] and [Ca2+]. We observed that up to 1.0 μmol of aspartate adsorbed per m2 of brucite at pH ∼ 10.2 and low Mg2+ concentrations (0.7 × 10-3 M), but surface adsorption decreased at high Mg2+ concentrations (5.8 × 10-3 M). At high Ca2+ concentrations (4.0 × 10-3 M), aspartate surface adsorption doubled (to 2.0 μmol m-2), with Ca2+ adsorption at 29.6 μmol m-2. We used the extended triple-layer model (ETLM) to construct a quantitative thermodynamic model of the adsorption data. We proposed three surface reactions involving the adsorption of aspartate (HAsp-) and/or Ca2+ onto brucite:

  11. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C. (National Institutes of Health, Bethesda, MD (USA)); Lewin, A.H. (Research Triangle Institute, Research Triangle Park, NC (USA))

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive ({sup 3}H)glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action.

  12. Preparation and properties of poly(aspartic acid)-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.D. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, J.H. [SungKyunKwan University, Suwon (Korea, Republic of); Kim, S.H.; Kim, Y.H. [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1999-03-01

    High molecular weight polysuccinimide (PSI), as a precursor of poly (aspartic acid), was prepared by thermal polycondensation of L-aspartic acid. The molecular weight was high when phosphoric acid was used as a catalyst, and the ratio to monomer was 0.75 : 1(phosphoric acid : L-aspartic acid). Attempted solution polymerization in various sulfolane/mesitylene mixtures gave only low molecular weight polymers. By the post polymerization of PSI using DCC as a condensing reagent, the molecular weight of PSI could be increased to some extent. Hydrogels was prepared by crosslinking reaction of PSI with diamine, followed by hydrolysis with NaOH either in water or in DMF solution. As high as 104 g water/g-polymer absorption could be obtained from the hydrogel prepared with 3 mol % of hexamethylenediamine. 13 refs., 7 figs., 1 tab.

  13. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    Directory of Open Access Journals (Sweden)

    Eric L. Allen

    2016-10-01

    Full Text Available Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.

  14. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    Science.gov (United States)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  15. Hubungan Kadar Trigliserida dan Kolesterol-HDL Terhadap Kadar Alanine Aminotransferase pada Pasien Non Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Bayu Gemilang

    2016-01-01

    Full Text Available AbstrakTrigliserida dan Kolesterol HDL (c-HDL merupakan beberapa dari komponen Sindroma Metabolik (SM. SM dipercaya merupakan faktor utama penyebab Non Alcoholic Fatty Liver Disease (NAFLD. NAFLD merupakan penyakit hati kronik yang nantinya dapat menyebabkan fibrosis sel-sel hepar dan juga keganasan. NAFLD tidak menunjukkan manifestasi klinis yang khas, sehingga diperlukan pemeriksaan penunjang seperti pemeriksaan enzim hati untuk menegakkan diagnosis. Alanine Aminotransferase (ALT menjadi pilihan sebagai marker pada penyakit NAFLD. Tujuan penelitian ini adalah menentukan hubungan antara trigliserida dan c-HDL dengan ALT pada penderita NAFLD. Ini merupakan penelitian analitik deskriptif dengan desain retrospektif menggunakan data pasien NAFLD di instalasi rekam medik RSUP dr.M.Djamil Padang. Sampel penelitian ini adalah 51 pasien NAFLD. Hasil penelitian didapatkan dari uji korelasi pearson terdapat derajat hubungan yang kuat (r=0,512 dan hubungan yang bermakna (p<0,001 antara kadar trigliserida dengan kadar ALT serum dan derajat hubungan yang sedang (r=0,26 dan hubungan yang tidak bermakna (p=0,065 antara c-HDL dengan ALT serum. Kesimpulan penelitian ini adalah kadar ALT berhubungan dengan kadar trigliserida pada penderita NAFLD, namun tidak dengan c-HDLKata kunci: NAFLD, trigliserida, HDL, ALT, sindroma metabolik AbstractTriglyceride and HDL Cholesterol (HDL-C are some of the Metabolic Syndrome (MS components. MS is believed as the main factor for the Non Alcoholic Fatty Liver Disease (NAFLD. NAFLD is a chronic liver disease, which later can cause hepatocyte fibrosis and also malignancy. NAFLD does not show a typical clinical appearance, so it is important to do workups such as liver enzyme test to make the diagnosis. Alanine Aminotransferase (ALT is considered as the marker of NAFLD.The objective of this study was to determine the relationship between triglycerides and HDL-C to ALT level in NAFLD patients.This  was a descriptive analytical

  16. Aspartate embedding depth affects pHLIP's insertion pKa.

    Science.gov (United States)

    Fendos, Justin; Barrera, Francisco N; Engelman, Donald M

    2013-07-09

    We have used the pHlow insertion peptide (pHLIP) family to study the role of aspartate embedding depth in pH-dependent transmembrane peptide insertion. pHLIP binds to the surface of a lipid bilayer as a largely unstructured monomer at neutral pH. When the pH is lowered, pHLIP inserts spontaneously across the membrane as a spanning α-helix. pHLIP insertion is reversible when the pH is adjusted back to a neutral value. One of the critical events facilitating pHLIP insertion is the protonation of aspartates in the spanning domain of the peptide: the negative side chains of these residues convert to uncharged, polar forms, facilitating insertion by altering the hydrophobicity of the spanning domain. To examine this protonation mechanism further, we created pHLIP sequence variants in which the two spanning aspartates (D14 and D25) were moved up or down in the sequence. We hypothesized that the aspartate depth in the inserted state would directly affect the proton affinity of the acidic side chains, altering the pKa of pH-dependent insertion. To this end, we also mutated the arginine at position 11 to determine whether arginine snorkeling modulates the insertion pKa by affecting the aspartate depth. Our results indicate that both types of mutations change the insertion pKa, supporting the idea that the aspartate depth is a participating parameter in determining the pH dependence. We also show that pHLIP's resistance to aggregation can be altered with our mutations, identifying a new criterion for improving the performance of pHLIP in vivo when targeting acidic disease tissues such as cancer and inflammation.

  17. Aspartate-bond isomerization affects the major conformations of synthetic peptides.

    Science.gov (United States)

    Szendrei, G I; Fabian, H; Mantsch, H H; Lovas, S; Nyéki, O; Schön, I; Otvos, L

    1994-12-15

    The aspartic acid bond changes to an beta-aspartate bond frequently as a side-reaction during peptide synthesis and often as a post-translational modification of proteins. The formation of beta-asparate bonds is reported to play a major role not only in protein metabolism, activation and deactivation, but also in pathological processes such as deposition of the neuritic plaques of Alzheimer's disease. Recently, we reported how conformational changes following the aspartic-acid-bond isomerization may help the selective aggregation and retention of the amyloid beta peptide in affected brains (Fabian et al., 1994). In the current study we used circular dichroism, Fourier-transform infrared spectroscopy, and molecular modeling to characterize the general effect of the beta-aspartate-bond formation on the conformation of five sets of synthetic model peptides. Each of the non-modified, parent peptides has one of the major secondary structures as the dominant spectroscopically determined conformation: a type I beta turn, a type II beta turn, short segments of alpha or 3(10) helices, or extended beta strands. We found that both types of turn structures are stabilized by the aspartic acid-bond isomerization. The isomerization at a terminal position did not affect the helix propensity, but placing it in mid-chain broke both the helix and the beta-pleated sheet with the formation of reverse turns. The alteration of the geometry of the lowest energy reverse turn was also supported by molecular dynamics calculations. The tendency of the aspartic acid-bond isomerization to stabilize turns is very similar to the effect of incorporating sugars into synthetic peptides and suggests a common feature of these post-translational modifications in defining the secondary structure of protein fragments.

  18. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N., E-mail: ichi@oist.jp [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 (Japan)

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  19. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    Science.gov (United States)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may ;hop;. The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.

  20. Determination of aqueous acid-dissociation constants of aspartic acid using PCM/DFT method

    Science.gov (United States)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya

    Determination of acid-dissociation constants, pKa, of aspartic acid in aqueous solution, using density functional theory calculations combined with the conductor-like polarizable continuum model (CPCM) and with integral-equation-formalism polarizable continuum model (IEFPCM) based on the UAKS and UAHF radii, was carried out. The computed pKa values derived from the CPCM and IEFPCM with UAKS cavity model of bare structures of the B3LYP/6-31+G(d,p)-optimized tetrahydrated structures of aspartic acid species are mostly close to the experimental pKa values.0

  1. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø;

    2008-01-01

    A series of analogues based on N-hydroxypyrazole as a bioisostere for the distal carboxylate group of aspartate have been designed, synthesized, and pharmacologically characterized. Affinity studies on the major glutamate receptor subgroups show that these 4-substituted N-hydroxypyrazol-5-yl...... glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools...

  2. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction.

    Science.gov (United States)

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I; Maloney, Peter C

    2002-06-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.

  3. The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis.

    Science.gov (United States)

    Zuther, Katja; Mayser, Peter; Hettwer, Ursula; Wu, Wenying; Spiteller, Peter; Kindler, Bernhard L J; Karlovsky, Petr; Basse, Christoph W; Schirawski, Jan

    2008-04-01

    Tryptophan is a precursor for many biologically active secondary metabolites. We have investigated the origin of indole pigments first described in the pityriasis versicolor-associated fungus Malassezia furfur. Some of the identified indole pigments have properties potentially explaining characteristics of the disease. As M. furfur is not amenable to genetic manipulation, we used Ustilago maydis to investigate the pathway leading to pigment production from tryptophan. We show by high-performance liquid chromatography, mass spectrometry and nuclear magnetic resonance analysis that the compounds produced by U. maydis include those putatively involved in the etiology of pityriasis versicolor. Using a reverse genetics approach, we demonstrate that the tryptophan aminotransferase Tam1 catalyses pigment biosynthesis by conversion of tryptophan into indolepyruvate. A forward genetics approach led to the identification of mutants incapable of producing the pigments. These mutants were affected in the sir1 gene, presumably encoding a sulphite reductase. In vitro experiments with purified Tam1 showed that 2-oxo 4-methylthio butanoate serves as a substrate linking tryptophan deamination to sulphur metabolism. We provide the first direct evidence that these indole pigments form spontaneously from indolepyruvate and tryptophan without any enzymatic activity. This suggests that compounds with a proposed function in M. furfur-associated disease consist of indolepyruvate-derived spontaneously generated metabolic by-products.

  4. Molecular cloning and expression of phosphoglycerate dehydrogenase and phosphoserine aminotransferase in the serine biosynthetic pathway from Acanthamoeba castellanii.

    Science.gov (United States)

    Deng, Yihong; Wu, Duo; Tachibana, Hiroshi; Cheng, Xunjia

    2015-04-01

    Free-living amoebae of the genus Acanthamoeba are widespread protozoans that can cause serious infectious diseases. This study characterised phosphoglycerate dehydrogenase (PGDH) and phosphoserine aminotransferase (PSAT) in the phosphorylated serine biosynthetic pathway of Acanthamoeba castellanii. The PGDH gene encodes a protein of 442 amino acids with a calculated molecular weight of 47.7 kDa and an isoelectric point (pI) of 7.64. Meanwhile, the PSAT gene encodes a protein of 394 amino acids with a calculated molecular weight of 43.8 kDa and a pI of 5.80. Confocal microscopy suggests that PGDH is mainly diffused in the cytoplasm, whereas PSAT is located in the inner part of the cell membrane. The messenger RNA (mRNA) expression levels of PGDH and PSAT vary depending on growth state under consecutive culture conditions. No significant changes in the mRNA expression levels of both PGDH and PSAT occur after the incubation of L-serine with Acanthamoeba. This result indicates that exogenous serine exerts no influence on the expression of these genes and that the so-called feedback inhibition of both PGDH and PSAT in Acanthamoeba differs from that in bacteria or other organisms. We propose that the enzymes in the phosphorylated serine biosynthetic pathway function in amoeba growth and proliferation.

  5. [Isolation and properties of cortisol inducible and cortisol non-inducible isoenzymes of rat liver tyrosine aminotransferase].

    Science.gov (United States)

    Mertvetsov, N P; Chesnokov, V N; Sakhno, L V; Salganik, R I

    1976-08-01

    Rat liver contains two groups of tyrosine aminotransferase (TAT) isoenzymes; during electrophoresis in agar gel one of the groups moves to the anode and the other--to the catode. Cortisol is shown to induce only the anode isoenzymes of TAT, which were isolated, purified and thoroughly analyzed. The inducible anode isoenzyme of TAT spearated from other proteins is more sensitive to the effect of proteases (trypsin and chymotrypsin) than the catode isoenzyme. Some kinetic parameters of the purified TAT isoenzymes were studied. Both isoenzymes have pH optimum around 7.5; their apparent Km values for tyrosine are also similar. However, the catode isoenzyme of TAT possesses a higher affinity for alpha-ketoglutarate than does the anode isoenzyme. Unlike the latter, the former isoenzyme may use oxaloacetate as an amino group acceptor. Pyridoxal phosphate is firmly bound to the catode isoenzyme and can be readily spearated from the anode isoenzyme during dyalisis. An increased sensitivity of the inducible isoenzyme to proteases is due not only to the possibility of coenzyme dissociation, but also to some specific properties of the apoenzyme. The results obtained support the assumption that a high sensitivity of the inducible isoenzymes to proteases provides for a removal of excessive amounts of the enzymes from the cells under cessation of hormonal induction, thus maintaining enzymatic homostasis in the cell.

  6. Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm).

    Science.gov (United States)

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R Max; Mobley, James A; Chuang, David T; Hutson, Susan M

    2010-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain alpha-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain alpha-keto acids from BCATm to E1. The protein complex also contains glutamate dehydrogenase (GDH1), 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1, pyruvate carboxylase, and BCKDC kinase. GDH1 binds to the pyridoxamine 5'-phosphate (PMP) form of BCATm (PMP-BCATm) but not to the pyridoxal 5'-phosphate-BCATm and other metabolon proteins. Leucine activates GDH1, and oxidative deamination of glutamate is increased further by addition of PMP-BCATm. Isoleucine and valine are not allosteric activators of GDH1, but in the presence of 5'-phosphate-BCATm, they convert BCATm to PMP-BCATm, stimulating GDH1 activity. Sensitivity to ADP activation of GDH1 was unaffected by PMP-BCATm; however, addition of a 3 or higher molar ratio of PMP-BCATm to GDH1 protected GDH1 from GTP inhibition by 50%. Kinetic results suggest that GDH1 facilitates regeneration of the form of BCATm that binds to E1 decarboxylase of the BCKDC, promotes metabolon formation, branched-chain amino acid oxidation, and cycling of nitrogen through glutamate.

  7. The effect of pyridoxal-5-phosphate on serum alanine aminotransferase activity in dogs suffering from canine babesiosis

    Directory of Open Access Journals (Sweden)

    E.C. Myburgh

    2009-09-01

    Full Text Available Accurate measurements of serum aminotransferase (ALT activity in dogs relies on the endogenous pro-enzyme pyridoxal 5-phosphate (P5P. The purpose of this study was to determine whether the exclusion of P5P from the analytical method causes an underestimation of serum ALT activity in dogs suffering from babesiosis and in those manifesting evidence of hepatocellular damage, and to determine if anorexia causes sufficient P5P depletion to affect in vitro serum ALT activity. One-hundred-and-twenty healthy control dogs and 105 Babesia-infected dogs were included in the study. Two methods for ALT measurement were used: Method 1 included P5P, and Method 2 excluded P5P from the reaction mixture. Higher serum ALT activity was measured with Method 1 in the Babesia-infected dogs (P < 0.001, as well as in 14 dogs with suspected hepatocellular damage (P = 0.03. Duration of anorexia had no effect, irrespective of the method used. Although inclusion of P5P to the reaction mixture consistently resulted in higher measured serum ALT activity, the differences were too small to have led to incorrect diagnoses in the Babesia-infected dogs suspected of liver disease.

  8. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; Delft, F.L. van; Rutjes, F.P.J.T.

    2007-01-01

    Arginine-glycine-aspartate (RGD) derivatives were prepared by a combination of solid-phase and solution-phase synthesis for selective targeting of alpha vbeta 3 integrin expressed in tumors. In order to evaluate the value of a triazole moiety as a proposed amide isostere, the side chain glycosylated

  9. Thorium aspartate tetrahydrate precursor to ThO2: Comparison of hydrothermal and thermal conversions

    Science.gov (United States)

    Clavier, N.; Maynadié, J.; Mesbah, A.; Hidalgo, J.; Lauwerier, R.; Nkou Bouala, G. I.; Parrès-Maynadié, S.; Meyer, D.; Dacheux, N.; Podor, R.

    2017-04-01

    The synthesis of original crystalline thorium aspartate tetrahydrate, Th(C4NO4H6)4.4H2O, was performed using two different wet-chemistry routes, involving either L-asparagine or L-aspartic acid as complexing agent. Characterization of this compound through 13C NMR and PXRD led to confirm the terminal coordination mode of the aspartate group and to suggest a potential cubic lattice (Pn-3 space group). Vibrational spectroscopy data were also collected. The conversion of thorium aspartate tetrahydrate into thorium dioxide was further performed through classical high temperature heat treatment or under hydrothermal conditions. On the one hand, thermal treatment provided a pseudomorphic conversion which retained the starting morphology, and favored the increase of the average crystallite size, as well as the complete elimination of the residual carbon content. On the other, hydrothermal conversion could be used to tune the morphology of the final oxide, ThO2.nH2O microspheres being prepared when starting from L-asparagine.

  10. Low affinity and slow Na+-binding precedes high affinity aspartate binding in GltPh

    NARCIS (Netherlands)

    Hänelt, Inga; Jensen, Sonja; Wunnicke, Dorith; Slotboom, Dirk Jan

    2015-01-01

    GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters (EAATs) that take up the neurotransmitter glutamate. Each protomer in GltPh consis

  11. Estimation of paleotemperature from racemization of aspartic acid in combination with radiocarbon age

    Science.gov (United States)

    Minami, Masayo; Takeyama, Masami; Mimura, Koichi; Nakamura, Toshio

    2007-06-01

    We tried to estimate paleotemperatures from two chosen fossils by measuring D/L aspartic acid ratios and radiocarbon ages of the XAD-2-treated hydrolysate fractions in the fossils. The D/L aspartic acid ratio was measured with a gas chromatograph and radiocarbon dating was performed using a Tandetron AMS system at Nagoya University. The radiocarbon age of a fossil mammoth molar collected from Bykovsky Peninsula, eastern Siberia, was found to be 35,170 ± 300 BP as an average value for the XAD-treated hydrolysate fractions. The aspartic acid in the mammoth molar showed a little evidence of racemization, which might be due to in vivo racemization during the lifetime and then suggests negligible or no postmortem racemization during burial in permafrost. From four animal bone fossils collected from a shell mound excavated at the Awazu submarine archeological site in Lake Biwa, Shiga, Japan, the racemization-based effective mean temperature was calculated to be 15-16 °C using the D/L aspartic acid ratio of about 0.11 and the 14C age of 4500 BP for the XAD-2-treated hydrolysate fractions in the fossils. The average annual temperature was estimated to be 11-12 °C, which approximates to the temperature that the fossils experienced during burial at the site. Although the application of racemization ratios in fossils as paleotemperature indicators is surrounded with many difficulties, the results obtained in this study suggest its feasibility.

  12. Alleviation of Seawater Stress on Tomato by Foliar Application of Aspartic Acid and Glutathione

    Directory of Open Access Journals (Sweden)

    Samia Ageeb Akladious

    2013-08-01

    Full Text Available A pot experiment was carried out in the botanical garden of Faculty of Education, Ain Shams University, with the aim of studying the effect of salinity levels (4, 8 and 16% of diluted seawater and foliar application of aspartic acid and/or glutathione on the growth and chemical constituents of tomatoes (lycopersicon esculentum Mill plants. The most important results can be summarized as: 1. Treatments of high salinity levels reduced all growth parameters and chemical constituents of plants. 2 Both aspartic acid and glutathione significantly increased plant growth, the contents of anthocyanin, α-tocopherol, ascorbic acid and enzymatic activities. In addition, the content of endogenous amino acids was increased which in turn led to positive changes in the picture of protein electrophoresis, theses changes were accompanied by appearance and disappearance of some protein bands and caused obvious changes in the anatomical features of the stems. 3 The effect of aspartic acid was superior to that of glutathione on increasing plant growth and chemical constituents. 4 Under low saline conditions, the maximum plant growth for all the recorded growth parameters was obtained from plants treated with aspartic acid and grown under 8% of seawater, followed by 4%. However, glutathione had inhibitor effect on plant growth and chemical constituents of plants grown at 16% seawater. The data revealed that the different antioxidants could partially alleviate the harmful effects of salinity stress that reflected on growth and some physiological changes of tomato plant.

  13. The heat effects of dissociation of N-(carboxymethyl)aspartic acid

    Science.gov (United States)

    Lytkin, A. I.; Chernyavskaya, N. V.; Orlova, T. D.; Nikol'Skii, V. M.

    2009-07-01

    The heat effects of dissociation of N-(carboxymethyl)aspartic acid were determined calorimetrically at 298.15 K and various ionic strength values. The standard thermodynamic characteristics of dissociation of the complexone at fixed and zero ionic strengths were calculated.

  14. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction

    Science.gov (United States)

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction. PMID:25206795

  15. Estimation of paleotemperature from racemization of aspartic acid in combination with radiocarbon age

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Masayo [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)]. E-mail: minami@nendai.nagoya-u.ac.jp; Takeyama, Masami [Department of Earth and Planetary Sciences, School of Science, Nagoya 464-8602 (Japan); Mimura, Koichi [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602 (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, Nagoya 464-8602 (Japan)

    2007-06-15

    We tried to estimate paleotemperatures from two chosen fossils by measuring D/L aspartic acid ratios and radiocarbon ages of the XAD-2-treated hydrolysate fractions in the fossils. The D/L aspartic acid ratio was measured with a gas chromatograph and radiocarbon dating was performed using a Tandetron AMS system at Nagoya University. The radiocarbon age of a fossil mammoth molar collected from Bykovsky Peninsula, eastern Siberia, was found to be 35,170 {+-} 300 BP as an average value for the XAD-treated hydrolysate fractions. The aspartic acid in the mammoth molar showed a little evidence of racemization, which might be due to in vivo racemization during the lifetime and then suggests negligible or no postmortem racemization during burial in permafrost. From four animal bone fossils collected from a shell mound excavated at the Awazu submarine archeological site in Lake Biwa, Shiga, Japan, the racemization-based effective mean temperature was calculated to be 15-16 deg. C using the D/L aspartic acid ratio of about 0.11 and the {sup 14}C age of 4500 BP for the XAD-2-treated hydrolysate fractions in the fossils. The average annual temperature was estimated to be 11-12 deg. C, which approximates to the temperature that the fossils experienced during burial at the site. Although the application of racemization ratios in fossils as paleotemperature indicators is surrounded with many difficulties, the results obtained in this study suggest its feasibility.

  16. Primary oxidation and reduction products in x-irradiated aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Budzinski, E.E.; Box, H.C.

    1976-08-01

    The primary reduction products identified by ESR--ENDOR spectroscopy in single crystals of DL-aspartic acid hydrochloride irradiated at 4.2degreeK are anions formed by addition of an electron to the carbonyl oxygen atoms of the carboxylic acid groups. The main consequence of the oxidation process is to produce a hole centered mainly on atomic chlorine. (AIP)

  17. Aspartic acid in the hippocampus:a biomarker for postoperative cognitive dysfunction

    Institute of Scientific and Technical Information of China (English)

    Rong Hu; Dong Huang; Jianbin Tong; Qin Liao; Zhonghua Hu; Wen Ouyang

    2014-01-01

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2%iso-lfurane and 80%oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isolfurane also signiifcantly increased the levels of N,N-diethy-lacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isolfurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isolfurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 µmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  18. SYNTHESIS AND CHARACTERIZATION OF POLY(L-GLUTAMIC ACID-co-L-ASPARTIC ACID)

    Institute of Scientific and Technical Information of China (English)

    Ling-ling Wang; Yi-xian Wu; Ri-wei Xu; Guan-ying Wu; Wan-tai Yang

    2008-01-01

    Poly(amino acid) has been widely utilized in drug delivery, tissue engineering and biomedical materials. Thebiomateriais based on poly(glutamic acid) are usually modified via copolymerization with other monomers such as L-asparticacid to improve the uncontrolled degradation rate. The ring-opening homo- and co-polymerization of y-benzyl-L-glutamateN-carboxyanhydride (BLG-NCA) and β-benzyl-L-aspartate N-carboxyanhydride (BLA-NCA) were carried out in solution byusing triethylamine (TEA) as initiator. The BLG-NCA homopolymerization could take place even at-30℃ and molecularweight of poly(γ-benzyl-L-glutamate) decreased with increasing polymerization temperature. The BLA-NCA polymerizationdid not occur at -10℃ and was needed to be carried out at 25℃ to improve the polymerization. Poly(γ-benzyl-L-glutamate)and poly(β-benzyl-L-aspartate) with unimodal molecular weigh distribution and weight average molecular weight (Mw) of32100 and 4000 could be obtained at 25℃. The copolymers of γ-benzyl L-glutamate and β-benzyl L-aspartate withunimodal molecular weight distribution and Mw ranging from 5600 to 24600 could be prepared. The useful copolymers ofpoly(L-glutamic acid-co-L-aspartic acid) were further prepared by removal of benzyl groups.

  19. Microwave-Assisted Synthesis of Poly(Aspartic Acid-Itaconic Acid) Copolymer and Its Characterization

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuling; Jiang Yijian; Hu Zhiguang; Wei Hanxiao; Guo Jun; Wang Jilong

    2016-01-01

    Poly(aspartic acid-itaconic acid) copolymer was synthesized from aspartic acid (Asp) and itaconic acid (Ita) un-der microwave irradiation. The effects of microwave power, microwave irradiation time, molar ratio of itaconic acid and aspartic acid, catalyst type, catalyst and organic solvent content on copolymer yield, and the performance for inhibition of CaCO3 fouling were investigated. It was found that the product yield achieved a highest record of 95% when the amount of catalyst NaH2PO4was 0.012 mol, the amount of organic solvent propylene carbonate was 16 mL, the molar ratio of Asp/Ita was 3:1, the microwave output power was 1200 W and the irradiation time was 5.5 min. And the product performance for inhibition of calcium carbonate also reached a highest value of 94.38%. Structural characterization of the product showed that the product was the aspartic acid-itaconic acid copolymer.

  20. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  1. The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity.

    NARCIS (Netherlands)

    Pietrella, D.; Rachini, A.; Pandey, N.; Schild, L.; Netea, M.G.; Bistoni, F.; Hube, B.; Vecchiarelli, A.

    2010-01-01

    The secretion of aspartic proteases (Saps) has long been recognized as a virulence-associated trait of the pathogenic yeast Candida albicans. In this study, we report that different recombinant Saps, including Sap1, Sap2, Sap3, and Sap6, have differing abilities to induce secretion of proinflammator

  2. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke

    NARCIS (Netherlands)

    Stevens, H; Jakobs, C; de Jager, AEJ; Cunningham, RT; Korf, J

    1999-01-01

    Background After stroke, brain-specific proteins (including neurone-specific enolase) leak into the blood. The question addressed in the present study was whether N-acetyl-aspartate (amino acid derivative localized in cerebral neurones) could also serve as a peripheral marker of ischaemic damage. N-

  3. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    NARCIS (Netherlands)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouter L J; Frijlink, Henderik W; Mulder, Frans A A

    2013-01-01

    Oxytocin is a peptide drug used to induce labor and prevent bleeding after childbirth. Due to its instability, transport and storage of oxytocin formulations under tropical conditions is problematic. In a previous study, we have found that the stability of oxytocin in aspartate buffered formulation

  4. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    Science.gov (United States)

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  5. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E;

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  6. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding si...

  7. [Familial amyotrophic lateral sclerosis associated with Huntington chorea with increased aspartate level in the cerebrospinal fluid].

    Science.gov (United States)

    Blin, O; Samuel, D; Guieu, R; Pouget, J; Nieoullon, A; Serratrice, G

    1992-01-01

    We report the case of a patient who presented with both amyotrophic lateral sclerosis and Huntington's disease. Interestingly, aspartate level was increased in the lumbar CSF. In vitro and in vivo studies have convincingly suggested that these two neurodegenerative diseases could be related to an excitotoxic mechanism.

  8. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals

    Science.gov (United States)

    Grégoire, Brian; Erastova, Valentina; Geatches, Dawn L.; Clark, Stewart J.; Greenwell, H. Christopher; Fraser, Donald G.

    2016-03-01

    The role of mineral surfaces in concentrating and facilitating the polymerisation of simple protobiomolecules during the Hadean and Archean has been the subject of much research in order to constrain the conditions that may have led to the origin of life on early Earth. Here we examine the adsorption of the amino acid aspartate on layered double hydroxide minerals, and use a combined computer simulation - experimental spectroscopy approach to gain insight into the resulting structures of the host-aspartate material. We show that the uptake of aspartate occurs in alkaline solution by anion exchange of the dianion form of aspartate, rather than by surface adsorption. Anion exchange only occurs at values of pH where a significant population of aspartate has the amino group deprotonated, and is then highly efficient up to the mineral anion exchange capacity.

  9. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.

    Science.gov (United States)

    Teichman, Shlomit; Kanner, Baruch I

    2007-06-01

    In the central nervous system, electrogenic sodium- and potassium-coupled glutamate transporters terminate the synaptic actions of this neurotransmitter. In contrast to acidic amino acids, dicarboxylic acids are not recognized by glutamate transporters, but the related bacterial DctA transporters are capable of transporting succinate and other dicarboxylic acids. Transmembrane domain 8 contains several residues that differ between these two types of transporters. One of these, aspartate-444 of the neuronal glutamate transporter EAAC1, is conserved in glutamate transporters, but a serine residue occupies this position in DctA transporters. When aspartate-444 is mutated to serine, cysteine, alanine, or even to glutamate, uptake of D-[(3)H]-aspartate as well as the inwardly rectifying steady-state currents induced by acidic amino acids is impaired. Even though succinate was not capable of inducing any steady-state transport currents, the dicarboxylic acid inhibited the sodium-dependent transient currents by the mutants with a neutral substitution at position 444. In the neutral substitution mutants inhibition of the transients was also observed with acidic amino acids. In the D444E mutant, acidic amino acids were potent inhibitors of the transient currents, whereas the apparent affinity for succinate was lower by at least three orders of magnitude. Even though L-aspartate could bind to D444E with a high apparent affinity, this binding resulted in inhibition rather than stimulation of the uncoupled anion conductance. Thus, a carboxylic acid-containing side chain at position 444 prevents the interaction of glutamate transporters with succinate, and the presence of aspartate itself at this position is crucial for productive substrate binding compatible with substrate translocation.

  10. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander (Guelph); (Kyoto); (NCI)

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  11. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    Science.gov (United States)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; Kieft, T. L.; Silver, B. J.; Phelps, T. J.; Heerden, E. Van; Opperman, D. J.; Bada, J. L.

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  12. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  13. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  14. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Onstott, T. C. [Princeton University; Aubrey, A.D. [Jet Propulsion Laboratory, Pasadena, CA; Kieft, T L [New Mexico Institute of Mining and Technology; Silver, B J [Jet Propulsion Laboratory, Pasadena, CA; Phelps, Tommy Joe [ORNL; Van Heerden, E. [University of the Free State; Opperman, D. J. [University of the Free State; Bada, J L. [Geosciences Research Division, Scripps Instition of Oceanography, Univesity of California San Diego,

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  15. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    Science.gov (United States)

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  16. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    Science.gov (United States)

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  17. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of the biosynthetic N-acetylornithine aminotransferases from Salmonella typhimurium and Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Rajaram, V.; Prasad, K.; Ratna Prasuna, P.; Ramachandra, N.; Bharath, S. R. [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2006-10-01

    Acetylornithine aminotransferases, members of the type I subgroup II family of PLP-dependent enzymes, from S. typhimurium and E. coli have been cloned, overexpressed, purified and crystallized. Acetylornithine aminotransferase (AcOAT) is a type I pyridoxal 5′-phosphate-dependent enzyme catalyzing the conversion of N-acetylglutamic semialdehyde to N-acetylornithine in the presence of α-ketoglutarate, a step involved in arginine metabolism. In Escherichia coli, the biosynthetic AcOAT also catalyzes the conversion of N-succinyl-l-2-amino-6-oxopimelate to N-succinyl-l,l-diaminopimelate, one of the steps in lysine biosynthesis. It is closely related to ornithine aminotransferase. AcOAT was cloned from Salmonella typhimurium and E. coli, overexpressed in E. coli and purified using Ni–NTA affinity column chromatography. The enzymes crystallized in the presence of gabaculine. Crystals of E. coli AcOAT (eAcOAT) only diffracted X-rays to 3.5 Å and were twinned. The crystals of S. typhimurium AcOAT (sAcOAT) diffracted to 1.9 Å and had a dimer in the asymmetric unit. The structure of sAcOAT was solved by the molecular-replacement method.

  18. Cloning of a novel phosphateserine aminotransferase gene from a Triticum aestivum-Elytrigia elongatum alien substitution line with resistance to powdery mildew

    Institute of Scientific and Technical Information of China (English)

    HE Daoyi; WANG Honggang

    2005-01-01

    Shannong 551, a T. aestivum-E. elongatum alien substitution line with resistance to powdery mildew, was inoculated with pathogenic spores of powdery mildew. The leaf samples were prepared 48 h after inoculation for scanning electron microscopy. The result showed that germination of spores and growth of young mycelia on leaves of Shannong 551 were suppressed at the early stage of infection. At the same time, RNAs were prepared from the leaves for the cloning of WRP1 and RPW2 by cDNA RDA and RACE technology. BLAST analysis of the sequences indicated that both WRP1 and RPW2 were novel genes. WRP1 contains no complete ORF. RPW2 contains the conserved structure domain of aminotransferase, and its DNA sequence shares high homology with genes of phosphateserine aminotransferase in many organisms. Therefore, it is speculated as a novel phosphateserine aminotransferase gene. The results of Northern blot suggested that expression of RPW2 occurred at the early stage of infection by powdery mildew. Southern blot using the probe of RPW2, in which there was strong hybridizing signals in both genome of Shannong 551 and E. elongatum, but not in those of Jinan 13 and Lumai No.5, indicated that RPW2 derived from the genome of E. elongatum.

  19. Two mechanisms for putrescine-dependent transcriptional expression of the putrescine aminotransferase gene, ygjG, in Escherichia coli.

    Science.gov (United States)

    Kim, Young-Sik; Shin, Hyun-Chul; Lee, Jong-Ho

    2014-09-01

    In this study, on evaluating the physiological function and mechanism of putrescine, we found that putrescine supplementation (1 mM) increases transcription of the putrescine aminotransferase gene, ygjG. Putrescine-dependent expression was confirmed by measuring β-galactosidase activity and with reverse transcription-polymerase chain reaction. To understand the role of putrescine in ygjG expression, we genetically characterized and found that a knockout mutation in an alternative sigma factor, rpoS, abolished putrescine-dependent ygjG-lacZ expression. In the rpoS mutant, RpoS overexpression complemented the mutant phenotype. However, RpoS overexpression induced ygjG-lacZ expression with putrescine supplementation but not without supplementation. We also found that the loss of putrescine-dependent ygjG-lacZ expression induced by rpoS was completely restored under nitrogen-starvation conditions. The putrescine-dependent expression of ygjG-lacZ under this condition was clearly dependent on another alternative sigma factor, rpoN, and its cognate activator ntrC. These results show that rpoS is required for putrescine-dependent ygjG-lacZ expression, but the effect of putrescine on this expression is not caused by simple modulation of RpoS synthesis. Putrescine-dependent expression of ygjG-lacZ was controlled by at least two sigma factors: rpoS under excess nitrogen conditions and rpoN under nitrogen-starvation conditions. These results suggest that putrescine plays an important role in the nitrogen regulation system.

  20. Diet and the frequency of the alanine:glyoxylate aminotransferase Pro11Leu polymorphism in different human populations.

    Science.gov (United States)

    Caldwell, Elizabeth F; Mayor, Lianne R; Thomas, Mark G; Danpure, Christopher J

    2004-11-01

    The intermediary metabolic enzyme alanine:glyoxylate aminotransferase (AGT) contains a Pro11Leu polymorphism that decreases its catalytic activity by a factor of three and causes a small proportion to be mistargeted from its normal intracellular location in the peroxisomes to the mitochondria. These changes are predicted to have significant effects on the synthesis and excretion of the metabolic end-product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. Based on the evolution of AGT targeting in mammals, we have previously hypothesised that this polymorphism would be advantageous for individuals who have a meat-rich diet, but disadvantageous for those who do not. If true, the frequency distribution of Pro11Leu in different extant human populations should have been shaped by their dietary history so that it should be more common in populations with predominantly meat-eating ancestral diets than it is in populations in which the ancestral diets were predominantly vegetarian. In the present study, we have determined frequency of Pro11Leu in 11 different human populations with divergent ancestral dietary lifestyles. We show that the Pro11Leu allelic frequency varies widely from 27.9% in the Saami, a population with a very meat-rich ancestral diet, to 2.3% in Chinese, who are likely to have had a more mixed ancestral diet. FST analysis shows that the differences in Pro11Leu frequency between some populations (particularly Saami vs Chinese) was very high when compared with neutral loci, suggesting that its frequency might have been shaped by dietary selection pressure.

  1. Population-based Risk Factors for Elevated Alanine Aminotransferase in a South Texas Mexican–American Population

    Science.gov (United States)

    Qu, Hui-Qi; Li, Quan; Grove, Megan L.; Lu, Yang; Pan, Jen-Jung; Rentfro, Anne R.; Bickel, Perry E.; Fallon, Michael B.; Hanis, Craig L.; Boerwinkle, Eric; McCormick, Joseph B.; Fisher-Hoch, Susan P.

    2013-01-01

    Background and Aims Elevated alanine aminotransferase (ALT >40 IU/mL) is a marker of liver injury but provides little insight into etiology. We aimed to identify and stratify risk factors associated with elevated ALT in a randomly selected population with a high prevalence of elevated ALT (39%), obesity (49%) and diabetes (30%). Methods Two machine learning methods, the support vector machine (SVM) and Bayesian logistic regression (BLR), were used to capture risk factors in a community cohort of 1532 adults from the Cameron County Hispanic Cohort (CCHC). A total of 28 predictor variables were used in the prediction models. The recently identified genetic marker rs738409 on the PNPLA3 gene was genotyped using the Sequenom iPLEX assay. Results The four major risk factors for elevated ALT were fasting plasma insulin level and insulin resistance, increased BMI and total body weight, plasma triglycerides and non-HDL cholesterol, and diastolic hypertension. In spite of the highly significant association of rs738409 in females, the role of rs738409 in the prediction model is minimal, compared to other epidemiological risk factors. Age and drug and alcohol consumption were not independent determinants of elevated ALT in this analysis. Conclusions The risk factors most strongly associated with elevated ALT in this population are components of the metabolic syndrome and point to nonalcoholic fatty liver disease (NAFLD). This population-based model identifies the likely cause of liver disease without the requirement of individual pathological diagnosis of liver diseases. Use of such a model can greatly contribute to a population-based approach to prevention of liver disease. PMID:22959976

  2. Association of Alanine Aminotransferase Levels (ALT with the Hepatic Insulin Resistance Index (HIRI: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Gómez-Sámano Miguel

    2012-09-01

    Full Text Available Abstract Background The association between serum alanine aminotransferase (ALT levels and hepatic insulin resistance (IR has been evaluated with the hyperinsulinemic-euglycemic clamp. However, there is no information about the association of ALT with the Hepatic Insulin Resistance Index (HIRI. The aim of this study was to evaluate the association between serum ALT levels and HIRI in subjects with differing degrees of impaired glucose metabolism. Methods This cross-sectional study included subjects that had an indication for testing for type 2 diabetes mellitus (T2DM with an oral glucose tolerance test (OGTT. Clinical and biochemical evaluations were carried out including serum ALT level quantification. HIRI was calculated for each participant. Correlation analyses and lineal regression models were used to evaluate the association between ALT levels and HIRI. Results A total of 324 subjects (37.6% male were included. The mean age was 40.4 ± 14.3 years and the mean body mass index (BMI was 32.0 ± 7.3 kg/m2. Individuals were divided into 1 of 5 groups: without metabolic abnormalities (n = 113, 34.8%; with the metabolic syndrome (MetS, n = 179, 55.2%, impaired fasting glucose (IFG, n = 85, 26.2%; impaired glucose tolerance (IGT, n = 91, 28.0%, and T2DM (n = 23, 7.0%. The ALT (p  Conclusions ALT levels are independently associated with HIRI in subjects with the MetS, IFG, IGT, and T2DM. The ALT value in these subjects may be an indirect parameter to evaluate hepatic IR.

  3. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme.

    Directory of Open Access Journals (Sweden)

    Maritrini Colón

    Full Text Available BACKGROUND: Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. PRINCIPAL FINDINGS: Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs. This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1, while catabolic substrates are accumulated in the cytosol (Bat2. Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. CONCLUSIONS: Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the

  4. Expression of Mitochondrial Branched-Chain Aminotransferase and α-Keto-Acid Dehydrogenase in Rat Brain: Implications for Neurotransmitter Metabolism

    Directory of Open Access Journals (Sweden)

    Jeffrey Thomas Cole

    2012-05-01

    Full Text Available In the brain, metabolism of the essential branched chain amino acids (BCAAs leucine, isoleucine and valine, is regulated in part by protein synthesis requirements. Excess BCAAs are catabolized or excreted. The first step in BCAA catabolism is catalyzed by the branched chain aminotransferase (BCAT isozymes, mitochondrial BCATm and cytosolic BCATc. A product of this reaction, glutamate, is the major excitatory neurotransmitter and precursor of the major inhibitory neurotransmitter -aminobutyric acid (GABA. The BCATs are thought to participate in an α-keto-acid nitrogen shuttle that provides nitrogen for synthesis of glutamate from -ketoglutarate. The branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC catalyzes the second and first irreversible step in BCAA metabolism, which is oxidative decarboxylation of the branched-chain α-keto acid (BCKA products of the BCAT reaction. Maple Syrup Urine Disease (MSUD results from genetic defects in BCKDC, which leads to accumulation of toxic levels of BCAAs and BCKAs that result in brain swelling. Immunolocalization of BCATm and BCKDC in rats revealed that BCATm is present in astrocytes in white matter and in neuropil, while BCKDC is expressed only in neurons. BCATm appears uniformly distributed in astrocyte cell bodies throughout the brain. The segregation of BCATm to astrocytes and BCKDC to neurons provides further support for the existence of a BCAA-dependent glial-neuronal nitrogen shuttle since the data show that BCKAs produced by glial BCATm must be exported to neurons. Additionally, the neuronal localization of BCKDC suggests that MSUD is a neuronal defect involving insufficient oxidation of BCKAs, with secondary effects extending beyond the neuron.

  5. Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Vijai Bhadauria

    Full Text Available The role of β-oxidation and the glyoxylate cycle in fungal pathogenesis is well documented. However, an ambiguity still remains over their interaction in peroxisomes to facilitate fungal pathogenicity and virulence. In this report, we characterize a gene encoding an alanine, glyoxylate aminotransferase 1 (AGT1 in Magnaporthe oryzae, the causative agent of rice blast disease, and demonstrate that AGT1 is required for pathogenicity of M. oryzae. Targeted deletion of AGT1 resulted in the failure of penetration via appressoria; therefore, mutants lacking the gene were unable to induce blast symptoms on the hosts rice and barley. This penetration failure may be associated with a disruption in lipid mobilization during conidial germination as turgor generation in the appressorium requires mobilization of lipid reserves from the conidium. Analysis of enhanced green fluorescent protein expression using the transcriptional and translational fusion with the AGT1 promoter and open reading frame, respectively, revealed that AGT1 expressed constitutively in all in vitro grown cell types and during in planta colonization, and localized in peroxisomes. Peroxisomal localization was further confirmed by colocalization with red fluorescent protein fused with the peroxisomal targeting signal 1. Surprisingly, conidia produced by the Δagt1 mutant were unable to form appressoria on artificial inductive surfaces, even after prolonged incubation. When supplemented with nicotinamide adenine dinucleotide (NAD(++pyruvate, appressorium formation was restored on an artificial inductive surface. Taken together, our data indicate that AGT1-dependent pyruvate formation by transferring an amino group of alanine to glyoxylate, an intermediate of the glyoxylate cycle is required for lipid mobilization and utilization. This pyruvate can be converted to non-fermentable carbon sources, which may require reoxidation of NADH generated by the β-oxidation of fatty acids to NAD(+ in

  6. ALT (Alanine Aminotransferase) Test

    Science.gov (United States)

    Advertisement Proceeds from website advertising help sustain Lab Tests Online. AACC is a not-for-profit organization and does not endorse non-AACC products and services. Advertising & Sponsorship: Policy | Opportunities ...

  7. Topology of AspT, the Aspartate:Alanine Antiporter of Tetragenococcus halophilus, Determined by Site-Directed Fluorescence Labeling▿ †

    OpenAIRE

    Nanatani, Kei; Fujiki, Takashi; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko; Umeyama, Hideaki; Ye, Liwen; Wang, Xicheng; Nakajima, Tasuku; Uchida, Takafumi; Maloney, Peter C.; Abe, Keietsu

    2007-01-01

    The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of l-aspartate (Asp) with release of l-alanine (Ala) and CO2. The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an l-aspartate-β-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter cla...

  8. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Science.gov (United States)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  9. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    Science.gov (United States)

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.

  10. Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Hengjia Ni

    2016-01-01

    Full Text Available Background. Oxidative stress is associated with infertility. This study was conducted to determine the effects of glutamate and aspartate on serum antioxidative enzymes, sex hormones, and genital inflammation in boars suffering from oxidative stress. Methods. Boars were randomly divided into 4 groups: the nonchallenged control (CON and H2O2-challenged control (BD groups were fed a basal diet supplemented with 2% alanine; the other two groups were fed the basal diet supplemented with 2% glutamate (GLU or 2% aspartate (ASP. The BD, GLU, and ASP groups were injected with hydrogen peroxide (H2O2 on day 15. The CON group was injected with 0.9% sodium chloride solution on the same day. Results. Dietary aspartate decreased the malondialdehyde (MDA level in serum (P<0.05 compared with the BD group. Additionally, aspartate maintained serum luteinizing hormone (LH at a relatively stable level. Moreover, glutamate and aspartate increased transforming growth factor-β1 (TGF-β1 and interleukin-10 (IL-10 levels in the epididymis and testis (P<0.05 compared with the BD group. Conclusion. Both glutamate and aspartate promoted genital mRNA expressions of anti-inflammatory factors after oxidative stress. Aspartate more effectively decreased serum MDA and prevented fluctuations in serum sex hormones after H2O2 challenge than did glutamate.

  11. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected.

  12. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid.

    Science.gov (United States)

    Butler, R G; Umbreit, W W

    1966-02-01

    Butler, Richard G. (Rutgers, The State University, New Brunswick, N.J.), and Wayne W. Umbreit. Absorption and utilization of organic matter by the strict autotroph, Thiobacillus thiooxidans, with special reference to aspartic acid. J. Bacteriol. 91:661-666. 1966.-The strictly autotrophic bacterium, Thiobacillus thiooxidans, can be shown to assimilate a variety of organic materials. Aspartic acid can be assimilated into protein and can be converted into CO(2), but even in the presence of sulfur it cannot serve as the sole source of carbon for growth. The reason appears to be that aspartic acid is converted into inhibitory materials.

  13. Plasmid-Encoded asp Operon Confers a Proton Motive Metabolic Cycle Catalyzed by an Aspartate-Alanine Exchange Reaction

    OpenAIRE

    Abe, Keietsu; Ohnishi, Fumito; Yagi, Kyoko; Nakajima, Tasuku; Higuchi, Takeshi; Sano, Motoaki; Machida, Masayuki; Sarker, Rafiquel I.; Maloney, Peter C.

    2002-01-01

    Tetragenococcus halophila D10 catalyzes the decarboxylation of l-aspartate with nearly stoichiometric release of l-alanine and CO2. This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an l-aspartate-β-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon i...

  14. Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006)

    Science.gov (United States)

    Burch, James B.; Everson, Todd M.; Seth, Ratanesh K.; Wirth, Michael D.; Chatterjee, Saurabh

    2015-01-01

    Exposure to trihalomethanes (or THMs: chloroform, bromoform, bromodichloromethane, and dibromochloromethane [DBCM]) formed via drinking water disinfection has been associated with adverse reproductive outcomes and cancers of the digestive or genitourinary organs. However, few studies have examined potential associations between THMs and liver injury in humans, even though experimental studies suggest that these agents exert hepatotoxic effects, particularly among obese individuals. This study examined participants in the National Health and Nutrition Examination Survey (1999–2006, N = 2781) to test the hypothesis that THMs are associated with liver injury as assessed by alanine aminotransferase (ALT) activity in circulation. Effect modification by body mass index (BMI) or alcohol consumption also was examined. Associations between blood THM concentrations and ALT activity were assessed using unconditional multiple logistic regression to calculate prevalence odds ratios (ORs) with 95% confidence intervals (CIs) for exposure among cases with elevated ALT activity (men: >40 IU/L, women: >30 IU/L) relative to those with normal ALT, after adjustment for variables that may confound the relationship between ALT and THMs. Compared to controls, cases were 1.35 times more likely (95% CI: 1.02, 1.79) to have circulating DBCM concentrations exceeding median values in the population. There was little evidence for effect modification by BMI, although the association varied by alcohol consumption. Among non-drinkers, cases were more likely than controls to be exposed to DBCM (OR: 3.30, 95% CI: 1.37–7.90), bromoform (OR: 2.88, 95% CI: 1.21–6.81), or brominated THMs (OR: 4.00, 95% CI: 1.31–12.1), but no association was observed among participants with low, or moderate to heavy alcohol consumption. Total THM levels exceeding benchmark exposure limits continue to be reported both in the United States and globally. Results from this study suggest a need for further

  15. Mechanism of Substrate Recognition And PLP-Induced Conformational Changes in II-Diaminopimelate Aminotransferase From Arabidopsis Thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N.; Clay, M.D.; Belkum, M.J.van; Cherney, M.M.; Vederas, J.C.; James, M.N.G.

    2009-05-26

    LL-Diaminopimelate aminotransferase (LL-DAP-AT), a pyridoxal phosphate (PLP)-dependent enzyme in the lysine biosynthetic pathways of plants and Chlamydia, is a potential target for the development of herbicides or antibiotics. This homodimeric enzyme converts L-tetrahydrodipicolinic acid (THDP) directly to LL-DAP using L-glutamate as the source of the amino group. Earlier, we described the 3D structures of native and malate-bound LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT). Seven additional crystal structures of AtDAP-AT and its variants are reported here as part of an investigation into the mechanism of substrate recognition and catalysis. Two structures are of AtDAP-AT with reduced external aldimine analogues: N-(5'-phosphopyridoxyl)-L-glutamate (PLP-Glu) and N-(5'-phosphopyridoxyl)- LL-Diaminopimelate (PLP-DAP) bound in the active site. Surprisingly, they reveal that both L-glutamate and LL-DAP are recognized in a very similar fashion by the same sets of amino acid residues; both molecules adopt twisted V-shaped conformations. With both substrates, the {alpha}-carboxylates are bound in a salt bridge with Arg404, whereas the distal carboxylates are recognized via hydrogen bonds to the well-conserved side chains of Tyr37, Tyr125 and Lys129. The distal C{sup {var_epsilon}} amino group of LL-DAP is specifically recognized by several non-covalent interactions with residues from the other subunit (Asn309*, Tyr94*, Gly95*, and Glu97* (Amino acid designators followed by an asterisk (*) indicate that the residues originate in the other subunit of the dimer)) and by three bound water molecules. Two catalytically inactive variants of AtDAP-AT were created via site-directed mutagenesis of the active site lysine (K270N and K270Q). The structures of these variants permitted the observation of the unreduced external aldimines of PLP with L-glutamate and with LL-DAP in the active site, and revealed differences in the torsion angle about the PLP-substrate bond

  16. Calix[4]arene-Based Enantioselective Fluorescent Sensors for the Recognition of N-Acetyl-aspartate

    Institute of Scientific and Technical Information of China (English)

    QING Guang-Yan; CHEN Zhi-Hong; WANG Feng; YANG Xi; MENG Ling-Zhi; HE Yong-Bing

    2008-01-01

    Two-armed chiral anion receptors (1 and 2), calix[4]arenes bearing dansyl fluorophore and (1R,2R)- or(1S,2S)-1,2-diphenylethylenediamine binding sites, were prepared and examined for their chiral amino acid anion binding abilities by the fluorescence spectra in dimethylsulfoxide (DMSO). The results of non-linear curve fitting indicate that 1 or 2 forms a 1 : 1 stoichiometry complex with N-acetyl-L-or D-aspartate by multiple hydrogen bonding interactions, exhibiting good enantioselective fluorescent recognition for the enantiomers of N-acetyl-as-partate, [receptor 1: Kass(D)/Kass(L)=6.74; receptor 2: Kass(L)/Kass(D)=6.48]. The clear fluorescent response difference indicates that receptors 1 and 2 could be used as a fluorescent chemosensor for N-Acetyl-aspartate.

  17. Anharmonic vibrational studies of L-aspartic acid using HF and DFT calculations

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2012-10-01

    The experimental and theoretical studies on the structure, molecular properties and vibrational spectra of L-aspartic acid are presented. The molecular structure, harmonic and anharmonic vibrational frequencies, molecular properties, MEP mapping, NBO analysis and electronic spectra of L-aspartic acid have been reported. Computed geometrical parameters and anharmonic frequencies of fundamental, combination and overtone transitions were found in satisfactory agreement with the experimental data. The UV-Vis spectrum of present molecule has been recorded and the electronic properties such as HOMO and LUMO energies and few low lying excited states were carried out by using time dependent density functional theory (TD-DFT) approach. Natural Bond Orbital (NBO) analysis has been performed for analyzing charge delocalization throughout the molecule. Molecular electrostatic potential map has also been used for quantitative measure of the chemical activities of various sites of the molecule.

  18. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Science.gov (United States)

    Nagao, Yuki; Kubo, Takahiro

    2014-12-01

    Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  19. The Reovirus Sigmal Aspartic Acid Sandwich: A Trimerization Motif Poised for Conformational Change

    Energy Technology Data Exchange (ETDEWEB)

    Schelling,P.; Guglielml, K.; Kirchner, E.; Paetzold, b.; Dermody, T.; Stehle, T.

    2007-01-01

    Reovirus attachment protein {sigma}1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The {sigma}1 protein is a filamentous, trimeric molecule with a globular {beta}-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the {sigma}1 subunit interface. A 1.75 {angstrom} structure of the {sigma}1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate that these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the {sigma}1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.

  20. The reovirus sigma1 aspartic acid sandwich: a trimerization motif poised for conformational change.

    Science.gov (United States)

    Schelling, Pierre; Guglielmi, Kristen M; Kirchner, Eva; Paetzold, Bernhard; Dermody, Terence S; Stehle, Thilo

    2007-04-13

    Reovirus attachment protein sigma1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The sigma1 protein is a filamentous, trimeric molecule with a globular beta-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the sigma1 subunit interface. A 1.75-A structure of the sigma1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate that these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the sigma1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.

  1. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    Science.gov (United States)

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-04

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family.

  2. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    DEFF Research Database (Denmark)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouther L.J.

    2013-01-01

    is improved by the addition of divalent metal ions (unpublished results). The stabilizing effect of Zn2+ was by far superior compared to that of Mg2+. In addition, it was found that stabilization correlated well with the ability of the divalent metal ions to interact with oxytocin in aspartate buffer...... favorable. These interactions may explain the protection of the disulfide bridge against intermolecular reactions that lead to dimerization.Mg or Zn, using 2D NOESY, TOCSY, H-C HSQC and H- N HSQC NMR spectroscopy. Almost all H, C and N resonances of oxytocin could be assigned using HSQC spectroscopy...... that the carboxylate group of aspartate neutralizes the positive charge of the N-terminus of Cys, allowing the interactions with Zn to become more favorable. These interactions may explain the protection of the disulfide bridge against intermolecular reactions that lead to dimerization....

  3. Seed-specific aspartic proteinase FeAP12 from buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2010-01-01

    Full Text Available Aspartic proteinase gene (FeAP12 has been isolated from the cDNA library of developing buckwheat seeds. Analysis of its deduced amino acid sequence showed that it resembled the structure and shared high homology with typical plant aspartic proteinases (AP characterized by the presence of a plant-specific insert (PSI, unique among APs. It was shown that FeAP12 mRNA was not present in the leaves, roots, steam and flowers, but was seed-specifically expressed. Moreover, the highest levels of FeAP12 expression were observed in the early stages of seed development, therefore suggesting its potential role in nucellar degradation.

  4. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement

    Science.gov (United States)

    Kalra, Sanjay; Latif, Zafar A.; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal–bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  5. Proteolytic Cleavage of Various Human Serum Proteinase Inhibitors by Candida albicans Aspartic Proteinase

    OpenAIRE

    Tsushima, Hirofumi; MINE, Hiroko

    2008-01-01

    The secreted Candida albicans aspartic proteinase (SAP) is presumed to be one of the putative Candida virulence factors, while serum proteinase inhibitors depend on host defense mechanisms. We examined the interaction between SAP and serum proteinase inhibitors, such as C1-inhibitor, α2 plasmin inhibitor, and antithrombin III. SAP progressively inactivated plasmin inhibitory activity of C1-inhibitor and α2 plasmin inhibitor. It also inactivated thrombin inhibitory activity of antithrombin III...

  6. Crystal quality and inhibitor binding by aspartic proteinases; preparation of high quality crystals of mouse renin

    Science.gov (United States)

    Badasso, M.; Sibanda, B. L.; Cooper, J. B.; Dealwis, C. G.; Wood, S. P.

    1992-08-01

    Renin from mouse submandibular glands has been highly purified and co-crystallized with a synthetic nonapeptide fragment of rat angiotensionogen in which the scissile Leu-Leu bond has been modified as a hydroxyethylene mimic of the transition state. The strong diffraction from these crystals compared to the native form is discussed in relation to the behaviour of other members of the aspartic proteinase family in crystallisation.

  7. Age determination of marine sediments in the western North Pacific by aspartic acid chronology

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Naomi; Kusakabe, Masashi [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (Japan); Handa, Nobuhiko; Oba, Tadamichi; Matsuoka, Hiromi; Kimoto, Katsunori

    1997-02-01

    The ages of fossil planktonic foraminifera, Pulleniatina obliquiloculata, in sediments (core 3bPC) from the western North Pacific were determined by aspartic acid chronology, which uses the racemization reaction rate constant of aspartic acid (k{sub Asp}). Aspartic acid racemization-based ages (Asp ages) ranged from 7,600 yrBP at the surface, to 307,000 yrBP at a depth of 352.9 cm in the sediments. This sediment core was also dated by the glacial-interglacial fluctuation of {sigma}{sup 18}O chronology, and the ages determined by both chronologies were compared. The ages derived from aspartic acid chronology and {sigma}{sup 18}O stratigraphy were more or less consistent, but there appeared to be some differences in age estimates between these two dating methods at some depths within the core. In the core top sediments, the likely cause for the age discrepancy could be the loss of the surface sediment during sampling of the core. At depths of 66.3 and 139 cm within the core, Asp ages indicated reduced sedimentation rates during ca. 60,000-80,000 yrBP and ca. 140,000-190,000 yrBP. The maximum age differences in both chronologies are 33,000 yr and 46,600 yr during each of these periods. These anomalous reductions in sedimentation rates occurring during these periods could possibly be related to some geological events, such as an increased dissolution effect of the calcium carbonate in the western North Pacific. Another possible reason for these age differences could be the unreliability in {sigma}{sup 18}O ages of core 3bPC as they were estimated by {sigma}{sup 18}O ages of another core, 3aPC. (author)

  8. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.

    Science.gov (United States)

    Rabinovich, Shiran; Adler, Lital; Yizhak, Keren; Sarver, Alona; Silberman, Alon; Agron, Shani; Stettner, Noa; Sun, Qin; Brandis, Alexander; Helbling, Daniel; Korman, Stanley; Itzkovitz, Shalev; Dimmock, David; Ulitsky, Igor; Nagamani, Sandesh C S; Ruppin, Eytan; Erez, Ayelet

    2015-11-19

    Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.

  9. Cardiac N-methyl D-aspartate receptors as a pharmacological target

    OpenAIRE

    Makhro, Asya; Tian, Qinghai; Kaestner, Lars; Kosenkov, Dmitry; Faggian, Giuseppe; Gassmann, Max; Schwarzwald, Colin; BOGDANOVA, Anna

    2016-01-01

    This study focuses on characterization of the cardiac N-methyl D-aspartate receptors (NMDARs) as a target for endogenous and synthetic agonists and antagonists. Using isolated perfused rat hearts, we have shown that intracoronary administration of the NMDAR agonists and antagonists has a pronounced effect on autonomous heart function. Perfusion of rat hearts with autologous blood supplemented with NMDAR agonists was associated with induction of tachycardia, sinus arrhythmia and ischemia occur...

  10. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  11. N-(Fluoren-9-ylmethoxycarbonyl-l-aspartic acid 4-tert-butyl ester

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamada

    2009-11-01

    Full Text Available The bond distances and bond angles of the title compound, C23H25NO6, are consistent with values typically found for fluoren-9-ylmethoxycarbonyl-protected amino acids. The conformations of the backbone and the side chain are slightly different from those of l-aspartic acid. The crystal structure exhibits two intermolecular hydrogen bonds, forming a two-dimensional sheet structure parallel to the ab plane.

  12. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yuki, E-mail: ynagao@jaist.ac.jp; Kubo, Takahiro

    2014-12-30

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.

  13. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  14. The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain.

    Science.gov (United States)

    D'Abrosca, Gianluca; Russo, Luigi; Palmieri, Maddalena; Baglivo, Ilaria; Netti, Fortuna; de Paola, Ivan; Zaccaro, Laura; Farina, Biancamaria; Iacovino, Rosa; Pedone, Paolo Vincenzo; Isernia, Carla; Fattorusso, Roberto; Malgieri, Gaetano

    2016-08-01

    The possibility of choices of protein ligands and coordination geometries leads to diverse Zn(II) binding sites in zinc-proteins, allowing a range of important biological roles. The prokaryotic Cys2His2 zinc finger domain (originally found in the Ros protein from Agrobacterium tumefaciens) tetrahedrally coordinates zinc through two cysteine and two histidine residues and it does not adopt a correct fold in the absence of the metal ion. Ros is the first structurally characterized member of a family of bacterial proteins that presents several amino acid changes in the positions occupied in Ros by the zinc coordinating residues. In particular, the second position is very often occupied by an aspartic acid although the coordination of structural zinc by an aspartate in eukaryotic zinc fingers is very unusual. Here, by appropriately mutating the protein Ros, we characterize the aspartate role within the coordination sphere of this family of proteins demonstrating how the presence of this residue only slightly perturbs the functional structure of the prokaryotic zinc finger domain while it greatly influences its thermodynamic properties.

  15. Platinum-Incorporating Poly(N-vinylpyrrolidone)-poly(aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Yao, Xikuang; Xie, Chen; Chen, Weizhi; Yang, Chenchen; Wu, Wei; Jiang, Xiqun

    2015-07-13

    Cisplatin-incorporating pseudoblock copolymer nanoparticles with high drug loading efficiency (ca. 50%) were prepared built on host-guest inclusion complexation between β-cyclodextrin end-capped poly(N-vinylpyrrolidone) block and admantyl end-capped poly(aspartic acid) block, followed by the coordination between cisplatin and carboxyl groups in poly(aspartic acid). The host-guest interaction between the two polymer blocks was examined by two-dimensional nuclear overhauser effect spectroscopy. The size and morphology of nanoparticles formed were characterized by dynamic light scattering, zeta potential, transmission electron microscopy, and atomic force microscopy. The size control of nanoparticles was carried out by varying the ratio of poly(N-vinylpyrrolidone) to poly(aspartic acid). The nanoparticles were stable in the aqueous medium with different pH values but disintegrated in the medium containing Cl(-) ions. The in vitro and in vivo antitumor effects of cisplatin-loaded nanoparticles were evaluated. The biodistribution of the nanoparticles in vivo was studied by noninvasive near-infrared fluorescence imaging and ion-coupled plasma mass spectrometry. It was found that cisplatin-loaded nanoparticles could effectively accumulate in the tumor site and exhibited significant superior in vivo antitumor activity to the commercially available free cisplatin by combining the tumor volume, body weight, and survival rate measurements.

  16. Transport of Arginine and Aspartic Acid into Isolated Barley Mesophyll Vacuoles 1

    Science.gov (United States)

    Martinoia, Enrico; Thume, Monika; Vogt, Esther; Rentsch, Doris; Dietz, Karl-Josef

    1991-01-01

    The transport of arginine into isolated barley (Hordeum vulgare L.) mesophyll vacuoles was investigated. In the absence of ATP, arginine uptake was saturable with a Km of 0.3 to 0.4 millimolar. Positively charged amino acids inhibited arginine uptake, lysine being most potent with a Ki of 1.2 millimolar. In the presence of free ATP, but not of its Mg-complex, uptake of arginine was drastically enhanced and a linear function of its concentration up to 16 millimolar. The nonhydrolyzable adenylyl imidodiphosphate, but no other nucleotide tested, could substitute for ATP. Therefore, it is suggested that this process does not require energy and does not involve the tonoplast ATPase. The ATP-dependent arginine uptake was strongly inhibited by p-chloromercuriphenylsulfonic acid. Furthermore, hydrophobic amino acids were inhibitory (I50 phenylalanine 1 millimolar). Similar characteristics were observed for the uptake of aspartic acid. However, rates of ATP-stimulated aspartic acid transport were 10-fold lower as compared to arginine transport. Uptake of aspartate in the absence of ATP was negligible. PMID:16668447

  17. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    Science.gov (United States)

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)).

  18. N-Methyl-D-aspartic Acid (NMDA in the nervous system of the amphioxus Branchiostoma lanceolatum

    Directory of Open Access Journals (Sweden)

    Garcia-Fernàndez Jordi

    2007-12-01

    Full Text Available Abstract Background NMDA (N-methyl-D-aspartic acid is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone in the hypothalamus, and of LH (Luteinizing Hormone and PRL (Prolactin in the pituitary gland. Results In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle. As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp by a NMDA synthase (also called D-aspartate methyl transferase. Conclusion Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.

  19. Estimation of age at death based on aspartic acid racemization in elastic cartilage of the epiglottis.

    Science.gov (United States)

    Matzenauer, Christian; Reckert, Alexandra; Ritz-Timme, Stefanie

    2014-11-01

    Age estimation based on aspartic acid racemization (AAR) has been applied successfully to various tissues. For routine uses, AAR is analyzed in dentine. For cases in which teeth are unavailable, analyzing AAR in purified elastin has been shown to be an alternative method. The suitability of elastic cartilage from the epiglottis as an elastin source for age estimation based on AAR was tested. A total of 65 tissue samples (cartilage) of epiglottis and 45 samples of elastin purified from the elastic cartilage of epiglottis samples were analyzed. While the D-aspartic acid content of total tissue samples increased with age only slowly, its increase with age in purified elastin samples was similar to that in purified elastin from other tissues. The relationship between the D-aspartic acid content and age was shown to be close enough for age estimation based on AAR in purified elastin from the elastic cartilage of the epiglottis, provided a sufficient quality of elastin purification. Age estimation based on AAR in purified elastin from the epiglottis might serve as a valuable alternative in cases in which other tissues (e.g., teeth) are unavailable.

  20. Occurrence of the malate-aspartate shuttle in various tumor types.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  1. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  2. Synthesis and Molecular Recognition of Novel Cyclic Pseudopeptides Containing L-Glutamic Acid or L-Aspartic Acid Backbones

    Institute of Scientific and Technical Information of China (English)

    WANG Tao王涛; HUANG Xiao-Yi黄小毅; XIA Chuan-Qin夏传琴; YU Xiao-Qi余孝其; XIE Ru-Gang谢如刚

    2004-01-01

    Novel cyclic pseudopeptides containing L-glutamic acid or L-aspartic acid backbone structures were efficiently synthesized and characterized. Their chiral recognition properties for L- and D-amino acid methyl ester hydrochloride were discussed also.

  3. THE PROLONGED INTAKE OF L-ARGININE-L-ASPARTATE REDUCES BLOOD LACTATE ACCUMULATION AND OXYGEN CONSUMPTION DURING SUBMAXIMAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Martin Burtscher

    2005-09-01

    Full Text Available L-arginine-L-aspartate is widely used by athletes for its potentially ergogenic properties. However, only little information on its real efficacy is available from controlled studies. Therefore, we evaluated the effects of prolonged supplementation with L-arginine-L-aspartate on metabolic and cardiorespiratory responses to submaximal exercise in healthy athletes by a double blind placebo-controlled trial. Sixteen healthy male volunteers (22 ± 3 years performed incremental cycle spiroergometry up to 150 watts before and after intake of L-arginine-L-aspartate (3 grams per day or placebo for a period of 3 weeks. After intake of L-arginine-L-aspartate, blood lactate at 150 watts dropped from 2.8 ± 0.8 to 2.0 ± 0.9 mmol·l-1 (p < 0.001 and total oxygen consumption during the 3-min period at 150 watts from 6.32 ± 0.51 to 5.95 ± 0.40 l (p = 0.04 compared to placebo (2.7 ± 1.1 to 2.7 ± 1.4 mmol·l-1; p = 0.9 and 6.07 ± 0.51 to 5.91 ± 0.50 l; p = 0.3. Additionally, L-arginine-L-aspartate supplementation effected an increased fat utilisation at 50 watts. L-arginine and L-aspartate seem to have induced synergistic metabolic effects. L-arginine might have reduced lactic acid production by the inhibition of glycolysis and L-aspartate may have favoured fatty acid oxidation. Besides, the results indicate improved work efficiency after L-arginine-L-aspartate intake. The resulting increases of submaximal work capacity and exercise tolerance may have important implications for athletes as well as patients

  4. Structural and Functional Characterization of PseC, an Aminotransferase Involved in the Biosynthesis of Pseudaminic Acid, an Essential Flagellar Modification in Helicobacter Pylori

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhofen,I.; Lunin, V.; Julien, J.; Li, Y.; Ajamian, E.; Matte, A.; Cygler, M.; Brisson, J.; Aubry, A.; et al.

    2006-01-01

    Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. As motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-a-D-GlcNAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-{beta}-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-{beta}-L-AltNAc product, the latter being converted to the external aldimine form in the enzyme's active site. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the {beta}-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and in conjunction with the recent functional characterization of this enzyme, will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.

  5. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide].

    Science.gov (United States)

    Chi, Ming; Bi, Wei; Lu, Zhuang; Song, Lina; Jia, Wei; Zhang, Yangjun; Qian, Xiaohong; Cai, Yun

    2010-02-01

    Titanium dioxide (TiO2) is one of metal oxides widely used for phosphopeptide enrichment in phosphoproteomic research nowadays. However it can bind to some non-phosphorylated peptides containing one or more aspartic acid residues and/or glutamic acid residues. These non-phosphorylated peptides can be eluted along with phosphorylated peptides and cause the reduction of the selectivity. Conventional inhibitors for the non-specific binding of non-phosphorylated peptides can often contaminate the ion source of mass spectrometry and therefore their applications are limited in liquid chromatography-mass spectrometry (LC-MS). In this study, aspartic acid was reported as a novel non-specific binding inhibitor for phosphopeptide enrichment by titanium dioxide. Firstly, the tryptic peptide mixtures of 3 and 9 standard proteins were used for the comparison of the enrichment efficiency of titanium dioxide. The effects with the presence of aspartic acid, glutamic acid and no-inhibitor in the enrichment systems were compared separately. The results showed that aspartic acid can greatly improve the selectivity of titanium dioxide for phosphopeptide enrichment. Then, aspartic acid was used for the enrichment of tryptic peptide mixture of C57BL/6J mouse liver lysate and good results were also obtained which demonstrated that aspartic acid was a promising non-specific binding inhibitor for complex biological samples. Besides, no contamination in the ion source occurred during the mass spectrometric analysis.

  6. Identification of Aspartic Acid Enantiomers Based on Molecularly Imprinted Polyaniline%Identification of Aspartic Acid Enantiomers Based on Molecularly Imprinted Polyaniline

    Institute of Scientific and Technical Information of China (English)

    孔泳; 姚超; 倪珺华; 周永生; 陈智栋

    2011-01-01

    Affinity sites for L-aspartic acid (L-Asp) in polyaniline (PAn) were created by two successive processes: first, L-Asp was simply added as template molecules during the polymerization of aniline; second, L-Asp incorporated in PAn backbone was extracted by solvent. PAn with cavities complementary to L-Asp template molecules has been utilized for enantioselective recognition of L- and D-Asp. Enantioselectivity of the imprinted PAn could be attributed to the cavities in the imprinted PAn which was complementary to L-Asp templates both in shape and in positioning of groups. Also in this paper, the structural changes before and after extraction of L-Asp templates were revealed by Fourier-transform infrared (FTIR) spectrum.

  7. BarR, an Lrp-type transcription factor in Sulfolobus acidocaldarius, regulates an aminotransferase gene in a β-alanine responsive manner.

    Science.gov (United States)

    Liu, Han; Orell, Alvaro; Maes, Dominique; van Wolferen, Marleen; Lindås, Ann-Christin; Bernander, Rolf; Albers, Sonja-Verena; Charlier, Daniel; Peeters, Eveline

    2014-05-01

    In archaea, nothing is known about the β-alanine degradation pathway or its regulation. In this work, we identify and characterize BarR, a novel Lrp-like transcription factor and the first one that has a non-proteinogenic amino acid ligand. BarR is conserved in Sulfolobus acidocaldarius and Sulfolobus tokodaii and is located in a divergent operon with a gene predicted to encode β-alanine aminotransferase. Deletion of barR resulted in a reduced exponential growth rate in the presence of β-alanine. Furthermore, qRT-PCR and promoter activity assays demonstrated that BarR activates the expression of the adjacent aminotransferase gene, but only upon β-alanine supplementation. In contrast, auto-activation proved to be β-alanine independent. Heterologously produced BarR is an octamer in solution and forms a single complex by interacting with multiple sites in the 170 bp long intergenic region separating the divergently transcribed genes. In vitro, DNA binding is specifically responsive to β-alanine and site-mutant analyses indicated that β-alanine directly interacts with the ligand-binding pocket. Altogether, this work contributes to the growing body of evidence that in archaea, Lrp-like transcription factors have physiological roles that go beyond the regulation of α-amino acid metabolism.

  8. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  9. Solution structure of the squash aspartic acid proteinase inhibitor (SQAPI) and mutational analysis of pepsin inhibition.

    Science.gov (United States)

    Headey, Stephen J; Macaskill, Ursula K; Wright, Michele A; Claridge, Jolyon K; Edwards, Patrick J B; Farley, Peter C; Christeller, John T; Laing, William A; Pascal, Steven M

    2010-08-27

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel beta-sheet gripping an alpha-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting beta-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S' side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp(32)-Asp(215) diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin.

  10. Solution Structure of the Squash Aspartic Acid Proteinase Inhibitor (SQAPI) and Mutational Analysis of Pepsin Inhibition

    Science.gov (United States)

    Headey, Stephen J.; MacAskill, Ursula K.; Wright, Michele A.; Claridge, Jolyon K.; Edwards, Patrick J. B.; Farley, Peter C.; Christeller, John T.; Laing, William A.; Pascal, Steven M.

    2010-01-01

    The squash aspartic acid proteinase inhibitor (SQAPI), a proteinaceous proteinase inhibitor from squash, is an effective inhibitor of a range of aspartic proteinases. Proteinaceous aspartic proteinase inhibitors are rare in nature. The only other example in plants probably evolved from a precursor serine proteinase inhibitor. Earlier work based on sequence homology modeling suggested SQAPI evolved from an ancestral cystatin. In this work, we determined the solution structure of SQAPI using NMR and show that SQAPI shares the same fold as a plant cystatin. The structure is characterized by a four-strand anti-parallel β-sheet gripping an α-helix in an analogous manner to fingers of a hand gripping a tennis racquet. Truncation and site-specific mutagenesis revealed that the unstructured N terminus and the loop connecting β-strands 1 and 2 are important for pepsin inhibition, but the loop connecting strands 3 and 4 is not. Using ambiguous restraints based on the mutagenesis results, SQAPI was then docked computationally to pepsin. The resulting model places the N-terminal strand of SQAPI in the S′ side of the substrate binding cleft, whereas the first SQAPI loop binds on the S side of the cleft. The backbone of SQAPI does not interact with the pepsin catalytic Asp32–Asp215 diad, thus avoiding cleavage. The data show that SQAPI does share homologous structural elements with cystatin and appears to retain a similar protease inhibitory mechanism despite its different target. This strongly supports our hypothesis that SQAPI evolved from an ancestral cystatin. PMID:20538608

  11. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.

    Science.gov (United States)

    Beers, Eric P; Jones, Alan M; Dickerman, Allan W

    2004-01-01

    The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.

  12. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    Science.gov (United States)

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.

  13. Aspartic acid racemization in dentin of the third molar for age estimation of the Chaoshan population in South China.

    Science.gov (United States)

    Chen, Shisheng; Lv, Yanyi; Wang, Dian; Yu, Xiaojun

    2016-09-01

    Aspartic acid racemization in teeth has been increasingly used to estimate chronological age with a considerably high accuracy in forensic practice. The Chaoshan population in South China is relatively isolated in geography, and has specific lifestyle and dietary inhibits. It is still unknown whether this method is suitable for this population. The aim of this study was to analyze the relationship between chronological age and the d/l aspartic acid ratio in dentin in the third molar tooth of the Chaoshan population. Fifty-eight non-carious third molar teeth (31 mandibles and 27 maxillae), from 58 living individuals of known age (24 males and 34 females), were retrieved. Dentin was extracted from these teeth. The d- and l-aspartic acids in dentins were separated and detected by high performance liquid chromatography (HPLC). Linear regression was performed between the d/l aspartic acid ratio of dentins and chronological age. Results showed that the correlation coefficient (r) was 0.969, and the mean absolute error (MAE) was 2.19 years, its standard deviation (SD) was ±1.53 years, indicating excellent correlation. There was no significant difference in racemization rates of dentin between sexes (P=0.113, F=2.6), or between mandibles and maxillae (P=0.964, F=0.000). Results indicate that the ratio of the d and l forms of aspartic acid of dentins, in the third molar, is closely correlated with chronological age, special lifestyle do no obviously affect the accuracy of the age estimations by aspartic acid racemization of the dentin in the third molar and that aspartic acid racemization in the third molar dentin can be used as an accurate method to estimate chronological age in the Chaoshan population in South China.

  14. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products.

    Science.gov (United States)

    Mehta, P K; Christen, P

    1993-01-15

    Bacterial deletion mutants have indicated that the gene products of cobC, nifS, pabC and malY participate in important metabolic pathways, i.e. cobalamin synthesis, nitrogen fixation, synthesis of p-aminobenzoate and the regulation of the maltose system, respectively. However, the proteins themselves and their specific functions have not yet been identified. In the course of our studies on the evolutionary relationships among aminotransferases, we have found that the above gene products are homologous to aminotransferases. Profile analysis [Gribskov, M., Lüthy, R. & Eisenberg, D. (1990) Methods Enzymol. 183, 146-159] based on the amino acid sequences of certain subgroups of aminotransferases as probes attributed significant Z scores in the range 5-20 SD to the deduced amino acid sequences of the above gene products as included in the protein data base. Reciprocal profile analyses confirmed the homologies. All known aminotransferases are pyridoxal-5'-phosphate-dependent enzymes and catalyze the reversible transfer of amino groups from amino acids to oxo acids. The sequence homologies suggest that the above gene products are aminotransferases or other closely related pyridoxal-5'-phosphate-dependent enzymes probably catalyzing transformations of amino acids involving cleavage of a bond at C alpha.

  15. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  16. Effects of Zinc Magnesium Aspartate (ZMA) Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    OpenAIRE

    Almada Anthony; Greenwood Mike C; Rasmussen Christopher J; Marcello Brandon M; Taylor Lem W; Campbell Bill I; Kerksick Chad M; Wilborn Colin D; Kreider Richard B

    2004-01-01

    Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA) during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat) were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P) or ZMA 30–60 minutes prior...

  17. Question of the possible asymmetric polymerization of aspartic acid on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.J.; Lemmon, R.M.

    1974-01-01

    McCullough and Lemmon have been unable to confirm the recent report that kaolinite catalyzes the polymerization of aqueous D- and L-aspartic acid at different rates. In experiments where DL-Asp was used, no induced optical rotation was found in the reaction solution. No evidence for polymer (or other product) formation was found when L-Asp-2-/sup 14/C was used, and products were searched by paper chromatography and x-ray film autoradiography. Asp is adsorbed by kaolinite, but no selectivity for one or the other enantiomer was observed.

  18. A Concise Synthesis of Glycolipids Based on Aspartic Acid Building Blocks

    Directory of Open Access Journals (Sweden)

    Lorna Abbey

    2012-09-01

    Full Text Available L-Aspartic acid building blocks bearing galactosyl moieties were used to synthesise glycolipid mimetics of variable hydrocarbon chain length. The glycolipids were readily prepared through amide bond formation using the TBTU/HOBt coupling methodology. It was observed that, under these conditions, activation of the α-carboxylic acid of the intermediates led to near complete racemisation of the chiral centre if the reaction was carried out in the presence of a base such as triethylamine. The enantiomerically pure glycolipids were obtained after careful consideration of the synthetic sequence and by performing the coupling reactions in the absence of base.

  19. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    Directory of Open Access Journals (Sweden)

    Freistadt Marion S

    2007-03-01

    Full Text Available Abstract Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function.

  20. Inclusion Behavior of Dimer b-Cyclodextrin Bridged with Aspartic Acid Derivative

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The b-cyclodextrin (CD) dimer bridged with aspartic acid (ASP) derivative, FITC-ASP(NH-b-CD)2 (Host, FITC=fluorescein-4-isothiocyanate), was synthesized. Fluorescence polarization study showed that the novel host formed an inclusion compound, [FITC-ASP(NH-b-CD)2]ATA, for which Kd was determined to be 5.0×10-6 mol/L by Beacon 2000 Analyzer, when ATA (Guest) = Adm-Trp-Arg-Arg-NH2 (Adm = 1-adamantanecarboxylic acid, Trp = tryptophan, Arg = arginine), where Kd is the dissociation constant in aqueous solution at 298 K.

  1. Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons

    Science.gov (United States)

    Freistadt, Marion S; Eberle, Karen E

    2007-01-01

    Nucleic acid polymerases have similar structures and motifs. The function of an aspartic acid (conserved in all classes of nucleic acid polymerases) in motif A remains poorly understood in RNA-dependent RNA polymerases. We mutated this residue to alanine in a poliovirus replicon. The resulting mutant could still replicate, although at a reduced level. In addition, mutation A231C (also in motif A) yielded high levels of replication. Taken together these results show that poliovirus polymerase conserved residues D233 and A231 are not essential to poliovirus replicon function. PMID:17352827

  2. Increased plasma concentrations of aspartate, glutamate and glycine in Parkinson's disease.

    Science.gov (United States)

    Iwasaki, Y; Ikeda, K; Shiojima, T; Kinoshita, M

    1992-10-12

    We measured fasting plasma amino acids in 20 patients with Parkinson's disease (PD) and 20 controls matched for age and sex. PD patients had significant elevations in plasma levels of aspartate, glutamate and glycine. The levels of other amino acids were not significantly different from those found in controls. No correlation was noted between PD severity and the degree of abnormality of plasma amino acids. We conclude that excitatory amino acids may be altered in patients with PD, and raise the possibility that neuroexcitotoxic mechanisms may be involved in the neurodegeneration of PD.

  3. Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis in a young Lebanese girl.

    Science.gov (United States)

    Safadieh, Layal; Dabbagh, Omar

    2013-10-01

    Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a recently recognized autoimmune neurologic disorder that presents with severe neuropsychiatric symptoms in previously healthy children. A 4-year-old Lebanese girl presented with new-onset behavioral changes, orofacial dyskinesias, fluctuation in consciousness, inability to walk, and mutism. Antibodies directed against NMDA receptors were detected in the patient's serum and cerebrospinal fluid. Prompt treatment with a single course of intravenous immunoglobulin resulted in early complete recovery. This is the first case report of a Middle Eastern child affected with this condition.

  4. Prevalence of serum N-methyl-D-aspartate receptor autoantibodies in refractory psychosis.

    Science.gov (United States)

    Beck, Katherine; Lally, John; Shergill, Sukhwinder S; Bloomfield, Michael A P; MacCabe, James H; Gaughran, Fiona; Howes, Oliver D

    2015-02-01

    N-methyl-d-aspartate receptor (NMDA-R) autoantibodies have been reported in people with acute psychosis. We hypothesised that their presence may be implicated in the aetiology of treatment-refractory psychosis. We sought to ascertain the point prevalence of NMDA-R antibody positivity in patients referred to services for treatment-refractory psychosis. We found that 3 (7.0%) of 43 individuals had low positive NMDA-R antibody titres. This suggests that NMDA-R autoantibodies are unlikely to account for a large proportion of treatment-refractory psychosis.

  5. Existence of an Endogenous Glutamate and Aspartate Transporter in Chinese Hamster Ovary Cells

    Institute of Scientific and Technical Information of China (English)

    Xunhe JI; Yuhua JIN; Yaoyue CHEN; Chongyong LI; Lihe GUO

    2007-01-01

    Chinese hamster ovary cells show endogenous high-affinity Na+-dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter-1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na+-dependent glutamate transport activity evident in these cells.

  6. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Eastern Saudi Arabia cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Faisal Hashim

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Eastern Saudi Arabia. Results: A total of 1040 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 489, insulin detemir (n = 360, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 96 and other insulin combinations (n = 57. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −1.7%. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.6% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  7. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid.

    Science.gov (United States)

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings.

  8. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    Energy Technology Data Exchange (ETDEWEB)

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  9. The Effect of D-Aspartate on Spermatogenesis in Mouse Testis.

    Science.gov (United States)

    Tomita, Keiji; Tanaka, Hiroyuki; Kageyama, Susumu; Nagasawa, Masayuki; Wada, Akinori; Murai, Ryosuke; Kobayashi, Kenichi; Hanada, Eiki; Agata, Yasutoshi; Kawauchi, Akihiro

    2016-02-01

    Spermatogenesis is controlled by hormonal secretions from the hypothalamus and pituitary gland, by factors produced locally in the testis, and by direct interaction between germ cells and Sertoli cells in seminiferous tubules. Although the mammalian testis contains high levels of D-aspartate (D-Asp), and D-Asp is known to stimulate the secretion of testosterone in cultured Leydig cells, its role in testis is unclear. We describe here biochemical, immunohistochemical, and flow cytometric studies designed to elucidate developmental changes in testicular D-Asp levels and the direct effect of D-Asp on germ cells. We found that the concentration of D-Asp in mouse testis increased with growth and that fluctuations in D-Asp levels were controlled in part by its degradative enzyme, D-aspartate oxidase expressed in Sertoli cells. In vitro sperm production studies showed that mitosis in premeiotic germ cells was strongly inhibited by the addition of D-Asp to the culture medium. Moreover, immunohistochemical analysis demonstrated that d-Asp accumulated in the differentiated spermatids, indicating either transport of D-Asp to spermatids or its de novo synthesis in these cells. Such compartmentation seems to prevent premeiotic germ cells in mouse testis from being exposed to the excess amount of D-Asp. In concert, our results indicate that in mouse testis, levels of D-Asp are regulated in a spatiotemporal manner and that D-Asp functions as a modulator of spermatogenesis.

  10. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonized NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.

  11. Effects of Potassium Aspartate and Magnesium on Ventricular Arrhythmia in Ischemia-reperfusion Rabbit Heart

    Institute of Scientific and Technical Information of China (English)

    Jun PU; Ben HE; Cuntai ZHANG; Xiaoqing QUAN; Guoan ZHAO; Jiagao LV; Bo LI; Rong BAI; Nian LIU; Yanfei RUAN

    2008-01-01

    Summary: The aim of this study was to determine if the potassium aspartate and magnesium (PAM) prevent reperfusion-induced ventricular arrhythmias (RIVA) in ischcmia-reperfusion (IR) rabbit heart. Thirty rabbits were randomly divided into control, ischemia and PAM groups. Arterially-perfused rabbit left ventricular preparations were made, and transmural ECG as well as action potentials from both endocardium and epicardium were simultaneously recorded in the whole process of all experiments. In control group rabbit ventricular wedge preparations were continuously perfused with Tyrode's solution, and in ischemia group and PAM groups the perfusion of Tyrode's solution was stopped for 30 min. Then the ischemia group was reperfused with Tyrode's solution and the PAM group with Tyrode's solution containing 2.42 mg/L PAM, respectively. ECG, QT interval, transmural repolarization dispersion (TDR) and action potentials from epicardium and endocardium were simultaneously recorded, and the RIVA of the wedge preparation was observed. Compared with control group, TDR and incidence of RIVA were significantly increased in ischemia group (P<0.05). The incidence of RIVA in control, ischemia and PAM group was 0/10, 9/10 and 1/10, respectively. Compared with ischemia group, TDR and incidence of RIVA were significantly reduced in PAM group (P<0.05). Potassium aspartate and magnesium significantly reduce TDR and prevent ventricular arrhythmia in ischemic rabbit heart.

  12. The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Erskine, Peter T. [University of Southampton, England; Cooper, Jon [University of Southampton, England

    2008-01-01

    Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

  13. Negative ion photoelectron spectroscopy of the copper-aspartic acid anion and its hydrated complexes

    Science.gov (United States)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.; Martínez, Ana; Salpin, Jean-Yves; Schermann, Jean-Pierre

    2010-08-01

    Negative ions of copper-aspartic acid Cu(Asp)- and its hydrated complexes have been produced in the gas phase and studied by anion photoelectron spectroscopy. The vertical detachment energies (VDE) of Cu(Asp)- and Cu(Asp)-(H2O)1,2 were determined to be 1.6, 1.95, and 2.20 eV, respectively. The spectral profiles of Cu(Asp)-(H2O)1 and Cu(Asp)-(H2O)2 closely resembled that of Cu(Asp)-, indicating that hydration had not changed the structure of Cu(Asp)- significantly. The successive shifts to higher electron binding energies by the spectra of the hydrated species provided measures of their stepwise solvation energies. Density functional calculations were performed on anionic Cu(Asp)- and on its corresponding neutral. The agreement between the calculated and measured VDE values implied that the structure of the Cu(Asp)- complex originated with a zwitterionic form of aspartic acid in which a copper atom had inserted into the N-H bond.

  14. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    Science.gov (United States)

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  15. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine.

    Science.gov (United States)

    Aiyelabola, Temitayo; Akinkunmi, Ezekiel; Ojo, Isaac; Obuotor, Efere; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10-32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents.

  16. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  17. Aspartic acid complexation of Am(III) and U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Saito, A.; Choppin, G.R.

    1984-01-01

    Stability constants of Am(III) and U(VI) with L-aspartic acid have been determined at pH 8.00 by means of the solvent extraction technique. It was found that Am(III) forms 1:1 and 1:2 complexes while U(VI) formed only the 1:1 complex under these conditions. The stability constants were: Am/sup +3/: I = 0.10 M; log ..beta../sub 1/ = 4.81 +- 0.03, log ..beta../sub 2/ = 6.75 +- 0.03 I = 0.70 M; log ..beta../sub 1/ = 4.53 +- 0.08 log ..beta../sub 2/ = 6.65 +- 0.06 UO/sup +2//sub 2/: I = 0.70 M; log ..beta../sub 1/ = 3.32 +- 0.04. Comparison of these stability constants with corresponding values of some dicarboxylate ligands suggests that at pH 8 the binding of Am/sup +3/ and UO/sup +2//sub 2/ involves both carboxylates. In the Am-aspartate complex, the data indicate the possibility of weak interaction between the Am/sup +3/ and the amino group.

  18. The induction of D-aspartic acid in mouse lens protein by continuous gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tamanoi, Itsuro (Chiba Univ. (Japan)); Fujii, Noriko; Muraoka, Shiro; Harada, Kaoru; Joshima, Hisamasa; Ishihara, Takaaki

    1990-08-01

    The irradiation condition to induce the increase of D-aspartic acid (D-Asp), which is detected in aged human and animals, in a short term was studied by continuous low dose irradiation. The results were compared with the effect by a single X-ray irradiation. The continuous gamma-irradiation for 12 months with 83 mGy/day or 29 mGy/day from {sup 137}Cs could induce higher D/L ratio of aspartic acid (Asp) in the lens protein of RFM/MsNrs strain of mice. But the irradiation with 10 mGy/day for 14 months did not show the much increase of D-Asp in the lens protein of mice. In 14.5 months of post-X-irradiation to whole body with 5 Gy, a little higher ratio of D/L Asp was observed in the lens protein of BALB/cA strain of mice. These results indicate that it is possible to obtain the protein containing D-Asp by continuous low dose irradiation in a relatively short period. (author).

  19. [Aspartic Acid Generated in the Process of Chlorination Disinfection By-product Dichloroacetonitrile].

    Science.gov (United States)

    Ding, Chun-sheng; Li, Nai-jun; Zhang, Tao; Zhang, Meng-qing

    2016-05-15

    In this study, a method was developed for the determination of dichloroacetonitrile (DCAN) in drinking water by liquid- liquid micro-extraction and gas chromatography/mass spectrometry ( LLE-GC/MS), which used 1,2-dibromopropane as the internal standard and methyl tertiary butyl ether (MTBE) as the extractant for high accuracy. The aspartic acid was used as the precursor of the DCAN formation during chlorination and the influencing factors were evaluated. The formation mechanism of DCAN was also discussed. The results showed that the DCAN amount increased with the increase of pH value under the neutral and acidic conditions, however, the amount of DCAN decreased with the increase of pH value under the alkali condition. And the final amount of DCAN under the alkali condition was much less than that under the neutral and acidic conditions. It was also found that the DCAN amount increased with the increase of chlorine addition, while the temperature in the range of 10-30°C had little influence on the DCAN formation. The formation process of the DCAN from aspartic acid by chlorination included seven steps, such as substitution, decarboxylation, oxidation, etc and ultimately formed DCAN.

  20. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  1. Use of short-acting insulin aspart in managing older people with diabetes.

    Science.gov (United States)

    Marouf, Eltayeb; Sinclair, Alan J

    2009-01-01

    Type 2 diabetes mellitus affects 5.9% of the world adult population, with older people and some ethnic groups disproportionately affected. Treatment of older people with diabetes differs in many ways from that in younger adults since the majority have type 2 disease and are at particular risk of macrovascular rather than disabling microvascular disease. Insulin therapy, the most effective of diabetes medications, can reduce any level of elevated HBA1c if used in adequate doses. However, some clinicians are often reluctant to initiate insulin therapy in older people with diabetes mainly out of their concerns about adverse reactions to insulin, particularly hypoglycemia. There is evidence suggesting that insulin aspart appears to act similarly to regular human insulin in older people with type 2 diabetes mellitus. Insulin aspart can be used in the treatment of older people with diabetes, but this should be individualized. There is evidence that it improves postprandial glucose control, improves long-term metabolic control, reduces risk of major nocturnal hypoglycemia and increases patient satisfaction compared with soluble insulin.

  2. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  3. Membrane topology of aspartate:alanine antiporter AspT from Comamonas testosteroni.

    Science.gov (United States)

    Fujiki, Takashi; Nanatani, Kei; Nishitani, Kei; Yagi, Kyoko; Ohnishi, Fumito; Yoneyama, Hiroshi; Uchida, Takafumi; Nakajima, Tasuku; Abea, Keietsu

    2007-01-01

    We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions.

  4. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    Science.gov (United States)

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  5. Sodium aspartate as a specific enhancer of salty taste perception-sodium aspartate is a possible candidate to decrease excessive intake of dietary salt.

    Science.gov (United States)

    Nakagawa, Tomohiro; Kohori, Jun; Koike, Shin; Katsuragi, Yoshihisa; Shoji, Takayuki

    2014-11-01

    The excessive intake of dietary salt is a global issue in health. Attempts have been made to address this issue, including the development of salt substitutes. Yet, none of these substances are currently in wide use, because of their weak saltiness. The purpose of this study was to assess the effects of sodium aspartate (Asp-Na) on salty taste perception using the bullfrog glossopharyngeal nerve response and human sensory tests. When added to the mixture of NaCl and KCl, Asp-Na significantly enhanced the glossopharyngeal nerve response to the mixture by 1.6-fold compared to control. Asp-Na did not enhance the response to NaCl, nor did Asp-Na enhance the response to sour, bitter, or umami stimuli. The optimal concentration for Asp-Na to enhance the salt mixture was 1.7mM. The largest enhancement was induced when NaCl and KCl were mixed at equimolar concentrations. Asp-Na significantly suppressed the glossopharyngeal nerve response to quinine hydrochloride, which suggests that bitterness of KCl is suppressed by Asp-Na. The salty taste enhancing effect of Asp-Na was also confirmed with human sensory tests. The present results suggested that the mixture of NaCl and KCl containing Asp-Na can be used as a salt substitute. In addition to demonstrating that Asp-Na enhanced salt taste responses in an experimental animal and human, our findings provide clues to identify the elusive salty taste receptors.

  6. Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid

    Indian Academy of Sciences (India)

    Saikat Mandal; P R Selvakannan; Sumant Phadtare; Renu Pasricha; Murali Sastry

    2002-10-01

    Development of reliable protocols for the synthesis of nanoparticles of well-defined sizes and good monodispersity is an important aspect of nanotechnology. In this paper, we present details of the synthesis of gold nanoparticles of good monodispersity by the reduction of aqueous chloroaurate ions by the amino acid, aspartic acid. The colloidal gold solution thus formed is extremely stable in time, indicating electrostatic stabilization via nanoparticle surface-bound amino acid molecules. This observation has been used to modulate the size of the gold nanoparticles in solution by varying the molar ratio of chloroaurate ions to aspartic acid in the reaction medium. Characterization of the aspartic acid-reduced gold nanoparticles was carried out by UV-visible spectroscopy, thermogravimetric analysis and transmission electron microscopy. The use of amino acids in the synthesis and stabilization of gold nanoparticle in water has important implications in the development of new protocols for generation of bioconjugate materials.

  7. First structure of archaeal branched-chain amino acid aminotransferase from Thermoproteus uzoniensis specific for L-amino acids and R-amines.

    Science.gov (United States)

    Boyko, Konstantin M; Stekhanova, Tatiana N; Nikolaeva, Alena Yu; Mardanov, Andrey V; Rakitin, Andrey L; Ravin, Nikolai V; Bezsudnova, Ekaterina Yu; Popov, Vladimir O

    2016-03-01

    The gene TUZN1299 from the genome of the hyperthermophilic archaeon Thermoproteus uzoniensis encoding a new 32.8 kDa branched-chain amino acid aminotransferase (BCAT) was expressed in Escherichia coli. The recombinant protein TUZN1299 was purified to homogeneity in the PLP-bound form. TUZN1299 was active towards branched-chain amino acids (L-Val, L-Leu, L-Ile) and showed low but detectable activity toward (R)-alpha-methylbenzylamine. The enzyme exhibits high-temperature optimum, thermal stability, and tolerance to organic solvents. The structure of an archaeal BCAT called TUZN1299 was solved for the first time (at 2.0 Å resolution). TUZN1299 has a typical BCAT type IV fold, and the organization of its active site is similar to that of bacterial BCATs. However, there are some differences in the amino acid composition of the active site.

  8. The human tyrosine aminotransferase gene: characterization of restriction fragment length polymorphisms and haplotype analysis in a family with tyrosinemia type II.

    Science.gov (United States)

    Westphal, E M; Natt, E; Grimm, T; Odievre, M; Scherer, G

    1988-07-01

    Deficiency in hepatic tyrosine aminotransferase (TAT) causes tyrosinemia type II, an autosomal recessively inherited disorder. Using a TAT cosmid clone, we have identified an MspI restriction fragment length polymorphism (RFLP) 5' to the TAT gene, with allele frequencies of 0.63 and 0.37. Analysis of the cloned maternal and paternal TAT alleles from a patient with tyrosinemia type II led to the identification of a HaeIII RFLP at the 3' end of the TAT gene, with allele frequencies of 0.94 and 0.06. The two RFLPs are 27 kb apart and in no allelic association. From haplotype frequencies, a polymorphism information content (PIC) value of 0.44 was obtained. The two RFLPs have allowed the unambiguous identification of the mutant TAT alleles in the patient's pedigree by haplotype analysis.

  9. Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution

    Directory of Open Access Journals (Sweden)

    Alireza Nematollahi

    2016-03-01

    Full Text Available Kynurenine aminotransferase II (KAT-II is a 47 kDa pyridoxal phosphate (PLP-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN and 3-hydroxykynurenine (3-HK in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA, which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes.

  10. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  11. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  12. Postoperative day one serum alanine amino-transferase does not predict patient morbidity and mortality after elective liver resection in non-cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    RickY Harminder Bhogal; Amit Nair; Davide Papis; Zaed Hamady; Jawad Ahmad; For Tai Lam; Saboor Khan; Gabriele Marangoni

    2016-01-01

    Serum aminotransferases have been used as sur-rogate markers for liver ischemia-reperfusion injury that fol-lows liver surgery. Some studies have suggested that rises in serum alanine aminotransferase (ALT) correlate with patient outcome after liver resection. We assessed whether postopera-tive day 1 (POD 1) ALT could be used to predict patient mor-bidity and mortality following liver resection. We reviewed our prospectively held database and included consecutive adult patients undergoing elective liver resection in our in-stitution between January 2013 and December 2014. Primary outcome assessed was correlation of POD 1 ALT with patient’s morbidity and mortality. We also assessed whether concurrent radiofrequency ablation, neoadjuvant chemotherapy and use of the Pringle maneuver signiifcantly affected the level of POD 1 ALT. A total of 110 liver resections were included in the study. The overall in-hospital patient morbidity and mortality were 31.8% and 0.9%, respectively. The median level of POD 1 ALT was 275 IU/L. No correlation was found between POD 1 serum ALT levels and patient morbidity after elective liver resection, whilst correlation with mortality was not possible because of the low number of mortalities. Patients undergoing concur-rent radiofrequency ablation were noted to have an increased level of POD 1 serum ALT but not those given neoadjuvant chemotherapy and those in whom the Pringle maneuver was used. Our study demonstrates POD 1 serum ALT does not cor-relate with patient morbidity after elective liver resection.

  13. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A 57Co emission Mössbauer spectroscopic study

    Science.gov (United States)

    Kamnev, Alexander A.; Tugarova, Anna V.; Kovács, Krisztina; Homonnay, Zoltan; Kuzmann, Erno; Vértes, Attila

    2012-03-01

    Emission (57Co) Mössbauer spectra of the aspartic acid—57CoCl2 system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Mössbauer spectra, besides a weak contribution from after-effects, showed two Fe2 + /Co2 + components which were ascribed to octahedrally and tetrahedrally coordinated 57CoII microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  14. Optical absorption and DFT calculations in L-aspartic acid anhydrous crystals: Charge carrier effective masses point to semiconducting behavior

    Science.gov (United States)

    Silva, A. M.; Silva, B. P.; Sales, F. A. M.; Freire, V. N.; Moreira, E.; Fulco, U. L.; Albuquerque, E. L.; Maia, F. F., Jr.; Caetano, E. W. S.

    2012-11-01

    Density functional theory (DFT) computations within the local-density approximation and generalized gradient approximation in pure form and with dispersion correction (GGA+D) were carried out to investigate the structural, electronic, and optical properties of L-aspartic acid anhydrous crystals. The electronic (band structure and density of states) and optical absorption properties were used to interpret the light absorption measurements we have performed in L-aspartic acid anhydrous crystalline powder at room temperature. We show the important role of the layered spatial disposition of L-aspartic acid molecules in anhydrous L-aspartic crystals to explain the observed electronic and optical properties. There is good agreement between the GGA+D calculated and experimental lattice parameters, with (Δa, Δb, Δc) deviations of (0.029,-0.023,-0.024) (units in Å). Mulliken [J. Chem. Phys.JCPSA60021-960610.1063/1.1740588 23, 1833 (1955)] and Hirshfeld [Theor. Chim. ActaTCHAAM0040-574410.1007/BF00549096 44, 129 (1977)] population analyses were also performed to assess the degree of charge polarization in the zwitterion state of the L-aspartic acid molecules in the DFT converged crystal. The lowest-energy optical absorption peaks related to transitions between the top of the valence band and the bottom of the conduction band involve O 2p valence states and C 1p and O 2p conduction states, with the carboxyl and COOH lateral chain group contributing significantly to the energy band gap. Among the calculated band gaps, the lowest GGA+D (4.49-eV) gap is smaller than the experimental estimate of 5.02 eV, as obtained by optical absorption. Such a wide-band-gap energy together with the small carrier effective masses estimated from band curvatures allows us to suggest that an L-aspartic acid anhydrous crystal can behave as a wide-gap semiconductor. A comparison of effective masses among directions parallel and perpendicular to the L-aspartic molecules layers reveals that charge

  15. Aspartic acid interaction with cobalt(II) in dilute aqueous solution: A {sup 57}Co emission Moessbauer spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, Alexander A.; Tugarova, Anna V. [Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (Russian Federation); Kovacs, Krisztina; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Kuzmann, Erno; Vertes, Attila [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    Emission ({sup 57}Co) Moessbauer spectra of the aspartic acid-{sup 57}CoCl{sub 2} system were measured at T = 80 K in frozen aqueous solution and in the form of a dried residue of this solution. The Moessbauer spectra, besides a weak contribution from after-effects, showed two Fe{sup 2 + }/Co{sup 2 + } components which were ascribed to octahedrally and tetrahedrally coordinated {sup 57}Co{sup II} microenvironments in the Asp-cobalt(II) complex. This dual coordination mode may be due to the involvement of the second terminal carboxylic group of aspartic acid in the coordination sphere of Co.

  16. Poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine]:A Non-viral Polymer with Potential for DNA Delivery

    Institute of Scientific and Technical Information of China (English)

    Zhi YANG; Gu Ping TANG

    2004-01-01

    A biodegradable gene transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] has been developed by thermal polycondensation of aspartic acid and lysine, and branch poly(ethylenimine) (Mw less than 600) was grafted to the backbone. The polymer was characterized by 1H NMR. It appeared lower cytotoxity compared to poly(ethylenimine) (25KDa), which was quantified by MTT assay. Electrophoresis indicated that the polymer could retardate DNA at N/P ratio 1.2-1.8 (w/w). Transfection efficiency of the complexes was studied in NT2 cell lines. It was 1.5 fold higher than molecular weight PEI (Mw = 25KDa).

  17. Ab initio studies of aspartic acid conformers in gas phase and in solution

    Science.gov (United States)

    Chen, Mingliang; Lin, Zijing

    2007-10-01

    Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP /6-311G* level and then subjected to further optimization at the B3LYP /6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD /6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP /6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP /6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP /6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide

  18. Effects of the abused solvent toluene on recombinant N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors expressed in Xenopus oocytes.

    Science.gov (United States)

    Cruz, S L; Mirshahi, T; Thomas, B; Balster, R L; Woodward, J J

    1998-07-01

    Previous studies have shown that toluene, which is commonly abused, depresses neuronal activity and causes behavioral effects in both animals and man similar to those observed for ethanol. In this study, the oocyte expression system was used to test the hypothesis that toluene, like ethanol, inhibits the function of ionotropic glutamate receptors. Oocytes were injected with mRNA for specific N-methyl-D-aspartate (NMDA) or non-NMDA subunits and currents were recorded using conventional two-electrode voltage clamp. To enhance the low water solubility of toluene, drug solutions were prepared by mixing toluene with alkamuls (ethoxylated castor oil) at a 1:1 ratio (v:v) and diluting this mixture to the appropriate concentration with barium-containing normal frog Ringer solution. Alkamuls, up to 0.1%, had no significant effects on membrane leak currents or on NMDA-induced currents. Toluene, up to approximately 9 mM, had only minor effects on membrane leak currents but dose-dependently inhibited NMDA-mediated currents in oocytes. The inhibition of NMDA receptor currents by toluene was rapid, reversible and the potency for toluene's effects was subunit dependent. The NR1/2B subunit combination was the most sensitive with an IC50 value for toluene-induced inhibition of 0.17 mM. The NR1/2A and NR1/2C receptors were 6- and 12-fold less sensitive with IC50 values of 1.4 and 2.1 mM, respectively. In contrast, toluene up to approximately 9 mM did not inhibit kainate-induced currents in oocytes expressing GluR1, GluR1(+)R2 or GluR6 subunits. These results suggest that some of the effects of toluene on neuronal activity and behavior may be mediated by inhibition of NMDA receptors.

  19. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection

    Directory of Open Access Journals (Sweden)

    Eunice Patarata

    2016-12-01

    Full Text Available Anti-N-methyl-D-aspartate receptor (anti-NMDAR encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state.

  20. Young girl with abnormal behavior: Anti-N-Methyl-D-Aspartate receptor immune encephalitis

    Directory of Open Access Journals (Sweden)

    Vinit Suri

    2013-01-01

    Full Text Available Anti N Methyl D Aspartate receptor immune encephalitis (Anti NMDARE is a recently defined, under-recognized and often misdiagnosed disease, which typically occurs in young females and may be associated with an underlying tumor, usually ovarian teratoma. If diagnosed early, initiation of immunotherapy and tumor removal (if present may result in recovery. We report a case of a 17 years old girl with Anti NMDARE who was initially misdiagnosed as Functional psychosis, Neuroleptic Malignant Syndrome and Sepsis syndrome. To the best of our knowledge, this is only the second case of anti NMDARE being reported from India. This case report underscores the need for a greater awareness of this entity across multiple specialties, e.g., general medicine, psychiatry and neurology, to ensure a heightened diagnostic suspicion, which can lead to timely diagnosis and adequate therapy of this treatable disease.

  1. Effect of abomasal infusion of aspartate on nitrogen balance and plasma amino acids in Holstein steers.

    Science.gov (United States)

    Wessels, R H; Titgemeyer, E C

    1998-01-01

    We investigated the effect of abomasally infused aspartate (Asp) on N balance and plasma amino acids in steers. Four ruminally cannulated Holstein steers (180 kg) housed in metabolism crates were used in an experiment designed as a 4 x 3 Youden square. Steers received continuous abomasal infusions of water or water containing 40 or 80 g Asp/d. Steers were fed twice daily a diet containing 473 g/kg corn, 463 g/kg alfalfa hay and 52 g/kg soybean meal at levels near ad libitum intake. Abomasally infused Asp had no effect on N balance. Infusion of 80 g Asp/d increased (P < 0.05) plasma concentrations of Asp, glutamate and alanine. Metabolism of Asp by gut tissues probably prevented the large change in plasma concentration of Asp that seems necessary to trigger hormonal responses. We conclude that abomasal supplementation of steers with up to 80 g/d of Asp does not enhance performance.

  2. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis.

    Science.gov (United States)

    Ge, Xiaochun; Dietrich, Charles; Matsuno, Michiyo; Li, Guojing; Berg, Howard; Xia, Yiji

    2005-03-01

    The components and pathways that regulate and execute developmental cell death programmes in plants remain largely unknown. We have found that the PROMOTION OF CELL SURVIVAL 1 (PCS1) gene in Arabidopsis, which encodes an aspartic protease, has an important role in determining the fate of cells in embryonic development and in reproduction processes. The loss-of-function mutation of PCS1 causes degeneration of both male and female gametophytes and excessive cell death of developing embryos. Conversely, ectopic expression of PCS1 causes the septum and stomium cells that normally die in the anther wall to survive instead, leading to a failure in anther dehiscence and male sterility. PCS1 provides a new avenue for understanding the mechanisms of the programmed cell death processes that are associated with developmental pathways in plants and makes available a useful tool for engineering the male sterility trait for hybrid seed production.

  3. Design of dimerization inhibitors of HIV-1 aspartic proteinase: A computer-based combinatorial approach

    Science.gov (United States)

    Caflisch, Amedeo; Schramm, Hans J.; Karplus, Martin

    2000-02-01

    Inhibition of dimerization to the active form of the HIV-1 aspartic proteinase (HIV-1 PR) may be a way to decrease the probability of escape mutations for this viral protein. The Multiple Copy Simultaneous Search (MCSS) methodology was used to generate functionality maps for the dimerization interface of HIV-1 PR. The positions of the MCSS minima of 19 organic fragments, once postprocessed to take into account solvation effects, are in good agreement with experimental data on peptides that bind to the interface. The MCSS minima combined with an approach for computational combinatorial ligand design yielded a set of modified HIV-1 PR C-terminal peptides that are similar to known nanomolar inhibitors of HIV-1 PR dimerization. A number of N-substituted 2,5-diketopiperazines are predicted to be potential dimerization inhibitors of HIV-1 PR.

  4. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    Science.gov (United States)

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  5. Investigation of the conformation of aspartic acid by the NMR method

    Energy Technology Data Exchange (ETDEWEB)

    Tananaeva, N.N.; Gorokhovatskaya, M.Ya.; Tikhonova, R.V.; Kostromina, N.A.

    1986-01-01

    The conformations of aspartic acid were investigated in relation to the pH value by /sup 1/H and /sup 13/C NMR methods. It was shown that the form of the spectra becomes simpler in the transition from the alkaline to the acidic region and changes from an ABX to an A/sub 2/X system. The order of protonation of the donating groups was established. The spin-spin coupling constants at various pH values were calculated, and the conformational transitions were examined on the basis of their variation. The possibility of the closure of a six-membered ring in the molecule in the alkaline region and the opening of this ring in the acidic region was demonstrated.

  6. Effects of L-Aspartic acid on the step retreat kinetics of calcite

    Science.gov (United States)

    Yoshino, Toru; Kagi, Hiroyuki

    2012-01-01

    Effects of L-Aspartic acid (L-Asp) on step retreat kinetics in the dissolution of calcite were investigated. The step retreat velocities under surface-controlled kinetics were determined from in-situ atomic force microscopic observations using an improved flow-through system. Comparison of the present results with those obtained under a mixed kinetics condition revealed that the addition of L-Asp promotes the transport process in the calcite dissolution through acid-base and/or complex forming reactions in the diffusion boundary layer. Additionally, promotion of the acute and obtuse step retreats by the L-Asp additive was observed under surface-controlled kinetics. This report is the first to clarify that L-Asp promotes surface processes in the dissolution of calcite.

  7. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    Science.gov (United States)

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  8. In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects.

    Science.gov (United States)

    Budai-Szű Cs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Csihi, Tímea; Berkó, Szilvia; Szabó-Révész, Piroska; Mori, Michela; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2016-08-01

    Ocular drug delivery formulations must meet anatomical, biopharmaceutical, patient-driven and regulatory requirements. Mucoadhesive polymers can serve as a better alternative to currently available ophthalmic formulations by providing improved bioavailability. If all requirements are addressed, a polymeric formulation resembling the tear film of the eye might be the best solution. The optimum formulation must not have high osmotic activity, should provide appropriate surface tension, pH and refractive index, must be non-toxic and should be transparent and mucoadhesive. We would like to highlight the importance of in vitro polymer testing from a pharmaceutical aspect. We, therefore, carried out physical-chemical investigations to verify the suitability of certain systems for ophthalmic formulations. In this work, in situ gelling, mucoadhesive thiolated poly(aspartic acid)s were tested from ophthalmic formulation aspects. The results of preformulation measurements indicate that these polymers can be used as potential carriers in ophthalmic drug delivery.

  9. Self-assembling of poly(aspartic acid) with bovine serum albumin in aqueous solutions.

    Science.gov (United States)

    Nita, L E; Chiriac, A P; Bercea, M; Asandulesa, M; Wolf, Bernhard A

    2017-02-01

    Macromolecular co-assemblies built up in aqueous solutions, by using a linear polypeptide, poly(aspartic acid) (PAS), and a globular protein, bovine serum albumin (BSA), have been studied. The main interest was to identify the optimum conditions for an interpenetrated complex formation in order to design materials suitable for biomedical applications, such as drug delivery systems. BSA surface possesses several amino- and carboxylic groups available for covalent modification, and/or bioactive substances attachment. In the present study, mixtures between PAS and BSA were investigated at 37°C in dilute aqueous solution by viscometry, dynamic light scattering and zeta potential determination, as well as in solid state by AFM microscopy and dielectric spectroscopy. The experimental data have shown that the interpolymer complex formation occurs for a PAS/BSA molar ratio around 0.541.

  10. Endolithic aspartic acid as a proxy of fluctuations in coral growth

    Science.gov (United States)

    Gupta, Lallan P.; Suzuki, Atsushi; Kawahata, Hodaka

    2007-03-01

    Coral skeleton has been widely studied for monitoring past fluctuations in marine environment. Although stable carbon isotope (δ13C) data appear to reflect coral metabolism, their interpretations differ from place to place and are sometimes controversial, because they are also affected by carbon isotopic composition of dissolved inorganic carbon in seawater. Association of an organic matrix with biological carbonates has been reported in many previous studies. With the help of high-resolution microsampling of coral skeleton and advanced technique for amino acid (AA) quantification in low-volume sample, we show that aspartic acid (Asp) in coral skeleton varies with distinct seasonal pattern, and is useful in understanding why corals calcify faster in summer than in winter. Since Asp containing organic matrix in the skeleton is synthesized by the coral, changes in mole concentration of Asp relative to other AAs of the skeleton make it a potential indicator for monitoring fluctuations in coral physiology in the past.

  11. An overview of the clinical pharmacology of N-phosphonacetyl-L-aspartate (PALA), a new antimetabolite.

    Science.gov (United States)

    Erlichman, C

    1980-01-01

    N-Phosphonacetyl-L-aspartic acid (PALA) is new synthetic antimetabolite which inhibits de novo pyrimidine biosynthesis. Its significant activity against Lewis lung carcinoma, B16 melanoma, and glioma 26 suggested that it might be useful in the treatment of human solid tumors. Phase I trials revealed that dose-limiting toxicity included skin reactions, diarrhea, and stomatitis. Pharmacologic studies demonstrated rapid renal excretion of more than 70% of the unmetabolized drug in 24 h. Peak plasma levels correlated with dose of PALA administered. Partial responses to PALA were seen in one patient with melanoma, one with chondrosarcoma, and one with colon carcinoma. The potential for PALA's use in combination chemotherapy, particularly with 5-fluorouracil, is discussed.

  12. Application and appreciation of chemical sand fixing agent-poly (aspartic acid) and its composites

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Cao Hui; Wang Fang [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China); Tan Tianwei [Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: twtan@mail.buct.edu.cn

    2007-12-15

    The sand fixing agent-poly (aspartic acid) (PASP) and its composites were applied in the field by two forms (spraying around by PASP solution and PASP powder directly). It was found that the sand fixing effect in powder form was not as good as in solution form, but it was more practical in dry region. It needed 9, 6 and 7 days for PASP, xanthan gum-PASP (X2) and ethyl cellulose-PASP (E3) to attain the maximal mechanical strength after they were applied, respectively. The sand fixing effect decreased when the material was subjected to repeated hydration-dehydration cycles and the material had no negative influence on plant growth. The PASP and its composites had water-retaining ability and could reduce the water evaporation. - The sand fixing agent was applied in powder form and it had no negative influence on plant growth.

  13. Anti-N-methyl-d-aspartate receptor encephalitis in a patient with neuromyelitis optica spectrum disorders.

    Science.gov (United States)

    Luo, Jing-Jing; Lv, He; Sun, Wei; Zhao, Juan; Hao, Hong-Jun; Gao, Feng; Huang, Yi-Ning

    2016-07-01

    We described a female patient with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis occurring sequentially with neuromyelitis optica spectrum disorders (NMOSD). The 19-year-old patient initially presented a diencephalic syndrome with aquaporin-4 immunoglobulin G antibodies (AQP4-IgG) and brain lesions which involving bilateral medial temporal lobes and periependymal surfaces of the third ventricle on magnetic resonance imaging (MRI). Ten months later, the patient developed cognitive impairment, psychiatric symptoms and dyskinesia with left basal ganglia lesions on brain MRI. Meanwhile, the anti-NMDAR antibodies were positive in the patient's serum and cerebrospinal fluid, while the screening tests for an ovarian teratoma and other tumors were all negative. Hence, the patient was diagnosed NMOSD and anti-NMDAR encephalitis followed by low-dose rituximab treatment with a good response. This case was another evidence for demyelinating syndromes overlapping anti-NMDAR encephalitis in Chinese patients.

  14. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection

    Science.gov (United States)

    Patarata, Eunice; Bernardino, Vera; Martins, Ana; Pereira, Rui; Loureiro, Conceição; Moraes-Fontes, Maria Francisca

    2016-01-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state. PMID:28101036

  15. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    Energy Technology Data Exchange (ETDEWEB)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  16. Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists

    DEFF Research Database (Denmark)

    Ebert, B; Thorkildsen, C; Andersen, S;

    1998-01-01

    Much evidence points to the involvement of N-methyl-D-aspartate (NMDA) receptors in the development and maintainance of neuropathic pain. In neuropathic pain, there is generally involved a presumed opioid-insensitive component, which apparently can be blocked by NMDA receptor antagonists. However......, in order to obtain complete analgesia, a combination of an NMDA receptor antagonist and an opioid receptor agonist is needed. Recent in vitro data have demonstrated that methadone, ketobemidone, and dextropropoxyphene, in addition to being opioid receptor agonists, also are weak noncompetitive NMDA...... receptor antagonists. Clinical anecdotes suggest that the NMDA receptor antagonism of these opioids may play a significant role in the pharmacological action of these compounds; however, no clinical studies have been conducted to support this issue. In the present commentary, we discuss evidence...

  17. Clinical use of the co-formulation of insulin degludec and insulin aspart

    DEFF Research Database (Denmark)

    Kumar, A; Awata, T; Bain, S C;

    2016-01-01

    AIMS: To provide a review of the available data and practical use of insulin degludec with insulin aspart (IDegAsp). Premixed insulins provide basal and prandial glucose control; however, they have an intermediate-acting prandial insulin component and do not provide as effective basal coverage...... as true long-acting insulins, owing to the physicochemical incompatibility of their individual components, coupled with the inflexibility of adjustment. The molecular structure of the co-formulation of IDegAsp, a novel insulin preparation, allows these two molecules to coexist without affecting...... (HbA1c ) to current modern insulins, but with lower risk of nocturnal hypoglycaemia. In prior insulin users, glycaemic control was achieved with lower or equal insulin doses vs. other basal+meal-time or premix insulin regimens. In insulin-naïve patients with T2DM, IDegAsp can be started once or twice...

  18. Comparative genomic analysis of aspartic proteases in eight parasitic platyhelminths: insights into functions and evolution.

    Science.gov (United States)

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Wang, Sen; Hu, Songnian; Cai, Xuepeng

    2015-03-15

    We performed genome-wide identifications and comparative genomic analyses of the predicted aspartic proteases (APs) from eight parasitic flatworms, focusing on their evolution, potentials as drug targets and expression patterns. The results revealed that: i) More members of family A01 were identified from the schistosomes than from the cestodes; some evidence implied gene loss events along the class Cestoda, which may be related to the different ways to ingest host nutrition; ii) members in family A22 were evolutionarily highly conserved among all the parasites; iii) one retroviral-like AP in family A28 shared a highly similar predicted 3D structure with the HIV protease, implying its potential to be inhibited by HIV inhibitor-like molecules; and iiii) retrotransposon-associated APs were extensively expanded among these parasites. These results implied that the evolutionary histories of some APs in these parasites might relate to adaptations to their parasitism and some APs might have potential serving as intervention targets.

  19. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  20. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  1. Anti-N-methyl-D-aspartate receptor encephalitis: a new autoimmune encephalitis

    Directory of Open Access Journals (Sweden)

    LI Xiang

    2013-01-01

    Full Text Available Anti-N-methyl-D-aspartate (anti-NMDA receptor encephalitis is a new category of treatable encephalitis associated with anti-NMDA receptor antibody, which attracts more and more attention recently. It is clinically characterized by prodromal fever, schizophrenia-like psychiatric symptoms, seizures, disturbance of consciousness, dyskinesia (particularly orofacial, and autonomic dysfunction, which often occur in young females with ovarian teratomas. Autoantibodies to the anti-NMDA receptor in serum and cerebrospinal fluid are positive. Electroencephalogram (EEG often reveals diffuse δ slowing without paroxysmal discharges, on which " δ rush" is considered as specific characteristic in some patients. Combined therapy including tumor resection and immunotherapy is recommended. The updates in mechanisms, clinical manifestations and diagnostic examinations associated with anti-NMDA receptor encephalitis will be discussed in this review.

  2. Protonation Equilibria of L-Aspartic, Citric and Succinic Acids in Anionic Micellar Media

    Directory of Open Access Journals (Sweden)

    P. Srinivasa Rao

    2009-01-01

    Full Text Available The impact of sodium lauryl sulphate (SLS on the protonation equilibria of L-aspartic acid, citric acid and succinic acid has been studied in various concentrations (0.5-2.5% w/v of SLS solution maintaining an ionic strength of 0.16 mol dm-3 at 303 K. The protonation constants have been calculated with the computer program MINIQUAD75 and the best fit models have been calculated based on statistical parameters. The trend of log values of step-wise protonation constants with mole fraction of the medium has been explained based on electrostatic and non-electrostatic forces operating on the protonation equilibria. The effects of errors on the protonation constants have also been presented.

  3. Glutamate and aspartate are decreased in the skin in amyotrophic lateral sclerosis

    Science.gov (United States)

    Ono, S.; Yamauchi, M.

    1992-01-01

    We measured the levels of amino acids in biopsied skin from eight patients with amyotrophic lateral sclerosis (ALS) and seven controls. The most conspicuous changes in ALS patients were as follows. First, the contents of the acidic amino acids glutamate and aspartate were significantly decreased in ALS, and were negatively and significantly associated with the duration of illness. Second, the levels of the collagen-associated amino acids hydroxyproline, proline, glycine, alanine, and hydroxylysine were significantly decreased in ALS, and correlated inversely with the duration of illness. These results suggest that there are abnormalities of acidic amino acids and collagen-associated amino acids in the skin of patients with ALS. These changes may underlie the pathogenesis of ALS.

  4. ON or OFF?: Modulating the N-Methyl-D-Aspartate Receptor in Major Depression

    Science.gov (United States)

    Chan, Shi Yu; Matthews, Edward; Burnet, Philip W. J.

    2017-01-01

    Since the discovery that a single dose of ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, had rapid and long-lasting antidepressant effects, there has been increased interest in using NMDAR modulators in the pharmacotherapy of depression. Ketamine’s efficacy seems to imply that depression is a disorder of NMDAR hyperfunctionality. However, studies showing that not all NMDAR antagonists are able to act as antidepressants challenge this notion. Furthermore, NMDAR co-agonists have also been gaining attention as possible treatments. Co-agonists such as D-serine and sarcosine have shown efficacy in both pre-clinical models and human trials. This raises the question of how both NMDAR antagonists and agonists are able to have converging behavioral effects. Here we critically review the evidence and proposed therapeutic mechanisms for both NMDAR antagonists and agonists, and collate several theories on how both activation and inhibition of NMDARs appear to have antidepressant effects. PMID:28133445

  5. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Greene, T.W.; Woodbury, R.L.; Okita, T.W. [Washington State Univ., Pullman, WA (United States)

    1996-11-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production. One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to I{sub 2} vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wildtype recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA. The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. 28 refs., 3 figs., 1 tab.

  6. Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase.

    Science.gov (United States)

    Greene, T W; Woodbury, R L; Okita, T W

    1996-01-01

    As part of a structure-function analysis of the higher-plant ADP-glucose pyrophosphorylase (AGP), we used a random mutagenesis approach in combination with a novel bacterial complementation system to isolate over 100 mutants that were defective in glycogen production (T.W. Greene, S.E. Chantler, M.L. Khan, G.F. Barry, J. Preiss, T.W. Okita [1996] Proc Natl Acad Sci USA 93: 1509-1513). One mutant of the large subunit M27 was identified by its capacity to only partially complement a mutation in the structural gene for the bacterial AGP (glg C), as determined by its light-staining phenotype when cells were exposed to l3 vapors. Enzyme-linked immunosorbent assay and enzymatic pyrophosphorylysis assays of M27 cell extracts showed that the level of expression and AGP activity was comparable to those of cells that expressed the wild-type recombinant enzyme. Kinetic analysis indicated that the M27 AGP displays normal Michaelis constant values for the substrates glucose-1-phosphate and ATP but requires 6- to 10-fold greater levels of 3-phosphoglycerate (3-PGA) than the wild-type recombinant enzyme for maximum activation. DNA sequence analysis showed that M27 contains a single point mutation that resulted in the replacement of aspartic acid 413 to alanine. Substitution of a lysine residue at this site almost completely abolished activation by 3-PGA. Aspartic acid 413 is adjacent to a lysine residue that was previously identified by chemical modification studies to be important in the binding of 3-PGA (K. Ball, J. Preiss [1994] J Biol Chem 269: 24706-24711). The kinetic properties of M27 corroborate the importance of this region in the allosteric regulation of a higher-plant AGP. PMID:8938421

  7. Identification and Validation of Aspartic Acid Semialdehyde Dehydrogenase as a New Anti-Mycobacterium Tuberculosis Target.

    Science.gov (United States)

    Meng, Jianzhou; Yang, Yanhui; Xiao, Chunling; Guan, Yan; Hao, Xueqin; Deng, Qi; Lu, Zhongyang

    2015-09-30

    Aspartic acid semialdehyde dehydrogenase (ASADH) lies at the first branch point in the essential aspartic acid biosynthetic pathway that is found in bacteria and plants but is absent from animals. Mutations in the asadh gene encoding ASADH produce an inactive enzyme, which is lethal. Therefore, in this study, we investigated the hypothesis that ASADH represents a new anti-Mycobacterium tuberculosis (MTB) target. An asadh promoter-replacement mutant MTB, designated MTB::asadh, in which asadh gene expression is regulated by pristinamycin, was constructed to investigate the physiological functions of ASADH in the host bacteria. Bacterial growth was evaluated by monitoring OD600 and ASADH expression was analyzed by Western blotting. The results showed that the growth and survival of MTB::asadh was completely inhibited in the absence of the inducer pristinamycin. Furthermore, the growth of the mutant was rigorously dependent on the presence of the inducer in the medium. The starved mutant exhibited a marked reduction (approximately 80%) in the cell wall materials compared to the wild-type, in addition to obvious morphological differences that were apparent in scanning electron microscopy studies; however, with the addition of pristinamycin, the cell wall contents and morphology similar to those of the wild-type strain were recovered. The starved mutant also exhibited almost no pathogenicity in an in vitro model of infection using mouse macrophage J774A.1 cells. The mutant showed a concentration-dependent recovery of pathogenicity with the addition of the inducer. These findings implicate ASADH as a promising target for the development of novel anti-MTB drugs.

  8. Identification and Validation of Aspartic Acid Semialdehyde Dehydrogenase as a New Anti-Mycobacterium Tuberculosis Target

    Directory of Open Access Journals (Sweden)

    Jianzhou Meng

    2015-09-01

    Full Text Available Aspartic acid semialdehyde dehydrogenase (ASADH lies at the first branch point in the essential aspartic acid biosynthetic pathway that is found in bacteria and plants but is absent from animals. Mutations in the asadh gene encoding ASADH produce an inactive enzyme, which is lethal. Therefore, in this study, we investigated the hypothesis that ASADH represents a new anti-Mycobacterium tuberculosis (MTB target. An asadh promoter-replacement mutant MTB, designated MTB::asadh, in which asadh gene expression is regulated by pristinamycin, was constructed to investigate the physiological functions of ASADH in the host bacteria. Bacterial growth was evaluated by monitoring OD600 and ASADH expression was analyzed by Western blotting. The results showed that the growth and survival of MTB::asadh was completely inhibited in the absence of the inducer pristinamycin. Furthermore, the growth of the mutant was rigorously dependent on the presence of the inducer in the medium. The starved mutant exhibited a marked reduction (approximately 80% in the cell wall materials compared to the wild-type, in addition to obvious morphological differences that were apparent in scanning electron microscopy studies; however, with the addition of pristinamycin, the cell wall contents and morphology similar to those of the wild-type strain were recovered. The starved mutant also exhibited almost no pathogenicity in an in vitro model of infection using mouse macrophage J774A.1 cells. The mutant showed a concentration-dependent recovery of pathogenicity with the addition of the inducer. These findings implicate ASADH as a promising target for the development of novel anti-MTB drugs.

  9. High-resolution differential scanning calorimetric analysis of the subunits of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Edge, V; Allewell, N M; Sturtevant, J M

    1985-10-08

    The thermal denaturation of the catalytic (c3) and regulatory (r2) subunits of Escherichia coli aspartate transcarbamoylase (c6r6) in the absence and presence of various ligands has been studied by means of highly sensitive differential scanning calorimetry. The denaturation of both types of subunit is irreversible as judged by the facts that the proteins coagulate when heated and that no endotherm is observed when previously scanned protein is rescanned. Despite this apparent irreversibility, there is empirical justification for analyzing the calorimetric data in terms of equilibrium thermodynamics as embodied in the van't Hoff equation. The observed curves of excess apparent specific heat vs. temperature are asymmetric and can be expressed within experimental uncertainty as the sums of sequential two-state steps, a minimum of two steps being required for r2 and three for c3. As previously reported [Vickers, K. P., Donovan, J. W., & Schachman, H. K. (1978) J. Biol. Chem. 253, 8493-8498], the addition of the effectors ATP and CTP raises the denaturation temperature of r2 and lowers that of c3 while the addition of the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate raises the denaturation temperature of c3 and lowers that of r2. These effects vary with ligand concentration in the manner expected from the van't Hoff equation, indicating that they are simply manifestations of Le Chatelier's principle rather than being due to "stabilization" or "destabilization" of the proteins. The denaturational enthalpy is increased in those cases of ligand binding in which the denaturation temperature is increased, because of the contribution from the enthalpy of dissociation of the ligand.

  10. Aspartate transaminase to platelet ratio index in hepatitis C virus and Schistosomiasis coinfection

    Science.gov (United States)

    Derbala, Moutaz; Elbadri, Mohammed Elshiekh; Amer, Aliaa Mohamed; AlKaabi, Saad; Sultan, Khaleel Hassan; Kamel, Yasser Medhat; Elsayed, Eman Hassan Satti; Avades, Tony Yervant; Chandra, Prem; Shebl, Fatma M

    2015-01-01

    AIM: To assess the diagnostic accuracy, of aminotransferase-to-platelet ratio index (APRI) alone and with antischistosomal antibody (Ab) in patients with hepatitis C virus (HCV) and schistosomiasis coinfection. METHODS: This retrospective study included medical records of three hundred and eighty three Egyptian men patients who had undergone percutaneous liver biopsy between January 2006 to April 2014 in tertiary care hospital in Qatar for diagnosis or monitoring purpose were selected. Data of patients > 18 years of age were included in the study. The values of HCV RNA titer and antischistosomal antibody titer were also taken into consideration. Patients were excluded from the study if they had any other concomitant chronic liver disease, including; history of previous antiviral or interferon therapy, immunosuppressive, therapy, chronic hepatitis B infection, human immunodeficiency virus co-infection, autoimmune hepatitis, decompensated liver disease, hepatocellular carcinoma, prior liver transplantation, and if no data about the liver biopsy present. RESULTS: Median age of patients was 46 years. About 7.1% had no fibrosis, whereas 30.4%, 37.5%, 20.4%, and 4.6% had fibrosis of stage I, II, III, and IV respectively. In bivariate analysis, APRI score, levels of AST, platelet count and age of patient showed statistically significant association with liver fibrosis (P schistosomiasis as compared to biopsy. The addition of antischistosomal Ab to APRI did not improve sensitivity for predicting the degree of cirrhosis. PMID:26674154

  11. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Kwangseon Jung

    Full Text Available Ultraviolet A (UVA irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs. Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  12. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  13. 热缩催化聚合合成聚天冬氨酸%SYNTHESIS OF POLY-ASPARTIC ACID BY PYROCONDENSATION CATALYZE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    陶敬奇; 李景宁; 王广洪; 曾广益

    2004-01-01

    The Polysuccinimide is Synthesized by means of pyrocondensation catalyze polymerization,using L-aspartic acid as a monomer.Poly-aspartic Acid is achieved by hydrolization of Polysuccinimide.The effect of temperature,time,catalyzer and condition of hydrolization on yield and quality is studied.The research results show that the method has the advantages of simple equipment and high yield.

  14. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    Science.gov (United States)

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin, only 41

  15. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  16. Inhibition of Calpain Prevents N-Methyl-D-aspartate-Induced Degeneration of the Nucleus Basalis and Associated Behavioral Dysfunction

    NARCIS (Netherlands)

    Nimmrich, Volker; Szabo, Robert; Nyakas, Csaba; Granic, Ivica; Reymann, Klaus G.; Schroeder, Ulrich H.; Gross, Gerhard; Schoemaker, Hans; Wicke, Karsten; Moeller, Achim; Luiten, Paul

    2008-01-01

    N-Methyl-D-aspartate( NMDA) receptor-mediated excitotoxicity is thought to underlie a variety of neurological disorders, and inhibition of either the NMDA receptor itself, or molecules of the intracellular cascade, may attenuate neurodegeneration in these diseases. Calpain, a calcium-dependent cyste

  17. Extensive expansion of A1 family aspartic proteinases in fungi revealed by evolutionary analyses of 107 complete eukaryotic proteomes

    NARCIS (Netherlands)

    Revuelta, M.V.; Kan, van J.A.L.; Kay, J.; Have, ten A.

    2014-01-01

    The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the funga

  18. Influence of step faceting on the enantiospecific decomposition of aspartic acid on chiral Cu surfaces vicinal to Cu{111}.

    Science.gov (United States)

    Reinicker, A D; Therrien, A J; Lawton, T J; Ali, R; Sykes, E C H; Gellman, A J

    2016-09-13

    On surfaces vicinal to Cu{111}, l-aspartic acid (l-Asp) adsorption causes steps to facet enantiospecifically into {310}(R) and {320}(S) steps. l-Asp has its highest heat of adsortion on surfaces that naturally expose the {310}(R) or {320}(S) steps but decomposes preferentially on the {310}(R) steps.

  19. Triazacyclophane (TAC)-scaffolded histidine and aspartic acid residues as mimics of non-heme metalloenzyme active sites

    NARCIS (Netherlands)

    Albada, H.B.; Soulimani, F.; Jacobs, H.J.F.; Versluis, C.; Weckhuysen, B.M.; Liskamp, R.M.J.

    2012-01-01

    We describe the synthesis and coordination behaviour to copper(II) of two close structural triazacyclophane-based mimics of two often encountered aspartic acid and histidine containing metalloenzyme active sites. Coordination of these mimics to copper(I) and their reaction with molecular oxygen lead

  20. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis.

    Science.gov (United States)

    Chai, Hua; Le Mai Hoang, Kim; Vu, Minh Duy; Pasunooti, Kalyan; Liu, Chuan-Fa; Liu, Xue-Wei

    2016-08-22

    A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide.

  1. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    Science.gov (United States)

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  2. Cortical N-acetyl aspartate is a predictor of long-term clinical disability in multiple sclerosis

    DEFF Research Database (Denmark)

    Wu, Xingchen; Hanson, Lars G.; Skimminge, Arnold Jesper Møller

    2014-01-01

    Objective: To evaluate the prognostic value of the cortical N-acetyl aspartate to creatine ratio (NAA/Cr) in early relapsing-remitting multiple sclerosis (RRMS). Methods: Sixteen patients with newly diagnosed RRMS were studied by serial MRI and MR spectroscopic imaging (MRSI) once every 6 months ...

  3. Depolarization-induced release of [(3)H]D-aspartate from GABAergic neurons caused by reversal of glutamate transporters

    DEFF Research Database (Denmark)

    Jensen, J B; Pickering, D S; Schousboe, A;

    2000-01-01

    was blocked by 6-chloro-3,4-dihydro-3-(2-norbornen-5-yl)-2H-1,2, 4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide). Under the non-desensitizing conditions, the AMPA-induced release of [(3)H]D-aspartate was highly enhanced showing about a 10-fold increase over basal release. Addition of cobalt...

  4. Anti-N-methyl-D-aspartate receptor encephalitis presenting with acute psychosis in a preteenage girl: a case report

    Directory of Open Access Journals (Sweden)

    Maggina Paraskevi

    2012-07-01

    Full Text Available Abstract Introduction Anti-N-methyl-D-aspartate receptor (anti-NMDAR encephalitis is a rare, newly defined autoimmune clinical entity that presents with atypical clinical manifestations. Most patients with anti-N-methyl-D-aspartate receptor encephalitis develop a progressive illness from psychosis into a state of unresponsiveness, with catatonic features often associated with abnormal movements and autonomic instability. This is the first report of anti-N-methyl-D-aspartate receptor encephalitis in a Greek pediatric hospital. Case presentation An 11-year-old Greek girl presented with clinical manifestations of acute psychosis. The differential diagnosis included viral encephalitis. The presence of a tumor usually an ovarian teratoma, a common clinical finding in many patients, was excluded. Early diagnosis and prompt immunotherapy resulted in full recovery up to one year after the initial diagnosis. Conclusion Acute psychosis is a rare psychiatric presentation in children, diagnosed only after possible organic syndromes that mimic acute psychosis are excluded, including anti-N-methyl-D-aspartate receptor receptor encephalitis. Pediatricians, neurologists and psychiatrists should consider this rare clinical syndrome, in order to make an early diagnosis and instigate appropriate treatment to maximize neurological recovery.

  5. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid

    NARCIS (Netherlands)

    Sivan, S.-S.; Wachtel, E.; Tsitron, E.; Sakkee, N.; Ham, F. van der; Groot, J.de; Roberts, S.; Maroudas, A.

    2008-01-01

    Knowledge of rates of protein turnover is important for a quantitative understanding of tissue synthesis and catabolism. In this work, we have used the racemization of aspartic acid as a marker for the turnover of collagen obtained from healthy and pathological human intervertebral disc matrices. We

  6. The Asc locus for resistance to Alternaria stem canker in tomato does not encode the enzyme aspartate carbamoyltransferase

    NARCIS (Netherlands)

    Overduin, Bert; Hogenhout, Saskia A.; Biezen, Erik A. van der; Haring, Michel A.; Nijkamp, H. John J.; Hille, Jacques

    1993-01-01

    The fungal disease resistance locus Alternaria stem canker (Asc) in tomato has been suggested to encode the enzyme aspartate carbamoyltransferase (ACTase). To test this hypothesis a segment of the tomato ACTase gene was amplified by the polymerase chain reaction (PCR) using degenerate primers. The P

  7. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    Science.gov (United States)

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  8. Correlations of serum alanine aminotransferase and insulin resistance, pancreatic B-cell function%丙氨酸转氨酶水平与胰岛素抵抗及胰岛β细胞功能的关系

    Institute of Scientific and Technical Information of China (English)

    王永慧; 黎明; 高珊; 张秀娟; 李连霞; 张葵

    2011-01-01

    Objective To explore the correlations of serum alanine aminotransferase (ALT),insulin resistance and pancreatic B-cell function.Methods A total of 351 first-degree relatives of type 2 diabetes mellitus received a standard oral glucose tolerance test (OGTT) at our outpatient clinic.All subjects were analyzed for the parameters of body mass index ( BMI),waist-hip ratio,blood pressure ( BP),serum lipids,ALT,aspartate aminotransferase (AST),plasma glucose (PG),true-insulin and proinsulin.Homeostasis model assessment (HOMA) was applied to assess the status of insulin resistance and pancreatic B-cell function. They were divided into 4 groups according to the quartiles of ALT:ALT1 group (<12.9 U/L),ALT2 group (12.9- 17.3 U/L),ALT3 group (17.4-24.2 U/L) and ALT4 group ( ≥24.2 U/L).The diagnosis of metabolic syndrome was made according to the definition of Chinese Diabetic Society.Results With the rising serum ALT levels (ALT4 vs ALT1 ),the levels of BMI [ (26.3 ± 2.9) kg/m2 vs (23.2±3.7) kg/m2,P<0.01],HOMA-IR [1.93(1.21 -3.26) vs 1.06(0.65 -1.54),P<0.01] and LnHOMA-beta (2.00 ±0.32 vs 1.87 ±0.28,P<0.05) were elevated; BP,serum lipids,PG,true-insulin and proinsulin also increased ( P < 0.05 or P < 0.01 ).The levels of serum ALT [ 23.3(16.3-37.6) vs 14.3 (10.3-18.5) U/L,P<0.01] and AST [21.5 (18.3-32.8) U/L vs 17.9( 15.5 -22.1 ) U/L,P <0.01 ] increased with the rising number of metabolic disorders (0 vs 3 -4 metabolic disorders).After adjustments for gender,age,BMI and waist-hip ratio,serum ALT were still positively correlated with BP,serum lipids,PG,fasting true-insulin,2 h proinsulin,2 h proinsulin/true-insulin,HOMA-IR and the numbers of metabolic disorder (r=0.117 -0.236,P<0.05 or P<0.01).After adjustments for gender,age,BMI,waist-hip ratio and HOMA-IR,the serum ALT level remained positively correlated with the numbers of metabolic disorders (r =0.120,P < 0.05).Multiple stepwise regression analysis showed that triglyceride

  9. Structural Analysis of WbpE from Pseudomonas aeruginosa PAO1: A Nucleotide Sugar Aminotransferase Involved in O-Antigen Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, A.; Olivier, N; Imperiali, B

    2010-01-01

    In recent years, the opportunistic pathogen Pseudomonas aeruginosa has emerged as a major source of hospital-acquired infections. Effective treatment has proven increasingly difficult due to the spread of multidrug resistant strains and thus requires a deeper understanding of the biochemical mechanisms of pathogenicity. The central carbohydrate of the P. aeruginosa PAO1 (O5) B-band O-antigen, ManNAc(3NAc)A, has been shown to be critical for virulence and is produced in a stepwise manner by five enzymes in the Wbp pathway (WbpA, WbpB, WbpE, WbpD, and WbpI). Herein, we present the crystal structure of the aminotransferase WbpE from P. aeruginosa PAO1 in complex with the cofactor pyridoxal 5{prime}-phosphate (PLP) and product UDP-GlcNAc(3NH{sub 2})A as the external aldimine at 1.9 {angstrom} resolution. We also report the structures of WbpE in complex with PMP alone as well as the PLP internal aldimine and show that the dimeric structure of WbpE observed in the crystal structure is confirmed by analytical ultracentrifugation. Analysis of these structures reveals that the active site of the enzyme is composed of residues from both subunits. In particular, we show that a key residue (Arg229), which has previously been implicated in direct interactions with the {alpha}-carboxylate moiety of {alpha}-ketoglutarate, is also uniquely positioned to bestow specificity for the 6{double_prime}-carboxyl group of GlcNAc(3NH2)A through a salt bridge. This finding is intriguing because while an analogous basic residue is present in WbpE homologues that do not process 6{double_prime}-carboxyl-modified saccharides, recent structural studies reveal that this side chain is retracted to accommodate a neutral C6{double_prime} atom. This work represents the first structural analysis of a nucleotide sugar aminotransferase with a bound product modified at the C2{double_prime}, C3{double_prime}, and C6{double_prime} positions and provides insight into a novel target for treatment of P

  10. Free-energy analysis of enzyme-inhibitor binding: aspartic proteinase-pepstatin complexes.

    Science.gov (United States)

    Kalra, P; Das, A; Jayaram, B

    2001-01-01

    Expeditious in silico determinations of the free energies of binding of a series of inhibitors to an enzyme are of immense practical value in structure-based drug design efforts. Some recent advances in the field of computational chemistry have rendered a rigorous thermodynamic treatment of biologic molecules feasible, starting from a molecular description of the biomolecule, solvent, and salt. Pursuing the goal of developing and making available a software for assessing binding affinities, we present here a computationally rapid, albeit elaborate, methodology to estimate and analyze the molecular thermodynamics of enzyme-inhibitor binding with crystal structures as the point of departure. The complexes of aspartic proteinases with seven inhibitors have been adopted for this study. The standard free energy of complexation is considered in terms of a thermodynamic cycle of six distinct steps decomposed into a total of 18 well-defined components. The model we employed involves explicit all-atom accounts of the energetics of electrostatic interactions, solvent screening effects, van der Waals components, and cavitation effects of solvation combined with a Debye-Huckel treatment of salt effects. The magnitudes and signs of the various components are estimated using the AMBER parm94 force field, generalized Born theory, and solvent accessibility measures. Estimates of translational and rotational entropy losses on complexation as well as corresponding changes in the vibrational and configurational entropy are also included. The calculated standard free energies of binding at this stage are within an order of magnitude of the observed inhibition constants and necessitate further improvements in the computational protocols to enable quantitative predictions. Some areas such as inclusion of structural adaptation effects, incorporation of site-dependent amino acid pKa shifts, consideration of the dynamics of the active site for fine-tuning the methodology are easily

  11. Inherited and de novo deletion of the tyrosine aminotransferase gene locus at 16q22.1----q22.3 in a patient with tyrosinemia type II.

    Science.gov (United States)

    Natt, E; Westphal, E M; Toth-Fejel, S E; Magenis, R E; Buist, N R; Rettenmeier, R; Scherer, G

    1987-12-01

    Tyrosinemia II is an autosomal-recessively inherited condition caused by deficiency in the liver-specific enzyme tyrosine aminotransferase (TAT; EC 2.6.1.5). We have restudied a patient with typical symptoms of tyrosinemia II who in addition suffers from multiple congenital anomalies including severe mental retardation. Southern blot analysis using a human TAT cDNA probe revealed a complete deletion of both TAT alleles in the patient. Molecular and cytogenetic analysis of the patient and his family showed one deletion to be maternally inherited, extending over at least 27 kb and including the complete TAT structural gene, whereas loss of the second TAT allele results from a small de novo interstitial deletion, del 16 (pter----q22.1::q22.3----qter), in the paternally inherited chromosome 16. Three additional loci previously assigned to 16q22 were studied in our patient: haptoglobin (HP), lecithin: cholesterol acyltransferase (LCAT), and the metallothionein gene cluster MT1,MT2. Of these three markers, only the HP locus was found to be codeleted with the TAT locus on the del(16) chromosome.

  12. Risk factors associated with hepatitis B or C markers or elevated alanine aminotransferase level among blood donors on a tropical island: the Guadeloupe experience.

    Science.gov (United States)

    Fest, T; Viel, J F; Agis, F; Coffe, C; Dupond, J L; Hervé, P

    1992-10-01

    Donated blood is currently screened for hepatitis B surface antigen (HBsAg), antibody to hepatitis B core antigen (anti-HBc), antibody to hepatitis C virus (anti-HCV), and alanine aminotransferase (ALT) levels to prevent posttransfusion hepatitis. A prospective study of 2368 blood donors was carried out in Guadeloupe (French West Indies) with a view to determining the risk factors associated with serologic abnormalities. Blood donors included in the study had to complete a questionnaire. Statistical analysis was performed on the data thus obtained: 571 donations (24%) were positive for at least one of the four analyzed markers. The results were that 3.2 percent were positive for HBsAg, 22 percent for anti-HBc, and 0.8 percent for anti-HCV, and 1.4 percent had ALT > or = 45 IU per L. A good correlation was found between anti-HCV and elevated ALT. Transfusion history and two socioeconomic categories (working class, military personnel) were found to be risk factors. Other risk factors were lifelong residence in Guadeloupe (with risk increasing with the number of years), birthplace and current residence in the southern part of the island, and the existence of gastrointestinal discomfort unrelated to viral hepatitis (odds ratio = 2.98). The results of this study illustrate the difficulty of implementing a preventive policy against posttransfusion hepatitis in a tropical area. The unique epidemiologic situation of Guadeloupe as regards hepatitis B virus has led to more restrictive criteria for the acceptance of blood donors.

  13. Intrahepatic and peripheral T-cell responses in genotype 1b hepatitis C virus-infected patients with persistently normal and elevated aminotransferase levels

    Institute of Scientific and Technical Information of China (English)

    Filiz Akyüz; Nuray Polat; Sabahattin Kaymakoglu; Nevzat Aksoy; Kadir Demir; Fatih Be(s)i(s)ik; Selim Badur; Yilmaz (C)akaloglu; Atilla (O)kten

    2005-01-01

    AIM: To evaluate whether the cytokine responses in liver and serum differ in chronic hepatitis C patients with normal and high alanine aminotransferase (ALT) levels.METHODS: Thirty-three (16 with normal ALT level as group 1 and 17 with elevated ALT level as group 2) patients infected with genotype 1b hepatitis C virus (HCV) were examined. Liver infiltrating lymphomononuclear cells (LILMCs) were isolated from liver biopsy by collagenase type 1 and stimulated with phytohemagglutinin and interleukin 2 (IL-2). IL-10, IL-12,interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were determined in serum and LILMCs by ELISA.RESULTS: Serum cytokine levels were similar in both groups (P>0.05). Stimulated IFN-γ and TNF-α levels in LILMCs were increased in both groups. IL-12 and IL-10levels stimulated with IL-2 were higher in group 1 than in group 2 (P = 0.023). Histological activity index (HAI)and stage had a negative correlation with TNF-α and IFN-γ levels in group 2.CONCLUSION: Increased T-helper type 2 (Th2)cytokine response may regress inflammatory and biochemical activity. Progression of histological abnormalities in persons with elevated ALT probably depends on insufficient Th2 cytokine response, which does not balance Th1 cytokine response.

  14. Liver biomarker and in vitro assessment confirm the hepatic origin of aminotransferase elevations lacking histopathological correlate in beagle dogs treated with GABAA receptor antagonist NP260.

    Science.gov (United States)

    Harrill, Alison H; Eaddy, John S; Rose, Kelly; Cullen, John M; Ramanathan, Lakshmi; Wanaski, Stephen; Collins, Stephen; Ho, Yu; Watkins, Paul B; Lecluyse, Edward L

    2014-06-01

    NP260 was designed as a first-in-class selective antagonist of α4-subtype GABAA receptors that had promising efficacy in animal models of pain, epilepsy, psychosis, and anxiety. However, development of NP260 was complicated following a 28-day safety study in dogs in which pronounced elevations of serum aminotransferase levels were observed, although there was no accompanying histopathological indication of hepatocellular injury. To further investigate the liver effects of NP260, we assayed stored serum samples from the 28-day dog study for liver specific miRNA (miR-122) as well as enzymatic biomarkers glutamate dehydrogenase and sorbitol dehydrogenase, which indicate liver necrosis. Cytotoxicity assessments were conducted in hepatocytes derived from dog, rat, and human liver samples to address the species specificity of the liver response to NP260. All biomarkers, except ALT, returned toward baseline by Day 29 despite continued drug treatment, suggesting adaptation to the initial injury. In vitro analysis of the toxicity potential of NP260 to primary hepatocytes indicated a relative sensitivity of dog>human>rat, which may explain, in part, why the liver effects were not evident in the rodent safety studies. Taken together, the data indicate that a diagnostic biomarker approach, coupled with sensitive in vitro screening strategies, may facilitate interpretation of toxicity potential when an adaptive event masks the underlying toxicity.

  15. Disproportional exaggerated aspartate transaminase is a useful prognostic parameter in late leptospirosis

    Institute of Scientific and Technical Information of China (English)

    Ming-Ling Chang; Chih-Wei Yang; Jeng-Chang Chen; Yu-Pin Ho; Ming-Jeng Pan; Cheng-Hui Lin; Deng-Yn Lin

    2005-01-01

    AIM: To evaluate the hepatic dysfunction in leptospirosis is usually mild and resolved eventually. However,sequential follow-up of liver biochemical data remained lacking..METHODS: The biochemistry data and clinical symptoms of 11 sporadic patients were collected and analyzed, focusing on the impacts of leptospirosis upon liver biochemistry tests.RESULTS: The results disclosed that of the 11 cases, 5 or 45% died. The liver biochemistry data in the beginning of the disease course were only mildly elevated.Nevertheless, late exaggerated aspartate transaminase (AST)elevations were noted in three cases who finally died when compared with the typical course. Besides, significant higher AST/alanine transaminase (ALT) ratios (AARs) of the peak levels for transaminase were also noted in the cases who eventually succumbed. The mean±SD of AARs for the survival group and dead group were 5.65±2.27 (n = 5)and 1.86±0.64 (n = 6) respectively (P= 0.006). The ratios of the cases who finally died were all more than 3.0.Conversely, the survival group's ratios were less than 3.0.CONCLUSION: Serial follow-up of transaminase might provide evidence to predict some rare evolutions in leptospirosis. If AST elevated progressively without a concomitant change of ALT, it might indicate an acute disease course with ensuing death. Additionally, AAR is another prognostic parameter for leptospirosis. Once the value was higher than 3.0, a grave prognosis is inevitable.

  16. Selective Impairment of Spatial Cognition Caused by Autoantibodies to the N-Methyl-d-Aspartate Receptor

    Directory of Open Access Journals (Sweden)

    Eric H. Chang

    2015-07-01

    Full Text Available Patients with systemic lupus erythematosus (SLE experience cognitive abnormalities in multiple domains including processing speed, executive function, and memory. Here we show that SLE patients carrying antibodies that bind DNA and the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor (NMDAR, termed DNRAbs, displayed a selective impairment in spatial recall. Neural recordings in a mouse model of SLE, in which circulating DNRAbs penetrate the hippocampus, revealed that CA1 place cells exhibited a significant expansion in place field size. Structural analysis showed that hippocampal pyramidal cells had substantial reductions in their dendritic processes and spines. Strikingly, these abnormalities became evident at a time when DNRAbs were no longer detectable in the hippocampus. These results suggest that antibody-mediated neurocognitive impairments may be highly specific, and that spatial cognition may be particularly vulnerable to DNRAb-mediated structural and functional injury to hippocampal cells that evolves after the triggering insult is no longer present.

  17. Effect of acute potassium-magnesium aspartate supplementation on ammonia concentrations during and after resistance training.

    Science.gov (United States)

    Tuttle, J L; Potteiger, J A; Evans, B W; Ozmun, J C

    1995-06-01

    This study examined the effects of aspartate supplementation (ASP) on plasma ammonia concentrations ([NH4+]) during and after a resistance training workout (RTW). Twelve male weight trainers were randomly administered ASP or vitamin C in a crossover, double blind protocol, each trial separated by 1 wk. ASP and vitamin C were given over a 2-hr period beginning 5 hr prior to the RTW. The RTW consisted of bench, incline, shoulder, and triceps presses, and biceps curls at 70% of one repetition maximum (1-RM). After the RTW a bench press test (BPT) to failure at 65% of 1-RM was used to assess performance. [NH4+] was determined preexercise, 20 and 40 min midworkout, immediately postexercise, and 15 min postexercise. Treatment-by-time ANOVAs, paired t tests, and contrast comparisons were used to identify mean differences. No significant differences were observed between treatments for [NH4+] or BPT. [NH4+] increased significantly from Pre to immediately postexercise for both the ASP and vitamin C trials. Acute ASP supplementation does not reduce [NH4+] during and after a high intensity RTW in weight trained subjects.

  18. N-methyl-D-aspartate receptor blockade is neuroprotective in experimental autoimmune optic neuritis.

    Science.gov (United States)

    Sühs, Kurt-Wolfram; Fairless, Richard; Williams, Sarah K; Heine, Katrin; Cavalié, Adolfo; Diem, Ricarda

    2014-06-01

    Optic neuritis is a common clinical manifestation of the chronic inflammatory CNS disease multiple sclerosis that can result in persistent visual impairment caused by degeneration of optic nerve axons and apoptosis of retinal ganglion cells (RGCs). Using a model of experimental autoimmune encephalomyelitis with optic neuritis (Brown Norway rats), we show that administration of the N-methyl-D-aspartate (NMDA) receptor antagonists memantine or MK801 results in RGC protection, axon protection, and reduced demyelination of optic nerves. Calcium imaging revealed that RGC responses to glutamate stimulation predominantly occurred via NMDA receptors and were inhibited by memantine in a dose-dependent manner. In contrast, oligodendrocytes were mainly responsive through the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor. This suggests that NMDA receptor blockade protected RGCs directly and that the protection was independent of effects on oligodendrocytes. Moreover, increased RGC survival was observed before the onset of optic nerve demyelination--when RGC degeneration had already started. These results indicate an important pathophysiologic role for NMDA receptor-mediated glutamate toxicity during the induction phase of this disease model and highlight a potential target for therapeutic neuroprotection in human optic neuritis.

  19. Improved postprandial glycaemic control with insulin Aspart in type 2 diabetic patients treated with insulin

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Thorsby, P; Kjems, L;

    2000-01-01

    The effect on postprandial blood glucose control of an immediately pre-meal injection of the rapid acting insulin analogue Aspart (IAsp) was compared with that of human insulin Actrapid injected immediately or 30 minutes before a test meal in insulin-treated type 2 diabetic patients with residual....../kg) immediately (Act0) or 30 minutes before (Act-30) a test meal. We studied 25 insulin-requiring type 2 diabetic patients, including 14 males and 11 females, with a mean age of 59.7 years (range, 43-71), body mass index 28.3 kg/m2 (range, 21.9-35.0), HbA1c 8.5% (range, 6.8-10.0), glucagon-stimulated C-peptide 1...... between IAsp, administered with a meal and Actrapid injected 30 minutes before the meal (AUCglucose IAsp, 899 +/- 609 mmol/l min vs. Act-30, 868 +/- 374 mmol/l min; Cmax IAsp, 10.8 +/- 2.2 mmol/l vs. Act-30, 11.1 +/- 1.8 mmol/l). No concerns about the safety of IAsp were raised. Immediate pre...

  20. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    Science.gov (United States)

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  1. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  2. Opioid antinociception, tolerance and dependence: interactions with the N-methyl-D-aspartate system in mice.

    Science.gov (United States)

    Dykstra, Linda A; Fischer, Bradford D; Balter, Rebecca E; Henry, Fredrick E; Schmidt, Karl T; Miller, Laurence L

    2011-09-01

    This study explored the involvement of N-methyl-D-aspartate (NMDA) in the effects of μ-opioid agonists. A hot-plate procedure was used to assess antinociception and tolerance in mice in which the NR1 subunit of the NMDA receptor was reduced [knockdown (KD)] to approximately 10%, and in mice treated with the NMDA antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959). The μ opioid agonists, morphine, l-methadone and fentanyl, were approximately three-fold less potent in the NR1 KD mice than in wild-type (WT) controls; however, the development of morphine tolerance and dependence did not differ markedly in the NR1 KD and the WT mice. Acute administration of the NMDA antagonist, LY235959, produced dose-dependent, leftward shifts in the morphine dose-effect curve in the WT mice, but not in the NR1 KD mice. Chronic administration of LY235959 during the morphine tolerance regimen did not attenuate the development of tolerance in the NR1 KD or the WT mice. These results indicate that the NR1 subunit of the NMDA receptor does not play a prominent role in μ opioid tolerance.

  3. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  4. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    Directory of Open Access Journals (Sweden)

    Daniel A Kane

    2014-11-01

    Full Text Available Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH, the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle; it is also proposed that the two shuttles are necessarily interconnected. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the PCr shuttle, would facilitate net cellular lactate oxidation under a variety of conditions.

  5. Kinetic simulation of malate-aspartate and citrate-pyruvate shuttles in association with Krebs cycle.

    Science.gov (United States)

    Korla, Kalyani; Vadlakonda, Lakshmipathi; Mitra, Chanchal K

    2015-01-01

    In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model.

  6. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  7. Molecular alteration and carbonization of aspartic acid upon N{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, F.Z. E-mail: biomater@mail.tsinghua.edu.cncuifz@sun.ihep.ac.cn; Sun, S.Q.; Zhang, D.M.; Ma, Z.L.; Chen, G.Q

    2000-06-02

    Structural changes of aspartic acid (Asp) irradiated by nitrogen ions of 30 keV were studied using Fourier transform infrared (FTIR) spectroscopy. Significant decreases of the intensities of COO{sup -}, NH{sub 3}{sup +}, COOH and CH{sub 2} vibrations in the FTIR spectra, compared with those of unirradiated Asp, were observed for the sample irradiated at the fluence of 1x10{sup 16} ions/cm{sup 2}. The decrease rates of the intensities of COO{sup -}, NH{sub 3}{sup +}, COOH and CH{sub 2} vibrations with respect to the increasing irradiation fluences up to 4x10{sup 16} ions/cm{sup 2} were different. The results were attributable to the nonstoichiometrical desorption of corresponding volatile species such as H{sub 2}, NH{sub 3}{sup +} and CO{sub 2}. The radiolysis residue of Asp after irradiation at a high fluence of 1x10{sup 17} ions/cm{sup 2} was analyzed and fatty acid was detected.

  8. Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication.

    Science.gov (United States)

    Maiti, Munmun; Maiti, Mohitosh; Rozenski, Jef; De Jonghe, Steven; Herdewijn, Piet

    2015-05-14

    In view of a persistent threat to mankind, the development of nucleotide-based prodrugs against hepatitis C virus (HCV) is considered as a constant effort in many medicinal chemistry groups. In an attempt to identify novel nucleoside phosphoramidate analogues for improving the anti-HCV activity, we have explored, for the first time, aspartic acid (Asp) and iminodiacetic acid (IDA) esters as amidate counterparts by considering three 2'-C-methyl containing nucleosides, 2'-C-Me-cytidine, 2'-C-Me-uridine and 2'-C-Me-2'-fluoro-uridine. Synthesis of these analogues required protection for the vicinal diol functionality of the sugar moiety and the amino group of the cytidine nucleoside to regioselectively perform phosphorylation reaction at the 5'-hydroxyl group. Anti-HCV data demonstrate that the Asp-based phosphoramidates are ∼550 fold more potent than the parent nucleosides. The inhibitory activity of the Asp-ProTides was higher than the Ala-ProTides, suggesting that Asp would be a potential amino acid candidate to be considered for developing novel antiviral prodrugs.

  9. Reactions of Cr3+ with aspartic acid within a wide pH range

    Directory of Open Access Journals (Sweden)

    Yahia Z. Hamada

    2014-12-01

    Full Text Available Formation of the metal complexes of aspartic acid (Asp with the chromium metal ion (Cr3+ in solutions using potentiometric titrations is presented within a wide pH range (∼3.5 to ∼10.5 at 25°C and I=0.10 M NaNO3. Concentration distribution diagrams revealed that the main complex formed within this pH range is the bis Cr 3+ complex. Literature stability constant values for the Cr–Asp complexes were used to construct concentration distribution diagrams. Complexes taken into consideration were the simple one-to-one complex, the bis-complex, and the bis-mono-protonated complex, namely, Cr–Asp, Cr(Asp2, and Cr(Asp2H. The corresponding Log β values of these complexes were 12.46, 21.86, and 24.30, respectively. UV–Vis spectra demonstrate Cr 3+–Asp binding. The UV–Vis spectra were collected from a system that reached a high level of equilibrium state (50 days’ equilibrium time.

  10. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    Science.gov (United States)

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination.

  11. Intramolecular cyclization of aspartic acid residues assisted by three water molecules: a density functional theory study

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota

    2014-01-01

    Aspartic acid (Asp) residues in peptides and proteins (l-Asp) are known to undergo spontaneous nonenzymatic reactions to form l-β-Asp, d-Asp, and d-β-Asp residues. The formation of these abnormal Asp residues in proteins may affect their three-dimensional structures and hence their properties and functions. Indeed, the reactions have been thought to contribute to aging and pathologies. Most of the above reactions of the l-Asp residues proceed via a cyclic succinimide intermediate. In this paper, a novel three-water-assisted mechanism is proposed for cyclization of an Asp residue (forming a gem-diol precursor of the succinimide) by the B3LYP/6-31 + G(d,p) density functional theory calculations carried out for an Asp-containing model compound (Ace-Asp-Nme, where Ace = acetyl and Nme = NHCH3). The three water molecules act as catalysts by mediating ‘long-range’ proton transfers. In the proposed mechanism, the amide group on the C-terminal side of the Asp residue is first converted to the tautomeric iminol form (iminolization). Then, reorientation of a water molecule and a conformational change occur successively, followed by the nucleophilic attack of the iminol nitrogen on the carboxyl carbon of the Asp side chain to form the gem-diol species. A satisfactory agreement was obtained between the calculated and experimental energetics.

  12. Aspartic acid racemization dating of Holocene brachiopods and bivalves from the southern Brazilian shelf, South Atlantic

    Science.gov (United States)

    Barbour Wood, Susan L.; Krause, Richard A.; Kowalewski, Michał; Wehmiller, John; Simões, Marcello G.

    2006-09-01

    The extent of racemization of aspartic acid (Asp) has been used to estimate the ages of 9 shells of the epifaunal calcitic brachiopod Bouchardia rosea and 9 shells of the infaunal aragonitic bivalve Semele casali. Both taxa were collected concurrently from the same sites at depths of 10 m and 30 m off the coast of Brazil. Asp D/L values show an excellent correlation with radiocarbon age at both sites and for both taxa ( r2Site 9 B. rosea = 0.97, r2Site 1 B. rosea = 0.997, r2Site 9 S. casali = 0.9998, r2Site 1 S. casali = 0.93). The Asp ratios plotted against reservoir-corrected AMS radiocarbon ages over the time span of multiple millennia can thus be used to develop reliable and precise geochronologies not only for aragonitic mollusks (widely used for dating previously), but also for calcitic brachiopods. At each collection site, Bouchardia specimens display consistently higher D/L values than specimens of Semele. Thermal differences between sites are also notable and in agreement with theoretical expectations, as extents of racemization for both taxa are greater at the warmer, shallower site than at the cooler, deeper one. In late Holocene marine settings, concurrent time series of aragonitic and calcitic shells can be assembled using Asp racemization dating, and parallel multi-centennial to multi-millennial records can be developed simultaneously for multiple biomineral systems.

  13. Poly(aspartic acid) with adjustable pH-dependent solubility.

    Science.gov (United States)

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pKa. Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings.

  14. Biphasic effects of ethanol and sodium oleate on synaptic transport of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Foley, T.; Rhoads, D.E.

    1987-05-01

    The authors have examined the effects of ethanol and sodium oleate on the transport of aspartic acid (ASP) by nerve-ending preparations from rat cerebral cortex. Physiologically relevant ethanol concentrations of up to 100mM stimulated ASP uptake while concentrations greater than 200mM caused inhibition. A similar biphasic effect was observed with oleate stimulating ASP uptake at 0.1 to 1..mu..M and inhibiting ASP uptake at concentrations greater than 1..mu..M. Maximum stimulation was observed at 0.1..mu..M oleate and at 50mM ethanol. In contrast, when synaptosomes were prepared from rats that had been exposed for 2-3 weeks to 10% ethanol in their drinking water, higher concentrations of ethanol and oleate were required to obtain comparable stimulation of ASP uptake. These biphasic effects on ASP transport can be interpreted in terms of physicochemical alterations in the synaptic membranes, with from alcohol-exposed rats showing tolerance to these fluidizing effects.

  15. Aspartic acid concentrations in coral skeletons as recorders of past disturbances of metabolic rates

    Science.gov (United States)

    Gupta, Lallan P.; Suzuki, Atsushi; Kawahata, Hodaka

    2006-11-01

    The composition of total hydrolysable amino acids (THAAs) in a skeleton of the coral Porites australiensis, collected from Ishigaki Island, Japan, was examined in order to determine whether amino acids (AA) can be used as biomarkers of past changes in coral physiology (metabolism). Micro-samples, corresponding to a time resolution of 1 month, were collected along the growth axis of the coral. Of the 20 AAs analyzed, aspartic acid (Asp) was the most abundant, and its mole concentration relative to the sum of all other AAs (mole%Asp) showed a clear seasonal pattern of low content during winters and high during summers. A growth disturbance in the coral skeleton during 1988 1990, shown by X-ray scans and oxygen and carbon stable isotope data, was marked by a high mole%Asp ratio. Variability in carbon isotope data has often been attributed to metabolic effects, or changes in the isotopic composition of seawater, or both. The changes in mole%Asp shown here suggest that metabolic effects are mainly responsible for sharp changes in carbon isotope profiles during periods of growth disturbance.

  16. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Chu Wenhai, E-mail: 1world1water@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Gao Naiyun [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 (China); Deng Yang, E-mail: yang.deng@upr.edu [Department of Civil Engineering and Surveying, University of Puerto Rico, P.O. Box 9041, Mayaguez, Puerto Rico, 00681-9041 (Puerto Rico)

    2010-01-15

    The stability of haloacetamides (HAcAms) such as dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) was studied under different experimental conditions. The yield of HAcAms during aspartic acid (Asp) chlorination was measured at different molar ratio of chlorine atom to nitrogen atom (Cl/N), pH and dissolved organic carbon (DOC) mainly consisted of humic acid (HA) mixture. Ascorbic acid showed a better capacity to prevent the decay of DCAcAm and TCAcAm than the other two dechlorinating agents, thiosulfate and sodium sulfite. Lower Cl/N favored the DCAcAm formation, implying that breakpoint chlorination might minimize its generation. The pH decrease could lower the concentration of DCAcAm but favored dichloroacetonitrile (DCAN) formation. DCAcAm yield was sensitive to the DOC due to higher chlorine consumption caused by HA mixture. Two possible pathways of DCAcAm formation during Asp chlorination were proposed. Asp was an important precursor of DCAN, DCAcAm and dichloroacetic acid (DCAA), and thus removal of Asp before disinfection may be a method to prevent the formation of DCAcAm, DCAN and DCAA.

  17. Immunohistochemical localization of D-β-aspartic acid-containing proteins in pterygium.

    Science.gov (United States)

    Kaji, Yuichi; Oshika, Tetsuro; Nejima, Ryouhei; Mori, Saiyo; Miyata, Kazunori; Fujii, Noriko

    2015-12-10

    Biologically uncommon D-β-aspartic acid (D-β-Asp) residues have been reported to accumulate in organs affected by age-related disorders. In the present study, we investigated the localization of D-β-Asp-containing proteins in cases of pterygium, one of the most prominent age-related ocular conditions. Immunohistochemical localization of D-β-Asp-containing proteins was investigated in surgical specimens of pterygium from 20 patients and control specimens from 10 patients. Strong immunoreactivity to D-β-Asp-containing proteins was observed in subepithelial elastotic lesions and surrounding collagenous lesions from all surgical specimens with pterygia. In contrast, no immunoreactivity to D-β-Asp-containing proteins was seen in pterygium-free specimens. D-β-Asp-containing proteins are produced in organs as they are affected by the aging process. In addition, conversion of L- to D-aspartyl residues is accelerated by ultraviolet (UV) irradiation. Since pterygia can form due to aging or UV exposure, it is reasonable to find D-β-Asp-containing proteins in specimens with pterygia. Furthermore, since D-β-Asp is a non-native amino acid, D-β-Asp-containing proteins may be recognized as allogeneic antigens. Therefore, D-β-Asp-containing proteins in pterygia may responsible for the fibrovascular changes seen in the disorder.

  18. Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis

    Science.gov (United States)

    Gong, Yi; Lee, Joon No; Brown, Michael S.; Goldstein, Joseph L.; Ye, Jin

    2006-01-01

    Insig-1 and Insig-2 are closely related proteins of the endoplasmic reticulum (ER) that mediate feedback control of cholesterol synthesis by sterol-dependent binding to the following two membrane proteins: the escort protein Scap, thus preventing proteolytic processing of sterol regulatory element-binding proteins; and the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase, thus inducing the ubiquitination and ER-associated degradation of the enzyme. Here, we report that the conserved Asp-205 in Insig-1, which abuts the fourth transmembrane helix at the cytosolic side of the ER membrane, is essential for its dual function. When Asp-205 was mutated to alanine, the mutant Insig-1 lost the ability to bind to Scap and, thus, was unable to suppress the cleavage of sterol regulatory element-binding proteins. The mutant Insig-1 was ineffective also in accelerating sterol-stimulated degradation of 3-hydroxy-3-methylglutaryl CoA reductase. Alanine substitution of the corresponding aspartic acid in Insig-2 produced the same dual defects. These studies identify a single amino acid residue that is crucial for the function of Insig proteins in regulating cholesterol homeostasis in mammalian cells. PMID:16606821

  19. Predicting three-dimensional conformations of peptides constructed of only glycine, alanine, aspartic acid, and valine.

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  20. Inactivation of cystein-aspartic acid protease (caspase)-1 by saikosaponin A.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hyung-Min; Jeong, Hyun-Ja

    2011-01-01

    This work investigates the anti-inflammatory mechanism of saikosaponin A (SA), a major component of Bupleurum falcatum LINNE. SA significantly inhibited phorbol myristate acetate (PMA) plus A23187-induced the production and expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in human mast cell (HMC)-1 cells. SA suppressed PMA plus A23187-induced phosphorylation of extracellular signal-regulated kinase and p38. When HMC-1 cells were treated with SA, translocation of nuclear factor (NF)-κB/Rel A into nucleus and degradation of inhibitor of NF-κB (IκB) in cytoplasm were inhibited. SA decreased PMA plus A23187-induced cysteine-aspartic acid protease (caspase)-1 activity. IL-1β production was also inhibited by SA. Finally, SA significantly decreased the number of nasal rubs and serum TNF-α level in the ovalbumin-sensitized allergic rhinitis mouse model. The underlying mechanism involves, at least in part, inactivation of caspase-1, which provides new evidence for therapeutic application of SA to target inflammatory processes.