Sample records for asparaginic acid

  1. Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection: e1003928

    National Research Council Canada - National Science Library

    Alexandre Gouzy; Gérald Larrouy-Maumus; Daria Bottai; Florence Levillain; Alexia Dumas; Joshua B Wallach; Irène Caire-Brandli; Chantal de Chastellier; Ting-Di Wu; Renaud Poincloux; Roland Brosch; Jean-Luc Guerquin-Kern; Dirk Schnappinger; Pedro Sório de Carvalho; Yannick Poquet; Olivier Neyrolles


    .... Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release...

  2. Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection

    National Research Council Canada - National Science Library

    Gouzy, Alexandre; Larrouy-Maumus, Gérald; Bottai, Daria; Levillain, Florence; Dumas, Alexia; Wallach, Joshua B; Caire-Brandli, Irène; de Chastellier, Chantal; Wu, Ting-Di; Poincloux, Renaud; Brosch, Roland; Guerquin-Kern, Jean-Luc; Schnappinger, Dirk; Sório de Carvalho, Luiz Pedro; Poquet, Yannick; Neyrolles, Olivier


    .... Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release...

  3. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study. (United States)

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi


    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  4. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. (United States)

    Seifi, Hamed; De Vleesschauwer, David; Aziz, Aziz; Höfte, Monica


    The fungal plant pathogen Botrytis cinerea is the causal agent of the "gray mold" disease on a broad range of hosts. As an archetypal necrotroph, B. cinerea has evolved multiple virulence strategies for inducing cell death in its host. Moreover, progress of B. cinerea colonization is commonly associated with induction of senescence in the host tissue, even in non-invaded regions. In a recent study, we showed that abscisic acid deficiency in the sitiens tomato mutant culminates in an anti-senescence defense mechanism which effectively contributes to resistance against B. cinerea infection. Conversely, in susceptible wild-type tomato a strong induction of senescence could be observed following B. cinerea infection. Building upon this earlier work, we here discuss the immune-regulatory role of a key senescence-associated protein, asparagine synthetase. We found that infection of wild-type tomato leads to a strong transcriptional upregulation of asparagine synthetase, followed by a severe depletion of asparagine titers. In contrast, resistant sitiens plants displayed a strong induction of asparagine throughout the course of infection. We hypothesize that rapid activation of asparagine synthetase in susceptible tomato may play a dual role in promoting Botrytis cinerea pathogenesis by providing a rich source of N for the pathogen, on the one hand, and facilitating pathogen-induced host senescence, on the other.

  5. Physico chemical properties of L-asparagine L-tartaric acid single crystals: A new nonlinear optical material (United States)

    Shkir, Mohd; Abbas, Haider


    L-asparagine L-tartaric acid single crystals of size 14 mm × 12 mm × 5 mm were grown. The morphology was recorded during its live growth process using inverted microscope. Structural confirmation of grown crystals was done by powder X-ray diffraction. The grown crystals are optically transparent. The Highest occupied molecular orbital and lowest unoccupied molecular orbital energy gap was obtained using the RHF/6-31G(d,p) and B3LYP/6-31G(d,p) level of theoretical calculations. The dipole moment calculated by RHF is 5.1716 D and by B3LYP is 2.8302 D. The calculated gas phase polarizability is 16.63791 Å3.

  6. Thermodynamic study of asparagine and glycyl-asparagine using computational methods

    Directory of Open Access Journals (Sweden)

    Farhoush Kiani


    Full Text Available This work aimed to develop an ab initio procedure for accurately calculating pKa values and applied it to study the acidity of asparagine and glycyl-asparagine. DFT methods with B3LYP composed by 6-31+G(d basis set were applied for calculating the acidic dissociation constant of asparagine and glycyl-asparagine. The formation of intermolecular hydrogen bonds between the available species and water was analyzed using Tomasi,s method. Results showed that in alkaline solutions, the cation, anion and neutral species of asparagine and glycyl-asparagine were solvated with one, two, three and four molecules of water, respectively. There was an excellent similarity between the experimentally attained pKavalues and the theoretically ones in this work.

  7. Asparagine Biosynthesis in Alfalfa (Medicago sativa L.) Root Nodules 1 (United States)

    Snapp, Sieglinde S.; Vance, Carroll P.


    Rapid direct conversion of exogenously supplied [14C]aspartate to [14C] asparagine and to tricarboxylic cycle acids was observed in alfalfa (Medicago sativa L.) nodules. Aspartate aminotransferase activity readily converted carbon from exogenously applied [14C]aspartate into the tricarboxylic acid cycle with subsequent conversion to the organic acids malate, succinate, and fumarate. Aminooxyacetate, an inhibitor of aminotransferase activity, reduced the flow of carbon from [14C]aspartate into tricarboxylic cycle acids and decreased 14CO2 evolution by 99%. Concurrently, maximum conversion of aspartate to asparagine was observed in aminooxyacetate treated nodules (30 nanomoles asparagine per gram fresh weight per hour. Metabolism of [14C]aspartate and distribution of nodulefixed 14CO2 suggest that two pools of aspartate occur in alfalfa nodules: (a) one involved in asparagine biosynthesis, and (b) another supplying a malate/aspartate shuttle. Conversion of [14C]aspartate to [14C]asparagine was not inhibited by methionine sulfoximine, a glutamine synthetase inhibitor, or azaserine, a glutmate synthetase, inhibitor. The data did not indicate that asparagine biosynthesis in alfalfa nodules has an absolute requirement for glutamine. Radioactivity in the xylem sap, derived from nodule 14CO2 fixation, was markedly decreased by treating nodulated roots with aminooxyacetate, methionine sulfoximine, and azaserine. Inhibitors decreased the [14C]aspartate and [14]asparagine content of xylem sap by greater than 80% and reduced the total amino nitrogen content of xylem sap (including nonradiolabeled amino acids) by 50 to 80%. Asparagine biosynthesis in alfalfa nodules and transport in xylem sap are dependent upon continued aminotransferase activity and an uninterrupted assimilation of ammonia via the glutamine synthetase/glutamate synthase pathway. Continued assimilation of ammonia apparently appears crucial to continued root nodule CO2 fixation in alfalfa. PMID:16665039

  8. Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: Phantom experiments (United States)

    Oh, Jang-Hoon; Kim, Hyug-Gi; Woo, Dong-Cheol; Jeong, Ha-Kyu; Lee, Soo Yeol; Jahng, Geon-Ho


    The physical and technical development of chemical-exchange-saturation-transfer (CEST) magnetic resonance imaging (MRI) using clinical 3 T MRI was explored with the goal of mapping asparagine (Asn), gamma-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI), which exist in the brain. Phantoms with nine different conditions at concentrations of 10, 30, and 50 mM and pH values of 5.6, 6.2, and 7.4 were prepared for the five target molecules to evaluate the dependence of the CEST effect in the concentration, the pH, and the amplitude of the applied radiofrequency field B1. CEST images in the offset frequency range of ±6 parts per million (ppm) were acquired using a pulsed radio-frequency saturation scheme with a clinical 3 T MRI system. A voxel-based main magnetic field B0 inhomogeneity correction, where B0 is the center frequency offset at zero ppm, was performed by using the spline interpolation method to fit the full Z-spectrum to estimate the center frequency. A voxel-based CEST asymmetry map was calculated to evaluate amide (-NH), amine (-NH2), and hydroxyl (-OH) groups for the five target molecules. The CEST effect for Glu, GABA, and Gly clearly increased with increasing concentrations. The CEST effect for MI was minimal, with no noticeable differences at different concentrations. The CEST effect for Glu and Gly increased with increasing acidity. The highest CEST asymmetry for GABA was observed at pH 6.2. The CEST effect for Glu, GABA, and Gly increased with increasing B1 amplitude. For all target molecules, the CEST effect for the human 3 T MRI system increased with increasing concentration and B1 amplitude, but varied with pH, depending on the characteristics of the molecules. The CEST effect for MI may be not suitable with clinical MRI systems. These results show that CEST imaging in the brain with the amine protons by using 3 T MRI is possible for several neuronal diseases.

  9. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. (United States)

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira


    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoterCaMV35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoterNapin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Dissipation kinetics of asparagine in soil measured by compound-specific analysis with metabolite tracking

    DEFF Research Database (Denmark)

    Czaban, Weronika; Rasmussen, Jim; Nicolaisen, Mogens


    formation of compounds closely related to 13C15N-asparagine metabolism over 3 h in agricultural soil. 13C15N-asparagine was rapidly dissipated with half-lives of 55 and 231 min for the low and high 13C15N-asparagine concentrations used. Universally labeled aspartic acid and interestingly also universally......Estimating the potential for direct plant acquisition of organic N, in particular amino acids, requires assessment of their turnover times in soil. It is well known from 14C studies that mineralization of amino acids occurs within hours, but mineralization to 14CO2 does not indicate the rate...... of disappearance of the intact amino acid or the possible formation of metabolites during amino acid dissipation. We here used compound-specific isotope analysis with metabolite tracking to investigate the dissipation rate of universally labeled intact 13C15N-asparagine at two concentrations and the subsequent...


    Northrop, John H.; Simms, Henry S.


    1. The rate of hydrolysis at different pH values of glycyl glycine, glycyl leucine, glycyl alanine, glycyl asparagine, glycyl aspartic acid and biuret base has been determined. 2. The pH-activity curves obtained in this way differ for the different substrates. 3. The curves can be satisfactorily predicted by the assumption that erepsin is a weak acid or base with a dissociation constant of 10–7.6 and that the reaction takes place between a particular ionic species of the enzyme and of the substrate. There are several possible arrangements which will predict the experimental results. 4. The rate of inactivation of erepsin at various pH values has been determined and found to agree with the assumption used above, that the enzyme is a weak acid or base with a dissociation constant of about 10–7.6. 5. It is pointed out that if the mechanism assumed is correct, the determination of a significant value for the relative rate of hydrolysis of various peptides is a very uncertain procedure. PMID:19872461

  12. Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. (United States)

    Herrera-Rodríguez, María Begoña; Maldonado, José María; Pérez-Vicente, Rafael


    Sunflower (Helianthus annuus) contains three active asparagine synthetase (EC, AS) genes: HAS1, HAS1.1 and HAS2. Asparagine content and AS gene expression were determined during germination and leaf and cotyledon natural senescence to assess the role of asparagine as well as the extent of participation of each AS gene in different nitrogen mobilizing processes. Asparagine accumulated in the dry seed and was the predominant amide throughout germination. During cotyledon senescence, the asparagine level was slightly higher than that of glutamine. The opposite was true for leaf senescence. According to transcript accumulation data, most of the asparagine newly synthesized for germination and cotyledon expansion was due to HAS2 activity, with little contribution of the other AS genes. However, all three genes work together to synthesize asparagine for leaf senescence. The absence of significant AS gene expression in cotyledon senescence differentiates leaf and cotyledon senescence, and suggests a cotyledon-specific regulation.

  13. Enhanced citric acid production in aspergillus with inactivated asparagine-linked glycosylation protein 3 (ALG3), and/or increased laeA expression

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Baker, Scott E.


    Provided herein are fungi, such as Aspergillus niger, having a dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase (Alg3) gene genetic inactivation, increased expression of a loss of aflR expression A (Lae), or both. In some examples, such mutants have several phenotypes, including an increased production of citric acid relative to the parental strain. Methods of using the disclosed fungi to make citric acid are also provided, as are compositions and kits including the disclosed fungi.

  14. Why asparagine needs carbohydrates to generate acrylamide. (United States)

    Yaylayan, Varoujan A; Wnorowski, Andrzej; Perez Locas, Carolina


    Structural considerations dictate that asparagine alone may be converted thermally into acrylamide through decarboxylation and deamination reactions. However, the main product of the thermal decomposition of asparagine was maleimide, mainly due to the fast intramolecular cyclization reaction that prevents the formation of acrylamide. On the other hand, asparagine, in the presence of reducing sugars, was able to generate acrylamide in addition to maleimide. Model reactions were performed using FTIR analysis, and labeling studies were carried out using pyrolysis-GC/MS as an integrated reaction, separation, and identification system to investigate the role of reducing sugars. The data have indicated that a decarboxylated Amadori product of asparagine with reducing sugars is the key precursor of acrylamide. Furthermore, the decarboxylated Amadori product can be formed under mild conditions through the intramolecular cyclization of the initial Schiff base and formation of oxazolidin-5-one. The low-energy decarboxylation of this intermediate makes it possible to bypass the cyclization reaction, which is in competition with thermally induced decarboxylation, and hence promote the formation of acrylamide in carbohydrate/asparagine mixtures. Although the decarboxylated Amadori compound can be formed under mild conditions, it requires elevated temperatures to cleave the carbon-nitrogen covalent bond and produce acrylamide.

  15. Relationship between asparagine metabolism and protein concentration in soybean seed (United States)

    The relationship between asparagine metabolism and protein concentration was investigated in soybean seed. Phenotyping of a population of recombinant inbred lines adapted to Illinois confirmed a positive correlation between free asparagine levels in developing seeds and protein concentration at matu...

  16. Variation in Asparagine Concentration in Nebraska Wheat (United States)

    The concentration of asparagine in wheat grain depends on both genetics and environmental factors, therefore study of different wheat cultivars, growing locations and crops years is needed for proper evaluation of potential risks of acrylamide formation in baked products made from Nebraska wheats. T...

  17. Knockdown of asparagine synthetase A renders Trypanosoma brucei auxotrophic to asparagine.

    Directory of Open Access Journals (Sweden)

    Inês Loureiro

    Full Text Available Asparagine synthetase (AS catalyzes the ATP-dependent conversion of aspartate into asparagine using ammonia or glutamine as nitrogen source. There are two distinct types of AS, asparagine synthetase A (AS-A, known as strictly ammonia-dependent, and asparagine synthetase B (AS-B, which can use either ammonia or glutamine. The absence of AS-A in humans, and its presence in trypanosomes, suggested AS-A as a potential drug target that deserved further investigation. We report the presence of functional AS-A in Trypanosoma cruzi (TcAS-A and Trypanosoma brucei (TbAS-A: the purified enzymes convert L-aspartate into L-asparagine in the presence of ATP, ammonia and Mg(2+. TcAS-A and TbAS-A use preferentially ammonia as a nitrogen donor, but surprisingly, can also use glutamine, a characteristic so far never described for any AS-A. TbAS-A knockdown by RNAi didn't affect in vitro growth of bloodstream forms of the parasite. However, growth was significantly impaired when TbAS-A knockdown parasites were cultured in medium with reduced levels of asparagine. As expected, mice infections with induced and non-induced T. brucei RNAi clones were similar to those from wild-type parasites. However, when induced T. brucei RNAi clones were injected in mice undergoing asparaginase treatment, which depletes blood asparagine, the mice exhibited lower parasitemia and a prolonged survival in comparison to similarly-treated mice infected with control parasites. Our results show that TbAS-A can be important under in vivo conditions when asparagine is limiting, but is unlikely to be suitable as a drug target.

  18. Effect of replacing the aspartic acid/glutamic acid residues of bullfrog sialic acid binding lectin with asparagine/glutamine and arginine on the inhibition of cell proliferation in murine leukemia P388 cells. (United States)

    Ogawa, Yuko; Iwama, Masanori; Ohgi, Kazuko; Tsuji, Tsutomu; Irie, Masachika; Itagaki, Tadashi; Kobayashi, Hiroko; Inokuchi, Norio


    The sialic acid binding lectin from bullfrog oocytes (cSBL) is known to have anti-tumor activity. In a previous report, to elucidate the relationship between the net charge and anti-tumor activity of cSBL, we examined the effect of chemical modifications of cSBL with a water-soluble carbodiimide in the presence of various nucleophiles. The results suggested that the anti-tumor activity and internalization into tumor cells increased with an increase in the net charge of cSBL. However, in the chemically modified cSBL, a modification site was observed on average in two of the carboxyl groups of cSBL. To confirm these previous results and to determine which modified carboxyl group contributes to the increase in anti-tumor activity, we prepared mutants with substitutions of Asn/Gln and Arg at three acidic amino acid residues of cSBL and studied their anti-tumor activity and internalization efficiency. The results showed the enhancing effect of charge on anti-tumor activity and internalization, and suggested that the replacement of D24 and E88 of cSBL with arginine is more effective than that of E97. The double mutant D24RE88R showed comparable anti-tumor activity to the ethylenediamine-modified cSBL reported previously. The mutant was well-characterized as a pure cSBL derivative suitable for studying the mechanism of the anti-tumor action of cSBL.

  19. Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling

    NARCIS (Netherlands)

    Knol, J.J.; Linssen, J.P.H.; Boekel, van M.A.J.S.


    A kinetic model for the formation of acrylamide in a fructose–asparagine reaction system at initial pH 5.5 is proposed, based on an approach called multiresponse kinetic modelling. The formation of acetic acid and formic acid from the degradation of fructose and its isomer glucose was included in

  20. Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. (United States)

    Rao, A M; Sree, K P; Kishor, P B


    Cefotaxime ( 50 and 100 mg/1 ), a cephalosporin antibiotic and the amino acids asparagine and proline (200 mg/l) enhanced the production of embryogenic callus, increased the frequency of plant regeneration, and delayed the loss of regeneration potential in immature embryo-derived callus cultures ofSorghum bicolor (L.) Moench. Although these compounds did not promote callus induction or growth of callus, they influenced plant regeneration considerably in 10 low responding genotypes of grain and high anthocyanin containing sweet sorghums.

  1. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)


    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  2. Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation. (United States)

    Kobayashi, Hiroko; Motoyoshi, Naomi; Itagaki, Tadashi; Suzuki, Mamoru; Inokuchi, Norio


    RNase He1 from Hericium erinaceus, a member of the RNase T1 family, has high identity with RNase Po1 from Pleurotus ostreatus with complete conservation of the catalytic sequence. However, the optimal pH for RNase He1 activity is lower than that of RNase Po1, and the enzyme shows little inhibition of human tumor cell proliferation. Hence, to investigate the potential antitumor activity of recombinant RNase He1 and to possibly enhance its optimum pH, we generated RNase He1 mutants by replacing 12 Asn/Gln residues with Asp/Glu residues; the amino acid sequence of RNase Po1 was taken as reference. These mutants were then expressed in Escherichia coli. Using site-directed mutagenesis, we successfully modified the optimal pH for enzyme activity and generated a recombinant RNase He1 that inhibited the proliferation of cells in the human leukemia cell line. These properties are extremely important in the production of anticancer biologics that are based on RNase activity.

  3. Controlling the prion propensity of glutamine/asparagine-rich proteins. (United States)

    Paul, Kacy R; Ross, Eric D


    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  4. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods. (United States)

    Žilić, Slađana; Dodig, Dejan; Basić, Zorica; Vančetović, Jelena; Titan, Primož; Đurić, Nenad; Tolimir, Nataša


    Cereals-based food is one of the major source of Maillard reaction products in the diet. Free amino acids and reducing sugars are considered to be the main precursors in the formation of these heat-induced compounds. In order to determine genetic resources with reduced potential for acrylamide formation, the content of sugars as well as free asparagine were analysed in a total of 30 cultivars of 10 varieties belonging to eight species (Triticum aestivum var. lutescens, T. aestivum var. alba, T. aestivum var. compactum, T. durum, T. spelta, T. dicoccum, Secale cereale, Hordeum vulgare var. nudum, Avena sativa var. nudum, and Zea mays var. indentata) grown at the same location in the 2015 growing season. Our results provide evidence of differences in the content of sugars and asparagine between and within species of small grain cereals and maize. The highest content of glucose, fructose and asparagine was found in cultivars of rye and hull-less oat. All maize varieties examined contained significantly higher amounts of non-reducing and total sugars (on average 1.25% and 2.36%, respectively) than small cereal grain species. Principal component analysis showed a high positive correlation between monoreducing sugars and asparagine in bread wheat, durum wheat and hull-less barley.

  5. Asparagine and glutamine ladders promote cross-species prion conversion. (United States)

    Kurt, Timothy D; Aguilar-Calvo, Patricia; Jiang, Lin; Rodriguez, José A; Alderson, Nazilla; Eisenberg, David S; Sigurdson, Christina J


    Prion transmission between species is governed in part by primary sequence similarity between the infectious prion aggregate, PrPSc, and the cellular prion protein of the host, PrPC A puzzling feature of prion formation is that certain PrPC sequences, such as that of bank vole, can be converted by a remarkably broad array of different mammalian prions, whereas others, such as rabbit, show robust resistance to cross-species prion conversion. To examine the structural determinants that confer susceptibility or resistance to prion conversion, we systematically tested over 40 PrPC variants of susceptible and resistant PrPC sequences in a prion conversion assay. Five key residue positions markedly impacted prion conversion, four of which were in steric zipper segments where side chains from amino acids tightly interdigitate in a dry interface. Strikingly, all 5 residue substitutions modulating prion conversion involved the gain or loss of an asparagine or glutamine residue. For 2 of 4 positions, N and Q residues were not interchangeable, revealing a strict requirement for either an N or Q residue. Bank voles have a high number of N and Q residues and a high N:Q ratio. These findings suggest that a high number of N and Q residues at specific positions may stabilize β-sheets and lower the energy barrier for crossspecies prion transmission, potentially due to hydrogen bond networks from side chain amides forming extended N/Q ladders. These data also suggest that multiple PrPC segments containing N/Q residues may act in concert along a replicative interface to promote prion conversion. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  6. A Critical Role of Glutamine and Asparagine γ-Nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus

    Directory of Open Access Journals (Sweden)

    Ying Zhu


    Full Text Available While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2, glutamate dehydrogenase 1 (GLUD1, and glutamic-oxaloacetic transaminase 2 (GOT2, to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD, phosphoribosyl pyrophosphate amidotransferase (PPAT, and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively, suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.

  7. London force correction disparity in the modeling of crystalline asparagine and glutamine. (United States)

    Juliano, Thomas R; Korter, Timothy M


    Solid-state density functional theory is a powerful computational method used to provide insight into the low-frequency vibrations of crystalline solids. A known limitation of this method is its general underestimation of weak intermolecular forces. Semiempirical London force corrections have been developed to augment density functional theory calculations with the ultimate goal being corrections that are applicable to a range of compounds. In this study, two structurally similar amino acids, asparagine and glutamine, were chosen to gauge the proximity of the widely used DFT-D2 approach to this goal. Despite their chemical similarities, it was determined that the two molecular solids required considerably different semiempirical correction magnitudes, with asparagine requiring a 42% greater London force correction factor when compared to glutamine. To validate these findings, terahertz spectroscopy was used to investigate the intermolecular vibrations of both amino acids in the low-frequency, sub-100 cm(-1) region. The excellent correlation between the experimental and the theoretical spectra demonstrates that the noncovalent interactions are well represented by the applied model despite the correction disparity. These results have highlighted a practical shortcoming of a common semiempirical method for the modeling of weak forces and emphasizes that care must be exercised for effective use of such corrections in crystalline solids.

  8. Asparagine slows down the breakdown of storage lipid and degradation of autophagic bodies in sugar-starved embryo axes of germinating lupin seeds. (United States)

    Borek, Sławomir; Paluch-Lubawa, Ewelina; Pukacka, Stanisława; Pietrowska-Borek, Małgorzata; Ratajczak, Lech


    The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated. The sugar-starved isolated embryo axes contained more total lipid than axes fed with sucrose, and the content of this storage compound was even higher in sugar-starved isolated embryo axes fed with asparagine. Ultrastructural observations showed that asparagine significantly slowed down decomposition of autophagic bodies, and this allowed detailed analysis of their content. We found peroxisomes inside autophagic bodies in cells of sugar-starved Andean lupin embryo axes fed with asparagine, which led us to conclude that peroxisomes may be degraded during autophagy in sugar-starved isolated lupin embryo axes. One reason for the slower degradation of autophagic bodies was the markedly lower lipolytic activity in axes fed with asparagine. Copyright © 2016 The Author(s). Published by Elsevier GmbH.. All rights reserved.

  9. A novel organogelator incorporating tert-butyl esters of asparagines. (United States)

    Lozano, Virginia; Hernández, Rebeca; Mijangos, Carmen; Pérez-Pérez, María-Jesús


    A novel organogelator based on tert-butyl esters of asparagines has been synthesized and its organogelation abilities have been investigated. The rheological characterization has confirmed the gelation behavior, and its thixotropic properties. Furthermore, the morphological studies performed reveal a spherical structure. Thus, this organogelator can be considered as a new example of the emerging, but still reduced, list of gels with a non-fibrillar assembly.

  10. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells. (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao


    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  11. Protein asparagine deamidation prediction based on structures with machine learning methods.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.

  12. Cerebrospinal fluid asparagine depletion during pegylated asparaginase therapy in children with acute lymphoblastic leukaemia

    DEFF Research Database (Denmark)

    Henriksen, Louise Tram; Nersting, Jacob; Raja, Raheel A


    . The objective of this study was to describe CSF asparagine depletion during 30 weeks of pegylated asparaginase therapy, 1000 iu/m(2) i.m. every second week, and to correlate CSF asparagine concentration with serum L-asparaginase enzyme activity. Danish children (1-17 years) with ALL, treated according...

  13. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.


    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  14. Model studies on acrylamide generation from glucose/asparagine in aqueous glycerol

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik Lauritz; Granby, Kit


    Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33......Acrylamide formation from asparagine and glucose in different ratios in neutral glycerol/water mixtures was found to increase with decreasing water activity (0.33...

  15. Acrylamide-asparagine relationship in baked/toasted wheat and rye breads. (United States)

    Granby, Kit; Nielsen, Nikoline Juul; Hedegaard, Rikke V; Christensen, Tue; Kann, Mette; Skibsted, Leif H


    Acrylamide in baked and toasted wheat and rye bread was studied in relation to levels of asparagine in flour, dough, bread and toasts. Asparagine was consumed during bread preparation resulting in reduced acrylamide content in the products. In wheat bread, 12% of the asparagine initially present in the flour (0.14 g kg(-1)) remained after yeast fermentation and baking; for rye bread, 82% of asparagine remained after sourdough fermentation and baking. Asparagine present in untoasted wheat bread had totally reacted after hard toasting. Toasted wheat and rye bread slices contained 11-161 and 27-205 microg kg(-1) acrylamide, respectively, compared to untoasted wheat and rye bread with toasted bread.

  16. Application of a portable infrared instrument for simultaneous analysis of sugars, asparagine and glutamine levels in raw potato tubers. (United States)

    Ayvaz, Huseyin; Santos, Alejandra M; Moyseenko, Jennifer; Kleinhenz, Matthew; Rodriguez-Saona, Luis E


    The level of reducing sugars and asparagine in raw potatoes is critical for potato breeders and the food industry for production of commonly consumed food products including potato chips and French fries. Our objective was to evaluate the use of a portable infrared instrument for the rapid quantitation of major sugars and amino acids in raw potato tubers using single-bounce attenuated total reflectance (ATR) and dial path accessories as an alternative to time-consuming chromatographic techniques. Samples representing a total of 84 experimental and commercial potato varieties harvested in two consecutive growing seasons (2012 and 2013) were used in this study. Samples had wide ranges of sugars determined by HPLC-RID (non-detectable (ND)-7.7 mg glucose, ND-9.4 mg fructose and 0.4-5.4 mg sucrose per 1 g fresh weight), and asparagine and glutamine levels determined by GC-FID (0.7-2.9 mg and 0.3-1.7 mg per 1 g fresh weight). Infrared spectra collected from 64 varieties were used to create partial least squares regression (PLSR) calibration models that predicted the sugar and amino acid levels in an independent set of 16 validation potato varieties. Excellent linear correlations between infrared predicted and reference values were obtained. PLSR models had a high correlation coefficient of prediction (rPred >0.95) and residual predictive deviation (RPD) values ranging between 3.1 and 5.5. Overall, the results indicated that the models could be used to simultaneously predict sugars, free asparagine and glutamine levels in the raw tubers, significantly benefiting potato breeding, certain aspects of crop management, crop production and research.

  17. Exploring the use of NIR reflectance spectroscopy in prediction of free L-Asparagine in solanaceae plants. (United States)

    Guorong, Du; Yanjun, Ma; Li, Ma; Jun, Zhou; Yue, Huang


    Much researches of Near-infrared spectroscopy modeling methods that are utilized to analyze the trace amount components, especially indirect modeling on complex system, have gained widely attraction in recent years. Amino acids in plants are essential nutrients of maintaining growth and ensuring health. As the important participants in various biochemical reactions in plants, nondestructive detection of free amino acids will provide meaningful observation on physiological changing in different steps of plant growth. In this research, two hundred and twenty-two samples were measured to obtain the concentration of free L-Asparagine in plant by amino acid analyzer. NIR spectra were also collected for conducting chemometrics modeling. Different spectral pretreatments and variables selecting methods were employed to optimize the NIR models. Independent validation set as well as unknown samples from different years were successfully predicted by using the slope intercept correction. Results in this study demonstrated that fast analysis of free L-Asparagine can be established by NIR modeling approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Identification and Quantitation of Asparagine and Citrulline Using High-Performance Liquid Chromatography (HPLC

    Directory of Open Access Journals (Sweden)

    Cheng Bai


    Full Text Available High-performance liquid chromatography (HPLC analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates. Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml–1/μMol ml–1], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh. K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.

  19. Asparagine deamidation dependence on buffer type, pH, and temperature. (United States)

    Pace, Amanda L; Wong, Rita L; Zhang, Yonghua Taylor; Kao, Yung-Hsiang; Wang, Y John


    The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments. From this, deamidation rates of each fragment can be calculated. To generate kinetic parameters useful in setting shelf life, buffers prepared at room temperature and then placed at the appropriate stability temperatures. Solution pH was not adjusted to the same at different temperatures. Deamidation rate at 40°C was faster in acidic buffers than in basic buffers. However, this trend is reversed at 5°C, attributed to the change in hydroxide ion concentration influenced by buffer and temperature. The apparent activation energy was higher for rates generated in an acidic buffer than in a basic buffer. The rate-pH profile for mAb1 can be deconvoluted to Fc and Fab. The Fc deamidation showed a V-shaped profile: deamidation of PENNY peptide is responsible for the rate at high-pH, whereas deamidation of a new site, Asn323, may be responsible for the rate at low-pH. The profile for Fab is a straight line without curvature. Copyright © 2013 Wiley Periodicals, Inc.

  20. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. (United States)

    Wollmuth, L P; Kuner, T; Sakmann, B


    1. The voltage-dependent block of N-methyl-D-aspartate (NMDA) receptor channels by extracellular Mg2+ is a critical determinant of its contribution to CNS synaptic physiology. The function of the narrow constriction of the channel in determining the block was investigated by analysing the effects of a set different amino acid substitutions at exposed residues positioned at or near this region. NMDA receptor channels, composed of wild-type and mutant NR1- and NR2A-subunits, were expressed in Xenopus oocytes or human embryonic kidney (HEK) 293 cells. 2. In wild-type channels, the voltage dependence (delta) of the block Mg2+ was concentration dependent with values of delta of integral of 0.82 in 0.07 mM and higher concentrations. Under bionic conditions with high extracellular Mg2+ and K+ as the reference ion, Mg2+ weakly permeated the channel. Over intermediate potentials (approximately -60 to -10 mV), this weak permeability had no apparent effect on the block but at potentials negative to approximately -60mV, it attenuated the extent and voltage dependence of the block. 3. Substitutions of glycine, serine, glutamine or aspartate for the N-site asparagine in the NR1-subunit enhanced the extent of block over intermediate potentials but left the voltage dependence of the block unchanged indicating that structural determinants of the block remained. These same substitutions either attenuated or left unchanged the apparent Mg2+ permeability. 4. In channels containing substitutions of glycine, serine or glutamine for the N-site asparagine in the NR2A-subunit, the block Mg2+ was reduced at negative potentials. Over intermediate potentials, the block was not strongly attenuated except for the glutamine substitution which reduced the voltage dependence of the block to integral of 0.57 in 0.7 mM Mg2+. 5. Equivalent substitutions for the N + 1 site asparagine in the NR2A-subunit strongly attenuated the block over the entire voltage range. In 0.7 mM Mg2+, the voltage dependence

  1. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation

    National Research Council Canada - National Science Library

    Maschalidi, Sophia; Hässler, Signe; Blanc, Fany; Sepulveda, Fernando E; Tohme, Mira; Chignard, Michel; van Endert, Peter; Si-Tahar, Mustapha; Descamps, Delphyne; Manoury, Bénédicte


    .... Here we report that asparagine endopeptidase (AEP) deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8...

  2. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells. (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen


    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  3. Ultrasonic accelerates asparagine-glucose non-enzymatic browning reaction without acrylamide formation. (United States)

    Gao, Zhiqiang; Zheng, Junfeng; Chen, Lian


    Ultrasonic accelerated the asparagine-glucose non-enzymatic browning reaction with significant decrease of glucose and asparagine concentrations, and marked increase of intermediate products (UV-absorbance value at 294nm, Abs294), melanoidins (UV-absorbance value at 420nm, Abs420) and in vitro antioxidant activity (DPPH free radical scavenging activity). As the ultrasonic intensity was 17.83W/cm(2), the asparagine-glucose solution's Abs294, Abs420 and antioxidant activity increased from 0 to 1.26, 0.88 and 21.56%, respectively, and the glucose and asparagine concentrations of the asparagine-glucose solution reduced 58.97 and 12.57%, respectively. The high performance liquid chromatography (HPLC)-Diode Array Detector (DAD) analyses showed that no acrylamide was detected after 50-min ultrasonic reaction. This study suggested that ultrasonic at higher intensity was a potential method to accelerate the non-enzymatic browning reaction in the asparagine-glucose solution without acrylamide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A facile synthesis of α-N-ribosyl-asparagine and α-N-ribosyl-glutamine building blocks. (United States)

    Speciale, Gaetano; Bernardi, Anna; Nisic, Filippo


    Adenosine diphosphate ribosylation (ADP-ribosylation) is a widely occurring post-translational modification of proteins at nucleophilic side chain of amino acid residues. Elucidation of ADP-ribosylation events would benefit greatly from the availability of well-defined ADP-ribosylated peptides and analogues thereof. In this paper we present a novel approach to the chemical synthesis of ribosylated amino acid building blocks using traceless Staudinger ligation. We describe an efficient and stereoselective synthesis of α-N-ribosyl-asparagine (α-N-ribosyl-Asn) and α-N-ribosyl-glutamine (α-N-ribosyl-Gln) building blocks starting from 5-tert-butyldiphenylsilyl-β-D-ribofuranosyl azide. The N-glycosyl aminoacids are produced in good yields as pure α-anomers, suitably protected for peptide synthesis.

  5. A Facile Synthesis of α-N-Ribosyl-Asparagine and α-N-Ribosyl-Glutamine Building Blocks

    Directory of Open Access Journals (Sweden)

    Gaetano Speciale


    Full Text Available Adenosine diphosphate ribosylation (ADP-ribosylation is a widely occurring post-translational modification of proteins at nucleophilic side chain of amino acid residues. Elucidation of ADP-ribosylation events would benefit greatly from the availability of well-defined ADP-ribosylated peptides and analogues thereof. In this paper we present a novel approach to the chemical synthesis of ribosylated amino acid building blocks using traceless Staudinger ligation. We describe an efficient and stereoselective synthesis of α-N-ribosyl-asparagine (α-N-ribosyl-Asn and α-N-ribosyl-glutamine (α-N-ribosyl-Gln building blocks starting from 5-tert-butyldiphenylsilyl-β-d-ribofuranosyl azide. The N-glycosyl aminoacids are produced in good yields as pure α-anomers, suitably protected for peptide synthesis.

  6. Expression of asparagine synthetase genes in sunflower (Helianthus annuus) under various environmental stresses. (United States)

    Herrera-Rodríguez, María Begoña; Pérez-Vicente, Rafael; Maldonado, José-María


    In sunflower, asparagine synthetase (AS; EC is encoded by a small family of three genes (HAS1, HAS1.1 and HAS2) that are differentially regulated by light, carbon and nitrogen availability. In this study, the response of each gene to various stress conditions was examined by Northern analysis with gene-specific probes in leaves and roots. The expression of HAS1 and HAS1.1 genes was induced by osmotic stress (300 mM mannitol), salt stress (150 mM NaCl), and heavy-metal stress (20 microM CuSO(4)), more in roots than in leaves. The expression of HAS2 was not significantly altered by stress treatments. The positive response of HAS1 and HAS1.1 genes to osmotic and salt stresses occurred in the light, in contrast to that previously found in unstressed plants. Measurements of sucrose and total free amino acid contents in leaves and roots indicate that the expression of root HAS1 and HAS1.1 genes in stressed plants is not under metabolic control by the intracellular C/N ratio, suggesting the involvement of some specific stress factor(s). Growth of plants at 40 degrees C for 12h negatively affected the expression of HAS1 and HAS1.1 but not that of HAS2.

  7. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation.

    Directory of Open Access Journals (Sweden)

    Sophia Maschalidi

    Full Text Available Intracellular Toll-like receptors (TLRs expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV, a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+ T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases.

  8. Change in amino acids content during germination and seedling ...

    African Journals Online (AJOL)

    presence of histidine (His) and phenylalanine (Phe), but also to amide amino acids asparagine (Asn), glutamine (Gln) and Arg contents. In Cola sp., free amino acids varied significantly during these two processes indicating their high utilization.

  9. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail:; Li, Cheng Che


    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  10. Mitigation of the processing contaminant acrylamide in bread by reducing asparagine in the bread dough

    DEFF Research Database (Denmark)

    Katsaiti, Tatiana; Granby, Kit


    of this study is to mitigate the AAM formation in baked buns made with 1:1 sifted wheat/wholegrain flour through the depletion of asparagine (ASN) in the bread dough. Using a full-factorial design, the effect of four factors (yeast amount, fermentation time, fermentation temperature and yeast types) was tested...

  11. Protection of the amide side-chain of asparagine with the 1-tetralinyl ...

    African Journals Online (AJOL)


    made more efficient with the development of solid-phase peptide synthetic methods. (SPPS).3,4. Side-chain amide protection of asparagine (Asn) or glutamine (Gln) has been considered optional.5 These amide side-chains are liable to undergo dehydration during the coupling steps.6–8 This side reaction does not occur ...

  12. Energetics of the molecular interactions of L-cysteine, L-serine, and L-asparagine in aqueous propylene glycol solutions at 298.15 K (United States)

    Mezhevoi, I. N.; Badelin, V. G.


    Integral enthalpies of dissolution Δsol H m of L-cysteine, L-serine, and L-asparagine in aqueous solutions of 1,3-propylene glycol at organic solvent concentrations of up to 0.26 mole fraction are measured via the thermochemistry of dissolution. Standard enthalpies of dissolution (Δsol H ○) and transfer (Δtr H ○) of amino acids from water to a mixed solvent are calculated. It is found that the calculated enthalpy coefficients of pair interactions of the amino acids with polyhydric alcohol molecules have positive values. The effect the arrangement of the hydroxyl group in the structure of polyhydric alcohols has on the enthalpy of interaction of amino acids in aqueous solutions is revealed. The effect of different types of interactions in solutions and the structural features of biomolecules and cosolvents on the enthalpy of dissolution of amino acids is analyzed.

  13. Identification of specific Hep G2 cell binding regions in Plasmodium falciparum sporozoite-threonine-asparagine-rich protein (STARP). (United States)

    López, Ramsés; Garcia, Javier; Puentes, Alvaro; Curtidor, Hernando; Ocampo, Marisol; Vera, Ricardo; Rodriguez, Luis Eduardo; Suarez, Jorge; Urquiza, Mauricio; Rodríguez, Ana Liliana; Reyes, Claudia Alexandra; Granados, Carmen Giovana; Patarroyo, Manuel E


    It has been demonstrated that Plasmodium falciparum sporozoite threonine-asparagine-rich protein (PfSTARP) is located on the sporozoite surface. This protein's non-overlapping consecutive peptides were synthesised and tested in Hep G2 cell binding assays. Twelve high activity binding peptides (HABPs) were identified in the resulting 31 peptides. Three were found in 5' non-repeat region (amino acids 41-80). Peptides 20546 (41VIKHNRFLSEYQSNFLGGGY(60)), 20547 (61SAALKLVNSKKSGTNVNVTKY(80)) and 20548 (81NSENTNTNNNIPESSSTYTN(100)) were located in the conserved amino terminal region, as well as peptide 20548 which shared the sequence with the M region (amino acids 85-134). Six HABPs were located in region 10 (Rp10) (STDNNNTKTI). HABPs 20569 (501TSDDELNKDSCDYSEEKENI(520)) and 20570 (521KSMINAYLDKLDLETVRKIH(40)) were found in 3' non-repeat region. All these HABPs showed saturable binding and presented dissociation constants between 18 and 219 nM. The number of binding sites per Hep G2 cell ranged from 45000 to 370000. High binding peptides' critical amino acids involved in Hep G2 cell binding were determined by competition binding assays. SDS-PAGE results showed that both peptides 20570 and 20547 had at least two different sets of 44 and 38 kDa HABP receptors on Hep G2 cells. Specific modification of peptide 20546 and 20570 critical binding residues rendered these peptides immunogenic in Aotus monkeys, inducing high antibody titres against sporozoites, as assessed by IFA.

  14. Kinetics of formation of acrylamide and Schiff base intermediates from asparagine and glucose

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik; Skibsted, Leif H.


    From the concentration of glucose and asparagine as reactants and of acrylamide as product each determined by LC-MS during reaction in an acetonitrile/water (68:32) model system at pH 7.6 (0.04 M phosphate buffer) and from the relative concentration of the Schiff base intermediate, the decarboxyl......From the concentration of glucose and asparagine as reactants and of acrylamide as product each determined by LC-MS during reaction in an acetonitrile/water (68:32) model system at pH 7.6 (0.04 M phosphate buffer) and from the relative concentration of the Schiff base intermediate...... of acrylamide from the decarboxylated Schiff base, rather than including dissociation of ammonia from aminopropionamide. (c) 2007 Elsevier Ltd. All rights reserved....

  15. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. (United States)

    Nguyen, Ha T; van der Fels-Klerx, H J Ine; van Boekel, M A J S


    This study investigated acrylamide and 5-hydroxymethylfurfural (HMF) formation during biscuit baking. Four types of wheat flour with different molar ratios of total fructose and glucose to asparagine were investigated. Nevertheless, the molar ratio in all four biscuit doughs exceeded one after proofing due to enzyme action. Data obtained after baking were used to develop a mechanistic model, based on the asparagine-related pathway, for acrylamide and HMF formation in the four baked biscuit types. Asparagine reacted with fructose to form a Schiff base before decarboxylation to produce acrylamide without Amadori rearrangement product and sugar fragmentation. Fructose contributed considerably to acrylamide formation and to HMF formation via caramelization in all four biscuit types. No clear correlation was found between acrylamide and HMF in baked biscuits, nor between asparagine and the sum of glucose and fructose concentrations in the wheat flour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evidence for sugar signalling in the regulation of asparagine synthetase gene expressed in Phaseolus vulgaris roots and nodules. (United States)

    Silvente, Sonia; Reddy, Pallavolu M; Khandual, Sanghamitra; Blanco, Lourdes; Alvarado-Affantranger, Xochitl; Sanchez, Federico; Lara-Flores, Miguel


    A cDNA clone, designated as PvNAS2, encoding asparagine amidotransferase (asparagine synthetase) was isolated from nodule tissue of common bean (Phaseolus vulgaris cv. Negro Jamapa). Southern blot analysis indicated that asparagine synthetase in bean is encoded by a small gene family. Northern analysis of RNAs from various plant organs demonstrated that PvNAS2 is highly expressed in roots, followed by nodules in which it is mainly induced during the early days of nitrogen fixation. Investigations with the PvNAS2 promoter gusA fusion revealed that the expression of PvNAS2 in roots is confined to vascular bundles and meristematic tissues, while in root nodules its expression is solely localized to vascular traces and outer cortical cells encompassing the central nitrogen-fixing zone, but never detected in either infected or non-infected cells located in the central region of the nodule. PvNAS2 is down-regulated when carbon availability is reduced in nodules, and the addition of sugars to the plants, mainly glucose, boosted its induction, leading to the increased asparagine production. In contrast to PvNAS2 expression and the concomitant asparagine synthesis, glucose supplement resulted in the reduction of ureide content in nodules. Studies with glucose analogues as well as hexokinase inhibitors suggested a role for hexokinase in the sugar-sensing mechanism that regulates PvNAS2 expression in roots. In light of the above results, it is proposed that, in bean, low carbon availability in nodules prompts the down-regulation of the asparagine synthetase enzyme and concomitantly asparagine production. Thereby a favourable environment is created for the efficient transfer of the amido group of glutamine for the synthesis of purines, and then ureide generation.

  17. Elevated levels of asparagine synthetase activity in physiologically and genetically derepressed Chinese hamster ovary cells are due to increased rates of enzyme synthesis. (United States)

    Gantt, J S; Arfin, S M


    The activity of asparagine synthetase in Chinese hamster ovary (CHO) cells is increased in response to asparagine deprivation or decreased aminoacylation of several tRNAs (Andrulis, I. L., Hatfield, G. W., and Arfin, S. M. (1979) J. Biol. Chem. 254, 10629-10633). CHO cells resistant to beta-aspartylhydroxamate have up to 5-fold higher levels of asparagine synthetase than the parental line (Gantt, J. S., Chiang, C. S., Hatfield, G. W., and Arfin, S. M. (1980) J. Biol. Chem. 255, 4808-4813). We have investigated the basis for these differences in enzyme activity by combined radiochemical and immunological techniques. The asparagine synthetase of beef pancreas was purified to apparent homogeneity. Antibodies raised against the purified protein cross-react with the asparagine synthetase of CHO cells. Immunotitrations show that the amount of enzyme protein in physiologically or genetically derepressed CHO strains is proportional to the level of enzyme activity. Measurement of the relative rates of asparagine synthetase synthesis by pulse-labeling experiments demonstrate that the difference in the number of asparagine synthetase molecules is closely correlated with the rate of enzyme synthesis. In contrast, the half-life of asparagine synthetase in wild type cells and in physiologically or genetically derepressed cells is very similar. It appears that the increased levels of asparagine synthetase can be attributed solely to an increased rate of enzyme synthesis.

  18. The evolution from asparagine or threonine to cysteine in position 146 contributes to generation of a more efficient and stable form of muscle creatine kinase in higher vertebrates. (United States)

    Zhao, Tong-Jin; Liu, Yang; Chen, Zhao; Yan, Yong-Bin; Zhou, Hai-Meng


    Creatine kinase, a key enzyme in vertebrate excitable tissues that require large energy fluxes, catalyzes the reversible transfer of phosphate between adenosine triphosphate and creatine. Sequence alignment indicated that the 146th amino acid is cysteine in the muscle creatine kinase of higher vertebrates including Amphibia, Reptilia, Aves and Mammalia. In fishes, it is cysteine in Agnatha and Chondrichthyes, and asparagine or threonine in Osteichthyes, which is the ancestor of Amphibia, Reptilia, Aves and Mammalia. To explore the structural and functional role of this special residue, a series of site-directed mutants of rabbit muscle creatine kinase were constructed, including C146S, C146N, C146T, C146G, C146A, C146D and C146R. A detailed comparison was made between wild-type creatine kinase and the mutants in catalytic activity, physico-chemical properties and structural stability against thermal inactivation and guanidine hydrochloride denaturation. It was found that except for C146S, the mutants had relatively lower catalytic activity and structural stability than Wt-CK. Wt-CK and C146S were the most stable ones, followed by C146N and C146T, and then C146G and C146A, and C146D and C146R were the least stable mutants. These results suggested that the 146th residue plays a crucial role in maintaining the structural stability of creatine kinase, and that the evolution in this amino acid from asparagine or threonine to cysteine contributes to the generation of a more efficient and more stable form of creatine kinase in higher vertebrates.

  19. A sporozoite asparagine-rich protein controls initiation of Plasmodium liver stage development.

    Directory of Open Access Journals (Sweden)

    Olivier Silvie


    Full Text Available Plasmodium sporozoites invade host hepatocytes and develop as liver stages (LS before the onset of erythrocytic infection and malaria symptoms. LS are clinically silent, and constitute ideal targets for causal prophylactic drugs and vaccines. The molecular and cellular mechanisms underlying LS development remain poorly characterized. Here we describe a conserved Plasmodium asparagine-rich protein that is specifically expressed in sporozoites and liver stages. Gene disruption in Plasmodium berghei results in complete loss of sporozoite infectivity to rodents, due to early developmental arrest after invasion of hepatocytes. Mutant sporozoites productively invade host cells by forming a parasitophorous vacuole (PV, but subsequent remodelling of the membrane of the PV (PVM is impaired as a consequence of dramatic down-regulation of genes encoding PVM-resident proteins. These early arrested mutants confer only limited protective immunity in immunized animals. Our results demonstrate the role of an asparagine-rich protein as a key regulator of Plasmodium sporozoite gene expression and LS development, and suggest a requirement of partial LS maturation to induce optimal protective immune responses against malaria pre-erythrocytic stages. These findings have important implications for the development of genetically attenuated parasites as a vaccine approach.

  20. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert, E-mail: [University of Regensburg, Institute of Biophysics and Physical Biochemistry and Centre of Magnetic Resonance in Chemistry and Biomedicine (Germany)


    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H{sup δ21} and H{sup ε21}, respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  1. Gd3+-Asparagine-Anionic Linear Globular Dendrimer Second-Generation G2 Complexes: Novel Nanobiohybrid Theranostics

    Directory of Open Access Journals (Sweden)

    Nasim Hashempour Alamdari


    Full Text Available Designing a unique theranostic biocompatible, biodegradable, and cost-effective agent which is easy to be synthesized as a biohybrid material was the aim of this study. In this matter, asparagine attached to anionic linear globular dendrimer G2 (as a biocompatible, biodegradable, and cost-effective agent which is negatively charged nanosized and water soluble polymer that outweighs other traditionally used dendrimers and finally contrast agent (Gd3+ was loaded (which made complexes in synthesized asparagine-dendrimer. Observations revealed that, in addition to successful colon cancer and brain targeting, Gd3+-dendrimer-asparagine, the proposed theranostic agent, could increase T1 MR relaxation times, decrease T2 MR relaxation times significantly, and improve contrast of image as well as illustrating good cellular uptake based on florescent microscopy/flow cytometry and ICP-mass data. In addition to that, it increased tumor growth inhibition percentage (TGI% significantly compared to FDA approved contrast agent, Magnevist. Totally, Gd3+-anionic linear globular dendrimer G2-asparagine could be introduced to the cancer imaging/therapy (theranostics protocols after in vivo MR and fluorescent analysis and passing clinical trials. Hence, this nanotheranostic agent would be a promising candidate for brain drug delivery and imaging in the future.

  2. Variation of protein MWD parameters and their associations with free asparagine concentration and quality characteristics in hard red spring wheat (United States)

    This research was performed to determine variation of protein molecular weight distribution (MWD) parameters using size exclusion HPLC and their associations with quality characteristics and free asparagine concentration (FAC) using eleven hard red spring (HRS) wheat genotypes grown at three locatio...

  3. Gd3+-Asparagine-Anionic Linear Globular Dendrimer Second-Generation G2 Complexes: Novel Nanobiohybrid Theranostics (United States)

    Hashempour Alamdari, Nasim; Alaei-Beirami, Mahmood; Hejazinia, Hadi; Rasouli, Rahimeh; Saffari, Mostafa; Sadat Ebrahimi, Seyed Esmaeil; Assadi, Artin


    Designing a unique theranostic biocompatible, biodegradable, and cost-effective agent which is easy to be synthesized as a biohybrid material was the aim of this study. In this matter, asparagine attached to anionic linear globular dendrimer G2 (as a biocompatible, biodegradable, and cost-effective agent which is negatively charged nanosized and water soluble polymer that outweighs other traditionally used dendrimers) and finally contrast agent (Gd3+) was loaded (which made complexes) in synthesized asparagine-dendrimer. Observations revealed that, in addition to successful colon cancer and brain targeting, Gd3+-dendrimer-asparagine, the proposed theranostic agent, could increase T1 MR relaxation times, decrease T2 MR relaxation times significantly, and improve contrast of image as well as illustrating good cellular uptake based on florescent microscopy/flow cytometry and ICP-mass data. In addition to that, it increased tumor growth inhibition percentage (TGI%) significantly compared to FDA approved contrast agent, Magnevist. Totally, Gd3+-anionic linear globular dendrimer G2-asparagine could be introduced to the cancer imaging/therapy (theranostics) protocols after in vivo MR and fluorescent analysis and passing clinical trials. Hence, this nanotheranostic agent would be a promising candidate for brain drug delivery and imaging in the future. PMID:29097918

  4. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine.

    Directory of Open Access Journals (Sweden)

    Mohamed M Ali


    Full Text Available Salmonella enterica serovar Typhimurium (Salmonella is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn, which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10-/- mice. The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1- SPI2- or ttrA mutants, respectively. The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.

  5. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. (United States)

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Dodson, Andrew; Briddon, Adrian; Mottram, Donald S; Halford, Nigel G


    Acrylamide is produced from free asparagine and reducing sugars during high-temperature cooking and food processing, and potato products are major contributors to dietary acrylamide intake. The present study analysed twenty varieties of potatoes grown at two sites (Doncaster and Woburn) in the United Kingdom to assess the effect of location of cultivation on acrylamide-forming potential. Analysis of variance revealed a full site by variety nested within type (French fry, boiling and crisping) by storage interaction for acrylamide (pacrylamide identified a value of 2.257±0.149 as the tipping point in the ratio below which free asparagine concentration could affect acrylamide formation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A liquid chromatography-tandem mass spectrometry method for simultaneous analysis of acrylamide and the precursors, asparagine and reducing sugars in bread

    DEFF Research Database (Denmark)

    Nielsen, N.J.; Granby, Kit; Hedegaard, Rikke Susanne Vingborg


    A LC-MS-MS method for simultaneous determination of acrylamide, asparagine, fructose, glucose and sucrose in bread was developed. The method is based on aqueous extraction by blending. After centrifugation the samples were cleaned up by solid phase extraction on C18 cartridges conditioned with 2 m......L of methanol and 2 x 2 mL of water and subsequently flushed with sample solution before the actual analytical sample fractions were collected. Analytes were separated on a Hypercarb column (100 mm x 2.1 mm, 5 mu m) and detected by tandem MS with electrospray ionisation. Acrylamide and saccharides were ionised...... in positive mode. Asparagine in wheat bread was detectable at lower levels using negative ion mode. To compensate for matrix induced signal suppression D-3-acrylamide and N-15(2)-asparagine were used as internal standards for acrylamide and asparagine, respectively. Recoveries were in the range 93...

  7. The effect of Cu{sup II} ions in L-asparagine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ricardo C., E-mail:; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F., E-mail:


    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm{sup 3};the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g{sub 1}=2.044, g{sub 2}=2.105, g{sub 3}=2.383and A{sub 1}≈0, A{sub 2}=35, A{sub 3}=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two {sup 14}N atoms. Correlating the EPR and optical absorption results, the crystal field and the Cu{sup II} orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x{sup 2}-y{sup 2}).

  8. Influence of Nitrogen Source, Thiamine, and Light on Biosynthesis of Abscisic Acid by Cercospora rosicola Passerini


    Norman, Shirley M.; Maier, Vincent P.; Echols, Linda C.


    Abscisic acid production by Cercospora rosicola Passerini in liquid shake culture was measured with different amino acids in combination and singly as nitrogen sources and with different amounts of thiamine in the media. Production of abscisic acid was highest with aspartic acid-glutamic acid and aspartic acid-glutamic acid-serine mixtures as nitrogen sources. Single amino acids that supported the highest production of abscisic acid were asparagine and monosodium glutamate. Thiamine was impor...

  9. Antioxidant activity of the melanoidin fractions formed from DGlucose and D-Fructose with L-Asparagine in the Maillard reaction

    Directory of Open Access Journals (Sweden)

    A.P Echavarría


    Full Text Available Melanoidins formed at the last stage of the Maillard reaction have been shown to possess certain functional properties, such as antioxidant activity. In order to gain more insight into these functional properties, soluble model systems melanoidins from L‑Asparagine with D‑glucose or D‑fructose fractionating by ultrafiltration were analyzed. The fractionating/concentration sequence of the melanoidin fraction (1-300 kDa enabled five fractions to be produced.Additionally, the absorption of melanoidins was measured at different wavelengths (280, 325, 405 and browning at 420 nm. The fractionation effect of melanoidin systems on the color intensity, UV-absorbance scan wavelengths (nm, CIE, L*, a*, b* parameters and antioxidant activity were measured. For this purpose, antioxidant activity was evaluated through the free radical scavenging activity, including 1,1-diphenyl-2-picryl-hydrazil (DPPH and 2,20-azinobis (3-ethylbenothiazoline-6-sulfonic acid, diammonium salt (ABTS. The results showed that the absorption of the melanoidins formed from Glucose/L-Asn was higher than for those derived from Fructose/L-Asn. On the other hand, their antioxidant power was lower than that for melanoidins formed from Fructose/L-Asn systems.

  10. Antioxidant activity of the melanoidin fractions formed from D-Glucose and D-Fructose with L-Asparagine in the Maillard reaction

    Directory of Open Access Journals (Sweden)

    A.P Echavarría


    Full Text Available Melanoidins formed at the last stage of the Maillard reaction have been shown to possess certain functional properties, such as antioxidant activity. In order to gain more insight into these functional properties, soluble model systems melanoidins from L - Asparagine with D - glucose or D - fructose fractionating by ultrafiltration were analyzed. The fractionating/concentration sequence of the melanoidin fraction (1 - 300 kDa enabled five fractions to be produced. Additionally, the absorption of melanoidins was measured at different wavelengths (280, 325, 405 and browning at 420 nm. The fractionati on effect of melanoidin systems on the color intensity, UV - absorbance scan wavelengths (nm, CIE, L*, a*, b* parameters and antioxidant activity were measured. For this purpose, antioxidant activity was evaluated through the free radical scavenging activit y, including 1,1 - diphenyl - 2 - picryl - hydrazil (DPPH and 2,20 - azinobis (3 - ethylbenothiazoline - 6 - sulfonic acid, diammonium salt (ABTS. The results showed that the absorption of the melanoidins formed from Glucose/L - Asn was higher than for those derived from Fructose/L - Asn. On the other hand, their antioxidant power was lower than that for melanoidins formed from Fructose/L - Asn systems.

  11. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products. (United States)

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming


    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, G.; Gottfried, C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre-RS (Brazil); Silva, A. M. [Universidade Estadual do Piauí, 64260-000 Piripiri-Pi (Brazil); Caetano, E. W. S., E-mail: [Instituto de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza-CE (Brazil); Sales, F. A. M.; Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza-CE (Brazil)


    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  13. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations. (United States)

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N


    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  14. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. (United States)

    Sung, Wen-Chieh; Chang, Yu-Wei; Chou, Yu-Hao; Hsiao, Hsin-I


    This research aims to clarify the interactions that occur in a food model system consisting of glucose, asparagine and chitosans. Low molecular weight chitosan exerted a potent inhibitory effect (46.8%) on acrylamide and Maillard reaction products (MRPs) (>52.6%), respectively. Compared to a previous study conducted using the fructose system, the novel findings of this research demonstrate that the formation of acrylamide and Maillard reaction products was lower with glucose than with fructose when they were used as reducing sugars in food model systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Liangwei; Du, Jiansen [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Wang, Xuefeng; Zhou, Jianhua; Wang, Xiaojun [State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Liu, Xinqi, E-mail: [State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China)


    Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesis of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine. - Highlights: • The crystal structure of EIAV gp45 was determined. • The fusion peptide proximal region adopts a novel conformation different to HIV-1. • The asparagine-rich layer includes an extensive hydrogen-bond network. • These regions of EIAV are highly tolerant to mutations. • The results provide insight into the mechanism of gp41/gp45-mediated membrane fusion.

  16. Modification of chitosan-bead support materials with L-lysine and L-asparagine for α-amylase immobilization. (United States)

    Yazgan, Idris; Turner, Elizabeth G; Cronmiller, Lauren E; Tepe, Muammer; Ozturk, Taylan K; Elibol, Murat


    Maltose syrups have got wide-range utilizations in a variety of applications from bakery to drug-development. α-Amylases are among the most widely utilized industrial enzymes due to their high specificity in production of maltose syrup from starch. However, enzymes are not stable in ex vivo conditions towards alteration in pH, temperature, and such other parameters as high salt concentrations and impurities, where immobilization is required to advance the stability of the enzyme with which approach the requirement of isolation of the enzyme from media is eliminated as well. In this study, Termamyl® α-amylase was immobilized on the none-modified chitosan beads (NMCB), L-lysine-modified chitosan beads (LMCB), and L-asparagine-modified chitosan beads (AMCB) to assess effects of the support material on optimum conditions and kinetic parameters of the α-amylase activity in production of maltose from starch. Immobilization on NMCB, LMCB, and AMCB puts a strong influence on optimum pH, optimum temperature, stability, and kinetic parameters of α-amylase. Modification of chitosan beads with L-lysine and L-asparagine dramatically altered the overall immobilization yield, and enzyme's response to pH and temperature variations and the kinetic parameters. AMCB provided the best immobilization yield (49%), while LMCB only improved the yield by 2% from 22 to 24%.

  17. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter


    HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...

  18. Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. (United States)

    Herrera-Rodríguez, María Begoña; Maldonado, José María; Pérez-Vicente, Rafael


    The role of light, carbon and nitrogen availability on the regulation of three asparagine synthetase (AS, EC genes, HAS1, HAS1.1 and HAS2, has been investigated in sunflower (Helianthus annuus). The response of each gene to different illumination conditions and to treatments that modify the carbon and nitrogen status of the plant was evaluated by Northern analysis with gene-specific probes. Light represses the expression of HAS1 and HAS1.1. Phytochrome and photosynthesis-derived carbohydrates mediate this repression. On the contrary, maintained HAS2 expression requires light and is positively affected by sucrose. HAS1 and HAS1.1 expression is dependent on nitrogen availability, while HAS2 transcripts are still found in N-starved plants. High ammonium level induces all three AS genes and partially reverts sucrose repression of HAS1 and HAS1.1. In summary, light, carbon and nitrogen availability control asparagine synthesis in sunflower by regulating three AS-coding genes. Illumination and carbon sufficiency maintain HAS2 active to supply asparagine that can be used for growth. Darkness and low C/N ratio conditions trigger the response of the specialized HAS1 and HAS1.1 genes which contribute to store the excess nitrogen as asparagine. Ammonium induces all three AS-genes which may favor its detoxification.

  19. The involvement of amino acids in latex lipid synthesis in Euphorbia lathyris seedlings

    NARCIS (Netherlands)

    Groeneveld, H.W.; Elings, J.


    The breakdown of triglycerides and proteins in the endosperm of Euphorbia lathyris was assayed in a 14 day germination period. Six days after germination, the average daily production was 2.7 μmol of amino acids. Arginine, glutamine, asparagine and glutamic acid accounted for 53% of the total amino

  20. Distribution of events of positive selection and population differentiation in a metabolic pathway: the case of asparagine N-glycosylation

    Directory of Open Access Journals (Sweden)

    Dall’Olio Giovanni


    Full Text Available Abstract Background Asparagine N-Glycosylation is one of the most important forms of protein post-translational modification in eukaryotes. This metabolic pathway can be subdivided into two parts: an upstream sub-pathway required for achieving proper folding for most of the proteins synthesized in the secretory pathway, and a downstream sub-pathway required to give variability to trans-membrane proteins, and involved in adaptation to the environment and innate immunity. Here we analyze the nucleotide variability of the genes of this pathway in human populations, identifying which genes show greater population differentiation and which genes show signatures of recent positive selection. We also compare how these signals are distributed between the upstream and the downstream parts of the pathway, with the aim of exploring how forces of population differentiation and positive selection vary among genes involved in the same metabolic pathway but subject to different functional constraints. Results Our results show that genes in the downstream part of the pathway are more likely to show a signature of population differentiation, while events of positive selection are equally distributed among the two parts of the pathway. Moreover, events of positive selection are frequent on genes that are known to be at bifurcation points, and that are identified as being in key position by a network-level analysis such as MGAT3 and GCS1. Conclusions These findings indicate that the upstream part of the Asparagine N-Glycosylation pathway has lower diversity among populations, while the downstream part is freer to tolerate diversity among populations. Moreover, the distribution of signatures of population differentiation and positive selection can change between parts of a pathway, especially between parts that are exposed to different functional constraints. Our results support the hypothesis that genes involved in constitutive processes can be expected to show

  1. An high-performance liquid chromatographic method for the simultaneous analysis of acetylcarnitine taurinate, carnosine, asparagine and potassium aspartate and for the analysis of phosphoserine in alimentary supplements. (United States)

    Gatti, R; Andreatta, P; Boschetti, S


    A RP-HPLC method with pre-column derivatization was developed and validated for the simultaneous quantification of carnosine (Carn), acetylcarnitine taurinate (AC-Tau), asparagine (Asn), potassium aspartate (Asp) and for the determination of phosphoserine (p-Ser) in new and commercial alimentary supplements. The effect of complex matrices was evaluated by the study of the amino acid derivatization reaction with 2,4-dinitrofluorobenzene (DNFB) both in standard and placebo solutions. The reaction was carried out for 20 min at 70 °C in alkaline medium (pH10) for p-Ser analysis, whereas for 60 min in the case of Carn, AC-Tau, Asn and Asp analysis. The adducts have been separated on a Discovery RP Amide C16 (250 mm×4.6mm, i.d.) column using a mobile phase consisting of acetonitrile (ACN) and triethylammonium (TEA) phosphate buffer (pH 3, 0.05 M) under gradient elution conditions at a flow-rate of 0.8 mL/min. Detection was set at λ=360 nm. The validation parameters such as linearity, sensitivity, accuracy, precision and specificity were found to be highly satisfactory. Linear responses were observed by placebo solutions (determination coefficient ≤0.9996). Intra-day precision (relative standard deviation, RSD) was ≤1.06% for corrected peak area and ≤0.99% for retention times (tR) without significant differences between intra- and inter-day data. Recovery studies showed good results for all examined compounds (from 97.7% to 101.5%) with RSD ranging from 0.5% to 1.3%). The high stability of derivatized compound solutions at room temperature means an undoubted advantage of the method allowing the simultaneous preparation of a large number of samples and consecutive chromatographic analyses by the use of an autosampler. The developed method can be considered suitable for the quality control of new and commercial products. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. (United States)

    Uppal, Karan; Salinas, Jorge L; Monteiro, Wuelton M; Val, Fernando; Cordy, Regina J; Liu, Ken; Melo, Gisely C; Siqueira, Andre M; Magalhaes, Belisa; Galinski, Mary R; Lacerda, Marcus V G; Jones, Dean P


    Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (pmetabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics

  3. Requirement for asparagine in the aquaporin NPA sequence signature motifs for cation exclusion

    DEFF Research Database (Denmark)

    Wree, Dorothea; Wu, Binghua; Zeuthen, Thomas


    Two highly conserved NPA motifs are a hallmark of the aquaporin (AQP) family. The NPA triplets form N-terminal helix capping structures with the Asn side chains located in the centre of the water or solute-conducting channel, and are considered to play an important role in AQP selectivity. Although...... electrophysiology, we found that an analogous mammalian AQP1 N76S mutant excluded protons and potassium ions, but leaked sodium ions, providing an argument for the overwhelming prevalence of Asn over other amino acids. We conclude that, at the first position in the NPA motifs, only Asn provides efficient helix cap...

  4. Amino acid pool composition of the basidiomycete Coprinus cinereus. (United States)

    Ulrich, Cynthia E; Gathman, Allen C; Lilly, Walt W


    The leaf-litter fungus Coprinus cinereus maintains a pool of free amino acid in its mycelium. When the organism is grown under conditions of high nitrogen availability with 13.2 mmol.L-1 L-asparagine as the nitrogen source, the primary constituents of this pool are glutamine, alanine, and glutamic acid. Together these 3 amino acids comprise approximately 70% of the pool. Nitrogen deprivation reduces the size of the free amino acid pool by 75%, and neither a high concentration of ammonium nor a protein nitrogen source support a similar pool size as L-asparagine. Nitrogen deprivation also reduces the concentration of glutamine to the pool while increasing glutamate. Concomitant with this shift is a marked increase in mycelial ammonium.

  5. A Conserved Asparagine in a P-type Proton Pump Is Required for Efficient Gating of Protons* (United States)

    Ekberg, Kira; Wielandt, Alex G.; Buch-Pedersen, Morten J.; Palmgren, Michael G.


    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H+-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H+-ATPases. In the crystal structure of the plant plasma membrane H+-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane. PMID:23420846

  6. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival. (United States)

    Suzuki, Genjiro; Tanaka, Motomasa


    Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD (+) ], which harbors aggregates of endogenous Mod5. [MOD (+) ] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD (+) ] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion.

  7. Rapid characterization of asparagine-linked oligosaccharides isolated from glycoproteins using a carbohydrate analyzer. (United States)

    Anumula, K R; Taylor, P B


    Chromatographic methods were developed for the separation and characterization of acidic (sialylated) and neutral (asialo-complex and high-mannose) oligosaccharides released from glycoproteins with peptide N-glycosidase F. endo-beta-N-acetylglucosaminidase F and endo-beta-N-acetylglucosaminidase H using a carbohydrate analyzer (Dionex BioLC). All the carbohydrate separations were carried out on a polymeric pellicular anion-exchange column HPIC-AS6/CarboPac PA-1 (Dionex) using only two eluants namely, 0.5 M NaOH and 3% acetic acid/NaOH pH 5.5, which were mixed with water to generate various gradients. Developed conditions for quantitative detection of carbohydrates with pulsed amperometry were necessary to obtain steady baselines at 0.1-0.3 microA output with suitable sensitivity (less than 5 pmol) in separations employing a variety of acidic and alkaline sodium acetate gradients. Oligosaccharides released from heat-denatured and trypsin-treated glycoproteins were purified initially from large-scale digestion (greater than 0.1 g) by extraction of peptide material into phenol/chloroform and finally by ion-exchange chromatography of the acqueous phase. Oligosaccharides isolated from the peptide N-glycosidase digests of bovine fetuin, human transferrin and alpha 1-acid glycoprotein gave multiple peaks in each charge group in separations based on the charge content at pH 5.5. Alkaline sodium acetate gradients were developed to obtain oligosaccharide maps of the glycoproteins within 60 min, in which separated oligosaccharides eluted in the order of neutral, mono-, di-, tri- and tetra-sialylated species based on both charge, size and structure. Baseline separations were obtained with neutral oligosaccharide types but mixtures of high-mannose and complex types were poorly resolved. The high-mannose peaks were eliminated specifically from complex oligosaccharides by digesting with alpha-mannosidase. Treatment with beta-galactosidase, beta-N-acetylglucosaminidase and alpha

  8. Effect of various amino acids on shoot regeneration of sugarcane ...

    African Journals Online (AJOL)

    from meristematic explants cultured on Murashige and Skoog medium supplemented with B5 vitamins containing 13.6 ìM 2-4, dichlorophenoxyacetic acid, 0.05% (w/v) casein hydrolysate, 10% (v/v) coconut water and 3% glucose. Five levels (0.1, 0.25, 0.5, 0.75, 1.0 mM) of five different amino acids (glutamine, asparagine, ...

  9. The complete amino acid sequence of human serum transferrin.


    MacGillivray, R. T.; Mendez, E. (Elena); Sinha, S. K.; Sutton, M.R.; Lineback-Zins, J; Brew, K


    The complete amino acid sequence of human serum transferrin has been determined by aligning the structures of the 10 CNBr fragments. The order of these fragments in the polypeptide chain is deduced from the structures of peptides overlapping methionine residues and other evidence. Human transferrin contains 678 amino acid residues and--including the two asparagine-linked glycans--has an overall molecular weight of 79,550. The polypeptide chain contains two homologous domains consisting of res...

  10. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat. (United States)

    Curtis, Tanya Y; Powers, Stephen J; Halford, Nigel G


    Acrylamide forms from free asparagine and reducing sugars during frying, baking, roasting, or high-temperature processing, and cereal products are major contributors to dietary acrylamide intake. Free asparagine concentration is the determining factor for acrylamide-forming potential in cereals, and this study investigated the effect of fungicide application on free asparagine accumulation in wheat grain. Free amino acid concentrations were measured in flour from 47 varieties of wheat grown in a field trial in 2011-2012. The wheat had been supplied with nitrogen and sulfur and treated with growth regulators and fungicides. Acrylamide formation was measured after the flour had been heated at 180 °C for 20 min. Flour was also analyzed from 24 (of the 47) varieties grown in adjacent plots that were treated in identical fashion except that no fungicide was applied, resulting in visible infection by Septoria tritici, yellow rust, and brown rust. Free asparagine concentration in the fungicide-treated wheat ranged from 1.596 to 3.987 mmol kg(-1), with a significant (p acids apart from cysteine and ornithine. There was also a significant (p acid concentration also increased, whereas free glutamic acid concentration increased in some varieties but decreased in others, and free proline concentration decreased. The study showed disease control by fungicide application to be an important crop management measure for mitigating the problem of acrylamide formation in wheat products.

  11. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J


    to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate...

  12. Suggestive Evidence for Darwinian Selection against Asparagine-Linked Glycans of Plasmodium falciparum and Toxoplasma gondii ▿ † (United States)

    Bushkin, G. Guy; Ratner, Daniel M.; Cui, Jike; Banerjee, Sulagna; Duraisingh, Manoj T.; Jennings, Cameron V.; Dvorin, Jeffrey D.; Gubbels, Marc-Jan; Robertson, Seth D.; Steffen, Martin; O'Keefe, Barry R.; Robbins, Phillips W.; Samuelson, John


    We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma. PMID:19783771

  13. Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kunov-Kruse, Andreas Jonas; Fehrmann, Rasmus


    Ionic liquids (ILs) comprised of ammonium cations and anions of naturally occurring amino acids containing an additional amine group (e.g., lysine, histidine, asparagine, and glutamine) were examined as high-capacity absorbents for CO2. An absorption capacity of 2.1 mol CO2 per mol of IL (3.5 mol...

  14. The Separation and Quantitation of Peptides with and without Oxidation of Methionine and Deamidation of Asparagine Using Hydrophilic Interaction Liquid Chromatography with Mass Spectrometry (HILIC-MS) (United States)

    Badgett, Majors J.; Boyes, Barry; Orlando, Ron


    Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.

  15. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism (United States)

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel


    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  16. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity. (United States)

    Ito, Masahiro; Kim, Yun-Gi; Tsuji, Hirokazu; Takahashi, Takuya; Kiwaki, Mayumi; Nomoto, Koji; Danbara, Hirofumi; Okada, Nobuhiko


    Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.

  17. Kinetics and mechanisms of deamidation and covalent amide-linked adduct formation in amorphous lyophiles of a model asparagine-containing Peptide. (United States)

    Dehart, Michael P; Anderson, Bradley D


    Asparagine containing peptides and proteins undergo deamidation via a succinimide intermediate. This study examines the role of the succinimide in the formation of covalent, amide-linked adducts in amorphous peptide formulations. Stability studies of a model peptide, Gly-Phe-L-Asn-Gly, were performed in lyophiles containing an excess of Gly-Val at 'pH' 9.5 and 40°C/40% RH. Reactant disappearance and the formation of ten different degradants were monitored by HPLC. Mechanism-based kinetic models were used to generate rate constants from the concentration vs. time profiles. Deamidation of Gly-Phe-L-Asn-Gly in lyophiles resulted in L- and D-aspartyl and isoaspartyl-containing peptides and four amide-linked adducts between the succinimide and Gly-Val. The kinetic analysis demonstrated competition between water and terminal amino groups in Gly-Val for the succinimide. The extent of covalent adduct formation was dependent on dilution effects due to its second order rate law. The cyclic imide formed during deamidation of asparagine containing peptides in lyophiles can also lead to covalent adducts due to reaction with other neighboring peptides. A reaction model assuming a central role for the succinimide in the formation both hydrolysis products and covalent adducts was quantitatively consistent with the kinetic data. This mechanism may contribute to the presence of covalent, non-reducible aggregates in lyophilized peptide formulations.

  18. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. (United States)

    Hewitson, Kirsty S; McNeill, Luke A; Riordan, Madeline V; Tian, Ya-Min; Bullock, Alex N; Welford, Richard W; Elkins, Jonathan M; Oldham, Neil J; Bhattacharya, Shoumo; Gleadle, Jonathan M; Ratcliffe, Peter J; Pugh, Christopher W; Schofield, Christopher J


    Activity of the hypoxia-inducible factor (HIF) complex is controlled by oxygen-dependent hydroxylation of prolyl and asparaginyl residues. Hydroxylation of specific prolyl residues by 2-oxoglutarate (2-OG)-dependent oxygenases mediates ubiquitinylation and proteasomal destruction of HIF-alpha. Hydroxylation of an asparagine residue in the C-terminal transactivation domain (CAD) of HIF-alpha abrogates interaction with p300, preventing transcriptional activation. Yeast two-hybrid assays recently identified factor inhibiting HIF (FIH) as a protein that associates with the CAD region of HIF-alpha. Since FIH contains certain motifs present in iron- and 2-OG-dependent oxygenases we investigated whether FIH was the HIF asparaginyl hydroxylase. Assays using recombinant FIH and HIF-alpha fragments revealed that FIH is the enzyme that hydroxylates the CAD asparagine residue, that the activity is directly inhibited by cobalt(II) and limited by hypoxia, and that the oxygen in the alcohol of the hydroxyasparagine residue is directly derived from dioxygen. Sequence analyses involving FIH link the 2-OG oxygenases with members of the cupin superfamily, including Zn(II)-utilizing phosphomannose isomerase, revealing structural and evolutionary links between these metal-binding proteins that share common motifs.

  19. The effects of amino acid composition on yeast prion formation and prion domain interactions


    Ross, Eric D; Toombs, James A.


    Yeast prions provide a powerful model system for examining prion formation and propagation in vivo. Yeast prion formation is driven primarily by amino acid composition, not by primary amino acid sequence. However, although yeast prion domains are consistently glutamine/asparagine-rich, they otherwise vary significantly in their compositions. Therefore, elucidating the exact compositional requirements for yeast prion formation has proven challenging. We have developed an in vivo method that al...

  20. Transport of Amino Acids in Lactobacillus casei by Proton-Motive-Force-Dependent and Non-Proton-Motive-Force-Dependent Mechanisms

    NARCIS (Netherlands)

    Strobel, Herbert J.; Russell, James B.; Driessen, Arnold J.M.; Konings, Wilhelmus

    Lactobacilus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition

  1. Effect of Asparagine Substitutions in the YXN Loop of a Class C β-Lactamase of Acinetobacter baumannii on Substrate and Inhibitor Kinetics (United States)

    Li, Mei; Taracila, Magda A.


    Class C cephalosporinases are a growing threat, and inhibitors of these enzymes are currently unavailable. Studies exploring the YXN loop asparagine in the Escherichia coli AmpC, P99, and CMY-2 enzymes have suggested that interactions between C6′ or C7′ substituents on penicillins or cephalosporins and this Asn are important in determining substrate specificity and enzymatic stability. We sought to characterize the YXN loop asparagine in the clinically important ADC-7 class C β-lactamase of Acinetobacter baumannii. Mutagenesis at the N148 position in ADC-7 yields functional mutants (N152G, -S, -T, -Q, -A, and -C) that retain cephalosporinase activity. Using standard assays, we show that N148G, -S, and -T variants possess good catalytic activity toward cefoxitin and ceftaroline but that cefepime is a poor substrate. Because N152 variants of CMY-2, another class C β-lactamase, are more readily inhibited by tazobactam due to higher rates of inactivation, we also tested if the N148 substitutions in ADC-7 would affect inactivation by sulfone inhibitors, sulbactam and tazobactam, class A β-lactamase, and A. baumannii penicillin-binding protein (PBP) inhibitors with in vitro activity against ADC-7. The 50% inhibitory concentrations (IC50s) for tazobactam and sulbactam were improved, with 7-fold and 2-fold reductions, respectively, for the N148S variant. A homology model of the N148S ADC-7 enzyme in a Michaelis-Menten complex with tazobactam showed a loss of interaction between N148 and the sulfone moiety of the inhibitor. We postulate that this may result in more-rapid secondary ring opening of the inhibitor, as the unbound sulfone is an excellent leaving group, leading to more-rapid formation of the stable linearized inhibitor. PMID:25534745

  2. Amino acid pattern in human aqueous humor of patients with senile cataract and primary open-angle glaucoma. (United States)

    Hannappel, E; Pankow, G; Grassl, F; Brand, K; Naumann, G O


    21 amino acids have been determined in aqueous humor obtained during microsurgical intraocular procedures in 30 patients with senile cataract and 27 patients with primary open-angle glaucoma. All individual amino acids showed higher levels in the glaucomas than in the cataracts: this is valid at 2p less than 0.05 for threonine, serine, asparagine, glutamine, methionine, tyrosine, phenylalanine, histidine, tryptophan, and arginine.

  3. Enhancement of Cunninghamella elegans UCP/WFCC 0542 biomass and chitosan with amino acid supply. (United States)

    Dos Santos, Ednaldo Ramos; da Silva, Marta Cristina Freitas; de Souza, Patrícia Mendes; da Silva, Antonio Cardoso; de Paiva, Sergio Carvalho; Albuquerque, Clarissa D C; Nascimento, Aline E; Okada, Kaoru; Campos-Takaki, Galba M


    Studies were carried out with Cunninghamella elegans UCP/WFCC 0542 to evaluate the effects of an abundant supply of amino acids, asparagine and corn steep liquor associated with sucrose on the production of biomass and chitosan by submerged fermentation. The concentrations of the components of the culture medium which were determined by a 2³ full factorial design evaluated the interactions and effects of the independent variables of the sucrose, asparagine and corn steep liquor in relation to carbon and nitrogen sources, on the production of chitosan regarding biomass. The best results were observed at the central point [asparagine 0.025%, sucrose 0.15% and 0.45% of corn steep liquor, ratio C:N=2:6], and produced maximum yields of 16.95 g/L biomass and 2.14 g/L chitosan, after 96 h of submerged fermentation. However, the lowest level of sucrose, asparagine and corn steep liquor produced a low amount of biomass (10.83 g/L) and chitosan (0.60 g/L). The infrared spectrum absorption of the chitosan produced by C. elegans showed bands regarding OH-axial stretching between 3406 and 3432 cm⁻¹, superimposed on the NH stretching band with axial deformation of the amide C=O group at about 1639 cm⁻¹, NH angular deformation at approximately 1560 cm⁻¹; axial deformation of amide-CN at around 1421 cm⁻¹, symmetrical angular deformation in CH3 at 1379 cm⁻¹, -CN axial deformation of amino groups from 1125 to 1250 cm⁻¹ and polysaccharide structure bands in the range of between 890-1150 cm⁻¹. The crystallinity index of chitosan was 60.92%, and its degree of deacetylation was 75.25%. A low percentage of a supply of sucrose and asparagine with corn steep liquor offered higher yields of biomass and chitosan production at low cost.

  4. Enhancement of Cunninghamella elegans UCP/WFCC 0542 Biomass and Chitosan with Amino Acid Supply

    Directory of Open Access Journals (Sweden)

    Galba M. Campos-Takaki


    Full Text Available Studies were carried out with Cunninghamella elegans UCP/WFCC 0542 to evaluate the effects of an abundant supply of amino acids, asparagine and corn steep liquor associated with sucrose on the production of biomass and chitosan by submerged fermentation. The concentrations of the components of the culture medium which were determined by a 23 full factorial design evaluated the interactions and effects of the independent variables of the sucrose, asparagine and corn steep liquor in relation to carbon and nitrogen sources, on the production of chitosan regarding biomass. The best results were observed at the central point [asparagine 0.025%, sucrose 0.15% and 0.45% of corn steep liquor, ratio C:N=2:6], and produced maximum yields of 16.95 g/L biomass and 2.14 g/L chitosan, after 96 h of submerged fermentation. However, the lowest level of sucrose, asparagine and corn steep liquor produced a low amount of biomass (10.83 g/L and chitosan (0.60g/L. The infrared spectrum absorption of the chitosan produced by C. elegans showed bands regarding OH-axial stretching between 3406 and 3432 cm−1, superimposed on the NH stretching band with axial deformation of the amide C=O group at about 1639 cm−1, NH angular deformation at approximately 1560 cm−1; axial deformation of amide-CN at around 1421 cm−1, symmetrical angular deformation in CH3 at 1379 cm−1, -CN axial deformation of amino groups from 1125 to 1250 cm−1 and polysaccharide structure bands in the range of between 890–1150 cm−1. The crystallinity index of chitosan was 60.92%, and its degree of deacetylation was 75.25%. A low percentage of a supply of sucrose and asparagine with corn steep liquor offered higher yields of biomass and chitosan production at low cost.

  5. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. (United States)

    Meyer, Rosana D; Mohammadi, Moosa; Rahimi, Nader


    VEGFR-1 is a kinase-defective receptor tyrosine kinase (RTK) and negatively modulates angiogenesis by acting as a decoy receptor. The decoy characteristic of VEGFR-1 is required for normal development and angiogenesis. To date, there is no molecular explanation for this unusual characteristic of VEGFR-1. Here we show that the molecular mechanisms underlying the decoy characteristic of VEGFR-1 is linked to the replacement of a highly conserved amino acid residue in the activation loop. This amino acid is highly conserved among all the type III RTKs and corresponds to aspartic acid, but in VEGFR-1 it is substituted to asparagine. Mutation of asparagine (Asn(1050)) within the activation loop to aspartic acid promoted enhanced ligand-dependent tyrosine autophosphorylation and kinase activation in vivo and in vitro. The mutant VEGFR-1 (Asp(1050)) promoted endothelial cell proliferation but not tubulogenesis. It also displayed an oncogenic phenotype as its expression in fibroblast cells elicited transformation and colony growth. Furthermore, mutation of the invariable aspartic acid to asparagine in VEGFR-2 lowered the autophosphorylation of activation loop tyrosines 1052 and 1057. We propose that the conserved aspartic acid in the activation loop favors the transphosphorylation of the activation loop tyrosines, and its absence renders RTK to a less potent enzyme by disfavoring transphosphorylation of activation loop tyrosines.

  6. A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1* (United States)

    Meyer, Rosana D.; Mohammadi, Moosa; Rahimi, Nader


    VEGFR-1 is a kinase-defective receptor tyrosine kinase (RTK) and negatively modulates angiogenesis by acting as a decoy receptor. The decoy characteristic of VEGFR-1 is required for normal development and angiogenesis. To date, there is no molecular explanation for this unusual characteristic of VEGFR-1. Here we show that the molecular mechanisms underlying the decoy characteristic of VEGFR-1 is linked to the replacement of a highly conserved amino acid residue in the activation loop. This amino acid is highly conserved among all the type III RTKs and corresponds to aspartic acid, but in VEGFR-1 it is substituted to asparagine. Mutation of asparagine (Asn1050) within the activation loop to aspartic acid promoted enhanced ligand-dependent tyrosine autophosphorylation and kinase activation in vivo and in vitro. The mutant VEGFR-1 (Asp1050) promoted endothelial cell proliferation but not tubulogenesis. It also displayed an oncogenic phenotype as its expression in fibroblast cells elicited transformation and colony growth. Furthermore, mutation of the invariable aspartic acid to asparagine in VEGFR-2 lowered the autophosphorylation of activation loop tyrosines 1052 and 1057. We propose that the conserved aspartic acid in the activation loop favors the transphosphorylation of the activation loop tyrosines, and its absence renders RTK to a less potent enzyme by disfavoring transphosphorylation of activation loop tyrosines. PMID:16286478

  7. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa, E-mail:


    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  8. Simultaneous determination of acrylamide, asparagine and glucose in food using short chain methyl imidazolium ionic liquid based ultrasonic assisted extraction coupled with analyte focusing by ionic liquid micelle collapse capillary electrophoresis. (United States)

    Abd El-Hady, Deia; Albishri, Hassan M


    Acrylamide (AA) is a known lethal neurotoxin and carcinogen. AA is formed in foods during the browning process by the Maillard reaction of glucose (GL) with asparagine (AS). For the first time, the simultaneous online preconcentration and separation of AA, AS and GL using analyte focusing by ionic liquid micelle collapse capillary electrophoresis (AFILMC) was presented. Samples were prepared in a 1-butyl-3-methylimidazolium bromide (BMIMBr) micellar matrix with a conductivity 4 times greater than that of the running buffer (12.5 mmol L(-1) phosphate buffer at pH 8.5). Samples were hydrodynamically injected into a fused silica capillary at 25.0 mbar for 25.0 s. Separations were performed by applying a voltage of 25.0 kV and a detection at 200.0 nm. To sufficiently reduce BMIMBr adsorption on the interior surface of capillary, an appropriate rinsing procedure by hydrochloric acid and water was optimized. AFILMC measurements of analytes within the concentration range of 0.05-10.0 μmol L(-1) achieved adequate reproducibility and accuracy with RSD 1.14-3.42% (n=15) and recovery 98.0-110.0%, respectively. Limits of detections were 0.71 ng g(-1) AA, 1.06 ng g(-1) AS and 27.02 ng g(-1) GL with linearity ranged between 2.2 and 1800 ng g(-1). The coupling of AFILMC with IL based ultrasonic assisted extraction (ILUAE) was successfully applied to the efficient extraction and determination of AA, AS and GL in bread samples. The structure of ILs has significant effects on the extraction efficiency of analytes. The optimal extraction efficiency (97.8%) was achieved by an aqueous extraction with 4:14 ratio of sample: 3.0 mol L(-1) BMIMBr followed by sonication at 35 °C. The proposed combination of ILUAE and AFILMC was simple, ecofriendly, reliable and inexpensive to analyze a toxic compound and its precursors in bread which is applicable to food safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Plasma asparaginase activity, asparagine concentration, and toxicity after administration of Erwinia asparaginase in children and young adults with acute lymphoblastic leukemia: Phase I/II clinical trial in Japan. (United States)

    Ogawa, Chitose; Taguchi, Fumi; Goto, Hiroaki; Koh, Katsuyoshi; Tomizawa, Daisuke; Ohara, Akira; Manabe, Atsushi


    A phase I/II study of Erwinia asparaginase in Japanese children and young adults with acute lymphoblastic leukemia (ALL) was performed to investigate its activity and toxicity. Eligible patients were in remission and had developed allergy to Escherichia coli asparaginase. Erwina asparaginase was intramuscularly administrated on days 2, 5, 7, 9, 11, and 13. To measure the plasma l-asparagine concentration (PAC), amino acids were derivatized with Nα -(5-fluoro-2,4-dinitrophenyl)-l-leucinamide. Six consecutive patients completed the phase I study with 25,000 IU/m2 per dose without dose-limiting toxicity and 18 patients completed the phase II study with 25,000 IU/m2 per dose. Median age of 24 patients was 7.5 (range 2-16) years. The half-life of plasma asparaginase activity (PAA) was 16.9 ± 7.5 hr and the maximum PAA was 3.10 ± 1.47 IU/ml (n = 23, noncompartment model). PAA of 0.1 IU/ml or more was achieved in all 23 patients (100%) 48 hr and in 18 of 23 patients (78.3%) 72 hr after the first administration. During the 2-week study, 94.2% (65 of 69) of the 48-hr samples and 80.4% (37 of 46) of the 72-hr samples had PAA of 0.1 IU/ml or more. PAC less than 1.0 μM was achieved in 95.7% patients 48 and 72 hr after administration. PAC values in all the samples were greater than the limit of quantitation (0.0625 μM). Karnofsky performance status of all patients was good during the 2-week study. Erwinia asparaginase 25,000 IU/m2 per dose × six intramuscular administrations in 2 weeks was well tolerated, pharmacologically efficacious, and safe in Japanese patients with ALL/lymphoblastic lymphoma. © 2017 Wiley Periodicals, Inc.

  10. Kinetic and Mechanistic Studies on the Interaction of Glycyl-L-alanine, Glycyl-L-asparagine, and Glycyl-L-tyrosine with Hydroxopentaaquarhodium(III Ion

    Directory of Open Access Journals (Sweden)

    Biplab K. Bera


    Full Text Available The kinetics of the interaction of three glycine-containing dipeptides, namely, glycyl-L-alanine (L1-L′H, glycyl-L-asparagine (L2-L′H, and glycyl-L-tyrosine (L3-L′H with has been studied spectrophotometrically in aqueous medium as a function of the molar concentration of , [dipeptide], pH, and temperature at constant ionic strength. Reactions were studied at pH 4.3, where the substrate complex exists predominantly as the hydroxopentaaqua species and dipeptides as the zwitterion. The reaction has been found to proceed via two parallel paths: both processes are ligand dependent. The rate constant for the processes are and . The activation parameters for both the steps were evaluated using Eyring’s equation. The low and large negative value of as well as and indicate an associative mode of activation for both the aqua ligand substitution processes for both the parallel paths. The product of the reaction has been characterized by IR and ESI-mass spectroscopic analyses.

  11. Synergistic contributions of asparagine 46 and aspartate 52 to the catalytic mechanism of chicken egg white lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Ichiro; Kirsch, J.F. [Univ. of California, Berkeley, CA (United States)


    The X-ray structure of a chicken egg white lysozyme (ChEWL) complex with a peptidoglycan-derived inhibitor suggests that interactions of Asn46 and Asp52 with the D-subsite N-acetylmuramic acid due help to distort that pyranose ring into the reactive half-chair conformation and that a hydrogen bond is formed between Asn46 and Asp52. These hypotheses were investigated through the D52A, N46A, and D52A/N46A mutants of ChEWL. The Michaelis constants of the D52A and D52A/N46A ChEWL complexes with Micrococcus luteus cells are 3- and 4-fold higher, respectively, than the wild-type K{sub M}; the corresponding k{sub cat} values are 25- and 50-fold lower, respectively, than the wild-type k{sub cat}. These results support the proposal of Strynadka and James. The velocities of reactions catalyzed by the N46A and D52A mutants are approximately equal to each other for all classes of substrate, suggesting that the respective roles of Asn46 and Asp52 in transition state stabilization do not vary. The mutation of either Asn46 or Asp52 to Ala apparently disrupts the interactions of the other (nonmutated) residue with the substrate, supporting the crystallographic evidence of a hydrogen-bond interaction between the two residues. The mutations do not change the values of the dissociation constants of complexes with (carboxymethyl)chitin complexes, suggesting that ground state complexes of ChEWL with chitin-derived substrates differ in conformation from complexes with bacterial peptidoglycans. 23 refs., 7 figs., 2 tabs.

  12. Effects of storage temperature on the contents of sugars and free amino acids in tubers from different potato cultivars and acrylamide in chips. (United States)

    Matsuura-Endo, Chie; Ohara-Takada, Akiko; Chuda, Yoshihiro; Ono, Hiroshi; Yada, Hiroshi; Yoshida, Mitsuru; Kobayashi, Akira; Tsuda, Shogo; Takigawa, Shigenobu; Noda, Takahiro; Yamauchi, Hiroaki; Mori, Motoyuki


    To clarify the effects of storage temperature on potato components and acrylamide in chips, tubers from five cultivars were stored at various temperatures (2, 6, 8, 10, and 18 degrees C) for 18 weeks, and the contents of sugars, free amino acids in tubers, and acrylamide in chips after frying were analyzed. At temperatures lower than 8 degrees C, the contents of reducing sugars increased markedly in all cultivars, with similar increases in the acrylamide level and dark brown chip color. Free amino acids showed little change at the storage temperatures tested and varied within certain ranges characteristic of each cultivar. The contents of reducing sugars correlated well with the acrylamide level when the fructose/asparagine molar ratio in the tubers was 2 by low-temperature storage, the asparagine content, rather than the reducing sugar content, was found to be the limiting factor for acrylamide formation.

  13. Klebsiella pneumoniae asparagine tDNAs are integration hotspots for different genomic islands encoding microcin E492 production determinants and other putative virulence factors present in hypervirulent strains

    Directory of Open Access Journals (Sweden)

    Andrés Esteban Marcoleta


    Full Text Available Due to the developing of multi-resistant and invasive hypervirulent strains, Klebsiella pneumoniae has become one of the most urgent bacterial pathogen threats in the last years. Genomic comparison of a growing number of sequenced isolates has allowed the identification of putative virulence factors, proposed to be acquirable mainly through horizontal gene transfer. In particular, those related with synthesizing the antibacterial peptide microcin E492 (MccE492 and salmochelin siderophores were found to be highly prevalent among hypervirulent strains. The determinants for the production of both molecules were first reported as part of a 13-kbp segment of K. pneumoniae RYC492 chromosome, and were cloned and characterized in E. coli. However, the genomic context of this segment in K. pneumoniae remained uncharacterized.In this work we provided experimental and bioinformatics evidence indicating that the MccE492 cluster is part of a highly conserved 23-kbp genomic island (GI named GIE492, that was integrated in a specific asparagine-tRNA gene (asn-tDNA and was found in a high proportion of isolates from liver abscesses sampled around the world. This element resulted to be unstable and its excision frequency increased after treating bacteria with mytomicin C and upon the overexpression of the island-encoded integrase. Besides the MccE492 genetic cluster, it invariably included an integrase-coding gene, at least 7 protein-coding genes of unknown function, and a putative transfer origin that possibly allows this GI to be mobilized through conjugation. In addition, we analyzed the asn-tDNA loci of all the available K. pneumoniae assembled chromosomes to evaluate them as GI-integration sites. Remarkably, 73% of the strains harbored at least one GI integrated in one of the four asn-tDNA present in this species, confirming them as integration hotspots. Each of these tDNAs was occupied with different frequencies, although they were 100% identical. Also, we

  14. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation. (United States)

    Halford, Nigel G; Muttucumaru, Nira; Powers, Stephen J; Gillatt, Peter N; Hartley, Lee; Elmore, J Stephen; Mottram, Donald S


    Acrylamide forms during cooking and processing predominately from the reaction of free asparagine and reducing sugars in the Maillard reaction. The identification of low free asparagine and reducing sugar varieties of crops is therefore an important target. In this study, nine varieties of potato (French fry varieties Maris Piper (from two suppliers), Pentland Dell, King Edward, Daisy, and Markies; and chipping varieties Lady Claire, Lady Rosetta, Saturna, and Hermes) grown in the United Kingdom in 2009 were analyzed at monthly intervals through storage from November 2009 to July 2010. Acrylamide formation was measured in heated flour and chips fried in oil. Analysis of variance revealed significant interactions between varieties nested within type (French fry and chipping) and storage time for most free amino acids, glucose, fructose, and acrylamide formation. Acrylamide formed in chips correlated significantly with acrylamide formed in flour and with chip color. There were significant correlations between glucose or total reducing sugar concentration and acrylamide formation in both variety types, but with fructose the correlation was much stronger for chipping than for French fry varieties. Conversely, there were significant correlations with acrylamide formation for both total free amino acid and free asparagine concentration in the French fry but not chipping varieties. The study showed the potential of variety selection for preventing unacceptable levels of acrylamide formation in potato products and the variety-dependent effect of long-term storage on acrylamide risk. It also highlighted the complex relationship between precursor concentration and acrylamide risk in potatoes.

  15. Amino-Acid-Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles. (United States)

    Preiss, Laura C; Wagner, Manfred; Mastai, Yitzhak; Landfester, Katharina; Muñoz-Espí, Rafael


    Amino-acid-based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac-asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 2-Phenyl-tetrahydropyrimidine-4(1H-ones – cyclic benzaldehyde aminals as precursors for functionalised β2-amino acids

    Directory of Open Access Journals (Sweden)

    Markus Nahrwold


    Full Text Available Novel procedures have been developed to condense benzaldehyde effectively with β-amino acid amides to cyclic benzyl aminals. Double carbamate protection of the heterocycle resulted in fully protected chiral β-alanine derivatives. These serve as universal precursors for the asymmetric synthesis of functionalised β2-amino acids containing acid-labile protected side chains. Diastereoselective alkylation of the tetrahydropyrimidinone is followed by a chemoselective two step degradation of the heterocycle to release the free β2-amino acid. In the course of this study, an L-asparagine derivative was condensed with benzaldehyde and subsequently converted to orthogonally protected (R-β2-homoaspartate.

  17. Synthesis and Interconversion of Amino Acids in Developing Cotyledons of Pea (Pisum sativum L.) (United States)

    Macnicol, Peter K.


    Freshly isolated cotyledons from 10-day developing pea (Pisum sativum) seeds were fed radiolabeled precursors for 5 hours, and the specific radioactivity of the free and total protein amino acids was determined using a dansylation procedure. When the seven most abundant amino acids in phloem exudate of pea fruits (asparagine, serine, glutamine, homoserine, alanine, aspartate, glycine) were fed singly, their carbon was distributed widely among the aliphatic amino acids, proline and tryptophan; sporadic labeling of tyrosine and histidine also occurred. Feeding of glucose led to relatively greater labeling of aromatic amino acids including phenylalanine. The data support the involvement of known plant pathways in these interconversions. Labeling patterns were consistent with participation of the cyanoalanine pathway in the conversion of serine to homoserine, and with the synthesis of histidine from adenosine. All of the labeled amino acids were incorporated into protein. PMID:16660090

  18. Conformational landscape of isolated capped amino acids: on the nature of non-covalent interactions* (United States)

    González, Jorge; Martínez, Rodrigo; Fernández, José A.; Millan, Judith


    The intramolecular interactions for isolated capped amino acids were investigated computationally by characterizing the conformers for selected amino acids with charged (arginine), polar (asparagine and glutamine), non-polar (alanine, valine and isoleucine), and aromatic (phenylalanine, tryptophan and tyrosine) side chains. The computational method applied combined a molecular mechanics conformational search (with an MMFFs forced field) followed by structural and vibrational density-functional calculations (M06-2X with a triple- ζ Pople's basis set). The intramolecular forces in each amino acid were analyzed with the Non-Covalent Interactions (NCI) analysis. The results for the 15 most stable conformers studied showed that the structure of isolated capped amino acids resembles those found in proteins. In particular, the two most stable conformers of the nine amino acids investigated exhibit γ L and β L conformations with 7- and 5-membered rings, respectively, as a result of the balance between non-covalent interactions (hydrogen bonds and van der Waals).

  19. Determination of primary amino acids in wines by high performance liquid magneto-chromatography. (United States)

    Barrado, E; Rodriguez, J A; Castrillejo, Y


    Eight amino acids (ethanolamine, glycine, alanine, beta-aminobutyric acid, leucine, methionine, histidine and asparagine) were identified and quantified in Spanish wines by high performance liquid magneto-chromatography (HPLMC) with UV-V spectrophotometry. For this method, the amino acids are first complexed with mono(1,10-phenanthroline)-Cu(II) to confer them paramagnetic properties, and then separated by application of a low magnetic field intensity (5.5 mT) to the stationary phase contained in the chromatographic column. Principal components analysis of the results obtained grouped together the wine samples according to their denomination of origin: "Ribera del Duero", "Rueda" or "Rioja" (Spain). Through cluster analysis, a series of correlations was also observed among certain amino acids, and between these groupings and the type of wine. These clusters were found to reflect the role played by the amino acids as primary or secondary nutrients for the bacteria involved in alcoholic and malolactic fermentation.

  20. Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations. (United States)

    Valle-Rodríguez, Juan Octavio; Hernández-Cortés, Guillermo; Córdova, Jesús; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María


    This study aimed to improve the fermentation efficiency of Kloeckera africana K1, in tequila fermentations. We investigated organic and inorganic nitrogen source requirements in continuous K. africana fermentations fed with Agave tequilana juice. The addition of a mixture of 20 amino-acids greatly improved the fermentation efficiency of this yeast, increasing the consumption of reducing sugars and production of ethanol, compared with fermentations supplemented with ammonium sulfate. The preference of K. africana for each of the 20 amino-acids was further determined in batch fermentations and we found that asparagine supplementation increased K. africana biomass production, reducing sugar consumption and ethanol production (by 30, 36.7 and 45%, respectively) over fermentations supplemented with ammonium sulfate. Therefore, asparagine appears to overcome K. africana nutritional limitation in Agave juice. Surprisingly, K. africana produced a high concentration of ethanol. This contrasts to poor ethanol productivities reported for other non-Saccharomyces yeasts indicating a relatively high ethanol tolerance for the K. africana K1 strain. Kloeckera spp. strains are known to synthesize a wide variety of volatile compounds and we have shown that amino-acid supplements influenced the synthesis by K. africana of important metabolites involved in the bouquet of tequila. The findings of this study have revealed important nutritional limitations of non-Saccharomyces yeasts fermenting Agave tequilana juice, and have highlighted the potential of K. africana in tequila production processes.

  1. A novel l-amino acid ionic liquid for quick and highly efficient synthesis of oxime derivatives – An environmental benign approach

    Directory of Open Access Journals (Sweden)

    Parasuraman Karthikeyan


    Full Text Available A mild, efficient, and eco-friendly procedure for the conversion of aliphatic, alicyclic and aromatic carbonyl compounds into the corresponding oximes, was catalyzed by a novel imidazolium based ionic liquid coupled with amino acid (asparagine (l-AAIL, l-Amino acid functionalized ionic liquid catalytic system. The quantitative conversion of aryl and alkyl carbonyl compounds into the corresponding oximes was achieved by simply grinding at ambient temperature using 0.05 mmol of catalyst in 50 s. In addition, this L-AAIL catalyst exhibited good reusability for five consecutive trials without significant loss of its catalytic activity.

  2. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.


    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  3. Effects of Nitrogen and Sulfur Fertilization on Free Amino Acids, Sugars, and Acrylamide-Forming Potential in Potato (United States)


    Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes. PMID:23768004

  4. Differential distribution of amino acids in plants. (United States)

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz


    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1

  5. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. (United States)

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G


    Irrigation is used frequently in potato cultivation to maximize yield, but water availability may also affect the composition of the crop, with implications for processing properties and food safety. Five varieties of potatoes, including drought-tolerant and -sensitive types, which had been grown with and without irrigation, were analyzed to show the effect of water supply on concentrations of free asparagine, other free amino acids, and sugars and on the acrylamide-forming potential of the tubers. Two varieties were also analyzed under more severe drought stress in a glasshouse. Water availability had profound effects on tuber free amino acid and sugar concentrations, and it was concluded that potato farmers should irrigate only if necessary to maintain the health and yield of the crop, because irrigation may increase the acrylamide-forming potential of potatoes. Even mild drought stress caused significant changes in composition, but these differed from those caused by more extreme drought stress. Free proline concentration, for example, increased in the field-grown potatoes of one variety from 7.02 mmol/kg with irrigation to 104.58 mmol/kg without irrigation, whereas free asparagine concentration was not affected significantly in the field but almost doubled from 132.03 to 242.26 mmol/kg in response to more severe drought stress in the glasshouse. Furthermore, the different genotypes were affected in dissimilar fashion by the same treatment, indicating that there is no single, unifying potato tuber drought stress response.

  6. Amino acid profiles as potential biomarkers for pediatric cancers: a preliminary communication. (United States)

    Synakiewicz, Anna; Sawicka-Zukowska, Malgorzata; Adrianowska, Natalia; Galezowska, Grazyna; Ratajczyk, Joanna; Owczarzak, Anna; Konieczna, Lucyna; Stachowicz-Stencel, Teresa


    Childhood cancer remains one of the main cause of death in the pediatric population. Amino acids (AAs) level alterations in plasma are considered to play a role in carcinogenesis and further course of the disease. Seventy-seven children with cancer, including 47 with hematological and 30 with solid tumors were enrolled in this study and compared with healthy children. Twenty-two plasma-free AAs were determined by HPLC with fluorometric detection. The results revealed significant decrease in glutamine levels for oncological patients and significant increase in aspartic acid, glutamic acid, asparagine, serine, citrulline, alanine, GABA, tryptophan, methionine, valine, phenylalanine and isoleucine levels in cancer children versus control. Plasma-free AA profile as a biomarker, which combines metabolic and clinical data, as an innovative and interdisciplinary approach, may allow for faster detection of tumor occurrence, and in the future for monitoring patient during treatment, and possible prediction of cancer recurrence.

  7. Acquisition of Raman spectra of amino acids using portable instruments: Outdoor measurements and comparison (United States)

    Culka, A.; Jehlička, J.; Edwards, H. G. M.


    Raman spectra of 13 amino acids: L-alanine, β-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, L-glutamine, glycine, L-methionine, L-proline, L-serine, L-threonine, L-tryptophan and L-tyrosine were acquired outdoors using two portable Raman instruments from the Ahura and Delta Nu manufacturers, both with 785 nm laser excitation. Both instruments provide quality Raman spectra with nevertheless a variable dependence upon the prevailing experimental conditions. The data acquired in these experiments will inform the selection of suitable Raman spectrometers for the in-field detection of biomolecules of relevance to the search for life signatures spectroscopically in terrestrial extreme environments and in extraterrestrial exploration, especially of planetary surfaces and subsurfaces using robotic instrumentation.

  8. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24

    DEFF Research Database (Denmark)

    Pedersen, Maiken Mellergaard; Skovbakke, Sarah Line; Schneider, Christine L.


    -glycosylation site. Mutational analysis revealed that a single amino acid (T24) in the extracellular domain of MICA018 was essential for the N-glycosylation dependency, while the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N......-glycosylation and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018 and we pinpoint the residues essential for this N-glycosylation dependency. In addition we show that this regulatory mechanism......NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells, in order to avoid immune recognition. Virus infection and inflammation alter protein N...

  9. Carbohydrate-linked asparagine-101 of prothrombin contains a metal ion protected acetylation site. Acetylation of this site causes loss of metal ion induced protein fluorescence change

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, D.J.; Nelsestuen, G.L.


    Prothrombin fragment 1 (prothrombin residues 1-156) contains two acetylation sites that are protected from derivatization by calcium. The first site was protected by only calcium while the second site was protected by magnesium as well. To identify this second acetylation site, fragment 1 was first acetylated with unlabeled reagent in the presence of magnesium. Metal ions were removed, and the protein was acetylated with radiolabeled reagent. The incorporated radiolabel was stable over long periods of time and at acidic or basic pH as long as elevated temperatures were avoided. The radiolabel was removed by treatment of the protein at pH 10 and 50 /sup 0/C or with 0.2 M hydroxylamine at 50 /sup 0/C for at least 30 min. Proteolytic degradation of the protein showed that the radioactivity appeared in a tryptic peptide corresponding to residues 94-111 of prothrombin. Amino acid sequence analysis revealed that the radiolabel was associated with an unextracted sequence product. The major radiolabeled product contained Asn/sup 101/-Ser/sup 102/ along with the expected chitobiose attached to Asn-101. NMR analysis revealed the presence of three acetate groups which would correspond to two from the chitobiose plus the incorporated acetate residue. Mass spectral analysis showed the correct mass for this glycopeptide plus a single added acetyl group. Amide /sup 1/H NMR analysis showed only three amide protons rather than the anticipated four. On the basis of these several observations, it is postulated that the site of acetylation is the ..beta..-amide nitrogen of Asn-101. Consequently, these studies showed an unusual chemical reactivity in prothrombin fragment 1. They further show that metal ion binding to prothrombin fragment 1 and subsequent protein fluorescence quenching involve sites ion the kringle region of the protein.

  10. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment. (United States)

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang


    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Amino Acids Content in Germinating Seeds and Seedlings from Castanea sativa L (United States)

    Desmaison, Anne Marie; Tixier, Marie


    During germination the chestnut (Castanea sativa L.) var ecotype 33 accumulates a large amount of asparagine in the cotyledons. This compound also accumulates in the growing axis:shoots and roots. In the cotyledons, γ-aminobutyrate (GABA) represents a major amino compound during germination and early seedling growth. In young seedlings, 35 days old, arginine predominates over the other soluble amino acids, particularly in roots. Five enzymic activities involved in arginine and GABA have been measured in the storage organ of the seed: arginase and ornithine carbamyltransferase decrease during germination indicating the slowing down of the urea cycle. In contrast, ornithine aminotransferase increases. Glutamate decarboxylase is particularly active about 21 days after imbibition and GABA aminotransferase activity decreases during germination. These two activities are in good agreement with the likely transport of GABA from cotyledons to growing axis. Asparagine, arginine, and GABA are the three amino compounds obviously involved in the mobilization of nitrogen reserves in the germinating chestnut seeds Castanea sativa. PMID:16664882

  12. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains

    Directory of Open Access Journals (Sweden)

    Samantha Fairbairn


    Full Text Available Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.

  13. Attraction to amino acids by Lymnaea acuminata, the snail host of Fasciola species

    Directory of Open Access Journals (Sweden)

    Tiwari F.


    Full Text Available Adult Lymnaea acuminata (average length 20-22 mm were collected locally from lakes and low-lying submerged fields from Gorakhpur. The chemoattraction studies were made in round glass aquaria measuring 30 cm in diameter and filled to a depth of 10 mm with 500 ml dechlorinated tap water. Each aquarium was divided into four concentric zones. At the starting time of the assay 10 snails were placed on the circumference of outermost zone 0. Snail attractant pellets (SAP were added simultaneously in the center of central zone 3. SAP of different amino acids were prepared at concentrations of 10, 20, 50, 80 and 100 mM/2% agar solution and, subsequently, spread to a uniform thickness of 5 mm. After cooling, SAP were cut in small pieces of 5 mm in diameter. Lymnaea acuminata's attraction to amino acids was studied using different amino acid concentrations in SAP. Pellets containing amino acids with non-polar R groups (proline and tryptophan, a charged polar group (arginine and uncharged polar R groups (serine, citrulline and asparagine were tested. The snails were more attracted to the uncharged polar R group amino acid serine than to other groups of amino acids. The preferred amino acid concentration was 80 mM. The attraction of snails to different amino acids was concentration dependent. Snails could discriminate amongst the different amino acids at > or = 50 mM.

  14. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. (United States)

    Udompijitkul, Pathima; Alnoman, Maryam; Banawas, Saeed; Paredes-Sabja, Daniel; Sarker, Mahfuzur R


    Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Amino acid cerebrospinal fluid/plasma ratios in children: influence of age, gender, and antiepileptic medication. (United States)

    Scholl-Bürgi, Sabine; Haberlandt, Edda; Heinz-Erian, Peter; Deisenhammer, Florian; Albrecht, Ursula; Sigl, Sara Baumgartner; Rauchenzauner, Markus; Ulmer, Hanno; Karall, Daniela


    The purpose of this work was to investigate the influence of age, gender, and antiepileptic therapy on amino acid cerebrospinal fluid/plasma ratios in children. Concentrations of 17 amino acids measured by ion-exchange chromatography with ninhydrin detection in plasma and cerebrospinal fluid from 68 patients with neurologic diseases were used to calculate their cerebrospinal fluid/plasma ratios (70 measurements; 28 female patients [29 punctures] and 40 male patients [41 punctures]). Age dependence and the effects of gender and antiepileptic medication on amino acid cerebrospinal fluid/plasma ratios were investigated by linear multiple regression analysis, and nonstandardized predicted mean values for 2 age groups were calculated (cutoff: 3 years old). The cerebrospinal fluid/plasma ratios ranged between 0.02 for glycine and 0.93 for glutamine. Age had a significant influence on cerebrospinal fluid/plasma ratios for valine, isoleucine, leucine, and tyrosine, with higher ratios in younger children. Gender had a significant influence only on the glutamine cerebrospinal fluid/plasma ratio (female patients had lower ratios). Cerebrospinal fluid/plasma ratios of glutamine and tyrosine were significantly elevated by valproate therapy and those of serine, asparagine, glutamine, valine, methionine, and phenylalanine by phenobarbital therapy. No significant influence of age, gender, and antiepileptic drugs was detectable on cerebrospinal fluid/plasma ratios of threonine, proline, glycine, alanine, histidine, ornithine, lysine, and arginine. Cerebrospinal fluid/plasma ratios, especially for essential neutral amino acids and for serine, asparagine, and glutamine were influenced to different degrees by age, gender, and antiepileptic therapy.

  16. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)


    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  17. Lectin from sainfoin (Onobrychis viciifolia scop.). Complete amino acid sequence. (United States)

    Kouchalakos, R N; Bates, O J; Bradshaw, R A; Hapner, K D


    The complete amino acid sequence of a lectin from sainfoin ( Onobrychis viciifolia Scop . var. Eski ) has been determined by sequential Edman analyses of the intact protein and peptides derived from digests with trypsin and thermolysin. Peptides were purified by pH fractionation, by gel filtration, and by cation-exchange and reverse-phase high-performance liquid chromatography. Seven segments of continuous sequence, accounting for the entire protein, were aligned through sequence comparison with several homologous leguminous lectins to give the final structure. Sainfoin lectin monomer, a glycoprotein which contains a single polypeptide chain of 236 amino acid residues with a molecular weight of 26 509, has amino- and carboxyl-terminal residues of alanine and threonine, respectively. A single residue of cysteine, located at position 33, is the only sulfur-containing amino acid present. Asparagine-118 is the single oligosaccharide attachment site. At least two apparent allelomorphic forms of the protein, having valine or isoleucine at position 49 in equal amounts, were detected. The amino acid sequence of sainfoin lectin exhibits circular permutation relative to that of the homologous protein concanavalin A.

  18. Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss

    Directory of Open Access Journals (Sweden)

    Nina Geidenstam


    Full Text Available Aims. We investigated the relationship between circulating amino acid levels and obesity; to what extent weight loss followed by weight maintenance can correct amino acid abnormalities; and whether amino acids are related to weight loss. Methods. Amino acids associated with waist circumference (WC and BMI were studied in 804 participants from the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC. Changes in amino acid levels were analyzed after weight loss and weight maintenance in 12 obese subjects and evaluated in a replication cohort (n=83. Results. Out of the eight identified BMI-associated amino acids from the MDC-CC, alanine, isoleucine, tyrosine, phenylalanine, and glutamate decreased after weight loss, while asparagine increased after weight maintenance. These changes were validated in the replication cohort. Scores that were constructed based on obesity-associated amino acids and known risk factors decreased in the ≥10% weight loss group with an associated change in BMI (R2=0.16–0.22, p<0.002, whereas the scores increased in the <10% weight loss group (p<0.0004. Conclusions. Weight loss followed by weight maintenance leads to differential changes in amino acid levels associated with obesity. Treatment modifiable scores based on epidemiological and interventional data may be used to evaluate the potential metabolic benefit of weight loss.

  19. Protective effect of carnosic acid against acrylamide-induced toxicity in RPE cells. (United States)

    Albalawi, Aishah; Alhasani, Reem Hasaballah A; Biswas, Lincoln; Reilly, James; Shu, Xinhua


    Acrylamide is a substance that can be neurotoxic in humans and experimental animals. It is formed at different rates in starchy foods cooked at temperatures above 120 °C as a result of interaction between monosaccharides and the amino acid asparagine. Carnosic acid accounts for over 90% of the antioxidant properties of rosemary extract and is a powerful inhibitor of lipid peroxidation in microsomal and liposomal systems. Carnosic acid has been shown to protect against oxidative and inflammatory effects. In order to investigate the protective properties of carnosic acid against acrylamide-induced toxicity in human retinal pigment epithelium (RPE) cells, ARPE-19 cells were pre-treated with 10 μM carnosic acid for 24 h followed by treatment with acrylamide (0.7 or 1 mM) for 24 h. ARPE-19 cells pre-treated with 10 μM carnosic acid showed significantly increased cell viability and decreased cell death rate when compared to ARPE-19 cells treated with acrylamide alone. Activities of SOD and catalase and the level of GSH and expression of NRF2 and a number of anti-oxidant genes were significantly decreased in ARPE-19 cells, while there were significant increases in ROS and MDA; pre-treatment with carnosic acid significantly counteracted these changes. Our results suggest that carnosic acid protected RPE cells from acrylamide-induced toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)


    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  1. Effects of training on the exercise-induced changes in serum amino acids and hormones. (United States)

    Pitkanen, Hannu; Mero, Antti; Oja, Simo S; Komi, Paavo V; Rusko, Heikki; Nummela, Ari; Saransaari, Pirjo; Takala, Timo


    The purpose of this study was to examine power-type athletes to determine changes in amino acid and hormone concentrations in circulating blood following 2 different high-intensity exercise sessions before and after the 5-week training period. Eleven competitive male sprinters and jumpers performed 2 different running exercise sessions: a short run session (SRS) of 3 x 4 x 60 m (intensity of 91-95%) with recoveries of 120 and 360 seconds, and a long run session (LRS) with 20-second intervals (intensity of 56-100%) with recoveries of 100 seconds to exhaustion. The concentrations of serum amino acids, hormones, and lactate were determined from the blood samples drawn after an overnight fast and 10 minutes before and after both SRS and LRS. The average blood lactate concentrations were 12.7 +/- 1.6 mmol;pdL(-1) and 16.6 +/- 1.4 mmol;pdL(-1) (p training period was compared, significant decreases were found in valine (p = 0.048), asparagine (p = 0.029), and taurine (p = 0.030) following SRS. There were significant increases in the absolute hormonal concentration changes following LRS with TE (p = 0.002; 30.4%), cortisol (COR; p = 0.006; 12.0%), and in the TE/COR ratio (p = 0.047; 21.0%) but not in the concentration of growth hormone (GH). The results of the study indicate that the speed and strength training period strongly decreases the fasting concentrations of amino acids in the power-trained athletes in a good anabolic state with the daily protein intake of 1.26 g;pdkg(-1) body weight. At the same time the intensive lactic exercise session induces strong decreases, especially in valine, asparagine, and taurine.

  2. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría


    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  3. An HPLC method for the determination of selected amino acids in human embryo culture medium. (United States)

    Drábková, Petra; Andrlová, Lenka; Kanďár, Roman


    A method for the determination of selected amino acids in culture medium using HPLC with fluorescence detection is described. Twenty hours after intra-cytoplasmic sperm injection, one randomly selected zygote was transferred to the culture medium. After incubation (72 h after fertilization), the culture medium in which the embryo was incubated and blank medium was immediately stored at -80°C. Filtered medium samples were derivatized with ortho-phthalaldehyde (naphthalene-2,3-dicarboxaldehyde), forming highly fluorescent amino acids derivatives. Reverse-phase columns (LichroCART, Purospher STAR RP18e or Ascentis Express C18 ) were used for the separation. The derivatives were analyzed by gradient elution with a mobile phase containing ethanol and sodium dihydrogen phosphate. The analytical performance of this method is satisfactory for all amino acids; the intra-assay coefficients of variation were amino acids before and after human embryo cultivation were observed. After embryo incubation, the levels of all amino acids in the medium were increased, apart from aspartate and asparagine. After the cultivation of some embryos, amino acids which were not part of the medium were detected. Low amino acids turnover was observed in some embryos. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Reversible uptake of molecular oxygen by heteroligand Co(II)-L-α-amino acid-imidazole systems: equilibrium models at full mass balance. (United States)

    Pająk, Marek; Woźniczka, Magdalena; Vogt, Andrzej; Kufelnicki, Aleksander


    The paper examines Co(II)-amino acid-imidazole systems (where amino acid = L-α-amino acid: alanine, asparagine, histidine) which, when in aqueous solutions, activate and reversibly take up dioxygen, while maintaining the structural scheme of the heme group (imidazole as axial ligand and O2 uptake at the sixth, trans position) thus imitating natural respiratory pigments such as myoglobin and hemoglobin. The oxygenated reaction shows higher reversibility than for Co(II)-amac systems with analogous amino acids without imidazole. Unlike previous investigations of the heteroligand Co(II)-amino acid-imidazole systems, the present study accurately calculates all equilibrium forms present in solution and determines the [Formula: see text]equilibrium constants without using any simplified approximations. The equilibrium concentrations of Co(II), amino acid, imidazole and the formed complex species were calculated using constant data obtained for analogous systems under oxygen-free conditions. Pehametric and volumetric (oxygenation) studies allowed the stoichiometry of O2 uptake reaction and coordination mode of the central ion in the forming oxygen adduct to be determined. The values of dioxygen uptake equilibrium constants [Formula: see text] were evaluated by applying the full mass balance equations. Investigations of oxygenation of the Co(II)-amino acid-imidazole systems indicated that dioxygen uptake proceeds along with a rise in pH to 9-10. The percentage of reversibility noted after acidification of the solution to the initial pH ranged within ca 30-60% for alanine, 40-70% for asparagine and 50-90% for histidine, with a rising tendency along with the increasing share of amino acid in the Co(II): amino acid: imidazole ratio. Calculations of the share of the free Co(II) ion as well as of the particular complex species existing in solution beside the oxygen adduct (regarding dioxygen bound both reversibly and irreversibly) indicated quite significant values for the

  5. Composition of antioxidants and amino acids in Stevia leaf infusions. (United States)

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel


    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  6. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.

    Directory of Open Access Journals (Sweden)

    Kaarel Adamberg

    Full Text Available Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus. Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1. The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times. Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1. Our results show that bioprocesses can be made more efficient (using a balanced metabolism by varying the growth conditions.

  7. Obtenção de exoantígenos de Histoplasma capsulatum em meio de neopeptona, glicose, tiamina e asparagina (NGTA Histoplasma capsulatum exocellular antigens. Obtention in neopeptone, glucose, thiamine and asparagine medium (NGTA

    Directory of Open Access Journals (Sweden)

    Nilma Maciel Garcia


    Full Text Available O presente trabalho teve como objetivo a produção de exoantígenos H e M das amostras 58, B-679, A-811 e O187 de Histoplasma capsulatum, utilizando o meio NGTA (neopeptona, glicose, tiamina e asparagina em períodos de cultivo de 1, 2 e 3 meses, a 36ºC, sob agitação constante (50 v.p.m.. Os antígenos brutos foram avaliados contra anti-soro e antígeno de Histoplasma capsulatum de referência (Center for Disease Control, 4 soros de pacientes portadores de paracoccidioidomicose, 7 de histoplasmose e soro hiperimune anti-H. capsulatum produzido em coelhos, através da reação de imunodifusão dupla. Verificou-se que, com exceção de B-679 com 1 mês de crescimento, todos os demais exoantígenos apresentaram as frações H e M de precipitação. Os exoantígenos obtidos de A-811 apresentaram só a banda H. Excetuando-se os exoantígenos 58 e B-679 com 1 mês de crescimento, todos os demais exoantígenos reagiram contra soros de pacientes com histoplasmose. Em relação aos soros de pacientes com paracoccidioidomicose, somente os exoantígenos 58 e O187 não apresentaram reação cruzada. Todos os exoantígenos reagiram frente ao soro hiperimune de coelho anti-H. capsulatum. Para obtenção de exoantígenos de H. capsulatum, sugerimos que as amostras sejam cultivadas sob as condições anteriormente descritas, adotando-se o período de 3 meses de crescimento, utilizando-se exoantígenos de referência como controles da reação.The purpose of this work is obtaining exocellular antigens H and M from 4 H. capsulatum strains using NGTA medium (neopeptone, glucose, thiamine and asparagine for periods of 1,2 and 3 months, at 36ºC and continuously shaken. The exocellular antigens were evaluated by double immunodiffusion test against H. capsulatum rabbit antiserum, 7 histoplasmosis sera, 4 paracoccidioidomycosis sera and a reference antigen and antibody furnished by C.D.C. (Atlanta - USA. Except for the exocellular antigen from strain B.679 with 1

  8. Acidic peptides enhanced genistein-dependent inhibition of human platelet aggregation: potential protective effect of digestible peptides plus genistein against atherosclerosis. (United States)

    Borgwardt, Kerstin; Bonifatius, Susanne; Gardemann, Andreas


    The leading cause of death in the United States and European countries is coronary heart disease. We hypothesized that the ingestion of soy compounds may not only have beneficial effects on atherosclerotic risk by lowering lipid compounds, but also by reducing platelet aggregability. Therefore, we analyzed in vitro the influence of defined and digestible peptides, frequently found in glycinin and beta-conglycinin as important proteins of soy bean, on platelet aggregation of 180 healthy volunteers with or without the isoflavone genistein by aggregometry and flow cytometry. (i) The predominating share of amino acids and acidic, neutral, and basic di- and tripeptides of up to 2 mmol/L did not modify platelet aggregation induced by collagen, adenosine diphosphate, epinephrine, or arachidonic acid. (ii) Genistein inhibited agonist-induced platelet aggregation dose dependently. (iii) In the presence of the acidic peptides glutamate-glutamate and aspartate-aspartate-aspartate (1 mmol/L each), genistein reduced collagen- and ADP-dependent platelet activation stronger than 250 micromol/L of this isoflavone alone. Other peptides were less effective (eg, glutamate-glutamate-glutamate) or ineffective (eg, asparagine-asparagine). (iv) Glutamate-glutamate-glutamate (1 nmol/L), glutamate-glutamate (1 micromol/L), and aspartate-aspartate-aspartate (1 micromol/L) enhanced the inhibition of genistein on platelet aggregation induced by arachidonic acid. Thus, the results of the present in vitro investigation allow the assumption that nutrition with specific compounds of soy--acidic peptides together with genistein--might protect against coronary atherosclerosis by attenuating platelet activity. In vivo studies are warranted to check this assumption.

  9. Amino acids implicated in plant defense are higher in Candidatus Liberibacter asiaticus-tolerant citrus varieties. (United States)

    Killiny, Nabil; Hijaz, Faraj


    Citrus Huanglongbing (HLB), also known as citrus greening, has been threatening the citrus industry since the early 1900's and up to this date there are no effective cures for this disease. Field observations and greenhouse controlled studies demonstrated that some citrus genotypes are more tolerant to Candidatus Liberibacter asiaticus (CLas) pathogen than others. However, the mechanisms underpinning tolerance has not been determined yet. The phloem sap composition of CLas-tolerant and sensitive citrus varieties was studied to identify metabolites that could be responsible for their tolerance to CLas. The citrus phloem sap was collected by centrifugation and was analyzed with gas chromatography-mass spectrometry after methyl chloroformate derivatization. Thirty-three metabolites were detected in the phloem sap of the studied varieties: twenty 20 amino acids, eight 8 organic acids, and five 5 fatty acids. Interestingly, the levels of most amino acids, especially those implicated in plantdefense to pathogens such as phenylalanine, tyrosine, tryptophan, lysine, and asparagine were higher in tolerant varieties. Although the level of organic acids varied between cultivars, this variation was not correlated with citrus resistance to CLas and could be cultivar specific. The fatty acids were found in trace amounts and in most cases their levels were not significantly different among varieties. Better understanding of the mechanisms underpinning citrus tolerance to CLas will help in developing economically tolerant varieties.

  10. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek


    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  11. Influence of initial L-asparagine and glycerol concentrations on the batch growth kinetics of Mycobacterium bovis BCG Influência das concentrações iniciais de asparagina e glicerol sobre a cinética de crescimento submerso de Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    Maria Betania Batista Leal


    Full Text Available The influences of the L-asparagine and glycerol initial concentrations in Sauton medium on the productivities of biomass and colony forming units were studied. The submerged batch cultivations of Mycobacterium bovis were carried out in a 20 L bioreactor. The L-asparagine and glycerol initial concentrations of 4.54 g/L and 25 mL/L, respectively, corresponded to the best biomass productivity, namely 2.5 g/ On the other hand, the concentrations of 2.27 g/L and 25 mL/L, respectively, led to the highest productivity in terms of colony forming units, namely 2.7·10(6 colonies/ In addition, by means of the relative consumption analysis of L-asparagine and glycerol (50 and 26% respectively, it was concluded that the concentrations of such components could be reduced, with respect to the original Sauton medium composition, aiming the obtainment of an optimal BCG vaccine production in the bioreactor.Estudou-se a influência das concentrações iniciais, no meio de Sauton, de asparagina e glicerol sobre as produtividades, expressas em unidades formadoras de colônias e biomassa microbiana, referentes aos cultivos submersos do Mycobacterium bovis, em biorreator de 20 mL. As concentrações iniciais de 2,27 e 25 mL/L de asparagina e glicerol, respectivamente, conduziram à maior produtividade, em unidades formadoras de colônias, a saber 2,7.10(6 colônias/mg.dia. Por outro lado, as concentrações de 4,54 e 25 mL/L dos mesmos componentes, corresponderam à melhor produtividade em biomassa, a saber: 2,5 g/dia. Através das análises dos consumos relativos de asparagina e glicerol (50 e 26% respectivamente, verificou-se também que as concentrações destes componentes podem ser reduzidas na composição original do meio de Sauton, com o objetivo de obter uma produção otimizada de vacina BCG em bioreator.

  12. Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms. (United States)

    Sun, Liping; Liu, Qiuming; Bao, Changjun; Fan, Jian


    Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor , Boletus speciosus , Boletus sinicus , Boletus craspedius , Boletus griseus , Boletus ornatipes , Xerocomus , Suillus placidus , Boletinus pinetorus , Tricholoma terreum , Tricholomopsis lividipileata , Termitomyces microcarpus , and Amanita hemibapha , were analyzed for their free amino acid compositions by online pre-column derivazation reversed phase high-performance liquid chromatography (RP-HPLC) analysis. Twenty free amino acids, aspartic acid, glutamic acid, serine, glycine, alanine, praline, cysteine, valine, methionine, phenylalanine, isoleucine, leucine, lysine, histidine, threonine, asparagines, glutamine, arginine, tyrosine, and tryptophan, were determined. The total free amino acid (TAA) contents ranged from 1462.6 mg/100 g in B. craspedius to 13,106.2 mg/100 g in T. microcarpus . The different species showed distinct free amino acid profiles. The ratio of total essential amino acids (EAA) to TAA was 0.13-0.41. All of the analyzed species showed high contents of hydrophobic amino acids, at 33%-54% of TAA. Alanine, cysteine, glutamine, and glutamic acid were among the most abundant amino acids present in all species. The results showed that the analyzed mushrooms possessed significant free amino acid contents, which may be important compounds contributing to the typical mushroom taste, nutritional value, and potent antioxidant properties of these wild edible mushrooms. Furthermore, the principal component analysis (PCA) showed that the accumulative variance contribution rate of the first four principal components reached 94.39%. Cluster analysis revealed EAA composition and content might be an important parameter to separate the mushroom species, and T. microcarpus and A. hemibapha showed remarkable EAA content among the 13 species.

  13. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism* (United States)

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.


    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  14. Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation. (United States)

    Xie, Rui; Tu, Maobing; Carvin, Jamarius; Wu, Yonnie


    Carbonyl compounds generated in biomass pretreatment hinder the biochemical conversion of biomass hydrolysates to biofuels. A novel approach of detoxifying hydrolysates with amino acids for ethanol production was developed. Among the 20 amino acids assessed for their detoxification efficiency and nucleophilicity, cysteine was the most effective one. It increased both ethanol productivity and final yield of biomass hydrolysates from 0.18 (untreated) to 1.77 g/L/h and from 0.02 to 0.42 g/g, respectively. Detoxification efficiency was followed by histidine and it increased the final yield to 0.42 g/g, then by lysine, tryptophan and asparagine. It was observed all five effective amino acids contained reactive side-chain functional groups, which played important roles in the amino acid detoxification reaction. The study further showed cysteine and glycine detoxifications were temperature and pH dependent. The mechanistic study using mass spectrometry revealed thiazolidine carboxylic acid, a Schiff base, was formed by condensation of aldehyde and cysteine. Published by Elsevier Ltd.

  15. Effects of various amino acids as organic nitrogen sources on the growth and biochemical composition of Chlorella pyrenoidosa. (United States)

    Zhang, Weiguo; Zhang, Zhenhua; Yan, Shaohua


    This study investigated the effects of eighteen l-amino acids on the growth and biochemical composition of Chlorella pyrenoidosa. Under the nitrate deficiency condition, ten l-amino acids were found to exert stronger stimulative effects on the algal growth than the other amino acids. After 10-day culture, addition of 0.5gL(-1) the above mentioned ten amino acids significantly increased the cellular protein contents by 441.3-110.8%, respectively, and significantly decreased the carbohydrate contents by 60.7-16.2%, respectively. Under the normal nitrate condition, the cellular biochemical composition was not significantly affected by addition of serine, leucine, proline, aspartic acid, asparagine, and glycine, whereas addition of aspartic acid and arginine increased the algal biomass by 110.2% and 62.8% compared with the control. Finally, the significance of this work in the biotechnological application of culturing C. pyrenoidosa in organic wastewater rich in amino acids was further discussed. Copyright © 2015. Published by Elsevier Ltd.

  16. Changes in free amino acid, protein, and flavonoid content in jujube (Ziziphus jujube) fruit during eight stages of growth and antioxidative and cancer cell inhibitory effects by extracts. (United States)

    Choi, Suk-Hyun; Ahn, Jun-Bae; Kim, Hyun-Jeong; Im, Nam-Kyung; Kozukue, Nobuyuki; Levin, Carol E; Friedman, Mendel


    Jujube (Ziziphus jujube) was analyzed at eight stages of ripeness (S1-8) for protein, by HPLC and mass spectroscopy for free amino acids and flavonoids, and by colorimetry for total flavonoids and antioxidative activity. The ripe fruit had lower levels of protein, flavonoids, and antioxidative activity than that of the unripe fruit. Free amino acids levels peaked at S5, due mainly to an increase in free asparagine. Extracts were also tested against four cell lines using the MTT cell viability assay. All growth stages dose-dependently inhibited HeLa cervical cancer cells, whereas the inhibition of Hel299 normal lung and A549 lung cancer cells decreased as the fruit matured and was well correlated with the flavonoid content and antioxidative activity. Chang normal liver cells were inhibited by only the S5 extract. U937 lymphoma cells were unaffected by the extracts. These results show the effect of fruit maturity on nutritional and health-promoting components.

  17. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter. (United States)

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald


    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.

  18. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. (United States)

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel


    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  19. Comparative analysis of barophily-related amino acid content in protein domains of Pyrococcus abyssi and Pyrococcus furiosus. (United States)

    Yafremava, Liudmila S; Di Giulio, Massimo; Caetano-Anollés, Gustavo


    Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least ~3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code.

  20. Ascorbic Acid (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops ...

  1. Acid mucopolysaccharides (United States)

    ... this page: // Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  2. Mefenamic Acid (United States)

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  3. Obeticholic Acid (United States)

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  4. Ethacrynic Acid (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  5. Amino acids (United States)

    ... this page: // Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  6. Fatty acids - trans fatty acids (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  7. The why and how of amino acid analytics in cancer diagnostics and therapy. (United States)

    Manig, Friederike; Kuhne, Konstantin; von Neubeck, Cläre; Schwarzenbolz, Uwe; Yu, Zhanru; Kessler, Benedikt M; Pietzsch, Jens; Kunz-Schughart, Leoni A


    Pathological alterations in cell functions are frequently accompanied by metabolic reprogramming including modifications in amino acid metabolism. Amino acid detection is thus integral to the diagnosis of many hereditary metabolic diseases. The development of malignant diseases as metabolic disorders comes along with a complex dysregulation of genetic and epigenetic factors affecting metabolic enzymes. Cancer cells might transiently or permanently become auxotrophic for non-essential or semi-essential amino acids such as asparagine or arginine. Also, transformed cells are often more susceptible to local shortage of essential amino acids such as methionine than normal tissues. This offers new points of attacking unique metabolic features in cancer cells. To better understand these processes, highly sensitive methods for amino acid detection and quantification are required. Our review summarizes the main methodologies for amino acid detection with a particular focus on applications in biomedicine and cancer, provides a historical overview of the methodological pre-requisites in amino acid analytics. We compare classical and modern approaches such as the combination of gas chromatography and liquid chromatography with mass spectrometry (GC-MS/LC-MS). The latter is increasingly applied in clinical routine. We therefore illustrate an LC-MS workflow for analyzing arginine and methionine as well as their precursors and analogs in biological material. Pitfalls during protocol development are discussed, but LC-MS emerges as a reliable and sensitive tool for the detection of amino acids in biological matrices. Quantification is challenging, but of particular interest in cancer research as targeting arginine and methionine turnover in cancer cells represent novel treatment strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Transcriptome and metabolome analyses of sugar and organic acid metabolism in Ponkan (Citrus reticulata) fruit during fruit maturation. (United States)

    Lin, Qiong; Wang, Chengyang; Dong, Wencheng; Jiang, Qing; Wang, Dengliang; Li, Shaojia; Chen, Ming; Liu, Chunrong; Sun, Chongde; Chen, Kunsong


    Ponkan (Citrus reticulata Blanco cv. Ponkan) is an important mandarin citrus in China. However, the low ratio of sugars to organic acids makes it less acceptable for consumers. In this work, three stages (S120, early development stage; S195, commercial harvest stage; S205, delayed harvest stage) of Ponkan fruit were selected for study. Among 28 primary metabolites analyzed in fruit, sugars increased while organic acids in general decreased. RNA-Seq analysis was carried out and 19,504 genes were matched to the Citrus clementina genome, with 85 up-regulated and 59 down-regulated genes identified during fruit maturation. A sucrose phosphate synthase (SPS) gene was included in the up-regulated group, and this was supported by the transcript ratio distribution. Expression of two asparagine transferases (AST), and a specific ATP-citrate lyase (ACL) and glutamate decarboxylase (GAD) members increased during fruit maturation. It is suggested that SPS, AST, ACL and GAD coordinately contribute to sugar accumulation and organic acid degradation during Ponkan fruit maturation. Both the glycolysis pathway and TCA cycle were accelerated during later maturation, indicating the flux change from sucrose metabolism to organic acid metabolism was enhanced, with citrate degradation occurring mainly through the gamma-aminobutyric acid (GABA) and acetyl-CoA pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats

    Directory of Open Access Journals (Sweden)

    Milan Holecek


    Full Text Available Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.

  10. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte


    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  11. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study (United States)

    Zhiani, Rahele


    The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  12. Regulation of intestinal mucosal growth by amino acids. (United States)

    Ray, Ramesh M; Johnson, Leonard R


    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  13. Okadaic acid

    DEFF Research Database (Denmark)

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K


    Okadaic acid (OA) is a polyether fatty acid produced by marine dinoflagellates and the causative agent of diarrhetic shellfish poisoning. The effect of OA on apical endocytosis in the small intestine was studied in organ cultured porcine mucosal explants. Within 0.5-1 h of culture, the toxin caused...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....

  14. Application of self-organising maps towards segmentation of soybean samples by determination of amino acids concentration. (United States)

    Silva, Lívia Ramazzoti Chanan; Angilelli, Karina Gomes; Cremasco, Hágata; Romagnoli, Érica Signori; Galão, Olívio Fernandes; Borsato, Dionisio; Moraes, Larissa Alexandra Cardoso; Mandarino, José Marcos Gontijo


    Soybeans are widely used both for human nutrition and animal feed, since they are an important source of protein, and they also provide components such as phytosterols, isoflavones, and amino acids. In this study, were determined the concentrations of the amino acids lysine, histidine, arginine, asparagine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine present in 14 samples of conventional soybeans and 6 transgenic, cultivated in two cities of the state of Paraná, Londrina and Ponta Grossa. The results were tabulated and presented to a self-organising map for segmentation according planting regions and conventional or transgenic varieties. A network with 7000 training epochs and a 10 × 10 topology was used, and it proved appropriate in the segmentation of the samples using the data analysed. The weight maps provided by the network, showed that all the amino acids were important in targeting the samples, especially isoleucine. Three clusters were formed, one with only Ponta Grossa samples (including transgenic (PGT) and common (PGC)), a second group with Londrina transgenic (LT) samples and the third with Londrina common (LC) samples. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. S-Isovaline Contained in Meteorites, Induces Enantiomeric Excess in D,L-glutamic Acid During Recrystallization (United States)

    Kojo, Shosuke


    S-Isovaline (S-Iva: 6.7 mmol) and D,L-glutamic acid (Glu: 2 mmol) were dissolved in 10 ml of hot water, and the resulting solution was divided in 5 vessels. After recrystallization, the crystals were collected from each vessel, and the enantiomeric excess (ee) of Glu was determined with chemical derivatization using 1-fluoro-2,4-dinitrophenyl- 5-L-leucinamide followed by high-performance liquid chromatography. Ten crystallizations provided all D-rich Glu with ee values of 2.69 % ± 0.81 % (mean ± standard deviation), and those using R-Iva provided all L-rich Glu with ee values of 6.24 % ± 2.20 %. Five recrystallizations of D,L-Glu alone provided ee values of 0.474 % ± 0.33 %. The differences among these three ee values were statistically significant, showing that S-Iva, which was present in meteorites caused a significant induction of ee in this physiological amino acid. This is the first outcome that S-Iva induced ee changes in a physiological amino acid. S-Iva did not induce any ee changes in D,L-asparagine, leucine, valine, methionine, phenylalanine, tryptophan, glutamine, tyrosine, aspartic acid, or histidine under similar recrystallizations.


    Directory of Open Access Journals (Sweden)

    Elena Ciornea


    Full Text Available Antioxidants that make up the defense for Ascomycetes still arouses a major interest because of their hypothetical role as virulence and aggression factors and also as the enzymes that play a key role in cellular defense against ROS produced during microbial metabolic activity. A study of catalase and peroxidase activity dynamics of the species Monilinia laxa (Aderh & Ruhl. Honey cultivated in vitro on medium supplemented with different amino acids was conducted in order to know the biology of the fungi responsible for the appearance of brown rot at various species of stone fruits. We used for this purpose the Leonian medium (in the formula changed by Bonnar, in each variant being added 0, 125 mg of the following amino acids: alanine, glutamic acid, asparagine, aspartic acid, cystine, cysteine, phenylalanine, histidine, valine, lysine, serine, methionine and leucine. We also used a control variant, without amino acids, in final resulting 14 working versions. To determine the catalase activity Sinha method was used, to monitor the peroxidase activity we used Möller method and the experimental measurements carried out at two intervals, were made both of fungus mycelium and culture fluid. We found notable differences in the activity of two enzymes, microbial culture induced both by the age of the culture medium and the type of amino acid introduced in it.

  17. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. (United States)

    Chen, Qingfeng; Westfall, Corey S; Hicks, Leslie M; Wang, Shiping; Jez, Joseph M


    The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg(2+) or Mn(2+) for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4-9-fold reductions in k(cat)/K(m) relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.

  18. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. (United States)

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J


    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  19. Valproic Acid (United States)

    ... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any ...

  20. Carnosic acid. (United States)

    Birtić, Simona; Dussort, Pierre; Pierre, François-Xavier; Bily, Antoine C; Roller, Marc


    Carnosic acid (salvin), which possesses antioxidative and antimicrobial properties, is increasingly exploited within the food, nutritional health and cosmetics industries. Since its first extraction from a Salvia species (∼70 years ago) and its identification (∼50 years ago), numerous articles and patents (∼400) have been published on specific food and medicinal applications of Rosmarinus and Salvia plant extracts abundant in carnosic acid. In contrast, relevant biochemical, physiological or molecular studies in planta have remained rare. In this overview, recent advances in understanding of carnosic acid distribution, biosynthesis, accumulation and role in planta, and its applications are summarised. We also discuss the deficiencies in our understanding of the relevant biochemical processes, and suggest the molecular targets of carnosic acid. Finally, future perspectives and studies related to its potential roles are highlighted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Acid Precipitation (United States)

    Likens, Gene E.


    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  2. Folic Acid (United States)

    ... okra, asparagus, fruits (such as bananas, melons, and lemons) beans, yeast, mushrooms, meat (such as beef liver ... after angioplasty. There is inconsistent evidence on the benefits of taking folic acid after a procedure to ...

  3. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study

    Energy Technology Data Exchange (ETDEWEB)

    Zhiani, Rahele, E-mail:


    Graphical abstract: Dispersion interactions have key role on the adsorption of different amino acids on the graphene and BN-nanosheet surfaces. - Highlights: • The Arginine amino acid makes the most stable complexes with Gra and BN nano sheet. • Dispersion interactions have key role on the amino acid adsorption. • BN nano sheet makes more stable complexes with amino acids compare to the Gra. • Water as a solvent has important effect on these interactions. - Abstract: The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  4. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. (United States)

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra


    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. (United States)

    Jasti, Jayasankar; Furukawa, Hiroyasu; Gonzales, Eric B; Gouaux, Eric


    Acid-sensing ion channels (ASICs) are voltage-independent, proton-activated receptors that belong to the epithelial sodium channel/degenerin family of ion channels and are implicated in perception of pain, ischaemic stroke, mechanosensation, learning and memory. Here we report the low-pH crystal structure of a chicken ASIC1 deletion mutant at 1.9 A resolution. Each subunit of the chalice-shaped homotrimer is composed of short amino and carboxy termini, two transmembrane helices, a bound chloride ion and a disulphide-rich, multidomain extracellular region enriched in acidic residues and carboxyl-carboxylate pairs within 3 A, suggesting that at least one carboxyl group bears a proton. Electrophysiological studies on aspartate-to-asparagine mutants confirm that these carboxyl-carboxylate pairs participate in proton sensing. Between the acidic residues and the transmembrane pore lies a disulphide-rich 'thumb' domain poised to couple the binding of protons to the opening of the ion channel, thus demonstrating that proton activation involves long-range conformational changes.

  6. Tuber-specific silencing of the acid invertase gene substantially lowers the acrylamide-forming potential of potato. (United States)

    Ye, Jingsong; Shakya, Roshani; Shrestha, Pradeep; Rommens, Caius M


    Some popular processed foods including French fries contain small amounts of toxic acrylamide. Efforts to lower the accumulation of this reactive compound by modifying the production process have a negative effect on sensory characteristics and are not broadly applicable. This study optimized a method developed more than a decade ago to lower the accumulation of the acrylamide precursors glucose and fructose in cold-stored tubers. In contrast to the original application, which lowered hexose content by one-third through constitutive expression of an antisense copy of the cold-inducible acid invertase (Inv) gene, the current approach was based on tuber-specific expression of an Inv-derived inverted repeat. Stored tubers of transgenic plants contained as little as 2% of the reducing sugars that accumulated in controls. This decline in glucose and fructose formation is counterbalanced by increased sucrose and starch levels. However, it did not trigger any phenotypic changes and also did not affect the formation of free asparagine, ascorbic acid, phenylalanine, and chlorogenic acid. Importantly, French fries from the low-invertase tubers contained up to 8-fold reduced amounts of acrylamide. Given the important role of processed potato products in the modern Western diet, a replacement of current varieties with the low-hexose potatoes would reduce the average daily intake of acrylamide by one-fourth.

  7. Relation of soya bean meal level to the concentration of plasma free amino acids and body growth in white rats. (United States)

    Mandal, Tapas K; Parvin, Nargish; Mondal, Santanu; Saxena, Vijaylaxmi; Saxena, Ashok K; Sarkar, Sabyasachi; Saha, Mitali


    Amino acid (AA) levels in plasma and body growth were determined in rats (n20) fed diets with different soya bean meal levels. Free AA in plasma was determined by reversed-phase high-pressure liquid chromatography. We have used four levels of protein diets like 8%, 15%, 23% and 35% in this trial. Rats which were fed the low-protein (8%) diet with low percentage of soya bean meal were found to be growth-retarded. The body weight gain of high protein group (35%) was lower than that of the 23% groups. In the rats fed with the low-soya bean meal diet, some nonessential AA (NEAA) in plasma like asparagine, aspartic acid, cysteine, glutamic acid and serine increased, whereas the essential AA (EAA), with the exception of arginine, methionine and valine decreased. Here, plasma EAA-to-NEAA ratios were not correlated to growth and experimental diet. We hypothesize that AA metabolism is associated to changes in growth in rats on different protein intake. This study has showed the sensitivity of body mass gain, feed intake, feed conversion rate of rats to four levels of protein in the diet under controlled experimental conditions. © 2011 Blackwell Verlag GmbH.

  8. Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. (United States)

    Mahbub, M H; Yamaguchi, Natsu; Takahashi, Hidekazu; Hase, Ryosuke; Ishimaru, Yasutaka; Sunagawa, Hiroshi; Amano, Hiroki; Kobayashi-Miura, Mikiko; Kanda, Hideyuki; Fujita, Yasuyuki; Yamamoto, Hiroshi; Yamamoto, Mai; Kikuchi, Shinya; Ikeda, Atsuko; Kageyama, Naoko; Nakamura, Mina; Tanabe, Tsuyoshi


    Previous studies demonstrated independent contributions of plasma free amino acids (PFAAs) and high uric acid (UA) concentrations to increased risks of lifestyle-related diseases (LSRDs), but the important associations between these factors and LSRDs remain unknown. We quantified PFAAs and UA amongst Japanese subjects without LSRDs (no-LSRD, n = 2805), and with diabetes mellitus (DM, n = 415), dyslipidemia (n = 3207), hypertension (n = 2736) and metabolic syndrome (MetS, n = 717). The concentrations of most amino acids differed significantly between the subjects with and without hyperuricemia (HU) and also between the no-LSRD and LSRD groups (p < 0.05 to 0.001). After adjustment, the logistic regression analyses revealed that lysine in DM, alanine, proline and tyrosine in dyslipidemia, histidine, lysine and ornithine in hypertension, and lysine and tyrosine in MetS demonstrated significant positive associations with HU among the patients with LSRDs only (p < 0.05 to 0.005). By contrast, arginine, asparagine and threonine showed significant inverse associations with HU in the no-LSRD group only (p < 0.05 to 0.01). For the first time, we provide evidence for distinct patterns of association between PFAAs and HU in LSRDs, and postulate the possibility of interplay between PFAAs and UA in their pathophysiology.

  9. Lipoic Acid

    Directory of Open Access Journals (Sweden)

    Ramazan Tetikcok


    Full Text Available Lipoic acid, which is defined as a miralce antioxidan, is used by many departments. Eventhough clinical using data are very limited , it is used in treatment of diabetic neuropathy, physical therapy and rehabilitation clinic, dermatology clinic, geriatric clinics. It has usage area for cosmetic purposes. Although there are reports there are the direction of the effectiveness in these areas, the works done are not enough. Today lipoic acid , used in many areas ,is evaluated as universal antioxidant [J Contemp Med 2015; 5(3.000: 206-209

  10. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency. (United States)

    Alves, Marta; Chicau, Paula; Matias, Helena; Passarinho, José; Pinheiro, Carla; Ricardo, Cândido Pinto


    We analysed the changes in the metabolites of Lupinus albus organs (leaf-blades, petioles, apexes, hypocotyls and roots) as a consequence of B deficiency. The deficiency did not affect malate concentration and induced only minor changes in the sugar content, suggesting that the carbohydrate metabolism is little affected by the deficiency. Contrarily, marked changes in the content of free amino acids were observed, with some specific variations associated with the different organs. These changes indicate that various aspects of metabolism implicated in the amino acid accumulation were affected by B deficiency. Most of the detected changes appear to have implications with some stress responses or signalling processes. Asparagine and proline that increase in many stresses also accumulated in petioles, apexes and hypocotyls. Accumulation of γ-aminobutyric acid shunt amino acids, indicative of production of reactive oxygen species, occurs in the same three organs and also the roots. The increase in the branched-chain amino acids, observed in all organs, suggests the involvement of B with the cytoskeleton, whereas glycine decrease in leaf-blades and active growing organs (apexes and roots) could be associated with the proposed role of this amino acids in plant signalling in processes that might be associated with the decreased growth rates observed in B deficiency. Despite the admitted importance of free amino acids in plant metabolism, the available information on this matter is scarce. So our results bring new information concerning the effects of B deficiency in the metabolism of the several L. albus organs. Copyright © Physiologia Plantarum 2011.

  11. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies.

    Directory of Open Access Journals (Sweden)

    Hongxia Zhang

    Full Text Available BACKGROUND: Perfluorododecanoic acid (PFDoA is a perfluorinated carboxylic chemical (PFC that has broad applications and distribution in the environment. While many studies have focused on hepatotoxicity, immunotoxicity, and reproductive toxicity of PFCAs, few have investigated renal toxicity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used comparative proteomic and metabonomic technologies to provide a global perspective on renal response to PFDoA. Male rats were exposed to 0, 0.05, 0.2, and 0.5 mg/kg/day of PFDoA for 110 days. After 2-D DIGE and MALDI TOF/TOF analysis, 79 differentially expressed proteins between the control and the PFDoA treated rats (0.2 and 0.5 mg-dosed groups were successfully identified. These proteins were mainly involved in amino acid metabolism, the tricarboxylic acid cycle, gluconeogenesis, glycolysis, electron transport, and stress response. Nuclear magnetic resonance-based metabonomic analysis showed an increase in pyruvate, lactate, acetate, choline, and a variety of amino acids in the highest dose group. Furthermore, the profiles of free amino acids in the PFDoA treated groups were investigated quantitatively by high-coverage quantitative iTRAQ-LC MS/MS, which showed levels of sarcosine, asparagine, histidine, 1-methylhistidine, Ile, Leu, Val, Trp, Tyr, Phe, Cys, and Met increased markedly in the 0.5 mg dosed group, while homocitrulline, α-aminoadipic acid, β-alanine, and cystathionine decreased. CONCLUSION/SIGNIFICANCE: These observations provide evidence that disorders in glucose and amino acid metabolism may contribute to PFDoA nephrotoxicity. Additionally, α(2u globulin may play an important role in protecting the kidneys from PFDoA toxicity.

  12. Perfluorooctanoic acid

    NARCIS (Netherlands)

    de Voogt, P.; Wexler, P.


    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  13. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. (United States)

    McKenzie, Marian J; Chen, Ronan K Y; Harris, John C; Ashworth, Matthew J; Brummell, David A


    Cold-induced sweetening (CIS) is a serious post-harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark-coloured and bitter-tasting product and generating the probable carcinogen acrylamide as a by-product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS-susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS-resistant line increased susceptibility to CIS. The results show that post-translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS. © 2012 Blackwell Publishing Ltd.

  14. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. (United States)

    Ohara-Takada, Akiko; Matsuura-Endo, Chie; Chuda, Yoshihiro; Ono, Hiroshi; Yada, Hiroshi; Yoshida, Mitsuru; Kobayashi, Akira; Tsuda, Shogo; Takigawa, Shigenobu; Noda, Takahiro; Yamauchi, Hiroaki; Mori, Motoyuki


    Changes in the sugar and amino acid contents of potato tubers during short-term storage and the effect on the acrylamide level in chips after frying were investigated. The acrylamide content in chips began to increase after 3 days of storage at 2 degrees C in response to the increase of glucose and fructose contents in the tubers. There was strong correlation between the reducing sugar content and acrylamide level, R(2)=0.873 for fructose and R(2)=0.836 for glucose. The sucrose content had less correlation with the acrylamide content because of its decrease after 4 weeks of storage at 2 degrees C, while the reducing sugar in potato tubers and the acrylamide in chips continued to increase. The contents of the four amino acids, i.e., asparatic acid, asparagine, glutamic acid and glutamine, showed no significant correlation with the acrylamide level. These results suggest that the content of reducing sugars in potato tubers determined the degree of acrylamide formation in chips. The chip color, as evaluated by L* (lightness), was correlated well with the acrylamide content.

  15. Free amino acids in full-term and pre-term human milk and infant formula. (United States)

    Chuang, Chih-Kuang; Lin, Shuan-Pei; Lee, Hung-Chang; Wang, Tuen-Jen; Shih, Yu-Shu; Huang, Fu-Yuan; Yeung, Chun-Yan


    Although the nutritional value of human milk has been thoroughly studied, few reports describing its free amino acid (FAA) content have been published. Although infant formulas are designed to approximate the nutrient composition of human milk, the content and concentration of free amino acids are unknown. We compared the FAA concentrations of milk from mothers of preterm and full-term infants with those in several infant formulas. Human milk was obtained during three different stages of lactation (colostral, transitional and mature milk). Sixty-seven samples were collected from 44 healthy mothers of term infants and 23 mothers of premature infants 29 to 36 weeks gestation (mean 33 weeks). Two brands of powdered term formula (TF-A and TF-B) and two brands designed for preterm infants (PTF-A and PTF-B )were also studied. Ion exchange chromatography was used for free amino acid analysis. The mean concentration of total FAA in human milk was significantly higher than any of the infant formulas (8139 micromol/L for pre-term human milk; 3462 micromol/L for full term human milk; TF-A, 720 micromol/L; TF-B, 697 micromol/L; PTF-A, 820 micromol/L; PTF-B, 789 micromol/L) (P milk was significantly higher than in human transitional and mature milks (P milk and preterm milk except for phosphoethanolamine, hydroxyproline, asparagine, and alpha-amino-eta-butyric acid. There were significant differences in all FAA concentrations between all human milks and infant formulas (P milk and decreases through the transitional and mature milk stages. FAA is higher in all human milks than in infant formulas.

  16. Levulinic acid

    Directory of Open Access Journals (Sweden)

    Barbara Hachuła


    Full Text Available The title compound (systematic name: 4-oxopentanoic acid, C5H8O3, is close to planar (r.m.s. deviation = 0.0762 Å. In the crystal, the molecules interact via O—H...O hydrogen bonds in which the hydroxy O atoms act as donors and the ketone O atoms in adjacent molecules as acceptors, forming C(7 chains along [20-1].

  17. Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. (United States)

    Vuralhan, Zeynep; Luttik, Marijke A H; Tai, Siew Leng; Boer, Viktor M; Morais, Marcos A; Schipper, Dick; Almering, Marinka J H; Kötter, Peter; Dickinson, J Richard; Daran, Jean-Marc; Pronk, Jack T


    Aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae CEN.PK113-7D were grown with different nitrogen sources. Cultures grown with phenylalanine, leucine, or methionine as a nitrogen source contained high levels of the corresponding fusel alcohols and organic acids, indicating activity of the Ehrlich pathway. Also, fusel alcohols derived from the other two amino acids were detected in the supernatant, suggesting the involvement of a common enzyme activity. Transcript level analysis revealed that among the five thiamine-pyrophospate-dependent decarboxylases (PDC1, PDC5, PDC6, ARO10, and THI3), only ARO10 was transcriptionally up-regulated when phenylalanine, leucine, or methionine was used as a nitrogen source compared to growth on ammonia, proline, and asparagine. Moreover, 2-oxo acid decarboxylase activity measured in cell extract from CEN.PK113-7D grown with phenylalanine, methionine, or leucine displayed similar broad-substrate 2-oxo acid decarboxylase activity. Constitutive expression of ARO10 in ethanol-limited chemostat cultures in a strain lacking the five thiamine-pyrophosphate-dependent decarboxylases, grown with ammonia as a nitrogen source, led to a measurable decarboxylase activity with phenylalanine-, leucine-, and methionine-derived 2-oxo acids. Moreover, even with ammonia as the nitrogen source, these cultures produced significant amounts of the corresponding fusel alcohols. Nonetheless, the constitutive expression of ARO10 in an isogenic wild-type strain grown in a glucose-limited chemostat with ammonia did not lead to any 2-oxo acid decarboxylase activity. Furthermore, even when ARO10 was constitutively expressed, growth with phenylalanine as the nitrogen source led to increased decarboxylase activities in cell extracts. The results reported here indicate the involvement of posttranscriptional regulation and/or a second protein in the ARO10-dependent, broad-substrate-specificity decarboxylase activity.

  18. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N


    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  19. Temperature dependence of amino acid side chain IR absorptions in the amide I' region. (United States)

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan


    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  20. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit

    Directory of Open Access Journals (Sweden)

    Salvioli Alessandra


    Full Text Available Abstract Background Arbuscular mycorrhizal (AM symbiosis is the most widespread association between plant roots and fungi in natural and agricultural ecosystems. This work investigated the influence of mycorrhization on the economically relevant part of the tomato plant, by analyzing its impact on the physiology of the fruit. To this aim, a combination of phenological observations, transcriptomics (Microarrays and qRT-PCR and biochemical analyses was used to unravel the changes that occur on fruits from Micro-Tom tomato plants colonized by the AM fungus Glomus mosseae. Results Mycorrhization accelerated the flowering and fruit development and increased the fruit yield. Eleven transcripts were differentially regulated in the fruit upon mycorrhization, and the mycorrhiza-responsive genes resulted to be involved in nitrogen and carbohydrate metabolism as well as in regulation and signal transduction. Mycorrhization has increased the amino acid abundance in the fruit from mycorrhizal plants, with glutamine and asparagine being the most responsive amino acids. Conclusions The obtained results offer novel data on the systemic changes that are induced by the establishment of AM symbiosis in the plant, and confirm the work hypothesis that AM fungi may extend their influence from the root to the fruit.

  1. Ferrocenylphosphonic acid

    Directory of Open Access Journals (Sweden)

    Bao-Zhang Yang


    Full Text Available In the title compound, [Fe(C5H5(C5H6O3P], the phosphate group is bonded to the ferrocene unit with a P—C bond length of 1.749 (3 Å. In the crystal, six ferrocenylphosphonic acid molecules are connected by 12 strong intermolecular O—H...O hydrogen bonds, leading to the formation of a highly distorted octahedral cage. The volume of the octahedral cage is about 270 Å3.

  2. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids. (United States)

    Ali, Safdar; Majid, Abdul; Khan, Asifullah


    Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our

  3. Folic Acid and Pregnancy (United States)

    ... Teens a Voice in Health Care Decisions Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... conception and during early pregnancy . What Is Folic Acid? Folic acid, sometimes called folate, is a B ...

  4. Effect of N deposition on tree amino acid concentrations in two Sphagnum species

    Energy Technology Data Exchange (ETDEWEB)

    Karsisto, M.; Kitunen, V. [Finnish Forest Research Inst., Vantaa (Finland). Vantaa Research Centre; Jauhiainen, J. [Joensuu Univ. (Finland). Dept. of Biology; Vasander, H. [Helsinki Univ. (Finland). Dept. of Forest Ecology


    Nitrogen saturation of ecosystems occurs when the availability of nitrogen is not a growth limiting factor. This situation can be reached through fertilisation or by nitrogen deposition. Prolonged nitrogen saturation may overload the ecosystem and cause changes in the vigour and eventually in the composition of plant communities. But before this stage is reached, certain changes in nitrogen metabolism occur. These changes can be used as an early warning of nitrogen overload to ecosystems. A change in the amino acid pool of plants has been used as an indication of various kind of stress, including, temperature, nutrient imbalance, shading, drought or excess water. It has been postulated that such stresses have an effect on protein synthesis but not on the nitrogen uptake of plants. The result is an increase in the concentration of NH{sub 4}{sup +} ions in plant cells, which may have toxic effects to the plant and the processes that assimilate the free NH{sub 4}{sup +} ions. One of such process is the synthesis of amino acids, especially those containing a significant proportion of nitrogen, e.g. arginine, glutamine and asparagine. This study about the quantification of amino acids in two species of Sphagnum mosses is part of a larger study, the aim of which is to clarify how a number of Sphagnum species will cope with climatic change and nitrogen deposition. Sphagna are the most important members of the peat forming communities in the boreal zone. Sphagnum communities are formed by species specialised to grow in conditions of low nutrient availability, mainly provided via deposition. The present structure and composition of mire communities may be endangered due to elevated levels of nitrogen deposition that have persisted over the last few decades. (20 refs.)

  5. New bioactive fatty acids (United States)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  6. Pathways of Amino Acid Degradation in Nilaparvata lugens (Stål) with Special Reference to Lysine-Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKR/SDH). (United States)

    Wan, Pin-Jun; Yuan, San-Yue; Tang, Yao-Hua; Li, Kai-Long; Yang, Lu; Fu, Qiang; Li, Guo-Qing


    Nilaparvata lugens harbors yeast-like symbionts (YLSs). In present paper, a genome-wide analysis found 115 genes from Ni. lugens and 90 genes from YLSs that were involved in the metabolic degradation of 20 proteinogenic amino acids. These 205 genes encoded for 77 enzymes. Accordingly, the degradation pathways for the 20 amino acids were manually constructed. It is postulated that Ni. lugens can independently degrade fourteen amino acids (threonine, alanine, glycine, serine, aspartate, asparagine, phenylalanine, tyrosine, glutamate, glutamine, proline, histidine, leucine and lysine). Ni. lugens and YLSs enzymes may work collaboratively to break down tryptophan, cysteine, arginine, isoleucine, methionine and valine. We cloned a lysine-ketoglutarate reductase/saccharopine dehydrogenase gene (Nllkr/sdh) that encoded a bifunctional enzyme catalyzing the first two steps of lysine catabolism. Nllkr/sdh is widely expressed in the first through fifth instar nymphs and adults, and is highly expressed in the fat body, ovary and gut in adults. Ingestion of dsNllkr/sdh by nymphs successfully knocked down the target gene, and caused nymphal/adult mortality, shortened nymphal development stage and reduced adult fresh weight. Moreover, Nllkr/sdh knockdown resulted in three defects: wings were shortened and thickened; cuticles were stretched and thinned; and old nymphal cuticles remained on the tips of legs and abdomen and were not completely shed. These data indicate that impaired lysine degradation negatively affects the survival and development of Ni. lugens.

  7. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John. (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T


    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. [Behavior of free amino acids in severely burned patients (II: In the urine). Clinical studies]. (United States)

    Balogh, D


    Urinary amino acids were measured in 10 severely burned patients weekly during 4 weeks after burning. For control the same measurements have been made in 12 multiple injured patients during the first two weeks after the accident. In burned patients the renal loss of free amino acids was up to 3 g/24 h +/- 1 in the first week, together with a high excreation of sodium (450 mmol/24 h +/- 73) in the first week. Urinary output of ornithin (highest value in the 2nd week: 1093 +/- 525% of normal) and lysin (highest value in the 2nd week: 1093 +/- 525% of normal) and Lysin (highest value in the 1st week: 654 +/- 166% of normal) was increased and caused an augmented loss of cystin (645 +/- 133% of normal in the first week) and 742 +/- 64% of normal in the second week. In the first and second week after burning the excretion of valin was up to 12 times the normal. Methionine-excretion staid high (5 times the normal) during all 4 weeks. The mean rate of 3-methylhistidine output in urine (80 +/- 38 mg/24 h) was elevated from the second until fourth week, suggesting muscle protein breakdown. In the control group urinary excretion of glutamin and asparagin (1st week: 608 +/- 97% of normal), threonin (2nd week: 693 +/- 240% of normal), serin (2nd week: 517 +/- 232% of normal) and histidin (1st week: 358 +/- 115% of normal) was high. Only urinary citrullin, isoleucin, prolin and taurin were not elevated in both groups during all 4 weeks.

  9. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation.

    Directory of Open Access Journals (Sweden)

    Liman Wang

    Full Text Available Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA. Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development.

  10. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. (United States)

    Yan, Jun; Yan, Hui; Liu, Li Xue; Chen, Wen Feng; Zhang, Xiao Xia; Verástegui-Valdés, Myrthala M; Wang, En Tao; Han, Xiao Zeng


    One Gram-negative, aerobic, motile, rod-shaped bacterium, designated as FH14 T , was isolated from nodules of Phaseolus vulgaris grown in Hidalgo State of Mexico. Results based upon 16S rRNA gene (≥99.8 % similarities to known species), concatenated sequence (recA, atpD and glnII) analysis of three housekeeping genes (≤93.4 % similarities to known species) and average nucleotide identity (ANI) values of genome sequence (ranged from 87.6 to 90.0 % to related species) indicated the distinct position of strain FH14 T within the genus Rhizobium. In analyses of symbiotic genes, only nitrogen fixation gene nifH was amplified that had nucleotide sequence identical to those of the bean-nodulating strains in R. phaseoli and R. vallis, while nodulation gene nodC gene was not amplified. The failure of nodulation to its original host P. vulgaris and other legumes evidenced the loss of its nodulation capability. Strain FH14 T contained summed feature 8 (C 18:1 ω6c/C 18:1 ω7c, 59.96 %), C 16:0 (10.6 %) and summed feature 2 (C 12:0 aldehyde/unknown 10.928, 10.24 %) as the major components of cellular fatty acids. Failure to utilize alaninamide, and utilizing L-alanine, L-asparagine and γ-amino butyric acid as carbon source, distinguished the strain FH14 T from the type strains for the related species. The genome size and DNA G+C content of FH14 T were 6.94 Mbp and 60.8 mol %, respectively. Based on those results, a novel specie in Rhizobium, named Rhizobium hidalgonense sp. nov., was proposed, with FH14 T (=HAMBI 3636 T  = LMG 29288 T ) as the type strain.

  11. Comparative Transcriptomics Reveals Jasmonic Acid-Associated Metabolism Related to Cotton Fiber Initiation. (United States)

    Wang, Liman; Zhu, Youmin; Hu, Wenjing; Zhang, Xueying; Cai, Caiping; Guo, Wangzhen


    Analysis of mutants and gene expression patterns provides a powerful approach for investigating genes involved in key stages of plant fiber development. In this study, lintless-fuzzless XinWX and linted-fuzzless XinFLM with a single genetic locus difference for lint were used to identify differentially expressed genes. Scanning electron microscopy showed fiber initiation in XinFLM at 0 days post anthesis (DPA). Fiber transcriptional profiling of the lines at three initiation developmental stages (-1, 0, 1 DPA) was performed using an oligonucleotide microarray. Loop comparisons of the differentially expressed genes within and between the lines was carried out, and functional classification and enrichment analysis showed that gene expression patterns during fiber initiation were heavily associated with hormone metabolism, transcription factor regulation, lipid transport, and asparagine biosynthetic processes, as previously reported. Further, four members of the allene-oxide cyclase (AOC) family that function in jasmonate biosynthesis were parallel up-regulation in fiber initiation, especially at -1 DPA, compared to other tissues and organs in linted-fuzzed TM-1. Real time-quantitative PCR (RT-qPCR) analysis in different fiber mutant lines revealed that AOCs were up-regulated higher at -1 DPA in lintless-fuzzless than that in linted-fuzzless and linted-fuzzed materials, and transcription of the AOCs was increased under jasmonic acid (JA) treatment. Expression analysis of JA biosynthesis-associated genes between XinWX and XinFLM showed that they were up-regulated during fiber initiation in the fuzzless-lintless mutant. Taken together, jasmonic acid-associated metabolism was related to cotton fiber initiation. Parallel up-regulation of AOCs expression may be important for normal fiber initiation development, while overproduction of AOCs might disrupt normal fiber development.

  12. A Novel Multivariate Index for Pancreatic Cancer Detection Based On the Plasma Free Amino Acid Profile.

    Directory of Open Access Journals (Sweden)

    Nobuyasu Fukutake

    Full Text Available The incidence of pancreatic cancer (PC continues to increase in the world, while most patients are diagnosed with advanced stages and survive <12 months. This poor prognosis is attributable to difficulty of early detection. Here we developed and evaluated a multivariate index composed of plasma free amino acids (PFAAs for early detection of PC.We conducted a cross-sectional study in multi-institutions in Japan. Fasting plasma samples from PC patients (n = 360, chronic pancreatitis (CP patients (n = 28, and healthy control (HC subjects (n = 8372 without apparent cancers who were undergoing comprehensive medical examinations were collected. Concentrations of 19 PFAAs were measured by liquid chromatography-mass spectrometry. We generated an index consisting of the following six PFAAs: serine, asparagine, isoleucine, alanine, histidine, and tryptophan as variables for discrimination in a training set (120 PC and matching 600 HC and evaluation in a validation set (240 PC, 28 CP, and 7772 HC.Several amino acid concentrations in plasma were significantly altered in PC. Plasma tryptophan and histidine concentrations in PC were particularly low, while serine was particularly higher than that of HC. The area under curve (AUC based on receiver operating characteristic (ROC curve analysis of the resulting index to discriminate PC from HC were 0.89 [95% confidence interval (CI, 0.86-0.93] in the training set. In the validation set, AUCs based on ROC curve analysis of the PFAA index were 0.86 (95% CI, 0.84-0.89 for all PC patients versus HC subjects, 0.81 (95% CI, 0.75-0.86 for PC patients from stage IIA to IIB versus HC subjects, and 0.87 (95% CI, 0.80-0.93 for all PC patients versus CP patients.These findings suggest that the PFAA profile of PC was significantly different from that of HC. The PFAA index is a promising biomarker for screening and diagnosis of PC.

  13. [Teichoic acids from lactic acid bacteria]. (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K


    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  14. Uric acid test (image) (United States)

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... for testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  15. Uric acid - urine (United States)

    ... this page: // Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  16. Methylmalonic acid blood test (United States)

    ... page: // Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid ...

  17. Plasma amino acids (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  18. The effect of intraumbilical fetal nutrition via a subcutaneously implanted port system on amino acid concentration by severe IUGR human fetuses. (United States)

    Tchirikov, Michael; Zhumadilov, Zhaxybay Sh; Bapayeva, Gauri; Bergner, Michael; Entezami, Michael


    To determine if intrauterine intraumbilical supplementation with amino acids (AA) and glucose can improve neonatal outcome of severe growth restricted human fetuses (IUGR). Prospective pilot study of intrauterine treatment of severe IUGR fetuses [n=14, 27 weeks of gestation (range 23-31)] with cerebroplacental ratio IUGR fetuses in both groups. Long-term supplementation with a commercial AA formula led to a slight, but not significant, reduction of histidine, threonine, lysine, arginine, asparagine and glutamine. However, the concentration of tryptophan and glutamic acid slightly increased. HBO can be combined with AA supplementation via a port system. In one case, the port system was also successfully used for fetal blood transfusion. Intravascular treatment of IUGR with fetal nutrition can prolong pregnancy with severe placental insufficiency and brain sparing for many weeks. However, rather than normalizing AA concentrations, an enhanced AA imbalance was observed in IUGR fetuses following supplementation. These deviations in AA concentrations prevent the recommendation for use of commercial AA solutions for prenatal treatment of extreme preterm IUGR fetuses.

  19. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)


    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  20. Effects of dietary valine:lysine ratio on the performance, amino acid composition of tissues and mRNA expression of genes involved in branched-chain amino acid metabolism of weaned piglets

    Directory of Open Access Journals (Sweden)

    Ye Tong Xu


    Full Text Available Objective The goal of this study was to investigate the effects of dietary standard ileal digestible (SID valine:lysine ratios on performance, intestinal morphology, amino acids of liver and muscle, plasma indices and mRNA expression of branched-chain amino acid (BCAA metabolism enzymes. Methods A total of 144 crossbred pigs (Duroc×Landrace×Large White weaned at 28±4 days of age (8.79±0.02 kg body weight were randomly allotted to 1 of 4 diets formulated to provide SID valine:lysine ratios of 50%, 60%, 70%, or 80%. Each diet was fed to 6 pens of pigs with 6 pigs per pen (3 gilts and 3 barrows for 28 days. Results Average daily gain increased quadratically (p<0.05, the villous height of the duodenum, jejunum and ileum increased linearly (p<0.05 as the SID valine:lysine ratio increased. The concentrations of plasma α-keto isovaleric and valine increased linearly (p<0.05, plasma aspartate, asparagine and cysteine decreased (p<0.05 as the SID valine:lysine ratio increased. An increase in SID lysine:valine levels increased mRNA expression levels of mitochondrial BCAA transaminase and branched-chain α-keto acid dehydrogenase in the longissimus dorsi muscle (p<0.05. Conclusion Using a quadratic model, a SID valine:lysine ratio of 68% was shown to maximize the growth of weaned pigs which is slightly higher than the level recommended by the National Research Council [6].

  1. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. (United States)

    Friedman, Mendel


    The reaction of ninhydrin with primary amino groups to form the purple dye now called Ruhemann's purple (RP) was discovered by Siegfried Ruhemann in 1910. In addition, imines such as pipecolic acid and proline, the guanidino group of arginine, the amide groups of asparagine, the indole ring of tryptophan, the sulfhydryl group of cysteine, amino groups of cytosine and guanine, and cyanide ions also react with ninhydrin to form various chromophores of analytical interest. Since its discovery, extensive efforts have been made to apply manual and automated ninhydrin reactions as well as ninhydrin spray reagents to the detection, isolation, and analysis of numerous compounds of interest across a broad spectrum of disciplines. These include agricultural, biochemical, clinical, environmental, food, forensic, histochemical, microbiological, medical, nutritional, plant, and protein sciences. This reaction is unique among chromogenic reactions in that at pH 5.5 it results in the formation of the same soluble chromophore by all primary amines which react, be they amines, amino acids, peptides, proteins, and even ammonia. Because the chromophore is not chemically bound to the protein or other insoluble material, it is not lost when the insoluble substrate is removed by centrifugation or filtration after the reaction is completed. The visible color of the chromophore is distinctive and is generally not affected by the yellow colors present in many food, plant, and tissue extracts. Adaptations of the classical ninhydrin reaction to specialized needs in analytical chemistry and biochemistry include the use of acid, alkaline, and fluorogenic ninhydrin reagents. To cross-fertilize information among several disciplines wherein an interest in the ninhydrin reaction has developed, and to enhance its utility, this review attempts to integrate and correlate the widely scattered literature on ninhydrin reactions of a variety of structurally different compounds. Specifically covered are

  2. Domain Mapping of Heat Shock Protein 70 Reveals That Glutamic Acid 446 and Arginine 447 Are Critical for Regulating Superoxide Dismutase 2 Function. (United States)

    Afolayan, Adeleye J; Alexander, Maxwell; Holme, Rebecca L; Michalkiewicz, Teresa; Rana, Ujala; Teng, Ru-Jeng; Zemanovic, Sara; Sahoo, Daisy; Pritchard, Kirkwood A; Konduri, Girija G


    Stress-inducible heat shock protein 70 (hsp70) interacts with superoxide dismutase 2 (SOD2) in the cytosol after synthesis to transfer the enzyme to the mitochondria for subsequent activation. However, the structural basis for this interaction remains to be defined. To map the SOD2-binding site in hsp70, mutants of hsp70 were made and tested for their ability to bind SOD2. These studies showed that SOD2 binds in the amino acid 393-537 region of the chaperone. To map the hsp70-binding site in SOD2, we used a series of pulldown assays and showed that hsp70 binds to the amino-terminal domain of SOD2. To better define the binding site, we used a series of decoy peptides derived from the primary amino acid sequence in the SOD2-binding site in hsp70. This study shows that SOD2 specifically binds to hsp70 at 445GERAMT450 Small peptides containing GERAMT inhibited the transfer of SOD2 to the mitochondria and decreased SOD2 activity in vitro and in vivo To determine the amino acid residues in hsp70 that are critical for SOD2 interactions, we substituted each amino acid residue for alanine or more conservative residues, glutamine or asparagine, in the GERAMT-binding site. Substitutions of E446A/Q and R447A/Q inhibited the ability of the GERAMT peptide to bind SOD2 and preserved SOD2 function more than other substitutions. Together, these findings indicate that the GERAMT sequence is critical for hsp70-mediated regulation of SOD2 and that Glu446 and Arg447 cooperate with other amino acid residues in the GERAMT-binding site for proper chaperone-dependent regulation of SOD2 antioxidant function. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)


    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  4. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)


    arginine, asparagine, lysine, methionine, valine, glutamic acid, leucine, cysteine, threonine, alanine and .... amino acid content (g/100g protein) of seeds of. African walnut from south eastern Nigeria. Treatment. Alanine. Asparagine. Aspartic acid. Cysteine. Glutamine ..... Akpuaka, M. U. and Nwankor, E. (2000) Extraction,.

  5. Acid Thunder: Acid Rain and Ancient Mesoamerica (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.


    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  6. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion. (United States)

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi


    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Long-term consumption of dried bonito dashi (a traditional Japanese fish stock) reduces anxiety and modifies central amino acid levels in rats. (United States)

    Funatsu, Shoichiro; Kondoh, Takashi; Kawase, Takahiro; Ikeda, Hiromi; Nagasawa, Mao; Denbow, D Michael; Furuse, Mitsuhiro


    Dried bonito dashi, a traditional Japanese fish stock, enhances palatability of various dishes because of its specific flavor. Daily intake of dashi has also been shown to improve mood status such as tension-anxiety in humans. This study aimed at investigating beneficial effects of dashi ingestion on anxiety/depression-like behaviors and changes in amino acid levels in the brain and plasma in rats. Male Wistar rats were given either dried bonito dashi or water for long-term (29 days; Experiment 1) or single oral administration (Experiment 2). Anxiety and depression-like behaviors were tested using the open field and forced swimming tests, respectively. Concentrations of amino acids were measured in the hippocampus, hypothalamus, cerebellum, and jugular vein. During the long-term (29 days) consumption, rats given 2% dashi frequently entered the center zone and spent more time compared with the water controls in the open field test. However, the dashi was ineffective on depression-like behavior. In the hippocampus, concentrations of hydroxyproline, anserine, and valine were increased by dashi while those of asparagine and phenylalanine were decreased. In the hypothalamus, the methionine concentration was decreased. In a single oral administration experiment, the dashi (1%, 2% or 10%) showed no effects on behaviors. Significance was observed only in the concentrations of α-aminoadipic acid, cystathionine, and ornithine in the hippocampus. Dried bonito dashi is a functional food having anxiolytic-like effects. Daily ingestion of the dashi, even at lower concentrations found in the cuisine, reduces anxiety and alters amino acid levels in the brain.

  8. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal β-Oxidation of Unsaturated Fatty Acids

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Tian; Wu, Dong; Ding, Wei; Wang, Jiangyun; Shaw, Neil; Liu, Zhi-Jie [Nankai; (Chinese Aca. Sci.)


    Peroxisomes play an essential role in maintaining fatty acid homeostasis. Although mitochondria are also known to participate in the catabolism of fatty acids via β-oxidation, differences exist between the peroxisomal and mitochondrial β-oxidation. Only peroxisomes, but not mitochondrion, can shorten very long chain fatty acids. Here, we describe the crystal structure of a ternary complex of peroxisomal 2,4-dienoyl CoA reductases (pDCR) with hexadienoyl CoA and NADP, as a prototype for comparison with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two organelles at the molecular level. Unexpectedly, the structure of pDCR refined to 1.84 Å resolution reveals the absence of the tyrosine-serine pair seen in the active site of mDCR, which together with a lysine and an asparagine have been deemed a hallmark of the SDR family of enzymes. Instead, aspartate hydrogen-bonded to the Cα hydroxyl via a water molecule seems to perturb the water molecule for protonation of the substrate. Our studies provide the first structural evidence for participation of water in the DCR-catalyzed reactions. Biochemical studies and structural analysis suggest that pDCRs can catalyze the shortening of six-carbon-long substrates in vitro. However, the Km values of pDCR for short chain acyl CoAs are at least 6-fold higher than those for substrates with 10 or more aliphatic carbons. Unlike mDCR, hinge movements permit pDCR to process very long chain polyunsaturated fatty acids.

  9. Omega-3 Fatty Acids (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  10. Uric Acid Test (United States)

    ... Links Patient Resources For Health Professionals Subscribe Search Uric Acid Send Us Your Feedback Choose Topic At a ... Also Known As Serum Urate UA Formal Name Uric Acid This article was last reviewed on May 17, ...

  11. Amino Acid Metabolism Disorders (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  12. Methylmalonic Acid Test (United States)

    ... Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle Antibody (SMA) ... Ratio Valproic Acid Vancomycin Vanillylmandelic Acid (VMA) VAP Vitamin A Vitamin B12 and Folate Vitamin D Tests ...

  13. Aminolevulinic Acid Topical (United States)

    Aminolevulinic acid is used in combination with photodynamic therapy (PDT; special blue light) to treat actinic keratoses (small crusty ... skin cancer) of the face or scalp. Aminolevulinic acid is in a class of medications called photosensitizing ...

  14. Acid-fast stain (United States)

    ... this page: // Acid-fast stain To use the sharing features on this page, please enable JavaScript. The acid-fast stain is a laboratory test that determines ...

  15. Valproic Acid and Pregnancy (United States)

    ... questions. We have answers. Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  16. Azelaic Acid Topical (United States)

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  17. Zoledronic Acid Injection (United States)

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  18. Deoxycholic Acid Injection (United States)

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  19. Aminocaproic Acid Injection (United States)

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. ... before the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  20. The Nucleic Acid Database. (United States)

    Berman, Helen M; Westbrook, John; Feng, Zukang; Iype, Lisa; Schneider, Bohdan; Zardecki, Christine


    The Nucleic Acid Database was established in 1991 as a resource to assemble and distribute structural information about nucleic acids. Over the years, the NDB has developed generalized software for processing, archiving, querying and distributing structural data for nucleic acid-containing structures. The architecture and capabilities of the Nucleic Acid Database, as well as some of the research enabled by this resource, are presented in this article.

  1. N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. (United States)

    Jongen, Susanne P; Gerwig, Gerrit J; Leeflang, Bas R; Koles, Kate; Mannesse, Maurice L M; van Berkel, Patrick H C; Pieper, Frank R; Kroos, Marian A; Reuser, Arnold J J; Zhou, Qun; Jin, Xiaoying; Zhang, Kate; Edmunds, Tim; Kamerling, Johannis P


    Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy) (1)H nuclear magnetic resonance spectroscopy, combined with two-dimensional (31)P-filtered (1)H-(1)H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (alpha2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (alpha1-6)-core-fucosylated or (alpha1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the

  2. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)


    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  3. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.


    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  4. Stomach acid test (United States)

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour (mEq/ ...

  5. The Acid Rain Reader. (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  6. Acid Rain Study Guide. (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  7. A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. (United States)

    Halterman, Dennis A; Wise, Roger P


    Interactions between barley and the powdery mildew pathogen, Blumeria graminis f. sp. hordei, (Bgh) are determined by unique combinations of host resistance genes, designated Mildew-resistance locus (Ml), and cognate pathogen avirulence genes. These interactions occur both dependent and independent of Rar1 (required for Mla12 resistance) and Sgt1 (Suppressor of G-two allele of skp1), which are differentially required for diverse plant disease-resistance pathways. We have isolated two new functional Mla alleles, Rar1-independent Mla7 and Rar1-dependent Mla10, as well as the Mla paralogs, Mla6-2 and Mla13-2. Utilizing the inherent diversity amongst Mla-encoded proteins, we identified the only two amino acids exclusively conserved in RAR1-dependent MLA6, MLA10, MLA12, and MLA13 that differ at the corresponding position in RAR1-independent MLA1 and MLA7. Two- and three-dimensional modeling places these residues on a predicted surface of the sixth leucine-rich repeat (LRR) domain at positions distinct from those within the beta-sheets hypothesized to determine resistance specificity. Site-directed mutagenesis of these residues indicates that RAR1 independence requires the presence of an aspartate at position 721, as mutation of this residue to a structurally similar, but uncharged, asparagine did not alter RAR1 dependence. These results demonstrate that a single-amino acid substitution in the sixth MLA LRR can alter host signaling but not resistance specificity to B. graminis.

  8. Demospongic Acids Revisited

    Directory of Open Access Journals (Sweden)

    Gilles Barnathan


    Full Text Available The well-known fatty acids with a D5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32 and from some terrestrial plants with short acyl chains (C18–C19. Finally, the D5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs. This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between D5,9 fatty acids and other NMI FAs.

  9. Boric acid and boronic acids inhibition of pigeonpea urease. (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M


    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  10. Process for the preparation of lactic acid and glyceric acid (United States)

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI


    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  11. Two zebrafish G2A homologs activate multiple intracellular signaling pathways in acidic environment

    Energy Technology Data Exchange (ETDEWEB)

    Ichijo, Yuta; Mochimaru, Yuta [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Azuma, Morio [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Satou, Kazuhiro; Negishi, Jun [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Nakakura, Takashi [Department of Anatomy, Graduate School of Medicine, Teikyo University, 2-11-1 Itabashi-Ku, Tokyo 173-8605 (Japan); Oshima, Natsuki [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan); Mogi, Chihiro; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Matsuda, Kouhei [Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tomura, Hideaki, E-mail: [Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571 (Japan)


    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed the high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton

  12. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett


    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  13. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. (United States)

    Wu, Jason H Y; Lemaitre, Rozenn N; Manichaikul, Ani; Guan, Weihua; Tanaka, Toshiko; Foy, Millennia; Kabagambe, Edmond K; Djousse, Luc; Siscovick, David; Fretts, Amanda M; Johnson, Catherine; King, Irena B; Psaty, Bruce M; McKnight, Barbara; Rich, Stephen S; Chen, Yii-Der I; Nettleton, Jennifer A; Tang, Weihong; Bandinelli, Stefania; Jacobs, David R; Browning, Brian L; Laurie, Cathy C; Gu, Xiangjun; Tsai, Michael Y; Steffen, Lyn M; Ferrucci, Luigi; Fornage, Myriam; Mozaffarian, Dariush


    BACKGROUND- Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9) are major saturated and monounsaturated fatty acids that affect cellular signaling and metabolic pathways. They are synthesized via de novo lipogenesis and are the main saturated and monounsaturated fatty acids in the diet. Levels of these fatty acids have been linked to diseases including type 2 diabetes mellitus and coronary heart disease. METHODS AND RESULTS- Genome-wide association studies were conducted in 5 population-based cohorts comprising 8961 participants of European ancestry to investigate the association of common genetic variation with plasma levels of these 4 fatty acids. We identified polymorphisms in 7 novel loci associated with circulating levels of ≥1 of these fatty acids. ALG14 (asparagine-linked glycosylation 14 homolog) polymorphisms were associated with higher 16:0 (P=2.7×10(-11)) and lower 18:0 (P=2.2×10(-18)). FADS1 and FADS2 (desaturases) polymorphisms were associated with higher 16:1n-7 (P=6.6×10(-13)) and 18:1n-9 (P=2.2×10(-32)) and lower 18:0 (P=1.3×10(-20)). LPGAT1 (lysophosphatidylglycerol acyltransferase) polymorphisms were associated with lower 18:0 (P=2.8×10(-9)). GCKR (glucokinase regulator; P=9.8×10(-10)) and HIF1AN (factor inhibiting hypoxia-inducible factor-1; P=5.7×10(-9)) polymorphisms were associated with higher 16:1n-7, whereas PKD2L1 (polycystic kidney disease 2-like 1; P=5.7×10(-15)) and a locus on chromosome 2 (not near known genes) were associated with lower 16:1n-7 (P=4.1×10(-8)). CONCLUSIONS- Our findings provide novel evidence that common variations in genes with diverse functions, including protein-glycosylation, polyunsaturated fatty acid metabolism, phospholipid modeling, and glucose- and oxygen-sensing pathways, are associated with circulating levels of 4 fatty acids in the de novo lipogenesis pathway. These results expand our knowledge of genetic factors relevant to de novo lipogenesis and

  14. Glycolic Acid 15% Plus Salicylic Acid 2% (United States)

    Sánchez-Blanco, Elena


    Background: Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. Objective: The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. Methods: A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. Results: All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Conclusion: Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment. PMID:21938272

  15. Amino acid composition of human uterine fluid: association with age, lifestyle and gynaecological pathology. (United States)

    Kermack, Alexandra J; Finn-Sell, Sarah; Cheong, Ying C; Brook, Nicholas; Eckert, Judith J; Macklon, Nick S; Houghton, Franchesca D


    Do the amino acid levels of human uterine fluid vary with age, BMI, phase of menstrual cycle, benign pathology or diet? The levels of 18 amino acids in human uterine fluid were shown to be affected only by maternal diet. Murine, bovine and ovine uterine amino acid content has been reported, but no reliable data on the human exist. Murine studies have demonstrated that the intrauterine periconceptional nutritional environment is affected by maternal diet. Uterine secretions were aspirated from 56 women aged 18-45 years. The women were recruited preoperatively from gynaecological theatre operating schedules or hysterosalpingo-contrast-sonography (HyCoSy) lists. A proportion of these women had proven fertility; however, the majority were being investigated for subfertility. The BMI, gynaecological history and dietary pattern of these women were also assessed. Reverse phase high performance liquid chromatography was used to analyse the concentrations of 18 amino acids within the uterine fluid and blood serum. The results were analysed against the women's stage of cycle, age, BMI and diet. The profile of 18 amino acids in uterine fluid was described. In total, human uterine fluid was observed to contain an amino acid concentration of 3.54 mM (interquartile range: 2.27-6.24 mM). The relative concentrations of 18 amino acids were not significantly altered by age, BMI, cycle phase or the presence of specific benign gynaecological pathologies. However, a diet identified by a validated scoring system as being less healthy was associated with higher concentrations of asparagine (P = 0.018), histidine (P = 0.011), serine (P = 0.033), glutamine (P = 0.049), valine (P = 0.025), phenylalanine (P = 0.019), isoleucine (P = 0.025) and leucine (P = 0.043) in the uterine fluid compared with a healthier diet, defined as one with a higher intake of fresh vegetables, fruit, whole-grain products and fish and a low intake of red and processed meat and high fat dairy products. There were no

  16. Lewis Acid Organocatalysts (United States)

    Sereda, Oksana; Tabassum, Sobia; Wilhelm, René

    The term Lewis acid catalysts generally refers to metal salts like aluminium chloride, titanium chloride and zinc chloride. Their application in asymmetric catalysis can be achieved by the addition of enantiopure ligands to these salts. However, not only metal centers can function as Lewis acids. Compounds containing carbenium, silyl or phosphonium cations display Lewis acid catalytic activity. In addition, hypervalent compounds based on phosphorus and silicon, inherit Lewis acidity. Furthermore, ionic liquids, organic salts with a melting point below 100 °C, have revealed the ability to catalyze a range of reactions either in substoichiometric amount or, if used as the reaction medium, in stoichiometric or even larger quantities. The ionic liquids can often be efficiently recovered. The catalytic activity of the ionic liquid is explained by the Lewis acidic nature of their cations. This review covers the survey of known classes of metal-free Lewis acids and their application in catalysis.

  17. Citric Acid Alternative to Nitric Acid Passivation (United States)

    Lewis, Pattie L. (Compiler)


    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  18. Facts about Folic Acid (United States)

    ... to Other Health Outcomes Folic Acid Fortification and Supplementation Neural Tube Defects Surveillance References Data and Statistics Research Birth Defects COUNT Articles & Key Findings Recommendations Links to ...

  19. Folic Acid Quiz (United States)

    ... to Other Health Outcomes Folic Acid Fortification and Supplementation Neural Tube Defects Surveillance References Data and Statistics Research Birth Defects COUNT Articles & Key Findings Recommendations Links to ...

  20. USGS Tracks Acid Rain (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.


    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  1. Parenteral Nutrition: Amino Acids. (United States)

    Hoffer, Leonard John


    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  2. Fusidic acid in dermatology

    DEFF Research Database (Denmark)

    Schöfer, Helmut; Simonsen, Lene


    Studies on the clinical efficacy of fusidic acid in skin and soft-tissue infections (SSTIs), notably those due to Staphylococcus aureus, are reviewed. Oral fusidic acid (tablets dosed at 250 mg twice daily, or a suspension for paediatric use at 20 mg/kg/day given as two daily doses) has shown good...... efficacy and tolerability. Similarly, plain fusidic acid cream or ointment used two or three times daily in SSTIs such as impetigo are clinically and bacteriologically effective, with minimal adverse events. Combination formulations of fusidic acid with 1% hydrocortisone or 0.1% betamethasone achieve...

  3. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie


    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  4. Peptide Nucleic Acids

    DEFF Research Database (Denmark)


    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)


    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)


    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  7. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper


    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physioc...

  8. Amino Acid Crossword Puzzle (United States)

    Sims, Paul A.


    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  9. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)


    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Salicylic Acid Topical (United States)

    ... product less often. Talk to your doctor or check the package label for more information.Apply a small amount of the salicylic acid product ... in salicylic acid products. Ask your pharmacist or check the package label for a list of the not apply any of the following products to the skin ...

  11. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.


    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  12. 2-Methylaspartic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher


    Full Text Available The title compound, C5H9NO4·H2O, is an isomer of the α-amino acid glutamic acid that crystallizes from water in its zwitterionic form as a monohydrate. It is not one of the 20 proteinogenic α-amino acids that are used in living systems and differs from the natural amino acids in that it has an α-methyl group rather than an α-H atom. In the crystal, an O—H...O hydrogen bond is present between the acid and water molecules while extensive N—H...O and O—H...O hydrogen bonds link the components into a three-dimensional array.

  13. Trans Fatty Acids (United States)

    Doyle, Ellin


    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.


    DEFF Research Database (Denmark)


    An isolated glycosyltransferase (GT) polypeptide capable of: (I): conjugating glucose to flavokermesic acid (FK); and/or (II): conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid.......An isolated glycosyltransferase (GT) polypeptide capable of: (I): conjugating glucose to flavokermesic acid (FK); and/or (II): conjugating glucose to kermesic acid (KA) and use of this GT to e.g. make Carminic acid....

  15. Citric acid production. (United States)

    Berovic, Marin; Legisa, Matic


    Citric acid is a commodity chemical produced and consumed throughout The World. It is used mainly in the food and beverage industry, primarily as an acidulant. Although it is one of the oldest industrial fermentations, its World production is still in rapid increasing. Global production of citric acid in 2007 was over 1.6 million tones. Biochemistry of citric acid fermentation, various microbial strains, as well as various substrates, technological processes and product recovery are presented. World production and economics aspects of this strategically product of bulk biotechnology are discussed.

  16. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter


    , chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  17. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K


    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  18. Aminobacterium thunnarium sp. nov., a mesophilic, amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes. (United States)

    Hamdi, Olfa; Ben Hania, Wajdi; Postec, Anne; Bouallagui, Hassib; Hamdi, Moktar; Bonin, Patricia; Ollivier, Bernard; Fardeau, Marie-Laure


    A new Gram-staining-positive, non-sporulating, mesophilic, amino acid-degrading anaerobic bacterium, designated strain OTA 102(T), was isolated from an anaerobic sequencing batch reactor treating wastewater from cooking tuna. The cells were curved rods (0.6-2.5×0.5 µm) and occurred singly or in pairs. The strain was motile by means of one lateral flagellum. Strain OTA 102(T) grew at temperatures between 30 and 45 °C (optimum 40 °C), between pH 6.0 and 8.4 (optimum pH 7.2) and NaCl concentrations between 1 and 5 % (optimum 2 %, w/v). Strain OTA 102(T) required yeast extract for growth. Serine, threonine, glycine, cysteine, citrate, fumarate, α-ketoglutarate and pyruvate were fermented. When co-cultured with Methanobacterium formicicum as the hydrogen scavenger, strain OTA 102(T) oxidized alanine, valine, leucine, isoleucine, aspartate, tyrosine, methionine, histidine and asparagine. The genomic DNA G+C content of strain OTA 102(T) was 41.7 mol%. The main fatty acid was iso-C15 : 0. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain OTA 102(T) was related to Aminobacterium colombiense and Aminobacterium mobile (95.5 and 95.2 % similarity, respectively), of the phylum Synergistetes. On the basis of phylogenetic, genetic and physiological characteristics, strain OTA 102(T) is proposed to represent a novel species of the genus Aminobacterium, Aminobacterium thunnarium sp. nov. The type strain is OTA 102(T) ( = DSM 27500(T) = JCM 19320(T)). © 2015 IUMS.

  19. Acid Lipase Disease (United States)

    ... offers free searches of biomedical literature through an Internet service called PubMed. To search, go to: . The NLM also offers extensive ... Publications Definition Acid ...

  20. Acid rain: An overview (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the effects of acid rain and related processes, sources, issues, corrective actions, research, current law, potential solutions, political solutions,...

  1. Boric acid poisoning (United States)

    ... Skin lotions Some paints Some rodent and ant pesticides Photography chemicals Powders to kill roaches Some eye ... 1031. National Library of Medicine, Specialized Information Services, Toxicology Data Network. Boric acid. ...

  2. Alpha Hydroxy Acids (United States)

    ... sensitivity. FDA also has collaborated with the National Toxicology Program (NTP) to assess the safety of the long-term use of AHAs. This study determined that glycolic acid did not affect photocarcinogenesis ( ...

  3. Folic acid in diet (United States)

    ... Pregnant females of all ages: 600 mcg/day Breastfeeding females of all ages: 500 mcg/day Alternative Names Folic acid; Polyglutamyl folacin; Pteroylmonoglutamate; Folate Images Vitamin B9 benefits Vitamin B9 source References Institute of Medicine, Food ...

  4. Lipoic Acid Synthase (LASY)

    National Research Council Canada - National Science Library

    Indira Padmalayam; Sumera Hasham; Uday Saxena; Sivaram Pillarisetti


    Lipoic Acid Synthase (LASY) A Novel Role in Inflammation, Mitochondrial Function, and Insulin Resistance Indira Padmalayam 1 , Sumera Hasham 2 , Uday Saxena 1 and Sivaram Pillarisetti 1 1 Discovery Research, ReddyUS...

  5. Synthesis of aminoaldonic acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea

    of 2,5-anhydrides and not the expected 2-acetamido-2-deoxy aldose phenylhydrazones. The acetylated phenylhydrazones were found to eliminate acetic acid when heated in aqueous ethanol and 1-phenylazoalkenes could be isolated by crystallisation. By this method the 17, 20, 23 and 25 were prepared from....... The aziridino amides 43 and 51 were reductively cleaved with hydrazine to give 3-amino-2,3-dideoxyhexonhydrazides 83 and 85, which were easily converted into the corresponding lactone 84 and acid 86. The aziridine ring of 43 and 51 was also opened with acetic acid to give the 3-amino-3-deoxyhexonic acids 79....... These compounds did not react with 2-(3,4-dimethoxyphenyl)ethyl amine 105. Instead the commercially available unsubstituted 4-carboxyl tetronolactone 108 was converted into the 2-(3,4-dimethoxyphenyl)ethyl amides 110 and 111 in two steps. These amides were cyclised by the Bischler-Napieralski cyclisation to give...

  6. Amino Acids and Chirality (United States)

    Cook, Jamie E.


    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  7. Peptide Nucleic Acids

    DEFF Research Database (Denmark)


    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a...... a group consisting of naturally-occurring nucleobases and non-naturally-occurring nucleobases, including 2,6-diaminopurine, attached to a polyamide backbone, and contain alkyl amine side chains....

  8. Folic acid in pregnancy

    National Research Council Canada - National Science Library

    Paul, Carolyn


    ... it was isolated from spinach in 1941, hence being named ‘folic acid’ (from the Latin word folium for leaf ). By the mid‐1940s a team of biochemists, ‘the folic acid boys’, working at the Lederle Laboratory in Pearl River, New York, USA were able to synthesise folic acid in a pure crystalline form, allowing more detailed evaluation of its properties. I...

  9. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.


    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  10. Acidification and Acid Rain (United States)

    Norton, S. A.; Veselã½, J.


    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  11. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid. (United States)

    Seow, Chun Ling; Lau, Aik Jiang


    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)



    Sep 20, 2010 ... Key words: Betulinic acid, HL 60, cytotoxicity, MTT assay, DNA laddering, Cell cycle PI. INTRODUCTION. Betulinic acid ... Chemical structure of betulinic acid and its derivatives. (Fulda et al., 1999) and leukemia cells ... feature makes betulinic acid unique in comparison to compounds that are currently used ...

  13. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis]. (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua


    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  14. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele


    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  15. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  16. Amino-acid contamination of aqueous hydrochloric acid. (United States)

    Wolman, Y.; Miller, S. L.


    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  17. Analysis of Bile Acids (United States)

    Sjövall, Jan; Griffiths, William J.; Setchell, Kenneth D. R.; Mano, Nariyasu; Goto, Junichi

    Bile acids constitute a large family of steroids in vertebrates, normally formed from cholesterol and carrying a carboxyl group in a side-chain of variable length. Bile alcohols, also formed from cholesterol, have similar structures as bile acids, except for the absence of a carboxyl group in the steroid skeleton. The conversion of cholesterol to bile acids and/or bile alcohols is of major importance for maintenance of cholesterol homeostasis, both from quantitative and regulatory points of view (Chiang, 2004; Kalaany and Mangelsdorf, 2006; Moore, Kato, Xie, et al., 2006; Scotti, Gilardi, Godio, et al., 2007). Appropriately conjugated bile acids and bile alcohols (also referred to as bile salts) are secreted in bile and serve vital functions in the absorption of lipids and lipid-soluble compounds (Hofmann, 2007). Reliable analytical methods are required for studies of the functions and pathophysiological importance of the variety of bile acids and bile alcohols present in living organisms. When combined with genetic and proteomic studies, analysis of these small molecules (in today's terminology: metabolomics, steroidomics, sterolomics, cholanoidomics, etc.) will lead to a deeper understanding of the integrated metabolic processes in lipid metabolism.

  18. Ursodeoxycholic acid, 7-ketolithocholic acid, and chenodeoxycholic acid are primary bile acids of the nutria (Myocastor coypus). (United States)

    Tint, G S; Bullock, J; Batta, A K; Shefer, S; Salen, G


    Because ursodeoxycholic and chenodeoxycholic acids are interconverted in humans via 7-ketolithocholic acid, bile acid metabolism was studied in the nutria (Myocastor coypus), the bile of which is known to contain these three bile acids. Relative concentrations of ursodeoxycholic (37% +/- 20%), 7-ketolithocholic (33% +/- 17%), and chenodeoxycholic (17% +/- 9%) acids in gallbladder bile were unchanged by 5-20 h of complete biliary diversion (n = 7). Injection of either [14C]cholesterol, [14C]ursodeoxycholic, [14C]7-ketolithocholic acid, or a mixture of [7 beta-3H]chenodeoxycholic acid and [14C]chenodeoxycholic acid into bile fistula nutria demonstrated that all three bile acids can be synthesized hepatically from cholesterol, that they are interconverted sparingly (2%-5%) by the liver, but that 7-ketolithocholic acid is an intermediate in the hepatic transformation of chenodeoxycholic acid to ursodeoxycholic acid. An animal that had been fed antibiotics showed an unusually elevated concentration of ursodeoxycholic acid in gallbladder and hepatic bile, suggesting that bacterial transformation of ursodeoxycholic acid in the intestine may be a source of some biliary chenodeoxycholic acid and 7-ketolithocholic acid.

  19. acetyl amino acids and dipeptides

    African Journals Online (AJOL)

    Chemistry. 2-(2'-Isopropyl-5'-methylphenoxy)acetic acid (1) was prepared by phenoxylation of thymol by using chloroacetic acid in alkaline conditions. Dipeptides Boc-Gly-Gly-OMe, Boc-Pro-Pro-. OMe and Boc-Ala-Leu-OMe were prepared from the corresponding amino acid methyl esters and Boc-amino acids using DCC ...

  20. Acid rain in Asia (United States)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.


    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  1. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe


    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  2. 2-arylureidobenzoic acids

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Nielsen, Elsebet Ø; Peters, Dan


    A series of 2-arylureidobenzoic acids (AUBAs) was prepared by a short and effective synthesis, and the pharmacological activity at glutamate receptors was evaluated in vitro and in vivo. The compounds showed noncompetitive antagonistic activity at the kainate receptor subtype GluR5. The most potent...... on the benzoic acid moiety (ring A), whereas ring B tolerated a variety of substituents, but with a preference for lipophilic substituents. The most potent compounds had a 4-chloro substituent on ring A and 3-chlorobenzene (6b), 2-naphthalene (8h), or 2-indole (8k) as ring B and had IC(50) values of 1.3, 1...

  3. The Acid-Base Titration of a Very Weak Acid: Boric Acid (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.


    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  4. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.


    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  5. Oxalic acid excretion after intravenous ascorbic acid administration (United States)

    Robitaille, Line; Mamer, Orval A.; Miller, Wilson H.; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L. John


    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at –30°C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function. PMID:19154961

  6. [Studies on interaction of acid-treated nanotube titanic acid and amino acids]. (United States)

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang


    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  7. Determination of Sialic Acids by Acidic Ninhydrin Reaction


    Yao,Kenzabroh; Ubuka,Toshihiko


    A new acidic ninhydrin method for determining free sialic acids is described. The method is based on the reaction of sialic acids with Gaitonde's acid ninhydrin reagent 2 which yields a stable color with an absorption maximum at 470 nm. The standard curve is linear in the range of 5 to 500 nmol of N-acetylneuraminic acid per 0.9 ml of reaction mixture. The reaction was specific only for sialic acids among the various sugars and sugar derivatives examined. Some interference of this method by c...

  8. octadecenoic acid in tomato

    African Journals Online (AJOL)


    ,12,13-. THODA. It has recently been shown that the enzyme peroxygenase is involved in the synthe- sis of 9,12,13-THODA in tomato fruits and that this trihydroxy fatty acid was probably further broken down or converted into other metabo-.

  9. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou


    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  10. Fenofibric acid for hyperlipidemia. (United States)

    Saurav, Alok; Kaushik, Manu; Mohiuddin, Syed M


    3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors (i.e., statins) are the mainstay of therapy for hyperlipidemia, as per the current National Cholesterol Education Program (NCEP) recommendation. However, the role of other agents, such as the fibrates, is continually being debated in the context of incremental risk reduction, especially in the setting of mixed dyslipidemia. Results from the ACCORD Trial have further added to the confusion. Fibrates also have a role to play in familial hyperlipidemias and in hypertriglyceridemia. Fenofibric acid is one of the newly approved forms of fenofibrate with enhanced bioavailability and was recently approved by the Food and Drug Administation (FDA) for the treatment of various types of hyperlipidemia, in conjunction with statins. This article reviews the role of fenofibric acid in the context of results from recent randomized trials on fenofibrate, including the ACCORD Trial. It discusses the current status of fenofibric acid in the management of dyslipidemia, especially in combination with statins, and also addresses the comparative efficacy and safety profile of this new molecule against other agents in its class. Fenofibric acid in combination with low- to moderate-dose statins is an effective and safe option in the treatment of mixed dyslipidemia, although the long-term effects on cardiovascular risk reduction need to be explored further.

  11. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H


    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  12. Phenylpyruvic acid in urine

    NARCIS (Netherlands)

    Meulemans, O.; Vergeer, E.G.

    The method of The, Fleury And Vink for the determination of phenylpyruvic acid (PPA) in urine is modified by measuring the extinction after the green colour with ferric chloride has faded, and subtracting this extinction from that found initially. More accurate values are obtained and low PPA values

  13. Pantothenic acid and biotin (United States)

    ... Function Pantothenic acid and biotin are needed for growth. They help the body break down and use ... pregnancy Lactation: 7 mg/day *Adequate Intake (AI) Dietary Reference Intakes ... best way to get the daily requirement of essential vitamins is to eat a balanced ...

  14. furfural and acetic acid

    African Journals Online (AJOL)

    Investigating the effects of two lignocellulose degradation by-products (furfural and acetic acid) on ethanol fermentations by six ethanologenic yeast strains. ... Among the tested yeast strains, 1300 exhibited the highest growth rate, thus can be a promising candidate for mass production of bioethanol. Three important ...

  15. Nanoclusters of Cyanuric Acid

    Indian Academy of Sciences (India)

    Hydrogen bonding; molecular clusters; cyanuric acid; self-assembly; symmetry. ... Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA; Indian Institute of Science Education and ...

  16. Koetjapic acid chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Z. D. Nassar


    Full Text Available The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS-7-(2-carboxyethyl-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid] molecule and one half-molecule of chloroform solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is intermediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intramolecular C—H...O hydrogen bond is observed. The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O—H...O hydrogen bonds. The dimers are stacked along the c axis.

  17. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert


    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  18. Fatty acid-producing hosts (United States)

    Pfleger, Brian F; Lennen, Rebecca M


    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at C. Methods of producing a fatty acid product comprising culturing such hosts at C. are also described.

  19. How salicylic acid takes transcriptional control over jasmonic acid signaling

    National Research Council Canada - National Science Library

    Caarls, Lotte|info:eu-repo/dai/nl/371746213; Pieterse, Corné M J|info:eu-repo/dai/nl/113115113; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373


    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA...

  20. Progress in engineering acid stress resistance of lactic acid bacteria. (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing


    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  1. Animosity towards Acid Attacks - Critical Study on Acid Victimization


    Chandrashekar, S.V; Eldo Johny


    Animosity to acid attacks is deliberated as foulest acts, a form of gender terrorism within the feminist read. It’s a form of vicious violence outlined as acid throwing or Vitriolage. In India, there are component varied incident were reported, as most precarious victimization of individuals by deforming their body. The condition of victims of acid attacks is unit in serious frustrating their entire life. Acid victimization has deliberated globally and even several countries area unit sensiti...

  2. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine. (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A


    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  3. Kinetics of oxidation of acidic amino acids by sodium N ...

    Indian Academy of Sciences (India)


    Keywords. Acidic amino acids; bromamine-B; oxidation kinetics, acid medium. 1. Introduction. The chemistry of aromatic sulphonyl haloamines has evoked considerable interest, as they are sources of halonium cations, hypohalite species, and N-anions which act both as bases and nucleophiles. The prominent members of ...

  4. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo


    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  5. Effect of hydrofluoric acid on acid decomposition mixtures for ...

    African Journals Online (AJOL)

    Effect of hydrofluoric acid on acid decomposition mixtures for determining iron and other metallic elements in green vegetables. ... Therefore, the inclusion of HF in the acid decomposition mixtures would ensure total and precise estimation of Fe in plant materials, but not critical for analysis of Mn, Mg, Cu, Zn and Ca.

  6. Selective hydrodeoxygenation of tartaric acid to succinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiayi [Department of Chemical and Biomolecular Engineering; University of Delaware; Newark; USA; Catalysis Center for Energy Innovation; Vasiliadou, Efterpi S. [Catalysis Center for Energy Innovation; University of Delaware; Newark; USA; Goulas, Konstantinos A. [Catalysis Center for Energy Innovation; University of Delaware; Newark; USA; Saha, Basudeb [Catalysis Center for Energy Innovation; University of Delaware; Newark; USA; Vlachos, Dionisios G. [Department of Chemical and Biomolecular Engineering; University of Delaware; Newark; USA; Catalysis Center for Energy Innovation


    A novel one-step process for the selective production of succinic acid from tartaric acid is developed. High succinic yield is achieved in an efficient catalytic system comprised of MoOx/BC, HBr and acetic acid under hydrogen atmosphere.

  7. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)



    Jul 9, 2014 ... of the three LAB strains to utilize amino acids for growth and lactic acid production were employed to ... Lactic acid bacteria (LAB), which are used for the .... broth. These findings confirm that L. salivarius released alanine and glycine, which are non-essential for the growth of this bacterium. P. acidilactici ...

  8. Kinetics of oxidation of acidic amino acids by sodium N ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 4. Kinetics of oxidation of acidic amino acids by sodium N-bromobenzenesulphonamide in acid medium: A mechanistic approach ... Department of Post-Graduate Studies in Chemistry, Central College, Bangalore University, Bangalore 560 001, India ...

  9. Industrial ecotoxicology "acid rain". (United States)

    Astolfi, E; Gotelli, C; Higa, J


    The acid rain phenomenon was studied in the province of Cordoba, Argentina. This study, based on a previously outlined framework, determined the anthropogenic origin of the low pH due to the presence of industrial hydrochloric acid wastage. This industrial ecotoxicological phenomenon seriously affected the forest wealth, causing a great defoliation of trees and shrubs, with a lower effect on crops. A survey on its effects on human beings has not been carried out, but considering the corrosion caused to different metals and its denouncing biocide effect on plants and animals, we should expect to find some kind of harm to the health of the workers involved or others engaged in farming, and even to those who are far away from the polluting agent.

  10. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas


    and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD......), atomic emission spectrometry, and mass spectrometry. For most environmental samples, chlorinated FAMEs must be enriched prior to GC. ELCD is a useful detection method for indicating halogenated FAMEs in the chromatograms, and tentative identification of the halogenated species can be obtained...

  11. N-(3-Chlorophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda


    Full Text Available In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond within the maleamic acid unit and the second is a C—H...O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1° with the phenyl ring. In the crystal, intermolecular N—H...O hydrogen bonds link the molecules into C(7 chains running [010].

  12. N-(3-Methylphenylsuccinamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda


    Full Text Available In the crystal structure of the title compound, C11H13NO3, the conformations of the N—H and C=O bonds in the amide segment are anti to each other, and that of the amide H atom is anti to the meta-methyl group in the benzene ring. Furthermore, the conformations of the amide oxygen and the carbonyl O atom of the acid segment are also anti to the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are syn to each other. In the crystal, the molecules are packed into infinite chains through intermolecular N—H...O and O—H...O hydrogen bonds.

  13. Radioimmunoassay for jasmonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Knoefel, H.D.; Brueckner, C.; Kramell, R.; Sembdner, G.; Schreiber, K. (Akademie der Wissenschaften der DDR, Halle/Saale. Inst. fuer Biochemie der Pflanzen)


    A radioimmunoassay (RIA) for the natural plant growth regulator jasmonic acid (JA) was developed. The antiserum was raised in rabbits against (+-)-JA linked to bovine serum albumin. As tracer tritium labelled (+-)-JA (spec. act. 7.4 x 10/sup 9/ Bq x mmol/sup -1/) was used. Cross-reactivity studies with compounds structurally related to JA demonstrated the antiserum to be specific for JA, abscisic acid normally present in the same extract does not interfer. The RIA has a detection limit of 2 ng (-)-JA methylester, a measuring range 2-200 ng, and no extensive purification is required prior to estimation. Therefore, in JA analysis the RIA described is superior to GC, HPLC, and bioassay. This new method has been employed for studies on the distribution of JA in different plant organs of the broad bean, Vicia faba L.

  14. (Radioiodinated free fatty acids)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Jr., F. F.


    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  15. Humic acid protein complexation


    Tan, W.F.; Koopal, L.K.; Weng, L.P.; Riemsdijk, van, J.F.; Norde, W.


    Interactions of purified Aldrich humic acid (PAHA) with lysozyme (LSZ) are investigated. In solution LSZ is moderately positively and PAHA negatively charged at the investigated pH values. The proton binding of PAHA and of LSZ is determined by potentiometric proton titrations at various KCl concentrations. It is also measured for two mixtures of PAHA¿LSZ and compared with theoretically calculated proton binding assuming no mutual interaction. The charge adaptation due to PAHA¿LSZ interaction ...

  16. octadecenoic acid in tomato

    African Journals Online (AJOL)


    The MMS medium was a mixture of 2.15 g of Murashige and Skoog me- dium, 0.97g of 2-(N-morpholino) ethanesulphonic acid and 10 g of saccharose in. 500 ml of distilled water. The pH of the MMS medium was adjusted to 5.6 with 1 M KOH solution. Plant material and treatments. Tomato (Solanum lycopersicum L. cv ...



    Buriticá, Jorge Eduardo; Jorge Eduardo Buriticá: Cirujano General U. de Caldas, Profesor de Cirugía U. de Manizales. Profesor pregrado y postgrado U. de Caldas.; Becerra, Luis Fernando; Luis Fernando Becerra : Cirujano general CES Medellín, Docente U de Manizales, U de Caldas.; Salazar Osorio, Alejandro; Alejandro Salazar Osorio: Médico General U. de Manizales.


      Acid peptic disease (PAD) constitutes one of the most frequent queries in general medical practice, both in the emergency department and outpatient external; for this reason it is essential for good general practitioner, snagging a concrete and firm knowledge about this subject. Moreover, not only about this specific pathology but from its complications such as the digestive bleeding, although this would be a different item for which we are concerned in this review. There are areas of predo...

  18. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C


    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  19. Biological properties of lipoic acid

    Directory of Open Access Journals (Sweden)

    Anna Bilska


    Full Text Available Lipoic acid is a prostetic group of H-protein of the glycine cleavage system and the dihydrolipoamide acyltransferases (E2 of the pyruvate, alpha-ketoglutarate and branched-chain alpha-keto acid dehydrogenase complexes. Lipoic acid and its reduced form, dihydrolipoic acid, reacts with oxygen reactive species. This paper reviews the beneficial effects in oxidative stress models or clinical conditions.

  20. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G


    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  1. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.


    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid

  2. [Total synthesis of nordihydroguaiaretic acid]. (United States)

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F


    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  3. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B


    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  4. Acid precipitation and forest soils (United States)

    C. O. Tamm


    Many soil processes and properties may be affected by a change in chemical climate such as that caused by acidification of precipitation. The effect of additions of acid precipitation depends at first on the extent to which this acid is really absorbed by the soil and on the changes in substances with actual or potential acidity leaving the soil. There is for instance...

  5. Hyaluronic Acid in Dermatology. (United States)

    Keen, Mohammad Abid


    Hyaluronic acid (HA) is a major component of the extracellular matrix of the skin and plays an important role in the metabolism of the dermis. It has a key position in wound healing and tissue repair processes owing to its ability to maintain a humid environment favorable to healing and the stimulation of growth factors, cellular constituents, and the migration of various cells essential for healing. This review aims to describe briefly the physical, chemical, and biologic properties of HA, together with some details of the dermatologic indications of this unique molecule.

  6. Crassulacean acid metabolism

    Directory of Open Access Journals (Sweden)

    Thomas David Geydan


    Full Text Available A review of Crassulacean acid metabolism is presented, characterized by showing the occurrence, activity and plasticity of these complex mechanism at the physiological, biochemical and molecular level, framed by the presence of the denominated four phases in CAM and its repercussion and expression due to different stresses in an ecological context. The basic enzymes, and metabolites necessary for the optional functioning of CAM are presented as well as their mode of action and cellular control. Finally, it is shown how environmental conditions and molecular signalling mediate the phenotypic plasticity.

  7. Protonation study of peroxynitric acid and peroxynitrous acid (United States)

    Santiano, Randy L.; Francisco, Joseph S.


    The equilibrium structures and harmonic vibrational frequencies of peroxynitric acid (HOONO2) and seven structures of protonated peroxynitric acid, along with peroxynitrous acid (HOONO) and its 12 protonated peroxynitrous acid structures, have been investigated using several ab initio and density functional methods. The ab initio methods include second-order Møller-Plesset perturbation theory, quadratic configuration interaction, including single and double excitations theory (QCISD), and the QCISD(T) methods, which incorporate a perturbational estimate of the effects of connected triple excitation. The Becke three-parameter hybrid functional combined with Lee, Yang, and Parr correlation function is the density functional method used. The lowest energy form of protonated peroxynitric acid is a complex between H2O2 and NO+ rather than between H2O and NO2+. For peroxynitrous acid, a complex between H2O2 and NO2+ is found to be the lowest energy structure. The ab initio proton affinity (PA) of HOONO and HOONO2 is predicted to be 182.1 and 175.1 kcal mol-1, respectively, at the QCISD(T)/6-311++G(3df,3pd) level of theory. The results are contrasted with an earlier study on nitrous acid, and is shown that peroxynitric acid and peroxynitrous acid have a smaller PA than nitrous acid.

  8. Adsorption of humic acid on acid-activated Greek bentonite. (United States)

    Doulia, Danae; Leodopoulos, Ch; Gimouhopoulos, K; Rigas, F


    The adsorption of humic acid on bentonite from Milos Island (Greece) acid-treated with dilute H(2)SO(4) solutions over a concentration range between 0.25 and 13M has been studied. Bentonite activated with 3M sulfuric acid (AAS) showed a higher efficiency in removing humic acid from aqueous solutions and was selected for further investigation. The specific surface area of acid-activated bentonite was estimated using the methylene blue adsorption method. The morphology of untreated, activated, and HA-sorbed bentonite was studied under scanning electron microscope (SEM). The effects of contact time, adsorbate concentration, adsorbent dose, and temperature on the adsorption of humic acid onto bentonite activated with 3M H(2)SO(4) were studied using a batch adsorption technique. Acidic pH and high ionic strength proved to be favorable for the adsorption efficiency. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to describe the kinetic data and the rate constants were evaluated. The experimental isotherm data were analyzed using Langmuir, Freundlich, and Temkin equations and the isotherm constants were determined. Thermodynamic parameters (DeltaH(o), DeltaS(o), and DeltaG(o)) of adsorption of humic acid onto acid-activated bentonite with 3M sulfuric acid were also evaluated.

  9. New Acid Combination for a Successful Sandstone Acidizing (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.


    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  10. Simultaneous liquid-chromatographic quantitation of salicylic acid, salicyluric acid, and gentisic acid in urine. (United States)

    Cham, B E; Bochner, F; Imhoff, D M; Johns, D; Rowland, M


    We have developed a specific and sensitive method for the determination of salicylic acid, salicyluric acid, and gentisic acid in urine. Any proteins present are precipitated with methyl cyanide. After centrifugation, an aliquot of the supernate is directly injected into an octadecyl silane reversed-phase chromatographic column, then eluted with a mixture of water, butanol, acetic acid, and sodium sulfate, and quantitated at 313 nm by ultraviolet detection according to peak-height ratios (with internal standard, o-methoxybenzoic acid) or peak heights (no internal standard). The method allows estimates within 25 min. Sensitivity was 0.2 mg/L for gentisic acid, and 0.5 mg/L for both salicyluric and salicylic acid (20-micro L injection volume); response was linear with concentration to at least 2.000 g/L for salicylic acid and metabolites. Analytical recovery of salicylic acid and metabolites from urine is complete. Intra-assay precision (coefficient of variation) is 5.52% at 7.5 mg/L for salicylic acid, 5.01% at 9.33 mg/L for salicyluric acid, and 3.07% at 7.96 mg/L for gentisic acid. Interassay precision is 7.32% at 7.51 mg/L for salicylic acid, 5.52% at 8.58 mg/L for salicyluric acid, and 3.97% at 8.32 mg/L for gentisic acid. We saw no significant interference in urine from patients being treated with various drugs other than aspirin.

  11. Cryoprotection from lipoteichoic acid (United States)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth


    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  12. Bile Acid Physiology. (United States)

    Di Ciaula, Agostino; Garruti, Gabriella; Baccetto, Raquel Lunardi; Molina-Molina, Emilio; Bonfrate, Leonilde; Wang, David Q-H; Portincasa, Piero


    The primary bile acids (BAs) are synthetized from colesterol in the liver, conjugated to glycine or taurine to increase their solubility, secreted into bile, concentrated in the gallbladder during fasting, and expelled in the intestine in response to dietary fat, as well as bio-transformed in the colon to the secondary BAs by the gut microbiota, reabsorbed in the ileum and colon back to the liver, and minimally lost in the feces. BAs in the intestine not only regulate the digestion and absorption of cholesterol, triglycerides, and fat-soluble vitamins, but also play a key role as signaling molecules in modulating epithelial cell proliferation, gene expression, and lipid and glucose metabolism by activating farnesoid X receptor (FXR) and G-protein-coupled bile acid receptor-1 (GPBAR-1, also known as TGR5) in the liver, intestine, muscle and brown adipose tissue. Recent studies have revealed the metabolic pathways of FXR and GPBAR-1 involved in the biosynthesis and enterohepatic circulation of BAs and their functions as signaling molecules on lipid and glucose metabolism.


    Crozier, W J


    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  14. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi


    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  15. Citric acid production patent review. (United States)

    Anastassiadis, Savas; Morgunov, Igor G; Kamzolova, Svetlana V; Finogenova, Tatiana V


    Current Review article summarizes the developments in citric acid production technologies in East and West last 100 years. Citric acid is commercially produced by large scale fermentation mostly using selected fungal or yeast strains in aerobe bioreactors and still remains one of the runners in industrial production of biotechnological bulk metabolites obtained by microbial fermentation since about 100 years, reflecting the historical development of modern biotechnology and fermentation process technology in East and West. Citric acid fermentation was first found as a fungal product in cultures of Penicillium glaucum on sugar medium by Wehmer in 1893. Citric acid is an important multifunctional organic acid with a broad range of versatile uses in household and industrial applications that has been produced industrially since the beginning of 20(th) century. There is a great worldwide demand for citric acid consumption due to its low toxicity, mainly being used as acidulant in pharmaceutical and food industries. Global citric acid production has reached 1.4 million tones, increasing annually at 3.5-4.0% in demand and consumption. Citric acid production by fungal submerged fermentation is still dominating, however new perspectives like solid-state processes or continuous yeast processes can be attractive for producers to stand in today's strong competition in industry. Further perspectives aiming in the improvement of citric acid production are the improvement of citric acid producing strains by classical and modern mutagenesis and selection as well as downstream processes. Many inexpensive by-products and residues of the agro-industry (e.g. molasses, glycerin etc.) can be economically utilized as substrates in the production of citric acid, especially in solid-state fermentation, enormously reducing production costs and minimizing environmental problems. Alternatively, continuous processes utilizing yeasts which reach 200-250 g/l citric acid can stand in today

  16. Microbial production of tenuazonic acid analogues. (United States)

    Gatenbeck, S; Sierankiewicz, J


    The fungus Alternaria tenuis normally produces tenuazonic acid (3-acetyl-5-secbutyltetramic acid). On supplementation of the culture substrate with l-valine and l-leucine, the organism formed two new tetramic acids, 3-acetyl-5-isopropyltetramic acid and 3-acetyl-5-isobutyltetramic acid, respectively. l-Phenylalanine was not utilized by the organism as a tetramic acid precursor.

  17. 49 CFR 173.158 - Nitric acid. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as...

  18. Fatty acids and cardiovascular disease. (United States)

    Lecerf, Jean-Michel


    Fatty acids have been classified into "good" or "bad" groups according to their degree of unsaturation or whether they are "animal fat" or "vegetable fat". Today, it appears that the effects of fatty acids are complex and vary greatly according to the dose and the nature of the molecule. Monounsaturated fatty acids are still considered as having a "neutral" status, but any benefits may be related to the chemical environment of the source food or the associated overall food pattern. Controversy surrounds omega-6 polyunsaturated fatty acids, because even though they lower LDL cholesterol levels, excessive intakes do not appear to be correlated with cardiovascular benefit. The omega-3 fatty acids are known to exert cardiovascular protective effects. Dairy fat and its cardiovascular impact are being evaluated. This review examines the existing literature on the relationships between the different fatty acids and cardiovascular disease.

  19. Acid mine drainage (United States)

    Bigham, Jerry M.; Cravotta, Charles A.


    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  20. Intestinal metabolism of fatty acids. (United States)

    Enser, M


    1. The effect of concentration on the oxidation and incorporation into lipids of lauric acid and linoleic acid by rings of rat small intestine has been studied in vitro. 2. In the absence of glucose, the oxidation of lauric acid in the range 0.01-5.0mm showed a maximum at 0.1mm. In the presence of glucose the maximum was at 0.5mm. The oxidation of linoleic acid in the presence of glucose increased throughout the concentration range 0.01-5.0mm. 3. The incorporation of lauric acid into lipids was maximal at 0.5-0.6mm in the presence of glucose, but at 10mm in the absence of glucose. At 0.8mm-lauric acid, in the presence of glucose, over 75% of the incorporated lauric acid was in triglycerides, but at 10mm they only contained 30%. The incorporation of glucose carbon into glycerides paralleled the incorporation of lauric acid. 4. In the range 0.01-2.5mm-linoleic acid the quantity incorporated into lipids increased. In the range 0.01-0.4mm linoleic acid was incorporated predominantly into triglycerides, but between 0.4 and 1.0mm most was in diglycerides, and between 2.5 and 5.0mm most was in monoglycerides. 5. The relationship of fatty acid concentration to the mechanism of absorption is discussed, together with the correlation between the distribution of the absorbed fatty acids within the tissue lipids and the lipase activity of intestinal mucosa.

  1. Biotechnological production of citric acid

    National Research Council Canada - National Science Library

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel


    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors...

  2. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid) (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega


    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  3. Amino acids and gut function. (United States)

    Wang, W W; Qiao, S Y; Li, D F


    The intestine is not only critical for the absorption of nutrients, but also interacts with a complex external milieu. Most foreign antigens enter the body through the digestive tract. Dietary amino acids are major fuels for the small intestinal mucosa, as well as important substrates for syntheses of intestinal proteins, nitric oxide, polyamines, and other products with enormous biological importance. Recent studies support potential therapeutic roles for specific amino acids (including glutamine, glutamate, arginine, glycine, lysine, threonine, and sulfur-containing amino acids) in gut-related diseases. Results of these new lines of work indicate trophic and cytoprotective effects of amino acids on gut integrity, growth, and health in animals and humans.

  4. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup


    of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....


    DEFF Research Database (Denmark)


    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  6. Lipoic acid and diabetes: Effect of dihydrolipoic acid administration ...

    Indian Academy of Sciences (India)

    Relative α-lipoic acid content of diabetic livers was considerably less than that of normal livers as determined by gas chromatography. It was not possible to detect any dihydrolipoic acid in the livers. Biochemical abnormalities such as hyperglycaemia, ketonemia, reduction in liver glycogen and impaired incorporation of ...

  7. Molecular Interaction of Pinic Acid with Sulfuric Acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurten, Theo; Bilde, Merete


    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...

  8. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid (United States)

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  9. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    There is increasing demand for sources of energy and non-meat protein with balanced amino acid profiles worldwide. Nuts are rich in protein and essential amino acids, and have a high energy value due to their high fat content. Kernels from two wild fruits in Mozambique, Adansonia digitata and Sclerocarya birrea, were ...

  10. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)



    Jul 9, 2014 ... Amino acids analysis during lactic acid fermentation by single strain cultures of lactobacilli and mixed culture starter made from them. KiBeom Lee1*, Ho-Jin Kim1 and Sang-Kyu Park2. 1Bio Center Technopark, 7-50 Songdo, Yeonsu-Gu, Incheon 406-840, Republic of Korea. 2Nambu University, Chumdan ...

  11. How salicylic acid takes transcriptional control over jasmonic acid signaling

    NARCIS (Netherlands)

    Caarls, Lotte; Pieterse, Corné M J; van Wees, Saskia C M


    Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between

  12. Fatty Acid Esterification with Polyols over Acidic Montmorillonite. (United States)

    Chaari, Asma; Neji, Soumaya Bouguerra; Frikha, Mouhamed Hedi


    The production of fatty acid esters from stearic, oleic, and palmitic acids and polyols (ethylene glycol and glycerol) was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10), having different physicochemical properties, were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were explored. The best catalytic activities were obtained with KSF catalyst. The optimization of various factors on the reaction was also studied, including catalyst concentration, reaction temperature and molar ratio (polyol / fatty acid). The yield rate reached 94% under the optimum conditions and the recovery rate maintained more than 96% after 5 batches.

  13. Solid-phase peptide synthesis of isotocin with amide of asparagine ...

    African Journals Online (AJOL)

    dimethylformamide (DMF) were purchased from BDH Chemicals Ltd (Poole, England). Peptide chain assemblies by Boc chemistry were carried out manually. Side chain protection was provided by benzyl for cysteine, tyrosine and serine; tetralinyl (Tet) for ...

  14. Amino acid fingerprint in the rhizosphere of Pisum sativum in response to water stress (United States)

    Bobille, Hélène; Fustec, Joëlle; Robins, Richard J.; Cukier, Caroline; Limami, Anis M.


    In cropping systems, legumes release substantial amounts of nitrogen (N) into the soil, via rhizodeposition, and constitute a sustainable source of N, instead of synthetic N fertilisers (Fustec et al. 2010). More frequent or/and intense droughts and floodings, due to climate change and intensification of agriculture, may affect N rhizodeposition (Preece & Peñuelas 2016). However, the effects of water stress on this process are poorly documented. A part of N derived from root exudates, mainly in amino acids (AAs) form, is suspected shape and regulate rhizosphere microbial community, thus playing a potential role in maintaining plant health in case of abiotic stress (Moe 2013). We hypothesized that root AA exudation could change significantly, according to water availability, and would help to understand N metabolism changes in plant-rhizosphere interactions. Because studying exudation from plant grown in unsterilized soil is challenging (Oburger et al. 2013), we have measured the rhizosphere AA fingerprint (RAAF), as the result of interactions between AA exudation and rhizospheric environment. In addition, plants were stem-labeled (cotton-wick) with 15N-urea for 72 h to provide direct evidence of a link between root AA and exudation in the soil. The RAAF was measured in Pisum sativum rhizosphere, under either a water deficit or a water excess for 72 h. Water deficit decreases biomass accumulation in shoots but not in roots. Then, water deficit had no significant effect on total AAs released into the rhizosphere but, it significantly modified the composition of RAAF, with a preferential increase of proline, alanine and glutamate and a rise in isotopic enrichment of AAs derived from oxaloacetate in tricarboxylic acidic cycle (asparagine, aspartate, threonine and isoleucine). These results support the idea that, under the early stages of water deficit, recently assimilated N is rapidly translocated to the roots, and part of it is exudated in AAs. Most of the exudated

  15. Acid-base balance in lake water

    Energy Technology Data Exchange (ETDEWEB)

    Brosset, C.


    As expected, the acid-base content of lake water is composed of strong base or acid, weak acids (mainly fulvic acid) and carbonic acid. All of these may be determined by using a simple titration method. The concentration of undissociated carbonic acid sometimes appears not to be in equilibrium with the CO/sub 2/-concentration in air. Observed supersaturation seems to be connected to the concentration of fulvic acid.

  16. New look at sandstone acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, J.L.


    The acid mutual solvent (AMS) technique is a 3-step process which involves a preflush, a mixed HF-HCl stage, and an afterflush employing the mutual solvent. The preflush is normally regular hydrochloric acid (15% HCl). This step is designed to serve as a buffer between formation water and hydrofluoric acid. Normally an adequate preflush is 50 gal of regular acid per ft of perforated interval. The mud-acid stage commonly consists of a mixture 3% HF and 12% HCl, although other concentrations may be used. Unfortunately this acid formulation is capable of producing by-products which as insoluble residues, reduce formation permeability or alter wettability in a way that lower relative permeability to oil. Effective treatments are sometimes conducted with as little as 10 to 20 gal of mud acid per ft of perforated interval. Third treatment stage, the afterflush, is composed of diesel oil containing 10% or more of a mutual solvent. A solvent of particular interest is ethylene glycol monobutyl ether (EGMBE). The EGMBE appears to improve cleanup to such an extent that an appreciable increase in well productivity is noticed. Tabular data show comparisons of multiple field treatments employing mud acid with and without the mutual solvent in the afterflush.

  17. Omega-3 fatty acids (image) (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega- ... fish including tuna, salmon, and mackerel. Other important omega 3 fatty acids are found in dark green leafy vegetables, flaxseed ...

  18. Acid rain: a background report

    Energy Technology Data Exchange (ETDEWEB)

    Glustrom, L.; Stolzenberg, J.


    This Staff Brief was prepared for the Wisconsin Legislative Council's Special Committee on Acid Rain to provide an introduction to the issue of acid rain. It is divided into four parts. Part I provides an overview on the controversies surrounding the measurement, formation and effects of acid rain. As described in Part I, the term acid rain is used to describe the deposition of acidic components through both wet deposition (e.g., rain or snow) and dry deposition (e.g., direct contact between atmospheric constituents and the land, water or vegetation of the earth). Part II presents background information on state agency activities relating to acid rain in Wisconsin, describes what is known about the occurrence of, susceptibility to and effects of acid rain in Wisconsin, and provides information related to man-made sources of sulfur and nitrogen oxides in Wisconsin. Part III describes major policies and regulations relating to acid rain which have been or are being developed jointly by the United States and Canadian governments, by the United States government and by the State of Wisconsin. Part IV briefly discusses possible areas for Committee action.

  19. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C


    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  20. [Phylogenetic vision of bile acids]. (United States)

    Reyes, H


    Bile acids are the most important solutes of bile: they are essential in cholesterol degradation, solubilization and excretion; they are determinants of bile flow and secretion; and their role is crucial in the intestinal absorption of lipids and lipid soluble vitamins. In amphibia and in cartilaginous fish, the 27C cholestane molecule is hydroxylated to alcohols. In birds, the terminal 27C-OH group is oxydated to cholestanoic acids. In vertebrates of a more recent evolutionary origin, the lateral chain is shortened to 24C and oxydated to cholestanoic acids. Further transformations include chemical changes in the cholestane skeleton and in the lateral chain (hydroxylations, dehydroxylations, epimerization, etc). In the intestinal lumen, the saprophytic flora provides enzymes catalysing new changes that originate "secondary" bile acids. During entero-hepatic circulation, another variety of bile acids appear, commonly termed "tertiary" bile acids. A recent study of Lee R Hagey characterized bile acid composition of over 600 species of vertebrates, showing that bile acid composition of bile has been the subject of an interesting evolutionary phenomenon and that it is a chemical marker of biodiversity in vertebrates.

  1. Acid Precipitation: Causes and Consequences. (United States)

    Babich, Harvey; And Others


    This article is the first of three articles in a series on the acid rain problem in recent years. Discussed are the causes of acid precipitation and its consequences for the abiotic and biotic components of the terrestrial and aquatic ecosystems, and for man-made materials. (Author/SA)

  2. utilisation of synthetic amino acids

    African Journals Online (AJOL)


    Crystalline amino acids are used increasingly to meet the lysine, methionine and threonine requirements of poultry. Initially this was on economic grounds but their use is now being encouraged by concerns over N-pollution (Fisher, 2000). When modelling the amino acid requirements of broiler breeder hens, a question that ...

  3. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry


    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  4. N-(3-Nitrophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda


    Full Text Available In the title compound, C10H8N2O5, the molecule is slightly distorted from planarity. The molecular structure is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond (H...O distance = 1.57 Å within the maleamic acid unit and the second is a C—H...O hydrogen bond (H...O distance = 2.24 Å which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N—H...O interaction which links the molecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of intermolecular C—H...O hydrogen bonds to form a sheet parallel to the (overline{1}01 plane.

  5. Fumaric acid esters. (United States)

    Rostami Yazdi, Martin; Mrowietz, Ulrich


    Several clinical studies have shown that systemic therapy with fumaric acid esters (FAEs) in patients with moderate to severe psoriasis is effective and has a good long-term safety profile. For therapeutic use, tablets with a defined mixture of FAEs (dimethylfumarate [DMF] and three different salts of monoethylfumarate) are registered in Germany. There is evidence that DMF is the most essential component in this formulation with an antipsoriatic effect. Currently, there are few data on the pharmacokinetics of fumarates in human beings. DMF seems to act as a prodrug for its main metabolite: monomethylfumarate. This hypothesis was supported by the observation that only monomethylfumarate was detected in the plasma of human beings after the oral administration of FAEs. FAEs have been tested in different biological assays, and effects such as inhibition of the nuclear factor kappa B pathway or induction of apoptosis by DMF have been described. For these data, the role of DMF as a modulator of intracellular glutathione plays an important role.

  6. Antioxidants based on fatty acids

    Directory of Open Access Journals (Sweden)

    Kalk Christian


    Full Text Available Autoxidation is the cause for deterioration of organic materials. Many commercial products react with atmospheric oxygen under loss of quality. To retard unwanted oxidative damage and to prolong the useful life of the substrates, antioxidants are used to protect the organic matter. We linked phenolic compounds with fatty acids to obtain fatty acid conjugates with antioxidative action. The conjugates have a similar constitution like hindered phenols e.g. tert.-butyl-hydroxy-anisole (BHA and show good antioxidative action in the Rancimat-test. Ascorbic acid is an antioxidant and a strong reducing agent. Its action is based on a ketoene-diol structure. We were able to insert an analogous structure into a fatty acid chain. The products we obtained have similar oxidation potentials as ascorbic acid

  7. Reactive extraction and recovery of levulinic acid, formic acid and furfural from aqueous solutions containing sulphuric acid

    NARCIS (Netherlands)

    Brouwer, Thomas; Blahusiak, Marek; Babic, Katarina; Schuur, Boelo


    Levulinic acid (LA) can be produced from lignocellulosic materials via hydroxylation followed by an acid-catalyzed conversion of hexoses. Inorganic homogeneous catalysts are mostly used, in particular sulphuric acid, yielding a mixture of LA with sulphuric acid, formic acid (FA) and furfural.

  8. Kinetics of aluminum-fulvic acid complexation in acidic waters

    Energy Technology Data Exchange (ETDEWEB)

    Plankey, B.J.; Patterson, H.H.


    A fluorescence technique has been used to study the complex formation kinetics of aluminum with a single metal-free fulvic acid isolated from an Adirondack Mountain forest soil. In the pH range of 3.0-4.5, two kinetically distinguishable components of the fulvic acid mixture have been identified, which define two types of average aluminum binding sites. Both fulvic acid average sites conform to a bidentate chelating binding site kinetic analysis, from which rate and equilibrium parameters have been obtained. From comparison of rate and equilibrium constants of aluminum-salicyclic acid complexation, the authors conclude that the faster reacting component of fulvic acid probably contains salicyclic acid type aluminum binding sites. Results are also compared with those of an aluminum-fluoride kinetic study. Fulvic acid and fluoride react with aluminum by the same mechanism and therefore have the same pH dependence. The dependence of the rate on temperature is, however, quite different for the two reactions. The environmental implications of these findings are discussed. 45 references, 5 figures, 6 tables.

  9. Antimicrobial activity against Porphyromonas gingivalis and mechanism of action of the cationic octadecapeptide AmyI-1-18 and its amino acid-substituted analogs. (United States)

    Taniguchi, Masayuki; Ochiai, Akihito; Takahashi, Kiyoshi; Nakamichi, Shun-Ichi; Nomoto, Takafumi; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki


    The antimicrobial peptide AmyI-1-18 is a cationic α-helical octadecapeptide derived from α-amylase in rice (Oryza sativa L. japonica) that contains four cationic amino acid residues (two arginines and two lysines). To enhance the antibacterial activity of AmyI-1-18 against Porphyromonas gingivalis (a bacterium associated with periodontal disease), we synthesized 12 analogs bearing substitutions with alanine, leucine, and/or arginine that were designed based on helical wheel projections and investigated their antibacterial properties. The antibacterial properties of four analogs bearing substitution of a single arginine or lysine with alanine were almost similar to those of AmyI-1-18, suggesting that the antibacterial properties depend on the presence of three cationic amino acid residues. Of three single arginine-substituted analogs, AmyI-1-18(G12R) exhibited an antibacterial activity 2.8-fold higher [50% growth-inhibitory concentration (IC50): 4.6 μM] than that of AmyI-1-18 (IC50: 13 μM). Likewise, the antibacterial properties of two single leucine-substituted analogs were significantly enhanced; in particular, AmyI-1-18(N3L) exhibited an antibacterial activity (IC50: 2.5 μM) 5.2-fold higher than that of AmyI-1-18. The hemolytic activity of AmyI-1-18(N3L) against mammalian red blood cells was low (2% at 50 μM). A membrane-depolarization assay using a membrane potential-sensitive fluorescent dye revealed that, similar to AmyI-1-18, the antibacterial activity of AmyI-1-18(N3L) was not dependent on its membrane-disrupting activity. Our results demonstrate that the antibacterial properties of AmyI-1-18 against P. gingivalis are significantly improved, without a significant increase in hemolytic activity, by replacing asparagine with leucine at position 3. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Isolation and characterization of aquatic humic acid and fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, D.S. [Kangwon National University, Chunchon (Korea)


    The dissolved organic carbon extracted from groundwater is separated into humic acid and fulvic acid. They are characterized for their chemical composition, spectroscopic characteristics using UV/VIS, IR and solid state {sup 13}C-NMR spectroscopy, proton exchange capacity and molecular size distribution. The results are comparable with the literature data. The study explains that the aquatic humic and fulvic acid in this experiment are site-specipic and polydisperse natural organic matter with considerable proton exchange capacity. (author). 16 refs., 5 tabs., 4 figs.

  11. Bioactive phenolic acids from Scorzonera radiata Fisch.

    Directory of Open Access Journals (Sweden)

    N Tsevegsuren


    Full Text Available Chromatographic separation of the crude extract obtained from the aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded five new dihydrostilbenes [4], two new flavonoids, one new quinic acid derivative, as well as twenty known compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple benzoic acids, and one monoterpene glycoside. We present here results on isolation and structural identification some active phenolic compounds from the Scorzonera radiata - eight quinic acid derivatives (quinic acid, 4,5-dicaffeoylquinic acid, 4,5-dicaffeoyl-epi-quinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoyl-epi-quinic acid, chlorogenic acid, 5-p-coumaroylquinic acid (trans, 5-p-coumaroylquinic acid (cis. Quinic acid derivatives exhibited antioxidative activity.DOI: Mongolian Journal of Chemistry Vol.12 2011: 78-84

  12. Synthesis of Trishomocubane Amino Acid Derivatives | Govender ...

    African Journals Online (AJOL)

    The acid fluoride is required for activation of the cage amino acid in SPPS. Esterification of the sterically hindered trishomocubane amino acid is also reported, indicating sufficient reactivity of the acid function for potential use in SPPS. Keywords: Trishomocubane amino acid, hydantoin, Fmoc protection, t-Boc protection, ...

  13. Phytic acid in green leaves. (United States)

    Hadi Alkarawi, H; Zotz, G


    Phytic acid or phytate, the free-acid form of myo-inositolhexakiphosphate, is abundant in many seeds and fruits, where it represents the major storage form of phosphorus. Although also known from other plant tissues, available reports on the occurrence of phytic acid, e.g. in leaves, have never been compiled, nor have they been critically reviewed. We found 45 published studies with information on phytic acid content in leaves. Phytic acid was almost always detected when studies specifically tried to detect it, and accounted for up to 98% of total P. However, we argue that such extreme values, which rival findings from storage organs, are dubious and probably result from measurement errors. Excluding these high values from further quantitative analysis, foliar phytic acid-P averaged 2.3 mg·g(-1) , and represented, on average, 7.6% of total P. Remarkably, the ratio of phytic acid-P to total P did not increase with total P, we even detected a negative correlation of the two variables within one species, Manihot esculenta. This enigmatic finding warrants further attention. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Insect acid-base physiology. (United States)

    Harrison, J F


    Acid-base status influences many aspects of insect biology, including insect distributions in aquatic systems, insect-plant and insect-pathogen interactions, membrane transport phenomena, and the mode of action of pesticides. Acid-base status in the hemolymph and gut lumen of insects is generally well regulated but varies somewhat within individuals owing to effects of temperature, activity, discontinuous ventilation, and diet. The pH of the midgut lumen varies with the phylogeny and feeding ecology. Insect fluids have buffer values similar to those of vertebrates. The respiratory system participates in acid-base homeostasis primarily by regulating the internal carbon dioxide (partial) pressure via changes in spiracular opening and convective ventilation. The epithelia of the renal system and gut participate in hemolymph acid-base regulation by varying acid-base transport in response to organismal acid-base status. Evidence to date suggests that the dominant mechanisms for control of renal acid-base excretion involve hormonal regulation of H+-V-ATPase activity.

  15. Ascorbic acid induced atrazine degradation. (United States)

    Hou, Xiaojing; Huang, Xiaopeng; Ai, Zhihui; Zhao, Jincai; Zhang, Lizhi


    In this study, we systematically investigated the degradation efficiency and the degradation mechanism of atrazine in the presence of ascorbic acid at different pH values. Although atrazine could be degraded by ascorbic acid in a wide pH range from 4 to 12, its degradation under either acidic (pH≤4) or alkaline (pH≥12) condition was more efficient than under neutral condition (pH=7). This pH dependent atrazine degradation was related to the reactive characteristic of atrazine and the reductive activity of ascorbic acid. The ascorbic acid induced atrazine degradation pathways at different pH were investigated by comparing the atrazine degradation intermediates with liquid chromatography-mass spectrometry, high performance liquid chromatography and ion chromatography. It was found that more products were detected in presence of ascorbic acid at alkaline condition. The appearance of chloride ions confirmed the dechlorination of atrazine by ascorbic acid in the absence of molecular oxygen, while its dechlorination efficiency reached highest at pH 12. These results can shed light on the application of AA for the organic pollutant remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. C-11 Acid and the Stereochemistry of Abietic Acid

    Indian Academy of Sciences (India)

    IAS Admin

    carboxycyclohexylacetic acid. ... developed by Barton (1969 Chemistry Nobel Prize) to the solution of an important configurational problem, ... organic chemistry' and of the theoretical treatment of the chemical bond, essential to an understanding of ...

  17. Renal handling of terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tremaine, L.M.; Quebbemann, A.J.


    By use of the Sperber in vivo chicken preparation method, infusion of radiolabeled terephthalic acid ((/sup 14/C)TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of (/sup 14/C)TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the (/sup 14/C)TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of (/sup 14/C)TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion.

  18. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts


    Bahri, Sana; Mies, Fr?d?rique; Ben Ali, Ridha; Mlika, Mona; Jameleddine, Saloua; Mc Entee, Kathleen; Shlyonsky, Vadim


    Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA) and rosmarinic acid (RA) was reported to cure bleomycin-(BLM)-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF) viability with IC50 value of 17.13?1.06 ?M, while RA had no cytotoxic effect. In the presence of 50 ?M of RA, dose-response for CA shifted...

  19. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)


    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting of nat...... of naturally-occurring nucleobases and non-naturally-occurring nucleobases attached to a polyamide backbone, and contain alkylamine side chains....

  20. Treatment of acid mine wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, D.; Barnard, R.


    Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

  1. Synthesis of tenuazonic acid analogues. (United States)

    Soliman, F S


    The synthesis of two 1.5-diaryltetramic acids, aryl analogues of tenuazonic acid, is described. The reactivity of position 4 of these tetramic acids towards primary and secondary amines, and o-methylation led to the synthesis of 4-substituted-delta3-pyrroline-2-one. Further, reactivity of position 3 has been indicated by the formation of 3-arylidenepyrrolidine-2.4-diones and by diazo-coupling. The structures assigned to the new compounds are substantiated by IR and NMR data.

  2. Amino Acids from a Comet (United States)

    Cook, Jamie Elisla


    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  3. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production. (United States)

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai


    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  4. Omega-3 Fatty Acids during Pregnancy (United States)

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your ... the foods you eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important ...

  5. Hydroxy, carboxylic and amino acid functionalized ...

    Indian Academy of Sciences (India)

    precipitation method and modified with different coating agents such as ascorbic acid, hexanoic acid, salicylic acid, L-arginine and L-cysteine. The synthesized nanoparticles were characterized by various techniques such as FT IR, XRD, VSM, ...

  6. Treatment of Amino Acid Metabolism Disorders (United States)

    ... amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please fill ... It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect a ...

  7. Nucleic Acid-Based Nanoconstructs (United States)

    Focuses on the design, synthesis, characterization, and development of spherical nucleic acid constructs as effective nanotherapeutic, single-entity agents for the treatment of glioblastoma multiforme and prostate cancers.

  8. Antibiofilm Properties of Acetic Acid (United States)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup; Nielsen, Anne K.; Johansen, Helle Krogh; Homøe, Preben; Høiby, Niels; Givskov, Michael; Kirketerp-Møller, Klaus


    Bacterial biofilms are known to be extremely tolerant toward antibiotics and other antimicrobial agents. These biofilms cause the persistence of chronic infections. Since antibiotics rarely resolve these infections, the only effective treatment of chronic infections is surgical removal of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms. PMID:26155378


    Directory of Open Access Journals (Sweden)



    Full Text Available Acid-base, electrolyte, and metabolic disturbances are common in the intensive care unit. Almost all critically ill patients often suffer from compound acid-base and electrolyte disorders. Successful evaluation and management of such patients requires recognition of common patterns (e.g., metabolic acidosis and the ability to dissect one disorder from another. The intensivists needs to identify and correct these condition with the easiest available tools as they are the associated with multiorgan failure. Understanding the elements of normal physiology in these areas is very important so as to diagnose the pathological condition and take adequate measures as early as possible. Arterial blood gas analysis is one such tool for early detection of acid base disorder. Physiology of acid base is complex and here is the attempt to simplify it in our day to day application for the benefit of critically ill patients.

  10. Biotechnological production of citric acid. (United States)

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel


    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  11. Structural features of lignohumic acids

    Czech Academy of Sciences Publication Activity Database

    Novák, František; Šestauberová, Martina; Hrabal, R.


    Roč. 1093, August (2015), s. 179-185 ISSN 0022-2860 Institutional support: RVO:60077344 Keywords : C-13 NMR * FTIR * humic acids * lignohumate * lignosulfonate * structure Subject RIV: DF - Soil Science Impact factor: 1.780, year: 2015

  12. Folic Acid: Data and Statistics (United States)

    ... blood folate levels and are less likely to consume foods fortified with folic acid. [ Read article ] Are ... Disease Control and Prevention Email Recommend Tweet YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding ...

  13. Biotechnological production of citric acid (United States)

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel


    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  14. Biotechnological production of citric acid

    National Research Council Canada - National Science Library

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel


    .... Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus...

  15. Compact oleic acid in HAMLET. (United States)

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara


    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  16. Bile acid sequestrants for cholesterol (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  17. Biotechnological production of citric acid

    Directory of Open Access Journals (Sweden)

    Belén Max


    Full Text Available This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  18. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.


    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  19. Macrophages in Mildly Acid Microenvironment

    African Journals Online (AJOL)

    acid caused by anaerobic glycolysis in hypoxia, seem to be the main cause. In consequence, pH. 6.6 and 6.8 were used as experimental group to present the mildly acid microenvironment of tumor tissues, and pH 7.2 was taken as control group in our study. Table 1: Effect of TP concentration and time on the proliferation of ...

  20. Microbial production of citric acid


    Vandenberghe, Luciana P. S.; Soccol,Carlos R.; Pandey, Ashok; Lebeault, Jean-Michel


    Citric acid is the most important organic acid produced in tonnage and is extensively used in food and pharmaceutical industries. It is produced mainly by submerged fermentation using Aspergillus niger or Candida sp. from different sources of carbohydrates, such as molasses and starch based media. However, other fermentation techniques, e.g. solid state fermentation and surface fermentation, and alternative sources of carbon such as agro-industrial residues have been intensively studied showi...


    Directory of Open Access Journals (Sweden)

    V Rahimi-Movaghar


    Full Text Available "nThe dysesthesia and paresthesia that occurs in laboratory rats after spinal cord injury (SCI results in autophagia. This self-destructive behavior interferes with functional assessments in designed studies and jeopardizes the health of the injured rat. In this study, we evaluated role of saturated picric acid in the prevention of autophagia and self-mutilation. All rats were anesthetized with an intraperitoneal injection of a mixture of ketamine (100 mg/kg and xylazine (10 mg/kg for the SCI procedures. In the first 39 rats, no solution applied to the hind limbs, but in the next 26 cases, we smeared the saturated picric acid on the tail, lower extremities, pelvic, and abdomen of the rats immediately after SCI. In the rats without picric acid, 23 rats died following autophagia, but in the 26 rats with picric acid, there was no autophagia (P < 0.001. Picric acid side effects in skin and gastrointestinal signs such as irritation, redness and diarrhea were not seen in any rat. Saturated picric acid is a topical solution that if used appropriately and carefully, might be safe and effectively prevents autophagia and self-mutilation. When the solution is applied to the lower abdomen and limbs, we presume that its bitterness effectively prevents the rat from licking and biting the limb.

  2. [Women's knowledge of folic acid]. (United States)

    Salgues, Mathilde; Damase-Michel, Christine; Montastruc, Jean-Louis; Lacroix, Isabelle


    Many trials have shown that folic acid supplementation before and during pregnancy reduces the risk of neural tube defects in general population. We investigated the knowledge of folic acid in women of child-bearing age. Women of child-bearing age were interviewed by 20 pharmacists living in Haute-Garonne between January and February 2014. One hundred ninety-six women were included in the present study. Out of them, 36% of women never heard of folic acid and 82% were not aware of its benefits. Knowledge was higher in older women, women in a couple and women with higher educational level (Pfolic acid during pregnancy. Moreover, previous studies have shown that French women have low use of folic acid during peri-conceptional period. Information of general population will be required for a better prevention of folic acid-preventable NTDs. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  3. Performance of Different Acids on Sandstone Formations

    Directory of Open Access Journals (Sweden)

    M. A. Zaman


    Full Text Available Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Some of these reactions may result in formation damage. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. It is a mixture of hydrofluoric (HF and hydrochloric (HCl acids designed to dissolve clays and siliceous fines accumulated in the near-wellbore region. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50% to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid – Hydrofluoric with Concentration (3% HF – 12% HCl. This paper presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results calculated are porosity, permeability, and FESEM Analysis and Strength tests. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  4. Vanadocene reactions with hydroxy acids. [Hydroxy acids: acetylsalicylic, gallic, lactic, salicyclic, orotic,. gamma. -hydroxybutyric acids

    Energy Technology Data Exchange (ETDEWEB)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Ehllert, O.G.; Arsen' eva, T.I. (Gor' kovskij Meditsinskij Inst. (USSR))


    To prepare a series of vanadium cyclopentadienylcarboxylates soluble in water, the vanadocene reactions with lactic, ..gamma..-oxybutyric-, salicylic,- gallic-, orotic-, and acetylsalicylic acids have been studied. To determine the influence of cyclopentadienyl groups, bound with a vanadium atom, on the physiological activity of the complexes formed, vanadium halides are made to react with lactic acid. Only the vanadocene reaction with orotic acid was conducted in an aqueous medium, other interactions were realized in the diethyl ether, toluene, T, H, P medium. The interaction of vanadocene and vanadium halides with lactic-, salicylic-, acetylsalicylic- and gallic acids was found to lead to the formation of water-soluble vanadium complexes of Cp/sub 2/, VOCOR or CpV (OCOR)/sub 2/ type. The data on the produced compounds yield, their IR spectra, decomposition temperatures, solubility, effective magnetic moments are presented.

  5. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids. (United States)

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario


    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  6. Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion


    Teyssen, Stephan; González-Calero, Gloria; Schimiczek, Michael; Singer, Manfred V


    Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunt...

  7. Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system. (United States)

    Andreozzi, R; Caprio, V; Di Somma, I; Sanchirico, R


    The nitration process of salicylic acid for the production of the important intermediate 5-nitrosalicylic acid is studied from thermokinetic and safety points of view. Investigations carried out by considering, as process deviations, the loss of the thermal control point out the possibility of runaway phenomena due to the occurrence of polynitration reactions. Isothermal experiments are carried out in various conditions to assess the involved reaction network and reaction kinetics.

  8. [Regulating acid stress resistance of lactic acid bacteria--a review]. (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing


    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  9. Chemical burns caused by trifluoroacetic acid. (United States)

    Dahlin, Jakob; Engfeldt, Malin; Svedman, Cecilia; Mowitz, Martin; Zimerson, Erik; Isaksson, Marléne; Hindsén, Monica; Bruze, Magnus


    Trifluoroacetic acid is a very strong carboxylic acid. The acid has been suspected to have similar toxic effects as hydrofluoric acid on skin contact. Hydrofluoric acid is highly toxic, owing to skin penetration by fluoride ions. A spill of hydrofluoric acid on the skin may be fatal. As trifluoroacetic acid contains fluorine, patients with chemical burns caused by trifluoroacetic acid have been given particular attention when treated in the hospital. To gather the known cases of trifluoroacetic acid burns from our department to give an overview of how they were exposed, the clinical presentation, and treatment. Five patients with chemical skin burns caused by trifluoroacetic acid were reviewed with regard to the extent of the burn, treatment, blood samples taken, and systemic effects. The chemical burns reported were limited (burns healed as expected for chemical burns caused by acids. None of the patients showed any symptoms or signs that are typical for hydrofluoric acid burns. Localized chemical burns caused by trifluoroacetic acid should be regarded as being similar to burns from other acids, with the exception of hydrofluoric acid. To our knowledge, there are no indications that trifluoroacetic acid causes the same toxic effects as hydrofluoric acid. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. History of retinoic acid receptors. (United States)

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann


    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  11. Boronic acid-based autoligation of nucleic acids

    DEFF Research Database (Denmark)

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.


    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible...... boronate internucleosidic linkages. The DNA- or RNA-templated system comprises a 5′-ended boronic acid probe connecting a 3′-ended ribonucleosidic oligonucleotide partner. To explore the dominant factors that control the reversible linkage, we synthesized a series of 3′-end modified ribonucleotidic strands...

  12. Nucleic acid based molecular devices. (United States)

    Krishnan, Yamuna; Simmel, Friedrich C


    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli


    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  14. 21 CFR 184.1021 - Benzoic acid. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Benzoic acid. 184.1021 Section 184.1021 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid...

  15. 21 CFR 582.5013 - Ascorbic acid. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ascorbic acid. 582.5013 Section 582.5013 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5013 Ascorbic acid. (a) Product. Ascorbic acid. 1 Amino acids listed in this subpart may be...

  16. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process. (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui


    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  17. Tumor Acidity as Evolutionary Spite

    Energy Technology Data Exchange (ETDEWEB)

    Alfarouk, Khalid O., E-mail: [Department of Biotechnology, Africa City of Technology, Khartoum (Sudan); Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan); Shayoub, Mohammed E. A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum (Sudan)


    Most cancer cells shift their metabolic pathway from a metabolism reflecting the Pasteur-effect into one reflecting the Warburg-effect. This shift creates an acidic microenvironment around the tumor and becomes the driving force for a positive carcinogenesis feedback loop. As a consequence of tumor acidity, the tumor microenvironment encourages a selection of certain cell phenotypes that are able to survive in this caustic environment to the detriment of other cell types. This selection can be described by a process which can be modeled upon spite: the tumor cells reduce their own fitness by making an acidic environment, but this reduces the fitness of their competitors to an even greater extent. Moreover, the environment is an important dimension that further drives this spite process. Thus, diminishing the selective environment most probably interferes with the spite process. Such interference has been recently utilized in cancer treatment.

  18. Biotechnological production of itaconic acid. (United States)

    Willke, T; Vorlop, K D


    Itaconic acid (IA) is an unsaturated dicarbonic organic acid. It can easily be incorporated into polymers and may serve as a substitute for petrochemical-based acrylic or methacrylic acid. It is used at 1-5% as a co-monomer in resins and also in the manufacture of synthetic fibres, in coatings, adhesives, thickeners and binders. The favoured production process is fermentation of carbohydrates by fungi, with a current market volume of about 15,000 t/a. Due to the high price of about US$ 4/kg, the use of IA is restricted. At present, the production rates do not exceed 1 g l(-1) h(-1), accompanied by product concentrations of about 80 g l(-1). New biotechnology approaches, such as immobilisation techniques, screening programmes and genetic engineering, could lead to higher productivity. Also, the use of alternative substrates may reduce costs and thus open the market for new and increased applications.

  19. Sialic Acid Receptors of Viruses. (United States)

    Matrosovich, Mikhail; Herrler, Georg; Klenk, Hans Dieter


    Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.

  20. [Circulating nucleic acids and infertility]. (United States)

    Scalici, E; Mullet, T; Ferrières Hoa, A; Gala, A; Loup, V; Anahory, T; Belloc, S; Hamamah, S


    Circulating nucleic acids (cell-free DNA and microRNAs) have for particularity to be easily detectable in the biological fluids of the body. Therefore, they constitute biomarkers of interest in female and male infertility care. Indeed, in female, they can be used to detect ovarian reserve disorders (polycystic ovary syndrome and low functional ovarian reserve) as well as to assess follicular microenvironment quality. Moreover, in men, their expression levels can vary in case of spermatogenesis abnormalities. Finally, circulating nucleic acids have also the ability to predict successfully the quality of in vitro embryo development. Their multiple contributions during assisted reproductive technology (ART) make of them biomarkers of interest, for the development of new diagnostic and/or prognostic tests, applied to our specialty. Circulating nucleic acids would so offer the possibility of personalized medical care for infertile couples in ART. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Hydroxamic acids in asymmetric synthesis. (United States)

    Li, Zhi; Yamamoto, Hisashi


    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst's center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Because of their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless asymmetric epoxidation, which uses the titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless asymmetric epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities.

  2. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)

    BA and BAAC have been shown to induce a time dependant increase in the sub G1 peak indicating apoptotic phenomenon as obtained from the DNA content histogram analysis. Thus, betulinic acid isolated from Malaysia plant showed good potential as an anti-cancer compound with less toxicity to human normal cells.

  3. Effect of para-chlorophenoxyacetic acid on acid invertase gene ...

    African Journals Online (AJOL)

    Tomato cv. Liaoyuanduoli (Solanum lycopersicum) plants were cultivated in a greenhouse to allow sampling of the second fruit in the first cluster and comparison with tomato fruit that developed following para-chlorophenoxyacetic acid (PCPA) treatment. Sugar content, activities of sugar related enzymes and the effects of ...

  4. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    L. salivarius alone showed relatively good assimilation of various amino acids that existed at only a little amounts in MRS media (Asn, Asp, Cit, Cys, Glu, His, Lys, Orn, Phe, Pro, Tyr, Arg, Ile, Leu, Met, Ser, Thr, Trp and Val), whereas Ala and Gly accumulated in L. salivarius cultures. P. acidilactici, in contrast, hydrolyzed the ...

  5. Fatty acids and amino acids contents in Scomber scombrus fillets ...

    African Journals Online (AJOL)

    Proximate composition, fats and amino acids of Atlantic Mackerel fillets (Scomber scombrus) from the South East of Tunisia in different seasons, were analyzed in order to assess nutritive characteristics of this species. Samples were collected monthly from Zarzis fishing port located in the South-East of Tunisia. Total fats and ...

  6. Fatty acid composition and amino acid profile of two freshwater ...

    African Journals Online (AJOL)

    The proximate, fatty and amino acids composition of two commercially important freshwater fish species Clarias gariepinus and Tilapia zillii. purchased from local fishermen in two landing sites in Lagos State, Nigeria were determined. Live specimens of C. gariepinus were purchased while samples of T. zillii were stored in ...

  7. Cytotoxic effect of betulinic acid and betulinic acid acetate isolated ...

    African Journals Online (AJOL)



    Sep 20, 2010 ... 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra. Malaysia, 43400, Serdang ... analysis. Thus, betulinic acid isolated from Malaysia plant showed good potential as an anti-cancer compound with less toxicity to human normal cells. Key words: ...

  8. Spherical agglomeration of acetylsalicylic acid

    Directory of Open Access Journals (Sweden)

    Polowczyk Izabela


    Full Text Available In this paper spherical agglomeration of acetylsalicylic acid was described. In the first step, the system of good and poor solvents as well as bridging liquid was selected. As a result of a preliminary study, ethyl alcohol, water and carbon tetrachloride were used as the good solvent, poor one, and bridging liquid, respectively. Then, the amount of acetylsalicylic acid and the ratio of the solvents as well as the volume of the bridging liquid were examined. In the last step, the agglomeration conditions, such as mixing intensity and time, were investigated. The spherical agglomerates obtained under optimum conditions could be subjected to a tableting process afterwards.

  9. Exosomes as nucleic acid nanocarriers. (United States)

    van den Boorn, Jasper G; Dassler, Juliane; Coch, Christoph; Schlee, Martin; Hartmann, Gunther


    Exosomes are nano-sized vesicles produced naturally by many cell types. They are specifically loaded with nucleic acid cargo, dependent on the exosome-producing cell and its homeostatic state. As natural intercellular shuttles of miRNA, exosomes influence an array of developmental, physiological and pathological processes in the recipient cell or tissue to which they can be selectively targeted by their tetraspanin surface-domains. By a review of current research, we illustrate here why exosomes are ideal nanocarriers for use in the targeted in vivo delivery of nucleic acids. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Vanadyl complexes with ethylenedithiodiacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, A. (Rome Univ. (Italy). Ist. di Chimia Analitica)


    The complex formation between vanadyl ions and ethylenedithiodiacetic acid (H/sub 2/L) has been studied at 25/sup 0/C in 0.5 M-NaClO/sub 4/ as inert medium, by measuring the hydrogen ion concentration with a glass electrode. In acidic medium and in the investigated concentration ranges (2.07 mM<=Csub(M)<=7.50 mM, Csub(L) up to 12.5 mM)sup(*) the emf data can be explained assuming the equilibrium: VO/sup 2 +/ + L/sup 2 -/ reversible VOL log..beta.. /sub 101/ = 2.68 +-0.03.


    The cacodylic acid (DMAV) issue paper discusses the metabolism and pharmacokinetics of the various arsenical chemicals; evaluates the appropriate dataset to quantify the potential cancer risk to the organic arsenical herbicides; provides an evaluation of the mode of carcinogenic action (MOA) for DMAV including a consideration of the key events for bladder tumor formation in rats, other potential modes of action; and also considers the human relevance of the proposed animal MOA. As part of tolerance reassessment under the Food Quality Protection Act for the August 3, 2006 deadline, the hazard of cacodylic acid is being reassessed.

  12. Acid Sulfate Alteration on Mars (United States)

    Ming, D. W.; Morris, R. V.


    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  13. Are teeth evidence in acid environment


    Makesh Raj; Karen Boaz; N Srikant


    Aim: Teeth are the most durable structures that resist destruction more than skeletal tissue Commercially available acids can be used to destroy the body or a part, to mask human identification. The present study examines the effect of caustic acids on human dentition. Materials and Methods: Ten upper anterior teeth each were immersed in 37% hydrochloric acid (conc. HCl), 65% nitric acid (conc. HNO 3 ) and 96% sulfuric acid (conc. H 2 SO 4 ). Teeth were retrieved, washed in distilled water, d...

  14. 21 CFR 186.1316 - Formic acid. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Formic acid. 186.1316 Section 186.1316 Food and... Substances Affirmed as GRAS § 186.1316 Formic acid. (a) Formic acid (CH2O2, CAS Reg. No. 64-18-6) is also referred to as methanoic acid or hydrogen carboxylic acid. It occurs naturally in some insects and is...

  15. Citric Acid Passivation of Stainless Steel (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad


    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  16. Acid Rain: What It Is -- How You Can Help! (United States)

    National Wildlife Federation, Washington, DC.

    This publication discusses the nature and consequences of acid precipitation (commonly called acid rain). Topic areas include: (1) the chemical nature of acid rain; (2) sources of acid rain; (3) geographic areas where acid rain is a problem; (4) effects of acid rain on lakes; (5) effect of acid rain on vegetation; (6) possible effects of acid rain…

  17. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    NARCIS (Netherlands)

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M.B.


    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn

  18. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely used...

  19. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis

    NARCIS (Netherlands)

    van Beilen, J.W.A.; Teixeira De Mattos, M.J.; Hellingwerf, K.J.; Brul, S.


    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances,

  20. Erythrocyte stearidonic acid and other n-3 fatty acids and CHD in the Physicians’ Health Study (United States)

    Intake of marine-based n-3 fatty acids (EPA, docosapentaenoic acid and DHA) is recommended to prevent CHD. Stearidonic acid (SDA), a plant-based n-3 fatty acid, is a precursor of EPA and may be more readily converted to EPA than a-linolenic acid (ALA). While transgenic soyabeans might supply SDA at ...

  1. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal


    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  2. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives. (United States)

    Vollmer, Maren; Schröter, David; Esders, Selma; Neugart, Susanne; Farquharson, Freda M; Duncan, Sylvia H; Schreiner, Monika; Louis, Petra; Maul, Ronald; Rohn, Sascha


    The almost forgotten crop amaranth has gained renewed interest in recent years due to its immense nutritive potential. Health beneficial effects of certain plants are often attributed to secondary plant metabolites such as phenolic compounds. As these compounds undergo significant metabolism after consumption and are in most cases not absorbed very well, it is important to gain knowledge about absorption, biotransformation, and further metabolism in the human body. Whilst being hardly found in other edible plants, caffeoylisocitric acid represents the most abundant low molecular weight phenolic compound in many leafy amaranth species. Given that this may be a potentially bioactive compound, gastrointestinal microbial degradation of this substance was investigated in the present study by performing in vitro fermentation tests using three different fecal samples as inocula. The (phenolic) metabolites were analyzed using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Furthermore, quantitative polymerase chain reaction (qPCR) analyses were carried out to study the influence on the microbiome and its composition. The in vitro fermentations led to different metabolite profiles depending on the specific donor. For example, the metabolite 3-(4-hydroxyphenyl)propionic acid was observed in one fermentation as the main metabolite, whereas 3-(3-hydroxyphenyl)propionic acid was identified in the other fermentations as important. A significant change in selected microorganisms of the gut microbiota however was not detected. In conclusion, caffeoylisocitric acid from amaranth, which is a source of several esterified phenolic acids in addition to chlorogenic acid, can be metabolized by the human gut microbiota, but the metabolites produced vary between individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Combinatorics of aliphatic amino acids. (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan


    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  4. Liquid chromatography of organophosphorus acids

    NARCIS (Netherlands)

    Verweij, A.; Kientz, C.E.; Berg, J. van den


    The applicability of different liquid chromatographic systems such as ion-exchange, ion-exclusion, reversed phase and ion-pair partition was studied for the analysis of a number of simple structurally related organophosphorus acids which lack a chromophoric group. Preliminary experiments based on

  5. Molecular Structure of Nucleic Acids

    Indian Academy of Sciences (India)

    A structure for nucleic acid has already been proposed by Pauling and Corey [1]. They kindly made'their manuscript available to us in advance of publication. Their model consists of three inter-twined chains, with the phosphates near the fibre axis, and the bases on the outside. In our opinion, this structure is unsatisfactory ...

  6. Uric acid in multiple sclerosis

    NARCIS (Netherlands)

    Koch, M; De Keyser, J

    Peroxynitrite, a reactive oxidant formed by the reaction of nitric oxide with superoxide at sites of inflammation in multiple sclerosis (MS), is capable of damaging tissues and cells. Uric acid, a natural scavenger of peroxynitrite, reduces inflammatory demyelination in experimental allergic

  7. Deoxyribonucleic acid in Nitrobacter carboxysomes. (United States)

    Westphal, K; Bock, E; Cannon, G; Shively, J M


    Carboxysomes were isolated from Nitrobacter winogradskyi and Nitrobacter agilis. The icosahedral particles contained double-stranded deoxyribonucleic acid (DNA). In the presence of ethidium bromide and cesium chloride, the particle-bound DNA had a buoyant density of rho 25 = 1.701 g/cm3. Electron microscopy revealed the DNA to be a 14-micron circular molecule.

  8. 2-(3-Hydroxybenzylaminoacetic acid

    Directory of Open Access Journals (Sweden)

    Li-Hua Zhi


    Full Text Available There are two independent 2-(3-hydroxybenzylaminoacetic acid molecules, C9H11NO3, in the asymmetric unit of the title compound. The dihedral angle between the benzene rings of the two independent molecules is 58.12 (4°. The crystal packing is stablized by intermolecular O—H...O and N—H...O hydrogen bonds.

  9. (VI) oxide in acetic acid

    African Journals Online (AJOL)

    The oxidation of cyclohexene by chromium (VI) oxide in aqueous and acetic media was studied. The reaction products were analysed using infra red (IR) and gas chromatography coupled with mass (GC/MS) spectroscopy. The major products of the oxidation reaction in acetic acid medium were cyclohexanol, ...

  10. Engineering robust lactic acid bacteria

    NARCIS (Netherlands)

    Bron, P.A.; Bokhorst-van de Veen, van H.; Wels, M.; Kleerebezem, M.


    For centuries, lactic acid bacteria (LAB) have been industrially exploited as starter cultures in the fermentation of foods and feeds for their spoilage-preventing and flavor-enhancing characteristics. More recently, the health-promoting effects of LAB on the consumer have been widely acknowledged,

  11. Boric Acid in Kjeldahl Analysis (United States)

    Cruz, Gregorio


    The use of boric acid in the Kjeldahl determination of nitrogen is a variant of the original method widely applied in many laboratories all over the world. Its use is recommended by control organizations such as ISO, IDF, and EPA because it yields reliable and accurate results. However, the chemical principles the method is based on are not…

  12. Toward Sustainable Amino Acid Production. (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  13. Folic Acid Questions and Answers (United States)

    ... programs 2-6 . Folic acid also prevents a type of anemia called megaloblastic anemia . Some vitamins (such as vitamin ... another B vitamin – vitamin B12 – can develop a type of anemia called pernicious anemia, and eventually they might have ...

  14. Biogenesis of rosmarinic acid in Mentha (United States)

    Ellis, B. E.; Towers, G. H. N.


    The biogenesis of rosmarinic acid (α-O-caffeoyl-3,4-dihydroxyphenyl-lactic acid), the second most common ester of caffeic acid in the plant kingdom, was studied in Mentha arvense and Mentha piperita. Administration of 14C-labelled compounds showed that, whereas the caffeoyl moiety was formed from phenylalanine via cinnamic acid and p-coumaric acid, the 3,4-dihydroxyphenyl-lactic acid moiety was formed from tyrosine and 3,4-dihydroxyphenylalanine. Time-course studies and the use of labelled rosmarinic acid showed that endogenous rosmarinic acid had a low turnover rate. The caffeoyl moiety did not appear to contribute to the formation of insoluble polymers, as has been suggested for chlorogenic acid in other plants. PMID:5484678

  15. Omega-3 Fatty Acids and Inflammatory Processes

    Directory of Open Access Journals (Sweden)

    Philip C. Calder


    Full Text Available Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.. Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.

  16. Formation of formic acid, acetic acid and lactic acid from decomposition of citric acid by coal ash particles at room temperature. (United States)

    Nakui, Hiroyuki; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokuro


    It was found for the first time that citric acid was decomposed to formic acid, acetic acid and lactic acid in the presence of coal ash particles at pH 3 at 20 degrees C, while it was not decomposed at more than pH 5. The yield of organic acid at stirring time of 60 min is in the order of formic acid>acetic acid>lactic acid. Since citric acid dissociates to citric anion at more than pH 5, it was suggested that citric anion and negatively charged coal ash particles repelled electrically each other at more than pH 5, resulting in that citric acid could not be adsorbed and not be decomposed on coal ash. Based on the obtained results, the decomposition of citric acid at pH 3 was suggested to be due to catalytic effects of coal ash. Since formic acid and acetic acid can be used as a material of hydrogen fermentation, coal ash could be used as a catalyst to synthesize the important material for hydrogen fermentation from wastewater of citric acid.

  17. Formation of volatile chemicals from thermal degradation of less volatile coffee components: quinic acid, caffeic acid, and chlorogenic acid. (United States)

    Moon, Joon-Kwan; Shibamoto, Takayuki


    The less volatile constituents of coffee beans (quinic acid, caffeic acid, and chlorogenic acid) were roasted under a stream of nitrogen, air, or helium. The volatile degradation compounds formed were analyzed by gas chromatography and gas chromatography-mass spectrometry. Caffeic acid produced the greatest amount of total volatiles. Quinic acid and chlorogenic acid produced a greater number of volatiles under the nitrogen stream than under the air stream. These results suggest that the presence of oxygen does not play an important role in the formation of volatile compounds by the heat degradation of these chemicals. 2,5-Dimethylfuran formed in relatively large amounts (59.8-2231.0 microg/g) in the samples obtained from quinic acid and chlorogenic acid but was not found in the samples from caffeic acid. Furfuryl alcohol was found in the quinic acid (259.9 microg/g) and caffeic acid (174.4 microg/g) samples roasted under a nitrogen stream but not in the chlorogenic sample. The three acids used in the present study do not contain a nitrogen atom, yet nitrogen-containing heterocyclic compounds, pyridine, pyrrole, and pyrazines, were recovered. Phenol and its derivatives were identified in the largest quantities. The amounts of total phenols ranged from 60.6 microg/g (quinic acid under helium) to 89893.7 microg/g (caffeic acid under helium). It was proposed that phenol was formed mainly from quinic acid and that catechols were formed from caffeic acid. Formation of catechol from caffeic acid under anaerobic condition indicates that the reaction participating in catechol formation was not oxidative degradation.

  18. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process. (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui


    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  19. Highly Selective Deoxydehydration of Tartaric Acid over Supported and Unsupported Rhenium Catalysts with Modified Acidities. (United States)

    Li, Xiukai; Zhang, Yugen


    The deoxydehydration (DODH) of sugar acids to industrially important carboxylic acids is a very attractive topic. Oxorhenium complexes are the most-often employed DODH catalysts. Because of the acidity of the rhenium catalysts, the DODH products of sugar acids were usually in the form of mixture of free carboxylic acids and esters. Herein, we demonstrate strategies for the selective DODH of sugar acids to free carboxylic acids by tuning the Lewis acidity or the Brønsted acidity of the rhenium-based catalysts. Starting from tartaric acid, up to 97 % yield of free maleic acid was achieved. Based on our strategies, functional polymer immobilized heterogeneous rhenium catalysts were also developed for the selective DODH conversion of sugar acids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae

    National Research Council Canada - National Science Library

    Dato, Laura; Berterame, Nadia Maria; Ricci, Maria Antonietta; Paganoni, Paola; Palmieri, Luigi; Porro, Danilo; Branduardi, Paola


    ...) for the production of biodegradable plastics. Yeasts can be considered as alternative cell factories to lactic acid bacteria for lactic acid production, despite not being natural producers, since they can better tolerate acidic environments...

  1. Chemical peeling--glycolic acid versus trichloroacetic acid in melasma. (United States)

    Kalla, G; Garg, A; Kachhawa, D


    Melasma continues to be a therapeutic challenge. 100 patients of melasma not responding to conventional depigmenting agents were divided into 2 groups, one treated with 55-75% glycolic acid (68 patients) and the other with 10-15% trichloroacetic acid (32 patients). Applications were made after every 15 days and response assessed clinically along with relapse or hyperpigmentation after 3 month follow up period. More than 75% improvement was seen in 30%, and 50-75% improvement in 24% patients. Response with TCA was more rapid as compared to GA. Chronic pigmentation responded more favourably to TCA. Relapse and hyperpigmentation was more-25% in TCA as compared to 5.9% GA. Sun exposure was the most important precipitating factor followed by pregnancy and drugs.

  2. Chemical peeling - Glycolic acid versus trichloroacetic acid in melasma

    Directory of Open Access Journals (Sweden)

    Kalla G


    Full Text Available Melasma continues to be a therapeutic challenge. 100 patients of melasma not responding to conventional depigmenting agents were divided into 2 groups, one treated with 55 - 75% glycolic acid (68 patients and the other with 10-15% trichloroacetic acid (32 patients. Applications were made after every 15 days and response assessed clinically along with relapse or hyperpigmentation after 3 month follow up period. More than 75% improvement was seen in 30%, and 50-75% improvement in 24% patients. Response with TCA was more rapid as compared to GA. Chronic pigmentation responded more favourably to TCA. Relapse and hyperpigmentation was more-25% in TCA as compared to 5.9% GA. Sun exposure was the most important precipitating factor followed by pregnancy and drugs.

  3. [Biology of essential fatty acids (EFA)]. (United States)

    Dobryniewski, Jacek; Szajda, Sławomir Dariusz; Waszkiewicz, Napoleon; Zwierz, Krzysztof


    Essential Fatty Acids (EFA), are unsaturated fatty acids not produced by human being, but essential for proper functioning of the human body. To EFA-s belongs: linoleic acid (LA) (18:2,cis detla(9,12), omega6)--precursor o f gamma-linolenic acid (GLA), gamma-linolenic acid (GLA) (18:3,cisA6,9,12, )6) and alpha-linolenic acid (ALA)(18:3,cisdelta(9, 12, 15), omega3)--product of dehydrogenation of linoleic acid (LA). Most important EFA is gamma-linolenic acid (GLA)--18 carbons, one-carboxylic, non-branched fatty acid with 3 double cis-bonds (the last is situated by 6-th carbon from methylic end). The diet devoided of EFA leads to decreased growth, skin and kidney injury and infertility. Modern research of GLA and others EFA's is concerned mainly on therapeutic impact on the inflammatory process. The biogenic amines, cytokines, prostaglandins, tromboxanes and leukotrienes are the main inflammatory mediators. The last three are described with the common name eicosanoides (eico-twenty). Eicosanoides are synthesized from 20-carbon unsaturated fatty acids: dihomo-gamma-linoleic (DGLA) (20:3, cis delta(8,11,14), omega6), arachidonic acid (AA-20:4, cis delta(5,8,11,14), omega6), and eicosapentaenoic acid (EPA-20:5, cis delta(5,8,11,14,17, omega3). Derivatives of gamma and gamma-linolenic acids regulate the inflammatory process, through their opposed activity. PG2, leucotrien C4 and tromboxan A2 have the strongest proinflammatory action. Derivatives of alpha-linolenic acid 15-HETE and prostaglandin E1 (PGE1) have weak pro-inflammatory action, or even anti-inflammatory (PGE1), and additionally, they inhibit the transformation of arachidonic acid (AA) to leukotriens. delta6-desaturase (transformes linolenic acid into gamma-linolenic acid by making additional double bond) is the slowest step of the fatty acid metabolism. It's activity is impaired by many physiological and pathologic factors and leads to gamma-linolenic acid (GLA) deficiency. The gamma-linolenic acid

  4. Distinct Effects of Sorbic Acid and Acetic Acid on the Electrophysiology and Metabolism of Bacillus subtilis


    van Beilen, J. W. A.; Teixeira de Mattos, M. J.; Hellingwerf, K. J.; Brul, S.


    Sorbic acid and acetic acid are among the weak organic acid preservatives most commonly used to improve the microbiological stability of foods. They have similar pKa values, but sorbic acid is a far more potent preservative. Weak organic acids are most effective at low pH. Under these circumstances, they are assumed to diffuse across the membrane as neutral undissociated acids. We show here that the level of initial intracellular acidification depends on the concentration of undissociated aci...

  5. Accidental intoxication with hydrochloric acid and hydrofluoric acid mixture

    Directory of Open Access Journals (Sweden)

    Anna Smędra-Kaźmirska


    Full Text Available The paper describes a fatal case of accidental ingestion of a mixture of hydrochloric acid and hydrofluoric acid. The man was admitted to hospital, where appropriate treatment, adequate to his condition, was instituted. Numerous ventricular fibrillation episodes, for which the patient was defibrillated repeatedly, were observed during the period of hospitalization. The patient was in a critical condition, with progressive symptoms of hypovolemic shock and multiorgan failure. On the next day after admission, signs of electromechanical dissociation progressing to asystole were noted. The instituted resuscitation procedure proved ineffective and the patient died. Autopsy revealed brownish discoloration of the esophageal, gastric, and small intestinal mucous membranes. Numerous ulcerations without signs of perforation were found both in the esophagus and in the stomach. The mucous membrane of the small intestine demonstrated focal rubefactions, whereas no focal lesions of the large intestinal mucosa were seen. Microscopic investigation of the biopsy specimens collected from the stomach, duodenum and small intestine revealed mucous membrane necrosis foci, reaching the deeper layers of the wall of these organs. The mucous membrane of the large intestine was congested. Bioptates obtained from the lungs indicated the presence of hemorrhagic infarcts and focal extravasations. Poisoning with the aforementioned acids with consequent necrosis of the esophageal, gastric, duodenal and small intestinal walls with hemorrhages to the gastrointestinal tract, as well as extravasations and hemorrhagic infarcts in the lungs was considered to be the cause of death.

  6. Anti-Diabetic Effects of Madecassic Acid and Rotundic Acid. (United States)

    Hsu, Yuan-Man; Hung, Yi-chih; Hu, Lihong; Lee, Yi-ju; Yin, Mei-chin


    Anti-diabetic effects of madecassic acid (MEA) and rotundic acid (RA) were examined. MEA or RA at 0.05% or 0.1% was supplied to diabetic mice for six weeks. The intake of MEA, not RA, dose-dependently lowered plasma glucose level and increased plasma insulin level. MEA, not RA, intake dose-dependently reduced plasminogen activator inhibitor-1 activity and fibrinogen level; as well as restored antithrombin-III and protein C activities in plasma of diabetic mice. MEA or RA intake decreased triglyceride and cholesterol levels in plasma and liver. Histological data agreed that MEA or RA intake lowered hepatic lipid droplets, determined by ORO stain. MEA intake dose-dependently declined reactive oxygen species (ROS) and oxidized glutathione levels, increased glutathione content and maintained the activity of glutathione reductase and catalase in the heart and kidneys of diabetic mice. MEA intake dose-dependently reduced interleukin (IL)-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels in the heart and kidneys of diabetic mice. RA intake at 0.1% declined cardiac and renal levels of these inflammatory factors. These data indicated that MEA improved glycemic control and hemostatic imbalance, lowered lipid accumulation, and attenuated oxidative and inflammatory stress in diabetic mice. Thus, madecassic acid could be considered as an anti-diabetic agent.

  7. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. (United States)

    Kooijman, Edgar E; Chupin, Vladimir; Fuller, Nola L; Kozlov, Michael M; de Kruijff, Ben; Burger, Koert N J; Rand, Peter R


    The formation of phosphatidic acid (PA) from lysophosphatidic acid (LPA), diacylglycerol, or phosphatidylcholine plays a key role in the regulation of intracellular membrane fission events, but the underlying molecular mechanism has not been resolved. A likely possibility is that PA affects local membrane curvature facilitating membrane bending and fission. To examine this possibility, we determined the spontaneous radius of curvature (R(0p)) of PA and LPA, carrying oleoyl fatty acids, using well-established X-ray diffraction methods. We found that, under physiological conditions of pH and salt concentration (pH 7.0, 150 mM NaCl), the R(0p) values of PA and LPA were -46 A and +20 A, respectively. Thus PA has considerable negative spontaneous curvature while LPA has the most positive spontaneous curvature of any membrane lipid measured to date. The further addition of Ca(2+) did not significantly affect lipid spontaneous curvature; however, omitting NaCl from the hydration buffer greatly reduced the spontaneous curvature of PA, turning it into a cylindrically shaped lipid molecule (R(0p) of -1.3 x 10(2) A). Our quantitative data on the spontaneous radius of curvature of PA and LPA at a physiological pH and salt concentration will be instrumental in developing future models of biomembrane fission.

  8. Characterization of acidic polysaccharides from the mollusks through acid hydrolysis. (United States)

    Cao, Jiuling; Wen, Chengrong; Lu, Jiaojiao; Teng, Nan; Song, Shuang; Zhu, Beiwei


    Uronic acid-containing polysaccharides (UACPs) including glycosaminoglycans (GAGs) exist widely in nature. Herein we propose an elegant methodology to identify UACPs by analyzing their disaccharides produced from the acid hydrolysis using HPLC-MS(n) upon 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatization. Based on the optimization of experimental conditions by the single factor experiment and orthogonal test design, the combination of 1.3M TFA at 105°C for 3h is found to be the optimum. Subsequently, these conditions were applied to investigate the distribution of UACPs in 20 selected species of edible Bivalvia and Gastropoda. PMP-disaccharides derived from UACPs in mollusks were identified by comparing the retention time and mass spectra with those of the reference PMP-disaccharides from hyaluronic acid (HA), chondroitin sulfate (CS), heparin (HP), and AGSP with →4)-GlcA(1→2)-Man(1→ repeating units. The analysis reveals the prevalence of CS in the shellfishes as well as the HP, and existence of three non-GAG UACPs in 7 mollusks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Anti-Diabetic Effects of Madecassic Acid and Rotundic Acid

    Directory of Open Access Journals (Sweden)

    Yuan-Man Hsu


    Full Text Available Anti-diabetic effects of madecassic acid (MEA and rotundic acid (RA were examined. MEA or RA at 0.05% or 0.1% was supplied to diabetic mice for six weeks. The intake of MEA, not RA, dose-dependently lowered plasma glucose level and increased plasma insulin level. MEA, not RA, intake dose-dependently reduced plasminogen activator inhibitor-1 activity and fibrinogen level; as well as restored antithrombin-III and protein C activities in plasma of diabetic mice. MEA or RA intake decreased triglyceride and cholesterol levels in plasma and liver. Histological data agreed that MEA or RA intake lowered hepatic lipid droplets, determined by ORO stain. MEA intake dose-dependently declined reactive oxygen species (ROS and oxidized glutathione levels, increased glutathione content and maintained the activity of glutathione reductase and catalase in the heart and kidneys of diabetic mice. MEA intake dose-dependently reduced interleukin (IL-1β, IL-6, tumor necrosis factor-α and monocyte chemoattractant protein-1 levels in the heart and kidneys of diabetic mice. RA intake at 0.1% declined cardiac and renal levels of these inflammatory factors. These data indicated that MEA improved glycemic control and hemostatic imbalance, lowered lipid accumulation, and attenuated oxidative and inflammatory stress in diabetic mice. Thus, madecassic acid could be considered as an anti-diabetic agent.

  10. Effect of citric acid and acetic acid on the performance of broilers


    Islam, M. Z.; Khandaker, Z.H; Chowdhury, S D; Islam, K.M.S


    An experiment was conducted with commercial broilers to investigate the effects of feeding citric acid, acetic acid and their combination on their performance and to determine the economic competence of using citric acid and acetic acid in broiler rations. A total number of 108 one day old straight run broiler chicks were distributed to four dietary treatments i.e. 0 % citric or acetic acid (A) , 0.5% citric acid (B), 0.5% acetic acid (C) and their combinations 0.5% citric acid and 0.5% aceti...

  11. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. (United States)

    Zheng, Chang Ji; Yoo, Jung-Sung; Lee, Tae-Gyu; Cho, Hee-Young; Kim, Young-Ho; Kim, Won-Gon


    Long-chain unsaturated fatty acids, such as linoleic acid, show antibacterial activity and are the key ingredients of antimicrobial food additives and some antibacterial herbs. However, the precise mechanism for this antimicrobial activity remains unclear. We found that linoleic acid inhibited bacterial enoyl-acyl carrier protein reductase (FabI), an essential component of bacterial fatty acid synthesis, which has served as a promising target for antibacterial drugs. Additional unsaturated fatty acids including palmitoleic acid, oleic acid, linolenic acid, and arachidonic acid also exhibited the inhibition of FabI. However, neither the saturated form (stearic acid) nor the methyl ester of linoleic acid inhibited FabI. These FabI-inhibitory activities of various fatty acids and their derivatives very well correlated with the inhibition of fatty acid biosynthesis using [(14)C] acetate incorporation assay, and importantly, also correlated with antibacterial activity. Furthermore, the supplementation with exogenous fatty acids reversed the antibacterial effect of linoleic acid, which showing that it target fatty acid synthesis. Our data demonstrate for the first time that the antibacterial action of unsaturated fatty acids is mediated by the inhibition of fatty acid synthesis.

  12. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide. (United States)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia


    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  13. Organic acids in naturally colored surface waters (United States)

    Lamar, William L.; Goerlitz, D.F.


    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  14. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg

  15. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna


    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  16. Amino acids in sheep production. (United States)

    McCoard, Susan A; Sales, Francisco A; Sciascia, Quentin L


    Increasing production efficiency with a high standard of animal welfare and respect for the environment is a goal of sheep farming systems. Substantial gains in productivity have been achieved through improved genetics, nutrition and management changes; however the survival and growth performance of multiple-born lambs still remains a problem. This is a significant production efficiency and animal well-being issue. There is a growing body of evidence that some amino acids have a role in regulating growth, reproduction and immunity through modulation of metabolic and cell signaling pathways. The purpose of this review is to provide an overview of what is currently known about the role of amino acids in sheep production and the potential for supplementation strategies to influence on-farm survival and growth of lambs.

  17. Fragmentation of Chitosan by Acids

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Kasaai


    Full Text Available Fragmentation of chitosan in aqueous solution by hydrochloric acid was investigated. The kinetics of fragmentation, the number of chain scissions, and polydispersity of the fragments were followed by viscometry and size exclusion chromatography. The chemical structure and the degree of N-acetylation (DA of the original chitosan and its fragments were examined by 1H NMR spectroscopy and elemental analysis. The kinetic data indicates that the reaction was of first order. The results of polydispersity and the DA suggest that the selected experimental conditions (temperature and concentration of acid were appropriate to obtain the fragments having the polydispersity and the DA similar to or slightly different from those of the original one. A procedure to estimate molecular weight of fragments as well as the number of chain scissions of the fragments under the experimental conditions was also proposed.

  18. Fumaric acid esters in dermatology


    Uwe Wollina


    Fumaric acid esters (FAE) are substances of interest in dermatology. FAE exert various activities on cutaneous cells and cytokine networks. So far only a mixture of dimethylfumarate (DMF) and three salts of monoethylfumarate (MEF) have gained approval for the oral treatment of moderate-to-severe plaque-type psoriasis in Germany. DMF seems to be the major active component. There is evidence that FAE are not only effective and safe in psoriasis but granulomatous non-infectious diseases like gra...

  19. Lactic acid fermentation-aided biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.M. [Memorial Univ. of Newfoundland, St. John`s, NF (Canada). Dept. of Biochemistry


    The preservation of fisheries biomass by lactic acid fermentation is discussed. This method is favourably compared to acid ensiling and fish meal production in terms of safety considerations, energy requirements, simplicity of process and product quality. (Author)

  20. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C


    Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear.......Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear....