WorldWideScience

Sample records for asotin creek model

  1. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  2. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  3. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  4. Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  5. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-58) - Asotin Creek Channel, Floodplain and Riparian Restoration (2001)

    Energy Technology Data Exchange (ETDEWEB)

    Yarde, Richard [Bonneville Power Administration (BPA), Portland, OR (United States)

    2001-08-07

    BPA proposes to fund an instream and riparian habitat improvement project within the Asotin Creek watershed. This portion of the ongoing restoration program within the Asotin Creek watershed is comprised of the Hendrickson instream and riparian project and the George Creek instream and riparian project. These proposed projects include improving instream and riparian habitat, reestablishing geomorphic stability and enhancing the riparian plant community, by planting riparian vegetation, fencing cattle out of the riparian area, placement of large woody debris and constructing a stream channel within the unstable George Creek. The proposal calls for the removal of up to 300 feet of existing dikes and the placement of up to 10 rock weirs and 40 J-hook veins. Instream work would also include 4,300 feet of constructed meanders and 1,000 feet of constructed oxbow lakes and sediment berms.

  6. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    Energy Technology Data Exchange (ETDEWEB)

    Asotin County Conservation District

    2008-12-10

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  7. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  8. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  9. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  10. Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2000-10-01

    The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

  11. Water balance model for Kings Creek

    Science.gov (United States)

    Wood, Eric F.

    1990-01-01

    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  12. Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations

    Science.gov (United States)

    2013-07-01

    Water Bodies Organization 1 SWMM5 LMCW EPA 1 HEC - RAS Minnehaha Creek and Lake Minnetonka system HEC 2 CE-QUAL-W2 Lake Minnetonka system ERDC...and adjusted as needed to adequately address project goals and priorities. SWMM5 and HEC - RAS are the recommended Tier 1 models. The current SWMM5...model is an appropriate modeling platform for modeling subbasins in the LMCW. HEC - RAS should be used to model Minnehaha Creek and the Lake Minnetonka

  13. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    Science.gov (United States)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  14. A Grey Box Model for the Hydraulics in a Creek

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Jacobsen, Judith L.; Madsen, Henrik

    1998-01-01

    The Saint-Venant equation of mass balance is used to derive a stochastics lumped model, describing the dynamics of a cross-sectional area in a river. The unknown parameters of the model are estimated by combining the physical equation with a set of data, a method known as grey box modelling...

  15. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

  16. Corte Madera Creek Sedimentation Study: Numerical Model Investigation

    Science.gov (United States)

    1989-04-01

    with 1987 data; the other two had bimodal distributions. Ten samples between sta 326+00 and 337+50 were used to obtain the May 1987 grada - tion...curves, the numerical model generally reproduced both measured deposition quantities and sampled grada - tions over a 14-year historical period

  17. Evaluation of Lower East Fork Poplar Creek Mercury Sources - Model Update

    Energy Technology Data Exchange (ETDEWEB)

    Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Melanie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The purpose of this report is to assess new data that has become available and provide an update to the evaluations and modeling presented in the Oak Ridge National Laboratory (ORNL) Technical Manuscript Evaluation of lower East Fork Poplar Creek (LEFPC) Mercury Sources (Watson et al., 2016). Primary sources of field and laboratory data for this update include multiple US Department of Energy (DOE) programs including Environmental Management (EM; e.g., Biological Monitoring and Abatement Program, Mercury Remediation Technology Development [TD], and Applied Field Research Initiative), Office of Science (Mercury Science Focus Areas [SFA] project), and the Y-12 National Security Complex (Y-12) Compliance Department.

  18. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  19. Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, B.J.

    1991-09-01

    Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

  20. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  1. Chemical and stable isotopic models for boundary creek warm springs, southwestern Yellowstone National Park, Wyoming

    Science.gov (United States)

    Parry, W. T.; Bowman, J. R.

    1990-10-01

    Thermal springs of the Boundary Creek hydrothermal system in the southwestern part of Yellowstone Park outside the caldera boundary vary in chemical and isotopic composition, and temperature. The diversity may be accounted for by a combination of processes including boiling of a deep thermal water, mixing of the deep thermal water with cool meteoric water and/or with condensed steam or steam-heated meteoric water, and chemical reactions with surrounding rocks. Dissolved-silica, Na +, K + and Ca 2+ contents of the thermal springs could result from a thermal fluid with a temperature of 200 ± 20°C. Chloride-enthalpy and silica-enthalpy mixing models suggest mixing of 230°C, 220 mg/l Cl - thermal water with cool, low-Cl - components. A 350 to 390°C component with Cl - ≥ 300 mg/l is possibly present in thermal springs inside the caldera but is not required to fit observed spring chemical and isotopic compositions. Irreversible mass transfer models in which a low-temperature water reacts with volcanic glass as it percolates downward and warms, can account for observed pH and dissolved-silica, K +, Na +, Ca 2+ and Mg 2+ concentrations, but produces insufficient Cl - or F - for measured concentrations in the warm springs. The ratio of aNa/ aH, and Cl - are best accounted for in mixing models. The water-rock interaction model fits compositions of acid-sulfate waters observed at Summit Lake and of low-Cl - waters involved in mixing. The cold waters collected from southwestern Yellowstone Park have δD values ranging from -118 to -145 per mil and δ18O values of -15.9 to -19.4 per mil. Two samples from nearby Island Park have δD values of -112 and -114 per mil and δ18O values of -15.1 and -15.3 per mil. All samples of thermal water plot significantly to the right of the meteoric water line. The low Cl - and variable δD values of the thermal waters indicate isotopic compositions are derived by extensive dilution with cold meteoric water and by steam separation on

  2. Conceptual modelling of E. coli in urban stormwater drains, creeks and rivers

    Science.gov (United States)

    Jovanovic, Dusan; Hathaway, Jon; Coleman, Rhys; Deletic, Ana; McCarthy, David T.

    2017-12-01

    Accurate estimation of faecal microorganism levels in water systems, such as stormwater drains, creeks and rivers, is needed for appropriate assessment of impacts on receiving water bodies and the risks to human health. The underlying hypothesis for this work is that a single conceptual model (the MicroOrganism Prediction in Urban Stormwater model - i.e. MOPUS) can adequately simulate microbial dynamics over a variety of water systems and wide range of scales; something which has not been previously tested. Additionally, the application of radar precipitation data for improvement of the model performance at these scales via more accurate areal averaged rainfall intensities was tested. Six comprehensive Escherichia coli (E. coli) datasets collected from five catchments in south-eastern Australia and one catchment in Raleigh, USA, were used to calibrate the model. The MOPUS rainfall-runoff model performed well at all scales (Nash-Sutcliffe E for instantaneous flow rates between 0.70 and 0.93). Sensitivity analysis showed that wet weather urban stormwater flows can be modelled with only three of the five rainfall runoff model parameters: routing coefficient (K), effective imperviousness (IMP) and time of concentration (TOC). The model's performance for representing instantaneous E. coli fluctuations ranged from 0.17 to 0.45 in catchments drained via pipe or open creek, and was the highest for a large riverine catchment (0.64); performing similarly, if not better, than other microbial models in literature. The model could also capture the variability in event mean concentrations (E = 0.17-0.57) and event loads (E = 0.32-0.97) at all scales. Application of weather radar-derived rainfall inputs caused lower overall performance compared to using gauged rainfall inputs in representing both flow and E. coli levels in urban drain catchments, with the performance improving with increasing catchment size and being comparable to the models that use gauged rainfall inputs at the

  3. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  4. Testing a blowing snow model against distributed snow measurements at Upper Sheep Creek, Idaho, United States of America

    Science.gov (United States)

    Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried

    2001-01-01

    In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...

  5. Bioenergetics models to estimate numbers of larval lampreys consumed by smallmouth bass in Elk Creek, Oregon

    Science.gov (United States)

    Schultz, Luke; Heck, Michael; Kowalski, Brandon M; Eagles-Smith, Collin A.; Coates, Kelly C.; Dunham, Jason

    2017-01-01

    Nonnative fishes have been increasingly implicated in the decline of native fishes in the Pacific Northwest. Smallmouth Bass Micropterus dolomieu were introduced into the Umpqua River in southwest Oregon in the early 1960s. The spread of Smallmouth Bass throughout the basin coincided with a decline in counts of upstream-migrating Pacific Lampreys Entosphenus tridentatus. This suggested the potential for ecological interactions between Smallmouth Bass and Pacific Lampreys, as well as freshwater-resident Western Brook Lampreys Lampetra richardsoni. To evaluate the potential effects of Smallmouth Bass on lampreys, we sampled diets of Smallmouth Bass and used bioenergetics models to estimate consumption of larval lampreys in a segment of Elk Creek, a tributary to the lower Umpqua River. We captured 303 unique Smallmouth Bass (mean: 197 mm and 136 g) via angling in July and September. We combined information on Smallmouth Bass diet and energy density with other variables (temperature, body size, growth, prey energy density) in a bioenergetics model to estimate consumption of larval lampreys. Larval lampreys were found in 6.2% of diet samples, and model estimates indicated that the Smallmouth Bass we captured consumed 925 larval lampreys in this 2-month study period. When extrapolated to a population estimate of Smallmouth Bass in this segment, we estimated 1,911 larval lampreys were consumed between July and September. Although the precision of these estimates was low, this magnitude of consumption suggests that Smallmouth Bass may negatively affect larval lamprey populations.

  6. Numerical modeling of tide-induced currents in Thane Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, V.S.; Sarma, R.V.

    (Sharma et al. 1994). Water quality of the Thane Creek is affected by huge quan- tities of wastewater of different varieties discharged from in- JOURNAL OF WATERWAY, POR -INDUCED CURRENTS IN THANE OAST OF INDIA R. V. Sarma 2 tide-induced currents... in the southern part. Anticyclonic eddies are found around Elephanta and Butcher islands. The regions JOURNAL OF WATERWAY, POR FIG. 6. Tide-Induced Residual Circulation of Thane Creek FIG. 5. Maximum Spring Current Vectors during Flood of residual eddies...

  7. Rainfall-runoff modeling of the Chapel Branch Creek Watershed using GIS-based rational and SCS-CN methods

    Science.gov (United States)

    Elizabeth N. Mihalik; Norm S. Levine; Devendra M. Amatya

    2008-01-01

    Chapel Branch Creek (CBC), located within the Town of Santee adjacent to Lake Marion in Orangeburg County, SC, is listed on the SC 2004 303(d) list of impaired waterbodies due to elevated levels of nitrogen (N), phosphorus (P), chlorophyll-a, and pH. In this study, using a GIS-based approach, two runoff modeling methods, the Rational and SCS-CN methods, have been...

  8. Is a 'one size fits all' taphonomic model appropriate for the Mazon Creek Lagerstätte?

    Science.gov (United States)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2017-04-01

    The Late Carboniferous Mazon Creek Lagerstätte (Illinois, USA) is a world renowned fossil deposit with a huge diversity of preserved flora and fauna. It is widely considered to represent the most complete Late Carboniferous river delta ecosystem because researchers have identified that the deposit preserves organisms from multiple habitats including coastal swamps, brackish lagoons and oceanic environments. Often these fossils have exquisite soft tissue preservation yielding far more information that the 'normal' skeletal fossil record, while some soft bodied animals, such as the notorious Tully Monster (Tullimonstrum gregarium), are only known from this locality. However, constraining a 'one-size fits all' taphonomic model for the Mazon Creek is difficult because of our poor understanding of sideritic concretionary formation or preservation (i.e. the presence of large numbers of unfossiliferous concretions), the large geographical area, the influences of fresh, brackish and saline waters during burial and the subsequent complicated diagenetic processes. To determine the preservational pathways of Mazon Creek fossils, we have compiled data of the mode of preservation of morphological characters for all major groups of fossil organisms found in this Lagerstätte. This data can be used to test for variance in mode of preservation between taxa and also between specific tissue types. Furthermore, experimental decay data is used to constrain the impact of decay prior to fossilisation. Our analysis indicates that there are variations in preservation potential of specific characters shared by taxa. Modes of preservation, however, seem to be consistent across the majority of taxa dependant on locality. This quantitative approach is being utilised as part of a larger ongoing investigation which combines taphonomy with geochemical analysis of siderite concretions from across the vast geographical area of the Mazon Creek. Together this approach will allow us to elucidate the

  9. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA)

    OpenAIRE

    Jason Shaw Parker; Richard Moore; Mark Weaver

    2009-01-01

    The US Environmental Protection Agency (USEPA) has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershe...

  10. Ashlu Creek hydroelectric project: Design and optimization of hydraulic structures under construction using 2D and 3D numerical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Briand, Marie-Helene; Tremblay, Catherine; Bosse, Yannick; Gacek, Julian; Alfaro, Carola [RSW Inc., (Canada); Blanchet, Richard [Innergex Renewable Energy, Vancouver, (Canada)

    2010-07-01

    A hydroelectric project located on Ashlu Creek, halfway between Whistler and Vancouver in British Columbia, consisted of a run-of-river project that used a short stretch of steep rapids to generate a capacity of 49.9MW. This paper presented the design and the optimization of the hydraulic structures during the construction phases using 2-D and 3-D numerical modelling. The proposed works included an emergency spillway weir equipped with an Obermeyer gate, a rock-fill weir, a Denil type fish ladder, a sluiceway and a side intake. The design and the verification of the upstream works were carried out using these models. The hydraulic conditions during construction phases were also simulated using the models in order to estimate the impact of the operations and validate the diversion works. It was found that numerical modeling can be an efficient alternative to small-scale physical modeling for specific applications in designing hydraulic structures.

  11. Users' guide to system dynamics model describing Coho salmon survival in Olema Creek, Point Reyes National Seashore, Marin County, California

    Science.gov (United States)

    Woodward, Andrea; Torregrosa, Alicia; Madej, Mary Ann; Reichmuth, Michael; Fong, Darren

    2014-01-01

    The system dynamics model described in this report is the result of a collaboration between U.S. Geological Survey (USGS) scientists and National Park Service (NPS) San Francisco Bay Area Network (SFAN) staff, whose goal was to develop a methodology to integrate inventory and monitoring data to better understand ecosystem dynamics and trends using salmon in Olema Creek, Marin County, California, as an example case. The SFAN began monitoring multiple life stages of coho salmon (Oncorhynchus kisutch) in Olema Creek during 2003 (Carlisle and others, 2013), building on previous monitoring of spawning fish and redds. They initiated water-quality and habitat monitoring, and had access to flow and weather data from other sources. This system dynamics model of the freshwater portion of the coho salmon life cycle in Olema Creek integrated 8 years of existing monitoring data, literature values, and expert opinion to investigate potential factors limiting survival and production, identify data gaps, and improve monitoring and restoration prescriptions. A system dynamics model is particularly effective when (1) data are insufficient in time series length and/or measured parameters for a statistical or mechanistic model, and (2) the model must be easily accessible by users who are not modelers. These characteristics helped us meet the following overarching goals for this model: Summarize and synthesize NPS monitoring data with data and information from other sources to describe factors and processes affecting freshwater survival of coho salmon in Olema Creek. Provide a model that can be easily manipulated to experiment with alternative values of model parameters and novel scenarios of environmental drivers. Although the model describes the ecological dynamics of Olema Creek, these dynamics are structurally similar to numerous other coastal streams along the California coast that also contain anadromous fish populations. The model developed for Olema can be used, at least as a

  12. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Cedar Creek, Dekalb and Allen counties, Indiana

    Science.gov (United States)

    Wilber, William G.; Peters, J.G.; Ayers, M.A.; Crawford, Charles G.

    1979-01-01

    A digital model calibrated to conditions in Cedar Creek was used to develop alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. The model indicates that the dissolved-oxygen concentration of the Auburn wastewater effluent and nitrification are the most significant factors affecting the dissolved-oxygen concentration in Cedar Creek during summer low flows. The observed dissolved-oxygen concentration of the Auburn wastewater effluent was low and averaged 30 percent of saturation. Projected nitrogenous biochemical-oxygen demand loads, from the Indiana State Board of Health, for the Auburn and Waterloo wastewater-treatment facilities will result in violations of the current instream dissolved-oxygen standard (5 mg/l), even with an effluent dissolved-oxygen concentration of 80 percent saturation. Natural streamflow for Cedar Creek upstream from the confluence of Willow and Little Cedar Creeks is small compared with the waste discharge, so benefits of dilution for Waterloo and Auburn are minimal. The model also indicates that, during winter low flows, ammonia toxicity, rather than dissolved oxygen, is the limiting water-quality criterion in the reach of Cedar Creek downstream from the wastewater-treatment facility at Auburn and the confluence of Garrett ditch. Ammonia-nitrogen concentrations predicted for 1978 through 2000 downstream from the Waterloo wastewater-treatment facility do not exceed Indiana water-quality standards for streams. Calculations of the stream 's assimilative capacity indicate that future waste discharge in the Cedar Creek basin will be limited to the reaches between the Auburn wastewater-treatment facility and County Road 68. (Kosco-USGS)

  13. Using observed postconstruction peak discharges to evaluate a hydrologic and hydraulic design model, Boneyard Creek, Champaign and Urbana, Illinois

    Science.gov (United States)

    Over, Thomas M.; Soong, David T.; Holmes, Robert R.

    2011-01-01

    Boneyard Creek—which drains an urbanized watershed in the cities of Champaign and Urbana, Illinois, including part of the University of Illinois at Urbana-Champaign (UIUC) campus—has historically been prone to flooding. Using the Stormwater Management Model (SWMM), a hydrologic and hydraulic model of Boneyard Creek was developed for the design of the projects making up the first phase of a long-term plan for flood control on Boneyard Creek, and the construction of the projects was completed in May 2003. The U.S. Geological Survey, in cooperation with the Cities of Champaign and Urbana and UIUC, installed and operated stream and rain gages in order to obtain data for evaluation of the design-model simulations. In this study, design-model simulations were evaluated by using observed postconstruction precipitation and peak-discharge data. Between May 2003 and September 2008, five high-flow events on Boneyard Creek satisfied the study criterion. The five events were simulated with the design model by using observed precipitation. The simulations were run with two different values of the parameter controlling the soil moisture at the beginning of the storms and two different ways of spatially distributing the precipitation, making a total of four simulation scenarios. The simulated and observed peak discharges and stages were compared at gaged locations along the Creek. The discharge at one of these locations was deemed to be critical for evaluating the design model. The uncertainty of the measured peak discharge was also estimated at the critical location with a method based on linear regression of the stage and discharge relation, an estimate of the uncertainty of the acoustic Doppler velocity meter measurements, and the uncertainty of the stage measurements. For four of the five events, the simulated peak discharges lie within the 95-percent confidence interval of the observed peak discharges at the critical location; the fifth was just outside the upper end of

  14. A Bayesian Uncertainty Framework for Conceptual Snowmelt and Hydrologic Models Applied to the Tenderfoot Creek Experimental Forest

    Science.gov (United States)

    Smith, T.; Marshall, L.

    2007-12-01

    Probability Distributed Model (PDM), developed by Moore (1985). We implement the modeling framework in Stringer Creek watershed in the Tenderfoot Creek Experimental Forest (TCEF), Montana. The snowmelt-driven watershed offers that additional challenge of modeling snow accumulation and melt and current efforts are aimed at developing a temperature- and radiation-index snowmelt model. Auxiliary data available from within TCEF's watersheds are used to support in the understanding of information value as it relates to predictive performance. Because the model is based on lumped parameters, auxiliary data are hard to incorporate directly. However, these additional data offer benefits through the ability to inform prior distributions of the lumped, model parameters. By incorporating data offering different information into the uncertainty assessment process, a cross-validation technique is engaged to better ensure that modeled results reflect real process complexity.

  15. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    Science.gov (United States)

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    , discharges ranged from 82 cubic feet per second (ft3/s) at Black Gore Creek near Minturn (U.S. Geological Survey station number 09066000) to 724 ft3/s at Gore Creek at mouth near Minturn (U.S. Geological Survey station number 09066510), whereas during the September traveltime measurements, discharges ranged from 3.6 ft3/s at Black Gore Creek near Minturn to 62 ft3/s at Gore Creek at mouth near Minturn. Cumulative traveltimes for the peak dye concentration during the May traveltime measurements ranged from 3.45 hours (site 1 to site 3) in Black Gore Creek to 2.50 hours (site 8 to site 12) in Gore Creek, whereas cumulative traveltimes for the peak dye concentration during the September traveltime measurements ranged from 15.33 hours (site 1 to site 3) in Black Gore Creek to 8.65 hours (site 8 to site 12) in Gore Creek. During the September dye injections, beaver dams on Black Gore Creek, between site 1 and the confluence with Gore Creek, substantially delayed movement of the rhodamine WT. Estimated traveltimes were developed using relations established from linear-regression methods of relating measured peak traveltime to discharge during those measurements, which were obtained at Black Gore Creek near Minturn and Gore Creek at mouth near Minturn. Resulting estimated peak traveltimes for Black Gore Creek (sites 1 to 5) ranged from 5.4 to 0.4 hour for 20 to 200 ft3/s and for Gore Creek (sites 5 to 12), 5.5 to 0.3 hour for 20 to 800 ft3/s. Longitudinal-dispersion coefficients that were calculated for selected stream reaches ranged from 17.2 square feet per second at 4 ft3/s between sites 2 and 3 to 650 square feet per second at 144 ft3/s between sites 7 and 8. Longitudinal-dispersion coefficients are necessary variables for future stream-contaminant modeling in the Gore Creek watershed.

  16. Bathymetry and digital elevation models of Coyote Creek and Alviso Slough, South San Francisco Bay, California

    Science.gov (United States)

    Foxgrover, Amy C.; Finlayson, David P.; Jaffe, Bruce E.; Fregoso, Theresa A.

    2011-01-01

    In 2010 the U.S. Geological Survey (USGS), Coastal and Marine Geology Program completed three cruises to map the bathymetry of the main channel and shallow intertidal mudflats in the southernmost part of south San Francisco Bay. The three surveys were merged to generate comprehensive maps of Coyote Creek (from Calaveras Point east to the railroad bridge) and Alviso Slough (from the bay to the town of Alviso) to establish baseline bathymetry prior to the breaching of levees adjacent to Alviso and Guadalupe Sloughs as part of the South Bay Salt Pond Restoration Project http://www.southbayrestoration.org. Since 2010 we have conducted four additional surveys to monitor bathymetric change in this region as restoration progresses.

  17. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    Science.gov (United States)

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from

  18. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    Science.gov (United States)

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  19. Ground-water flow model of the Boone formation at the Tar Creek superfund site, Oklahoma and Kansas

    Science.gov (United States)

    Reed, T.B.; Czarnecki, John B.

    2006-01-01

    Extensive mining activities conducted at the Tar Creek Superfund site, one of the largest Superfund sites in the United States, pose substantial health and safety risks. Mining activities removed a total of about 6,000,000 tons of lead and zinc by 1949. To evaluate the effect of this mining on the ground-water flow, a MODFLOW 2000 digital model has been developed to simulate ground-water flow in the carbonate formations of Mississippian age underlying the Tar Creek Superfund site. The model consists of three layers of variable thickness and a grid of 580 rows by 680 columns of cells 164 feet (50 meters) on a side. Model flux boundary conditions are specified for rivers and general head boundaries along the northern boundary of the Boone Formation. Selected cells in layer 1 are simulated as drain cells. Model calibration has been performed to minimize the difference between simulated and observed water levels in the Boone Formation. Hydraulic conductivity values specified during calibration range from 1.3 to 35 feet per day for the Boone Formation with the larger values occurring along the axis of the Miami Syncline where horizontal anisotropy is specified as 10 to 1. Hydraulic conductivity associated with the mine void is set at 50,000 feet per day and a specific yield of 1.0 is specified to represent that the mine void is filled completely with water. Residuals (the difference between measured and simulated ground-water altitudes) has a root-mean-squared value of 8.53 feet and an absolute mean value of 7.29 feet for 17 observed values of water levels in the Boone Formation. The utility of the model for simulating and evaluating the possible consequences of remediation activities has been demonstrated. The model was used to simulate the emplacement of chat (mine waste consisting of fines and fragments of chert) back into the mine. Scenarios using 1,800,000 and 6,500,000 tons of chat were run. Hydraulic conductivity was reduced from 50,000 feet per day to 35 feet

  20. New models for Paleoproterozoic orogenesis in the Cheyenne belt region: Evidence from the geology and U-Pb geochronology of the Big Creek Gneiss, southeastern Wyoming

    Science.gov (United States)

    Jones, D.S.; Snoke, A.W.; Premo, W.R.; Chamberlain, K.R.

    2010-01-01

    The disputed age of the deep crust of the Colorado Province is central to hypotheses for Paleoproterozoic crustal growth in the region. We studied the high-grade Big Creek Gneiss, southeastern Wyoming, as a potential exposure of pre-1780 Ma basement rocks. New geologic mapping and U-Pb geochronological data indicate that the Big Creek Gneiss exposes a deeper, but coeval, level of the Green Mountain arc relative to the predominantly supracrustal section to the west. The Big Creek Gneiss is composed of: supracrustal rocks; a ca. 1780 Ma Green Mountain arc-correlative, bimodal intrusive suite; a ca. 1763 Ma extensional(?) bimodal intrusive suite; and widespread ca. 1630 Ma pegmatitic leucogranite. The mafic member of the younger bimodal suite is documented here for the first time. U-Pb zircon ages from migmatite leucosomes indicate penetrative deformation of the Big Creek Gneiss at ca. 1750 Ma. We find that the postarc intrusive suite is mantle-involved, implying a second period of crustal growth. Shortening postdates arc magmatism by ~20 m.y., implying that termination of arc magmatism and accretion were separate events. Finally, criteria previously used to constrain the polarity of subduction for the Green Mountain arc are not reliable. We propose two competing models: (1) southward-dipping Green Mountain arc subduction (present coordinates), with slab breakoff-related magmatism following arc accretion; or (2) northward-dipping subduction, with extensional postarc magmatism. In both models, high-temperature deformation coincides with accretion along the Cheyenne belt, and extensional magmatism is an important component of crustal growth. We prefer the northward-dipping subduction model because it can be better integrated with regional tectonic events and published isotopic compositions of the igneous rocks. ?? 2010 Geological Society of America.

  1. Physically-Based Distributed-Parameter Hydrologic Modeling of the Bull Creek Watershed, Austin, Texas

    Science.gov (United States)

    Sparks, L. B.; Sharif, H. O.; French, R. H.

    2007-05-01

    Recent advances in computing power, data storage and the increased availability of spatially distributed data sets have encouraged research into the benefits and potential applications of physically-based, distributed hydrologic models. Physically-based, distributed parameter, structured grid models simulate watershed processes using physics-based equations, such as energy, momentum and continuity. Hydrologic parameters are specified for each grid cell within the model domain in an effort to best represent the spatial variability of watershed characteristics. The intent of this study is to contribute to the ongoing effort to evaluate the physically-based, distributing modeling approach for hydrologic study, flood forecasting and other applications. The hydrology of a partially urbanized watershed located in Austin, Texas is simulated using the physically-based, distributed parameter model Surface Subsurface Hydrologic Analysis (GSSHA). GIS-based data sets, collected from publicly available sources and the City of Austin Watershed Protection Division, were processed using ArcGIS version 9.1 and the Watershed Modeling System graphical modeling environment. NEXRAD precipitation data for three significant rain events were processed and quality-controlled using rain-gauge observations. Model-generated hydrographs for these events were compared to observed flow data at a USGS flow gage located at the basin outlet.

  2. Model documentation for relations between continuous real-time and discrete water-quality constituents in Indian Creek, Johnson County, Kansas, June 2004 through May 2013

    Science.gov (United States)

    Stone, Mandy L.; Graham, Jennifer L.

    2014-01-01

    Johnson County is the fastest growing county in Kansas, with a population of about 560,000 people in 2012. Urban growth and development can have substantial effects on water quality, and streams in Johnson County are affected by nonpoint-source pollutants from stormwater runoff and point-source discharges such as municipal wastewater effluent. Understanding of current (2014) water-quality conditions and the effects of urbanization is critical for the protection and remediation of aquatic resources in Johnson County, Kansas and downstream reaches located elsewhere. The Indian Creek Basin is 194 square kilometers and includes parts of Johnson County, Kansas and Jackson County, Missouri. Approximately 86 percent of the Indian Creek Basin is located in Johnson County, Kansas. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, operated a series of six continuous real-time water-quality monitoring stations in the Indian Creek Basin during June 2011 through May 2013; one of these sites has been operating since February 2004. Five monitoring sites were located on Indian Creek and one site was located on Tomahawk Creek. The purpose of this report is to document regression models that establish relations between continuously measured water-quality properties and discretely collected water-quality constituents. Continuously measured water-quality properties include streamflow, specific conductance, pH, water temperature, dissolved oxygen, turbidity, and nitrate. Discrete water-quality samples were collected during June 2011 through May 2013 at five new sites and June 2004 through May 2013 at a long-term site and analyzed for sediment, nutrients, bacteria, and other water-quality constituents. Regression models were developed to establish relations between discretely sampled constituent concentrations and continuously measured physical properties to estimate concentrations of those constituents of interest that are not easily measured in real time

  3. A PCSWMM/GIS-based water balance model for the Reesor Creek watershed

    Science.gov (United States)

    Smith, D.; Li, J.; Banting, D.

    2005-09-01

    This paper presents the results of a study of a watershed experiencing the pressures of land-use change resulting from urban development. The study was undertaken to facilitate an understanding of the water balance of the watershed by developing and implementing watershed procedures that are to be addressed in a watershed plan. There were three components to the research: firstly, observation of the effects of spatially distributed rainfall measurements and their effect on modelling were assessed. Secondly, the model was then calibrated by observing how differing techniques can discretize both the landscape (e.g. land-use and soil type) and incoming precipitation. Finally, a modelling methodology was developed to integrate a Geographic Information System and a hydrologic model (e.g. Storm Water Management Model) in a water balance analysis on a watershed basis. Results show that, under certain conditions, kriging spatially distributed rainfall values can help predict rainfall at ungauged (virtual) sites. Discretization of a watershed was found to affect the differences between measured and generated runoff volumes; however, this can be refined with calibration. It was seen that a strong correlation between measured and predicted rainfall values did not always guarantee a strong relationship between measured and generated runoff Recommendations include the use of a longer time series of rainfall, streamflow and predicted rainfall to observe temporal variations, and the need to assess the differences in modelled rainfall values generated by various surface interpolation methods (e.g. Inverse Distance Weighting and other kriging options) currently available in GIS packages.

  4. Modeling ecohydrological impacts of land management and water use in the Silver Creek Basin, Idaho

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Gross, Dayna; Unnasch, Robert

    2014-01-01

    is an important indicator of stream ecosystem health and is affected by catchment-scale climate and hydrological processes, morphology, and riparian vegetation. To properly manage affected systems and achieve ecosystem sustainability, it is important to understand the relative impact of these factors....... In this study, we predict relative impacts of different stressors using an integrated catchment-scale ecohydrological model that simulates hydrological processes, stream temperature, and fish growth. This type of model offers a suitable measure of ecosystem services because it provides information about...

  5. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  6. San Mateo Creek Basin

    Science.gov (United States)

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  7. Cache Creek mercury investigation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Cache Creek watershed is located in the California Coastal range approximately 100 miles north of San Francisco in Lake, Colusa and Yolo Counties. Wildlife...

  8. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along the...

  9. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Department of Resources — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  10. A Conceptual Model for Stream Restoration in Western New York: A Developing Case Study in the Elton Creek Watershed

    Science.gov (United States)

    Rabideau, A.; Blersch, S. S.

    2009-05-01

    The practice of ecosystem restoration is still often viewed as an "art" versus a science. This view is further fueled by the manner in which many restoration projects are identified and implemented- on a case by case basis with little documentation on the drivers of the ecosystems in question or the establishment of success criteria once the project is complete. While monitoring data may exist to quantify the existing conditions of a stream (biological, chemical, and physical), these data are not always easily translated into design criteria for restoration. Rather, most restoration designs rely upon best professional judgment by highly experienced practitioners. Various agencies in Western New York have completed numerous stream restoration projects in the region to improve in-stream habitat and address impaired streams. In order to capture these successful restoration practices in a manner that can be translated to other streams in the region and inform future restoration designs, a conceptual framework is proposed for the Western New York region. The conceptual framework will identify the ecosystem drivers in the stream riparian corridors and discuss trajectories of these ecosystems. A project site on Elton Creek near Delevan, New York has been selected as a test case for applying this conceptual framework. The focus of this paper will be on determining the drivers of the stream ecosystem through the use of rapid geomorphic assessments. The results of two rapid geomorphic assessment methods be presented and contrasted in the context of the conceptual framework.

  11. Mtwapa Creek, Kenya

    African Journals Online (AJOL)

    Key words: trophic ecology, fish, Mtwapa, Kenya. Abstract—~The trophic status of common fish species in Mtwapa creek on the Kenyan coast was studied. Both the qualitative and quantitative spectra ... Selar crumenophthalmus fed mainly on fish scales. Polychaetes were an important diet for Gerres oyena and Leiognalhus.

  12. Cattaraugus Creek Study, New York, Final Feasibility Report

    Science.gov (United States)

    1987-12-01

    tributaries of the creek include Clear Creek at Arcade, Elton Creek, Buttermilk Creek, Spring Brook, Spooner Creek, South Branch Cattaraugus Creek, and Clear...Indian Reservation. The main tributaries of the creek include Clear Creek at Arcade, Elton Creek, Buttermilk Creek, Spring Brook, Spooner Creek, South...Page 1 Basin Map 2 2 Major Community Centers and Areas of Unique Consideration 9 3 Prime Farmland Map 14 4 Soil Productivity for Agricultural Use 15

  13. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

  14. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  15. Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-30

    This report fulfills the M3 milestone M3FT-13PN0810022, “Report on Inspection 1”, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

  16. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Science.gov (United States)

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and...

  17. A 3PG-based Model to Simulate Delta-13C Content in Three Tree Species in The Mica Creek Experiment Watershed, Idaho

    Science.gov (United States)

    Wei, L.; Marshall, J. D.

    2007-12-01

    3PG (Physiological Principles in Predicting Growth), a process-based physiological model of forest productivity, has been widely used and well validated. Based on 3PG, a 3PG-δ13C model to simulate δ13C content in plant tissue is built in this research. 3PG calculates carbon assimilation from utilizable absorbed photosynthetically active radiation (PAR), and calculates stomatal conductance from maximum canopy conductance multiplied by physiological modifier which includes the effect of water vapor deficit and soil water. Then the equation of Farquhar and Sharkey (1982) was used to calculate δ13C content in plant. Five even-aged coniferous forest stands located near Clarkia, Idaho (47°15'N, 115°25'W) in Mica Creek Experimental Watershed, were chosen to test the model, (2 stands had been partial cut (50% canopy removal in 1990) and 3 were uncut). MCEW has been extensively investigated since 1990 and many necessary parameters needed for 3PG are readily available. Each of these sites is located near a UI Meteorological station, which recorded half-hourly climatic data since 2003. These site-specific climatic data were extend to 1991 by correlating with data from a nearby SNOTEL station (SNOwpack TELemetry, NRCS, 47°9' N, 116°16' W). Forest mensuration data were obtained form each stand using variable radius plots (VRP). Three tree species, which consist more than 95% of all trees, were parameterized for 3PG model, including: grand fir (Abies grandis Donn ex D. Don), western red cedar (Thuja plicat Donn ex D. Don a) and Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco). Because 4 out of 5 stands have mixed species, we also used parameters for mixed stands to run the model. To stabilize, the model was initially run under average climatic data for 20 years, and then run under the actual climatic data from 1991 to 2006. As 3PG runs in a monthly time step, monthly δ13C values were calculated first, and then yearly values were calculated by weighted

  18. Kiowa Creek Switching Station

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  19. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  20. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Science.gov (United States)

    2012-07-20

    ... Water Resources, LLC; Notice of Application Accepted for Filing, Soliciting Motions To Intervene... Land Resources, LLC; and Eagle Creek Water Resources, LLC. e. Name of Project: Rio Hydroelectric... President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

  1. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Science.gov (United States)

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  2. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    Directory of Open Access Journals (Sweden)

    M. E. Gettings

    2005-01-01

    Full Text Available Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same

  3. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    Science.gov (United States)

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  5. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  6. A new model of the formation of Pennsylvanian iron carbonate concretions hosting exceptional soft-bodied fossils in Mazon Creek, Illinois.

    Science.gov (United States)

    Cotroneo, S; Schiffbauer, J D; McCoy, V E; Wortmann, U G; Darroch, S A F; Peng, Y; Laflamme, M

    2016-11-01

    Preservation of Pennsylvanian-aged (307 Ma) soft-bodied fossils from Mazon Creek, Illinois, USA, is attributed to the formation of siderite concretions, which encapsulate the remains of terrestrial, freshwater, and marine flora and fauna. The narrow range of positive δ34 S values from pyrite in individual concretions suggests microenvironmentally limited ambient sulfate, which may have been rapidly exhausted by sulfate-reducing bacteria. Tissue of the decaying carcass was rapidly encased by early diagenetic pyrite and siderite produced within the sulfate reduction and methanogenic zones of the sediment, with continuation of the latter resulting in concretion cementation. Cross-sectional isotopic analyses (δ13 C and δ18 O) and mineralogical characterization of the concretions point to initiation of preservation in high porosity proto-concretions during the early phases of microbially induced decay. The proto-concretion was cemented prior to compaction of the sediments by siderite as a result of methanogenic production of 13 C-rich bicarbonate-which varies both between Essex and Braidwood concretions and between fossiliferous and unfossiliferous concretions. This work provides the first detailed geochemical study of the Mazon Creek siderite concretions and identifies the range of conditions allowing for exceptional soft-tissue fossil formation as seen at Mazon Creek. © 2016 John Wiley & Sons Ltd.

  7. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  8. Bioassessment of Black Creek, Holmes County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at four stations on Black Creek and one station on Harland Creek (reference site), Holmes County, Mississippi were...

  9. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  10. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Science.gov (United States)

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice of Application for Transfer of License, and Soliciting... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...

  11. Backwaters of Makupa Creek, Kenya

    African Journals Online (AJOL)

    acid 8 mL was used for elution to strip the metals from the resin. Certified samples SLEW—Z and. NASS-5, from the National Research Council of. Canada were ..... sediment Fe enrichment factors (EF) at the Makupa creek backwaters, indicating its remobilization. Humic and fluvic acid mobilization did not have a significant ...

  12. Temperature Modeling of Lost Creek Lake Using CE-QUAL-W2: A Report on the Development, Calibration, Verification, and Application of the Model

    Science.gov (United States)

    2017-05-01

    temperature targets can be discussed with the State of Oregon. This is extremely important because the Rogue and Applegate Temperature Total Maximum...can be achieved to downstream temperature for the benefit of endangered fish . This is the second of three USACE projects on the Rogue River; this...7 Table 2. Model segments of important locations

  13. PINE CREEK ROADLESS AREA, OREGON.

    Science.gov (United States)

    Walker, George W.; Denton, David K.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  14. Haights Creek RPM Pipe Failures

    OpenAIRE

    United States Department of the Interior, Bureau of Reclamation

    1994-01-01

    In 1989, Haights Creek Irrigation Company replaced 730 linear feet of 24- and 27-inch-diameter RPM (reinforced plastic mortar) pipe because of several failures. Bureau of Reclamation personnel examined the pipe before and after exhumation, the surrounding soil conditions, and measured diametral deflections. Major longitudinal cracks in the pipe invert appear to be the result of hard spots in the pipe foundation. Some of these hard spots were caused from mounding, or using a mound of soil u...

  15. Trout Creek Mountain project, Oregon

    OpenAIRE

    Hatfield, Doc; Hatfield, Connie

    1995-01-01

    The Trout Creek Mountain experience is an example of how the land and the people can win by building bridges of understanding and common interest between concerned constituencies. Love of the land, its natural resources, and realization of a need for changing grazing practices to reverse the degradation of riparian areas were the common interests that caused environmentalists, ranchers, the BLM, the Oregon Department of Fish and Wildlife, and the U.S. Fish and Wildlife Service to work togethe...

  16. EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from...

  17. Stability of a sand spit due to dredging in an adjacent creek

    Digital Repository Service at National Institute of Oceanography (India)

    Patgaonkar, R.S.; Ilangovan, D.; Vethamony, P.; Babu, M.T.; Jayakumar, S.; Rajagopal, M.D.

    , but maintaining the spit intact. For this, the stability of sand spit is studied with different criteria. The results confirm that the creek mouth is a near permanent zone of deposition. The model results obtained for various depth scenarios show...

  18. EAARL-B Topography-Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare-earth topography Digital Elevation Model (DEM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely...

  19. EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely...

  20. EAARL Topography--Three Mile Creek and Mobile-Tensaw Delta, Alabama, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Mobile-Tensaw Delta region and Three Mile Creek in Alabama was produced from remotely sensed, geographically...

  1. EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare-earth topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely...

  2. EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography digital elevation model (DEM) mosaic for the Big Sandy Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely...

  3. EAARL-B Topography-Big Thicket National Preserve: Turkey Creek Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare-earth topography digital elevation model (DEM) mosaic for the Turkey Creek Unit of Big Thicket National Preserve in Texas, was produced from remotely sensed,...

  4. EAARL-B Topography-Big Thicket National Preserve: Big Sandy Creek Corridor Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A bare-earth topography Digital Elevation Model (DEM) mosaic for the Big Sandy Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from...

  5. Developing flood-inundation maps for Johnson Creek, Portland, Oregon

    Science.gov (United States)

    Stonewall, Adam J.; Beal, Benjamin A.

    2017-04-14

    Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar

  6. SANDY CREEK ROADLESS AREA, MISSISSIPPI.

    Science.gov (United States)

    Haley, Boyd R.; Bitar, Richard F.

    1984-01-01

    The Sandy Creek Roadless Area includes about 3. 7 sq mi in the southeastern part of Adams County, Mississippi. On the basis of a mineral survey, the area offers little promise for the occurrence of metallic mineral resources but has a probable resource potential for oil and natural gas. It is possible that wells drilled deep enough to penetrate the older reservoirs will encounter significant quantities of oil and natural gas in the roadless area. The deposits of gravel, sand, and clay present in the area could be utilized in the construction industry, but similar deposits elsewhere are much closer to available markets.

  7. 33 CFR 117.571 - Spa Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  8. 33 CFR 117.929 - Durham Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Durham Creek. 117.929 Section 117.929 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the...

  9. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  10. 33 CFR 117.401 - Trail Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trail Creek. 117.401 Section 117.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.401 Trail Creek. (a) The draw of the Franklin...

  11. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the Baltimore...

  12. Pine Creek Ranch; Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  13. Currents and siltation at Dharamtar creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Kolhatkar, V.M.; Fernandes, A.A.

    Hydrographic data collected in Dharamtar Creek during 1976-77 have been analysed. This showed that the waters in the Creek are well mixed and the salinity varied with the tide. The tidal currents are found to be generally strong. The distribution...

  14. Ten-Year Monitored Natural Recovery of Lead-Contaminated Mine Tailing in Klity Creek, Kanchanaburi Province, Thailand.

    Science.gov (United States)

    Phenrat, Tanapon; Otwong, Ashijya; Chantharit, Aphichart; Lowry, Gregory V

    2016-10-01

    Klity Creek has become Thailand's first official remediation ordered by the court in 2013, 15 years after the spill of lead (Pb)-contaminated mine tailing into the creek. The Pollution Control Department (PCD) decided to restore the creek through monitored natural recovery (MNR) since 2006 but has not been successful. Interestingly, the most recent remediation plan in 2015 will still apply MNR to five out of the seven portions of the creek, despite no scientific feasibility evaluation of using MNR to restore the creek. This study qualitatively and quantitatively evaluated the feasibility of using MNR to clean up the creek in order to protect the Klity children from excess Pb exposure. We analyzed the physical and chemical transformation of Pb contaminated sediment in the creek and developed a remedial action goal and cleanup level using the Integrated Exposure Uptake Biokinetic model (IEUBK). We empirically determined the natural recovery (NR) potentials and rates using 10 years of data monitoring the water and sediment samples from eight monitoring stations (KC1 to KC8). Klity Creek has NR potential for water except at KC2, which is closest to the spill and the other improperly managed Pb sources. However, the creek has no NR potential for sediment except at the KC8 location (NR rate = 11.1 ± 3.0 × 10-3 month-1) farthest from the spill. The MNR method is not suitable to use as the sole remedial approach for Klity Creek (KC2 to KC7). Although MNR is applicable at KC8, it may require up to 377 ± 76 years to restore the sediment to the background Pb concentration. Phenrat T, Otwong A, Chantharit A, Lowry GV. 2016. Ten-year monitored natural recovery of lead-contaminated mine tailing in Klity Creek, Kanchanaburi Province, Thailand. Environ Health Perspect 124:1511-1520; http://dx.doi.org/10.1289/EHP215.

  15. Hydrology of the Johnson Creek Basin, Oregon

    Science.gov (United States)

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  16. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Science.gov (United States)

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY... of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The regulation is set... Sheriff's Office has requested a temporary modification to the operating schedule of Snake Creek Bridge in...

  17. Redbank and Fancher Creeks, California: General Design Memorandum

    Science.gov (United States)

    1986-02-01

    Creek, flows under the Enterprise Canal to Marion and Alluvial Avenues, where it has to be pumped into Dry Creek. i- Dog Creek. - Dog Creek runoff...Engineering Research Center, (1977); Shore Protection Manual - 1977 Edition; 8. Donovan , N.C. and Bornstein, A.E., 1978, Uncertainties in Seismic Risk

  18. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  19. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Science.gov (United States)

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park II...

  20. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  1. Simulation of runoff and water quality for 1990 and 2008 land use conditions in the Reedy Creek watershed, East-Central Florida

    Science.gov (United States)

    Wicklein, Shaun M.; Schiffer, Donna M.

    2002-01-01

    Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0

  2. Solid sample locations for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  3. Proctor Creek Boone Boulevard Fact Sheet

    Science.gov (United States)

    This fact sheet provides an overview of the Proctor Creek watershed and community, green infrastructure, the Boone Boulevard Green Street Project Conceptual Design, and the added value and application of Health Impact Assessment (HIA) to the project.

  4. Exit and Paradise Creek Fluvial Features, 1950

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset presents a delineation of the maximum extent of fluvial occupation detectable from vegetation patterns at Exit and Paradise Creeks in Kenai Fjords...

  5. Mercury in Thana creek, Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    weight) with marked increased from harbour to the creek region suggests substantial mercury input in the head region. Chemical extraction by hydrogen peroxide indicated that more than 70% of mercury was leachable and probably organically bound...

  6. Habitat--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in...

  7. Folds--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  8. Bathymetry--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetry and shaded-relief maps of Offshore Scott Creek, California. The raster data file is included in...

  9. Rattlesnake Creek Management Program 12-year review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Rattlesnake Creek Partnership (Partnership) was formed over 18 years ago to cooperatively develop and implement solutions to water resource problems within the...

  10. Faults--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  11. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP)...

  12. Contours--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the bathymetric contours for several seafloor maps of the Offshore Scott Creek map area, California. The vector data file is...

  13. Featured Partner: Saddle Creek Logistics Services

    Science.gov (United States)

    This EPA fact sheet spotlights Saddle Creek Logistics as a SmartWay partner committed to sustainability in reducing greenhouse gas emissions and air pollution caused by freight transportation, partly by growing its compressed natural gas (CNG) vehicles for

  14. EAARL-B Topography—Big Thicket National Preserve: Village Creek Corridor Unit, Texas, 2014

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A first-surface topography Digital Surface Model (DSM) mosaic for the Village Creek Corridor Unit of Big Thicket National Preserve in Texas was produced from...

  15. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  16. Geochemistry of the Birch Creek Drainage Basin, Idaho

    Science.gov (United States)

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  17. Multi-source data fusion and modeling to assess and communicate complex flood dynamics to support decision-making for downstream areas of dams: The 2011 hurricane irene and schoharie creek floods, NY

    Science.gov (United States)

    Renschler, Chris S.; Wang, Zhihao

    2017-10-01

    In light of climate and land use change, stakeholders around the world are interested in assessing historic and likely future flood dynamics and flood extents for decision-making in watersheds with dams as well as limited availability of stream gages and costly technical resources. This research evaluates an assessment and communication approach of combining GIS, hydraulic modeling based on latest remote sensing and topographic imagery by comparing the results to an actual flood event and available stream gages. On August 28th 2011, floods caused by Hurricane Irene swept through a large rural area in New York State, leaving thousands of people homeless, devastating towns and cities. Damage was widespread though the estimated and actual floods inundation and associated return period were still unclear since the flooding was artificially increased by flood water release due to fear of a dam break. This research uses the stream section right below the dam between two stream gages North Blenheim and Breakabeen along Schoharie Creek as a case study site to validate the approach. The data fusion approach uses a GIS, commonly available data sources, the hydraulic model HEC-RAS as well as airborne LiDAR data that were collected two days after the flood event (Aug 30, 2011). The aerial imagery of the airborne survey depicts a low flow event as well as the evidence of the record flood such as debris and other signs of damage to validate the hydrologic simulation results with the available stream gauges. Model results were also compared to the official Federal Emergency Management Agency (FEMA) flood scenarios to determine the actual flood return period of the event. The dynamic of the flood levels was then used to visualize the flood and the actual loss of the Old Blenheim Bridge using Google Sketchup. Integration of multi-source data, cross-validation and visualization provides new ways to utilize pre- and post-event remote sensing imagery and hydrologic models to better

  18. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  19. A Peek into 'Alamogordo Creek'

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 On its 825th Martian day (May 20, 2006), NASA's Mars Exploration Rover Opportunity stopped for the weekend to place its instrument arm onto the soil target pictured here, dubbed 'Alamogordo Creek.' Two views from the panoramic camera, acquired at about noon local solar time, are at the top. Below them is a close-up view from the microscopic imager. At upper left, a false-color view emphasizes differences among materials in rocks and soil. It combines images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. At upper right is an approximately true-color rendering made with the panoramic camera's 600-nanometer, 535-nanometer and 480-nanometer filters. The microscopic-imager frame covers the area outlined by the white boxes in the panoramic-camera views, a rectangle 3 centimeters (1.2 inches) across. As Opportunity traverses to the south, it is analyzing soil and rocks along the way for differences from those seen earlier. At this site, the soil contains abundant small spherical fragments, thought to be hematite-rich concretions, plus finer-grained basaltic sand. Most of the spherical fragments seen in the microscopic image are smaller than those first seen at the rover's landing site in 'Eagle Crater,' some five kilometers (3.1 miles) to the north. However, a few larger spherical fragments and other rock fragments can also be seen in the panoramic-camera images.

  20. Exit and Paradise Creek Drainage Area Boundaries, Alaska, 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains drainage area boundaries for Exit Creek and Paradise Creek in Kenai Fjords National Park, Alaska. A drainage area boundary identifies the land...

  1. Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado

    Science.gov (United States)

    Staatz, Mortimer H.; Trites, A.F.

    1952-01-01

    The Quartz Creek pegmatite district includes an area about 29 square miles in the vicinity of Quartz Creek in Gunnison County,. Colo. This area contains 1,803 pegmatites that are intruded into pre-Cambrian rocks.

  2. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  3. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  4. Squaw Creek National Wildlife Refuge contaminant survey results

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — As part of a baseline contaminant survey of all National Wildlife Refuges (NWR) in Missouri, fish were collected at the Squaw Creek NWR from Davis and Squaw creeks...

  5. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  6. Field testing of the Wolf Creek curved girder bridge : part I : vibration tests.

    Science.gov (United States)

    2009-01-01

    The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element model of the bridge revealed that pier flexibility may be important in modeling the bri...

  7. SPECIAL MINING MANAGEMENT ZONE - CLEAR CREEK, IDAHO.

    Science.gov (United States)

    Lund, Karen; Esparza, Leon E.

    1984-01-01

    On the basis of mineral-resource surveys, a substantiated resource potential for sediment-hosted cobalt-copper-gold-silver deposits has been identified in the Elkhorn and upper Garden Creek areas of the Special Mining Management Zone - Clear Creek, Idaho. Areas of favorable host rock, but with less strong evidence of mineralization, were classified as having probable resource potential for the same kind of deposit. A probable resource potential for porphyry-type copper-molybdenum deposits is assigned to areas along Clear Creek and upper Squaw Gulch based on the presence of extensive stockwork fracturing and alteration of the nonporphyritic granite, introduced disseminated magnetite, and the close proximity of known Tertiary plutons. The nature of the geologic terrain makes the occurrence of organic fuels on geothermal resources extremely unlikely.

  8. Streamflow conditions along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  9. The Boulder Creek Batholith, Front Range, Colorado

    Science.gov (United States)

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  10. Suzhou Creek Rehabilitation Project ECOLOGICAL STUDY 1998 Biological monitoring program

    OpenAIRE

    Lien, L.; Haowen, Yin

    1998-01-01

    Suzhou Creek, flowing through the central parts of Shanghai, is heavy polluted by sewage, metals and organic micro pollutants. Due to the pollution, lower parts of the creek have virtually no life of fish or macro-invertebrates, and the other biological communities are totally disturbed. Even at upstream sections the flora and fauna suffer from pollution. During the last decade the contamination has been slightly reduced in the creek. A biological monitoring program was designed for the creek...

  11. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet Estuary,...

  12. Flora and Fauna of Abiala Creek, Niger Delta, Nigeria | OLALEYE ...

    African Journals Online (AJOL)

    Abiala creek is a typical aquatic weed infested creek in the Niger Delta Area of Nigeria. Examination of the aquatic vegetation revealed seven weed species dominated by Eichhornia crassipes (Mart.) Solm - Laub. The presence of these aquatic weeds negatively affected the plankton species diversity in the creek.

  13. Bedload and nearbed detritus transport in a tidal saltmarsh creek

    NARCIS (Netherlands)

    Hemminga, M.A.; Cattrijsse, A.; Wielemaker, A.

    1996-01-01

    Bedload and nearbed transport of coarse (>1 mm) detritus particles were investigated in a tidal creek of a salt marsh in the Westerschelde estuary (south-west Netherlands). Using a fyke net positioned on the creek bottom, hourly transport through the creek was measured during 14 flood-ebb cycles in

  14. Microsatellite analyses of Alameda Creek Rainbow/Steelhead trout

    Science.gov (United States)

    Nielsen, Jennifer L.; Fountain, Monique C.

    1999-01-01

    Microsatellite genetic diversity found in Alameda Creek rainbow trout support a close genetic relationship with coastal trout found in Lagunitas Creek, Marin County, California. No significant genotypic or allelic frequencies associations could be drawn among Alameda Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, Whitney, Mount Shasta, Coleman, and Hot Creek strains, indeed, genetic distance analyses (δμ2) supported genetic separation among Alameda Creek trout and hatchery trout with greater than 50% bootstrap values in 1000 replicate neighbor-joining trees. Fish collected for this study from Palo Seco and Sheppard Creeks shared allelic frequencies with both the fish in Alameda Creek and those found in Scott Creek in Santa Cruz County. Fish collected in Horseshoe Creek or San Lorenzo Creek (Alameda County) did not share this unique genetic relationship between Alameda Creek fish and putative wild coastal trout. These two streams had allelic frequencies similar to some hatchery trout strains and to wild trout captured in the Central Valley. These data suggest that there are two possible steelhead ESUs using the tributaries of San Francisco Bay (one coastal and one Central Valley) or that hatchery trout supplementation has impacted some, but not all streams with a subsequent loss of locally adapted genetic characteristics. These data support the implementation of conservation management of rainbow trout in the Alameda Creek drainage as part of the central California coastal steelhead ESU.

  15. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-02-02

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD. The proposed change will alter the... Avenue across Bear Creek, mile 3.4 between Dundalk and Sparrows Point, MD. This change would require the...

  16. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-12-12

    ... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD. The... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would...

  17. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2016-06-06

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  18. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  19. Water resources of the English River, Old Mans Creek, and Clear Creek basins in Iowa

    Science.gov (United States)

    Schwob, H.H.

    1964-01-01

    The surface and ground water resources of a 991 square mile area comprising the drainage basins of English River, Old Mans Creek and Clear Creek are presented. These basins lie to the west and southwest of Iowa City, Iowa, and all three streams are tributary to the Iowa River. The area is comprised of rolling uplands with relatively broad valleys and is devoted mainly to agriculture and livestock farming.

  20. Near Real-Time Sensing of Clear Creek Water Quality

    Science.gov (United States)

    Loperfido, J. V.; Just, C. L.; Papanicolaou, A.; Schnoor, J. L.

    2007-12-01

    The transport of sediments, nutrients, and fecal bacteria from agricultural runoff through a watershed can have deleterious effects on receiving streams. It can impair aquatic ecosystems and cause excessive export of nutrients downstream, which can contribute to hypoxia. The ability to sense sediment and nutrient concentrations with high temporal resolution in near real-time could greatly improve our ability to understand processes which affect downstream water quality. Observations by sensors placed in streams can relay measurements to databases, and data mining can be used to glean information from streaming data for statistical and mathematical assimilation. Results from models can be used to provide advanced warning of harmful events and/or implement remedial measures. The goal of this research is to use the initial station of the Environmental Field Facility located in Clear Creek, Iowa to study processes and relationships which are essential to modeling water quality throughout the entire watershed. This station consists of several components including data loggers, telemetry hardware, and water quality sensors. Measurements collected at this field facility include conductivity, dissolved oxygen, pH, temperature, and turbidity. The measurements can be used as inputs to water quality models at the hillslope scale. This data will also provide estimates of other parameters that cannot be obtained in near real-time, and will improve our understanding of fundamental biogeochemical processes which dictate water quality in Clear Creek.

  1. How Fern Creek Is Beating Goliath

    Science.gov (United States)

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  2. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  3. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  4. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    Science.gov (United States)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP

  5. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  6. Water quality assessment using remote sensing techniques: Medrano Creek, Argentina.

    Science.gov (United States)

    Vignolo, Alicia; Pochettino, Alberto; Cicerone, Daniel

    2006-12-01

    Two spectral bands of the visible spectrum [0.45-0.52 microm (Blue), 0.52-0.60 microm (Green)] of satellite images obtained by LANDSAT 7 ETM+ have been used in this study to follow the contaminated waters of Medrano Creek when it flows into Río de la Plata River. The former is one of the five fresh watercourses going through the Metropolitan Area of Buenos Aires, Argentina, where 13 million people live. Previous studies have shown that the water quality of Rio de la Plata at the outlet of Medrano Creek has decreased more than 50% as a source of water for human consumption. The non-treated effluents of the textile industry probably affect the water quality. We have developed a model that predicts the water quality index (WQI) of surface waters in the study area and uses linear regression analysis. The model has been validated using a data set of 12 physicochemical parameters obtained during the last 3 years. The potentiality of using satellite images was confirmed by the results: (a) to trace the organic contamination (associated with dyes) in freshwater systems and (b) as tools for decision making in the management of water resources.

  7. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  8. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  9. Predictive analyses of ground-water discharges in the Willow Creek Watershed, northeast Nebraska

    Science.gov (United States)

    Dugan, Jack T.; Lappala, E.G.

    1978-01-01

    Ground-water discharge to Willow Creek in northeast Nebraska was predicted with a digital model of the ground-water/surface-water system. Recharge and irrigation requirements were determined with a model of the soil zone. The regional aquifer is Pliocene and Pleistocene sands and gravels. Water in the regional aquifer is unconfined in the western part of the watershed and confined in the eastern part. The confining layer is Pleistocene eolian silts with very fine sand interbeds overlying a basal clay. Where the regional aquifer is unconfined, perennial flow of Willow Creek is sustained by ground-water discharge. Where it is confined, the low hydraulic conductivity of the confining beds isolates the regional aquifer from Willow Creek. Adequate agreement between simulated and observed streamflows and water levels during 1975 and 1976 was obtained by modifying initial estimates of hydraulic conductivity and specific storage. The future perennial flow of Willow Creek was simulated by superimposing six patterns of ground-water withdrawals upon variations in recharge for a monthly climatic sequence identical with the period 1931-34. These analyses showed that the perennial monthly flows would be less than 12 cubic feet per second at least 50 percent of the time. (Woodard-USGS)

  10. Documentary Research of the Sugar Creek Basin,

    Science.gov (United States)

    1978-01-01

    oif ii,ied atfter thle abli~ltiorn of siasett as an -. Chailotte. VICTORIA, 16010 Trhe Plano . c - -- pruinint-rit :Irea I-t oirey famnily J’civ-utc...lS RY (OtNIY pie of F’ederal tarmot inise - Ici afe, riot niiii’iaib/e .,IIKCI, Davidsoir College catnprr. I1849 Mount Glileadi vicinity. TOWN CR(EEK

  11. Channel stability of Turkey Creek, Nebraska

    Science.gov (United States)

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  12. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    Science.gov (United States)

    Crain, Angela S.

    2010-01-01

    headwaters station; mean daily flows at the headwater station were, therefore, estimated using a mathematical record-extension technique known as the Maintenance of Variance-Extension, type 1 (MOVE.1). The estimation of mean daily streamflows introduced a large amount of uncertainty into the loads and yields estimates at the headwater station. Total estimated loads of select (five most commonly detected) pesticides from the Sinking Creek Basin were about 0.01 to 1.2 percent of the estimated application, indicating pesticides possibly are retained within the watershed. Mean annual loads [(in/lb)/yr] for nutrients and suspended sediment were estimated at the two Sinking Creek mainstem sampling stations. The relation between estimated and measured instantaneous loads of nitrite plus nitrate at the Sinking Creek near Lodiburg station indicate a reasonably tight distribution over the range of loads. The model for loads of nitrite plus nitrate at the Sinking Creek at Rosetta station indicates small loads were overestimated and underestimated. Relations between estimated and measured loads of total phosphorus and orthophosphate at both Sinking Creek mainstem stations showed similar patterns to the loads of nitrite plus nitrate at each respective station. The estimated mean annual load of suspended sediment is about 14 times larger at the Sinking Creek near Lodiburg station than at the Sinking Creek near Rosetta station. Estimated yields of nutrients and suspended sediment increased from the headwater to downstream monitoring stations on Sinking Creek. This finding suggests that sources of nutrients and suspended sediment are not evenly distributed throughout the karst terrane of the Sinking Creek Basin. Yields of select pesticides generally were similar from the headwater to downstream monitoring stations. However, the estimated yield of atrazine was about five times higher at the downstream station on Sinking Creek than at the headwater station on Sinking Creek.

  13. Microsatellite analyses of San Franciscuito Creek rainbow trout

    Science.gov (United States)

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  14. Bell Creek Fiel micellar-polymer pilot demonstration first annual report, July 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    A Pilot Demonstration is being conducted to determine whether micellar-polymer flooding is an economically feasible technique for enhanced oil recovery from the Muddy Sand Unit ''A'' Reservoir of the Bell Creek Field, Powder River and Carter Counties, Montana. During the first year of this project extensive reservoir studies, site and pattern selection, design and selection of an optimal micellar-polymer system, water flood history matching and preliminary process simulations by numerical models, and development of pilot injection and production wells were completed. The major effort during the first contract year was the design for the Bell Creek pilot of two optimal micellar-polymer processes--one oil-external and one water-external; and the concomitant development of a Selection Methodology by which to decide upon the more suitable process by means of a standard set of laboratory experiments and numerical simulations. This effort was completed. The oil-external design was selected for Bell Creek application based upon its superior performance in the standard test series and simulations. The advantages of the Bell Creek oil-external design appear to be better recovery performance, mobility control, and protection against divalent ions. 30 tables, 41 figs.

  15. Applying factor analyses of statistics to evaluate habitat biodiversity index in dry-season creeks.

    Science.gov (United States)

    Su, Tzu-Chieh; Wong, Mu-Han; Huang, Hung-Pin

    2014-02-01

    The purpose of this study is to analyze the habitat factors (environmental variables) affecting dry-season creek fish, and evaluate habitat biodiversity index (HBI) in dry-season creeks. This research determined HBI formula by 133 study sites in the creek flows in seven rivers in Taiwan from 2007 to 2008. This research considered 10 habitat factors: water depth, width, length, pH, electrical conductivity, temperature, current velocity, rainfall, elevation, and substrate diversity. Using the principal component analysis (PCA), varimax rotated factor analysis (FA), and the simultaneous regression in product-exponential model (PEM), fish total numbers and HBI were formulated by these 10 habitat factors. Pearson's correlation coefficient matrix and three-factor loading plots reported that current flow velocity, rainfall, and elevation affected on fish numbers similarly; besides, water length (logarithmic) and width (logarithmic) had the positive and similar influences in fish numbers. Habitat evaluation levels were classified six groups, namely, excellent habitat, very good habitat, good habitat, fair habitat, poor habitat, and then very poor habitat. In brief, HBI was reasonable and calculated simply by 10 environmental variables of fish habitats. The results of this study can be applied extensively to evaluate the conditions of fish habitats in dry-season creeks for habitat recovery projects.

  16. Campbell Creek Research Homes FY 2012 Annual Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

    2013-01-01

    equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

  17. A Creek to Bay Biological Assessment in Oakland, California

    Science.gov (United States)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  18. Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

    Science.gov (United States)

    Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E

    2017-06-01

    We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

  19. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    Science.gov (United States)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by

  20. Flood-inundation maps for Sweetwater Creek from above the confluence of Powder Springs Creek to the Interstate 20 bridge, Cobb and Douglas Counties, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 10.5-mile reach of Sweetwater Creek, from about 1,800 feet above the confluence of Powder Springs Creek to about 160 feet below the Interstate 20 bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Cobb County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Sweetwater Creek near Austell, Georgia (02337000). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Sweetwater Creek near Austell (02337000), which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers Hydrologic Engineering Centers River Analysis System (HEC–RAS) software for Sweetwater Creek and was used to compute flood profiles for a 10.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Sweetwater Creek near Austell streamgage (02337000), as well as high-water marks collected during annual peak-flow events in 1982 and 2009. The hydraulic model was then used to determine 21 water-surface profiles for flood stages at the Sweetwater Creek streamgage at 1-foot intervals referenced to the

  1. Copepod composition, abundance and diversity in Makupa Creek ...

    African Journals Online (AJOL)

    The taxonomic composition, abundance and spatio-temporal distribution of copepods were analysed from monthly zooplankton samples collected in Makupa creek and Mombasa Harbour (Makupa creek was until recently subjected to considerable dumping of domestic and industrial waste). At least 51 copepod species ...

  2. 33 CFR 117.1001 - Cat Point Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  3. Total Hydrocarbon (THC) of the Lower Kolo Creek in Otuogidi ...

    African Journals Online (AJOL)

    Aquatic wild life and habitats are affected by pollution through physical contact, absorption and inhalation. This study was carried out to investigate the THC values of lower Kolo creek in Otuogidi Bayelsa State – Nigeria for 12 months. THC of sediment and water covering wet and dry season obtained from the creek were ...

  4. 33 CFR 117.163 - Islais Creek (Channel).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Islais Creek (Channel). 117.163 Section 117.163 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.163 Islais Creek (Channel). (a) The...

  5. Utilizing Creeks for Integrated Rural Coastal Development of Ilaje ...

    African Journals Online (AJOL)

    Rural communities in the country are blessed with resources which need to be exploited to achieve rural development. This study examines the Utilization of Creeks for Integrated Coastal Development of Ilaje Area of Nigeria. The primary goal of the study is to carry out inventory on creek resources and how best it could be ...

  6. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  7. Water Quality of Peralta and Courtland Creek Oakland, CA

    Science.gov (United States)

    Ahumada, A.; Zhen, K. L.; Ponce, X.; Johnson, A.; Varela, N.; Quintero, D.; Hernandez, G.; Oghogho, E.

    2014-12-01

    Authors: Allan Ahumada, Aminah Butler, Mellany Davis, Yarely Guzman, Micah Johnson, Xochitl Ponce, Kim Zhen Abstract: Beginning in the summer of 2012 and continuing to the present time our group has been assessing the water quality of Courtland Creek, which flows from Northeast to Southwest in East Oakland, California. During the summer of 2014 we began assessing the water quality at nearby Peralta Creek to compare the health of Courtland Creek with another one within the same watershed. In making our assessment we have analyzed samples collected from three different sites along both creeks for Nitrate, Phosphate, and Ammonia concentration levels. Additionally, we conducted benthic macroinvertebrate surveys at one site along each creek. Preliminary results indicate that nitrate levels in Courtland Creek waters are very high, which we believe is the result of human and animal waste entering into the creek. There were also unusually high levels of Phosphate and Ammonia detected in creek waters. Such high concentrations were noted in a past study and in an attempt to address this problem we initiated a native plant restoration project at one particular site located at the intersection of Courtland and Thompson avenues. This effort has resulted in a reduction in levels of Nitrate, Phosphate and Ammonia. The average levels of these compounds in waters collected near the restoration site were lower than those found in samples collected at other sites. However, they are still well above levels that are harmful to invertebrates and fish. Nitrate, Phosphate and Ammonia concentration levels in samples collected from Peralta Creek were significantly lower than those collected from Courtland Creek. For example, the maximum level of nitrate detected in Courtland Creek waters was 50 PPM while the maximum found in Peralta Creek waters was 15 PPM. We have concluded that the observed high levels of various compounds are the result of animal waste and human feces spilling directly

  8. Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008

    Science.gov (United States)

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.

  9. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  10. Water quality in the upper Shoal Creek basin, southwestern Missouri, 1999-2000

    Science.gov (United States)

    Schumacher, John G.

    2001-01-01

    broilers and 300,000 turkeys. Probable nonhuman sources included turkeys, horses, chickens, and cattle; however, wildlife sources such as deer, raccoon, muskrat, and opossum were not evaluated. Human waste was an important source of E. coli in water samples collected at the MDNR monitoring site (site 3) on Shoal Creek and at two tributary sites (Joyce Creek and Woodward Creek). In general, the detection of human ribopatterns was consistent with the detection of organic compounds commonly associated with human wastewater such as caffeine, triclosan, or phenol, and the fecal indicators cholesterol and 3B-coprostanol. Ribopattern analysis indicate that horses were an important source of E. coli in Woodward Creek, which was consistent with horses being pastured immediately upstream from the sampling site on this creek. Pogue Creek contains a large density of turkey barns and five of eight E. coli isolates from one sample from Pogue Creek were matched to turkeys. Water samples from Pogue Creek generally did not contain detectable concentrations of human wastewater compounds, but one sample did contain detectable quantities of the antibiotics tylosin and lincomycin (widely used in the animal industry), and sulfamethoxazole (human use only). Although promising, the ability of ribopattern analyses to positively identify the source of a particular isolate is uncertain because of the small sample size, possible differences between animal source patterns in the study area and database used, lack of native wildlife source patterns, and variation in results depending on the number of possible animal host considered. Results of this study indicate that a trend of increasing fecal coliform densities with increasing time detected by the MDNR is, in part, caused by trends in annual precipitation and stream discharge, and not necessarily changes in land use or densities of animal operations. A multiple linear regression (MLR) model using specific conductance and wate

  11. Land Acquisition Priority Plan for Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan discusses land acquisition priorities for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The proposed alternatives...

  12. Water chemistry - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  13. Aquatic Invertebrates - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  14. Diurnal variation of zooplankton in Malad creek, Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Desai, B.N.

    Variation in zooplankton biomass and composition in relation to the prevailing hydrographical conditions was studied for 24 h in Malad Creek, Bombay, Maharashtra, India, which was highly polluted by sewage. The adverse effect of pollution was more...

  15. Ecology of phytoplankton from Dharmatar Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Phytoplankton pigment, cell count and species diversity wee studied at five locations in Dharamtar Creek during September 1984 to November 1985. Chemical parameters indicated a healthy system free of any environmental stress. The water...

  16. Bowdoin NWR : Information on Beaver Creek flow 1936-1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides a timeline of Beaver Creek flows, near Bowdoin National Wildlife Refuge, from 1936 to 1986. Parts Bowdoin National Wildlife Refuge lie within...

  17. Cypress Creek National Wildlife Refuge: Annual Narrative: Fiscal year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during fiscal year 1997. The report begins with an introduction...

  18. Narrative report Squaw Creek Refuge: January through April, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1959. The report begins by summarizing...

  19. Aerial photo mosaic of Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  20. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  1. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  2. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  3. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  4. Biotic health of Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Walnut Creek National Wildlife Refuge is in the process of converting over 5,000 acres of agricultural land back to native prairie and savanna. The refuge will...

  5. Snake Creek National Wildlife Refuge [Narrative report: September - December 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  6. [Narrative report Squaw Creek Refuge: January through April, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1960. The report begins by summarizing...

  7. Narrative report Squaw Creek National Wildlife Refuge: January - April, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1962. The report begins by summarizing...

  8. Narrative report Squaw Creek Refuge: January through April, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1958. The report begins by summarizing...

  9. [Narrative report Squaw Creek Refuge: January through April, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1961. The report begins by summarizing...

  10. Recreational Fishing Plan : Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the Recreational Fishing Plan for Cypress Creek NWR. The Plan provides an introduction to the Refuge, information about conformance with statutory...

  11. St. Catherine Creek NWR Hunting Season Harvest Totals

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from hunting that occurs on St. Catherine Creek NWR. Reports include summarized harvest and hunter effort data and basic analysis of these data.

  12. Erosion and deposition for Fanno Creek, Oregon 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2010, the U.S. Geological Survey (USGS) began investigating the sources and sinks of organic matter in Fanno Creek, a tributary of the Tualatin River, Oregon....

  13. Pond Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Pond Creek NWR for the next 15 years. This plan outlines the Refuge vision and purpose...

  14. Aerial photo mosaic of Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  15. St. Catherine Creek NWR Bird Point Count Data

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data collected during bird point counts at St. Catherine Creek NWR using the Lower Mississippi Valley Joint Venture protocol for forest dwelling birds.

  16. Channel centerline for Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  17. Estimation of sockeye and coho salmon escapement in Mortensens creek

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A fixed picket weir was operated on Mortensens Creek from 1 July to 26 October 2001. Coho salmon Onchorynchus kisutch was the most abundant species counted through...

  18. St. Catherine Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on St. Catherine Creek NWR for the next 15 years. This plan outlines the Refuge vision and...

  19. Tidal flow characteristics at Kasheli (Kalwa/ Bassein creek), Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, G.N.; Suryanarayana, A.

    Tidal flow characteristics of waters at Kasheli, connected to the sea through Thane and Bassein Creeks in Bombay, Maharashtra, India are investigated based on tide and current observations carried out in 1980-81. The results establish that the tidal...

  20. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    bedoti was the true inhabitant. In general zooplankton production indicated 1.5 fold increase towards the upper reaches of the creek where salinity variations were drastic. A more diversified faunal assemblage of oceanic and neritic species characterised...

  1. Sediment contaminant assessment for Shoal Creek, Lawrence County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples were collected from ten locations along Shoal Creek and analyzed for l9 metals and 20 organochlorine compounds. For the organic analyses,...

  2. Survey of breeding birds Walnut Creek National Wildlife Refuge 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of the results of the second annual survey of breeding birds of Walnut Creek National Wildlife Refuge conducted in 1995. This series of...

  3. Dry Creek Rancheria Wastewater Treatment Plant; Proposed NPDES Permit Renewal

    Science.gov (United States)

    EPA is issuing a notice of proposed action under the Clean Water Act to issue a National Pollutant Discharge Elimination System (NPDES) Permit No. CA0005241 to: Dry Creek Rancheria Band of Pomo Indians.

  4. St. Catherine Creek NWR Deer Hunt Harvest Data Summaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from deer hunts that occur on St. Catherine Creek NWR. Reports include summarized deer harvest data and basic analysis of these data.

  5. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff...

  6. Geology and geomorphology--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in...

  7. Fish Creek Watershed Lake Classification, NPRA, Alaska, 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This study focuses on the development of a 20 attribute lake cover classification scheme for the Fish Creek Watershed (FCW), which is located in the National...

  8. Fish Creek Federally Endangered Freshwater Mussel Impact Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment toxicity was evaluated for one site upstream and three sites downstream of a diesel fuel spill that occurred in Fish Creek (OH and IN) in September 1993...

  9. Narrative report Squaw Creek Refuge: September - December, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1958. The report begins by...

  10. [Narrative report Squaw Creek Refuge: September - December, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1960. The report begins by...

  11. Fishery management assessment Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides an assessment for fishery management on Squaw Creek National Wildlife Refuge. The assessment concluded that existing Refuge waters are...

  12. Narrative report Squaw Creek Refuge: May through August, 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1955. The report begins by summarizing the...

  13. Inventory and Monitoring Plan for Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Inventory and Monitoring Plan (IMP) documents the inventory and monitoring surveys that will be conducted at Cypress Creek National Wildlife Refuge (CCNWR) from...

  14. Historical flows for Bridge Creek above East Canal, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bridge Creek originates along the northwestern slopes of Steens Mountain. It drains an area a fraction of the size of the Blitzen River watershed (approximately 30...

  15. Narrative report Squaw Creek Refuge: September - December, 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  16. 1965 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1965 calendar year. The report begins by summarizing...

  17. 1964 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1964 calendar year. The report begins by summarizing...

  18. 1966 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  19. The Trail Inventory of Whittlesey Creek NWR [Cycle 3

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Whittlesey Creek National Wildlife Refuge. Trails in this inventory are...

  20. Proctor Creek Boone Boulevard Health Impact Assessment (HIA) Final Report

    Science.gov (United States)

    This is the final report of the EPA-led Proctor Creek Boone Boulevard HIA, which aims to help inform the City of Atlanta’s decision on whether to implement the proposed Boone Boulevard Green Street Project as designed.

  1. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Science.gov (United States)

    2013-05-03

    ... Bureau of Land Management Notice of Availability of the Draft Environmental Impact Statement for the Jump... Impact Statement (EIS) for the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal... considered, the BLM must receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow...

  2. CREEK Project's Microzooplankton Seasonal Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  3. CREEK Project's Nekton Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  4. Conceptual frameworks, geomorphic interpretation and storytelling: Tales from Lockyer Creek , Australia.

    Science.gov (United States)

    Croke, Jacky; Phillips, Jonathan; Van Dyke, Chris

    2017-04-01

    Earth science knowledge and insight begins with case studies, and theories should be derived from and ultimately evaluated against empirical, case study evidence. However, isolated case studies not linked conceptually to other locations or embedded within a broader framework are often of limited use beyond the study site. Geomorphic evidence and phenomena may be interpreted using a variety of conceptual frameworks (theories, models, laws, methodologies, etc.). The evidence may be, or at least appear to be, consistent with multiple frameworks, even when those constructs are derived from entirely different assumptions or frames of reference. Thus different interpretations and stories can be derived from the same evidence. Our purpose here is to illustrate this phenomenon via a case study from Lockyer Creek, southeast Queensland, Australia. Lockyer Creek is fast becoming one of Australia's most studied catchments with a wealth of data emerging following two extreme flood events in 2011 and 2013. Whilst the initial objective of the Big Flood project was to provide information on the frequency and magnitude of these extreme events, in essence the project revealed a rich 'story' of river evolution and adjustment which at first glance did not appear to 'fit' many established conceptual frameworks and theories. This presentation tells the tale of Lockyer Creek as it relates to selected key conceptual frameworks and importantly how this information can then be used for more effective catchment and flood management.

  5. Puente Willow Creek en Monterrey, California

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1965-09-01

    Full Text Available Of the 10 awards given every year by the Prestressed Concrete Institute for the most outstanding prestressed concrete projects, two have been awarded in California this year, one of them to the Willow Creek bridge, near Monterrey. The prestressed, double T girders of this bridge were made at a workshop, a great distance from the bridge site. These are 24 m long, 1.35 m high, and are stabilized by transversal diaphragms, 20 cm in thickness. The table deck is of reinforced concrete, being 8.85 m wide and 20 cm thick. The structure is straightforward, slender, and adapts itself pleasantly to the background. It has seven spans and crosses over a secondary road, in addition to bridging the Willow stream. The supporting piles are hollow, of rectangular cross section, and over them a cross beam carries the five girders and the deck itself. The end abutments consist of vertical reinforced concrete walls, and supporting, soil filled, structures. The above information was supplied by the California Road Department.De los diez premios que anualmente concede el Prestressed Concrete Institute para las obras de hormigón pretensado más notables, dos han correspondido a California y uno de ellos al puente de Willow Creek, situado en la región de Monterrey. Las vigas de hormigón pretensado, con sección en forma de doble T, se prefabricaron en un taller situado a gran distancia del puente. Tienen 24 m de longitud y 1,35 m de canto, estando arriostradas con diafragmas transversales de 20 cm de espesor. La losa del tablero, de hormigón armado, tiene 8,85 m de anchura y 20 cm de espesor. La estructura es sencilla, esbelta y armoniza perfectamente con el paisaje que la circunda. Tiene siete tramos y salva un paso inferior secundario y el arroyo Willow. Los soportes, se apoyan sobre pilotes, algunos de gran altura; son huecos, de sección rectangular y terminan en una cruceta que sirve de sostén a las cinco vigas que soportan la losa del tablero. Los estribos

  6. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  7. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado (hereafter referred to as “Big Cottonwood Creek site”), on August 23, 2016, and on Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado (hereafter referred to as “Fountain Creek site”), on August 29, 2016. A one-dimensional hydraulic model was used to estimate the peak discharge. To define the flood frequency of each flood, peak-streamflow regional-regression equations or statistical analyses of USGS streamgage records were used to estimate annual exceedance probability of the peak discharge. A survey of the high-water mark profile was used to determine the peak stage, and the limitations and accuracy of each component also are presented in this report. Collection and computation of flood data, such as peak discharge, annual exceedance probability, and peak stage at structures critical to Colorado’s infrastructure are an important addition to the flood data collected annually by the USGS.The peak discharge of the August 23, 2016, flood at the Big Cottonwood Creek site was 917 cubic feet per second (ft3/s) with a measurement quality of poor (uncertainty plus or minus 25 percent or greater). The peak discharge of the August 29, 2016, flood at the Fountain Creek site was 5,970 ft3/s with a measurement quality of poor (uncertainty plus or minus 25 percent or greater).The August 23, 2016, flood at the Big Cottonwood Creek site had an annual exceedance probability of less than 0.01 (return period greater than the 100-year flood) and had an annual exceedance probability of greater than 0.005 (return period less than the 200-year flood). The August 23, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return

  8. Clear Creek Environmental Hydrologic Observatory: From Vision Toward Reality

    Science.gov (United States)

    Just, C.; Muste, M.; Kruger, A.

    2006-12-01

    The CyberEnviroNet research group at The University of Iowa includes around 25 scientists and engineers from Geography, Geoscience, Computer Science, and various Engineering Departments. The group leads diverse research and education projects involving "cyberinfrastructure" applied to water-resource and environmental concerns. Members of this group actively participate in the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) and the Collaborative Large-Scale Engineering Analysis Network for Environmental Research (CLEANER), ongoing NSF-supported activities and initiatives. Most activities are led by IIHR-Hydroscience & Engineering (IIHR) and the Center for Global and Regional Environmental Research (CGRER). An outcome of the CyberEnviroNet group activities is the emerging Clear Creek Environmental Hydrologic Observatory at the headwaters of Iowa's Clear Creek. It is envisioned that this process-based observatory will support the scientific investigation of relevant components of water cycle processes. Cyberinfrastructure is a complex concept that is difficult to narrowly define. However, this project will create a working example of cyberinfrastructure in the hydrologic and environmental sciences. It is a system that integrates a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. The creation of this multi-faceted system raises important questions: 1. Will such a system benefit the testing of scientific hypotheses in the areas of "envirohydrology" and hydrology? 2. If the answer is "yes", do we know how to assemble, operate, manage, and make it cost effective? 3. If the answers are "yes", then does it make sense for the hydrologic and

  9. Flood Frequency Analysis of Future Climate Projections in the Cache Creek Watershed

    Science.gov (United States)

    Fischer, I.; Trihn, T.; Ishida, K.; Jang, S.; Kavvas, E.; Kavvas, M. L.

    2014-12-01

    Effects of climate change on hydrologic flow regimes, particularly extreme events, necessitate modeling of future flows to best inform water resources management. Future flow projections may be modeled through the joint use of carbon emission scenarios, general circulation models and watershed models. This research effort ran 13 simulations for carbon emission scenarios (taken from the A1, A2 and B1 families) over the 21st century (2001-2100) for the Cache Creek watershed in Northern California. Atmospheric data from general circulation models, CCSM3 and ECHAM5, were dynamically downscaled to a 9 km resolution using MM5, a regional mesoscale model, before being input into the physically based watershed environmental hydrology (WEHY) model. Ensemble mean and standard deviation of simulated flows describe the expected hydrologic system response. Frequency histograms and cumulative distribution functions characterize the range of hydrologic responses that may occur. The modeled flow results comprise a dataset suitable for time series and frequency analysis allowing for more robust system characterization, including indices such as the 100 year flood return period. These results are significant for water quality management as the Cache Creek watershed is severely impacted by mercury pollution from historic mining activities. Extreme flow events control mercury fate and transport affecting the downstream water bodies of the Sacramento River and Sacramento- San Joaquin Delta which provide drinking water to over 25 million people.

  10. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    Science.gov (United States)

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  11. Tuttle Creek Hydroelectric Project feasibility assessment report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-03-01

    The results are presented of a feasibility assessment study to determine if hydroelectric generation could be developed economically at the Corps of Engineers' Tuttle Creek Dam, an existing flood control structure on the Big Blue River near Manhattan, Kansas. The studies and investigations included site reconnaissance, system load characteristics, site hydrology, conceptual project arrangements and layouts, power studies, estimates of construction costs, development of capital costs, economic feasibility, development of a design and construction schedule and preliminary environmental review of the proposed Project. The dependable capacity of the Project as delivered into the existing transmission and distribution network is 12,290 kW and the average annual energy is 56,690 MWh. For the scheduled on-line date of July 1984, the Project is estimated to have a Total Investment Cost of $19,662,000 (equal to $1333/kW installed at that time frame) with an estimated annual cost for the first year of operation of $2,696,000, assuming REA financing at 9.5% interest rate. The Project is considered technically feasible and without any major environmental issues. It shows economic feasibility providing satisfactory financing terms are available. (LCL)

  12. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  13. West Foster Creek Expansion Project 2007 HEP Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  14. Old groundwater influence on stream hydrochemistry and catchment response times in a small Sierra Nevada catchment: Sagehen Creek, California

    Science.gov (United States)

    Rademacher, L.K.; Clark, J.F.; Clow, D.W.; Hudson, G.B.

    2005-01-01

    [1] The relationship between the chemical and isotopic composition of groundwater and residence times was used to understand the temporal variability in stream hydrochemistry in Sagehen basin, California. On the basis of the relationship between groundwater age and [Ca2+], the mean residence time of groundwater feeding Sagehen Creek during base flow is approximately 28 years. [Cl-]:[Ca2+] ratios in Sagehen Creek can be used to distinguish between two important processes: changes in the apparent age of groundwater discharging into the creek and dilution with snowmelt. The mean residence time of groundwater discharging into the creek is approximately 15 years during snowmelt periods. The results from this study have implications for hydrograph separation studies as groundwater is not a single, well-mixed chemical component but rather is a variable parameter that predictably depends on groundwater residence time. Most current models of catchment hydrochemistry do not account for chemical and isotopic variability found within the groundwater reservoir. In addition, this study provides valuable insight into the long-term hydrochemical response of a catchment to perturbations as catchment-flushing times are related to the mean residence time of water in a basin. Copyright 2005 by the American Geophysical Union.

  15. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    Science.gov (United States)

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of

  16. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Jim [Washington Department of Fish and Wildlife

    2008-11-03

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  17. An analysis of stream channel cross section technique as a means to determine anthropogenic change in second order streams at the Tenderfoot Creek Experimental Forest, Meagher County, Montana

    Science.gov (United States)

    Jeff Boice

    1999-01-01

    Five second order tributaries to Tenderfoot Creek were investigated: Upper Tenderfoot Creek, Sun Creek, Spring Park Creek, Bubbling Creek, and Stringer Creek. Second order reaches were initially located on 7.5 minute topographic maps using techniques first applied by Strahler (1952). Reach breaks were determined in the field through visual inspection. Vegetation type (...

  18. Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia

    Science.gov (United States)

    Kozar, Mark D.; Weary, David J.

    2009-01-01

    Due to increasing population and economic development in the northern Shenandoah Valley of Virginia and West Virginia, water availability has become a primary concern for water-resource managers in the region. To address these issues, the U.S. Geological Survey (USGS), in cooperation with the West Virginia Department of Health and Human Services and the West Virginia Department of Environmental Protection, developed a numerical steady-state simulation of ground-water flow for the 1,013-square-kilometer Opequon Creek watershed area. The model was based on data aggregated for several recently completed and ongoing USGS hydrogeologic investigations conducted in Jefferson, Berkeley, and Morgan Counties in West Virginia and Clarke, Frederick, and Warren Counties in Virginia. A previous detailed hydrogeologic assessment of the watershed area of Hopewell Run (tributary to the Opequon Creek), which includes the USGS Leetown Science Center in Jefferson County, West Virginia, provided key understanding of ground-water flow processes in the aquifer. The ground-water flow model developed for the Opequon Creek watershed area is a steady-state, three-layer representation of ground-water flow in the region. The primary objective of the simulation was to develop water budgets for average and drought hydrologic conditions. The simulation results can provide water managers with preliminary estimates on which water-resource decisions may be based. Results of the ground-water flow simulation of the Opequon Creek watershed area indicate that hydrogeologic concepts developed for the Hopewell Run watershed area can be extrapolated to the larger watershed model. Sensitivity analyses conducted as part of the current modeling effort and geographic information system analyses of spring location and yield reveal that thrust and cross-strike faults and low-permeability bedding, which provide structural and lithologic controls, respectively, on ground-water flow, must be incorporated into the

  19. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  20. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water levels and water quality parameters recorded on Crane Creek. Water-Data Report 2013 413723083123801 Crane Creek Mouth at Ottawa NWR LOCATION: Lat. 41°37'23"N,...

  1. Water‐Data Report 413723083123801 Crane Creek at Ottawa NWR-2013

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Water levels and water quality parameters recorded on Crane Creek. Water-Data Report 2013 413723083123801 Crane Creek Mouth at Ottawa NWR LOCATION: Lat. 41°37'23"N,...

  2. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    Science.gov (United States)

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    conditions at some time or in some location(s) in most aquifers. Frequent detections of zinc in the alluvium aquifer may represent anthropogenic influences such as mining. Along the mesas in the upper San Mateo Creek Basin, springs that form various creeks, including El Rito and San Mateo Creeks, discharge from the basalt-cap layer and the upper Cretaceous sedimentary layers. Streamflow in El Rito and San Mateo Creeks flows down steep gradients near the mesas sustained by groundwater discharges, and this streamflow transitions to shallow groundwater contained within the valley alluvium through infiltration where the subsequent groundwater is restricted from downward migration by the shaly Menefee Formation. This shallow groundwater reemerges at seeps where the land surface has been eroded below the groundwater level. Spring- and creek-water samples contained small amounts of dissolved solutes, and seep water contained substantially larger amounts of dissolved solutes. The pH of water within the creeks was neutral to alkaline, and all locations exhibited well-oxygenated conditions, although typically at substantially less than saturated levels. Changes in the stable-isotope ratios of water between spring and summer samples indicate differences in source-water inputs that likely pertain to seasonal recharge sources. Results of the water-isotope analysis and geochemical modeling indicate little evaporation and chemical weathering at the spring and creek sites but stronger evaporation and chemical weathering by the time the water reaches the seep locations in the center of the upper San Mateo Creek Basin.

  3. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  4. Stream Restoration Monitoring Utilizing an Unmanned Aerial Vehicle, Teton Creek, Idaho

    Science.gov (United States)

    Stegman, T.

    2014-12-01

    Stream restoration is a growing field in fluvial geomorphology. As demands on water resources increase the need for sustainable and healthy waterways becomes even more essential. This research investigates how an unmanned aerial vehicle (UAV) can be utilized for data collection necessary in stream restoration design and evaluation. UAV's offer an inexpensive method to collect information on channel geometry and map grain size distributions of the bed material. This data is critical in hydraulic flow modeling and engineering plans needed to create a restoration design, as well as evaluate if an implemented project has met its goals. This research utilized a UAV and structure-from-motion photogrammetry to monitor a recent stream restoration project designed to reduce erosion on a 1.9 km reach of Teton Creek in Eastern Idaho. A digital elevation model of difference was created from an as-built field survey and a UAV derived terrain model to identify areas of erosion and deposition in the restoration reach. The data has shown relatively small areas of channel instability in the restoration reach, and has also identified sections which may require additional restoration activities in Teton Creek. The grain size distribution of Teton Creek was also mapped utilizing a UAV and digital photosieving techniques, for use in sediment transport equations in the restoration reach. Data collected quickly and inexpensively from a UAV is valuable to river managers to monitor restoration work. This research identifies the methods and materials needed for river managers to conduct UAV surveys of streams for use in restoration design and monitoring.

  5. Simulation of streamflow in the McTier Creek watershed, South Carolina

    Science.gov (United States)

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient

  6. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... Forest Service Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest... Environmental Impact Statement for the Beaver Creek Landscape Management Project in the Federal Register (75 FR... Creek Landscape Management Project was published in the Federal Register on October 15, 2010 (75 FR...

  7. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Science.gov (United States)

    2010-07-01

    ... shoreline of the MCAS to a point along the northern shoreline of Mulligan Creek at latitude 32.48993°, longitude 80.69836°, thence southwesterly across Mulligan Creek to the shoreline of the MCAS, latitude 32... portion of Mulligan Creek located on the southern side of the MCAS runway, beginning at a point on the...

  8. 76 FR 27890 - Special Local Regulations for Marine Events; Severn River, Spa Creek and Annapolis Harbor...

    Science.gov (United States)

    2011-05-13

    ... SECURITY Coast Guard 33 CFR Part 100 Special Local Regulations for Marine Events; Severn River, Spa Creek... Annapolis'' triathlon, a marine event to be held on the waters of Spa Creek and Annapolis Harbor on May 14... Spa Creek and Annapolis Harbor during the event. DATES: This rule is effective from 6 a.m. until 9 a.m...

  9. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Science.gov (United States)

    2010-11-09

    ... Doc No: 2010-28232] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission...

  10. Acculturation into the Creek Traditions: Growing in Depth and Breadth of Understanding within the Environment

    Science.gov (United States)

    Bogan, Margaret B.

    2011-01-01

    This paper is in part, a reflective analysis of 15 years living with the state-recognized Florida Creek Indians of the Central Florida Muskogee Creek Tribe and the Pasco Band of Creek Indians, formally of Lacoochee, FL and currently in Brooksville, FL, respectively. It addresses the power structures within tribal organizations. Selected Creek…

  11. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... COMMISSION License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County... compliance (POC) wells and the deletion of License Condition (LC) No. 47 for its Bear Creek Uranium Mill...: [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Bear Creek Uranium Mill operated...

  12. Trace metals in intertidal sediment of mangrove-sheltered creeks in ...

    African Journals Online (AJOL)

    Trace metals (Zn, Cu and Pb) fluxes were studied in five intertidal flats at Bodo Creek, Eastern Niger Delta, Nigeria in 2006, and re-evaluated in 2010 following two major oil spills that occurred in the creek. This study is the first to look at trace metal loads in the interstitial sediments of Bodo creek. Standard methods were ...

  13. 77 FR 2493 - Special Local Regulations for Marine Events; Spa Creek and Annapolis Harbor, Annapolis, MD

    Science.gov (United States)

    2012-01-18

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations for Marine Events; Spa Creek... ``TriRock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor... portion of the Spa Creek and Annapolis Harbor during the event. DATES: Comments and related material must...

  14. 77 FR 15602 - Special Local Regulations for Marine Events; Spa Creek and Annapolis Harbor, Annapolis, MD

    Science.gov (United States)

    2012-03-16

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations for Marine Events; Spa Creek... Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor on May 12... the Spa Creek and Annapolis Harbor during the event. DATES: This rule is effective and will be...

  15. 78 FR 20066 - Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD

    Science.gov (United States)

    2013-04-03

    ... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AA08 Special Local Regulations; Marine Events, Spa Creek and...Rock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor on... portion of Spa Creek and Annapolis Harbor during the event. ] DATES: Comments and related material must be...

  16. 78 FR 38000 - Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD

    Science.gov (United States)

    2013-06-25

    ...--AA08 Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD AGENCY...,'' a marine event to be held on the waters of Spa Creek and Annapolis Harbor on July 20, 2013. The...; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD'' in the Federal Register (78 FR 20066). The...

  17. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ... Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment... Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and Old Dry Creek. The.... ADDRESSES: Send written comments to Bill Queen, District Ranger, Lookout Mountain District, Ochoco National...

  18. Impact of Urban Effluents on the Macroinvertebrates of a Creek in ...

    African Journals Online (AJOL)

    The Nima Creek showed characteristics of a disturbed urban creek. A total of 19 macroinvertebrate taxa, comprising a total of 11,613 individuals, were collected. Estimated Shannon-Weiner Diversity Index (H´) was low at the midstream section of the creek, H'= 1.14, where the effluents were concentrated than at the ...

  19. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  20. Flood-inundation maps for Cedar Creek at 18th Street at Auburn, Indiana

    Science.gov (United States)

    Fowler, Kathleen K.

    2018-02-27

    Digital flood-inundation maps for a 1.9-mile reach of Cedar Creek at Auburn, Indiana (Ind.), from the First Street bridge, downstream to the streamgage at 18th Street, then ending approximately 1,100 feet (ft) downstream of the Baltimore and Ohio railroad, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science web site at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on Cedar Creek at 18th Street at Auburn, Ind. (station number 04179520). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, although forecasts of flood hydrographs are not available at this site (ABBI3).Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Cedar Creek at 18th Street at Auburn, Ind. streamgage and the documented high-water marks from the flood of March 11, 2009. The calibrated hydraulic model was then used to compute seven water-surface profiles for flood stages referenced to the streamgage datum and ranging from 7 ft, or near bankfull, to 13 ft, in 1-foot increments. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each water level.The availability of these maps, along with internet information regarding current stage from the USGS streamgage at Cedar Creek

  1. Upper Jurassic (Oxfordian) Smackover Facies characterization at Little Cedar Creek Field, Conecuh County, Alabama

    Science.gov (United States)

    Ridgway, John Grayson

    The Upper Jurassic (Oxfordian) Smackover Formation is a shallow-marine carbonate unit in the subsurface of the U.S. Gulf Coast, spanning from south Texas to west Florida. This field case-study focuses on Little Cedar Creek Field located in southeastern Conecuh County, Alabama. The objectives of this study are to (1) construct a 3-D depositional model for the Smackover Formation at Little Cedar Creek Field; (2) establish a sequence stratigraphic framework for the construction of the depositional model; (3) characterize and map lithofacies with high resource potential based on the depositional model; and (4) demonstrate the use of the depositional model to maximize hydrocarbon recovery in the field area. Little Cedar Creek Field is located near the up-dip limit of the Smackover Formation. The top of the Smackover is found at depths between 10,000 to 12,000 feet, and the formation ranges in thickness from 60 to 120 feet. The Smackover Formation overlies the Callovian-Oxfordian Norphlet Formation and underlies the Kimmeridgian Haynesville Formation. The petroleum reservoirs in Little Cedar Creek Field, unlike most Smackover fields in the eastern Gulf region, are composed predominantly of limestone, not dolomite, and do not possess a Buckner Anhydrite top seal immediately above the reservoir. Beginning from the top of the Smackover, the facies are: (S-1) Peritidal lime mudstone-wackestone; (S-2) tidal channel conglomeratic floatstone-rudstone; (S-3) peloid-ooid shoal grainstone-packstone; (S-4) subtidal lime wackestone-mudstone; (S-5) microbially-influenced packstone-wackestone; (S-6) microbial (thrombolite) boundstone; and (S-7) transgressive lime mudstone-dolostone. Production is from both the thrombolite boundstone and shoal grainstone facies, though pressure and fluid data indicate no communication between the two reservoirs. The data indicate that the microbial communities developed on subtle topographic highs overlying the transgressive lime mudstone-dolostone in

  2. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  3. Transport of Conservative and “Smart” Tracers in a First-Order Creek: Role of Transient Storage Type

    Directory of Open Access Journals (Sweden)

    Alexander Yakirevich

    2017-07-01

    Full Text Available Using “smart” tracers such as Resazurin (Raz allows assessment of sediment-water interactions and associated biological activity in streams. We compared two approaches to simulate the effects of transient storage (TS on the transport of conservative and reactive tracers. The first approach considered TS as composed of metabolically active and metabolically inactive compartments, while the second model approach accounted for the surface transient storage (STS and hyporheic transient storage (HTS. Experimental data were collected at a perennial first-order creek in Maryland, MD, USA, by injecting the conservative tracer bromide (Br and the reactive (Raz tracer and sampling water at two weir stations. The STS–HTS approach led to a more accurate simulation of Br transport and tails of the Raz and its product Rezorufin (Rru breakthrough curves. Sediments support large microbial communities, and the STS–HTS model in creeks provides additional parameters to characterize the habitats of microbial water-quality indicator organisms.

  4. Preliminary Chemical and Biological Assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    USER

    drainage, and habitat to wildlife, creating neighborhood beauty and improving quality of life. In developing countries, there has been a systematic loss of creeks to overuse, ... Plankton samples were collected using standard plankton net of 55 µm mesh size. The plankton count was carried out using a 1 ml Sedgwick rafter ...

  5. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent...-Toiyabe National Forest will prepare an environmental impact statement (EIS) on a proposal to authorize..., Little Fish Lake, Monitor Complex, Saulsbury and Stone Cabin allotments have active term grazing permits...

  6. Short notes and reviews The fossil fauna of Mazon Creek

    NARCIS (Netherlands)

    Schultze, Hans-Peter

    1998-01-01

    Review of: Richardson’s Guide to the Fossil Fauna of Mazon Creek, edited by Charles W. Shabica & Andrew A. Hay. Northeastern Illinois University, Chicago, Illinois, 1997: XVIII + 308 pp., 385 figs., 4 tables, 1 faunal list; $75.00 (hard cover) ISBN 0-925065-21-8. Since the last century, the area

  7. The Wilson’s Creek Staff Ride and Battlefield Tour

    Science.gov (United States)

    1993-03-01

    cross Wilson’s Creek to ard the s Plummer advanced, he sought to siIen PI~mrne~~s command was i sha 3d Louisiana and 2d ansas retreat. Qsition...Redskins. Experiences in Army Life of Colonel George B. Sanford, 1861-1866. Norman: University of Oklahoma Resa , 1969. Tunnard, William H. A Southern

  8. Research in the Caspar Creek Experimental Watersheds, Northern California

    Science.gov (United States)

    Jack Lewis; Rand E. Eads; Robert R. Ziemer

    2000-01-01

    For the past four decades, researchers from the Pacific Southwest Research Station's Redwood Sciences Laboratory, in cooperation with the California Department of Forestry and Fire Protection, have been studying the effects of logging in the Caspar Creek Experimental Watersheds on the Jackson Demonstration State Forest near Fort Bragg, California. Their findings...

  9. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Science.gov (United States)

    2010-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... 47 CFR Part 73 Radio, Radio broadcasting. For the reasons discussed in the preamble, the Federal Communications Commission proposes to amend 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 1. The...

  10. Coyote Creek (Santa Clara County) Pilot Revegetation Project

    Science.gov (United States)

    John T. Stanley; L. R. Silva; H. C. Appleton; M. S. Marangio; W. J. Lapaz; B. H. Goldner

    1989-01-01

    The Santa Clara Valley Water District, located in Northern California, is currently evaluating a pilot riparian revegetation project on a 1.6 ha (4 ac) site adjacent to Coyote Creek in the south San Francisco Bay Area. Specific techniques used during the design, site preparation and installation of 3640 plants (including seed planting locations) are described. This...

  11. The Caspar Creek Watersheds--a case study

    Science.gov (United States)

    R. R. Ziemer

    1990-01-01

    Caspar Creek experimental watersheds are located on the Jackson Demonstration State Forest. Sponsors are the Pacific Southwest Research Station (PSW), USDA Forest Service, and the California Department of Forestry and Fire Protection (CDF). Both organizations have been working cooperatively since 1962

  12. Tillman Creek Mitigation Site As-Build Report.

    Energy Technology Data Exchange (ETDEWEB)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  13. Okanogan Focus Watershed Salmon Creek : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, Hilary

    1999-11-01

    During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

  14. Preliminary chemical and biological assessment of Ogbe Creek ...

    African Journals Online (AJOL)

    The macro benthos harvested consisted of 123 invertebrates comprising four pollution tolerant taxa, Erpobdella, Chironomus, Eristalis and Brachydeutera. The low plankton and macro benthos diversity further indicated the impact of the perturbational stress on the organisms inhabiting the creek. Monitoring and evaluation ...

  15. Snake Creek embankment research study subsides for season

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Snake Creek Embankment on U.S. Highway 83 between Lake Audubon and Lake Sakakawea was home to a research project on bird strikes with power lines this year. This...

  16. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    Science.gov (United States)

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  17. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Science.gov (United States)

    2011-03-14

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... Congressional Review Act, see U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting... as follows: PART 73--RADIO BROADCAST SERVICES 0 1. The authority citation for part 73 continues to...

  18. 78 FR 37474 - Radio Broadcasting Services; Dove Creek, Colorado

    Science.gov (United States)

    2013-06-21

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Dove Creek, Colorado AGENCY: Federal Communications... CFR Part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Chief, Audio... amends 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 0 1. The authority citation for Part...

  19. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Science.gov (United States)

    2012-12-26

    ... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications... 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Assistant... Communications Commission proposes to amend 47 CFR Part 73 as follows: PART 73--RADIO BROADCAST SERVICES 1. The...

  20. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-02-26

    ... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: With this notice, RUS invites any affected Federal, State, and local...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY...

  1. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-06-11

    ... turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... Basin Electric Power Cooperative's (Basin Electric) application for a RUS loan and a Western...

  2. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... generator, and a steam turbine generator set. ADDRESSES: To obtain copies of the ROD, or for further... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application for...

  3. Meteorological factors in the Quartz Creek forest fire

    Science.gov (United States)

    H. T. Gisborne

    1927-01-01

    It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...

  4. Preliminary investigations on the Ichthyodiversity of Kilifi Creek, Kenya

    African Journals Online (AJOL)

    Acan bloc. Cara igno. Cyna gilc. Gaza mina. Gerrfila. H ils kele. Leia equu. Leia sp. Leth mahs. Lutj sang. Oxyu papa. Poma multi. Scorn lysa. Tera jarb. Tera ther. Upen sulp. Upen vitt. PRELIMINARY INVESTIGATIONS ON THE ICHTHYODIVERSITY OF KILIFI CREEK 19 irregular use of hand—nets besides literally hitting.

  5. Estimate of Water Residence Times in Tudor Creek, Kenya Based ...

    African Journals Online (AJOL)

    However, even though the observed salinity gradient in the creek appeared consistent with dry and rain periods, estimates of river runoffs were not good enough to calculate water exchange, based on salt conservation. Runoff in general was also too small to give reliable rating curves (correlation between rainfall and river ...

  6. 75 FR 52463 - Safety Zone; Raccoon Creek, Bridgeport, NJ

    Science.gov (United States)

    2010-08-26

    ... life and property on navigable waters while contractors replace steel I-beams. This safety zone is... plans on replacing steel I-beams used to support the Route 130 Bridge spanning the Raccoon Creek in... temporary safety zone is for all navigable waters within 400 yards on either side of the Route 130 Bridge...

  7. PAH concentrations in sediment from Jones Creek Delta State, Nigeria

    African Journals Online (AJOL)

    EC) priority pollutants - polycyclic aromatic hydrocarbons (PAHs) in sediment and shrimp samples in Jones Creek southern Nigeria was investigated from March 2015 to August 2016. The ΣPAHs ranged from 0.32±0.07 to 48.38± 2.47 mg/kg for ...

  8. Bacteriological water quality of Elechi creek in Port Harcourt, Nigeria ...

    African Journals Online (AJOL)

    ... with pathogenic bacteria; hence the water is of low quality and should not be used for human consumption. The low counts of hydrocarbon-utilizing bacteria confirmed absence of a possible source of contamination of the creek by crude oil and its products. Journal of Applied Sciences and Environmental Management Vol.

  9. Cherry Creek Research Natural Area: guidebook supplement 41

    Science.gov (United States)

    Reid Schuller; Jennie Sperling; Tim. Rodenkirk

    2011-01-01

    This guidebook describes Cherry Creek Research Natural Area, a 239-ha (590-ac) area that supports old-growth Douglas-fir-western hemlock (Pseudotsuga menziesii- Tsuga heterophylla) forest occurring on sedimentary materials in the southern Oregon Coast Range. Major plant associations present within the area include the western hemlock/Oregon oxalis...

  10. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-15

    ... Energy Regulatory Commission Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569... the Natural Gas Act, and Bear Creek's blanket certificate issued in Docket No. CP10-28-000 on January...

  11. A baseline and watershed assessment in the Lynx Creek, Brenot Creek, and Portage Creek watersheds near Hudson's Hope, BC : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Matscha, G.; Sutherland, D. [British Columbia Ministry of Water, Land and Air Protection, Prince George, BC (Canada)

    2005-06-15

    This report summarized a baseline monitoring program for the Lynx Creek, Brenot Creek, and Portage Creek watersheds located near Hudson's Hope, British Columbia (BC). The monitoring program was designed to more accurately determine the effects of potential coalbed gas developments in the region, as well as to assess levels of agricultural and forest harvesting, and the impacts of current land use activities on water quantity and quality. Water quality was sampled at 18 sites during 5 different flow regimes, including summer and fall low flows; ice cover; spring run-off; and high flows after a heavy summer rain event. Sample sites were located up and downstream of both forest and agricultural activities. The water samples were analyzed for 70 contaminants including ions, nutrients, metals, hydrocarbons, and hydrocarbon fractions. Results showed that while many analyzed parameters met current BC water quality guidelines, total organic carbon, manganese, cadmium, E. coli, fecal coliforms, and fecal streptococci often exceeded recommended guidelines. Aluminum and cobalt values exceeded drinking water guidelines. The samples also had a slightly alkaline pH and showed high conductance. A multiple barrier approach was recommended to reduce potential risks of contamination from the watersheds. It was concluded that a more refined bacteria source tracking method is needed to determine whether fecal pollution has emanated from human, livestock or wildlife sources. 1 tab., 9 figs.

  12. Wildfire impacts on stream sedimentation: re-visiting the Boulder Creek Burn in Little Granite Creek, Wyoming, USA

    Science.gov (United States)

    Sandra Ryan; Kathleen Dwire

    2012-01-01

    In this study of a burned watershed in northwestern Wyoming, USA, sedimentation impacts following a moderately-sized fire (Boulder Creek burn, 2000) were evaluated against sediment loads estimated for the period prior to burning. Early observations of suspended sediment yield showed substantially elevated loads (5x) the first year post-fire (2001), followed by less...

  13. Dredging of sand from a creek adjacent to a sand-spit for reclamation: Its impact on spit stability and coastal zone

    Digital Repository Service at National Institute of Oceanography (India)

    Rajagopal, M.D.; Vethamony, P.; Ilangovan, D.; Jayakumar, S.; Sudheesh, K.; Murty, K.S.R.

    bed as fill material for reclamation of a low lying land. MIKE 21 hydrodynamic model was run to evaluate the change in flow pattern due to altered bathymetry, and GALENA to analyse the stability of a spit adjacent to the creek. JMC is a region...

  14. New insights on Southern Coyote Creek Fault and Superstition Hills Fault

    Science.gov (United States)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.

    2007-12-01

    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  15. New mapping near Iron Creek, Talkeetna Mountains, indicates presence of Nikolai greenstone

    Science.gov (United States)

    Schmidt, Jeanine M.; Werdon, Melanie B.; Wardlaw, Bruce R.

    2003-01-01

    magmatic feeders in the Iron Creek area suggests a much greater potential for large PGE, copper, or nickel deposits in the Talkeetna Mountains than previous mineral resource appraisals of the area have suggested, and requires reevaluation of large-scale tectonic models for the area.

  16. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite

  17. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  18. Simulated water-level responses, ground-water fluxes, and storage changes for recharge scenarios along Rillito Creek, Tucson, Arizona

    Science.gov (United States)

    Hoffmann, John P.; Leake, Stanley A.

    2005-01-01

    A local ground-water flow model is used to simulate four recharge scenarios along Rillito Creek in northern Tucson to evaluate mitigating effects on ground-water deficits and water-level declines in Tucson's Central Well Field. The local model, which derives boundary conditions from a basin-scale model, spans the 12-mile reach of Rillito Creek and extends 9 miles south into the Central Well Field. Recharge scenarios along Rillito Creek range from 5,000 to 60,000 acre-feet per year and are simulated to begin in 2005 and extend through 2225 to estimate long-term changes in ground-water level, ground-water storage, ground-water flux, and evapotranspiration. The base case for comparison of simulated water levels and flows, referred to as scenario A, uses a long-term recharge rate of 5,000 acre-feet per year to 2225. Scenario B, which increases the recharge along Rillito Creek by 9,500 acre-feet per year, has simulated water-level rises beneath Rillito Creek that range from about 53 feet to 86 feet. Water-level rises within the Central Well Field range from about 60 feet to 80 feet. More than half of these rises occur by 2050, and more than 95 percent occur by 2188. Scenario C, which increases the recharge along Rillito Creek by 16,700 acre-feet per year relative to scenario A, has simulated water-level rises beneath Rillito Creek that range from about 71 feet to 102 feet. Water-level rises within the Central Well Field range from about 80 feet to 95 feet. More than half of the rises occur by 2036, and more than 95 percent occur by 2100. Scenario D, which initially increases the recharge rate by about 55,000 acre-feet per year relative to scenario A, resulted in simulated water levels that rise to land surface along Rillito Creek. This rise in water level resulted in rejected recharge. As the water table continued to rise, the area of stream-channel surface intersected by the water table increased causing continual decline in the recharge rate until a long-term recharge

  19. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  20. Atmospheric Mercury near Salmon Falls Creek Reservoir in Southern Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Abbott; Jeffrey J. Einerson

    2007-12-01

    Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were measured over two-week seasonal field campaigns near Salmon Falls Creek Reservoir in south-central Idaho from the summer of 2005 through the fall of 2006 and over the entire summer of 2006 using automated Tekran mercury analyzers. GEM, RGM, and particulate mercury (HgP) were also measured at a secondary site 90 km to the west in southwestern Idaho during the summer of 2006. The study was performed to characterize mercury air concentrations in the southern Idaho area for the first time, estimate mercury dry deposition rates, and investigate the source of observed elevated concentrations. High seasonal variability was observed with the highest GEM (1.91 ± 0.9 ng m-3) and RGM (8.1 ± 5.6 pg m-3) concentrations occurring in the summer and lower values in the winter (1.32 ± 0.3 ng m-3, 3.2 ± 2.9 pg m-3 for GEM, RGM respectively). The summer-average HgP concentrations were generally below detection limit (0.6 ± 1 pg m-3). Seasonally-averaged deposition velocities calculated using a resistance model were 0.034 ± 0.032, 0.043 ± 0.040, 0.00084 ± 0.0017 and 0.00036 ± 0.0011 cm s-1 for GEM (spring, summer, fall, and winter, respectively) and 0.50 ± 0.39, 0.40 ± 0.31, 0.51 ± 0.43 and 0.76 ± 0.57 cm s-1 for RGM. The total annual RGM + GEM dry deposition estimate was calculated to be 11.9 ± 3.3 µg m-2, or about 2/3 of the total (wet + dry) deposition estimate for the area. Periodic elevated short-term GEM (2.2 – 12 ng m-3) and RGM (50 - 150 pg m-3) events were observed primarily during the warm seasons. Back-trajectory modeling and PSCF analysis indicated predominant source directions from the southeast (western Utah, northeastern Nevada) through the southwest (north-central Nevada) with fewer inputs from the northwest (southeastern Oregon and southwestern Idaho).

  1. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480 Section 334.480 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA...

  2. Identification of subwatershed sources for chlorinated pesticides and polychlorinated biphenyls in the Ballona Creek watershed.

    Science.gov (United States)

    Curren, Jane; Bush, Steven; Ha, Simon; Stenstrom, Michael K; Lau, Sim-Lin; Suffet, I H Mel

    2011-06-01

    Santa Monica Bay forms part of the western border of the greater Los Angeles region. The Ballona Creek watershed is highly urbanized and past studies indicate that Ballona Creek is the largest source for most pollutants to Santa Monica Bay. This study evaluates the contribution of subwatersheds to PCB and chlorinated pesticide loading during wet weather flow. Fifteen storm drains from these subwatersheds were sampled during three storms during the 2005-2006 winter rainy season. A series of grab samples were taken over the duration of the storms. The suspended solids were analyzed for polychlorinated biphenyls (PCBs) and chlorinated pesticides. A geographic information system (GIS) was used to calculate the runoff volume from each subwatershed to estimate pollution mass loading. There was no statistical difference among subswatersheds; however, a disproportionate mass of PCB loading came from site 5, which had no obvious sources. No specific subwatersheds were identified as key sources for chlorinated pesticides. These results may serve as a model for other locations with concerns for historic PCB and chlorinated pesticides loadings. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Hydrology and water quality of Reedy Creek in the Reedy Creek Improvement District, central Florida, 1986-89

    Science.gov (United States)

    Hampson, P.S.

    1993-01-01

    The Reedy Creek Improvement District encompasses an area of about 43 sq mi in southwestern Orange and northwestern Osceola Counties in central Florida. The District operates a wastewater-treatment plant that discharges through two forested wetland areas and a percolation-pond system into Reedy Creek. Discharges from these wetland systems provide a relatively steady base flow which maintains streamflow in Reedy Creek during periods of low rainfall. Streamflows during the study were characterized by relatively long periods of below-average discharge interspersed with periods of high discharges. The highest mean discharges were recorded in 1988 and the lowest mean discharges were recorded in 1989. Water-quality data collection included the operation of four continuous water-quality monitors recording hourly water temperature, specific conductance, and dissolved oxygen concentration, and the collection of water-quality samples. Dissolved oxygen concentrations were similar for all stations on Reedy Creek and frequently were less than the minimum Florida standard of 5.0 mg/L. These low dissolved oxygen concentrations probably are the result of natural conditions. Nutrient analyses of water-quality samples were used to compute loadings into and out of a wetland conservation area in the southern part of the District and in the reach of Reedy Creek downstream from the wastewater discharges. Overall retention percentages for 1986-89, not including atmospheric and precipitation inputs, were 59.1 percent for total ammonia nitrogen: 3.4 percent for total organic nitrogen, which was the predominant nitrogen species: 33.2 percent for total nitrate nitrogen; 27.0 percent for total phosphorus; and 26.0 percent for total organic carbon. Highest loading inputs to the wetland conservation area were from the reach of Reedy Creek receiving wastewater discharge. Discharges from the wetlands receiving wastewater and entering the wetland conservation area during 1988 carried 16.3 percent

  4. Tar Creek study, Sargent oil field, Santa Clara County, California

    Science.gov (United States)

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.

    2002-01-01

    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  5. Bathymetry of Clear Creek Reservoir, Chaffee County, Colorado, 2016

    Science.gov (United States)

    Kohn, Michael S.; Kinzel, Paul J.; Mohrmann, Jacob S.

    2017-03-06

    To better characterize the water supply capacity of Clear Creek Reservoir, Chaffee County, Colorado, the U.S. Geological Survey, in cooperation with the Pueblo Board of Water Works and Colorado Mountain College, carried out a bathymetry survey of Clear Creek Reservoir. A bathymetry map of the reservoir is presented here with the elevation-surface area and the elevation-volume relations. The bathymetry survey was carried out June 6–9, 2016, using a man-operated boat-mounted, multibeam echo sounder integrated with a Global Positioning System and a terrestrial survey using real-time kinematic Global Navigation Satellite Systems. The two collected datasets were merged and imported into geographic information system software. The equipment and methods used in this study allowed water-resource managers to maintain typical reservoir operations, eliminating the need to empty the reservoir to carry out the survey.

  6. A study of radium bioaccumulation in freshwater mussels, Velesunio angasi, in the Magela Creek catchment, Northern Territory, Australia.

    Science.gov (United States)

    Bollhöfer, Andreas; Brazier, Jenny; Humphrey, Chris; Ryan, Bruce; Esparon, Andrew

    2011-10-01

    Freshwater mussels, Velesunio angasi, along Magela Creek in Australia's Northern Territory were examined to study radionuclide activities in mussel flesh and to investigate whether the Ranger Uranium mine is contributing to the radium loads in mussels downstream of the mine. Radium loads in mussels of the same age were highest in Bowerbird Billabong, located 20 km upstream of the mine site. Variations in the ratio of [Ra]:[Ca] in filtered water at the sampling sites accounted for the variations found in mussel radium loads with natural increases in calcium (Ca) in surface waters in a downstream gradient along the Magela Creek catchment gradually reducing radium uptake in mussels. At Mudginberri Billabong, 12 km downstream of the mine, concentration factors for radium have not significantly changed over the past 25 years since the mine commenced operations and this, coupled with a gradual decrease of the (228)Ra/(226)Ra activity ratios observed along the catchment, indicates that the (226)Ra accumulated in mussels is of natural rather than mine origin. The (228)Th/(228)Ra ratio has been used to model radium uptake and a radium biological half-life in mussels of approximately 13 years has been determined. The long biological half-life and the low Ca concentrations in the water account for the high radium concentration factor of 30,000-60,000 measured in mussels from the Magela Creek catchment.

  7. Tectonic Geomorphology and Volcano-Tectonic Interaction in the Eastern Boundary of the Southern Cascades (Hat Creek Graben), California, USA

    Science.gov (United States)

    Paguican, E. M. R.; Bursik, M. I.

    2015-12-01

    The eastern boundary of the Southern Cascades (Hat Creek Graben), California, USA is an extensively faulted volcanic corridor with spectacular, high, steep scarps in a bedrock of late Tertiary and Quaternary volcanic and sedimentary deposits. The morphology of the graben is a result of the plate motions associated with multiple tectonic provinces, faulting, and recurring volcanic activity from more than 500 vents, over the past 7 my. The graben is at the boundary between two distinct geologic and geomorphic areas -- the Cascade Range on the west and the Modoc Plateau on the east -- between Mt. Shasta and Medicine Lake Highlands volcano, and Lassen Volcanic Center on the north and south, respectively. This study describes the geomorphological and tectonic features, their alignment and distribution, to understand the volcano-tectonic and geomorphology relationships in the Hat Creek Graben. We interpret topographic models generated from satellite images to create a database of volcanic centers and structures, and analyze the spatial distribution of the volcanic centers in the Hat Creek Graben. Poisson Nearest Neighbor analysis reveals a clustered distribution of volcanic centers, implying continuous or recurrent activity of magma sources as it propagates to the surface. Volcanic centers in the Hat Creek Graben have multiple preferred alignments, typical for extensional tectonic environments because of competing regional and local stress field influences and the presence of pre-existing, near-surface fractures. Most small stratovolcanoes ("lava cones") on the west are influenced by normal regional stress, and have crater amphitheater openings perpendicular to the maximum horizontal stress (σHmax), while those on the east, in a transcurrent regional stress regime, are at an acute angle. These results can be used as an indicator of the degree of impingement of the Walker Lane shear zone on the Cascades region.

  8. Flood Plain Information, East Branch Perkiomen Creek, Bucks County, Pennsylvania.

    Science.gov (United States)

    1971-01-01

    developed for municipal park pur- poses. The remaining areas are utilized for residential, commer- cial and industrial purposes. Many of these...southeastern West Rock Hill Township, was incorporated in 1874. Wambolds Mill and Tannery was located on Branch Creek (the name still given by many to the...town’s name was changed to Sellersville on October 17, 1886. The town has long been noted for its industries . It was a cigar-making center before 1860

  9. BLACK BUTTE AND ELK CREEK ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Ohlin, Henry N.; Spear, R.J.

    1984-01-01

    A mineral investigation in the nearly contiguous Black Butte and Elk Creek Roadless Areas of northern California, indicates that small parts of both roadless areas have a probable mineral-resource potential for small manganese-copper- or chromite-type deposits. There is little promise for the occurrence of energy resources in the areas. Investigation of geothermal resource potential and of the potential for other hydrothermal base- and precious-metal mineralization should be initiated.

  10. An Assessment of Stream Health in Urban Creeks with Community Led Improvement Projects

    Science.gov (United States)

    Sanchez, L.; Mercado, M.

    2016-12-01

    Small-scale restoration and improvement projects along urban creeks have become increasingly common and the need to assess their impact on stream health is necessary. Courtland and Peralta Creek have been subject to a variety of community, non-profit and city sponsored improvement projects. Assessment of nutrient contamination in the form of ammonia and nitrate indicate that these urban creeks have been impacted by human activity (Water Quality of Peralta and Courtland Creeks Oakland, CA, A. Ahumada). Continued assessment of the stream health through nitrate, ammonia and phosphate concentrations, benthic invertebrate derived biotic index and E. coli concentrations were used to assess site improvements. Youth and community site improvement project at Courtland Creek has resulted in the decline of nitrate contamination and an overall increase in benthic invertebrates species. Peralta Creek has a group of dedicated community volunteers that participate in clean up events but is just now implementing a planned restoration project increasing native plant diversity at the site.

  11. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Science.gov (United States)

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  12. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    Science.gov (United States)

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS

  13. Surficial Geology of the Mosier Creek Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  14. Structural Geology of the Mosier Creek Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A surficial and structural geologic map (SIR-2012-5002, fig. 2) was compiled to aid in the building of the three-dimensional geologic model. The map covers 327...

  15. Hydrology of upper Black Earth Creek basin, Wisconsin

    Science.gov (United States)

    Cline, Denzel R.; Busby, Mark W.

    1963-01-01

    The upper Black Earth Creek drainage basin has an area of 46 square miles and is in Dane County in south-central Wisconsin. The oldest rock exposed in the valley walls is the sandstone of Late Cambrian age. Dolomite of the Prairie du Chien Group of Ordovician age overlies the sandstone and forms the. resistant cap on the hills. The St. Peter Sandstone, Platteville and Decorah Formations, and Galena Dolomite, all Ordovician in age, form a narrow belt along the southern boundary of the area. Outwash and alluvium of Pleistocene and Recent age fill the valleys. The eastern half of the area was glaciated and is covered with till. The sandstone of Late Cambrian age and the sand and gravel of the outwash deposits are hydraulically connected. Ground water occurs under unconfined (water-table) conditions in the western unglaciated part of the basin and under artesian conditions beneath the till locally in the eastern part. The source of most of the ground water is direct infiltration of precipitation; however, some ground water enters the area as underflow from the south. About 7 inches of the 30 inches of average annual precipitation recharges the ground-water reservoir. The ground water generally moves toward Black Earth Creek where it is discharged. Some ground water moves out of the basin as underflow beneath the valley of Black Earth Creek, and some is discharged by evapotranspiration or is withdrawn by pumping from wells. Water levels in shallow nonartesian wells respond rapidly to precipitation. The effect of precipitation on water levels in artesian wells is slower and more subdued. Water levels are generally highest in spring and lowest in fall and winter. The flow of upper Black Earth Creek is derived mostly from ground-water discharge, except during short periods of and immediately after precipitation when most of the flow is derived from surface runoff. The runoff from upper Black Earth Creek basin decreased from an average of 8.72 inches per square mile of

  16. Apportionment of sources affecting water quality: Case study of Kandla Creek, Gulf of Katchchh

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Shirodkar, P.V.; Verlekar, X.N.; Jagtap, T.G.; Rao, G.S.

    characteristics of the Kandla Creek waters (Figure 1) were car- ried out under the environmental monitoring program of the Kandla Port Trust. The sampling was done during October 2002 to September 2003 and during June 2004 to May 2005 covering each season... of the port, industrial units, and sampling stations during a monitoring program of Kandla Creek, Gulf of Katchchh, India. cargo jetty, off IOC oil jetty and where Sara and Phang Creeks meet Kandla Creek. The water samples were collected from surface, mid...

  17. Geohydrology and simulations of ground-water flow at Verona well field, Battle Creek, Michigan, 1988

    Science.gov (United States)

    Lynch, E.A.; Grannemann, N.G.

    1997-01-01

    Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flow-meter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium

  18. Geophysical Constraints on the Evolution of an Ephemeral Channel at the Sand Creek Massacre National Historic Site, Colorado, USA

    Science.gov (United States)

    Sheth, Nishank Mihir

    A geophysical survey was conducted on an ephemeral channel, Sand Creek, at Sand Creek Massacre National Historic Site to test three hypothesized migration and depositional models of ephemeral streams. A key motivation for the study is to identify the historical location of Sand Creek, which is critical to establishing the location of the 1864 Sand Creek Massacre. Hammer seismic refraction data were collected on 7 valley-wide lines oriented perpendicular to the channel, and ground penetrating radar data (200 MHz antenna) was collected on a grid overlying the channel and the channel banks. An additional GPR line (100 MHz) was collected on a line spanning the valley bottom. The refraction data show 4 layers: an eolian cap that is 1 - 3 m thick with a velocity of 0.3 km/s; a gradational alluvium layer consisting of ephemeral deposits which is 2 - 3 m thick with velocities ranging from 0.5 - 1 km/s; a gradational alluvium layer consisting of perennial fluvial deposits which is 2 - 7 m thick with velocities ranging from 1.2 - 2.9 km/s; and a homogeneous layer with a velocity of 2.4 km/s which is interpreted to be the Pierre Shale Formation. The radar data located buried channel boundaries and revealed a change in bedforms at 3 - 4 m deep. The change in bedforms is interpreted to indicate a flow regime change from an older perennial to a more recent ephemeral flow. The channel bedforms within the ephemeral flow regime deposits suggest that the channel has not migrated across the modern valley since the ephemeral flow regime was established, but punctuated changes in morphology within the channel have occurred in association with major floods. The results iii indicate that the channel has not changed position in historical times. This suggests that the modern stream is the proper geographic context for historical accounts that reference the location of Sand Creek when describing events that occurred during the 1864 massacre.

  19. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    Science.gov (United States)

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  20. Dune formation on the Cooper Creek floodplain, Strzelecki Desert, Australia - first results of morphodynamic simulations

    Science.gov (United States)

    Kryger, Mateusz; Bubenzer, Olaf; Parteli, Eric

    2017-04-01

    Linear Dunes, which align longitudinally to the resultant wind vector, are the prevailing type of the south-north trending and partially vegetated dunes in the Strzelecki Desert, Australia. However, particularly on the Cooper Creek floodplain near Innamincka, striking complex dune features consisting of transversely oriented east-west trending dunes occur. These transverse dunes extend over several kilometers and are superimposed by linear dunes that elongate northwards and are separated by sandy swales. The aeolian features in the Strzelecki Desert are the result of interrelated late quaternary aeolian and fluvial activity and serve, thus, as archives providing information about variations in palaeoclimate and potential changes in fluvial sediment supply and wind strength and directionality. However, since the dunes are currently mostly stabilized by vegetation, it is uncertain whether their formation can be explained by the contemporary wind systems. To understand the dynamic processes underlying the genesis of the dune field in the Strzelecki Desert, the role of vegetation and the wind regimes leading to the observed dune patterns must be elucidated. Here we investigate the formative processes of the dune features occurring on the Cooper Creek floodplain by means of morphodynamic modeling of aeolian sand transport and dune formation in presence of vegetation growth. Our simulations show that a source-bordering dune can be formed out of the sediments of seasonally exposed sandbars of the palaeo-Cooper system by a unidirectional wind, which explains the emergence of the transverse dunes in the field. Moreover, a shift in the wind regime to obtuse bidirectional wind flows combined with a rapid decrease in the vegetation cover leads to the formation of linear dunes on the surface and in the lee of the transverse dunes. These linear dunes elongate over several kilometers downwind as a result of the seasonal wind changes. The dune shapes obtained in our simulations

  1. 75 FR 17465 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Salt Creek...

    Science.gov (United States)

    2010-04-06

    .../mountain-prairie/species/invertebrates/saltcreektiger/index.htm . Supporting documentation we used in... sustainable populations of beetles. For example, we eliminated the Oak Creek, Middle Creek/Haines Branch...

  2. Flooding and sedimentation in Wheeling Creek basin, Belmont County, Ohio

    Science.gov (United States)

    Kolva, J.R.; Koltun, G.F.

    1987-01-01

    The Wheeling Creek basin, which is located primarily in Belmont County, Ohio, experienced three damaging floods and four less severe floods during the 29-month period from February 1979 through June 1981. Residents of the basin became concerned about factors that could have affected the severity and frequency of out-of-bank floods. In response to those concerns, the U.S. Geological Survey, in cooperation with the Ohio Department of Natural Resources, undertook a study to estimate peak discharges and recurrence intervals for the seven floods of interest, provide information on current and historical mining-related stream-channel fill or scour, and examine storm-period subbasin contributions to the sediment load in Wheeling Creek. Streamflow data for adjacent basins, rainfall data, and, in two cases, flood-profile data were used in conjunction with streamflow data subsequently collected on Wheeling Creek to provide estimates of peak discharge for the seven floods that occurred from February 1979 through June 1981. Estimates of recurrence intervals were assigned to the Peak discharges on the basin of regional regression equations that relate selected basin characteristics to peak discharge with fixed recurrence intervals. These estimates indicate that a statistically unusual number of floods with recurrence intervals of 2 years or more occurred within that time period. Three cross sections located on Wheeling Creek and four located on tributaries were established and surveyed quarterly for approximately 2 years. No evidence of appreciable stream-channel fill or scour was observed at any of the cross sections, although minor profile changes were apparent at some locations. Attempts were made to obtain historical cross-section profile data for comparison with current cross-section profiles; however, no usable data were found. Excavations of stream-bottom materials were made near the three main-stem cross-section locations and near the mouth of Jug Run. The bottom

  3. The meaning of alcohol to traditional Muscogee Creek Indians.

    Science.gov (United States)

    Wing, D M; Thompson, T

    1996-01-01

    The purpose of this study was to learn the meaning of alcohol to the traditional Muscogee Creek Indians of eastern Oklahoma. Using Leininger's theory of culture care diversity and universality as the theoretical base, the authors conducted interviews of 24 traditional people to elicit both emic and etic meanings of alcohol. The conceptualization of alcohol as a dichotomy of power to do both good and evil emerged as the central theme. Other meanings of alcohol were explicated in relation to five social structure dimensions. The findings suggest culturally competent nursing implications for preserving, accommodating, and repatterning the meaning of alcohol.

  4. Miller Creek Demonstration Forest ecology activities - a teachers supplement to the field guide

    Science.gov (United States)

    Bill Schustrom; Reed Kuennen; Raymond C. Shearer

    1998-01-01

    Miller Creek, on the Flathead National Forest in northwestern Montana, is a demonstration forest, showing up to 30 years of forest change. This teachers supplement to the educational field guide (Miller Creek Demonstration Forest - a forest born of fire: a field guide; Gen. Tech. Rep. RMRS-GTR-7, 1998) outlines eight field and classroom activities that teach students a...

  5. Foraminiferal study from Kharo Creek, Kachchh (Gujarat), north west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Chaturvedi, S.K.

    any creek of Kachchh area will also serve as a baseline data to assess the future impact of industrial pollution (if any) as a jetty for offoading cement is being constructed in Kharo creek for proposed cement plant which is coming up in this area....

  6. Technology transfer: taking science from the books to the ground at Bent Creek Experimental Forest

    Science.gov (United States)

    Julia Kirschman

    2014-01-01

    Technology transfer has been an important part of the research program at Bent Creek Experimental Forest (Bent Creek) since its establishment in 1925. Our stated mission is to develop and disseminate knowledge and strategies for restoring, managing, sustaining, and enhancing the vegetation and wildlife of upland hardwood-dominated forest ecosystems of the Southern...

  7. 76 FR 9273 - Special Local Regulations for Marine Events; Severn River, Spa Creek and Annapolis Harbor...

    Science.gov (United States)

    2011-02-17

    ... River, Spa Creek and Annapolis Harbor, Annapolis, MD AGENCY: Coast Guard, DHS. ACTION: Notice of... swim segment of the ``TriRock Annapolis'' triathlon, a marine event to be held on the waters of Spa... segment of the event will occur from 7 a.m. to 8:30 a.m. and will be located in Spa Creek and Annapolis...

  8. Effects of forest management on streamflow, sediment yield, and erosion, Caspar Creek Experimental Watersheds

    Science.gov (United States)

    Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle

    2003-01-01

    Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...

  9. 75 FR 27507 - Safety Zone; Delaware River, Big Timber Creek, Westville, NJ

    Science.gov (United States)

    2010-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA08 Safety Zone; Delaware River, Big Timber Creek, Westville... held annually on the last Saturday in June with a rain date of the first Saturday in July. This Safety... is intended to temporarily restrict vessel traffic in the regulated area within Big Timber Creek...

  10. 76 FR 8728 - Bear Creek Hydro Associates, LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Science.gov (United States)

    2011-02-15

    ... Energy Regulatory Commission Bear Creek Hydro Associates, LLC; Notice of Preliminary Permit Application... 22, 2010, the Bear Creek Hydro Associates, LLC filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the ] feasibility of the Bear...

  11. 76 FR 56394 - Kootenai National Forest, Sanders, County, MT; Rock Creek Project

    Science.gov (United States)

    2011-09-13

    ... Forest Service Kootenai National Forest, Sanders, County, MT; Rock Creek Project AGENCY: Forest Service.... The Forest Service Record of Decision was issued in June 2003. The Montana Department of Environmental... will respond to the US District Court Decision in Rock Creek Alliance et al. v. USFS, Revett Silver...

  12. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ..., English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements apply to all bridges across Newtown Creek, Dutch Kills, English Kills, and their tributaries: (1) The...

  13. CREEK Project's Water Chemistry, Chlorophyll a, and Suspended Sediment Weekly Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before -...

  14. CREEK Project's Oyster Growth and Survival Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated...

  15. CREEK Project: RUI: the Role of Oyster Reefs in the Structure and Function of Tidal Creeks. A Project Overview: 1996-2000.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet, South Carolina, USA were studied using a replicated BACI (Before - After...

  16. Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jr., Emmit E. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-03-01

    This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts with structures that pass fish and accommodate site conditions.

  17. Distribution and abundance of copepods in the pollution gradient zones of Bombay Harbour-Thana Creek-Bassein Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam

    the monsoon months (June-September). Diversity indices (Shannon-Weaver's H' and Margalefs D) were higher in the outer coastal waters than in creek zone indicating lethal or sublethal effects of industrial and domestic waster on the general faunistic...

  18. Evidence of Streamflow and Sediment Effects on Juvenile Coho and Benthic Macroinvertebrates of Lagunitas Creek and San Geronimo Creek, Marin County, California

    OpenAIRE

    Ball, Joanie; Diver, Sibyl; Hwan, Jason

    2009-01-01

    Lagunitas Creek and San Geronimo Creek in Marin County, California provide some of the best habitat for endangered coho salmon (Oncorhynchus kisutch) in the southern part of their range, making it a priority for local and federal agencies to collect habitat and biological data throughout the watershed. For this paper, we synthesized numerous years of existing data, including flow, sediment conditions, endangered coho salmon densities, and one year (2001) of macroinvertebrate biological asses...

  19. 77 FR 58979 - Boundary Establishment for the Au Sable, Bear Creek, Manistee, and the Pine Wild and Scenic...

    Science.gov (United States)

    2012-09-25

    ... Forest Service Boundary Establishment for the Au Sable, Bear Creek, Manistee, and the Pine Wild and... boundary of the Au Sable, Bear Creek, Manistee, and the Pine Wild and Scenic Rivers to Congress. FOR.... 8756. SUPPLEMENTARY INFORMATION: The Au Sable, Bear Creek, Manistee, and the Pine Wild and Scenic...

  20. Water quality in three creeks in the backcountry of Grand Teton National Park, USA

    Science.gov (United States)

    Farag, A.M.; Goldstein, J.N.; Woodward, D.F.

    2001-01-01

    This study was conducted in Grand Teton National Park during the summers of 1996 and 1997 to investigate the water quality in two high human use areas: Garnet Canyon and lower Cascade Canyon. To evaluate the water quality in these creeks, fecal coliform, Giardia lamblia, coccidia, and microparticulates were measured in water samples. No evidence of fecal coliform, Giardia lamblia, or coccidia, was found in Garnet Creek. The water quality and general water chemistry of Garnet Creek was similar to the reference site. No Giardia lamblia or coccidia were found in Cascade Creek, but fecal coliforms were present. The isolated colonies of Escherichia coli from Cascade Creek matched the ribosome patterns of avian, deer, canine, elk, rodent, and human coliforms.

  1. Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as

  2. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    Science.gov (United States)

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  3. Hydrogeology and steady-state numerical simulation of groundwater flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L.R.

    2010-01-01

    The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied

  4. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  5. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  6. Landslide assessment of Newell Creek Canyon, Oregon City, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Growney, L.; Burris, L.; Garletts, D.; Walsh, K. (Portland State Univ., OR (United States). Dept. of Geology)

    1993-04-01

    A study has been conducted in Newell Creek Canyon near Oregon City, Oregon, T3S, T2S, R2E. A landslide inventory has located 53 landslides in the 2.8 km[sup 2] area. The landslides range in area from approximately 15,000m[sup 2] to 10m[sup 2]. Past slides cover an approximate 7% of the canyon area. Landslide processes include: slump, slump-translational, slump-earthflow and earthflow. Hard, impermeable clay-rich layers in the Troutdale Formation form the failure planes for most of the slides. Slopes composed of Troutdale material may seem to be stable, but when cuts and fills are produced, slope failure is common because of the perched water tables and impermeable failure planes. Good examples of cut and fill failures are present on Highway 213 which passes through Newell Creek Canyon. Almost every cut and fill has failed since the road construction began. The latest failure is in the fill located at mile-post 2.1. From data gathered, a slope stability risk map was generated. Stability risk ratings are divided into three groups: high, moderate and low. High risk of slope instability is designated to all landslides mapped in the slide inventory. Moderate risk is designated to slopes in the Troutdale Formation greater than 8[degree]. Low risk is designated to slopes in the Troutdale Formation less than 8[degree].

  7. Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Oliveros, J.P.; Vroblesky, D.A.

    1989-01-01

    Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)

  8. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  9. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

    1980-06-30

    Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

  10. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  11. Divergent Surface Mass Balances of Neighboring glaciers: Reanalysis of Taku and Lemon Creek glaciers, Alaska: 1946-2015

    Science.gov (United States)

    McNeil, C.; O'Neel, S.; Loso, M.; Pelto, M. S.; Sass, L.; Candela, S. G.

    2016-12-01

    Despite high mass loss rates of Alaskan glaciers, altimetric observations suggest strong glacier-to-glacier variability of cumulative surface mass balance, which prevents the detection of climate-forced spatial patterns of glacier change. This observation motivated us to reanalyze surface mass balance records from the neighboring Taku and Lemon Creek glaciers. Our reanalysis spans 1946—present and synthesizes all known field and remotely sensed data. Our results include end-of season temperature-index model corrections forced with regional radiosonde data and geodetic calibration using digital elevation models derived from historic stereo imagery and synthetic aperture radar. The results allowed us to examine the role climate and basin hypsometry play in surface mass balance. They suggest no significant differences from previous glaciological estimates and that the 63-year average, annual mass balance is +0.24 m w.e. a-1 at Taku Glacier and -0.56 m w.e. a-1 for Lemon Creek Glacier. Despite the divergence between the long-term trends, the annual mass balance anomaly time series demonstrate coherent inter-annual variability and are not statistically different. Their similarities suggest that climate forcing is unlikely driving the different trends. To explore the role that glacier hypsometry plays in the time-series, we applied the steeper mass balance profile from Lemon Creek Glacier to the Taku hypsometry and vice-versa. Surface mass balances exhibit high sensitivities to the mass balance profile perturbation, but the divergent nature of the cumulative mass balance series was preserved. This simple experiment suggests that hypsometry and the mass balance profile are both important drivers for systematic differences that accumulate in cumulative surface mass balance rates. Thus, accounting for glacier-to-glacier variability of mass balance profiles, as well as hypsometry, would improve our understanding of climate-forced Alaskan glacier change.

  12. Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery Watson Harza (Firm)

    2002-12-31

    Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access

  13. Permanent colonization of creek sediments, creek water and limnic water plants by four Listeria species in low population densities.

    Science.gov (United States)

    Lang-Halter, Evi; Schober, Steffen; Scherer, Siegfried

    2016-09-01

    During a 1-year longitudinal study, water, sediment and water plants from two creeks and one pond were sampled monthly and analyzed for the presence of Listeria species. A total of 90 % of 30 sediment samples, 84 % of 31 water plant samples and 67 % of 36 water samples were tested positive. Generally, most probable number counts ranged between 1 and 40 g-1, only occasionally >110 cfu g-1 were detected. Species differentiation based on FT-IR spectroscopy and multiplex PCR of a total of 1220 isolates revealed L. innocua (46 %), L. seeligeri (27 %), L. monocytogenes (25 %) and L. ivanovii (2 %). Titers and species compositions were similar during all seasons. While the species distributions in sediments and associated Ranunculus fluitans plants appeared to be similar in both creeks, RAPD typing did not provide conclusive evidence that the populations of these environments were connected. It is concluded that (i) the fresh-water sediments and water plants are year-round populated by Listeria, (ii) no clear preference for growth in habitats as different as sediments and water plants was found and (iii) the RAPD-based intraspecific biodiversity is high compared to the low population density.

  14. Simulation of specific conductance and chloride concentration in Abercorn Creek, Georgia, 2000-2009

    Science.gov (United States)

    Conrads, Paul; Roehl, Edwin A.; Davie, Steven R.

    2011-01-01

    The City of Savannah operates an industrial and domestic water-supply intake on Abercorn Creek approximately 2 miles from the confluence with the Savannah River upstream from the Interstate 95 bridge. Chloride concentrations are a major concern for the city because industrial customers require water with low chloride concentrations, and elevated chloride concentrations require additional water treatment in order to meet those needs. The proposed deepening of Savannah Harbor could increase chloride concentrations (the major ion in seawater) in the upper reaches of the lower Savannah River estuary, including Abercorn Creek. To address this concern, mechanistic and empirical modeling approaches were used to simulate chloride concentrations at the city's intake to evaluate potential effects from deepening the Savannah Harbor. The first approach modified the mechanistic Environmental Fluid Dynamics Code (EFDC) model developed by Tetra Tech and used for evaluating proposed harbor deepening effects for the Environmental Impact Statement. Chloride concentrations were modeled directly with the EFDC model as a conservative tracer. This effort was done by Tetra Tech under a separate funding agreement with the U.S. Army Corps of Engineers and documented in a separate report. The second approach, described in this report, was to simulate chloride concentrations by developing empirical models from the available data using artificial neural network (ANN) and linear regression models. The empirical models used daily streamflow, specific conductance (field measurement for salinity), water temperature, and water color time series for inputs. Because there are only a few data points that describe the relation between high specific conductance values at the Savannah River at Interstate 95 and the water plant intake, there was a concern that these few data points would determine the extrapolation of the empirical model and potentially underestimate the effect of deepening the harbor on

  15. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  16. Late Cretaceous marine arthropods relied on terrestrial organic matter as a food source: Geochemical evidence from the Coon Creek Lagerstätte in the Mississippi Embayment.

    Science.gov (United States)

    Vrazo, M B; Diefendorf, A F; Crowley, B E; Czaja, A D

    2018-03-01

    The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well-preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ 13 C) analysis of bulk decapod cuticle yielded similar mean δ 13 C values for both taxa (-25.1‰ and -26‰, respectively). Sedimentary biomarkers were composed of n-alkanes from C 16 to C 36 , with the short-chain n-alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ 13 C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ 13 C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian-early Maastrichtian and demonstrates for the

  17. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  18. Aeromagnetic map of the West Clear Creek roadless area, Coconino and Yavapai Counties, Arizona

    Science.gov (United States)

    Davis, Willard E.; Ulrich, George E.

    1983-01-01

    The West Clear Creek Roadless Area lies within the Coconino National Forest in central Arizona (fig. 1) and includes parts of Yavapai and Coconino Counties. Camp Verde, the nearest population center, is approximately 7 miles (11 km) west of the area. West Clear Creek canyon begins on the east at the confluence of the incised gorges of Willow Valley and of Clover Creek and is joined toward the west by Black Mountain Canyon. The canyon of West Clear Creek is very rugged; in several places it is more than 1,900 ft (580 m) deep. Creek elevation ranges from 6,100 ft (1,860 m) near the junction with Clover Creek to 3,200 ft (975 m) at the mouth of the canyon. The elevation of peaks and ridges near the canyon range from 4,000 ft (1,220 m) to 7,000 ft (2,135 m). Uplands at the head of Willow Valley and Clover Creek reach elevations up to 7,100 ft (2,165 m) above sea level.

  19. Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Mitch; Gebhards, John

    2003-05-01

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

  20. Termination of a continent-margin upwelling system at the Permian-Triassic boundary (Opal Creek, Alberta, Canada)

    Science.gov (United States)

    Schoepfer, Shane D.; Henderson, Charles M.; Garrison, Geoffrey H.; Foriel, Julien; Ward, Peter D.; Selby, David; Hower, James C.; Algeo, Thomas J.; Shen, Yanan

    2013-06-01

    Models of mass extinctions caused by greenhouse warming depend on the ability of warming to affect the oxygenation of the ocean, either through slowing circulation or changes in biological productivity and the organic carbon budget. Opal Creek, Alberta, Canada is a biostratigraphically continuous Permian-Triassic Boundary (PTB) section deposited in deep water on an outer shelf setting in the vast and understudied Panthalassic Ocean, along the western margin of Pangaea. The latest-Permian extinction is here represented as the disappearance of the previously dominant benthic fauna (siliceous sponges). On the basis of nitrogen and reduced sulfur isotopes as well as productivity-sensitive trace elements, the Middle Permian at Opal Creek is interpreted as a highly productive coastal upwelling zone where vigorous denitrification and sulfate reduction occurred in a mid-water oxygen minimum. Similar conditions appear to have continued into the latest Permian until the onset of a euxinic episode represented by a discrete pyrite bed and several trace element indicators of high productivity. This euxinic pulse is followed by the extinction of benthic fauna and a shift in nitrogen and sulfur isotopes to more normal marine values, suggesting the cessation of coastal upwelling and the consequent weakening of the mid-water oxygen minimum. The Lower Triassic appears to be a dysoxic, relatively unproductive environment with a bottom water oxygen minimum. Rhenium-osmium isotope systematics show a minimum of radiogenic Os near the main extinction event, which may be due to volcanic input, and increasingly radiogenic values approaching the PTB, possibly due to increased continental erosion. The Opal Creek system demonstrates that, while the biogeochemical crisis in the latest Permian was capable of impacting the coastal upwelling modality of ocean circulation, a transient increase in productivity likely drove the system toward euxinia and, ultimately, extinction.

  1. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

    2009-02-19

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation

  2. Sherman Creek Hatchery; 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch [Washington Dept. of Fish and Wildlife, Olympia, WA (United States). Hatcheries Program

    1997-01-01

    The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations of the SCH have been modified to better achieve program goals. These strategic changes have been the result of recommendations through the Lake Roosevelt Hatcheries Coordination Team (LRHCT) and were implemented to enhance imprinting, improve survival and operate the two kokanee facilities more effectively. The primary change has been to replace the kokanee fingerling program with a kokanee yearling (post smolt) program. The second significant change has been to rear 120,000 rainbow trout fingerling at SCH from July through October to enable the Spokane Tribal Hatchery (STH) to rear additional kokanee for the yearling program.

  3. Dawson Creek bioenergy study : executive summary. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Hoy, T. [Andritz Automation Ltd., Prince George, BC (Canada)

    2009-10-21

    This bioenergy study was conducted to identify sources of fibre from the South Peace area that can be used as biofuel for municipal facilities in Dawson Creek. The City plans to become carbon neutral by 2012 by reducing emissions from municipal activities and by purchasing carbon offsets. Economic opportunities regarding power generation and wood pellet manufacturing were investigated in this study, based on the identified volumes of biofuels. The study revealed that it would be advantageous for the City to support the concept of a combined heat and power project that would utilize fescue as a fuel. The study evaluated the feasibility of a centralized single district heating plant compared to a stand alone biomass heating system for several clusters. A centralized district heating plant was not considered economically viable based on natural gas displacement and the cost of carbon offsets due to the high cost of piping. refs., tabs., figs.

  4. Castle Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

  5. Crane Creek known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

  6. Biological Monitoring Program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; Kszos, L.A.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1998-10-15

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biologicai Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the compiex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC, These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumuiation studies, and (4) ecological surveys of the periphyton, benthic macro invertebrate, and fish communities. Monitoring is currently being conducted at five sites, although sites maybe excluded and/or others added depending upon the specific objectives of the various tasks. Criteria used in selecting the sites include: (1) location of sampling sites used in other studies, (2) known or suspected sources of downstream impacts, (3) proximity to U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR) boundaries, (4) concentration of mercury in the adjacent floodplain, (5) appropriate habitat distribution, and (6

  7. Changes in Organic, Inorganic contents, Carbon Nitrogen ratio in decomposing Avicennia marina and Rhizophora mucronata leaves on tidal mudf lats in Hajambro creek, Indus delta, Pakistan

    Directory of Open Access Journals (Sweden)

    Zafar Farooqui

    2014-01-01

    Full Text Available Leaf decomposition of Avicennia marina (Forskal Vierh in Denkschr and Rhizophora mucronata (Poiret was studied in situ using litterbag s in Hajambro creek, Indus delta. A single exponential model was presented, which best described the rate of decomposition for both the species. The rate of decomposition was species specific, A. marina leaves decomposed slower than the R. mucronata (p<0.001. The time in days required for 50% loss of the initial dry mass (t1/2 was 49.55 days for the A. marina and 44.43 days in case of R. mucronata. The organic content in the leaves was high initially but decresed gradually during decomposition, which is negatively correlated with inorganic contents. This study will help in the management and conservation of mangrove ecosystem of Hajambro creek, Indus delta, Pakistan.

  8. Flood-inundation maps for Big Creek from the McGinnis Ferry Road bridge to the confluence of Hog Wallow Creek, Alpharetta and Roswell, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2015-08-20

    Digital flood-inundation maps for a 12.4-mile reach of Big Creek that extends from 260 feet above the McGinnis Ferry Road bridge to the U.S. Geological Survey (USGS) streamgage at Big Creek below Hog Wallow Creek at Roswell, Georgia (02335757), were developed by the USGS in cooperation with the cities of Alpharetta and Roswell, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Big Creek near Alpharetta, Georgia (02335700). Real-time stage information from this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs for many streams where the USGS operates streamgages and provides flow data. The forecasted peak-stage information for the USGS streamgage at Big Creek near Alpharetta (02335700), available through the AHPS Web site, may be used in conjunction with the maps developed for this study to show predicted areas of flood inundation.

  9. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  10. Flood-inundation maps for Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, Atlanta, Georgia

    Science.gov (United States)

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 5.5-mile reach of the Peachtree Creek from the Norfolk Southern Railway bridge to the Moores Mill Road NW bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with the City of Atlanta, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Peachtree Creek at Atlanta, Georgia (02336300) and the USGS streamgage at Chattahoochee River at Georgia 280, near Atlanta, Georgia (02336490). Current water level (stage) at these USGS streamgages may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Peachtree Creek, which is available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC–RAS software for a 6.5-mile reach of Peachtree Creek and was used to compute flood profiles for a 5.5-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Peachtree Creek at Atlanta, Georgia, streamgage (02336300), and the Chattahoochee River at Georgia 280, near Atlanta, Georgia, streamgage (02336490) as well as high water marks collected during the 2010 annual peak flow event. The hydraulic model was then used to determine 50 water

  11. Use of the Hydrological Simulation Program-FORTRAN and Bacterial Source Tracking for Development of the fecal coliform Total Maximum Daily Load (TMDL) for Accotink Creek, Fairfax County, Virginia

    Science.gov (United States)

    Moyer, Douglas; Hyer, Kenneth

    2003-01-01

    Impairment of surface waters by fecal coliform bacteria is a water-quality issue of national scope and importance. Section 303(d) of the Clean Water Act requires that each State identify surface waters that do not meet applicable water-quality standards. In Virginia, more than 175 stream segments are on the 1998 Section 303(d) list of impaired waters because of violations of the water-quality standard for fecal coliform bacteria. A total maximum daily load (TMDL) will need to be developed by 2006 for each of these impaired streams and rivers by the Virginia Departments of Environmental Quality and Conservation and Recreation. A TMDL is a quantitative representation of the maximum load of a given water-quality constituent, from all point and nonpoint sources, that a stream can assimilate without violating the designated water-quality standard. Accotink Creek, in Fairfax County, Virginia, is one of the stream segments listed by the State of Virginia as impaired by fecal coliform bacteria. Watershed modeling and bacterial source tracking were used to develop the technical components of the fecal coliform bacteria TMDL for Accotink Creek. The Hydrological Simulation Program?FORTRAN (HSPF) was used to simulate streamflow, fecal coliform concentrations, and source-specific fecal coliform loading in Accotink Creek. Ribotyping, a bacterial source tracking technique, was used to identify the dominant sources of fecal coliform bacteria in the Accotink Creek watershed. Ribotyping also was used to determine the relative contributions of specific sources to the observed fecal coliform load in Accotink Creek. Data from the ribotyping analysis were incorporated into the calibration of the fecal coliform model. Study results provide information regarding the calibration of the streamflow and fecal coliform bacteria models and also identify the reductions in fecal coliform loads required to meet the TMDL for Accotink Creek. The calibrated streamflow model simulated observed

  12. Sequential Sediment Budgets in an Ungauged Watershed: Redwood Creek, Marin County, California

    Science.gov (United States)

    Downs, P. W.; Stallman, J.

    2005-12-01

    Sediment budgets provide an organizing framework in fluvial geomorphology and have enormous potential in environmental management. A sediment budget approach assisted in developing strategies for restoring Big Lagoon, the wetland ecosystem at the terminus of the 22.7 km2 Redwood Creek watershed in Marin County, California. Persistence of a restored lagoon largely depends on the current sediment yield relative to the reference yield prior to European settlement. Process-based, distributed sediment budgets were constructed for several historical time periods to account for accelerated sediment production from contemporary land management practices and legacy factors stemming from past resource exploitation. Sediment production, storage, and transfer were investigated using digital terrain modeling, field reconnaissance to ascertain and validate hillslope processes, mainstem channel surveys and dendrochronology to assess trends in alluvial sediment storage, application of published process rate estimates, use of short-term and prorated stream gauging records, and sediment transport modeling to validate sediment yields into Big Lagoon. Evidence suggests that the Redwood Creek valley bottom aggraded from at least 3,500 B.P., with floodplain wetlands acting as sediment sinks (average annual sediment yield of 34 t km2 yr-1). Channel incision rapidly followed European settlement and intensive hillslope disturbances beginning around 1840 (peak yield 1921-1982 of 324 t km2 yr-1). Mainstem and large tributary valley bottoms became major sediment sources during this time and remain sources despite progressive retirement of most agricultural land use (yield 1981-2000 of 198 t km2 yr-1). Numerous issues related to data availability and resolution limited quantification of some sediment sources and resulted in potential uncertainties in estimates of yield to Big Lagoon. Historical sediment budgets, however, require more than adequate data sources, they require accurate conceptual

  13. Mobile Acoustical Bat Monitoring Annual Summary Report CY 2016- Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These reports summarize bat calls collected along transects at Cypress Creek National Wildlife Refuge for the CY 2016. Calls were classified using Bat Call ID...

  14. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 1996 calendar year. The report begins with a summary of...

  15. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from May through August of 1955. The report...

  16. Tri Annual Narrative Reports : Pishkun, Willow Creek, Benton Lake National Wildlife Refuge : May to August 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Benton Lake, Willow Creek, Pishkun National Wildlife Refuge outlines Refuge accomplishments from May to August of 1960. The report begins...

  17. Squaw Creek National Wildlife Refuge: Annual narrative report: Fiscal year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines activities and accomplishments during the 1997 fiscal year. The report begins with an introduction to the...

  18. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2009 fiscal year. The report begins with and...

  19. Investigating Bald Eagle Winter and Summer Concentrations on Cat Point Creek

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this project are: 1) document the seasonal distribution and abundance patterns of Bald Eagles along Cat Point Creek within 750 feet of the Route...

  20. Environmental contaminants in sediment and fish of Mineral Creek and the Middle Gila River, Arizona

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The lower reaches of Mineral Creek, a tributary to the Gila River in Pinal County, Arizona, were thought to be polluted by discharges from ASARCO Ray Mine located...

  1. EPA acknowledges federal, state and local partners for Improving Water Quality in the Bear Creek Watershed

    Science.gov (United States)

    ATLANTA - The U.S. Environmental Protection Agency (EPA) commends the efforts of the Alabama Department of Environmental Management (ADEM) along with other federal, state and local partners for improving water quality in the Bear Creek Watershed.

  2. Impact of industrial effluents on geochemical association of metals within intertidal sediments of a creek

    Digital Repository Service at National Institute of Oceanography (India)

    Volvoikar, S.P.; Nayak, G.N

    Metal speciation studies were carried out on three intertidal core sediments of the industrially impacted Dudh creek located along west coast of India Metals indicated a drastic increase in the bioavailable fraction towards the surface of the cores...

  3. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1989 calendar year. The report begins with a summary of the year's...

  4. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2002 fiscal year. The report begins with and...

  5. Cypress Creek National Wildlife Refuge annual narrative report: Calendar year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during the 1990 calendar year. The report begins with a summary...

  6. Didymosphenia geminata in the Upper Esopus Creek: Current Status, Variability, and Controlling Factors: e0130558

    National Research Council Canada - National Science Library

    Scott Daniel George; Barry Paul Baldigo

    2015-01-01

      In May of 2009, the bloom-forming diatom Didymosphenia geminata was first identified in the Upper Esopus Creek, a key tributary to the New York City water-supply and a popular recreational stream...

  7. 1983 Migratory Bird Disease Contingency Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Disease Contingency Plan for Squaw Creek National Wildlife Refuge provides background information on disease surveillance; an inventory of Refuge personnel,...

  8. Narrative report Squaw Creek National Wildlife Refuge: May 1 to August 31, 1963

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1963. The report begins by summarizing the...

  9. FY-1975 narrative report [including July-December, 1975]: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1975 fiscal year. The report begins by summarizing the weather conditions...

  10. GIS based water quality indexing of Malad creek, Mumbai (India): an impact of sewage discharges.

    Science.gov (United States)

    Vijay, Ritesh; Bhattacharyya, Tapas; Joshi, Rucha R; Dhage, S S; Sohony, R A

    2011-04-01

    Malad creek is one of the most heavily polluted water bodies in Mumbai, India. Presently, creek receives wastewater and sewage from open drains and nallahs as well as partially treated wastewater from treatment facilities. The objective of the present study was to assess and classify the water quality zones spatially and temporally based on physico-chemical and bacteriological analysis. For this, GIS based methodology was integrated with water quality indexing, according to National Sanitation Foundation. Nine water quality parameters were considered to generate the indices that represent the overall status of creek water quality. Based on field observations and spatial distribution of water quality, various options were suggested for improvement in water quality of the creek.

  11. Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark

    DEFF Research Database (Denmark)

    Hinsby, K.; Hojberg, A.L.; Engesgaard, P.

    2007-01-01

    Vertical profiles of the chlorofluorocarbons CFC-11, CFC-12, and CFC-113 penetrating aerobic and anaerobic parts of a shallow sandy aquifer show that the CFC gases are degraded in the Rabis Creek, Denmark...

  12. Quantification of changes in seabed topography with special reference to Hansthal Creek, Gulf of Kachchh, India

    Digital Repository Service at National Institute of Oceanography (India)

    Pattanshetti, S.S.; Chauhan, O.S.; Sivakholundu, K.M.

    Variations in the bathymetry in macrotidal Hansthal Creek between 1984 and 1950 along 14 closely spaced lines, are used to quantify the volumetric changes in seabed topography in terms of erosion/accretion. Two surfaces from the bathymetric data...

  13. Determination of petroleum hydrocarbons in sediment samples from Bombay harbour, Dharamtar creek and Amba river estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, S.A.; Dhaktode, S.S.; Kadam, A.N.

    The surface sediment samples were collected by van Veen grab sampler during premonsoon, monsoon and postmonsoon seasons from Bombay harbour, Dharamtar creek and Amba river estuary Moisture content of the samples ranges from 36 to 67.5...

  14. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1993 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  15. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1995 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  16. Walnut Creek National Wildlife Refuge and Prairie Learning Center : Master Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Walnut Creek National Wildlife Refuge (now Neal Smith National Wildlife Refuge) Master Plan is to guide the long-range development of the Refuge,...

  17. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1994 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  18. Snake Creek National Wildlife Refuge : January 1 to April 30, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1959. The report begins by summarizing...

  19. Snake Creek National Wildlife Refuge Narrative report: January through December, 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  20. Biochemical indicators of heavy metal contaminants in Big Creek, Iron County, Missouri

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The size and weight of the Northern hogsuckers collected from Big Creek generally decreased with distance upstream; specimens from Site 1 (below Annapolis) were...

  1. Amphibian population survey of Walnut Creek Wildlife Refuge: A habitat comparison

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1995, work was begun south of Prairie City, Iowa, to restore abandoned farmland to natural prairie habitat. This area has been named the Walnut Creek National...

  2. Benton Lake, Willow Creek, Pishkun National Wildlife Refuges : Narrative Report : January to December 1968

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Benton Lake, Willow Creek, Pishkun outlines Refuge accomplishments during the 1968 calendar year. The report begins by summarizing...

  3. Census of trees occurring in the Bat Net region of Walnut Creek Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Walnut Creek Wildlife Refuge is a government funded project attempting to restore 8000 acres of Iowa land to its original prairie form. A census of trees is needed...

  4. The Base of the Parachute Creek Member Digital Line Outcrop of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The base of the Parachute Creek Member outcrop was needed to limit resource calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale...

  5. Water Resource Inventory and Assessment (WRIA) - Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Squaw Creek National Wildlife Refuge describes current hydrologic information, provides an...

  6. Water Resource Inventory and Assessment (WRIA) - Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Cypress Creek NWR (CCNWR) describes current hydrologic information, provides an assessment of...

  7. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 1995 calendar year. The report begins with a summary of...

  8. Water‐Data Report 393619093074801 YELLOW CREEK NEAR MENDON, MO, 2013-2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — WATER MONITORING STATION ANALYSIS – CALENDAR YEAR 2013 to 2014 SITE NUMBER: 393619093074801 SITE NAME: Yellow Creek nr Mendon, MO, County Road CC COOPERATION: Swan...

  9. Extractable organics in surface sediments from Thana creek and Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Rokade, M.A.; Bhosle, N.B.; Kadam, A.N.

    Considerable variations in hydrocarbon and fatty acid levels in surface sediments from Thana creek and Bombay harbour were observed Sediments from the westernside nearshore locations yielded higher values The residues were characterised by infrared...

  10. Lower Arkansas River basin high priority issue : Rattlesnake creek subbasin : January 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a section from Volume III: Kansas River Basins, of the Kansas Water Plan, January 2009. This section is pertaining to Rattlesnake Creek subbasin,...

  11. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2003 fiscal year. The report begins with and...

  12. Environmental Assessment for the Public Use Plan Whittlesey Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Environmental Assessment (EA) is to evaluate alternatives for public use of the Whittlesey Creek National Wildlife Refuge. The EA was prepared to...

  13. AFSC/ABL: Pink salmon data collected at Sashin Creek Weir 1934-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A database describing a 67-year time series for Sashin Creek pink salmon (Oncorhynchus gorbuscha) data is presented. The database details the survival and other...

  14. Wetted channel and bar features for Hunter Creek, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  15. Wetted channel and bar features for Hunter Creek, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold Beach,...

  16. Thickness of the Upper Hell Creek hydrogeologic unit in the Williston structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text files...

  17. Altitude of the top of the Upper Hell Creek hydrogeologic unit in the Williston structural basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Upper Hell Creek hydrogeologic unit in the Williston...

  18. Kinderhook Creek section north of the MAVA study site in Columbia County.

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile is part of a project called Biological Surveys at the Martin Van Buren NHS conducted by Hudsonia Ltd. It depicts a part of Kinderhook Creek north of...

  19. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1992 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  20. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2005 fiscal year. The report begins with and...

  1. Snake Creek National Wildlife Refuge [Narrative report: September 1 - December 31, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1961. The report begins by...

  2. Snake Creek National Wildlife Refuge [Narrative report: January 1 - April 30, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1962. The report begins by summarizing...

  3. Snake Creek National Wildlife Refuge [Narrative report: January 1 - April 30, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1961. The report begins by summarizing...

  4. Snake Creek National Wildlife Refuge Narrative report: January thru December, 1964

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments during the 1964 calendar year. The report begins by summarizing...

  5. Snake Creek National Wildlife Refuge [Narrative report: May 1 - August 31, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1961. The report begins by summarizing the...

  6. Snake Creek National Wildlife Refuge Narrative report: January, February, March, and April, 1963

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1963. The report begins by summarizing...

  7. Snake Creek National Wildlife Refuge Narrative report: May, June, July, August, 1963

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1963. The report begins by summarizing the...

  8. Snake Creek National Wildlife Refuge Narrative report: September, October, November, and December, 1963

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1963. The report begins by...

  9. Snake Creek National Wildlife Refuge Narrative report: September, October, November, and December, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1962. The report begins by...

  10. Snake Creek National Wildlife Refuge Narrative report: January through December, 1965

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments during the 1965 calendar year. The report begins by summarizing...

  11. Biological and environmental characteristics of mangrove habitats from Manori creek, West Coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Kulkarni, V.A.; Jagtap, T.G.; Mhalsekar, N.M.; Naik, A.N.

    Mumbai, a megacity of India, and its adjacent marine environment, though heavily stressed from various anthropogenic interferences, harbor approx. 146 km sup(2) of mangrove cover. Manori creek, in the close vicinity of Mumbai, sustains relatively...

  12. Influence of anthropogenic activities on the existing environmental conditions of Kandla Creek (Gulf of Kutch)

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Pradhan, U.K.; Fernandes, D.; Haldankar, S.R.; Rao, G.S.

    Water characteristics of Kandla creek, monitored seasonally from 2002 to 2006 at four locations (mouth, cargo jetty, oil jetty and junction), indicated significant increases in nutrients, petroleum hydrocarbons (PHc) and phenols from anthropogenic...

  13. Tree Transect Starting Locations (Points) at Sand Creek Massacre National Historic Site, Colorado

    Data.gov (United States)

    National Park Service, Department of the Interior — A vector point dataset representing the starting location of tree transects at Sand Creek Massacre NHS as part of a University of Colorado research study.

  14. Heavy Equipment Use Areas at Sand Creek Massacre National Historic Site, Colorado

    Data.gov (United States)

    National Park Service, Department of the Interior — This is a vector polygon shapefile showing areas where heavy equipment use is permitted at Sand Creek Massacre NHS. The coordinates for this dataset were heads up...

  15. Cored Cottonwood Tree Sample Cluster Polygons at Sand Creek Massacre National Historic Site, Colorado

    Data.gov (United States)

    National Park Service, Department of the Interior — A vector polygon dataset representing the location of sample clusters of cored trees at Sand Creek Massacre NHS as part of a University of Colorado research study.

  16. Diel variation in fish assemblages in tidal creeks in southern Brazil

    Directory of Open Access Journals (Sweden)

    JF. Oliveira-Neto

    Full Text Available Tidal creeks are strongly influenced by tides and are therefore exposed to large differences in salinity and depth daily. Here we compare fish assemblages in tidal creeks between day and night in two tidal creeks in southern Brazil. Monthly day and night, simultaneous collections were carried out in both creeks using fyke nets. Clupeiformes tended to be caught more during the day. Cathorops spixii, Genidens genidens and Rypticus randalli tended to be caught at night. Sciaenidae also tended to be caught more during the night. In general, pelagic species were diurnal, while deep water species were nocturnal. These trends are probably due to a variety of causes, such as phylogeny, predation and net avoidance.

  17. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  18. Squaw Creek National Wildlife Refuge Annual narrative report: Calendar year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1984 calendar year. The report begins with a summary of the year's...

  19. An investigation of sediment toxicity in the Horse Lick Creek system (Upper Cumberland River drainage)

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Microtox tests were used to assess the toxicity of water and sediment pore water samples collected from the Horse Lick Creek system in southeastern Kentucky. A...

  20. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : August to October 1941

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for WIllow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from August to October of 1941. The report...

  1. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : February to April 1940

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from February to April of 1940. The report...

  2. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : February to April 1942

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Willow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from February to April of 1942. The report...

  3. Quarterly Narrative Reports : Pishkun, Willow Creek, Benton Lake [National Wildlife Refuge] : August to October 1940

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for WIllow Creek, Benton Lake, and Pishkun National Wildlife Refuge outlines Refuge accomplishments from August to October of 1940. The report...

  4. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  5. Waste water discharge and its effect on the quality of water of Mahim creek and bay

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Desai, B.N.

    Coastal environment around Mahim was monitored to evaluate the effects of domestic and industrial waste water discharge in Mahim Creek, Maharashtra, India. Vertical salinity and DO gradient occasionally observed in the Mahim Bay during postmonsoon...

  6. Walnut Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1990 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The refuge was established on...

  7. A proposal to study the insect fauna of Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — It is the purpose of this proposed study to identify target insect fauna on the Walnut Creek National Wildlife Refuge by completing comprehensive surveys of remnant...

  8. Annual Report 1937 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1937 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  9. Annual Report 1938 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1938 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  10. Annual Report 1939 : Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake [National Wildlife] Refuges of Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for fiscal year 1939 covers Refuge activities on Ninepipe, Pablo, Pishkun, Willow Creek and Benton Lake National Wildlife Refuges....

  11. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1990 calendar year. The report begins with a summary of the year's...

  12. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1980 calendar year. The report begins with an introduction to the Refuge...

  13. Bison Grazing and Prairie Restoration at Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a letter inquiring about the type of electric fence charger used at Walnut Creek National Wildlife Refuge (now Neal Smith National Wildlife Refuge). The...

  14. Benton Lake, Willow Creek, Pishkun National Wildlife Refuges : Narrative Report : January to December 1965

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Benton Lake, Willow Creek, Pishkun outlines Refuge accomplishments during the 1965 calendar year. The report begins by summarizing...

  15. Impact of the changing ecology on intertidal polychaetes in an anthropogenically stressed tropical creek, India

    Digital Repository Service at National Institute of Oceanography (India)

    Quadros, G.; Sukumaran, S.; Athalye, R.P.

    Polychaete assemblages and associated environment of 12 strategically selected intertidal stations along the extremely polluted Thane creek on the west coast of India were studied monthly for a year and compared with past available data...

  16. Mercury and selenium in fish of Fountain Creek, Colorado (USA): possible sources and implications

    National Research Council Canada - National Science Library

    D R Nimmo; S J Herrmann; J S Carsella; C M McGarvy; H P Foutz; L M Herrmann-Hoesing; J M Gregorich; J A Turner; B D Vanden Heuvel

    2016-01-01

      Fountain Creek in Colorado USA is a major tributary that confluences with the Arkansas River at Pueblo, Colorado, the result being the tributary's influence on Arkansas River water quality affecting down-stream users...

  17. Mercury and selenium in fish of Fountain Creek, Colorado (USA): possible sources and implications

    National Research Council Canada - National Science Library

    Nimmo, D R; Herrmann, S J; Carsella, J S; McGarvy, C M; Foutz, H P; Herrmann-Hoesing, L M; Gregorich, J M; Turner, J A; Vanden Heuvel, B D

    2016-01-01

    Fountain Creek in Colorado USA is a major tributary that confluences with the Arkansas River at Pueblo, Colorado, the result being the tributary's influence on Arkansas River water quality affecting down-stream users...

  18. Mobile Acoustical Bat Monitoring Annual Summary Report CY 2012- St. Catherine Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These reports summarize bat calls collected along transects at St. Catherine Creek National Wildlife Refuge for the CY 2012. Calls were classified using Bat Call ID...

  19. Mobile Acoustical Bat Monitoring Annual Summary Report CY 2014- St. Catherine Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These reports summarize bat calls collected along transects at St. Catherine Creek National Wildlife Refuge for the CY 2014. Calls were classified using Bat Call ID...

  20. Impacts to Humboldt Bay NWR from forestry and dairy activities in the Salmon Creek Watershed

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The freshwater creeks, brackish water sloughs, saltwater marshes and mud flats found on the Humboldt Bay National Refuge provide habitats for at least 110 species of...

  1. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Fiscal Year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 2000 fiscal year. The report begins with and...

  2. Narrative Report : Pishkun, Willow Creek & Benton Lake National Wildlife Refuges : January to April 1943

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pishkun, Willow Creek and Benton Lake National Wildlife Refuge outlines Refuge accomplishments from January through April of 1943. The...

  3. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1981 calendar year. The report begins with a summary of the year's...

  4. Squaw Creek National Wildlife Refuge: Annual narrative report: Calendar year 1982

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek NWR outlines Refuge accomplishments during the 1982 calendar year. The report begins with a summary of the year's...

  5. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 1993 calendar year. The report begins with a summary of...

  6. Squaw Creek National Wildlife Refuge : Annual Narrative Report : Calendar Year 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge summarizes refuge activities during the 1994 calendar year. The report begins with a summary of...

  7. Biological narrative report: Squaw Creek Migratory Waterfowl Refuge for the quarter ending October 31, 1939

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments for the quarter ending October of 1939. The report begins by...

  8. [Squaw Creek National Wildlife Refuge Quarterly narrative report: September - December, 1942

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments for September through December of 1942. The report begins by...

  9. Walnut Creek National Wildlife Refuge- Prairie Learning Center : Annual Narrative Report : Calendar Year 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the 1991 annual narrative report for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The report begins by covering the...

  10. Eighteen years (1996-2014) of channel cross-sectional measurements made in Spring Creek after the 1996 Buffalo Creek wildfire and subsequent flood

    Science.gov (United States)

    Moody, John A.; Martin, Deborah

    2017-01-01

    The consequence of the 1996 Buffalo Creek wildfire disturbance and a subsequent high-intensity summer convective rain storm (~100 mm h-1) was the deposition of a sediment superslug in the Spring Creek basin (26.8 km2) of the Front Range Mountains in Colorado. Changes in the superslug near the confluence of Spring Creek with the South Platte River were monitored by cross-section surveys at 18 nearly equally-spaced cross sections along a 1500 m study reach for 18 years (1996-2014) to understand the evolution and internal stratigraphy of this type of disturbance in response to different geomorphic processes. These data consist of 18 Excel files (one for each cross section) containing worksheets corresponding to each channel cross-section survey (about 25-31). Worksheets contain the basic survey information (dates, instruments, reference pin elevations, foresight, distances from reference pins, and elevations).

  11. Biological Stream Survey of Lower Esopus Creek, Catskill Mountains, New York

    Science.gov (United States)

    Johnson, E. K.; Chowdhury, S. H.; Hughes, N. J.; Halton, C. R.; Putnam, S. M.

    2011-12-01

    Spillovers and releases from the Ashokan Reservoir into the Lower Esopus Creek have been observed to increase discharge, water level, and turbidity. Concerns about these effects on drinking water quality and stream ecology have spurred debate between the New York City Department of Environmental Protection (NYC DEP) and citizens living within the Esopus Creek watershed. This study was designed to assess Lower Esopus Creek health, compare current conditions to those in 2007, and identify controlling factors in benthic macroinvertebrate (BMI) distribution. Samples were collected, twice in July, at seven sites below the reservoir, six sites along Lower Esopus Creek and one on Sawkill creek (a tributary to Esopus Creek). Data was collected under both normal flow conditions and after a storm event. BMI and water samples were collected at each site. The BMI samples were collected, stored, and evaluated according to the 2009 New York State Department of Environmental Conservation (NYS DEC) protocol for Biological Monitoring of Surface Waters in New York State. Physical habitat and water chemistry parameters were also measured in the field. During this sampling period, the same methods were used at seven sites in the Stony Clove Creek and its tributaries. Non-parametric tests were used for analysis due to the small sample size and non-random nature of the sampling. The results showed no significant differences in BMI populations between normal and high flow conditions, or between 2007 and 2011. BMI population, total dissolved solids (TDS), turbidity, current, and dissolved oxygen (DO) were not significantly correlated to distance downstream from the reservoir. BMI population was significantly correlated to TDS and DO, but was not significantly correlated to turbidity. There are no significant longitudinal trends in Lower Esopus Creek; therefore stream ecology is probably more affected by local conditions than by impoundment effects from the Ashokan Reservoir.

  12. The impact of geomorphology of marsh creeks on fish assemblage in Changjiang River estuary

    Science.gov (United States)

    Jin, Binsong; Xu, Wang; Guo, Li; Chen, Jiakuan; Fu, Cuizhang

    2014-03-01

    Tidal marshes are an important habitat and nursery area for fish. In the past few decades, rapid economic development in the coastal areas of China has led to the interruption and destruction of an increasing number of tidal marshes. The growing interest in tidal marsh restoration has increased the need to understand the relationship between geomorphological features and fish assemblages in the design of marsh restoration projects. We studied temporal variations in, and the effects of creek geomorphological features on, the estuarine tidal creek fish community. Using modified channel nets, we sampled fish monthly from March 2007 to February 2008 from seven tidal creeks along an intertidal channel system in Chongming Dongtan National Nature Reserve. Fourteen creek geomorphological variables were measured or derived to characterize intertidal creek geomorphological features. The Gobiidae, with 10 species, was the most speciesrich family. The most abundant fish species were Liza affinis, Chelon haematocheilus, and Lateolabrax maculatus. The fish community was dominated by juvenile marine transients, which comprised about 80% of the total catch. The highest abundance of fish occurred in June and July, and the highest biomass occurred in December. Canonical redundancy analyses demonstrated that depth, steepness, cross-sectional area, and volume significantly affected the fish species assemblage. L. affinis favored small creeks with high elevations. Synechogobius ommaturus, Acanthogobius luridus, and Carassius auratus preferred deep, steep creeks with a large cross-sectional area and volume. These findings indicate that the geomorphological features of tidal creeks should be considered in the conservation and sustainable management of fish species and in the restoration of salt marshes.

  13. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  14. A Decade of Changes in the Wildcat Creek Flood Control Channel, North Richmond

    OpenAIRE

    Ginsberg, Ben

    2008-01-01

    A Decade of Changes in the Wildcat Creek Flood Control Channel, North Richmond Abstract: The lower Wildcat Creek flood control and riparian restoration project was one of the first of its kind and is commonly cited in literature on river restoration. The project was initially constructed in 1989 but was reworked in 2000. The project consists of small low flow channel which meanders through a riparian corridor which is adjacent to a larger flood plain. Contra Costa County conducted yearly cro...

  15. Sediment and radionuclide transport in rivers. Phase I: field sampling program during mean flow Cattaraugus and Buttermilk Creeks, New York

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Onishi, Y.

    1979-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during November and December 1977 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Suspended sediment, bed sediment, and water samples were collected during mean flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included primarily gamma ray emitters; however, some plutonium, strontium, curium, and tritium analyses were also included. The principal gamma emitter found during the sampling program was /sup 137/Cs where, in some cases, levels associated with the sand and clay size fractions of bed sediment exceeded 100 pCi/g. Elevated levels of /sup 137/Cs and /sup 90/Sr were found downstream of the Nuclear Fuel Services Center, an inactive plutonium reprocessing plant and low level nuclear waste disposal site. Based on radionuclide levels in upstream control stations, /sup 137/Cs was the only radionuclide whose levels in the creeks downstream of the site could confidently be attributed to the site during this sampling program. This field sampling effort is the first of a three phase program to collect data during low, medium and high flow conditions.

  16. Morphological Analyses and Simulated Flood Elevations in a Watershed with Dredged and Leveed Stream Channels, Wheeling Creek, Eastern Ohio

    Science.gov (United States)

    Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.

    2008-01-01

    -sectional area, the mean percentage differences between the measured and estimated values were -16.0 and -11.2, respectively. The predominantly negative bias in differences between the measured and estimated values indicates that bankfull mean depths and cross-sectional areas in studied reaches generally are smaller than the regional trend. This may be an indication of channel filling and over widening or it may reflect insufficient representation in the regional dataset of basins with characteristics like that of Wheeling Creek. Step-backwater models were constructed for four previously dredged reaches to determine the height of levees required to contain floods with recurrence intervals of 2, 10, 50, and 100 years. Existing levees (all of which are uncertified) were found to contain the 100-year flood at only 20 percent of the surveyed cross sections. At the other 80 percent of the surveyed cross sections, levee heights would have to be raised an average of 2.5 feet and as much as 6.3 feet to contain the 100-year flood. Step-backwater models also were constructed for three undredged reaches to assess the impacts of selected dredging and streambed aggradation scenarios on water-surface elevations corresponding to the 2-, 10-, 50-, and 100-year floods. Those models demonstrated that changes in water-surface elevations associated with a given depth of dredging were proportionately smaller for larger floods due to the fact that more of the flood waters are outside of the main channel. For example, 2.0 feet of dredging in the three study reaches would lower the water-surface elevation an average of 1.30 feet for the 2-year flood and 0.64 feet for the 100-year flood.

  17. Ground-Water Resources of Big Elk Creek Basin, Pennsylvania and Maryland

    Science.gov (United States)

    Sloto, Ronald A.

    2002-01-01

    Many rural areas in southeastern Pennsylvania, including the Big Elk Creek Basin, are undergoing a rapid population increase. New development and an expanding population increase consumptive water use, increase surface runoff, and have the potential to reduce ground-water recharge. The Big Elk Creek Basin is between the Delaware and Susquehanna River Basins and drains directly to the Chesapeake Bay. Both the Delaware and Susquehanna River Basins have basin commissions that regulate and oversee surface-water and ground-water withdrawals. The Big Elk Creek Basin does not have a regulatory agency to oversee withdrawal of water. Ground-water quantity and quality were evaluated for the 79.4-mi2 (square mile) study area that extends from the headwaters of Big Elk Creek in Chester County, Pa., downstream to the U.S. Geological Survey (USGS) streamflowmeasurement station 01495000, Big Elk Creek at Elk Mills, Md., and to inactive USGS streamflowmeasurement station 01495500, Little Elk Creek at Childs, Md. (fig. 1). The study was done by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. The full results of the study are published in a technical report by Sloto (2002). This fact sheet summarizes the key findings presented in the technical report.

  18. Surface mass balance reanalysis of Taku and Lemon Creek glaciers, Alaska: 1946-2015

    Science.gov (United States)

    McNeil, Christopher

    We reanalyzed geodetic and glaciological surface mass balance records of Taku and Lemon Creek glaciers for the period 1946--2015 to determine what has driven the contradictory behavior of these glaciers. During the past century, Taku Glacier has been increasing in area and mass, while Lemon Creek Glacier has simultaneously shrunk in area and mass. Between 1948 and 1999 geodetic mass balance rates are +0.33+/-0.34 m w.e. a--1 for Taku Glacier and 0.61+/-0.34 m w.e. a--1 for Lemon Creek Glacier. Geodetic mass balance rates decreased to +0.01+/-0.23 m w.e. a--1 and --0.65 +/-0.23 m w.e. a--1 for Taku and Lemon Creek glaciers respectively, between 1999 and 2013. We updated the glaciological analysis of annual field data, and found no significant difference between updated and previous annual mass balance solutions (p--value Lemon Creek Glacier record. Comparing mass balance anomalies we determined inter--annual variability of surface mass balance is the same for Taku and Lemon Creek glaciers. However, differences in glacier specific hypsometry and mass balance profile drive systematic differences in both annual and long--term glacier mass balance rates.

  19. Numerical simulation of the groundwater-flow system in Chimacum Creek Basin and vicinity, Jefferson County, Washington

    Science.gov (United States)

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2013-01-01

    A groundwater-flow model was developed to evaluate potential future effects of growth and of water-management strategies on water resources in the Chimacum Creek Basin. The model covers an area of about 64 square miles (mi2) on the Olympic Peninsula in northeastern Jefferson County, Washington. The Chimacum Creek Basin drains an area of about 53 mi2 and consists of Chimacum Creek and its tributary East Fork Chimacum Creek, which converge near the town of Chimacum and discharge to Port Townsend Bay near the town of Irondale. The topography of the model area consists of north-south oriented, narrow, regularly spaced parallel ridges and valleys that are characteristic of fluted glaciated surfaces. Thick accumulations of peat occur along the axis of East Fork Chimacum Creek and provide rich soils for agricultural use. The study area is underlain by a north-thickening sequence of unconsolidated glacial (till and outwash) and interglacial (fluvial and lacustrine) deposits, and sedimentary and igneous bedrock units that crop out along the margins and the western interior of the model area. Six hydrogeologic units in the model area form the basis of the groundwater-flow model. They are represented by model layers UC (upper confining), UA (upper aquifer), MC (middle confining), LA (lower aquifer), LC (lower confining), and OE (bedrock). Groundwater flow in the Chimacum Creek Basin and vicinity was simulated using the groundwater-flow model, MODFLOW-2005. The finite-difference model grid comprises 245 columns, 313 rows, and 6 layers. Each model cell has a horizontal dimension of 200 × 200 feet (ft). The thickness of model layers varies throughout the model area and ranges from 5 ft in the non-bedrock units to more than 2,400 ft in the bedrock. Groundwater flow was simulated for steady-state conditions, which were simulated for calibration of the model using average recharge, discharge, and water levels for the 180-month period October 1994–September 2009. The model as

  20. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  1. Campbell Creek Research Homes: FY2013 Annual Performance Report OCT.1, 2012 SEP. 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL; Lyne, Christopher T [ORNL; Odukomaiya, Wale O [ORNL

    2014-05-01

    packages. There are more than 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will be used to evaluate the impact of energy-efficiency upgrades on the envelope, mechanical equipment, and demand-response options. Each retrofit will be evaluated incrementally, by both short-term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the October 2012 through September 2013 (FY 2013) timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

  2. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  3. Scientific communications: Re-Os sulfide (bornite, chalcopyrite, and pyrite) systematics of the carbonate-hosted copper deposits at ruby creek, southern brooks range, Alaska

    Science.gov (United States)

    Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.

    2009-01-01

    New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.

  4. Quantifying the net benefit impacts of the Troy Waste Water Treatment Plant on Steelhead Habitat in the West Fork Little Bear Creek drainage

    Science.gov (United States)

    Sanchez-Murillo, R.; Brooks, E. S.; Boll, J.

    2010-12-01

    Discharge of waste water treatment plants (WWTPs) typically is viewed to result in water quality impairment. However, WWTPs can also be a source of nutrients to enhance the salmonid food web as well as an efficient way to maintain acceptable water temperature regimes and flow conditions during summer. We observed this paradox in West Fork Little Bear Creek (WFLB) in the City of Troy, Idaho. Despite the nutrient load, the WFLB had the highest Steelhead trout density in the watershed, with a mean density of 13.2 fish/100 m2. The objective of this project was to utilize a water quality model, QUAL2kw, and an ecology assessment to examine how the nutrient load from the WWTP affects: a) habitat conditions for steelhead juveniles, and b) physic-chemical parameters. Four monitoring stations were installed from May through November in 2009 and 2010. An undisturbed creek was used as a control site in 2010. Dissolved oxygen (DO), electrical conductivity, temperature, and discharge were measured continuously at each monitoring station. Weekly samples were collected at each monitoring station and analyzed for nitrate, nitrite, ammonia, total Kjeldahl nitrogen, total phosphorous, and orthophosphates. In 2010, Chlorophyll a was analyzed weekly, while bottom algae biomass was determined monthly. Results show that during summer months, the WWTP provides the majority of the flow (0.1 cfs) in the creek. Water samples and DO measurements taken 200 m downstream of the plant during late summer months indicate that nitrification process leads to low DO level well below the state standard of 6 mg/L for cold water biota. However dissolved oxygen levels recover within 1 km downstream. Discharge data suggest that without the flow from the treatment most of the creek would dry during late summer months. Abundance of macroinverbrates, high primary productivity, and sustained flow during summer suggests that the effluent from the WWTP is a net benefit to the Steelhead habitat in the basin

  5. Nitrous oxide fluxes at Cobb Mill Creek marsh on the eastern shore of Virginia

    Science.gov (United States)

    Funk, C. S.; Scanlon, T. M.

    2009-12-01

    Atmospheric nitrous oxide (N2O) concentrations are increasing at a rate unaccounted for with current detection methods and modeled budgets. Fertilizer nitrate (NO3-) additions in coastal watersheds could potentially lead to significant increases in N2O emissions from salt marsh ecosystems when naturally rapid microbial processes are subject to high levels of nitrate in stream and ground water. We employ a tunable diode laser trace gas analyzer (TGA) connected to a portable flow-through chamber to study N2O emissions at Cobb Mill Creek marsh, which drains a small agricultural watershed in Oyster, VA. Spatial variability of fluxes is determined by deploying the chamber at 12 sites across the marsh during exposure at low tide. Temporal variability is captured by deploying the chamber over a range of tidal regimes. Using these fluxes, we determine the spatial variability of N2O emissions (according to NO3- availability and degree of wetting which varies according to elevation), elucidate the factors that drive temporal variation of N2O emissions, and compare N2O fluxes from vegetated and non-vegetated areas of the marsh. Insight into the driving forces behind the pulsed nature of N2O emissions from salt water marshes can be used to improve modeled N2O budgets.

  6. Thermal evolution of the central Halls Creek Orogen, northern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Bodorkos, S.; Cawood, P.A. [Curtin University of Technology, Perth, WA (Australia). Tectonics Special Research Centre, School of Applied Geology; Oliver, N.H.S. [James Cook University, Townsville, QLD (Australia). Economic Geology Research Unit, School of Earth Sciences

    1999-06-01

    The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high temperature, low-pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850-1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a {sup 207}Pb/{sup 206}Pb SHRIMP age of 1867 {+-} 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860-1855 Ma. prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer-parallel D{sub 1} foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S{sub 2} gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic {sup 207}Pb/{sup 206}Pb age of 1845 {+-} 4 Ma. The S{sub 2} fabric is folded around tight folds and cut by ductile shear zones associated with D{sub 3} (ca 1830 Ma), and all pre-existing structures are folded around large-scale, open F{sub 4} folds (ca 1820 Ma). Construction of a temperature-time path for the mid-crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400-500degC for 25-30 million years) encompassing two deformation phases

  7. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  8. Estimated suspended-sediment loads and yields in the French and Brandywine Creek Basins, Chester County, Pennsylvania, water years 2008-09

    Science.gov (United States)

    Sloto, Ronald A.; Olson, Leif E.

    2011-01-01

    Turbidity and suspended-sediment concentration data were collected by the U.S. Geological Survey (USGS) at four stream stations--French Creek near Phoenixville, West Branch Brandywine Creek near Honey Brook, West Branch Brandywine Creek at Modena, and East Branch Brandywine Creek below Downingtown--in Chester County, Pa. Sedimentation and siltation is the leading cause of stream impairment in Chester County, and these data are critical for quantifying sediment transport. This study was conducted by the USGS in cooperation with the Chester County Water Resources Authority and the Chester County Health Department. Data from optical turbidity sensors deployed at the four stations were recorded at 15- or 30-minute intervals by a data logger and uploaded every 1 to 4 hours to the USGS database. Most of the suspended-sediment samples were collected using automated samplers. The use of optical sensors to continuously monitor turbidity provided an accurate estimate of sediment fluctuations without the collection and analysis costs associated with intensive sampling during storms. Turbidity was used as a surrogate for suspended-sediment concentration (SSC), which is a measure of sedimentation and siltation. Regression models were developed between SSC and turbidity for each of the monitoring stations using SSC data collected from the automated samplers and turbidity data collected at each station. Instantaneous suspended-sediment loads (SSL) were computed from time-series turbidity and discharge data for the 2008 and 2009 water years using the regression equations. The instantaneous computations of SSL were summed to provide daily, storm, and water year annual loads. The annual SSL contributed from each basin was divided by the upstream drainage area to estimate the annual sediment yield. For all four basins, storms provided more than 96 percent of the annual SSL. In each basin, four storms generally provided over half the annual SSL each water year. Stormflows with the

  9. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Matthias Jakob

    2017-01-01

    Full Text Available A destructive debris flood occurred between 19 and 21 June 2013 on Cougar Creek, located in Canmore, Alberta. Cougar Creek fan is likely the most densely developed alluvial fan in Canada. While no lives were lost, the event resulted in approximately $40 M of damage and closed both the Trans-Canada Highway (Highway 1 and the Canadian Pacific Railway line for a period of several days. The debris flood triggered a comprehensive hazard assessment which is the focus of this paper. Debris-flood frequencies and magnitudes are determined by combining several quantitative methods including photogrammetry, dendrochronology, radiometric dating, test pit logging, empirical relationships between rainfall volumes and sediment volumes, and landslide dam outburst flood modeling. The data analysis suggests that three distinct process types act in the watershed. The most frequent process is normal or “clearwater” floods. Less frequent but more damaging are debris floods during which excessive amounts of bedload are transported on the fan, typically associated with rapid and extensive bank erosion and channel infilling and widening. The third and most destructive process is interpreted to be landslide dam outbreak floods. This event type is estimated to occur at return periods exceeding 300 years. Using a cumulative magnitude frequency technique, the data for conventional debris floods were plotted up to the 100–300s year return period. A peak-over-threshold approach was used for landslide dam outbreak floods occurring at return periods exceeding 300 years, as not all such events were identified during test trenching. Hydrographs for 6 return period classes were approximated by using the estimated peak discharges and fitting the hydrograph shape to integrate to the debris flood volumes as determined from the frequency-magnitude relationship. The fan volume was calculated and compared with the integrated frequency-magnitude curve to check of the validity of

  10. Four Mile Creek bottomland restoration program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K.W.

    1995-12-31

    On the Savannah River Site (SRS), nuclear production reactors were cooled by a once-through cooling cycle, using water from the Savannah River and discharging the effluent to small tributaries of the Savannah River. Four Mile Creek (also known as Fourmile Branch) is a third order tributary of the Savannah River on the upper coastal plain of South Carolina. It received thermal effluent from C Reactor from 1955 to 1985, which increased the flow rate, water depth and water temperature. Prior to 1955, the base flow was approximately one cubic meter per second, but increased, with the reactor effluent, to approximately 11 cubic meters per second, raising the water depth in the channel by 15 to 30 cm. Effluent temperature at the outfall was approximately 60 C and at the delta was 40 to 45 C, depending on the operation level of the reactor, the season of the year and the specific meteorological conditions. The increased flow rate also increased erosion in the upper reaches of the stream with deposition of this eroded material occurring in the delta averaging 60 cm of newly deposited sand on top of the former substrate.

  11. Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-02-01

    Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

  12. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  13. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  14. The Archaeology of Little Wood Creek: New Chronometric Evidence

    Science.gov (United States)

    Grossman, Joel W.; Johnson, Lucille L.; Peteet, Dorothy M.

    2015-01-01

    This study reports on the establishment of viable dates for several major cultural components at the Little Wood Creek site on the upper Hudson in Fort Edward, New York. The original excavation in the mid-1980s (Grossman et al. 1990) resulted in the identification of two major periods of occupation, a deeply buried Transitional period sequence of living floors, and closer to the surface, and separated by circa five feet of sterile alluvium, a series of Late Woodland period pits and features. Both are overlain by the discovery of the southern bastion of Revolutionary War-era Fort Edward. Ambiguities in the original bulk radiocarbon dating of the site left it in chronological limbo with widely divergent determinations for both prehistoric occupation periods. New AMS dates from 10 samples, four Transitional period and six Late Woodland period assays, both refined the absolute chronology of the site complex and clarified several major issues in the cultural and environmental history of the region. Together, these two sets of dates, combined with recent high resolution environmental sequences, provide sufficient resolution to correlate the newly defined periods of occupation with major events in the pollen and climate record of eastern New York State.

  15. White Oak Creek Embayment site characterization and contaminant screening analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  16. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  17. Soil Investigation of Lower East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Johnbull O [ORNL; Mayes, Melanie [ORNL; Earles, Jennifer E [ORNL; Mehlhorn, Tonia L [ORNL; Lowe, Kenneth Alan [ORNL; Peterson, Mark J [ORNL; Pierce, Eric M [ORNL

    2017-03-01

    Mercury is regarded by the US Department of Energy (DOE) Oak Ridge Office of Environmental Management as a priority contaminant on the Oak Ridge Reservation because of the environmental risks associated with substantial losses from buildings, soils, and surface waters at the Y-12 National Security Complex (Y-12). As a result of historical releases of mercury from Y-12 primarily in the 1950s and early 1960s, the lower East Fork Poplar Creek (LEFPC) stream channel and bank soil margins are contaminated with mercury (Brooks and Southworth 2011; Tennessee Valley Authority 1985b, a). A Mercury Remediation Technology Development project is underway to evaluate the nature of downstream mercury contamination and to develop targeted site-specific remedial technologies that can mitigate mercury release and biological uptake. It is known that mercury concentration varies longitudinally and with depth in LEFPC bank soils; however, soil types and soil physical properties are not well known, especially relative to the zones of mercury contamination. Moreover, there are no soil maps for the downstream reaches of LEFPC in Roane County (i.e. from the Chestnut Hill Road downstream) and this work represents the first ever soil mapping along this section of LEFPC.

  18. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; BEATY, T.W.; BRANDT, C.C.; CHRISTENSEN, S.W.; CICERONE, D.S.

    1998-09-09

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  19. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    Science.gov (United States)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  20. Hydrologic reconnaissance of the Beluga, Peters Creek, and Healy coal areas, Alaska

    Science.gov (United States)

    Scully, David R.; Krumhardt, Andrea P.; Kernodle, Donald R.

    1981-01-01

    The Beluga, Peters Creek, and Healy coal areas in Alaska were studied during 1975-1978, with major emphasis on surface-water hydrology and water quality. In the Beluga coal area, mean annual discharge is estimated to range from 2.2 to 3.4 cubic feet per second per square mile of drainage area. The 7-day low flow with a 10-year recurrence interval is estimated to be 0.3 to 0.6 cubic feet per second per square mile. The surface waters are calcium bicarbonate type; have low concentrations of nutrients; and, at times, may contain dissolved iron and manganese in concentrations in excess of U.S. Environmental Protection Agency recommended limits. The pooled diversity index of the benthic invertebrate community ranges from 2.93 to 4.06. No ground-water wells have been drilled in the potential mining areas. Water quality of streams in the Peters Creek coal area is similar to that of the streams in the Beluga coal area. No attempt is made to define streamflow characteristics in the Peters Creek coal area due to poor correlations with nearby gaging stations. In the Healy coal area, streamflow characteristics are dissimilar between the two major basins studied. Lignite Creek is estimated to have less yield than Healy Creek. Studied tributaries of Healy and Lignite Creeks contain waters with a dissolved solids range of 111 to 636 milligrams per liter and have calcium and bicarbonate or magnesium and bicarbonate as principal ions. Iron and manganese concentrations are high at some times of the year. The concentrations of sodium and chloride increases significantly in the lower reaches of Lignite Creek. (USGS)