WorldWideScience

Sample records for asl perfusion mri

  1. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): a rapid and quantitative perfusion technique for high-field MRI.

    Science.gov (United States)

    Gao, Ying; Goodnough, Candida L; Erokwu, Bernadette O; Farr, George W; Darrah, Rebecca; Lu, Lan; Dell, Katherine M; Yu, Xin; Flask, Chris A

    2014-08-01

    Arterial spin labeling (ASL) is a valuable non-contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo-planar imaging (EPI) or true fast imaging with steady-state free precession (true FISP) readouts, which are prone to off-resonance artifacts on high-field MRI scanners. We have developed a rapid ASL-FISP MRI acquisition for high-field preclinical MRI scanners providing perfusion-weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow-sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL-FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high-field MRI scanners with minimal image artifacts.

  2. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI.

    Directory of Open Access Journals (Sweden)

    Fabian Zimmer

    Full Text Available OBJECTIVES: To establish arterial spin labelling (ASL for quantitative renal perfusion measurements in a rat model at 3 Tesla and to test the diagnostic significance of ASL and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI in a model of acute kidney injury (AKI. MATERIAL AND METHODS: ASL and DCE-MRI were consecutively employed on six Lewis rats, five of which had a unilateral ischaemic AKI. All measurements in this study were performed on a 3 Tesla MR scanner using a FAIR True-FISP approach and a TWIST sequence for ASL and DCE-MRI, respectively. Perfusion maps were calculated for both methods and the cortical perfusion of healthy and diseased kidneys was inter- and intramethodically compared using a region-of-interest based analysis. RESULTS/SIGNIFICANCE: Both methods produce significantly different values for the healthy and the diseased kidneys (P<0.01. The mean difference was 147±47 ml/100 g/min and 141±46 ml/100 g/min for ASL and DCE-MRI, respectively. ASL measurements yielded a mean cortical perfusion of 416±124 ml/100 g/min for the healthy and 316±102 ml/100 g/min for the diseased kidneys. The DCE-MRI values were systematically higher and the mean cortical renal blood flow (RBF was found to be 542±85 ml/100 g/min (healthy and 407±119 ml/100 g/min (AKI. CONCLUSION: Both methods are equally able to detect abnormal perfusion in diseased (AKI kidneys. This shows that ASL is a capable alternative to DCE-MRI regarding the detection of abnormal renal blood flow. Regarding absolute perfusion values, nontrivial differences and variations remain when comparing the two methods.

  3. Comparison of arterial spin labeling and dynamic susceptibility contrast perfusion MRI in patients with acute stroke.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Huang

    Full Text Available BACKGROUND: The aim of this study was to evaluate whether arterial spin labeling (ASL perfusion magnetic resonance imaging (MRI can reliably quantify perfusion deficit as compared to dynamic susceptibility contrast (DSC perfusion MRI. METHODS: Thirty-nine patients with acute ischemic stroke in the anterior circulation territory were recruited. All underwent ASL and DSC MRI perfusion scans within 30 hours after stroke onset and 31 patients underwent follow-up MRI scans. ASL cerebral blood flow (CBF and DSC time to maximum (T(max maps were used to calculate the perfusion defects. The ASL CBF lesion volume was compared to the DSC Tmax lesion volume by Pearson's correlation coefficient and likewise the ASL CBF and DSC T(max lesion volumes were compared to the final infarct sizes respectively. A repeated measures analysis of variance and least significant difference post hoc test was used to compare the mean lesion volumes among ASL CBF, DSC T(max >4-6 s and final infarct. RESULTS: Mean patient age was 72.6 years. The average time from stroke onset to MRI was 13.9 hours. The ASL lesion volume showed significant correlation with the DSC lesion volume for T(max >4, 5 and 6 s (r = 0.81, 0.82 and 0.80; p5 s (29.2 ml, p6 s (21.8 ml, p5 or 6 s were close to mean final infarct size. CONCLUSION: Quantitative measurement of ASL perfusion is well correlated with DSC perfusion. However, ASL perfusion may overestimate the perfusion defects and therefore further refinement of the true penumbra threshold and improved ASL technique are necessary before applying ASL in therapeutic trials.

  4. Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, Jill B. de; Hendrikse, Jeroen [University Medical Center Utrecht, Department of Radiology, HP E 01.132, P.O. Box 85500, Utrecht (Netherlands); Petersen, Esben T. [University Medical Center Utrecht, Department of Radiology, HP E 01.132, P.O. Box 85500, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiotherapy, Utrecht (Netherlands); Vries, Linda S. de; Bel, Frank van; Alderliesten, Thomas; Negro, Simona; Groenendaal, Floris; Benders, Manon J.N.L. [Wilhelmina Children' s Hospital/University Medical Center Utrecht, Department of Neonatology, Utrecht (Netherlands)

    2015-01-15

    Hyperperfusion may be related to outcome in neonates with hypoxic-ischemic encephalopathy (HIE). The purpose of this study was to evaluate whether arterial spin labelling (ASL) perfusion is associated with outcome in neonates with HIE and to compare the predictive value of ASL MRI to known MRI predictive markers. Twenty-eight neonates diagnosed with HIE and assessed with MR imaging (conventional MRI, diffusion-weighted MRI, MR spectroscopy [MRS], and ASL MRI) were included. Perfusion in the basal ganglia and thalami was measured. Outcome at 9 or 18 months of age was scored as either adverse (death or cerebral palsy) or favourable. The median (range) perfusion in the basal ganglia and thalami (BGT) was 63 (28-108) ml/100 g/min in the neonates with adverse outcome and 28 (12-51) ml/100 g/min in the infants with favourable outcome (p < 0.01). The area-under-the-curve was 0.92 for ASL MRI, 0.97 for MRI score, 0.96 for Lac/NAA and 0.92 for ADC in the BGT. The combination of Lac/NAA and ASL MRI results was the best predictor of outcome (r {sup 2} = 0.86, p < 0.001). Higher ASL perfusion values in neonates with HIE are associated with a worse neurodevelopmental outcome. A combination of the MRS and ASL MRI information is the best predictor of outcome. (orig.)

  5. Noninvasive method for mapping CVR in moyamoya disease using ASL-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Tomoyuki, E-mail: tnogucci@radiol.med.kyushu-u.ac.jp [Department of Radiology, National center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan); Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Kawashima, Masatou, E-mail: m996kawa@cc.saga-u.ac.jp [Department of Neurosugery, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Nishihara, Masashi, E-mail: nishiham@cc.saga-u.ac.jp [Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Egashira, Yoshiaki, E-mail: bunta1974@yahoo.co.jp [Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Azama, Shinya, E-mail: azama-ssam-71257@b2.bunbun.ne.jp [Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Irie, Hiroyuki, E-mail: irie@cc.saga-u.ac.jp [Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan)

    2015-06-15

    Highlights: • A clinical use of a pulse-wave-synchronized ASL-MRI (pulsy ASL-MRI) was proposed. • Resting IMP-SPECT correlated with pulsy ASL-MRI in moyamoya disease. • ASL-MRI could measure cerebrovascular reserve noninvasively in moyamoya disease. - Abstract: Purpose: To project a noninvasive method for mapping cerebrovascular reserve (CVR) in moyamoya disease (MMD) using ASL-MRI. Methods: 16 MMD patients underwent cerebral blood flow (CBF) examinations by standard ASL-MRI, pulse-wave-synchronized ASL-MRI (pulsy ASL-MRI) which tagged the arterial blood coincident with a peak of a pulse wave, and single photon emission computed tomography (SPECT) imagings with iodine-123-N-isopropyl-p-iodoamphetamine in the resting (rest-IMP) and after acetazolamide challenge (ACZ-IMP). Hemispheric 32-sided cerebral blood flow (CBF) values were measured with normalized CBF maps created from standard ASL-MRI (standard-ASL value), pulsy ASL-MRI (pulsy-ASL value), rest-IMP (rest-IMP value), and ACZ-IMP (ACZ-IMP value). CVR based on rest-IMP and ACZ-IMP values (IMP-CVR) was calculated. ASL-CVR was also calculated on the basis of corrected standard-ASL values and pulsy-ASL values, which were adjusted to the ACZ-IMP values and rest-IMP values, respectively, by the least-squares method. We assessed the relationships between rest-IMP values and pulsy-ASL values, ACZ-IMP values and standard-ASL values, and IMP-CVR and ASL-CVR. Results: Significant relationships were observed between rest-IMP values and pulsy-ASL values (correlation coefficient (r = 0.557, p < 0.01)), ACZ-IMP values and standard-ASL values (r = 0.825, p < 0.01), and IMP-CVR and ASL-CVR (r = 0.736, p < 0.01). Conclusions: ASL-MRI is equivalent to SPECT and that it might serve as a noninvasive method for mapping CVR in MMD.

  6. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect.

    Science.gov (United States)

    Lim, Julian; Wu, Wen-Chau; Wang, Jiongjiong; Detre, John A; Dinges, David F; Rao, Hengyi

    2010-02-15

    During sustained periods of a taxing cognitive workload, humans typically display time-on-task (TOT) effects, in which performance gets steadily worse over the period of task engagement. Arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) was used in this study to investigate the neural correlates of TOT effects in a group of 15 subjects as they performed a 20-min continuous psychomotor vigilance test (PVT). Subjects displayed significant TOT effects, as seen in progressively slower reaction times and significantly increased mental fatigue ratings after the task. Perfusion data showed that the PVT activates a right lateralized fronto-parietal attentional network in addition to the basal ganglia and sensorimotor cortices. The fronto-parietal network was less active during post-task rest compared to pre-task rest, and regional CBF decrease in this network correlated with performance decline. These results demonstrate the persistent effects of cognitive fatigue in the fronto-parietal network after a period of heavy mental work and indicate the critical role of this attentional network in mediating TOT effects. Furthermore, resting regional CBF in the thalamus and right middle frontal gyrus prior to task onset was predictive of subjects' subsequent performance decline, suggesting that resting CBF quantified by ASL perfusion fMRI may be a useful indicator of performance potential and a marker of the level of fatigue in the neural attentional system.

  7. Arterial spin labelling MRI for assessment of cerebral perfusion in children with moyamoya disease: comparison with dynamic susceptibility contrast MRI

    Energy Technology Data Exchange (ETDEWEB)

    Goetti, Robert [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Department of Diagnostic and Interventional Radiology, Zurich (Switzerland); O' Gorman, Ruth [University Children' s Hospital Zurich, Center for MR Research, Zurich (Switzerland); Khan, Nadia [University Children' s Hospital Zurich, Moyamoya Center, Division of Neurosurgery, Department of Surgery, Zurich (Switzerland); Kellenberger, Christian J.; Scheer, Ianina [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland)

    2013-05-15

    This study seeks to evaluate the diagnostic accuracy of cerebral perfusion imaging with arterial spin labelling (ASL) MR imaging in children with moyamoya disease compared to dynamic susceptibility contrast (DSC) imaging. Ten children (7 females; age, 9.2 {+-} 5.4 years) with moyamoya disease underwent cerebral perfusion imaging with ASL and DSC on a 3-T MRI scanner in the same session. Cerebral perfusion images were acquired with ASL (pulsed continuous 3D ASL sequence, 32 axial slices, TR = 5.5 s, TE = 25 ms, FOV = 24 cm, matrix = 128 x 128) and DSC (gradient echo EPI sequence, 35 volumes of 28 axial slices, TR = 2,000 ms, TE = 36 ms, FOV = 24 cm, matrix = 96 x 96, 0.2 ml/kg Gd-DOTA). Cerebral blood flow maps were generated. ASL and DSC images were qualitatively assessed regarding perfusion of left and right ACA, MCA, and PCA territories by two independent readers using a 3-point-Likert scale and quantitative relative cerebral blood flow (rCBF) was calculated. Correlation between ASL and DSC for qualitative and quantitative assessment and the accuracy of ASL for the detection of reduced perfusion per territory with DSC serving as the standard of reference were calculated. With a good interreader agreement ({kappa} = 0.62) qualitative perfusion assessment with ASL and DSC showed a strong and significant correlation ({rho} = 0.77; p < 0.001), as did quantitative rCBF (r = 0.79; p < 0.001). ASL showed a sensitivity, specificity and accuracy of 94 %, 93 %, and 93 % for the detection of reduced perfusion per territory. In children with moyamoya disease, unenhanced ASL enables the detection of reduced perfusion per vascular territory with a good accuracy compared to contrast-enhanced DSC. (orig.)

  8. Automatic assessment of cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Larsson, Henrik B.W.

    2004-01-01

    In this paper, a method based on Active Appearance Models (AAM) is applied for automatic registration of myocardial perfusion MRI. A semi-quantitative perfusion assessment of the registered image sequences is presented. This includes the formation of perfusion maps for three parameters; maximum up...

  9. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    Science.gov (United States)

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  10. Physiological and psychological individual differences influence resting brain function measured by ASL perfusion.

    Science.gov (United States)

    Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L

    2014-09-01

    Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.

  11. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill

    1996-01-01

    In the present study, it is shown that it is possible to quantify myocardial perfusion using magnetic resonance imaging in combination with gadolinium diethylenetriaminopentaacetic acid (Gd-DTPA). Previously, a simple model and method for measuring myocardial perfusion using an inversion recovery...

  12. Fast Registration of Cardiac Perfusion MRI

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Larsson, Henrik B. W.

    2003-01-01

    This abstract presents a novel method for registration of cardiac perfusion MRI sequences. By performing complex analyses of variance and clustering in an annotated training set off-line, our method provides real-time segmentation in an on-line setting. This renders the method feasible for live...

  13. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Cutajar, Marica; Hales, Patrick W.; Clark, Christopher A.; Gordon, Isky [UCL Institute of Child Health, Imaging and Biophysics Unit, London (United Kingdom); Thomas, David L. [UCL Institute of Neurology, Department of Brain Repair and Rehabilitation, London (United Kingdom); Banks, T. [Great Ormond Street Hospital, Department of Radiology, London (United Kingdom)

    2014-06-15

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min{sup -1} [100 ml tissue]{sup -1}, and using DCE MRI was 287 ± 70 ml min{sup -1} [100 ml tissue]{sup -1}. The group coefficient of variation (CV{sub g}) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CV{sub g}s of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  14. Mental fatigue after mild traumatic brain injury: a 3D-ASL perfusion study.

    Science.gov (United States)

    Liu, Kai; Li, Bo; Qian, Shaowen; Jiang, Qingjun; Li, Li; Wang, Wei; Zhang, Gaiyun; Sun, Yajuan; Sun, Gang

    2016-09-01

    Our purpose was to evaluate mental fatigue associated with mild traumatic brain injury (MTBI) and investigate the underlying neurological mechanisms. We used a 20-min psychomotor vigilance test (PVT) related ASL-fMRI to evaluate mental fatigue in 25 MTBI patients in acute phase, 21 MTBI patients in chronic phase, and 20 healthy subjects. Mental fatigue in patients in acute phase was more severe than in chronic phase patients and healthy controls. The first 5-min-PVT increased CBF of patients in acute phase in "bottom-up" and "top-down" attention areas, and decreased CBF in default mode network (DMN) areas. Twenty-min-PVT results showed that sustained attention of patients was more fragile than in healthy subjects, while sustained attention in the acute phase was less stable than that in the chronic phase. CBF results showed that in patients in the acute phase, the second, third, and last 5-min-PVT decreased CBF in DMN areas, increased CBF of "bottom-up" and "top-down" areas; in the chronic phase, the third and last 5-min-PVT increased CBF of "bottom-up" and "top-down" cortex, while the second 5-min-PVT only increased CBF of the "top-down" cortex. Mental fatigue of MTBI patients persists for more than 12 months, and can be mitigated partly within the first year after injury. The "bottom-up" and "top-down" deficits result in mental fatigue of MTBI patients.

  15. Multi-delay arterial spin labeling perfusion MRI in moyamoya disease-comparison with CT perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Chinese Academy of Sciences, State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Beijing (China); University of Chinese Academy of Sciences, Graduate School, Beijing (China); UCLA-Beijing Joint Center for Advanced Brain Imaging, Beijing (China); UCLA-Beijing Joint Center for Advanced Brain Imaging, Los Angeles, CA (United States); Yu, Songlin [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); University of California Los Angeles, Department of Neurology, Los Angeles (United States); Alger, Jeffry R.; Wang, Danny J.J. [University of California Los Angeles, Department of Neurology, Los Angeles (United States); UCLA-Beijing Joint Center for Advanced Brain Imaging, Beijing (China); UCLA-Beijing Joint Center for Advanced Brain Imaging, Los Angeles, CA (United States); Zuo, Zhentao; Wang, Bo [Chinese Academy of Sciences, State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Beijing (China); Chen, Juan [Beijing Hospital, Department of Radiology, Beijing (China); Wang, Rong; Zhao, Jizong [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); An, Jing [Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen (China); Xue, Rong [Chinese Academy of Sciences, State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Beijing (China); UCLA-Beijing Joint Center for Advanced Brain Imaging, Beijing (China); UCLA-Beijing Joint Center for Advanced Brain Imaging, Los Angeles, CA (United States)

    2014-05-15

    To present a multi-delay pseudo-continuous ASL (pCASL) protocol that offers simultaneous measurements of cerebral blood flow (CBF) and arterial transit time (ATT), and to study correlations between multi-delay pCASL and CT perfusion in moyamoya disease. A 4 post-labeling delay (PLD) pCASL protocol was applied on 17 patients with moyamoya disease who also underwent CT perfusion imaging. ATT was estimated using the multi-delay protocol and included in the calculation of CBF. ASL and CT perfusion images were rated for lesion severity/conspicuity. Pearson correlation coefficients were calculated across voxels between the two modalities in grey and white matter of each subject respectively and between normalized mean values of ASL and CT perfusion measures in major vascular territories. Significant associations between ASL and CT perfusion were detected using subjective ratings, voxel-wise analysis in grey and white matter and region of interest (ROI)-based analysis of normalized mean perfusion. The correlation between ASL CBF and CT perfusion was improved using the multi-delay pCASL protocol compared to CBF acquired at a single PLD of 2 s (P < 0.05). There is a correlation between perfusion data from ASL and CT perfusion imaging in patients with moyamoya disease. Multi-delay ASL can improve CBF quantification, which could be a prognostic imaging biomarker in patients with moyamoya disease. (orig.)

  16. Perfusion MRI in neuro-psychiatric systemic lupus erthemathosus.

    NARCIS (Netherlands)

    Emmer, B.J.; Osch, M.J. van; Wu, O.; Steup-Beekman, G.M.; Steens, S.; Huizinga, T.W.J.; Buchem, M.A. van; Grond, J. van der

    2010-01-01

    PURPOSE: To use perfusion weighted MR to quantify any perfusion abnormalities and to determine their contribution to neuropsychiatric (NP) involvement in systemic lupus erythematosus (SLE). MATERIALS AND METHODS: We applied dynamic susceptibility contrast (DSC) perfusion MRI in 15 active NPSLE, 26 i

  17. [Abnormal cerebral blood flow distributions during the post-ictal phase of febrile status epilepticus in three pediatric patients measured by arterial spin labeling perfusion MRI].

    Science.gov (United States)

    Hirano, Keiko; Fukuda, Tokiko

    2016-05-01

    The ability to visualize brain perfusion is important for identifying epileptic foci. We present three pediatric cases showing asymmetrical cerebral blood flow (CBF) distributions during the post-ictal phase of febrile status epilepticus measured by arterial spin labeling (ASL) perfusion MRI. During the acute phase, regional CBF measurements in the areas considered including epileptic foci were higher than in the corresponding area of the contralateral hemisphere, though the exact quantitative value varied between cases. We could not identify the correct epileptogenic foci, because those ASL images were taken after the prolonged and extraordinary activation of neurons in the affected area. During the recovery phase, the differences reduced and the average regional CBF measurement was 54.6 ± 6.1 ml/100 g per minute, which was a little less than the number of previous ASL studies. ASL perfusion MRI imaging provides a method for evaluating regional CBF by using magnetically labeled arterial blood water as an endogenous tracer. With this technique, we can repeatedly evaluate both the brain structure and the level of perfusion at the same time. ASL is noninvasive and easily accessible, and therefore it could become a routine tool for assessment of perfusion in daily practice of pediatric neurology.

  18. Improved visualization of delayed perfusion in lung MRI

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Frank [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Eichinger, Monika [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg (Germany); Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Department of Radiology, German Cancer Research Center, Heidelberg (Germany)

    2011-01-15

    Introduction: The investigation of pulmonary perfusion by three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was proposed recently. Subtraction images are generated for clinical evaluation, but temporal information is lost and perfusion defects might therefore be masked in this process. The aim of this study is to demonstrate a simple analysis strategy and classification for 3D-DCE-MRI perfusion datasets in the lung without omitting the temporal information. Materials and methods: Pulmonary perfusion measurements were performed in patients with different lung diseases using a 1.5 T MR-scanner with a time-resolved 3D-GRE pulse sequence. 25 3D-volumes were acquired after iv-injection of 0.1 mmol/kg KG Gadolinium-DTPA. Three parameters were determined for each pixel: (1) peak enhancement S{sub n,max} normalized to the arterial input function to detect regions of reduced perfusion; (2) time between arterial peak enhancement in the large pulmonary artery and tissue peak enhancement {tau} to visualize regions with delayed bolus onset; and (3) ratio R = S{sub n,max}/{tau} was calculated to visualize impaired perfusion, irrespectively of whether related to reduced or delayed perfusion. Results: A manual selection of peak perfusion images is not required. Five different types of perfusion can be found: (1) normal perfusion; (2) delayed non-reduced perfusion; (3) reduced non-delayed perfusion; (4) reduced and delayed perfusion; and (5) no perfusion. Types II and IV could not be seen in subtraction images since the temporal information is necessary for this purpose. Conclusions: The analysis strategy in this study allows for a simple and observer-independent visualization and classification of impaired perfusion in dynamic contrast-enhanced pulmonary perfusion MRI by using the temporal information of the datasets.

  19. Hepatocellular carcinoma: perfusion quantification with dynamic contrast-enhanced MRI

    NARCIS (Netherlands)

    Taouli, B.; Johnson, R.S.; Hajdu, C.H.; Oei, M.T.H.; Merad, M.; Yee, H.; Rusinek, H.

    2013-01-01

    The objective of our study was to report our initial experience with dynamic contrast-enhanced MRI (DCE-MRI) for perfusion quantification of hepatocellular carcinoma (HCC) and surrounding liver.DCE-MRI of the liver was prospectively performed on 31 patients with HCC (male-female ratio, 26:5; mean ag

  20. Non-contrast MRI perfusion angiosome in diabetic feet

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jie [Cardiovascular Imaging Lab, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Hastings, Mary K.; Mueller, Michael J. [Washington University School of Medicine, The Program in Physical Therapy, St. Louis, MO (United States); Muccigross, David; Hildebolt, Charles F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Fan, Zhaoyang [Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA (United States); Gao, Fabao [West China Hospital, Sichuan University, Department of Radiology, Chengdu (China); Curci, John [Washington University School of Medicine, The Department of Surgery, St. Louis, MO (United States)

    2015-01-15

    The purpose of this study is to develop a non-contrast magnetic resonance imaging (MRI) approach to evaluate skeletal muscle perfusion in the diabetic foot based on the concept of angiosomes of the foot. Five healthy volunteers and five participants with diabetes (HbA1c = 7.2 ± 1.8 %) without a history of peripheral artery disease were examined. The non-contrast perfusion measurements were performed during a toe flexion challenge. Absolute perfusion maps were created and two regions (medial and lateral) on the maps were segmented based on angiosomes. Regional difference in the perfusion of foot muscle was readily visualized in the MRI perfusion angiosomes during the challenge. In the participants with diabetes, the perfusion during toe flexion challenge was significantly lower than in healthy volunteers (P < 0.01). The average perfusion for the medial plantar region of the right foot was lower in subjects with diabetes (38 ± 9 ml/min/100 g) than in healthy subjects (93 ± 33 ml/min/100 g). Non-contrast MRI perfusion angiosome maps demonstrate the feasibility of determining regional perfusion in foot muscles during toe challenge and may facilitate evaluation of muscle perfusion in diabetic feet. (orig.)

  1. SU-D-18C-02: Feasibility of Using a Short ASL Scan for Calibrating Cerebral Blood Flow Obtained From DSC-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wang, P; Chang, T; Huang, K; Yeh, C; Chien, C; Wai, Y; Lee, T; Liu, H [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan County, Taiwan (R.O.C.). (China)

    2014-06-01

    Purpose: This study aimed to evaluate the feasibility of using a short arterial spin labeling (ASL) scan for calibrating the dynamic susceptibility contrast- (DSC-) MRI in a group of patients with internal carotid artery stenosis. Methods: Six patients with unilateral ICA stenosis enrolled in the study on a 3T clinical MRI scanner. The ASL-cerebral blood flow (-CBF) maps were calculated by averaging different number of dynamic points (N=1-45) acquired by using a Q2TIPS sequence. For DSC perfusion analysis, arterial input function was selected to derive the relative cerebral blood flow (rCBF) map and the delay (Tmax) map. Patient-specific CF was calculated from the mean ASL- and DSC-CBF obtained from three different masks: (1)Tmax< 3s, (2)combined gray matter mask with mask 1, (3)mask 2 with large vessels removed. One CF value was created for each number of averages by using each of the three masks for calibrating the DSC-CBF map. The CF value of the largest number of averages (NL=45) was used to determine the acceptable range(< 10%, <15%, and <20%) of CF values corresponding to the minimally acceptable number of average (NS) for each patient. Results: Comparing DSC CBF maps corrected by CF values of NL (CBFL) in ACA, MCA and PCA territories, all masks resulted in smaller CBF on the ipsilateral side than the contralateral side of the MCA territory(p<.05). The values obtained from mask 1 were significantly different than the mask 3(p<.05). Using mask 3, the medium values of Ns were 4(<10%), 2(<15%) and 2(<20%), with the worst case scenario (maximum Ns) of 25, 4, and 4, respectively. Conclusion: This study found that reliable calibration of DSC-CBF can be achieved from a short pulsed ASL scan. We suggested use a mask based on the Tmax threshold, the inclusion of gray matter only and the exclusion of large vessels for performing the calibration.

  2. Displaying perfusion MRI images as color intensity projections

    CERN Document Server

    Hoefnagels, Friso; Sanchez, Ester; Lagerwaard, Frank J

    2007-01-01

    Dynamic susceptibility-weighted contrast-enhanced (DSC) MRI or perfusion-MRI plays an important role in the non-invasive assessment of tumor vascularity. However, the large number of images provided by the method makes display and interpretation of the results challenging. Current practice is to display the perfusion information as relative cerebral blood volume maps (rCBV). Color intensity projections (CIPs) provides a simple, intuitive display of the perfusion-MRI data so that regional perfusion characteristics are intrinsically integrated into the anatomy structure the T2 images. The ease of use and quick calculation time of CIPs should allow it to be easily integrated into current analysis and interpretation pipelines.

  3. Dynamic contrast enhanced MRI for perfusion quantification

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke

    2002-01-01

    to be more robust. Successful brain perfusion quantication based on R1 weighted signals has not previously been reported, due to the poor signal to noise ratio of the images. Initial experiments reported in this thesis show that improved sequence may provide more accurate perfusion estimates in the brain...... with the tissue IRF. To obtain the IRF, the tissue curves and the input curves are deconvolved and perfusion is related to the peak of IRF. In this thesis, a new method for deconvolution of perfusion data is introduced. It is the Gaussian process for deconvolution, GPD. The method is compared to singular value......Magnetic resonance imaging, during bolus passage of a paramagnetic contrast agent, is used world-wide to obtain parameters that reflect the pathological state of tissue. Abnormal perfusion occurs in diseases such as stoke and tumour. Consequently, perfusion quantication could have signi cant...

  4. Automatic Characterization of Myocardial Perfusion in Contrast Enhanced MRI

    Science.gov (United States)

    Positano, Vincenzo; Santarelli, Maria Filomena; Landini, Luigi

    2003-12-01

    The use of contrast medium in cardiac MRI allows joining the high-resolution anatomical information provided by standard magnetic resonance with functional information obtained by means of the perfusion of contrast agent in myocardial tissues. The current approach to perfusion MRI characterization is the qualitative one, based on visual inspection of images. Moving to quantitative analysis requires extraction of numerical indices of myocardium perfusion by analysis of time/intensity curves related to the area of interest. The main problem in quantitative image sequence analysis is the heart movement, mainly due to patient respiration. We propose an automatic procedure based on image registration, segmentation of the myocardium, and extraction and analysis of time/intensity curves. The procedure requires a minimal user interaction, is robust with respect to the user input, and allows effective characterization of myocardial perfusion. The algorithm was tested on cardiac MR images acquired from voluntaries and in clinical routine.

  5. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    Science.gov (United States)

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task.

  6. Applications of arterial spin labeled MRI in the brain.

    Science.gov (United States)

    Detre, John A; Rao, Hengyi; Wang, Danny J J; Chen, Yu Fen; Wang, Ze

    2012-05-01

    Perfusion provides oxygen and nutrients to tissues and is closely tied to tissue function while disorders of perfusion are major sources of medical morbidity and mortality. It has been almost two decades since the use of arterial spin labeling (ASL) for noninvasive perfusion imaging was first reported. While initial ASL magnetic resonance imaging (MRI) studies focused primarily on technological development and validation, a number of robust ASL implementations have emerged, and ASL MRI is now also available commercially on several platforms. As a result, basic science and clinical applications of ASL MRI have begun to proliferate. Although ASL MRI can be carried out in any organ, most studies to date have focused on the brain. This review covers selected research and clinical applications of ASL MRI in the brain to illustrate its potential in both neuroscience research and clinical care.

  7. Diffusion and perfusion MRI of the lung and mediastinum

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Thomas, E-mail: Thomas.Henzler@umm.de [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University (Germany); Schmid-Bindert, Gerald [Interdisciplinary Thoracic Oncology, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University (Germany); Schoenberg, Stefan O.; Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University (Germany)

    2010-12-15

    With ongoing technical improvements such as multichannel MRI, systems with powerful gradients as well as the development of innovative pulse sequence techniques implementing parallel imaging, MRI has now entered the stage of a radiation-free alternative to computed tomography (CT) for chest imaging in clinical practice. Whereas in the past MRI of the lung was focused on morphological aspects, current MRI techniques also enable functional imaging of the lung allowing for a comprehensive assessment of lung disease in a single MRI exam. Perfusion imaging can be used for the visualization of regional pulmonary perfusion in patients with different lung diseases such as lung cancer, chronic obstructive lung disease, pulmonary embolism or for the prediction of postoperative lung function in lung cancer patients. Over the past years diffusion-weighted MR imaging (DW-MRI) of the thorax has become feasible with a significant reduction of the acquisition time, thus minimizing artifacts from respiratory and cardiac motion. In chest imaging, DW-MRI has been mainly suggested for the characterization of lung cancer, lymph nodes and pulmonary metastases. In this review article recent MR perfusion and diffusion techniques of the lung and mediastinum as well as their clinical applications are reviewed.

  8. Quantification of MRI measured myocardial perfusion reserve in healthy humans: a comparison with positron emission tomography

    DEFF Research Database (Denmark)

    Fritz-Hansen, Thomas; Hove, Jens D; Kofoed, Klaus F

    2008-01-01

    PURPOSE: To validate a noninvasive quantitative MRI technique, the K(i) perfusion method, for myocardial perfusion in humans using (13)N-ammonia PET as a reference method. MATERIALS AND METHODS: Ten healthy males (64 +/- 8 years) were examined with combined PET and MRI perfusion imaging at rest...... and during stress induced by dipyridamole in order to determine the myocardial perfusion reserve. Myocardial and blood time concentration curves obtained by Gd-DTPA-enhanced MRI and (13)N-ammonia PET were fitted by a two-compartment perfusion model. RESULTS: Mean perfusion values (+/-SD) derived from the MRI...... as a quantitative marker for myocardial perfusion in healthy humans....

  9. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    Science.gov (United States)

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good correlation between MRI and micro probe measurements. However, direct conversion of tissue pO2 to blood oxygen saturation by using the Hill equation is very limited. Furthermore, adverse effects of anesthesia and

  10. Nonrigid registration of myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur

    2005-01-01

    This paper describes a fully automatic registration of 10 multi-slice myocardial perfusion magnetic resonance image sequences. The registration of these sequences is crucial for the clinical interpretation, which currently is subjected to manual labour. The approach used in this study is a nonrig...

  11. Perfusion-weighted MRI of spinal dural arteriovenous fistula

    Energy Technology Data Exchange (ETDEWEB)

    Yanaka, K.; Matsumaru, Y.; Uemura, K.; Matsumura, A.; Nose, T. [Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Anno, I. [Department of Radiology, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan)

    2003-10-01

    A 72-year-old woman was admitted with rapidly progressive paraplegia and sphincter disturbance. T2-weighted images of the thoracic spine showed intramedullary high signal with flow voids suggesting dilated medullary veins. Conventional spinal angiography demonstrated a dural arteriovenous fistula draining into perimedullary veins. Perfusion-weighted MRI demonstrated a prolonged mean transit time and increased blood volume in the high-signal area. The loss of normal perfusion gradient and venous hypertension and were thought to produce these differences. The time-to-peak was almost identical in the high-signal and isointense areas, although the bolus of contrast medium arrived earlier in the former. Arteriovenous shunting was thought to cause faster inflow. These changes may have resulted in increased blood volume in the spinal cord. The high signal has been attributed to oedema due to venous congestion, but there has been no histological confirmation. Perfusion MRI in this case supports this hypothesis. (orig.)

  12. Demonstration of cerebral perfusion abnormalities in moyamoya disease using susceptibility perfusion- and diffusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Adams, W.M.; Laitt, R.D. [Department of Neuroradiology, Central Manchester Healthcare Trust, Oxford Road, Manchester M13 9WL (United Kingdom); Li, K.L.; Jackson, A. [Department of Diagnostic Radiology, University of Manchester, Manchester M13 9PT (United Kingdom); Sherrington, C.R.; Talbot, P. [Department of Neurology, Central Manchester Healthcare Trust, Oxford Road, Manchester M13 9WL (United Kingdom)

    1999-02-01

    We describe the use of diffusion-weighted imaging and perfusion MRI using a contrast-medium bolus in the preoperative investigation for young man presenting with a cerebral ischaemic episode as a manifestation of moyamoya disease. (orig.) With 6 figs., 21 refs.

  13. In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI.

    Science.gov (United States)

    Hartkamp, Nolan S; De Cocker, Laurens J; Helle, Michael; van Osch, Matthias J P; Kappelle, L Jaap; Bokkers, Reinoud P H; Hendrikse, Jeroen

    2013-12-01

    In this work a method is described to discern the perfusion territories in the cerebellum that are exclusively supplied by either or both vertebral arteries. In normal vascular anatomy the posterior inferior cerebellar artery (PICA) is supplied exclusively by its ipsilateral vertebral artery. The perfusion territories of the vertebral arteries were determined in 14 healthy subjects by means of a super-selective pseudo-continuous ASL sequence on a 3T MRI scanner. Data is presented to show the feasibility of determining the PICA perfusion territory. In 10 subjects it was possible to accurately determine both PICA perfusion territories. In two subjects it was possible to determine the perfusion territory of one PICA. Examples in which it was not possible to accurately determine the PICA territory are also given. Additionally, the high variability of the extent of the PICA territory is illustrated using a statistical map. The posterior surface of the cerebellum is entirely supplied by the PICA in six subjects. The most posterior part of the superior surface is supplied by the PICA in eight subjects, and the inferior half of the anterior surface in six subjects. The inferior part of the vermis is supplied by the PICA in all subjects. Two subjects were found with interhemispheric blood flow to both tonsils from one PICA without contribution from the contralateral PICA. With the method as presented, clinicians may in the future accurately classify cerebellar infarcts according to affected perfusion territories, which might be helpful in the decision whether a stenosis should be considered symptomatic.

  14. Measuring myocardial perfusion: the role of PET, MRI and CT.

    Science.gov (United States)

    Qayyum, A A; Kastrup, J

    2015-06-01

    Recently, focus has changed from anatomical assessment of coronary arteries towards functional testing to evaluate the effect of stenosis on the myocardium before intervention. Besides positron-emission tomography (PET), cardiac MRI (CMR), and cardiac CT are able to measure myocardial perfusion. Myocardial perfusion abnormalities are the first sign of the ischaemic cascade in the development of coronary artery disease (CAD). PET is considered the non-invasive clinical reference standard for absolute quantification of myocardial perfusion. The diagnostic and prognostic value of PET is well-known and is used in routine clinical practice. However, PET uses radioactive tracers and has a lower spatial resolution compared to CMR and CT. CMR and CT are emerging techniques in the field of myocardial perfusion imaging. CMR uses magnetic resonance to obtain images, whereas CT uses x-rays during first-pass of non-ionic and ionic contrast agents, respectively. Absolute quantification with CMR has yet to be established in routine clinical practice, while CT has yet to prove its diagnostic and prognostic value. The upcoming years may change the way we diagnose and treat patients suspected of having CAD with more precise methods for measuring myocardial perfusion. The aim of this comprehensive review is to discuss current and emerging imaging techniques used for myocardial perfusion imaging.

  15. Diffusion and Perfusion MRI in Acute Cerebral Ischemia

    Institute of Scientific and Technical Information of China (English)

    Tchoyoson CC Lim; Chong-Tin Tan

    2001-01-01

    Reeent advances in magnetic resonance imaging (MRI), in particular diffusion weighted imaging (DWI) and perfusion weighted imaging (PWI), have allowed clinicians to have the ability to differentiate between irreversible cerebral infarction and the potentially reversible ischemic penumbra. This article examines the principles and practice of DWI and PWI. With continued advances in thrombolysis and other therapy for acute cerebral ischemia, neuroimaging is poised to play an increasingly important role in decisionmaking in aeute stroke.

  16. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    DEFF Research Database (Denmark)

    Thomsen, H; Steffensen, E; Larsson, Elna-Marie

    2012-01-01

    technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose: To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC......, and glioblastomas. Results: rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r ¼ 0.60) and to the cerebellum (r ¼ 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated......-MRI using two different regions for normalization and two different measurement approaches. Material and Methods: Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and r...

  17. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  18. Quantification of MRI measured myocardial perfusion reserve in healthy humans: A comparison with positron emission tomography

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Hove, J.D.; Kofoed, K.F.;

    2008-01-01

    and during stress induced by dipyridamole in order to determine the myocardial perfusion reserve. Myocardial and blood time concentration curves obtained by Gd-DTPA-enhanced MRI and N-13-ammonia PET were fitted by a two-compartment perfusion model. Results: Mean perfusion values (+/- SD) derived from the MRI......Purpose: To validate a noninvasive quantitative MRI technique, the K-i perfusion method, for myocardial perfusion in humans using N-13-ammonia PET as a reference method. Materials and Methods: Ten healthy males (64 +/- 8 years) were examined with combined PET and MRI perfusion imaging at rest...... method at rest and at hyperemia were 80 +/- 20 and 183 +/- 56 mL/min/100 g, respectively. The same data for PET were 71 +/- 16 and 203 +/- 67 mL/min/100 g. A linear relationship was observed between MRI and PET-derived myocardial perfusion reserve for regional and global data. Linear regression...

  19. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacik, Jan; Fiehler, Jens [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neuroradiology; Reitz, Matthias; Schmidt, Nils O. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Neurosurgery; Bolar, Divya S. [Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA (United States). Radiology; Adalsteinsson, Elfar [Massachusetts Institute of Technology, Cambridge, MA (United States). Electrical Engineering and Computer Science

    2015-05-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml.kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s {sup and} -1] = 20.7/20.4/20.1, R2*[s {sup and} -1] = 31.6/29.6/25.9, R2'[s {sup and} 1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml.min {sup and} -1.100g {sup and} -1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood

  20. Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Lanzman, Rotem S.; Wittsack, Hans-Joerg; Bilk, Philip; Kroepil, Patric; Blondin, Dirk [University Hospital Duesseldorf, Department of Radiology, Duesseldorf (Germany); Martirosian, Petros; Schick, Fritz [University Hospital Tuebingen, Section for Experimental Radiology, Department of Diagnostic Radiology, Tuebingen (Germany); Zgoura, Panagiota; Voiculescu, Adina [University Hospital Duesseldorf, Department of Nephrology, Duesseldorf (Germany)

    2010-06-15

    To quantify renal allograft perfusion in recipients with stable allograft function and acute decrease in allograft function using nonenhanced flow-sensitive alternating inversion recovery (FAIR)-TrueFISP arterial spin labeling (ASL) MR imaging. Following approval of the local ethics committee, 20 renal allograft recipients were included in this study. ASL perfusion measurement and an anatomical T2-weighted single-shot fast spin-echo (HASTE) sequence were performed on a 1.5-T scanner (Magnetom Avanto, Siemens, Erlangen, Germany). T2-weighted MR urography was performed in patients with suspected ureteral obstruction. Patients were assigned to three groups: group a, 6 patients with stable allograft function over the previous 4 months; group b, 7 patients with good allograft function who underwent transplantation during the previous 3 weeks; group c, 7 allograft recipients with an acute deterioration of renal function. Mean cortical perfusion values were 304.8 {+-} 34.4, 296.5 {+-} 44.1, and 181.9 {+-} 53.4 mg/100 ml/min for groups a, b and c, respectively. Reduction in cortical perfusion in group c was statistically significant. Our results indicate that ASL is a promising technique for nonenhanced quantification of cortical perfusion of renal allografts. Further studies are required to determine the clinical value of ASL for monitoring renal allograft recipients. (orig.)

  1. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Song, H [Department of Radiology, University of Pittsburgh, Pittsburgh, PA (United States); Liu, W [Department of Bioengineering, UCLA, Los Angeles, CA (United States); Ruan, D [Department of Bioengineering, UCLA, Los Angeles, CA (United States); Department of Radiation Oncology, UCLA, Los Angeles, CA (United States); Jung, S [Department of Statistics, University of Pittsburgh, Pittsburgh, PA (United States); Gach, M [Department of Radiology, University of Pittsburgh, Pittsburgh, PA (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA (United States)

    2014-06-15

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition. During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human

  2. Arterial and portal venous liver perfusion using selective spin labelling MRI

    Energy Technology Data Exchange (ETDEWEB)

    Schalkx, Hanke J.; Petersen, Esben T.; Veldhuis, Wouter B.; Leeuwen, Maarten S. van; Bosch, Maurice A.A.J. van den [University Medical Center Utrecht, Department of Radiology, HP E.01.132, Postbus 85500, Utrecht (Netherlands); Peters, Nicky H.G.M. [Atrium Medical Center Parkstad, Department of Radiology, Heerlen (Netherlands); Pluim, Josien P.W.; Stralen, Marijn van [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2015-06-01

    To investigate the feasibility of selective arterial and portal venous liver perfusion imaging with spin labelling (SL) MRI, allowing separate labelling of each blood supply. The portal venous perfusion was assessed with a pulsed EPISTAR technique and the arterial perfusion with a pseudo-continuous sequence. To explore precision and reproducibility, portal venous and arterial perfusion were separately quantified in 12 healthy volunteers pre- and postprandially (before and after meal intake). In a subgroup of 6 volunteers, the accuracy of the absolute portal perfusion and its relative postprandial change were compared with MRI flow measurements of the portal vein. The portal venous perfusion significantly increased from 63 ± 22 ml/100g/min preprandially to 132 ± 42 ml/100g/min postprandially. The arterial perfusion was lower with 35 ± 22 preprandially and 22 ± 30 ml/100g/min postprandially. The pre- and postprandial portal perfusion using SL correlated well with flow-based perfusion (r{sup 2} = 0.71). Moreover, postprandial perfusion change correlated well between SL- and flow-based quantification (r{sup 2} = 0.77). The SL results are in range with literature values. Selective spin labelling MRI of the portal venous and arterial blood supply successfully quantified liver perfusion. This non-invasive technique provides specific arterial and portal venous perfusion imaging and could benefit clinical settings where contrast agents are contraindicated. (orig.)

  3. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability

    Science.gov (United States)

    Sourbron, S. P.; Buckley, D. L.

    2012-01-01

    The tracer-kinetic models developed in the early 1990s for dynamic contrast-enhanced MRI (DCE-MRI) have since become a standard in numerous applications. At the same time, the development of MRI hardware has led to increases in image quality and temporal resolution that reveal the limitations of the early models. This in turn has stimulated an interest in the development and application of a second generation of modelling approaches. They are designed to overcome these limitations and produce additional and more accurate information on tissue status. In particular, models of the second generation enable separate estimates of perfusion and capillary permeability rather than a single parameter Ktrans that represents a combination of the two. A variety of such models has been proposed in the literature, and development in the field has been constrained by a lack of transparency regarding terminology, notations and physiological assumptions. In this review, we provide an overview of these models in a manner that is both physically intuitive and mathematically rigourous. All are derived from common first principles, using concepts and notations from general tracer-kinetic theory. Explicit links to their historical origins are included to allow for a transfer of experience obtained in other fields (PET, SPECT, CT). A classification is presented that reveals the links between all models, and with the models of the first generation. Detailed formulae for all solutions are provided to facilitate implementation. Our aim is to encourage the application of these tools to DCE-MRI by offering researchers a clearer understanding of their assumptions and requirements.

  4. The effects of propofol on cerebral perfusion MRI in children

    Energy Technology Data Exchange (ETDEWEB)

    Harreld, Julie H.; Helton, Kathleen J.; Reddick, Wilburn E.; Glass, John O.; Sansgiri, Rakhee; Ji, Qing; Patay, Zoltan [St. Jude Children' s Research Hospital, Department of Radiological Sciences, Memphis, TN (United States); Kaddoum, Roland N.; Parish, Mary Edna [St. Jude Children' s Research Hospital, Department of Anesthesiology, Memphis, TN (United States); Li, Yimei; Feng, Tianshu [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Gajjar, Amar [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States)

    2013-08-15

    The effects of anesthesia are infrequently considered when interpreting pediatric perfusion magnetic resonance imaging (MRI). The objectives of this study were to test for measurable differences in MR measures of cerebral blood flow (CBF) and cerebral blood volume (CBV) between non-sedated and propofol-sedated children, and to identify influential factors. Supratentorial cortical CBF and CBV measured by dynamic susceptibility contrast perfusion MRI in 37 children (1.8-18 years) treated for infratentorial brain tumors receiving propofol (IV, n = 19) or no sedation (NS, n = 18) were compared between groups and correlated with age, hematocrit (Hct), end-tidal CO{sub 2} (ETCO{sub 2}), dose, weight, and history of radiation therapy (RT). The model most predictive of CBF and CBV was identified by multiple linear regression. Anterior cerebral artery (ACA) and middle cerebral artery (MCA) territory CBF were significantly lower, and MCA territory CBV greater (p = 0.03), in IV than NS patients (p = 0.01, 0.04). The usual trend of decreasing CBF with age was reversed with propofol in ACA and MCA territories (r = 0.53, r = 0.47; p < 0.05). ACA and MCA CBF (r = 0.59, 0.49; p < 0.05) and CBV in ACA, MCA, and posterior cerebral artery territories (r = 0.73, 0.80, 0.52; p < 0.05) increased with weight in propofol-sedated children, with no significant additional influence from age, ETCO{sub 2}, hematocrit, or RT. In propofol-sedated children, usual age-related decreases in CBF were reversed, and increases in CBF and CBV were weight-dependent, not previously described. Weight-dependent increases in propofol clearance may diminish suppression of CBF and CBV. Prospective study is required to establish anesthetic-specific models of CBF and CBV in children. (orig.)

  5. Choice of the regularization parameter for perfusion quantification with MRI

    Science.gov (United States)

    Sourbron, S.; Luypaert, R.; Van Schuerbeek, P.; Dujardin, M.; Stadnik, T.

    2004-07-01

    Truncated singular value decomposition (TSVD) is an effective method for the deconvolution of dynamic contrast enhanced (DCE) MRI. Two robust methods for the selection of the truncation threshold on a pixel-by-pixel basis—generalized cross validation (GCV) and the L-curve criterion (LCC)—were optimized and compared to paradigms in the literature. GCV and LCC were found to perform optimally when applied with a smooth version of TSVD, known as standard form Tikhonov regularization (SFTR). The methods lead to improvements in the estimate of the residue function and of its maximum, and converge properly with SNR. The oscillations typically observed in the solution vanish entirely, and perfusion is more accurately estimated at small mean transit times. This results in improved image contrast and increased sensitivity to perfusion abnormalities, at the cost of 1-2 min in calculation time and hyperintense clusters in the image. Preliminary experience with clinical data suggests that the latter problem can be resolved using spatial continuity and/or hybrid thresholding methods. In the simulations GCV and LCC are equivalent in terms of performance, but GCV thresholding is faster.

  6. MRI methods for pulmonary ventilation and perfusion imaging; Methoden der MRT zur Ventilations- und Perfusionsbildgebung der Lunge

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, G. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin, Basel (Switzerland); Bauman, G. [Universitaetsspital Basel, Klinik fuer Radiologie und Nuklearmedizin - Radiologische Physik, Basel (Switzerland)

    2016-02-15

    Separate assessment of respiratory mechanics, gas exchange and pulmonary circulation is essential for the diagnosis and therapy of pulmonary diseases. Due to the global character of the information obtained clinical lung function tests are often not sufficiently specific in the differential diagnosis or have a limited sensitivity in the detection of early pathological changes. The standard procedures of pulmonary imaging are computed tomography (CT) for depiction of the morphology as well as perfusion/ventilation scintigraphy and single photon emission computed tomography (SPECT) for functional assessment. Magnetic resonance imaging (MRI) with hyperpolarized gases, O{sub 2}-enhanced MRI, MRI with fluorinated gases and Fourier decomposition MRI (FD-MRI) are available for assessment of pulmonary ventilation. For assessment of pulmonary perfusion dynamic contrast-enhanced MRI (DCE-MRI), arterial spin labeling (ASL) and FD-MRI can be used. Imaging provides a more precise insight into the pathophysiology of pulmonary function on a regional level. The advantages of MRI are a lack of ionizing radiation, which allows a protective acquisition of dynamic data as well as the high number of available contrasts and therefore accessible lung function parameters. Sufficient clinical data exist only for certain applications of DCE-MRI. For the other techniques, only feasibility studies and case series of different sizes are available. The clinical applicability of hyperpolarized gases is limited for technical reasons. The clinical application of the techniques described, except for DCE-MRI, should be restricted to scientific studies. (orig.) [German] Die separate Beurteilung von Atemmechanik, Gasaustauschprozessen und Lungenzirkulation ist wesentlich fuer die Diagnose und Therapie von Lungenerkrankungen. Klinische Lungenfunktionstests sind aufgrund ihrer zumeist nur globalen Aussage oft nicht hinreichend spezifisch in der Differenzialdiagnostik oder eingeschraenkt sensitiv bei der

  7. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus;

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  8. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China); Sun Fei [GE Healthcare China (China)], E-mail: Fei.sun@med.ge.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com

    2009-04-15

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  9. A study on cerebral hemodynamic analysis of moyamoya disease by using perfusion MRI

    Science.gov (United States)

    Dong, Kyung-Rae; Goo, Eun-Hoe; Lee, Jae-Seung; Chung, Woon-Kwan

    2013-10-01

    This study examined the clinical applications of perfusion magnetic resonance imaging (MRI) in patients with moyamoya disease (MMD). Twenty-two patients with moyamoya disease (9 men and 13 women) with a mean age of 9.3 years (range: 4-22 years) were enrolled in this study. Perfusion MRI was performed by scanning the patients7.5 cm upward from the base of the cerebellum before their being process for post-treatment. The scan led to the acquisition of the following four map images: the cerebral blood volume (CBV), the cerebral blood flow (CBF), the mean transit time (MTT) for the contrast medium, and the time to peak (TTP) for the contrast medium. The lesions were assessed using the CBV, the CBF, the MTT and the TTP maps of perfusion MRI; the MTT and the TTP were measured in the lesion areas, as well as in the normal and the symmetric areas. Perfusion defects were recognizable in all four perfusion MRI maps, and the MTT and the TTP showed a conspicuous delay in the parts where perfusion defects were recognized. The MTT and the TTP images of perfusion MRI reflected a significant correlation between the degrees of stenosis and occlusion in the posterior cerebral artery (PCA), as well as the development of collateral vessels. The four perfusion MRI maps could be used to predict the degrees of stenosis and occlusion in the posterior circulation, as well as the development of the collateral vessels, which enabled a hemodynamic evaluation of the parts with perfusion defects. Overall, perfusion MRI is useful for the diagnosis and the treatment of moyamoya disease and can be applied to clinical practice.

  10. Thyroid perfusion imaging as a diagnostic tool in Graves' disease. Arterial spin labeling magnetic resonance imaging vs. colour-coded Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, K. [University Hospital of Duesseldorf (Germany). Dept. of Metabolic Diseases; Leibniz Center for Diabetes Research, Duesseldorf (Germany). Inst. for Clinical Diabetology; University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Schraml, C.; Schwenzer, N.F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology; Rietig, R.; Balletshofer, B. [University Hospital of Tuebingen (Germany). Div. of Endocrinology, Diabetes, Nephrology, Angiology, and Clinical Chemistry; Martirosian, P.; Haering, H.U.; Schick, F. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Section on Experimental Radiology; Claussen, C.D. [University Hospital of Tuebingen (Germany). Dept. of Radiology, Diagnostic and Interventional Radiology

    2012-12-15

    Purpose: Though increased thyroid perfusion assessed by colour-coded Doppler ultrasound (CDUS) is characteristic of Graves' disease (GD), sometimes perfusion assessment by CDUS is not possible. In these cases, arterial spin labelling (ASL), a novel magnetic resonance imaging (MRI) technique allowing non-invasive thyroid perfusion quantification, may have additional diagnostic value. We aimed to evaluate the potential of ASL-MRI for assessment of increased blood perfusion in patients with GD compared to CDUS. Materials and Methods: Thyroid perfusion was measured by CDUS (volume flow rate calculated from pulsed wave Doppler signals and vessel diameter) and ASL-MRI at 1.5 T in 7 patients with GD and 10 healthy controls. Results: In patients with GD, average perfusion in both thyroid lobes was markedly increased compared to controls. Both techniques applied for volume related perfusion as well as absolute volume flow in thyroid feeding vessels provided similar results (all p = 0.0008). Using a cut-off value of 22 ml/min for the volume flow rate assessed by CDUS in the four feeding vessels allowed discrimination between patients with GD and controls in all cases. After adjusting thyroid perfusion for the differences in organ volume, both CDUS and ASL revealed also complete discrimination between health and disease. Conclusion: Thyroid perfusion measurement by ASL-MRI reliably discriminate GD from normal thyroid glands. In patients in whom thyroid arteries cannot be depicted by CDUS for technical or anatomical reasons, ASL-MRI may have additional diagnostic value. (orig.)

  11. Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

    Energy Technology Data Exchange (ETDEWEB)

    Savvopoulou, Vasiliki; Vlahos, Lampros; Moulopoulos, Lia Angela [University of Athens, Areteion Hospital, Department of Radiology, Medical School, Athens (Greece); Maris, Thomas G. [University of Crete, Deparment of Medical Physics, Faculty of Medicine, Heraklion (Greece)

    2008-09-15

    To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males. (orig.)

  12. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis - initial results

    Energy Technology Data Exchange (ETDEWEB)

    Eichinger, Monika; Puderbach, Michael; Zuna, Ivan; Kauczor, Hans-Ulrich [Deutsches Krebsforschungszentrum (DKFZ), Department of Radiology (E010), Heidelberg (Germany); Fink, Christian [Institut fuer Klinische Radiologie, Klinikum der LMU Grosshadern, Department of Radiology, Muenchen (Germany); Gahr, Julie; Mueller, Frank-Michael [Universitaetskinderklinik III Heidelberg, Department of Pediatric Pulmonology, Cystic Fibrosis Centre and Infectious Diseases, Heidelberg (Germany); Ley, Sebastian [Deutsches Krebsforschungszentrum (DKFZ), Department of Radiology (E010), Heidelberg (Germany); Universitaetskinderklinik Heidelberg, Department of Pediatric Radiology, Heidelberg (Germany); Plathow, Christian [Eberhard-Karls University, Department of Diagnostic Radiology, Tuebingen (Germany); Tuengerthal, Siegfried [Thoraxklinik am Universitaetsklinikum Heidelberg, Department of Radiology, Heidelberg (Germany)

    2006-10-15

    This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/{alpha}/ST: 600 ms/28 ms/180 /6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/{alpha}: 0.8/1.9 ms/40 ), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P<0.0001). Severe morphological changes led to perfusion defects (97%, P<0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients. (orig.)

  13. Repeated quantitative perfusion and contrast permeability measurement in the MRI examination of a CNS tumor

    Energy Technology Data Exchange (ETDEWEB)

    Vonken, E.P.A.; Osch, M.J.P. van; Willems, P.W.A.; Zwan, A. van der; Bakker, C.J.G.; Viergever, M.A.; Mali, W.P.T.M. [University Hospital Utrecht (Netherlands)

    2000-09-01

    This study reports on the results of quantitative MRI perfusion and contrast permeability measurement on two occasions in one patient. The measurements were separated 81 days in time. The tumor grew considerably in this period, but no change was found with respect to perfusion and contrast permeability. Non-involved white matter values were reproduced to demonstrate repeatability. The presented approach to dynamic susceptibility contrast MRI allows fast and repeatable quantitative assessment of perfusion and is easily integrated in a conventional brain tumor protocol. (orig.)

  14. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  15. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI

    NARCIS (Netherlands)

    van Osch, MJP; Vonken, EJPA; Bakker, CJG; Viergever, MA

    2001-01-01

    To quantify cerebral perfusion with dynamic susceptibility contrast MRI (DSC-MRI), one needs to measure the arterial input function (AIF). Conventionally, one derives the contrast concentration from the DSC sequence by monitoring changes in either the amplitude or the phase signal on the assumption

  16. PET and MRI for the evaluation of regional myocardial perfusion and wall thickening after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Slart, Riemer H.J.A.; Golestani, Reza; Glaudemans, Andor W.J.M. [University Medical Center Groningen, University of Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Glauche, Julius; Jansen, Jan W. [University Medical Center Groningen, University of Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, University of Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); Dierckx, Rudi A.J.O. [University Medical Center Groningen, University of Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); Ghent University Hospital, Department of Nuclear Medicine, Ghent (Belgium); Oudkerk, Matthijs; Willems, Tineke P. [University Medical Center Groningen, University of Groningen, Department of Radiology, Groningen (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, University of Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, University of Groningen, Clinical and Hospital Pharmacy, Groningen (Netherlands); Tio, Rene A. [University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen (Netherlands)

    2012-06-15

    Deterioration of left ventricular (LV) function after myocardial infarction (MI) is a major cause of heart failure. Myocardial perfusion performance may play an important role in deterioration or improvement in LV function after MI. The aim of this study was to evaluate the myocardial perfusion reserve (MPR) and stress perfusion in deteriorating and non-deteriorating LV segments in patients after MI by PET and MRI, respectively. Regional wall thickening of 352 segments in 22 patients was assessed at 4 and 24 months after MI by cardiac MRI. PET was performed to evaluate MPR and adenosine stress {sup 13}N-ammonia perfusion 24 months after MI. Segments were divided into four groups according to deterioration or improvement in wall thickening. Normal functional segments at 4 months after MI that remained stable had a significantly higher mean MPR and mean stress perfusion PET value than deteriorated segments (p < 0.001). Furthermore, dysfunctional segments that improved had a significantly higher mean stress perfusion PET value than dysfunctional segments that remained dysfunctional (p < 0.001). This study demonstrated the additional value of myocardial perfusion assessment in relation to the functional integrity of the injured myocardium. Segmental functional LV improvement after MI was associated with better regional myocardial perfusion characteristics. Furthermore, the amount of wall thickening reduction was associated with regional myocardial perfusion abnormalities in patients after MI. (orig.)

  17. pc-ASL 技术在桥小脑角区肿瘤术后复发评估%The diagnostic value of PCASL MRI technique in evaluating post-operative recurrence of cerebellopontine angle tumor

    Institute of Scientific and Technical Information of China (English)

    石凤祥; 王玉凤; 王海辉; 徐田勇; 荣凡令

    2015-01-01

    目的:探讨3D FSE 的 pc-ASL 技术对桥小脑角区肿瘤术后复发的诊断价值。方法:选取21例桥小脑角区占位性病变术后患者,行常规平扫及增强序列,在增强前扫描 pc-ASL 序列。将 pc-ASL 功能图像与增强后 Ax 3D T1 WI 融合,测量异常强化区域及对侧正常脑组织的 CBF 值,评价是否存在肿瘤复发。结果:全部21例手术区出现异常强化区患者,13例为复发。17例患者行 DSC-PWI 失败,图像无法满足诊断需求。全部21例 pc-ASL 检查成功。肿瘤复发区域的CBF 值为(64.2±3.03)mL/100g/min,对侧正常脑实质的 CBF 值为(52.5±1.89)mL/100g/min。肿瘤复发区域的 CBF值明显高于对照侧脑组织,两者之间差异有统计学意义(t=12.498,P <0.05)。结论:基于3D FSE 的 pc-ASL 序列安全无创,无需注射对比剂,磁敏感效应影响小,可以用于评估桥小脑角区肿瘤有无术后复发。%Objective:The purpose of this study was to assess the diagnostic value of 3D FSE pseudo-continuous arte-rial spin labeling (pCASL)technique in evaluating post-operative recurrence of cerebellopontine angle tumor.Methods:21 post-operative patients with cerebellopontine angle tumor underwent pre-and post-contrast MRI scans.Perfusion-weighted MR imaging (PWI)with pCASL technique was performed before contrast injection.The CBF maps generated from pCASL were fused with post-contrast 3D T1 WI.The CBF values of abnormal enhanced area and contralateral normal brain tissue were measured and statistically analyzed to assess whether there was a recurrence of the neoplasm.Results:The neoplasm recurrence was found in 13/21 cases.DSC-PWI failed to generate functional maps in 17/21 cases due to the susceptibility ar-tifact;however,all 21 cases successfully underwent pCASL scan using 3D-FSE sequence.The mean CBF values were (64.2 ±3.03)mL/100g/min for the recurrent neoplasm and (52.5 ±1.89)mL/100g/min for

  18. Suppression of pulmonary vasculature in lung perfusion MRI using correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Risse, Frank; Semmler, Wolfhard [Deutsches Krebsforschungszentrum, Department of Medical Physics in Radiology, Heidelberg (Germany); Kuder, Tristan A. [Deutsches Krebsforschungszentrum, Department of Medical Physics in Radiology, Heidelberg (Germany); Deutsches Krebsforschungszentrum, Department of Radiology, Heidelberg (Germany); Kauczor, Hans-Ulrich [University of Heidelberg, Department of Diagnostic Radiology, Heidelberg (Germany); Fink, Christian [University Medical Center Mannheim, Medical Faculty Mannheim - University of Heidelberg, Department of Clinical Radiology and Nuclear Medicine, Mannheim (Germany); Universitaetsmedizin Mannheim, Institut fuer Klinische Radiologie und Nuklearmedizin, Mannheim (Germany)

    2009-11-15

    The purpose of the study was to evaluate the feasibility of suppressing the pulmonary vasculature in lung perfusion MRI using cross-correlation analysis (CCA). Perfusion magnetic resonance imaging (MRI) (3D FLASH, TR/TE/flip angle: 0.8 ms/2.1 ms/40 ) of the lungs was performed in seven healthy volunteers at 1.5 Tesla after injection of Gd-DTPA. CCA was performed pixel-wise in lung segmentations using the signal time-course of the main pulmonary artery and left atrium as references. Pixels with high correlation coefficients were considered as arterial or venous and excluded from further analysis. Quantitative perfusion parameters [pulmonary blood flow (PBF) and volume (PBV)] were calculated for manual lung segmentations separately, with the entire left and right lung with all intrapulmonary vessels (IPV) included, excluded manually or excluded using CCA. The application of CCA allowed reliable suppression of hilar and large IPVs. Using vascular suppression by CCA, perfusion parameters were significantly reduced (p {<=} 0.001). The reduction was 8% for PBF and 13% for PBV compared with manual exclusion and 15% for PBF and 25% for PBV when all vessel structures were included. The application of CCA improves the visualisation and quantification of lung perfusion in MRI. Overestimation of perfusion parameters caused by pulmonary vessels is significantly reduced. (orig.)

  19. New method for 3D parametric visualization of contrast-enhanced pulmonary perfusion MRI data

    Energy Technology Data Exchange (ETDEWEB)

    Kuder, Tristan A.; Eichinger, Monika; Ley, Sebastian; Puderbach, Michael; Kauczor, Hans-Ulrich [Deutsches Krebsforschungszentrum, Department of Radiology, E010, Heidelberg (Germany); Risse, Frank [Deutsches Krebsforschungszentrum, Department of Medical Physics in Radiology, Heidelberg (Germany); Fink, Christian [Deutsches Krebsforschungszentrum, Department of Radiology, E010, Heidelberg (Germany); Medical Faculty Mannheim - University of Heidelberg, Department of Clinical Radiology, University Hospital Mannheim, Mannheim (Germany)

    2008-02-15

    Three-dimensional (3D) dynamic contrast-enhanced magnetic resonance imaging (3D DCE-MRI) has been proposed for the assessment of regional perfusion. The aim of this work was the implementation of an algorithm for a 3D parametric visualization of lung perfusion using different cutting planes and volume rendering. Our implementation was based on 3D DCE-MRI data of the lungs of five patients and five healthy volunteers. Using the indicator dilution theory, the regional perfusion parameters, tissue blood flow, blood volume and mean transit time were calculated. Due to the required temporal resolution, the volume elements of dynamic MR data sets show a reduced spatial resolution in the z-direction. Therefore, perfusion parameter volumes were interpolated. Linear interpolation and a combination of linear and nearest-neighbor interpolation were evaluated. Additionally, ray tracing was applied for 3D visualization. The linear interpolation algorithm caused interpolation errors at the lung borders. Using the combined interpolation, visualization of perfusion information in arbitrary cutting planes and in 3D using volume rendering was possible. This facilitated the localization of perfusion deficits compared with the coronal orientated source data. The 3D visualization of perfusion parameters using a combined interpolation algorithm is feasible. Further studies are required to evaluate the additional benefit from the 3D visualization. (orig.)

  20. Impact of severe extracranial ICA stenosis on MRI perfusion and diffusion parameters in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Philipp eKaesemann

    2014-12-01

    Full Text Available Purpose:The aim of this study was to investigate the impact of a coexisting internal carotid artery (ICA stenosis on lesion volumes as well as diffusion and perfusion parameters in acute ischemic stroke resulting from middle cerebral artery (MCA occlusion.Material and Methods:MRI data of 32 patients with MCA occlusion with or without additional ICA stenosis imaged within 4.5 hours of symptom onset were analyzed. Both groups consisted of 16 patients. Acute diffusion lesions were semi-automatically segmented in apparent diffusion coefficient (ADC MRI datasets. Perfusion maps of cerebral blood volume (CBV, cerebral blood flow (CBF, mean transit time (MTT and Tmax were calculated using perfusion-weighted MRI datasets. Tissue-at-risk (TAR volumes were generated by subtracting the ADC lesion from the hypoperfusion lesion defined by Tmax >6s. Median ADC and perfusion parameter values were extracted separately for the diffusion lesion and tissue-at-risk and used for statistical analysis.Results:No significant differences were found between the groups regarding the diffusion lesion and tissue-at-risk volumes. Statistical analysis of diffusion and perfusion parameters revealed CBV as the only parameter with a significant difference (p=0.009 contributing a small effect (ɛ²=0.11 to the group comparison with higher CBV values for the patient group with a coexisting ICA stenosis, while no significant effects were found for the other diffusion and perfusion parameters analyzed.Conclusion:The results of this study suggest that a coexisting ICA stenosis does not have a strong effect on tissue status or perfusion parameters in acute stroke patients except for a moderate elevation of CBV. This may reflect improved collateral circulation or ischemic preconditioning in patients with a pre-existing proximal stenosis balancing impaired perfusion from the stenosis.

  1. Neuroradiological findings in primary progressive aphasia: CT, MRI and cerebral perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sinnatamby, R. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Antoun, N.A. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Freer, C.E.L. [Dept. of Radiology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Miles, K.A. [Dept. of Nuclear Medicine, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom); Hodges, J.R. [Dept. of Neurology, Addenbrooke`s Hospital NHS Trust, Cambridge (United Kingdom)

    1996-04-01

    Primary progressive aphasia (PPA) is defined as progressive decline in language for 2 or more years with preservation of activities of daily living and general cognitive functions. Whereas the clinical features of this syndrome have been well documented, the neuroradiological findings have not been studied systematically. We studied 13 patients with PPA retrospectively: 10 underwent CT, 12 MRI and 12 cerebral perfusion studies using {sup 99m}Tc-HMPAO SPECT. CT and MR images were scored for focal atrophy by two independent assessors. Initial qualitative assessment of SPECT images was confirmed by quantitative analysis. CY was normal in 5 patients. Focal atrophy, affecting predominantly the left temporal lobe, was seen in 4 of 10 patients on CT, and 10 of 12 on MRI. Atrophy was localised primarily to the superior and middle temporal gyri on MRI. All 12 patients who underwent SPECT had unilateral temporal lobe perfusion defects, in 2 patients of whom MRI was normal. CT is relatively insensitive to focal abnormalities in PPA; MRI and SPECT are the imaging modalities of choice. MRI allows accurate, specific localisation of atrophy with the temporal neocortex. SPECT may reveal a functional decrease in cerebral perfusion prior to establishment of structural change. (orig.)

  2. Arterial spin labeling perfusion MRI in cerebral ischaemia

    NARCIS (Netherlands)

    Bokkers, R.P.H.

    2011-01-01

    Cerebral perfusion is the basis for the delivery of oxygen and nutrients to the brain. Brain tissue can become damaged when there is a shortage in the blood supply. Basic physiological functions such as synaptic transmission, the membrane ion pump and energy metabolism are disrupted and within minut

  3. Quantification of myocardial perfusion using free-breathing MRI and prospective slice tracking

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Kelle, Sebastian; Ringgaard, Steffen

    2009-01-01

    Quantification of myocardial perfusion using first-pass magnetic resonance imaging (MRI) is hampered by respiratory motion of the heart. Prospective slice tracking (PST) potentially overcomes this problem, and may provide an attractive alternative or supplement to current breath-hold techniques...

  4. Unsupervised motion-compensation of multi-slice cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Ólafsdóttir, Hildur; Larsson, Henrik B. W.

    2005-01-01

    This paper presents a novel method for registration of single and multi-slice cardiac perfusion MRI. Utilising computer intensive analyses of variance and clustering in an annotated training set off-line, the presented method is capable of providing registration without any manual interaction...

  5. Unsupervised motion-compensation of multi-slice cardiac perfusion MRI

    DEFF Research Database (Denmark)

    Stegmann, M.B.; Ólafsdóttir, H; Larsson, H.B.W.

    2005-01-01

    This paper presents a novel method for registration of single and multi-slice cardiac perfusion MRI. Utilising off-line computer intensive analyses of variance and clustering in an annotated training set, the presented method is capable of providing registration without any manual interaction...

  6. Motion-compensation of cardiac perfusion MRI using a statistical texture ensemble

    DEFF Research Database (Denmark)

    Stegmann, M.B.; Larsson, H.B.W.

    This paper presents a novel method for segmentation of cardiac perfusion MRI. By performing complex analyses of variance and clustering in an annotated training set off-line, the presented method provides real-time segmentation in an on-line setting. This renders the method feasible for e.g. anal...

  7. Brain/language relationships identified with diffusion and perfusion MRI: Clinical applications in neurology and neurosurgery.

    Science.gov (United States)

    Hillis, Argye E

    2005-12-01

    Diffusion and perfusion MRI have contributed to stroke management by identifying patients with tissue "at risk" for further damage in acute stroke. However, the potential usefulness of these imaging modalities, along with diffusion tensor imaging, can be expanded by using these imaging techniques with concurrent assessment of language and other cognitive skills to identify the specific cognitive deficits that are associated with diffusion and perfusion abnormalities in particular brain regions. This paper illustrates how this combined behavioral and imaging methodology can yield information that is useful for predicting specific positive effects of intervention to restore blood flow in hypoperfused regions of brain identified with perfusion MRI, and for predicting negative effects of resection of particular brain regions or fiber bundles. Such data allow decisions about neurological and neurosurgical interventions to be based on specific risks and benefits in terms of functional consequences.

  8. UMMPerfusion: an open source software tool towards quantitative MRI perfusion analysis in clinical routine.

    Science.gov (United States)

    Zöllner, Frank G; Weisser, Gerald; Reich, Marcel; Kaiser, Sven; Schoenberg, Stefan O; Sourbron, Steven P; Schad, Lothar R

    2013-04-01

    To develop a generic Open Source MRI perfusion analysis tool for quantitative parameter mapping to be used in a clinical workflow and methods for quality management of perfusion data. We implemented a classic, pixel-by-pixel deconvolution approach to quantify T1-weighted contrast-enhanced dynamic MR imaging (DCE-MRI) perfusion data as an OsiriX plug-in. It features parallel computing capabilities and an automated reporting scheme for quality management. Furthermore, by our implementation design, it could be easily extendable to other perfusion algorithms. Obtained results are saved as DICOM objects and directly added to the patient study. The plug-in was evaluated on ten MR perfusion data sets of the prostate and a calibration data set by comparing obtained parametric maps (plasma flow, volume of distribution, and mean transit time) to a widely used reference implementation in IDL. For all data, parametric maps could be calculated and the plug-in worked correctly and stable. On average, a deviation of 0.032 ± 0.02 ml/100 ml/min for the plasma flow, 0.004 ± 0.0007 ml/100 ml for the volume of distribution, and 0.037 ± 0.03 s for the mean transit time between our implementation and a reference implementation was observed. By using computer hardware with eight CPU cores, calculation time could be reduced by a factor of 2.5. We developed successfully an Open Source OsiriX plug-in for T1-DCE-MRI perfusion analysis in a routine quality managed clinical environment. Using model-free deconvolution, it allows for perfusion analysis in various clinical applications. By our plug-in, information about measured physiological processes can be obtained and transferred into clinical practice.

  9. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSC-MRI.

    Science.gov (United States)

    Pizzini, Francesca B; Farace, Paolo; Manganotti, Paolo; Zoccatelli, Giada; Bongiovanni, Luigi G; Golay, Xavier; Beltramello, Alberto; Osculati, Antonio; Bertini, Giuseppe; Fabene, Paolo F

    2013-07-01

    Non-invasive pulsed arterial spin labeling (PASL) MRI is a method to study brain perfusion that does not require the administration of a contrast agent, which makes it a valuable diagnostic tool as it reduces cost and side effects. The purpose of the present study was to establish the viability of PASL as an alternative to dynamic susceptibility contrast (DSC-MRI) and other perfusion imaging methods in characterizing changes in perfusion patterns caused by seizures in epileptic patients. We evaluated 19 patients with PASL. Of these, the 9 affected by high-frequency seizures were observed during the peri-ictal period (within 5hours since the last seizure), while the 10 patients affected by low-frequency seizures were observed in the post-ictal period. For comparison, 17/19 patients were also evaluated with DSC-MRI and CBF/CBV. PASL imaging showed focal vascular changes, which allowed the classification of patients in three categories: 8 patients characterized by increased perfusion, 4 patients with normal perfusion and 7 patients with decreased perfusion. PASL perfusion imaging findings were comparable to those obtained by DSC-MRI. Since PASL is a) sensitive to vascular alterations induced by epileptic seizures, b) comparable to DSC-MRI for detecting perfusion asymmetries, c) potentially capable of detecting time-related perfusion changes, it can be recommended for repeated evaluations, to identify the epileptic focus, and in follow-up and/or therapy-response assessment.

  10. Method for performing cerebral perfusion-weighted MRI in neonates

    Energy Technology Data Exchange (ETDEWEB)

    Laswad, Tarek; Alamo, Leonor; Meuli, Reto; Gudinchet, Francois [University of Lausanne (CH). Radiology Department, Lausanne (Switzerland)]|[Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland); Wintermark, Pia; Moessinger, Adrien [University of Lausanne, Division of Neonatology, Lausanne (Switzerland)]|[Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland)

    2009-03-15

    Cerebral perfusion-weighted imaging (PWI) in neonates is known to be technically difficult and there are very few published studies on its use in preterm infants. In this paper, we describe one convenient method to perform PWI in neonates, a method only recently used in newborns. A device was used to manually inject gadolinium contrast material intravenously in an easy, quick and reproducible way. We studied 28 newborn infants, with various gestational ages and weights, including both normal infants and those suffering from different brain pathologies. A signal intensity-time curve was obtained for each infant, allowing us to build perfusion maps. This technique offered a fast and easy method to manually inject a bolus gadolinium contrast material, which is essential in performing PWI in neonates. Cerebral PWI is technically feasible and reproducible in neonates of various gestational age and with various pathologies. (orig.)

  11. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  12. Quantification of myocardial perfusion based on signal intensity of flow sensitized MRI

    Science.gov (United States)

    Abeykoon, Sumeda B.

    maximum percentage deviation is about 5%. Then the SI-method was used in comparison to a delayed enhanced method to qualitatively and quantitatively assess perfusion deficits in an ischemia-reperfusion (IR) mouse model. The infarcted region of the perfusion map is comparable to the hyper intense region of the delayed enhanced image of the IR mouse. The SI method also used to record a chronological comparison of perfusion on delta sarcoglycan null (DSG) mice. Perfusion of DSG and wild-type (WT) mice at ages of 12 weeks and 32 weeks were compared and percentage change of perfusion was estimated. The result shows that in DSG mice perfusion changes considerably. Finally, the SI method was implemented on a 3 Tesla Philip scanner by modifying to data acquisition method. The perfusion obtained in this is consistent with literature values but further adjustment of pulse sequence and modification of numerical solution is needed. The most important benefit of the SI method is that it reduces scan time 30%--40% and lessens motion artifacts of images compared to the T1 method. This study demonstrates that the signal intensity-based ASL method is a robust alternative to the conventional T1-method.

  13. Unusual MRI findings of dural arteriovenous fistula: Isolated perfusion lesions mimicking TIA

    Directory of Open Access Journals (Sweden)

    Kim Yong-Won

    2012-08-01

    Full Text Available Abstract Background The diagnosis of transient ischemic attack (TIA based on clinical history and objective findings, even including multiparametric MRI, can be misleading. We report two patients who presented with TIA-like deficits with isolated perfusion lesions in corresponding areas but were finally diagnosed as transient neurological symptoms associated with dural arteriovenous fistula (dAVF. Case presentation Two patients presented with transient focal neurological symptoms lasting less than one hour. An isolated perfusion deficit with no diffusion change in the clinically relevant area was shown on brain MRI, indicating transient ischemia as the most plausible cause of neurological symptoms. However, cerebral angiography let to diagnosis of dAVF in both cases. Intracerebral hemorrhage occurred after the initial diagnosis of TIA in one patient, and the small area of perfusion abnormality accompanied by the enlarged cortical vein in the other case helped to identify the dAVF through the further investigation. The pattern of perfusion-weighted imaging in both cases revealed increase of mean transit time and relative cerebral blood volume denoting the venous congestion in a clinically corresponding area. Conclusion Reported cases are uncommon clinical presentation of a dAVF, which can be misdiagnosed as TIA on clinical grounds. In rare cases, the isolated perfusion deficits could be attributable to venous congestion, despite the similar pattern of clinical presentation, such as with TIA.

  14. Value of dynamic susceptibility contrast perfusion MRI in the acute phase of transient global amnesia.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available Transient global amnesia (TGA is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET or single-photon emission computed tomography (SPECT. In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI in TGA in the acute phase.From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF and volume (CBV were generated and analyzed by use of Signal Processing In NMR-Software (SPIN. CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB Software Library (FSL.Five TGA patients were included (2 men, 3 women. On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI

  15. Diffusion-weighted MRI, dynamic susceptibility contrast MRI and ultrasound perfusion quantification of denervated muscle in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Goyault, G.; Beregi, J.P. [University Hospital, Department of Cardiovascular imaging, Cardiologic Hospital, Lille (France); Bierry, G.; Holl, N.; Dietemann, J.L.; Kremer, S. [University Hospital, Department of Neuroradiology, Strasbourg (France); Lhermitte, B. [University Hospital, Department of Pathology, Strasbourg (France)

    2012-01-15

    The purpose of this study was to assess denervated muscle perfusion using dynamic susceptibility contrast MRI (DSCMRI) and contrast-enhanced ultrasound (CEUS), and to measure denervated muscle apparent diffusion coefficient (ADC) on b1000 diffusion-weighted MRI (DWMRI) at 3 T in order to clarify whether muscle denervation leads to an increase in the extracellular extravascular space, or an increase in blood flow - or both. Axotomy of the right sciatic nerve of six white rabbits was performed at day 0. At day 9, hind limb muscles MRI and CEUS were performed to assess the consequences of denervation and both semimembranosus muscles of each rabbit were explanted for histological studies. Signal intensity on T2- and T1-weighted MRI, ADC on DWMRI, maximum signal drop (MSD) on DSCMRI and the area under the curve (AUC) on CEUS were measured over circular regions of interest (ROI), in both semimembranosus muscles. Non-parametric Wilcoxon matched-pairs tests were used to assess the mean differences between denervated and normal muscles. T2 fat-saturated (FS) MRI studies showed a strong signal in the right semimembranosus muscles compared with the left side, and gadolinium enhancement was observed on T1 FS MRI. Denervated muscles show a significant increase in ADC on DWMRI (p < 0.01) and a significant signal enhancement on DSCMR imaging (p < 0.05) and on first-pass CEUS (p < 0.05). The results of this study - based on perfusion- and diffusion-weighted images - suggest that, after denervation, both increased blood flow through muscle tissue and expansion of the extracellular water volume are present. (orig.)

  16. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression

    Science.gov (United States)

    Wan, Bing; Wang, Siqi; Tu, Mengqi; Wu, Bo; Han, Ping; Xu, Haibo

    2017-01-01

    Abstract Background: The purpose of this meta-analysis was to evaluate the diagnostic accuracy of perfusion magnetic resonance imaging (MRI) as a method for differentiating glioma recurrence from pseudoprogression. Methods: The PubMed, Embase, Cochrane Library, and Chinese Biomedical databases were searched comprehensively for relevant studies up to August 3, 2016 according to specific inclusion and exclusion criteria. The quality of the included studies was assessed according to the quality assessment of diagnostic accuracy studies (QUADAS-2). After performing heterogeneity and threshold effect tests, pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Publication bias was evaluated visually by a funnel plot and quantitatively using Deek funnel plot asymmetry test. The area under the summary receiver operating characteristic curve was calculated to demonstrate the diagnostic performance of perfusion MRI. Results: Eleven studies covering 416 patients and 418 lesions were included in this meta-analysis. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.88 (95% confidence interval [CI] 0.84–0.92), 0.77 (95% CI 0.69–0.84), 3.93 (95% CI 2.83–5.46), 0.16 (95% CI 0.11–0.22), and 27.17 (95% CI 14.96–49.35), respectively. The area under the summary receiver operating characteristic curve was 0.8899. There was no notable publication bias. Sensitivity analysis showed that the meta-analysis results were stable and credible. Conclusion: While perfusion MRI is not the ideal diagnostic method for differentiating glioma recurrence from pseudoprogression, it could improve diagnostic accuracy. Therefore, further research on combining perfusion MRI with other imaging modalities is warranted. PMID:28296759

  17. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    Science.gov (United States)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  18. [Pulmonary blood flow measurement using magnetic resonance imaging (MRI) without contrast medium;comparison of phase contrast MRI and perfusion-ventilation scintigraphy].

    Science.gov (United States)

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Kikuchi, Keisuke; Saito, Hirotsugu

    2014-02-01

    To define the accuracy of pulmonary arterial blood flow (PA-flow) measured by phase contrast magnetic resonance imaging (PC-MRI), we compared the PA-flow data of PC-MRI with the data of perfusion-ventilation lung scintigraphy. Eighteen patients who preoperatively underwent PA-flow measurement using PC-MRI and perfusion-ventilation lung scintigraphy were evaluated. The PA-flow (cm3/sec) of MRI was calculated by multiplying maximum velocity (cm/sec) by region of interest (ROI) area (cm2) of measured main pulmonary artery using phase contrast method. The left to right ratio (R/L ratio) of PA-flow measured by PC-MRI was compared with the R/L ratios of the date of perfusion-ventilation lung scintigraphy. The R/L ratios of PC-MRI and perfusion lung scintigraphy were 1.43 ± 1.07 and 1.35 ± 0.82, respectively. Both ratios showed excellent correlation( y=-0.50+1.30x, r=0.99,pperfusion lung scintigraphy in the patients with a past history of lung resection, even if their R/L ratios of perfusion lung scintigraphy differed from those of ventilation lung scintigraphy. These results revealed that the PA-flow could be accurately measured by PC-MRI without contrast medium and nuclear medicine instruments.

  19. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications.

    Science.gov (United States)

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-01-01

    Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.

  20. Intra-procedural Transcatheter Intraarterial Perfusion MRI as a Predictor of Tumor Response to Chemoembolization for Hepatocellular Carcinoma

    Science.gov (United States)

    Wang, Dingxin; Gaba, Ron C.; Jin, Brian; Riaz, Ahsun; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Ragin, Ann B.; Kulik, Laura M.; Mulcahy, Mary F.; Salem, Riad; Larson, Andrew C.; Omary, Reed A.

    2011-01-01

    Rationale and Objectives To prospectively test the hypothesis that transcatheter intraarterial perfusion magnetic resonance imaging (TRIP-MRI) measured semi-quantitative perfusion reductions during transcatheter arterial chemoembolization of hepatocellular carcinoma (HCC) are associated with tumor response. Materials and Methods Twenty eight patients (mean age 63 years; range 47–87 years) with 29 tumors underwent chemoembolization in a combined MR-interventional radiology suite. Intra-procedural tumor perfusion reductions during chemoembolization were monitored using TRIP-MRI. Pre- and post-–chemoembolization semi-quantitative area under the time-signal enhancement curve (AUC) tumor perfusion was measured. Mean tumor perfusion pre- and post-chemoembolization were compared using a paired t-test. Imaging follow-up was performed one to three months after chemoembolization. We studied the relationship between short-term tumor imaging response and intra-procedural perfusion reductions using univariate and multivariate analysis. Results Intra-procedural AUC perfusion value decreased significantly after chemoembolization (342.1 versus 158.6 arbitrary unit, P < 0.001). Twenty six patients with 27 HCCs (n = 27) had follow-up imaging at mean 39 days post-chemoembolization. Favorable response was present in 67% of these treated tumors according to necrosis criteria. 15 of 16 (94%) tumors with 25–75% perfusion reductions showed necrosis treatment response compared to only 3 of 11 (27%) tumors with perfusion reductions outside the above range (P = 0.001). Multivariate logistic regression indicated that intra-procedural tumor perfusion reduction and Child-Pugh class were independent factors associated significantly with tumor response (P = 0.012 and 0.047, respectively). Conclusion TRIP-MRI can successfully measure semi-quantitative changes in HCC perfusion during chemoembolization. Intra-procedural tumor perfusion reductions are associated with future tumor response. PMID

  1. Meningiomas with conventional MRI findings resembling intraaxial tumors: can perfusion-weighted MRI be helpful in differentiation?

    Energy Technology Data Exchange (ETDEWEB)

    Hakyemez, Bahattin [Uludag University Medical School, Department of Radiology, Bursa (Turkey); Bursa State Hospital, Department of Radiology, Bursa (Turkey); Yildirim, Nalan; Erdogan, Cueneyt; Parlak, Mufit [Uludag University Medical School, Department of Radiology, Bursa (Turkey); Kocaeli, Hasan; Korfali, Ender [Uludag University Medical School, Department of Neurosurgery, Bursa (Turkey)

    2006-10-15

    To investigate the contribution of perfusion-weighted MRI to the differentiation of meningiomas with atypical conventional MRI findings from intraaxial tumors. We retrospectively analyzed 54 meningiomas, 12 glioblastomas and 13 solitary metastases. We detected 6 meningiomas with atypical features on conventional MRI resembling intraaxial tumors. The regional cerebral blood flow (rCBV) ratios of all tumors were calculated via perfusion-weighted MRI. The signal intensity-time curves were plotted and three different curve patterns were observed. The type 1 curve resembled normal brain parenchyma or the postenhancement part was minimally below the baseline, the type 2 curve was similar to the type 1 curve but with the postenhancement part above the baseline, and the type 3 curve had the postenhancement part below the baseline accompanied by widening of the curve. Student's t-test was used for statistical analysis. On CBV images meningiomas were hypervascular and the mean rCBV ratio was 10.58{+-}2.00. For glioblastomas and metastatic lesions, the rCBV ratios were 5.02{+-}1.40 and 4.68{+-}1.54, respectively. There was a statistically significant difference in rCBV ratios between meningiomas and glioblastomas and metastases (P<0.001). Only one of the meningiomas displayed a type 2 curve while five showed a type 3 curve. Glioblastomas and metastases displayed either a type 1 or a type 2 curve. None of the meningiomas showed a type 1 curve and none of the glioblastomas or metastases showed a type 3 curve. (orig.)

  2. Perfusion MRI in the early clinical development of antivascular drugs: decorations or decision making tools?

    Energy Technology Data Exchange (ETDEWEB)

    Zweifel, Martin [Mount Vernon Cancer Centre, Department of Medical Oncology, Northwood, Middlesex (United Kingdom); Padhani, Anwar R. [Mount Vernon Hospital, Paul Strickland Scanner Centre, Northwood, Middlesex (United Kingdom)

    2010-08-15

    Classically, the first step in the clinical development of drugs in oncology involves assessments of dose limiting toxicity (DLT) and maximum tolerated dose (MTD). New paradigms are needed for antiangiogenic drugs and vascular disrupting agents (VDAs) as they are active at doses well below the MTD and as single agents their use might not translate into anti-tumour efficacy. MRI is able to assess the antivascular effects of antivascular drugs via changes in functional kinetic parameters; however, the usefulness of MRI in decision making has been questioned by many. Our aim is to review the experience of using dynamic contrast-enhanced MRI (DCE-MRI) in early clinical development of vascular directed anticancer therapies over the last decade. Thirty-nine phase I and II studies including data on more than 700 patients have been published as abstracts and/or papers, documenting DCE-MRI changes after the administration of antiangiogenic drugs and VDAs. Perfusion MRI is helpful in assessing whether mechanistic goals are achieved, in assisting dose selection for phase II studies, in selecting subpopulations enriched for response and in predicting patient benefit. Imaging tools are increasingly available. Future challenges for imaging include correlation with clinical measures of efficacy and determining relationships with blood and serum biomarkers. (orig.)

  3. Brain Perfusion MRI Findings in Patients with Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Alpay Alkan

    2012-01-01

    Full Text Available Objective. To search brain perfusion MRI (pMRI changes in Behcet’s disease (BD with or without neurological involvement. Materials and Method. The pMRI were performed in 34 patients with BD and 16 healthy controls. Based on neurologic examination and post-contrast MRI, 12 patients were classified as Neuro-Behcet (group 1, NBD and 22 patients as BD without neurological involvement (group 2. Mean transit time (MTT, time to peak (TTP, relative cerebral blood volume (rCBV, and relative cerebral blood flow (rCBF were obtained and compared to those of healthy control group (group 3. Results. There was a significant difference in the MTT and rCBF within the pons and parietal cortex in groups 1 and 2. rCBV increased in cerebral pedicle in group 1 compared with groups 2 and 3. In the temporal lobe white matter, prolonged MTT and decreased rCBF were found in groups 1 and 2. In the corpus striatum, internal capsule, and periventricular white matter, rCBF increased in group 1 compared with group 3 and decreased in groups 1 and 2. Conclusion. Brain pMRI is a very sensitive method to detect brain involvement in patients with BD and aids the clinical diagnosis of NBD, especially in patients with negative MRI findings.

  4. Assessment of the perfusion of glioblastomas before and during radiotherapy: longitudinal comparison between H{sub 2}-{sup 15}O positron emission tomography and perfusion MRI; Evaluation de la perfusion des glioblastomes en avant et pendant la radiotherapie: comparaison longitudinale entre la tomographie par emission de positons H2 15O et l'IRM de perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Laprie, A.; Ken, S.; Moyal Cohen-Jonathan, E. [Departement de radiotherapie, institut Claudius-Regaud, 31 - Toulouse (France); Laprie, A.; Ken, S.; Lotterie, J.A.; Franceries, X.; Celsis, P.; Payoux, P.; Berry, I. [Inserm imagerie cerebrale et handicaps neurologiques UMR 825, 31 - Toulouse (France); Lotterie, J.A.; Berry, I. [Departement de biophysique, centre hospitalier universitaire de Rangueil, 31 - Toulouse (France); Barcelo, C. [Departement de radiologie, centre hospitalier universitaire de Purpan, 31 - Toulouse (France)

    2010-10-15

    The authors report the comparison of different perfusion imagery modalities for patients suffering form glioblastomas and included in a phase-1 clinic trial comprising conformational radiotherapy concomitant with the use of a farnesyl-transferase inhibitor (tipifarnib). With these different techniques, perfusion MRI and perfusion positron emission tomography, the authors made respectively a qualitative and quantitative assessment of the tumour vascularisation. Short communication

  5. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    Science.gov (United States)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  6. Semi-quantitative assessment of pulmonary perfusion in children using dynamic contrast-enhanced MRI

    Science.gov (United States)

    Fetita, Catalin; Thong, William E.; Ou, Phalla

    2013-03-01

    This paper addresses the study of semi-quantitative assessment of pulmonary perfusion acquired from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in a study population mainly composed of children with pulmonary malformations. The automatic analysis approach proposed is based on the indicator-dilution theory introduced in 1954. First, a robust method is developed to segment the pulmonary artery and the lungs from anatomical MRI data, exploiting 2D and 3D mathematical morphology operators. Second, the time-dependent contrast signal of the lung regions is deconvolved by the arterial input function for the assessment of the local hemodynamic system parameters, ie. mean transit time, pulmonary blood volume and pulmonary blood flow. The discrete deconvolution method implements here a truncated singular value decomposition (tSVD) method. Parametric images for the entire lungs are generated as additional elements for diagnosis and quantitative follow-up. The preliminary results attest the feasibility of perfusion quantification in pulmonary DCE-MRI and open an interesting alternative to scintigraphy for this type of evaluation, to be considered at least as a preliminary decision in the diagnostic due to the large availability of the technique and to the non-invasive aspects.

  7. Functional MRI using Fourier decomposition of lung signal: Reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Lederlin, Mathieu, E-mail: mathieu.lederlin@chu-bordeaux.fr [Department of Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Department of Thoracic and Cardiovascular Imaging, University Hospital of Bordeaux, Av de Magellan, 33600 Pessac (France); Bauman, Grzegorz, E-mail: g.bauman@dkfz.de [Division of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Eichinger, Monika, E-mail: m.eichinger@dkfz.de [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Dinkel, Julien, E-mail: julien.dinkel@googlemail.com [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114 (United States); Brault, Mathilde, E-mail: mathilde.brault@isped.u-bordeaux2.fr [Methodological Unit of Support for Research (USMR), University Bordeaux Segalen, 146 rue Léo Saignat, 33076 Bordeaux (France); Biederer, Jürgen, E-mail: juergen.biederer@uni-heidelberg.de [Department of Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Chest Clinics at the University of Heidelberg, Clinics for Interventional and Diagnostic Radiology, Amalienstr. 5, 69126 Heidelberg (Germany)

    2013-06-15

    Purpose: To assess the reproducibility of Fourier decomposition (FD) based ventilation- and perfusion-weighted lung MRI. Methods: Sixteen healthy volunteers were examined on a 1.5 T whole-body MR-scanner with 4–6 sets of coronal slices over the chest volume with a non-contrast enhanced steady-state free precession sequence. The identical protocol was repeated after 24 h. Reconstructed perfusion- and ventilation-weighted images were obtained through non-rigid registration and FD post-processing of images. Analysis of signal in segmented regions of interest was performed for both native and post-processed data. Two blinded chest radiologists rated image quality of perfusion- and ventilation-weighted images using a 3-point scale. Results: Reproducibility of signal between the two time points was very good with intra-class correlation coefficients of 0.98, 0.94 and 0.86 for native, perfusion- and ventilation-weighted images, respectively. Perfusion- and ventilation-weighted images were of overall good quality with proportions of diagnostic images of 87–95% and 69–75%, respectively. Lung signal decreased from posterior to anterior slices with image quality of ventilation-weighted images in anterior areas rated worse than in posterior or perfusion-weighted images. Inter- and intra-observer agreement of image quality was good for perfusion and ventilation. Conclusions: The study demonstrates high reproducibility of ventilation- and perfusion-weighted FD lung MRI.

  8. Focal status epilepticus: follow-up by perfusion- and diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    El-Koussy, M.; Loevblad, K.O.; Kiefer, C.; Schroth, G. [Department of Neuroradiology, University of Bern, Inselspital (Switzerland); Mathis, J.; Stepper, F. [Department of Neurology, University of Bern, Inselspital (Switzerland)

    2002-03-01

    Diffusion-weighted MRI demonstrated bright right temporoparietal cortex, right hippocampus, and left cerebellum in a 63-year-old female suffering a focal convulsive status epilepticus. Hyperperfusion was noted in the right temporoparietal region. Two days later, a tendency to normalization of most of the diffusion and perfusion changes was noted, apart from the right hippocampus which became brighter on diffusion- and T2-weighted images. On the tenth day the apparent diffusion coefficient was slightly elevated, getting brighter on T2-weighted images with suspected mild post-contrast enhancement. We postulate that the discharging right hippocampus suffered cytotoxic edema, which later progressed to cell damage. (orig.)

  9. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors.

    Science.gov (United States)

    Marzi, Simona; Stefanetti, Linda; Sperati, Francesca; Anelli, Vincenzo

    2016-01-01

    Our aim was to evaluate the link between diffusion parameters measured by intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and the perfusion metrics obtained with dynamic contrast-enhanced (DCE) MRI in soft tissue tumors (STTs). Twenty-eight patients affected by histopathologically confirmed STT were included in a prospective study. All patients underwent both DCE MRI and IVIM DWI. The perfusion fraction f, diffusion coefficient D and perfusion-related diffusion coefficient D* were estimated using a bi-exponential function to fit the DWI data. DCE MRI was acquired with a temporal resolution of 3-5 s. Maps of the initial area under the gadolinium concentration curve (IAUGC), time to peak (TTP) and maximum slope of increase (MSI) were derived using commercial software. The relationships between the DCE MRI and IVIM DWI measurements were assessed by Spearman's test. To exclude false positive results under multiple testing, the false discovery rate (FDR) procedure was applied. The Mann-Whitney test was used to evaluate the differences between all variables in patients with non-myxoid and myxoid STT. No significant relationship was found between IVIM parameters and any DCE MRI parameters. Higher f and D*f values were found in non-myxoid tumors compared with myxoid tumors (p = 0.004 and p = 0.003, respectively). MSI was significantly higher in non-myxoid tumors than in myxoid tumors (p = 0.029). From the visual assessments of single clinical cases, both f and D*f maps were in satisfactory agreement with DCE maps in the extreme cases of an avascular mass and a highly vascularized mass, whereas, for tumors with slight vascularity or with a highly heterogeneous perfusion pattern, this association was not straightforward. Although IVIM DWI was demonstrated to be feasible in STT, our data did not support evident relationships between perfusion-related IVIM parameters and perfusion measured by DCE MRI.

  10. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR)

    DEFF Research Database (Denmark)

    Born, A.P.; Rostrup, Egill; Miranda Gimenez-Ricco, Maria Jo

    2002-01-01

    .99-2.93), respectively. Thus, in the children, an rCBF increase could not be detected by perfusion MRI, but indications of a FAIR signal decrease were found. An rCBF decrease in the primary visual cortex during stimulation has not been reported previously, but it is a possible explanation for the negative BOLD response......Sleeping and sedated children can respond to visual stimulation with a decrease in blood oxygenation level dependent (BOLD) functional MRI signal response. The contribution of metabolic and hemodynamic parameters to this inverse signal response is incompletely understood. It has been hypothesized...... that it is caused by a relatively greater increase of oxygen consumption compared to rCBF (regional cerebral blood flow) increase. We studied the rCBF changes during visual stimulation in four sedated children, aged 4-71 months, and four alert adults, with an arterial water spin labeling technique (FAIR) and BOLD f...

  11. Quantification of the effect of water exchange in dynamic contrast MRI perfusion measurements in the brain and heart

    DEFF Research Database (Denmark)

    Larsson, H B; Rosenbaum, S; Fritz-Hansen, T

    2001-01-01

    Measurement of myocardial and brain perfusion when using exogenous contrast agents (CAs) such as gadolinium-DTPA (Gd-DTPA) and MRI is affected by the diffusion of water between compartments. This water exchange may have an impact on signal enhancement, or, equivalently, on the longitudinal...... exchange can have a significant effect on perfusion estimation (F) in the brain when using Gd-DTPA, where it acts as an intravascular contrast agent....

  12. Pulmonary functional MRI:an animal model study of oxygen-enhanced ventilation combined with Gd-DTPA-enhanced perfusion

    Institute of Scientific and Technical Information of China (English)

    杨健; 万明习; 郭佑民

    2004-01-01

    Background The assessment of regional pulmonary ventilation and perfusion is essential for the evaluation of a variety of lung disorders. Pulmonary ventilation MRI using inhaled oxygen as a contrast medium can be obtained with a clinical MR scanner, without additional equipment, and has been demonstrated to be a feasible means of assessing ventilation in animal models and some clinical patients. However, few studies have reported on MR ventilation-perfusion imaging. In this study, we evaluated the usefulness of oxygen-enhanced ventilation in combination with first-pass Gd-DTPA-enhanced perfusion MRI in a canine model of pulmonary embolism and airway obstruction.Methods Peripheral pulmonary embolisms were produced in eight dogs by intravenous injection of gelfoam strips at the pulmonary segmental arterial level, and airway obstructions were created in five of the dogs by inserting a self-designed balloon catheter into a secondary bronchus. Oxygen-enhanced MR ventilation images were produced by subtracting images from before and after inhalation of pure oxygen. Pulmonary perfusion MR images were acquired with a dynamic three-dimensional fast gradient-echo sequence. MR ventilation and perfusion images were read and contrasted with results from general examinations of pathological anatomy, ventilation-perfusion scintigraphy, and pulmonary angiography. Results Regions identified as having airway obstructions matched using both MR ventilation and perfusion imaging, but regions of pulmonary embolisms were mismatched. The area of airway obstruction defects was smaller using MR ventilation imagery than that using ventilation scintigraphy. Abnormal perfusion regions due to pulmonary embolisms were divided into defective regions and reduced regions based on the time course of signal intensity changes. In the diagnosis of pulmonary embolisms with the technique of ventilation and perfusion MRI, sensitivity and specificity were 75.0% and 98.1%, respectively, and the diagnostic

  13. The correlation of contrast-enhanced ultrasound and MRI perfusion quantitative analysis in rabbit VX2 liver cancer.

    Science.gov (United States)

    Xiang, Zhiming; Liang, Qianwen; Liang, Changhong; Zhong, Guimian

    2014-12-01

    Our objective is to explore the value of liver cancer contrast-enhanced ultrasound (CEUS) and MRI perfusion quantitative analysis in liver cancer and the correlation between these two analysis methods. Rabbit VX2 liver cancer model was established in this study. CEUS was applied. Sono Vue was applied in rabbits by ear vein to dynamically observe and record the blood perfusion and changes in the process of VX2 liver cancer and surrounding tissue. MRI perfusion quantitative analysis was used to analyze the mean enhancement time and change law of maximal slope increasing, which were further compared with the pathological examination results. Quantitative indicators of liver cancer CEUS and MRI perfusion quantitative analysis were compared, and the correlation between them was analyzed by correlation analysis. Rabbit VX2 liver cancer model was successfully established. CEUS showed that time-intensity curve of rabbit VX2 liver cancer showed "fast in, fast out" model while MRI perfusion quantitative analysis showed that quantitative parameter MTE of tumor tissue increased and MSI decreased: the difference was statistically significant (P 0.05). However, the quantitative parameter of them were significantly positively correlated (P liver cancer lesion and surrounding liver parenchyma, and the quantitative parameters of them are correlated. The combined application of both is of importance in early diagnosis of liver cancer.

  14. Perfusion parameters in MRI of pancreas transplants; Perfusionsparameter in der MRT-Diagnostik von Pankreastransplantaten

    Energy Technology Data Exchange (ETDEWEB)

    Marx, C.; Koenig, M.; Heuser, L. [Bochum Univ. (Germany). Abt. fuer Radiologie und Nuklearmedizin; Lueck, R.; Klempnauer, J. [Bochum Univ. (Germany). Chirurgische Klinik

    2000-01-01

    Purpose: Evaluation of the role of perfusion parameters in the detection of circulatory disturbance and chronic rejection in patients after pancreas transplantation. Materials and Methods: 70 examinations of 39 patients after pancreas transplantation were performed. Using a dynamic gadolinium-enhanced Turbo-FLASH-sequence, we evaluated the perfusion parameters in a group of patients with chronic rejection, with circulatory disturbance, and in a control group with normal organ function. Results: There were statistically significant differences of the perfusion parameters in patients with chronic rejection and circulatory disturbance compared to the control group. Conclusion: Dynamic MRI can help detect patients with chronic rejection and circulatory disturbance and should therefore be part of the routine follow-up in patients after pancreas transplantation. (orig.) [German] Ziel: Beurteilung von Perfusionsparametern im Rahmen schneller MRT-Sequenzen zur Erkennung einer Organabstossung und einer Durchblutungsstoerung bei Patienten nach Pankreastransplantation. Material und Methode: 70 MRT-Untersuchungen an 39 Patienten mit einer Pankreastransplantation wurden durchgefuehrt. Anhand einer dynamischen Turbo-FLASH-Sequenz mit Kontrastmittel-Bolusinjektion wurden Perfusionsparameter der Organdurchblutung bei Patienten mit normaler Organfunktion, einer chron. Organabstossung und einer Durchblutungsstoerung des Organs ermittelt. Ergebnis: Es konnten statistisch signifikante Unterschiede der Perfusionsparameter der Patienten mit einer Organabstossung und einer Durchblutungsstoerung gegenueber dem Normalkollektiv gemessen werden. Schlussfolgerung: Die kontrastmittel-unterstuetzte dynamische Magnetresonanztomographie kann Patienten mit einer Organabstossung und mit Durchblutungsstoerungen nach Pankreastransplantation fruehzeitig entdecken. Sie sollte deshalb routinemaessig in der Verlaufskontrolle nach kombinierter Nieren-Pankreastransplantation eingesetzt werden. (orig.)

  15. Analysis of dynamic cerebral contrast-enhanced perfusion MRI time-series based on unsupervised clustering methods

    Science.gov (United States)

    Lange, Oliver; Meyer-Baese, Anke; Wismuller, Axel; Hurdal, Monica

    2005-03-01

    We employ unsupervised clustering techniques for the analysis of dynamic contrast-enhanced perfusion MRI time-series in patients with and without stroke. "Neural gas" network, fuzzy clustering based on deterministic annealing, self-organizing maps, and fuzzy c-means clustering enable self-organized data-driven segmentation w.r.t.fine-grained differences of signal amplitude and dynamics, thus identifying asymmetries and local abnormalities of brain perfusion. We conclude that clustering is a useful extension to conventional perfusion parameter maps.

  16. Cardiac function and myocardial perfusion immediately following maximal treadmill exercise inside the MRI room

    Directory of Open Access Journals (Sweden)

    Ballinger Michelle R

    2008-01-01

    Full Text Available Abstract Treadmill exercise stress testing is an essential tool in the prevention, detection, and treatment of a broad spectrum of cardiovascular disease. After maximal exercise, cardiac images at peak stress are typically acquired using nuclear scintigraphy or echocardiography, both of which have inherent limitations. Although CMR offers superior image quality, the lack of MRI-compatible exercise and monitoring equipment has prevented the realization of treadmill exercise CMR. It is critical to commence imaging as quickly as possible after exercise to capture exercise-induced cardiac wall motion abnormalities. We modified a commercial treadmill such that it could be safely positioned inside the MRI room to minimize the distance between the treadmill and the scan table. We optimized the treadmill exercise CMR protocol in 20 healthy volunteers and successfully imaged cardiac function and myocardial perfusion at peak stress, followed by viability imaging at rest. Imaging commenced an average of 30 seconds after maximal exercise. Real-time cine of seven slices with no breath-hold and no ECG-gating was completed within 45 seconds of exercise, immediately followed by stress perfusion imaging of three short-axis slices which showed an average time to peak enhancement within 57 seconds of exercise. We observed a 3.1-fold increase in cardiac output and a myocardial perfusion reserve index of 1.9, which agree with reported values for healthy subjects at peak stress. This study successfully demonstrates in-room treadmill exercise CMR in healthy volunteers, but confirmation of feasibility in patients with heart disease is still needed.

  17. Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation

    Directory of Open Access Journals (Sweden)

    G. J. Pelgrim

    2016-01-01

    Full Text Available Technological advances in magnetic resonance imaging (MRI and computed tomography (CT, including higher spatial and temporal resolution, have made the prospect of performing absolute myocardial perfusion quantification possible, previously only achievable with positron emission tomography (PET. This could facilitate integration of myocardial perfusion biomarkers into the current workup for coronary artery disease (CAD, as MRI and CT systems are more widely available than PET scanners. Cardiac PET scanning remains expensive and is restricted by the requirement of a nearby cyclotron. Clinical evidence is needed to demonstrate that MRI and CT have similar accuracy for myocardial perfusion quantification as PET. However, lack of standardization of acquisition protocols and tracer kinetic model selection complicates comparison between different studies and modalities. The aim of this overview is to provide insight into the different tracer kinetic models for quantitative myocardial perfusion analysis and to address typical implementation issues in MRI and CT. We compare different models based on their theoretical derivations and present the respective consequences for MRI and CT acquisition parameters, highlighting the interplay between tracer kinetic modeling and acquisition settings.

  18. Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Bazelaire, Cedric de [Saint Louis Hospital, Radiology Department, Paris (France); Siauve, Nathalie; Fournier, Laure; Clement, Olivier; Kerviler, Eric de; Cuenod, Charles Andre [George Pompidou European Hospital, Radiology Department, Paris (France); Frouin, Frederique [INSERM U494, Faculte de Medecine Pitie-Salpetriere, Paris (France); Robert, Philippe [Guerbet Laboratoire Guerbet, Recherche et Developpement, Paris (France)

    2005-12-01

    To present a new compartmental analysis model developed to simultaneously measure tissue perfusion and capillary permeability in a tumor using MRI and a macromolecular contrast medium. Rhadomyosarcomas were implanted subcutaneously in 20 rats and studied by 1.5-T MRI using a fast gradient echo sequence (2D fast SPGR TR/TE/{alpha} 13 ms/1.2 ms/60 ) after injection of a macromolecular contrast medium. The left ventricle and tumor signal intensities were converted into concentrations and modeled using compartmental analysis, yielding tumor perfusion F, distribution volume V{sub distribution}, volume transfer constant K{sup trans}, rate constant of influx k{sub pe}, and initial extraction (fraction) E. Tumor perfusion was F=43{+-}29 ml.min{sup -1}.100 g{sup -1}. The permeability study allowed the measurement of k{sub pe}=0.37{+-}0.12 min{sup -1} and K{sup trans}=0.01{+-}0.0031 min{sup -1}. The blood volume could be assimilated to the distribution volume (V{sub distribution}=2.9{+-}1.01%) since the capillary leakage was small. The simultaneous assessment of perfusion and permeability allowed quantification of the initial extraction (fraction) E=2.34{+-}1.05%. Quantification of both tumor perfusion and capillary leakage is feasible using MRI using a macromolecular blood pool agent. The method should improve tumor characterization. (orig.)

  19. Temporal evolution of ischemic lesions in nonhuman primates: a diffusion and perfusion MRI study.

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    Full Text Available Diffusion-weighted imaging (DWI and perfusion MRI were used to examine the spatiotemporal evolution of stroke lesions in adult macaques with ischemic occlusion.Permanent MCA occlusion was induced with silk sutures through an interventional approach via the femoral artery in adult rhesus monkeys (n = 8, 10-21 years old. The stroke lesions were examined with high-resolution DWI and perfusion MRI, and T2-weighted imaging (T2W on a clinical 3T scanner at 1-6, 48, and 96 hours post occlusion and validated with H&E staining.The stroke infarct evolved via a natural logarithmic pattern with the mean infarct growth rate = 1.38 ± 1.32 ml per logarithmic time scale (hours (n = 7 in the hyperacute phase (1-6 hours. The mean infarct volume after 6 hours post occlusion was 3.6±2.8 ml (n = 7, by DWI and increased to 3.9±2.9 ml (n = 5, by T2W after 48 hours, and to 4.7±2.2ml (n = 3, by T2W after 96 hours post occlusion. The infarct volumes predicted by the natural logarithmic function were correlated significantly with the T2W-derived lesion volumes (n = 5, r = 0.92, p = 0.01 at 48 hours post occlusion. The final infarct volumes derived from T2W were correlated significantly with those from H&E staining (r = 0.999, p < 0.0001, n = 4. In addition, the diffusion-perfusion mismatch was visible generally at 6 hours but nearly diminished at 48 hours post occlusion.The infarct evolution follows a natural logarithmic pattern in the hyperacute phase of stroke. The logarithmic pattern of evolution could last up to 48 hours after stroke onset and may be used to predict the infarct volume growth during the acute phase of ischemic stroke. The nonhuman primate model, MRI protocols, and post data processing strategy may provide an excellent platform for characterizing the evolution of acute stroke lesion in mechanistic studies and therapeutic interventions of stroke disease.

  20. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    DEFF Research Database (Denmark)

    Larsen, Anne Vibeke Andrée; Simonsen, Helle J; Law, Ian;

    2013-01-01

    INTRODUCTION: To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. METHODS: The study was approved by the institutional review board...

  1. Correlation of histological findings from a large ciliochoroidal melanoma with CT perfusion and 3T MRI dynamic enhancement studies

    Directory of Open Access Journals (Sweden)

    Jose S Pulido

    2008-06-01

    Full Text Available Jose S Pulido1, Norbert G Campeau2, Ernst Klotz3, Andrew N Primak2, Osama Saba3, Kaan Gunduz1, Herbert Cantrill5, Diva Salomão1,4, Cynthia H McCollough21Department of Ophthalmology; 2Department of Radiology; 3Siemens Medical Solutions, Malvern, PA, USA; 4Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA; 5VitreoRetinal Surgery, Minneapolis, MN, USABackground: The initial use of a 64-slice computed tomography (CT scanner for obtaining quantitative perfusion data from a large ciliochoroidal melanoma, and correlation with 3T magnetic resonance imaging (MRI dynamic enhancement and tumor histology.Methods: The CT perfusion scan was performed using 80 kVp, 250 mA and 1-sec rotation time for 40 sec. The analysis was performed using commercial perfusion analysis software with a prototype 3-dimensional motion correction tool. Dynamic contrast-enhanced 3-Tesla MRI measured the kinetics of enhancement to estimate the vascular permeability. The time-dependent enhancement patterns were obtained using the average signal intensity using Functool analysis software. The involved globe was enucleated and microscopic evaluation of the tumor was performed.Results: The perfusion parameters blood flow, blood volume and permeability surface area product in the affected eye determined by CT perfusion analysis were 118 ml/100 ml/min, 11.3 ml/100 ml and 48 ml/100 ml/min. Dynamic MRI enhancement showed maximal intensity increase of 111%. The neoplasm was a ciliochoroidal spindle cell melanoma which was mitotically active (13 mitoses/40 hpf. Vascular loops and arcades were present throughout the tumor. The patient developed metastases within 9 months of presentation.Conclusion: Quantitative CT perfusion analysis of ocular tumors is feasible with motion correction software.Keywords: ciliochoroidal melanoma, CT perfusion imaging, MR enhancement imaging, tumor blood volume, tumor blood flow, tumor permeability

  2. Usefulness of Permeability Map by Perfusion MRI of Brain Tumor the Grade Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jin [Dept. of Radiology, Dongsan Hospital, Keimyung University, Daegu (Korea, Republic of); Lee, Joo Young [GE Healthcare, Seoul (Korea, Republic of); Chang, Hyuk Won [Dept. of Radiology, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2009-09-15

    This study was conducted to assess how effective the permeability ratio and relative cerebral blood volume ratio are to tumor through perfusion MRI by measuring and reflecting the grade assessment and differential diagnosis and the permeability and relative cerebral blood volume of contrast media plunged from blood vessel into organ due to breakdown of blood-brain barrier in cerebral. Subject and Method : Subject of study was 29 patients whose diagnosis were confirmed by biopsy after surgery and 550 (11 slice x 50 image) perfusion MRI were used to make image of relative cerebral blood volume with the program furnished on instrument. The other method was to transmit to private computer and the image analysis was made additionally by making image of relative cerebral blood volume-reformulated singular value decomposition, rCBV-rSVD and permeability using IDL.6.2. In addition, Kruskal-wallis test tonggyein non numerical average by a comparative analysis of brain tumors Results : The rCBV ratio (Functool PF; GE Medical Systems and IDL 6.2 program by analysis) and permeability ratio of tumors were as follows; high grade glioma(n=4), (14.75, 19.25) 13.13. low grade astrocytoma(n=5) (14.80, 15.90) 11.60, glioblastoma(n=5) (10.90, 18.60), 22.00, metastasis(n=6) (11.00, 15.08). 22.33. meningioma(n=6) (18.58, 7.67), 5.58. oliogodendroglioma(n=3) (23.33, 16.33, 15.67. Conclusion : It was not easy to classify the grade with the relative cerebral blood volume ratio measured by using the relative cerebral blood image by type of tumors, however, permeability ratio measured by permeability image revealed that the higher the grade of tumor, the higher the measured permeability ratio, showing the assessment of tumor grade is more effective to differential diagnosis.

  3. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR)

    DEFF Research Database (Denmark)

    Born, A P; Rostrup, E; Miranda, M J

    2002-01-01

    that it is caused by a relatively greater increase of oxygen consumption compared to rCBF (regional cerebral blood flow) increase. We studied the rCBF changes during visual stimulation in four sedated children, aged 4-71 months, and four alert adults, with an arterial water spin labeling technique (FAIR) and BOLD f......MRI in a 1.5T MR scanner. In the children, FAIR signal decreased by a mean of 0.96% (range 0.77-1.05) of the baseline periods of the non-selective images, while BOLD signal decreased by 2.03% (range 1.99-2.93). In the adults, FAIR and BOLD signal increased by 0.88% (range 0.8-0.99) and 2.63% (range 1.......99-2.93), respectively. Thus, in the children, an rCBF increase could not be detected by perfusion MRI, but indications of a FAIR signal decrease were found. An rCBF decrease in the primary visual cortex during stimulation has not been reported previously, but it is a possible explanation for the negative BOLD response...

  4. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma.

    Science.gov (United States)

    Thomas, Alissa A; Arevalo-Perez, Julio; Kaley, Thomas; Lyo, John; Peck, Kyung K; Shi, Weiji; Zhang, Zhigang; Young, Robert J

    2015-10-01

    Pseudoprogression may present as transient new or increasing enhancing lesions that mimic recurrent tumors in treated glioblastoma. The purpose of this study was to examine the utility of dynamic contrast enhanced T1 magnetic resonance imaging (DCE MRI) in differentiating between pseudoprogression and tumor progression and devise a cut-off value sensitive for pseudoprogression. We retrospectively examined 37 patients with glioblastoma treated with radiation and temozolomide after surgical resection that then developed new or increasing enhancing lesion(s) indeterminate for pseudoprogression versus progression. Volumetric plasma volume (Vp) and time-dependent leakage constant (Ktrans) maps were measured for the enhancing lesion and the mean and ninetieth percentile histogram values recorded. Lesion outcome was determined by clinical follow up with pseudoprogression defined as stable disease not requiring new treatment. Statistical analysis was performed with Wilcoxon rank-sum tests. Patients with pseudoprogression (n = 13) had Vp (mean) = 2.4 and Vp (90 %tile) = 3.2; and Ktrans (mean) = 3.5 and Ktrans (90 %tile) = 4.2. Patients with tumor progression (n = 24) had Vp (mean) = 5.3 and Vp (90 %tile) = 6.6; and Ktrans (mean) = 7.4 and Ktrans (90 %tile) = 9.1. Compared with tumor progression, pseudoprogression demonstrated lower Vp perfusion values (p = 0.0002) with a Vp (mean) cutoff mean) of >3.6 had a 69% sensitivity and 79% specificity for disease progression. DCE MRI shows lower plasma volume and time dependent leakage constant values in pseudoprogression than in tumor progression. A cut-off value with high sensitivity for pseudoprogression can be applied to aid in interpretation of DCE MRI.

  5. Preliminary study of CT in combination with MRI perfusion imaging to assess hemodynamic changes during angiogenesis in a rabbit model of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang Q

    2013-06-01

    Full Text Available Qiang Zhang,1 Baoqi Shi,1 Zhaoxin Liu,1 Mingmin Zhang,1 Weijing Zhang21Radiology Department, Baotou Cancer Hospital, Inner Mongolia Autonomous Region, 2Department of Mathematics, College of Science, Beijing Institute of Technology, Beijing, People's Republic of ChinaBackground: This study used CT (computed tomography and magnetic resonance imaging (MRI to identify correlations between perfusion parameters for squamous cell lung carcinoma and tumor angiogenesis in a rabbit model of VX2 lung cancer.Methods: VX2 tumors were implanted in the lungs of 35 New Zealand White rabbits. CT and MRI perfusion scanning were performed on days 14, 17, 21, 25, and 28 after tumor implantation. CT perfusion parameters were perfusion, peak enhanced increment, transit time peak, and blood volume, and MRI perfusion parameters were wash in rate, wash out rate, maximum enhancement rate, and transit time peak. CT and MRI perfusion parameters were obtained at the tumor rim, in the tumor tissue, and in the muscle tissue surrounding the tumor.Results: On CT perfusion imaging, t values for perfusion, peak enhanced increment, and blood volume (tumor rim versus muscle were 16.31, 11.79, and 5.21, respectively (P 0.05. On MRI perfusion imaging, t values for wash in rate, wash out rate, and maximum enhancement rate (tumor rim versus muscle were 18.14, 8.79, and 6.02, respectively (P 0.05.Conclusion: A combination of CT and MRI perfusion imaging demonstrated hemodynamic changes in a rabbit model of VX2 lung cancer, and provides a theoretical foundation for treatment of human squamous cell lung carcinoma.Keywords: perfusion imaging, rabbits, animal model, lung, squamous carcinoma cell

  6. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI.

    Science.gov (United States)

    Leontiev, Oleg; Buxton, Richard B

    2007-03-01

    The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain.

  7. Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling

    Science.gov (United States)

    Johnson, S Peter; Ramasawmy, Rajiv; Campbell-Washburn, Adrienne E; Wells, Jack A; Robson, Mathew; Rajkumar, Vineeth; Lythgoe, Mark F; Pedley, R Barbara; Walker-Samuel, Simon

    2016-01-01

    Background: Non-invasive measures of tumour vascular perfusion are desirable, in order to assess response to vascular targeting (or modifying) therapies. In this study, hepatic arterial spin labelling (ASL) magnetic resonance imaging (MRI) was investigated to measure acute changes in perfusion of colorectal cancer in the liver, in response to vascular disruption therapy with OXi4503. Methods: SW1222 and LS174T tumours were established in the liver of MF1 nu/nu mice via intrasplenic injection. Perfusion and R2* MRI measurements were acquired with an Agilent 9.4T horizontal bore scanner, before and at 90 min after 40 mg kg−1 OXi4503. Results: A significant decrease in SW1222 tumour perfusion was observed (−43±33%, Pchange in tumour perfusion and the proximity to large vessels, with pre-treatment blood flow predictive of subsequent response. Histological evaluation confirmed the onset of necrosis and evidence of heterogeneous response between tumour deposits. Conclusions: Hepatic ASL-MRI can detect acute response to targeted tumour vascular disruption entirely non-invasively. Hepatic ASL of liver tumours has potential for use in a clinical setting. PMID:27031853

  8. Bevacizumab treatment in malignant meningioma with additional radiation necrosis. An MRI diffusion and perfusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, J.P. [University of Bonn Medical Center, Department of Neurosurgery, Bonn (Germany); MediClin Robert Janker Clinic and MVZ MediClin, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); Seifert, M.; Greschus, S. [University of Bonn Medical Center, Department of Radiology, Bonn (Germany); Schaefer, N.; Herrlinger, U. [University of Bonn Medical Center, Division of Clinical Neurooncology, Department of Neurology, Bonn (Germany); Glas, M. [University of Bonn Medical Center, Division of Clinical Neurooncology, Department of Neurology, Bonn (Germany); University of Bonn Medical Center, Stem Cell Pathologies, Institute of Reconstructive Neurobiology, Bonn (Germany); MediClin Robert Janker Clinic, Clinical Cooperation Unit Neurooncology, Bonn (Germany); Lammering, G. [MediClin Robert Janker Clinic and MVZ MediClin, Department of Radiosurgery and Stereotactic Radiotherapy, Bonn (Germany); MediClin Robert Janker Clinic, Clinical Cooperation Unit Neurooncology, Bonn (Germany); Heinrich-Heine-University of Duesseldorf, Department of Radiotherapy and Radiation Oncology, Duesseldorf (Germany)

    2014-04-15

    Recently two retrospective cohort studies report efficacy of bevacizumab in patients with recurrent atypical and anaplastic meningioma. Another successful therapeutic option of bevacizumab seems to be treatment of cerebral radiation necrosis. However, the antiangiogenic effects in MRI diffusion and perfusion in meningiomas have not been previously described in detail. The objective of this research was to evaluate the clinical and MR imaging effects of bevacizumab in a malignant meningioma patient harboring additional cerebral radiation necrosis. We report the case of an 80-year-old woman who underwent bevacizumab therapy (5 mg/kg every 2 weeks for 2 months) for treatment of a symptomatic radiation necrosis in malignant meningiomatosis of World Health Organization (WHO) grade III. The patient was closely monitored with MRI including diffusion and perfusion studies. Upon bevacizumab therapy, the clinical situation was well stabilized over a period of 4 months until the patient unfortunately died due to pneumonia/septicemia probably unrelated to bevacizumab therapy. Consecutive MRI demonstrated 4 important aspects: (1) considerable decrease of the contrast medium (CM)-enhanced radiation necrosis, (2) mixed response with respect to the meningiomatosis with stable and predominantly growing tumor lesions, (3) a new diffusion-weighted imaging (DWI) lesion in a CM-enhanced tumor as described in gliomas, which we did not interpret as a response to bevacizumab therapy, and (4) new thrombembolic infarcts, which are a known side-effect of bevacizumab treatment. Bevacizumab is effective in the treatment of radiation necrosis. We could not confirm the potential antitumor effect of bevacizumab in this patient. However, we could describe several new radiographic effects of bevacizumab therapy in malignant meningioma. (orig.) [German] In zwei aktuellen retrospektiven Kohortenstudien konnte eine Wirksamkeit von Bevacizumab bei Patienten mit rezidivierenden atypischen und

  9. Tumor classification using perfusion volume fractions in breast DCE-MRI

    Science.gov (United States)

    Lee, Sang Ho; Kim, Jong Hyo; Park, Jeong Seon; Park, Sang Joon; Jung, Yun Sub; Song, Jung Joo; Moon, Woo Kyung

    2008-03-01

    This study was designed to classify contrast enhancement curves using both three-time-points (3TP) method and clustering approach at full-time points, and to introduce a novel evaluation method using perfusion volume fractions for differentiation of malignant and benign lesions. DCE-MRI was applied to 24 lesions (12 malignant, 12 benign). After region growing segmentation for each lesion, hole-filling and 3D morphological erosion and dilation were performed for extracting final lesion volume. 3TP method and k-means clustering at full-time points were applied for classifying kinetic curves into six classes. Intratumoral volume fraction for each class was calculated. ROC and linear discriminant analyses were performed with distributions of the volume fractions for each class, pairwise and whole classes, respectively. The best performance in each class showed accuracy (ACC), 84.7% (sensitivity (SE), 100%; specificity (SP), 66.7% to a single class) to 3TP method, whereas ACC, 73.6% (SE, 41.7%; SP, 100% to a single class) to k-means clustering. The best performance in pairwise classes showed ACC, 75% (SE, 83.3%; SP, 66.7% to four class pairs and SE, 58.3%; SP, 91.7% to a single class pair) to 3TP method and ACC, 75% (SE, 75%; SP, 75% to a single class pair and SE, 66.7%; SP, 83.3% to three class pairs) to k-means clustering. The performance in whole classes showed ACC, 75% (SE, 83.3%; SP, 66.7%) to 3TP method and ACC, 75% (SE, 91.7%; 58.3%) to k-means clustering. The results indicate that tumor classification using perfusion volume fractions is helpful in selecting meaningful kinetic patterns for differentiation of malignant and benign lesions, and that two different classification methods are complementary to each other.

  10. MR imaging of glioblastoma in children: usefulness of diffusion/perfusion-weighted MRI and MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Woo; Yoon, Hye-Kyung; Roh, Hong Gee; Cho, Jae Min [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-gu, Seoul 135-710 (Korea); Shin, Hyung-Jin [Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Kangnam-gu, Seoul 135-710 (Korea)

    2003-12-01

    Glioblastoma is relatively uncommon in childhood and maybe difficult to differentiate from other brain tumors such as primitive neuroectodermal tumor, ependymoma, or benign astrocytoma. To describe the characteristic MR features in children with glioblastoma and to evaluate the usefulness of diffusion and perfusion MR imaging and MR spectroscopy in pediatric glioblastoma. MR imaging in 11 children (12 tumors) with biopsy-proven glioblastoma was reviewed retrospectively. In one patient, there was a recurrent glioblastoma. We reviewed CT and MRI imaging for tumor location, density/signal intensity, and enhancement pattern. Routine MR imaging was performed with a 1.5-T scanner. In six patients, diffusion-weighted MR images (DWIs) were obtained with a single-shot spin echo EPI technique with two gradient steps, and apparent diffusion coefficients (ADCs) were calculated. Using the gradient EPI technique, perfusion-weighted MR images (PWIs) were obtained in four patients from the data of dynamic MR images. The maximum relative cerebral blood volume (rCBV) ratio was calculated between the tumor and contralateral white matter in two cases. In three patients, proton MR spectroscopy was performed using a single voxel technique with either STEAM or PRESS sequences. The locations of the tumor were the thalamus and basal ganglia (n=8), deep white matter (n=3), and brain stem (n=1). Intratumoral hemorrhage was seen in four tumors. The tumors showed high-signal intensity or DWIs, having a wide range of ADC values of 0.53-1.30 (mean {+-}SD=1.011{+-}0.29). The maximum rCBV ratios of glioblastoma were 10.2 and 8.5 in two cases. MR spectroscopy showed decreased N-acetylaspartate (NAA) and increased choline in three cases. The MR findings of glioblastoma in children were: a diffusely infiltrative mass with hemorrhage involving the deep cerebral white matter, thalami, and basal ganglia. Diffusion/perfusion MR imaging and MR spectroscopy are very helpful in diagnosing glioblastoma

  11. Dynamic contrast-enhanced quantitative perfusion measurement of the brain using T-1-weighted MRI at 3T

    DEFF Research Database (Denmark)

    Larsson, H.B.W.; Hansen, A.E.; Berg, H.K.;

    2008-01-01

    Purpose: To develop a method for the measurement of brain perfusion based on dynamic contrast-enhanced T-1-weighted MR imaging. Materials and Methods: Dynamic imaging of the first pass of a bolus of a paramagnetic contrast agent was performed using a 3T whole-body magnet and a T-1-weighted fast...... field echo sequence. The input function was obtained from the internal carotid artery. An initial T-1 measurement was performed in order to convert the MR signal to concentration of the contrast agent. Pixelwise and region of interest (ROI)based calculation of cerebral perfusion (CBF) was performed...... inside the infarct core was, 9 mL/100g/min in one of the stroke patients. The other stroke patient had postischemic hyperperfusion and CBF was 140 mL/100g/min. Conclusion: Absolute values of brain perfusion can be obtained using dynamic contrast-enhanced MRI. These values correspond,to expected values...

  12. The importance of AIF ROI selection in DCE-MRI renography: Reproducibility and variability of renal perfusion and filtration

    Energy Technology Data Exchange (ETDEWEB)

    Cutajar, M., E-mail: m.cutajar@ich.ucl.ac.u [Radiology and Physics Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH (United Kingdom); Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX (United Kingdom); Mendichovszky, I.A. [Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT (United Kingdom); Tofts, P.S. [Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX (United Kingdom); UCL Institute of Neurology, Queen Square, London WC1N 3BG (United Kingdom); Gordon, I. [Radiology and Physics Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH (United Kingdom)

    2010-06-15

    Purpose: The aim of this study was to investigate (a) the effect the choice of the region of interest (ROI) defining the aortic input function (AIF) has on the estimation of renal perfusion and filtration in dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) renography, and (b) the reproducibility of these parameters. Using renal DCE-MRI and a three-compartment model analysis, this work evaluated the effect two different AIFs, derived from variable sized ROIs in the aorta, has on calculating DCE-MRI renal perfusion and filtration values in a group of healthy adult volunteers who underwent two consecutive renal DCE-MRI studies. Methods: Fifteen healthy volunteers underwent two DCE-MRI studies under similar physiological conditions. Oblique-coronal DCE-MRI data volumes were acquired on a 1.5 T Siemens Avanto scanner with a 3D-FLASH pulse-sequence (TE/TR = 0.53/1.63 ms, flip angle = 17{sup o}, acquisition matrix = 128 x 104 voxels, strong fat saturation, PAT factor = 2 (GRAPPA) and 400 mm x 325 mm FOV). Each dynamic dataset consisted of 18 slices of 7.5 mm thickness (no gap) and an in-plane resolution of 3.1 mm x 3.1 mm, acquired every 2.5 s for not less than 5 minutes. During the MR scan a dose of 0.05 mmol (0.1 mL) kg{sup -1} body weight of dimeglumine gadopentetate (Magnevist) was injected intravenously (2 mL s{sup -1} injection rate), followed by a 15 mL saline flush at the same rate, using a MR-compatible automated injector (Spectris). Two AIFs were defined for each volunteer by drawing two ROIs in the aorta for each study. Renal perfusion and glomerular filtration rate (GFR) values were then calculated for each of the AIFs using a modified Tofts Renal Model (TRM). Both renal perfusion and GFR were expressed in mL min{sup -1} 100 mL{sup -1} of tissue. Results and conclusion: Inter-individual reproducibility tests for renal perfusion and glomerular filtration rate showed that the size of AIF ROIs significantly affects calculated values of perfusion

  13. MRI findings in multifetal pregnancies complicated by twin reversed arterial perfusion sequence (TRAP)

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Carolina V.A.; Kline-Fath, Beth M.; Linam, Leann E.; Calvo Garcia, Maria A.; Rubio, Eva I. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Lim, Foong-Yen [Cincinnati Children' s Hospital Medical Center, Division of Pediatric Surgery, Cincinnati, OH (United States)

    2011-06-15

    Twin reversed arterial perfusion sequence (TRAP) is a rare complication in multifetal monochorionic pregnancies in which a normal ''pump'' twin provides circulation to an abnormal acardiac co-twin, resulting in high-output cardiac dysfunction in the pump twin. To define fetal MRI findings of TRAP sequence. Fetal MR images were retrospectively reviewed in 35 pregnancies complicated by TRAP sequence. Abnormalities of the pump twin, acardiac twin, umbilical cord, placenta and amniotic fluid were reviewed. Acardiac twins were classified as: acephalus (51%), anceps (40%), amorphus (9%), acormus (0%). Common findings in acardiac twins include subcutaneous edema (77%), absent cardiac structures (86%), absent or abnormal thoracic cavity (100%), abnormal abdominal organs (100%), superior limbs absent (46%) or abnormal (51%), and inferior limbs present but abnormal (83%). There were pump twin findings of cardiac dysfunction in 43% and intracranial ischemic changes in 3%. Umbilical cord anomalies were present in 97%. Acardiac twins present with a predictable pattern of malformation with poorly developed superior structures, more normally formed inferior structures and absent or rudimentary heart. Although usually absent, abnormal heart structures can be seen and do not exclude TRAP sequence. Pump twins are commonly normal with exception of findings of cardiac dysfunction and possible brain ischemia. (orig.)

  14. Regional MRI Perfusion Measures Predict Motor/Executive Function in Patients with Clinically Isolated Syndrome

    Directory of Open Access Journals (Sweden)

    Efrosini Z. Papadaki

    2014-01-01

    Full Text Available Background. Patients with clinically isolated syndrome (CIS demonstrate brain hemodynamic changes and also suffer from difficulties in processing speed, memory, and executive functions. Objective. To explore whether brain hemodynamic disturbances in CIS patients correlate with executive functions. Methods. Thirty CIS patients and forty-three healthy subjects, matched for age, gender, education level, and FSIQ, were administered tests of visuomotor learning and set shifting ability. Cerebral blood volume (CBV, cerebral blood flow (CBF, and mean transit time (MTT values were estimated in normal-appearing white matter (NAWM and normal-appearing deep gray Matter (NADGM structures, using a perfusion MRI technique. Results. CIS patients showed significantly elevated reaction time (RT on both tasks, while their CBV and MTT values were globally increased, probably due to inflammatory vasodilation. Significantly, positive correlation coefficients were found between error rates on the inhibition condition of the visuomotor learning task and CBV values in occipital, periventricular NAWM and both thalami. On the set shifting condition of the respective task significant, positive associations were found between error rates and CBV values in the semioval center and periventricular NAWM bilaterally. Conclusion. Impaired executive function in CIS patients correlated positively with elevated regional CBV values thought to reflect inflammatory processes.

  15. Assessment of baseline hemodynamic parameters within infarct progression areas in acute stroke patients using perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Ritzenthaler, Thomas; Cho, Tae-Hee; Derex, Laurent; Nighoghossian, Norbert [Hospices Civils de Lyon, Cerebrovascular Unit, Hopital Neurologique Pierre Wertheimer, Bron (France); Claude Bernard Lyon 1 University, Creatis-LRMN, UMR 5520-Inserm 630, Lyon (France); Wiart, Marlene; Berthezene, Yves [Claude Bernard Lyon 1 University, Creatis-LRMN, UMR 5520-Inserm 630, Lyon (France); Berthiller, Julien [Hospices Civils de Lyon, Pole Information Medicale Evaluation Recherche, Lyon (France); Universite Lyon 1, Lyon (France); Oestergaard, Leif [University of Aarhus, Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus (Denmark); Hermier, Marc [Hospices Civils de Lyon, Neuroradiology Department, Hopital Neurologique Pierre Wertheimer, Lyon (France)

    2011-08-15

    The value of perfusion MRI for identifying the tissue at risk has been questioned. Our objective was to assess baseline perfusion-weighted imaging parameters within infarct progression areas. Patients with anterior circulation stroke without early reperfusion were included from a prospective MRI database. Sequential MRI examinations were performed on admission, 2-3 h (H2), 2-3 days (D2), and between 15 and 30 days after the initial MRI. Maps of baseline time-to-peak (TTP), mean transit time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF) were calculated. Lesion extension areas were defined as pixels showing de novo lesions between each MRI and were generated by subtracting successive lesion masks: V{sub 0}, baseline diffusion-weighted imaging (DWI) lesion; V{sub 1}, lesion extension between baseline and H2 DWI; V{sub 2}, lesion extension from H2 to D2 DWI; and V{sub 3}, lesion extension from D2 DWI to final FLAIR. Repeated measures analysis was used to compare hemodynamic parameters within the baseline diffusion lesion and subsequent lesion extension areas. Thirty-two patients were included. Baseline perfusion parameters were significantly more impaired within the acute DWI lesion compared to lesion extension areas (TTP, p<0.0001; MTT, p<0.0001; CBF p<0.0001; CBV, p<0.0001). A significant decrease in MTT (p = 0.01) and TTP (p = 0.01) was found within successive lesion growth areas. A decreasing gradient of severity for TTP and MTT was observed within successive infarct growth areas. (orig.)

  16. Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available PURPOSE: Crossed cerebellar diaschisis (CCD is a state of neural depression caused by loss of connections to injured neural structures remote from the cerebellum usually evaluated by positron emission tomography. Recently it has been shown that dynamic susceptibility contrast perfusion weighted MRI (PWI may also be feasible to detect the phenomenon. In this study we aimed to assess the frequency of CCD on PWI in patients with acute thalamic infarction. METHODS: From a MRI report database we identified patients with acute isolated thalamic infarction. Contralateral cerebellar hypoperfusion was identified by inspection of time to peak (TTP maps and evaluated quantitatively on TTP, mean transit time (MTT, cerebral blood flow and volume (CBF, CBV maps. A competing cerebellar pathology or an underlying vascular pathology were excluded. RESULTS: A total of 39 patients was included. Common symptoms were hemiparesis (53.8%, hemihypaesthesia (38.5%, dysarthria (30.8%, aphasia (17.9%, and ataxia (15.4%. In 9 patients (23.1% PWI showed hypoperfusion in the contralateral cerebellar hemisphere. All of these had lesions in the territory of the tuberothalamic, paramedian, or inferolateral arteries. Dysarthria was observed more frequently in patients with CCD (6/9 vs. 6/30; OR 8.00; 95%CI 1.54-41.64, p = 0.01. In patients with CCD, the median ischemic lesion volume on DWI (0.91 cm³, IQR 0.49-1.54 cm³ was larger compared to patients with unremarkable PWI (0.51 cm³, IQR 0.32-0.74, p = 0.05. The most pronounced changes were found in CBF (0.94±0.11 and MTT (1.06±0.13 signal ratios, followed by TTP (1.05±0.02. CONCLUSIONS: Multimodal MRI demonstrates CCD in about 20% of acute isolated thalamic infarction patients. Lesion size seems to be a relevant factor in its pathophysiology.

  17. Contrast optimization in multiphase arterial spin labeling; Otimizacao do contraste em ASL multi-fase

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Fernando F.; Paschoal, Andre M., E-mail: paiva@ifsc.usp.br [Universidade de Sao Paulo (CIERMag/USP), Sao Carlos, SP (Brazil). Instituto de Fisica; Foerster, Bernd U. [Philips Medical Systems LatAm, Sao Paulo, SP (Brazil); Tovar-Moll, Fernanda; Moll, Jorge [Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Multiphase ASL is an effective way to overcome the regional variation of the transit time that difficult the estimation of perfusion values. However, with conventional multiple phases ASL techniques, the ASL contrast at later phases is impaired due to repeated application of excitation pulses and longitudinal relaxation making it difficult to evaluate the tissue perfusion in regions where the transit time is longer. In the present study, we show an improvement of the acquisition scheme by exploring a modulation on the flip angle of the MR acquisition to keep the ASL contrast constant over multiple phases. (author)

  18. The value of resting-state functional MRI in subacute ischemic stroke: comparison with dynamic susceptibility contrast-enhanced perfusion MRI

    Science.gov (United States)

    Ni, Ling; Li, Jingwei; Li, Weiping; Zhou, Fei; Wang, Fangfang; Schwarz, Christopher G.; Liu, Renyuan; Zhao, Hui; Wu, Wenbo; Zhang, Xin; Li, Ming; Yu, Haiping; Zhu, Bin; Villringer, Arno; Zang, Yufeng; Zhang, Bing; Lv, Yating; Xu, Yun

    2017-01-01

    To evaluate the potential clinical value of the time-shift analysis (TSA) approach for resting-state fMRI (rs-fMRI) blood oxygenation level-dependent (BOLD) data in detecting hypoperfusion of subacute stroke patients through comparison with dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI). Forty patients with subacute stroke (3–14 days after neurological symptom onset) underwent MRI examination. Cohort A: 31 patients had MRA, DSC-PWI and BOLD data. Cohort B: 9 patients had BOLD and MRA data. The time delay between the BOLD time course in each voxel and the mean signal of global and contralateral hemisphere was calculated using TSA. Time to peak (TTP) was employed to detect hypoperfusion. Among cohort A, 14 patients who had intracranial large-vessel occlusion/stenosis with sparse collaterals showed hypoperfusion by both of the two approaches, one with abundant collaterals showed neither TTP nor TSA time delay. The remaining 16 patients without obvious MRA lesions showed neither TTP nor TSA time delay. Among cohort B, eight patients showed time delay areas. The TSA approach was a promising alternative to DSC-PWI for detecting hypoperfusion in subacute stroke patients who had obvious MRA lesions with sparse collaterals, those with abundant collaterals would keep intact local perfusion. PMID:28139701

  19. Focal time-to-peak changes on perfusion MRI in children with Moyamoya disease: correlation with conventional angiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyun Seok (Dept. of Radiology, Yonsei Univ. College of Medicine, Seoul (Korea, Republic of); Dept. of Radiology, Seoul St Mary' s Hospital, College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)); Kim, Dong-Seok; Shim, Kyu-Won (Dept. of Neurosurgery, Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)); Kim, Jinna; Kim, Eun Soo; Lee, Seung-Koo (Dept. of Radiology, Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)), email: slee@yuhs.ac

    2011-07-15

    Background: Moyamoya disease is a chronic progressive steno-occlusion of the distal internal carotid arteries with unknown etiology. As the classical presentation of childhood Moyamoya disease is ischemic stroke, cerebral hemodynamic evaluation is important for patient selection for surgery to prevent recurrent ischemic attacks. Perfusion MR imaging has been applied to evaluate cerebral hemodynamics. Purpose: To correlate the 'basal time-to-peak preservation sign', 'auto-synangiosis sign', and 'posterior involvement sign' on time-to-peak map of perfusion MRI with catheter angiography. Material and Methods: Thirty-four children (6.91 +- 3.08 years) with Moyamoya disease who underwent both perfusion-weighted MRI and catheter angiography were enrolled in this study. Given catheter angiography as a reference standard, basal time-to-peak preservation sign, auto-synangiosis sign, and posterior involvement sign were evaluated on time-to-peak maps. Results: The basal time-to-peak preservation sign was accurate for the diagnosis of childhood Moyamoya disease; both sensitivity and specificity were 100%. The auto-synangiosis sign showed lower sensitivity (65%), however, with an acceptable specificity (98%). The posterior involvement sign showed lower sensitivity (61%) but had an acceptable specificity (96%). Conclusion: The basal time-to-peak preservation sign may be a universal finding in childhood Moyamoya disease. The auto-synangiosis and posterior involvement sign may be useful in determining transdural collateral status and posterior circulation involvement in childhood Moyamoya disease

  20. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, J. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Tensaouti, F. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Chaltiel, L. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Biostatistics, Toulouse (France); Lotterie, J.A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Catalaa, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Radiology, Toulouse (France); Sunyach, M.P. [Centre Leon Berard, Department of Radiation Oncology, Lyon (France); Ibarrola, D. [CERMEP - Imagerie du Vivant, Lyon (France); Noel, G. [EA 3430, University of Strasbourg, Department of Radiation Oncology, Centre Paul Strauss, Strasbourg (France); Truc, G. [Centre Georges-Francois Leclerc, Department of Radiation Oncology, Dijon (France); Walker, P. [University of Burgundy, Laboratory of Electronics, Computer Science and Imaging (Le2I), UMR 6306 CNRS, Dijon (France); Magne, N. [Institut de cancerologie Lucien-Neuwirth, Department of Radiation Oncology, Saint-Priest-en-Jarez (France); Charissoux, M. [Department of Radiation Oncology, Institut du Cancer de Montpellier, Montpellier (France); Ken, S. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Medical Physics, Toulouse (France); Peran, P. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Berry, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Moyal, E.C. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Universite Toulouse III Paul Sabatier, Toulouse (France); INSERM U1037, Centre de Recherches contre le Cancer de Toulouse, Toulouse (FR); Laprie, A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (FR); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (FR); Universite Toulouse III Paul Sabatier, Toulouse (FR)

    2016-11-15

    To identify relevant relative cerebral blood volume biomarkers from T2* dynamic-susceptibility contrast magnetic resonance imaging to anticipate glioblastoma progression after chemoradiation. Twenty-five patients from a prospective study with glioblastoma, primarily treated by chemoradiation, were included. According to the last follow-up MRI confirmed status, patients were divided into: relapse group (n = 13) and control group (n = 12). The time of last MR acquisition was t{sub end}; MR acquisitions performed at t{sub end-2M}, t{sub end-4M} and t{sub end-6M} (respectively 2, 4 and 6 months before t{sub end}) were analyzed to extract relevant variations among eleven perfusion biomarkers (B). These variations were assessed through R(B), as the absolute value of the ratio between ∇B from t{sub end-4M} to t{sub end-2M} and ∇B from t{sub end-6M} to t{sub end-4M}. The optimal cut-off for R(B) was determined using receiver-operating-characteristic curve analysis. The fraction of hypoperfused tumor volume (F{sub h}P{sub g}) was a relevant biomarker. A ratio R(F{sub h}P{sub g}) ≥ 0.61 would have been able to anticipate relapse at the next follow-up with a sensitivity/specificity/accuracy of 92.3 %/63.6 %/79.2 %. High R(F{sub h}Pg) (≥0.61) was associated with more relapse at t{sub end} compared to low R(F{sub h}Pg) (75 % vs 12.5 %, p = 0.008). Iterative analysis of F{sub h}P{sub g} from consecutive examinations could provide surrogate markers to predict progression at the next follow-up. (orig.)

  1. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Vibeke A. [Glostrup University Hospital, Department of Radiology, Glostrup (Denmark); Glostrup University Hospital, Department of Radiology, Copenhagen Oe (Denmark); Simonsen, Helle J.; Larsson, Henrik B.W. [Glostrup University Hospital, Functional Imaging Unit, Glostrup (Denmark); Glostrup University Hospital, Department of Clinical Physiology, Glostrup (Denmark); Law, Ian [Nuclear Medicine and PET, Department of Clinical Physiology, Copenhagen Oe (Denmark); Hansen, Adam E. [Glostrup University Hospital, Department of Radiology, Glostrup (Denmark); Glostrup University Hospital, Functional Imaging Unit, Glostrup (Denmark)

    2013-03-15

    To investigate if perfusion measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can be used to differentiate radiation necrosis from tumor recurrence in patients with high-grade glioma. The study was approved by the institutional review board and informed consent was obtained from all subjects. 19 patients were recruited following surgery and radiation therapy for glioma. Patients had contrast enhancing lesions, which during the standard MRI examination could not be exclusively determined as recurrence or radiation necrosis. DCE-MRI was used to measure cerebral blood volume (CBV), blood-brain barrier (BBB) permeability and cerebral blood flow (CBF). Subjects also underwent FDG-PET and lesions were classified as either metabolically active or inactive. Follow-up clinical MRI and lesion histology in case of additional tissue resection was used to determine whether lesions were regressing or progressing. Fourteen enhancing lesions could be classified as progressing (11) or regressing (three). An empirical threshold of 2.0 ml/100 g for CBV allowed detection of regressing lesions with a sensitivity of 100 % and specificity of 100 %. FDG-PET and DCE-MRI agreed in classification of tumor status in 13 out of the 16 cases where an FDG-PET classification was obtained. In two of the remaining three patients, MRI follow-up and histology was available and both indicated that the DCE-MRI answer was correct. CBV measurements using DCE-MRI may predict the status of contrast enhancing lesions and give results very similar to FDG-PET with regards to differentiation between tumor recurrence and radiation necrosis. (orig.)

  2. DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC

    Science.gov (United States)

    Tao, Xiuli; Wang, Lvhua; Hui, Zhouguang; Liu, Li; Ye, Feng; Song, Ying; Tang, Yu; Men, Yu; Lambrou, Tryphon; Su, Zihua; Xu, Xiao; Ouyang, Han; Wu, Ning

    2016-01-01

    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. PMID:27762331

  3. Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients

    Energy Technology Data Exchange (ETDEWEB)

    Ulyte, Agne [Vilnius University, Faculty of Medicine, Vilnius (Lithuania); Katsaros, Vasileios K. [General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Advanced Imaging Modalities - CT and MRI, Athens (Greece); University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Liouta, Evangelia; Stranjalis, Georgios [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); Boskos, Christos [University of Athens, Department of Neurosurgery, Evangelismos Hospital, Athens (Greece); General Anticancer and Oncological Hospital ' ' St. Savvas' ' , Department of Radiation Oncology, Athens (Greece); Papanikolaou, Nickolas [Champalimaud Foundation, Department of Radiology, Centre for the Unknown, Lisbon (Portugal); Usinskiene, Jurgita [National Cancer Institute, Vilnius (Lithuania); Affidea Lietuva, Vilnius (Lithuania); Bisdas, Sotirios [University College London Hospitals, Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2016-12-15

    The prognostic value of the dynamic contrast-enhanced (DCE) MRI perfusion and its histogram analysis-derived metrics is not well established for high-grade glioma (HGG) patients. The aim of this prospective study was to investigate DCE perfusion transfer coefficient (K{sup trans}), vascular plasma volume fraction (v{sub p}), extracellular volume fraction (v{sub e}), reverse transfer constant (k{sub ep}), and initial area under gadolinium concentration time curve (IAUGC) as predictors of progression-free (PFS) and overall survival (OS) in HGG patients. Sixty-nine patients with suspected anaplastic astrocytoma or glioblastoma underwent preoperative DCE-MRI scans. DCE perfusion whole tumor region histogram parameters, clinical details, and PFS and OS data were obtained. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify perfusion parameters with the best differentiation performance. On univariate analysis, v{sub e} and skewness of v{sub p} had significant negative impacts, while k{sub ep} had significant positive impact on OS (P < 0.05). v{sub e} was also a negative predictor of PFS (P < 0.05). Patients with lower v{sub e} and IAUGC had longer median PFS and OS on Kaplan-Meier analysis (P < 0.05). K{sup trans} and v{sub e} could also differentiate grade III from IV gliomas (area under the curve 0.819 and 0.791, respectively). High v{sub e} is a consistent predictor of worse PFS and OS in HGG glioma patients. v{sub p} skewness and k{sub ep} are also predictive for OS. K{sup trans} and v{sub e} demonstrated the best diagnostic performance for differentiating grade III from IV gliomas. (orig.)

  4. Tumor perfusion assessed by dynamic contrast-enhanced MRI correlates to the grading of renal cell carcinoma: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Palmowski, Moritz, E-mail: mpalmowski@ukaachen.d [Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen (Germany); Department of Diagnostic Radiology, Medical Faculty, RWTH Aachen University, Aachen (Germany); Schifferdecker, Isabel [Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg (Germany); Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Zwick, Stefan [Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Macher-Goeppinger, Stephan [Institute of Pathology, Heidelberg University, Heidelberg (Germany); Laue, Hendrik [MeVis Research, Center for Medical Image Computing, Bremen (Germany); Haferkamp, Axel [Department of Urology, Heidelberg University (Germany); Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg (Germany); Kiessling, Fabian [Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen (Germany); Hallscheidt, Peter [Department of Diagnostic and Interventional Radiology, Heidelberg University, Heidelberg (Germany)

    2010-06-15

    In this study, we investigated whether assessment of the tumor perfusion by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) enables to estimate the morphologic grading of renal cell carcinomas. A total of 21 patients with suspected renal cell cancer were examined using a Gadobutrol-enhanced, dynamic saturation-recovery, turbo-fast, low-angle shot sequence. Tumor perfusion and the tissue-blood ratio within the entire tumor and the most highly vascularized part of the tumor were calculated according to the model of Miles. Immediately after examination, patients underwent surgery, and the results from imaging were compared with the morphological analysis of the histologic grading. Fourteen patients had G2 tumors, and seven patients had G3 tumors. Significantly higher perfusion values (p < 0.05) were obtained in G3 tumors than in G2 tumors when the entire tumor area was considered (1.59 {+-} 0.44 (ml/g/min) vs. 1.08 {+-} 0.38 (ml/g/min)) or its most highly vascularized part (2.14 {+-} 0.89 (ml/g/min) vs. 1.40 {+-} 0.49 (ml/g/min)). By contrast, the tissue-blood ratios did not differ significantly between the two groups. In conclusion, unlike tissue-blood ratio, surrogate parameters of the tumor perfusion determined by DCE MRI seem to allow an estimation of the grading of renal cell carcinoma. However, further studies with high case numbers and including patients with G1 tumors are required to evaluate the full potential and clinical impact.

  5. Reversible changes in echo planar perfusion- and diffusion-weighted MRI in status epilepticus

    Energy Technology Data Exchange (ETDEWEB)

    Flacke, S.; Keller, E.; Urbach, H. [Dept. of Radiology, Univ. of Bonn (Germany); Wuellner, U.; Hamzei, F. [Dept. of Neurology, Univ. of Bonn (Germany)

    2000-02-01

    Perfusion imaging (PI) demonstrated increased perfusion and diffusion-weighted imaging (DWI) showed high signal limited to the left temporoparietal cortex in a 68-year-old man with nonconvulsive status epilepticus. The EEG showed a slow delta-wave focus. The patient recovered and PI, DWI and EEG changes completely resolved. (orig.)

  6. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    Science.gov (United States)

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  7. Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hakyemez, B., E-mail: bahattinh@hotmail.co [Uludag University School of Medicine, Department of Radiology, Division of Neuroradiology, Bursa (Turkey); Erdogan, C.; Gokalp, G.; Dusak, A.; Parlak, M. [Uludag University School of Medicine, Department of Radiology, Division of Neuroradiology, Bursa (Turkey)

    2010-01-15

    Aim: To evaluate the value of morphometric analysis and perfusion-weighted magnetic resonance imaging (MRI) in differentiating solitary metastases from high-grade gliomas. Materials and methods: Forty-eight tumours (22 high-grade gliomas and 26 solitary hemispheric metastases) were evaluated using conventional and perfusion-weighted MRI. T2-weighted, gradient-echo, echo-planar sequences were used for perfusion-weighted MRI. Relative cerebral blood volume (rCBV) ratios were calculated by dividing the rCBV of the intratumoural and peritumoural areas with the average CBV value of the normal white matter areas. Morphometric analysis was carried out by proportioning the area of peritumoural oedema to the mass area. Mann-Whitney U test and ROC curve analysis were applied for statistical analysis. P < 0.05 was accepted as statistically significant. Results: Mean rCBV ratios of intratumoural areas of high-grade gliomas and metastases were 5.02 +- 2.47 and 4.62 +- 2.46, respectively. No statistically significant difference was found (p = 0.515). rCBV ratios of peritumoural oedema were 0.89 +- 0.51 in high-grade gliomas and 0.31 +- 0.12 in metastases. The difference was statistically significant (p < 0.001). According to the results of morphometric analysis, a statistically significant difference was present between the two tumour types (p < 0.001). Conclusion: Measuring the oedema: mass and rCBV ratios of the oedema surrounding the tumour prior to operation in solitary masses proved to be useful for differentiating metastases from high-grade gliomas.

  8. Early development of arterial spin labeling to measure regional brain blood flow by MRI.

    Science.gov (United States)

    Koretsky, Alan P

    2012-08-15

    Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.

  9. Dopaminergic Therapy Modulates Cortical Perfusion in Parkinson Disease With and Without Dementia According to Arterial Spin Labeled Perfusion Magnetic Resonance Imaging.

    Science.gov (United States)

    Lin, Wei-Che; Chen, Pei-Chin; Huang, Yung-Cheng; Tsai, Nai-Wen; Chen, Hsiu-Ling; Wang, Hung-Chen; Lin, Tsu-Kung; Chou, Kun-Hsien; Chen, Meng-Hsiang; Chen, Yi-Wen; Lu, Cheng-Hsien

    2016-02-01

    Arterial spin labeling (ASL) magnetic resonance imaging analyses allow for the quantification of altered cerebral blood flow, and provide a novel means of examining the impact of dopaminergic treatments. The authors examined the cerebral perfusion differences among 17 Parkinson disease (PD) patients, 17 PD with dementia (PDD) patients, and 17 healthy controls and used ASL-MRI to assess the effects of dopaminergic therapies on perfusion in the patients. The authors demonstrated progressive widespread cortical hypoperfusion in PD and PDD and robust effects for the dopaminergic therapies. Specifically, dopaminergic medications further decreased frontal lobe and cerebellum perfusion in the PD and PDD groups, respectively. These patterns of hypoperfusion could be related to cognitive dysfunctions and disease severity. Furthermore, desensitization to dopaminergic therapies in terms of cortical perfusion was found as the disease progressed, supporting the concept that long-term therapies are associated with the therapeutic window narrowing. The highly sensitive pharmaceutical response of ASL allows clinicians and researchers to easily and effectively quantify the absolute perfusion status, which might prove helpful for therapeutic planning.

  10. Towards quantification of blood-flow changes during cognitive task activation using perfusion-based fMRI.

    Science.gov (United States)

    Mildner, Toralf; Zysset, Stefan; Trampel, Robert; Driesel, Wolfgang; Möller, Harald E

    2005-10-01

    Multi-slice perfusion-based functional magnetic resonance imaging (p-fMRI) is demonstrated with a color-word Stroop task as an established cognitive paradigm. Continuous arterial spin labeling (CASL) of the blood in the left common carotid artery was applied for all repetitions of the functional run in a quasi-continuous fashion, i.e., it was interrupted only during image acquisition. For comparison, blood oxygen level dependent (BOLD) contrast was detected using conventional gradient-recalled echo (GE) echo planar imaging (EPI). Positive activations in BOLD imaging appeared in p-fMRI as negative signal changes corresponding to an enhanced transport of inverted water spins into the region of interest, i.e., increased cerebral blood flow (CBF). Regional differences between the localization of activations and the sensitivity of p-fMRI and BOLD-fMRI were observed as, for example, in the inferior frontal sulcus and in the intraparietal sulcus. Quantification of CBF changes during cognitive task activation was performed on a multi-subject basis and yielded CBF increases of the order of 20-30%.

  11. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    Science.gov (United States)

    Maan, Bianca; Simões, Rita Lopes; Meijer, Frederick J. A.; Klaas Jan Renema, W.; Slump, Cornelis H.

    2011-03-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are necessary. MRI is the preferred imaging modality for follow up because of the absence of radiation dose concerns, contrary to CT. Dynamic Susceptibility Contrast (DSC) MRI is an imaging technique used for measuring perfusion of the brain, however, is not standard applied in the clinical routine due to lack of immediate patient benefit. Several post processing algorithms are described in the literature to obtain cerebral blood flow (CBF). The quantification of CBF relies on the deconvolution of a tracer concentration-time curve in an arterial and a tissue voxel. There are several methods to obtain this deconvolution based on singular-value decomposition (SVD). This contribution describes a comparison between the different approaches as currently there is no best practice for (all) clinical relevant situations. We investigate the influence of tracer delay, dispersion and recirculation on the performance of the methods. In the presence of negative delays, the truncated SVD approach overestimates the CBF. Block-circulant and reformulated SVD are delay-independent. Due to its delay dependent behavior, the truncated SVD approach performs worse in the presence of dispersion as well. However all SVD approaches are dependent on the amount of dispersion. Moreover, we observe that the optimal truncation parameter varies when recirculation is added to noisy data, suggesting that, in practice, these methods are not immune to tracer recirculation. Finally, applying the methods to clinical data resulted in a large variability of the CBF estimates. Block-circulant SVD will work in all situations and is the method with the highest potential.

  12. Correlation between arterial spin labeling MRI and dynamic FDG on PET-MR in Alzheimer’s disease and non-Alzhiemer’s disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David; Goubran, Maged; Wilson, Eugene; Xu, Guofan; Tripathi, Pragya; Holley, Dawn; Chao, Steven; Wintermark, Max; Quon, Andrew; Zeineh, Michael; Vasanawala, Minal; Zaharchuk, Greg [Stanford University, California (United States)

    2015-05-18

    Regional hypoperfusion on Arterial Spin Labeling (ASL) MRI and corresponding regions of hypometabolism on FDG PET have been reported in Alzheimer’s Disease (AD). To our knowledge these correlations have not been studied under simultaneous acquisition. The purpose of this study is to investigate the correlation of ASL with FDG PET under simultaneous acquisition on PET-MR and to explore this correlation as a possible biomarker for AD. Dynamic FDG and ASL imaging was performed using a simultaneous TOF-enabled PET-MR scanner in 7 subjects without AD and 3 subjects with AD. Average age was 68±5 years. Automated atlas-based segmentation was performed using T2 MRI using the Talairach atlas. Quantitative analysis of ASL and FDG (delayed 45-75 minute scan) was performed in five regions using the pons as a reference region for both perfusion and metabolism. Statistical analyses included Spearman’s correlation and student’s t-test. Significant correlation of relative perfusion and metabolism was found in two of the five brain regions including the putamen (p = 0.018) and the hippocampus (p = 0.031). In addition, there was significant difference between the relative perfusion and metabolism of the thalamus (p = 0.04). No difference was seen between the AD and non-AD groups. Simultaneous PET-MR demonstrates a positive correlation of perfusion of ASL with metabolism on FDG PET in the hippocampus and putamen. The putamen correlation has previously been reported in the literature on a non-simultaneous ASL and FDG imaging. The thalamus was noted to have a difference in the relative perfusion and metabolism representing a perfusion-metabolism mismatch. Future studies should explore the correlation in additional brain regions and the meaning of perfusion-metabolism mismatches as potential imaging biomarkers for patients with and without AD.

  13. Magnetic resonance perfusion imaging without contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz [University Hospital of Tuebingen, Section on Experimental Radiology, Tuebingen (Germany); Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D. [University Hospital of Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2010-08-15

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  14. ¹⁸F-FDG PET metabolic parameters and MRI perfusion and diffusion parameters in hepatocellular carcinoma: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Sung Jun Ahn

    Full Text Available OBJECTIVES: Glucose metabolism, perfusion, and water diffusion may have a relationship or affect each other in the same tumor. The understanding of their relationship could expand the knowledge of tumor characteristics and contribute to the field of oncologic imaging. The purpose of this study was to evaluate the relationships between metabolism, vasculature and cellularity of advanced hepatocellular carcinoma (HCC, using multimodality imaging such as ¹⁸F-FDG positron emission tomography (PET, dynamic contrast enhanced (DCE-MRI, and diffusion weighted imaging(DWI. MATERIALS AND METHODS: Twenty-one patients with advanced HCC underwent ¹⁸F-FDG PET, DCE-MRI, and DWI before treatment. Maximum standard uptake values (SUV(max from ¹⁸F-FDG-PET, variables of the volume transfer constant (K(trans from DCE-MRI and apparent diffusion coefficient (ADC from DWI were obtained for the tumor and their relationships were examined by Spearman's correlation analysis. The influence of portal vein thrombosis on SUV(max and variables of K(trans and ADC was evaluated by Mann-Whitney test. RESULTS: SUV(max showed significant negative correlation with K(trans(max (ρ = -0.622, p = 0.002. However, variables of ADC showed no relationship with variables of K(trans or SUV(max (p>0.05. Whether portal vein thrombosis was present or not did not influence the SUV max and variables of ADC and K(trans (p>0.05. CONCLUSION: In this study, SUV was shown to be correlated with K(trans in advanced HCCs; the higher the glucose metabolism a tumor had, the lower the perfusion it had, which might help in guiding target therapy.

  15. Arterial spin-labeled MRI study of migraine attacks treated with rizatriptan.

    Science.gov (United States)

    Kato, Yuji; Araki, Nobuo; Matsuda, Hiroshi; Ito, Yasuo; Suzuki, Chihiro

    2010-06-01

    Spin-tag perfusion imaging is an MRI method that quantitatively measures cerebral blood flow. Compared with conventional perfusion techniques, advantages of this arterial spin-labeling (ASL) include repeatability and the avoidance of intravenous contrast administration. In the present study, we performed an analysis of 3T high-field MRI examinations utilizing ASL perfusion during migraine attacks. A 32-year-old male patient was studied in three situations: during migraine attack within 1 h post-onset, 30 min after oral administration of rizatriptan 10 mg, and attack-free period. Normalized ASL images acquired during migraine attack showed significant relative hypoperfusion in the bilateral median thalamic areas including hypothalamus and significant relative hyperperfusion in the frontal cortex compared to images acquired during the migraine-free state. When normalized ASL images acquired 30 min after treatment were compared with those acquired during the attack, relative improvement of perfusion in the bilateral median thalamic areas including hypothalamus was observed. Hypothalamus and its surrounding areas may participate in the pathogenesis in migraine attack.

  16. Limbic system perfusion in Alzheimer's disease measured by MRI-coregistered HMPAO SPET

    Energy Technology Data Exchange (ETDEWEB)

    Callen, David J.A. [Institute of Medical Science, Research Program in Aging, Imaging, Sunnybrook and Women' s University of Toronto, ON (Canada); Black, Sandra E. [Cognitive Neurology Unit and Research Program in Aging, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Institute of Medical Science, Research Program in Aging, Imaging, Sunnybrook and Women' s University of Toronto, ON (Canada); Department of Medicine (Neurology), University of Toronto, ON (Canada); Caldwell, Curtis B. [Department of Medical Imaging, Sunnybrook and Women' s College Health Sciences Centre and University of Toronto, CN (Canada)

    2002-07-01

    The goal of this study was to perform a systematic, semi-quantitative analysis of limbic perfusion in patients with Alzheimer's disease (AD) using coregistered single-photon emission tomography (SPET) images aligned to magnetic resonance (MR) images. Limbic perfusion in 40 patients with mild to moderate AD was compared with that of 17 age-, sex-, and education-matched normal controls (NC). HMPAO SPET scans and 3D T1-weighted MR images were acquired for each subject. Structures of the limbic system (i.e. hippocampus, amygdala, anterior thalamus, hypothalamus, mamillary bodies, basal forebrain, septal area and cingulate, orbitofrontal and parahippocampal cortices) were traced on the MR images and transferred to the coregistered SPET scans. Perfusion ratios for all limbic regions were calculated relative to cerebellar perfusion. General linear model multivariate analysis revealed that, overall, limbic structures showed significant hypoperfusion (F=7.802, P<0.00001, {eta}{sup 2}=0.695) in AD patients compared with NC. Greatest differences (d{>=}0.8) were found in the hippocampus, as well as all areas of the cingulate cortex. Significant relative hypoperfusion was also apparent in the parahippocampal cortex, amygdala/entorhinal cortex, septal area and anterior thalamus, all of which showed medium to large effect sizes (d=0.6-0.8). No significant relative perfusion differences were detected in the basal forebrain, hypothalamus, mamillary bodies or orbitofrontal cortex. Logistic regression indicated that posterior cingulate cortex perfusion was able to discriminate AD patients from NC with 93% accuracy (95% sensitivity, 88% specificity). The current results suggest that most, but not all, limbic structures show significant relative hypoperfusion in AD. These findings validate previous post-mortem studies and could be useful in improving diagnostic accuracy, monitoring disease progression and evaluating potential treatment strategies in AD. (orig.)

  17. Spiral Perfusion Imaging With Consecutive Echoes (SPICE™) for the Simultaneous Mapping of DSC- and DCE-MRI Parameters in Brain Tumor Patients: Theory and Initial Feasibility

    Science.gov (United States)

    Paulson, Eric S.; Prah, Douglas E.; Schmainda, Kathleen M.

    2017-01-01

    Dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) are the perfusion imaging techniques most frequently used to probe the angiogenic character of brain neoplasms. With these methods, T1- and T2/T2*-weighted imaging sequences are used to image the distribution of gadolinium (Gd)-based contrast agents. However, it is well known that Gd exhibits combined T1, T2, and T2* shortening effects in tissue, and therefore, the results of both DCE- and DSC-MRI can be confounded by these opposing effects. In particular, residual susceptibility effects compete with T1 shortening, which can confound DCE-MRI parameters, whereas dipolar T1 and T2 leakage and residual susceptibility effects can confound DSC-MRI parameters. We introduce here a novel perfusion imaging acquisition and postprocessing method termed Spiral Perfusion Imaging with Consecutive Echoes (SPICE) that can be used to simultaneously acquire DCE- and DSC-MRI data, which requires only a single dose of the Gd contrast agent, does not require the collection of a precontrast T1 map for DCE-MRI processing, and eliminates the confounding contrast agent effects due to contrast extravasation. A detailed mathematical description of SPICE is provided here along with a demonstration of its utility in patients with high-grade glioma. PMID:28090589

  18. Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla.

    Science.gov (United States)

    Wang, Jiongjiong; Li, Lin; Roc, Anne C; Alsop, David C; Tang, Kathy; Butler, Norman S; Schnall, Mitchell D; Detre, John A

    2004-01-01

    Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of an exogenously induced susceptibility artifact over left motor cortex. The spin-echo CASL technique was compared with a regular gradient-echo EPI sequence with the same slice thickness, as well as other imaging methods using thin slices and spin-echo acquisitions. The results demonstrate improved functional sensitivity and efficiency of the spin-echo CASL approach as compared with gradient-echo EPI techniques, and a trend of improved sensitivity as compared with spin-echo EPI approach in the brain regions affected by the susceptibility artifact. ASL images, either with or without subtraction of the control, provide a robust alternative to blood oxygenation level dependant (BOLD) methods for activation imaging in regions of high static field inhomogeneity.

  19. Three-dimensional first-pass myocardial perfusion MRI using a stack-of-spirals acquisition.

    Science.gov (United States)

    Shin, Taehoon; Nayak, Krishna S; Santos, Juan M; Nishimura, Dwight G; Hu, Bob S; McConnell, Michael V

    2013-03-01

    Three-dimensional cardiac magnetic resonance perfusion imaging is promising for the precise sizing of defects and for providing high perfusion contrast, but remains an experimental approach primarily due to the need for large-dimensional encoding, which, for traditional 3DFT imaging, requires either impractical acceleration factors or sacrifices in spatial resolution. We demonstrated the feasibility of rapid three-dimensional cardiac magnetic resonance perfusion imaging using a stack-of-spirals acquisition accelerated by non-Cartesian k-t SENSE, which enables entire myocardial coverage with an in-plane resolution of 2.4 mm. The optimal undersampling pattern was used to achieve the largest separation between true and aliased signals, which is a prerequisite for k-t SENSE reconstruction. Flip angle and saturation recovery time were chosen to ensure negligible magnetization variation during the transient data acquisition. We compared the proposed three-dimensional perfusion method with the standard 2DFT approach by consecutively acquiring both data during each R-R interval in cardiac patients. The mean and standard deviation of the correlation coefficients between time intensity curves of three-dimensional versus 2DFT were 0.94 and 0.06 across seven subjects. The linear correlation between the two sets of upslope values was significant (r = 0.78, P < 0.05).

  20. Automated vs manual delineations of regions of interest- a comparison in commercially available perfusion MRI software

    Directory of Open Access Journals (Sweden)

    Galinovic Ivana

    2012-07-01

    Full Text Available Abstract Background In perfusion magnetic resonance imaging a manual approach to delineation of regions of interest is, due to rater bias and time intensive operator input, clinically less favorable than an automated approach would be. The goal of our study was to compare the performances of these approaches. Methods Using Stroketool, PMA and Perfscape/Neuroscape perfusion maps of cerebral blood flow, mean transit time and Tmax were created for 145 patients with acute ischemic stroke. Volumes of hypoperfused tissue were calculated using both a manual and an automated protocol, and the results compared between methods. Results The median difference between the automatically and manually derived volumes was up to 210 ml in Perfscape/Neuroscape, 123 ml in PMA and 135 ml in Stroketool. Correlation coefficients between perfusion volumes and radiological and clinical outcome were much lower for the automatic volumes than for the manually derived ones. Conclusions The agreement of the two methods was very poor, with the automated use producing falsely exaggerated volumes of hypoperfused tissue. Software improvements are necessary to enable highly automated protocols to credibly assess perfusion deficits.

  1. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Science.gov (United States)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  2. Correlation of perfusion MRI and 18F-FDG PET imaging biomarkers for monitoring regorafenib therapy in experimental colon carcinomas with immunohistochemical validation.

    Directory of Open Access Journals (Sweden)

    Ralf S Eschbach

    Full Text Available To investigate a multimodal, multiparametric perfusion MRI / 18F-fluoro-deoxyglucose-(18F-FDG-PET imaging protocol for monitoring regorafenib therapy effects on experimental colorectal adenocarcinomas in rats with immunohistochemical validation.Human colorectal adenocarcinoma xenografts (HT-29 were implanted subcutaneously in n = 17 (n = 10 therapy group; n = 7 control group female athymic nude rats (Hsd:RH-Foxn1rnu. Animals were imaged at baseline and after a one-week daily treatment protocol with regorafenib (10 mg/kg bodyweight using a multimodal, multiparametric perfusion MRI/18F-FDG-PET imaging protocol. In perfusion MRI, quantitative parameters of plasma flow (PF, mL/100 mL/min, plasma volume (PV, % and endothelial permeability-surface area product (PS, mL/100 mL/min were calculated. In 18F-FDG-PET, tumor-to-background-ratio (TTB was calculated. Perfusion MRI parameters were correlated with TTB and immunohistochemical assessments of tumor microvascular density (CD-31 and cell proliferation (Ki-67.Regorafenib significantly (p<0.01 suppressed PF (81.1±7.5 to 50.6±16.0 mL/100mL/min, PV (12.1±3.6 to 7.5±1.6% and PS (13.6±3.2 to 7.9±2.3 mL/100mL/min as well as TTB (3.4±0.6 to 1.9±1.1 between baseline and day 7. Immunohistochemistry revealed significantly (p<0.03 lower tumor microvascular density (CD-31, 7.0±2.4 vs. 16.1±5.9 and tumor cell proliferation (Ki-67, 434.0 ± 62.9 vs. 663.0 ± 98.3 in the therapy group. Perfusion MRI parameters ΔPF, ΔPV and ΔPS showed strong and significant (r = 0.67-0.78; p<0.01 correlations to the PET parameter ΔTTB and significant correlations (r = 0.57-0.67; p<0.03 to immunohistochemical Ki-67 as well as to CD-31-stainings (r = 0.49-0.55; p<0.05.A multimodal, multiparametric perfusion MRI/PET imaging protocol allowed for non-invasive monitoring of regorafenib therapy effects on experimental colorectal adenocarcinomas in vivo with significant correlations between perfusion MRI parameters and 18F

  3. Perfusion MRI as the predictive/prognostic and pharmacodynamic biomarkers in recurrent malignant glioma treated with bevacizumab: a systematic review and a time-to-event meta-analysis.

    Science.gov (United States)

    Choi, Sang Hyun; Jung, Seung Chai; Kim, Kyung Won; Lee, Ja Youn; Choi, Yoonseok; Park, Seong Ho; Kim, Ho Sung

    2016-06-01

    This study aims to evaluate the value of perfusion MRI as a predictive/prognostic biomarker and a pharmacodynamic biomarker in patients with recurrent glioma treated with a bevacizumab-based regimen. We identified thirteen literature reports that investigated dynamic susceptibility-contrast (DSC) MRI or dynamic contrast-enhanced (DCE) MRI for predicting the patient outcome and analyzing the anti-angiogenic effect of bevacizumab by performing a systematic search of MEDLINE and EMBASE. The relative cerebral volume (rCBV) of DSC-MRI is currently the most common perfusion MRI parameter used as a predictive/prognostic biomarker. Pooled hazard ratios between responders and non-responders, as determined by rCBV, were 0.46 (95 % CI 0.28-0.76) for progression-free survival from five articles with a total 226 patients and 0.47 (95 % CI 0.29-0.76) for overall survival from six articles with a total 247 patients, and thus indicating that rCBV is helpful for predicting disease progression and the eventual outcome after treatment. Regarding the pharmacodynamic value of perfusion MRI parameters derived from either DSC-MRI or DCE-MRI, most perfusion MRI parameters (rCBV, Ktrans, CBVmax, Kpsmax, fpv, Ve and Kep) demonstrated a consistent decrease on the follow-up MRI after treatment, indicating that perfusion MRI may be helpful for evaluating the anti-angiogenic effect of a bevacizumab-based treatment regimen. However, the lack of standardization of imaging acquisition and analysis techniques for various perfusion MRI parameters needs to be resolved in the future. Despite these unsolved issues, the current evidence favoring the use of perfusion MRI as a predictive/prognostic or pharmacodynamic biomarker should be considered in patients with glioma treated using a bevacizumab-based regimen.

  4. MRI and MRA of kidney transplants - evaluation of vessels and perfusion; MRT und MRA von Nierentransplantaten - Gefaess- und Perfusionsbeurteilung

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, W.; Pfammatter, T.; Krestin, G.P.; Debatin, J.F. [Universitaetsspital Zuerich (Switzerland). Inst. fuer Diagnostische Radiologie

    1998-09-01

    Purpose: To document the value of fast contrast enhanced-sequences in the assessment of the vascular supply and parenchymal perfusion in renal transplants. Patients: 18 recipients of a renal transplant were examined with a 1.5-Tesla-MR-system. The protocol included fast contrast enhanced 3D MR angiography and coronal 2D GRE sequences. The transplant artery and vein were assessed as well as regional parenchymal perfusion. Results: 3D MRA detected three transplant artery stenoses and one occlusion. In addition, two renal vein thromboses and one compression were identified. Perfusion deficits were documented in 8 renal transplants: Renal infarction (n=4), cortical necrosis (n=2), acute tubular necrosis (n=1) and venous ischemia (n=1). Fluid collections were documented as well as dilatation of the collecting system and abnormalities of the surrounding tissues. Conclusion: Contrast enhanced MRI and MRA permit a comprehensive assessment of renal transplants without inducing nephrotoxicity. (orig.) [Deutsch] Ziel: Retrospektive Studie zur Erfassung der diagnostischen Aussagekraft schneller KM-verstaerkter MR-Sequenzen bei der Darstellung der Gefaess- und Perfusionsverhaeltnisse in Transplantatnieren. Patienten: 18 Transplantatnierenempfaenger wurden in einem 1,5-Tesla-MR-System untersucht. Das Untersuchungsprotokoll umfasste eine schnelle KM-verstaerkte 3D-MR-Angiographie sowie koronare 2D-GRE-Sequenzen. Analysiert wurden die Transplantatarterie(n), die Transplantatvene(n), die regionale Parenchymperfusion sowie die Organ- und Umgebungsmorphologie. Ergebnisse: Mit der 3D-MRA kamen arterielle Stenosen (n=3), ein arterieller Verschluss, Venenthrombosen (n=2) und eine Venenkompression zur Darstellung. Eingeschraenkte Parenchymperfusion wurde in 8 Transplantaten (renale Infarkte (n=4), kortikale Nekrose (n=2), akute Tubulusnekrose (n=1), venoese Ischaemie (n=1)) nachgewiesen. Fluessigkeitsansammlungen wurden ebenso wie Abflussstoerungen des Nierenbeckenkelchsystems und

  5. Three-dimensional MRI perfusion maps: a step beyond volumetric analysis in mental disorders.

    Science.gov (United States)

    Fabene, Paolo F; Farace, Paolo; Brambilla, Paolo; Andreone, Nicola; Cerini, Roberto; Pelizza, Luisa; Versace, Amelia; Rambaldelli, Gianluca; Birbaumer, Niels; Tansella, Michele; Sbarbati, Andrea

    2007-01-01

    A new type of magnetic resonance imaging analysis, based on fusion of three-dimensional reconstructions of time-to-peak parametric maps and high-resolution T1-weighted images, is proposed in order to evaluate the perfusion of selected volumes of interest. Because in recent years a wealth of data have suggested the crucial involvement of vascular alterations in mental diseases, we tested our new method on a restricted sample of schizophrenic patients and matched healthy controls. The perfusion of the whole brain was compared with that of the caudate nucleus by means of intrasubject analysis. As expected, owing to the encephalic vascular pattern, a significantly lower time-to-peak was observed in the caudate nucleus than in the whole brain in all healthy controls, indicating that the suggested method has enough sensitivity to detect subtle perfusion changes even in small volumes of interest. Interestingly, a less uniform pattern was observed in the schizophrenic patients. The latter finding needs to be replicated in an adequate number of subjects. In summary, the three-dimensional analysis method we propose has been shown to be a feasible tool for revealing subtle vascular changes both in normal subjects and in pathological conditions.

  6. Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI.

    Science.gov (United States)

    Schmiedeskamp, Heiko; Andre, Jalal B; Straka, Matus; Christen, Thomas; Nagpal, Seema; Recht, Lawrence; Thomas, Reena P; Zaharchuk, Greg; Bammer, Roland

    2013-05-01

    The purpose of this study was to estimate magnetic resonance imaging-based brain perfusion parameters from combined multiecho spin-echo and gradient-echo acquisitions, to correct them for T₁₋, T₂₋, and T₂₋*-related contrast agent (CA) extravasation effects, and to simultaneously determine vascular permeability. Perfusion data were acquired using a combined multiecho spin- and gradient-echo (SAGE) echo-planar imaging sequence, which was corrected for CA extravasation effects using pharmacokinetic modeling. The presented method was validated in simulations and brain tumor patients, and compared with uncorrected single-echo and multiecho data. In the presence of CA extravasation, uncorrected single-echo data resulted in underestimated CA concentrations, leading to underestimated single-echo cerebral blood volume (CBV) and mean transit time (MTT). In contrast, uncorrected multiecho data resulted in overestimations of CA concentrations, CBV, and MTT. The correction of CA extravasation effects resulted in CBV and MTT estimates that were more consistent with the underlying tissue characteristics. Spin-echo perfusion data showed reduced large-vessel blooming effects, facilitating better distinction between increased CBV due to active tumor progression and elevated CBV due to the presence of cortical vessels in tumor proximity. Furthermore, extracted permeability parameters were in good agreement with elevated T1-weighted postcontrast signal values.

  7. A neuroradiologist's guide to arterial spin labeling MRI in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Grade, M. [Queen Square, UCL Institute of Neurology, London (United Kingdom); Stanford School of Medicine, Stanford, CA (United States); Hernandez Tamames, J.A. [Rey Juan Carlos University, Medical Image Analysis and Biometry Laboratory, Madrid (Spain); Erasmus MC - University Medical Centre Rotterdam, Department of Radiology, PO Box 2040, Rotterdam (Netherlands); Pizzini, F.B. [Queen Square, UCL Institute of Neurology, London (United Kingdom); Verona University Hospital, Neuroradiology, Department of Diagnostics and Pathology, Verona (Italy); Achten, E. [Ghent University Hospital, Neuroradiology, Department of Radiology, Ghent (Belgium); Golay, X. [Queen Square, UCL Institute of Neurology, London (United Kingdom); Smits, M. [Erasmus MC - University Medical Centre Rotterdam, Department of Radiology, PO Box 2040, Rotterdam (Netherlands)

    2015-12-15

    Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer's disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood-brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies. (orig.)

  8. Hemodynamic significance of coronary stenosis by vessel attenuation measurement on CT compared with adenosine perfusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Martijn A.M. den; Pelgrim, Gert Jan; Pundziute, Gabija; Heuvel, Edwin R. van den; Oudkerk, Matthijs; Vliegenthart, Rozemarijn, E-mail: r.vliegenthart@umcg.nl

    2015-01-15

    Highlights: • The majority of anatomical coronary stenoses do not cause myocardial ischemia. • cCTA-derived CCO decrease expresses luminal density gradient across stenosis. • CCO decrease differentiates between anatomical stenoses with and without associated myocardial ischemia. • CCO decrease assessment can exclude the majority of stenoses without hemodynamic significance. - Abstract: Purpose: We assessed the association between corrected contrast opacification (CCO) based on coronary computed tomography angiography (cCTA) and inducible ischemia by adenosine perfusion magnetic resonance imaging (APMR). Methods: Sixty cardiac asymptomatic patients with extra-cardiac arterial disease (mean age 64.4 ± 7.7 years; 78% male) underwent cCTA and APMR. Luminal CT attenuation values (Hounsfield Units) were measured in coronary arteries from proximal to distal, with additional measurements across sites with >50% lumen stenosis. CCO was calculated by dividing coronary CT attenuation by descending aorta CT attenuation. A reversible perfusion defect on APMR was considered as myocardial ischemia. Results: In total, 169 coronary stenoses were found. Seven patients had 8 perfusion defects on APMR, with 11 stenoses in corresponding vessels. CCO decrease across stenoses with hemodynamic significance was 0.144 ± 0.112 compared to 0.047 ± 0.104 across stenoses without hemodynamic significance (P = 0.003). CCO decrease in lesions with and without anatomical stenosis was similar (0.054 ± 0.116 versus 0.052 ± 0.101; P = 0.89). Using 0.20 as preliminary CCO decrease cut-off, hemodynamic significance would be excluded in 82.9% of anatomical stenoses. Conclusions: CCO decrease across coronary stenosis is associated with myocardial ischemia on APMR. CCO based on common cCTA data is a novel method to assess hemodynamic significance of anatomical stenosis.

  9. Comparative study of DSC-PWI and 3D-ASL in ischemic stroke patients.

    Science.gov (United States)

    Zhang, Shui-xia; Yao, Yi-hao; Zhang, Shun; Zhu, Wen-jie; Tang, Xiang-yu; Qin, Yuan-yuan; Zhao, Ling-yun; Liu, Cheng-xia; Zhu, Wen-zhen

    2015-12-01

    The purpose of this study was to quantitatively analyze the relationship between three dimensional arterial spin labeling (3D-ASL) and dynamic susceptibility contrast-enhanced perfusion weighted imaging (DSC-PWI) in ischemic stroke patients. Thirty patients with ischemic stroke were included in this study. All subjects underwent routine magnetic resonance imaging scanning, diffusion weighted imaging (DWI), magnetic resonance angiography (MRA), 3D-ASL and DSC-PWI on a 3.0T MR scanner. Regions of interest (ROIs) were drawn on the cerebral blood flow (CBF) maps (derived from ASL) and multi-parametric DSC perfusion maps, and then, the absolute and relative values of ASL-CBF, DSC-derived CBF, and DSC-derived mean transit time (MTT) were calculated. The relationships between ASL and DSC parameters were analyzed using Pearson's correlation analysis. Receiver operative characteristic (ROC) curves were performed to define the thresholds of relative value of ASL-CBF (rASL) that could best predict DSC-CBF reduction and MTT prolongation. Relative ASL better correlated with CBF and MTT in the anterior circulation with the Pearson correlation coefficients (R) values being 0.611 (P1.0 were 75.7%, 89.2% and 87.8% respectively. ASL-CBF map has better linear correlations with DSC-derived parameters (DSC-CBF and MTT) in anterior circulation in ischemic stroke patients. Additionally, when rASL is lower than 0.585, it could predict DSC-CBF decrease with moderate accuracy. If rASL values range from 0.585 to 0.952, we just speculate the prolonged MTT.

  10. Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI.

    Science.gov (United States)

    Cuenod, C A; Balvay, D

    2013-12-01

    The microvascular network formed by the capillaries supplies the tissues and permits their function. It provides a considerable surface area for exchanges between blood and tissues. All pathological conditions cause changes in the microcirculation. These changes can be used as imaging biomarkers for the diagnosis of lesions and optimisation of treatment. Among the many imaging techniques developed to study the microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents is the most widely used, either as positive enhancement for CT, T1-weighted MRI and ultrasound - dynamic contrast-enhanced-imaging (DCE-imaging) - or negative enhancement in T2*-weighted brain MRI - dynamic susceptibility contrast-MRI (DSC-MRI) -. Acquisition involves an injection of contrast agent during the acquisition of a dynamic series of images on a zone of interest. These kinetics may be analyzed visually, to define qualitative criteria, or with software using mathematical modelling, to extract quantitative physiological parameters. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of acquisition), the type of contrast agent, the data pre-processing (motion correction, conversion of the signal into concentration) and the data analysis method. Because of these multiple choices it is necessary to understand the physiological processes involved and understand the advantages and limits of each strategy.

  11. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    Science.gov (United States)

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image

  12. Decreased Brain and Placental Perfusion in Omphalopagus Conjoined Twins on Fetal MRI

    Directory of Open Access Journals (Sweden)

    Sureyya Burcu Gorkem

    2016-01-01

    Full Text Available The aim of this study is to evaluate perfusional changes in brain and placenta of omphalopagus conjoined twins and to compare them with singleton fetuses by using diffusion weighted imaging and apparent diffusion coefficient. Fetal MRIs of 28-week-old omphalopagus conjoined twins with a shared liver with two separate gallbladders and portal and hepatic venous systems and three singleton fetuses with unilateral borderline ventriculomegaly at the same gestational week as control group were enrolled retrospectively. There was a significant decrease in ADC values of brain regions (p=0.018 and placenta (p=0.005 of conjoined twins compared to the control group. The decreased ADC values in placenta and brain regions in conjoined twins might be due to decreased placental perfusion compared to singleton pregnancy. Our results would be a keystone for future studies which will compare larger group of monochorionic multiple pregnancies with singleton pregnancies.

  13. A Comparison of FFD-based Nonrigid Registration and AAMs Applied to Myocardial Perfusion MRI

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Stegmann, Mikkel Bille; Ersbøll, Bjarne Kjær;

    2006-01-01

    Little work has been done on comparing the performance of statistical model-based approaches and nonrigid registration algorithms. This paper deals with the qualitative and quantitative comparison of active appearance models (AAMs) and a nonrigid registration algorithm based on free......-form deformations (FFDs). AAMs are known to be much faster than nonrigid registration algorithms. On the other hand nonrigid registration algorithms are independent of a training set as required to build an AAM. To obtain a further comparison of the two methods, they are both applied to automatically register multi......-slice myocardial perfusion images. The images are acquired by magnetic resonance imaging, from infarct patients. A registration of these sequences is crucial for clinical practice, which currently is subjected to manual labor. In the paper, the pros and cons of the two registration approaches are discussed...

  14. Perfusion MRI abnormalities in the absence of diffusion changes in a case of moyamoya-like syndrome in neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Koussy, Marwan; Kiefer, Claus; Schroth, Gerhard [Department of Neuroradiology, University of Bern, Inselspital, Freiburgstrasse 4, 3010 Bern (Switzerland); Loevblad, Karl-Olof [Department of Neuroradiology, University of Bern, Inselspital, Freiburgstrasse 4, 3010 Bern (Switzerland); Neuroradiology, Service de Radiodiagnostic, Hopital Cantonal Universitaire HUG, 24 rue Micheli-du-Crest, 1211 Geneva 11 (Switzerland); Steinlin, Maja [Department of Neuropediatrics, University of Bern, Inselspital, Freiburgstrasse 4, 3010 Bern (Switzerland)

    2002-11-01

    We report on a 12-year-old boy with neurofibromatosis type 1 who suffered a transient ischemic attack. Angiography revealed occlusion of intracranial arteries, moyamoya vessels and leptomeningeal collaterals. The conventional T2-weighted and the diffusion-weighted MRI images demonstrated no pathology. Dynamic first-pass postgadolinium T2* perfusion-weighted MRI depicted altered hemodynamics in the vascular territory of the left middle cerebral artery, which defined this region as ischemic tissue at risk. The patient suffered a repeat transient ischemic attack5 days later. (orig.)

  15. Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion

    OpenAIRE

    Regine Schmidt; Dirk Graafen; Stefan Weber; Schreiber, Laura M.

    2013-01-01

    Contrast-enhanced first-pass magnetic resonance imaging (MRI) in combination with a tracer kinetic model, for example, MMID4, can be used to determine myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Typically, the arterial input function (AIF) required for this methodology is estimated from the left ventricle (LV). Dispersion of the contrast agent bolus might occur between the LV and the myocardial tissue. Negligence of bolus dispersion could cause an error in MBF determin...

  16. Assessment of predictive indices for glioblastomas radiation therapy: comparison of perfusion MRI and spectrometric imagery by magnetic resonance; Evaluation d'indices predictifs pour la radiotherapie des glioblastomes: comparaison de l'IRM de perfusion et de l'imagerie de spectrometrie par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, J.M.; Laprie, A.; Moyal Cohen-Jonathan, E.; Ken, S. [Departement de radiotherapie, institut Claudius-Regaud, 31 - Toulouse (France); Lemoine, J.M.; Laprie, A.; Franceries, X.; Lotterie, J.A.; Celsis, P.; Lubrano, V.; Berry, I.; Ken, S. [Inserm, UMR 825, imagerie cerebrale et handicaps neurologiques, 31 - Toulouse (France); Lemoine, J.M.; Franceries, X. [Universite Paul-Sabatier, 31 - Toulouse (France); Lotterie, J.A.; Berry, I. [Departement de biophysique, CHU Rangueil, 31 - Toulouse (France); Lubrano, V. [Departement de neurochirurgie, CHU Rangueil, 31 - Toulouse (France)

    2010-10-15

    The authors report the comparison of several imagery modalities: anatomic imagery (T1-weighted MRI after gadolinium injection and T2-weighted MRI), metabolic imagery (spectrometric imagery by magnetic resonance) and functional imagery (perfusion MRI). This comparison has been performed within the frame of a prospective clinic test associating a radiosensitizer concomitant with a radiation therapy of glioblastomas. It appears that the integration of data of spectrometric imagery by magnetic resonance and of perfusion MRI is a promising method to overcome the resistance of glioblastomas. Short communication

  17. Functional lung MRI in chronic obstructive pulmonary disease: comparison of T1 mapping, oxygen-enhanced T1 mapping and dynamic contrast enhanced perfusion.

    Directory of Open Access Journals (Sweden)

    Bertram J Jobst

    Full Text Available Monitoring of regional lung function in interventional COPD trials requires alternative endpoints beyond global parameters such as FEV1. T1 relaxation times of the lung might allow to draw conclusions on tissue composition, blood volume and oxygen fraction. The aim of this study was to evaluate the potential value of lung Magnetic resonance imaging (MRI with native and oxygen-enhanced T1 mapping for the assessment of COPD patients in comparison with contrast enhanced perfusion MRI.20 COPD patients (GOLD I-IV underwent a coronal 2-dimensional inversion recovery snapshot flash sequence (8 slices/lung at room air and during inhalation of pure oxygen, as well as dynamic contrast-enhanced first-pass perfusion imaging. Regional distribution of T1 at room air (T1, oxygen-induced T1 shortening (ΔT1 and peak enhancement were rated by 2 chest radiologists in consensus using a semi-quantitative 3-point scale in a zone-based approach.Abnormal T1 and ΔT1 were highly prevalent in the patient cohort. T1 and ΔT1 correlated positively with perfusion abnormalities (r = 0.81 and r = 0.80; p&0.001, and with each other (r = 0.80; p<0.001. In GOLD stages I and II ΔT1 was normal in 16/29 lung zones with mildly abnormal perfusion (15/16 with abnormal T1. The extent of T1 (r = 0.45; p<0.05, ΔT1 (r = 0.52; p<0.05 and perfusion abnormalities (r = 0.52; p<0.05 showed a moderate correlation with GOLD stage.Native and oxygen-enhanced T1 mapping correlated with lung perfusion deficits and severity of COPD. Under the assumption that T1 at room air correlates with the regional pulmonary blood pool and that oxygen-enhanced T1 reflects lung ventilation, both techniques in combination are principally suitable to characterize ventilation-perfusion imbalance. This appears valuable for the assessment of regional lung characteristics in COPD trials without administration of i.v. contrast.

  18. Cerebral blood flow measurement using fMRI and PET: a cross-validation study.

    Science.gov (United States)

    Chen, Jean J; Wieckowska, Marguerite; Meyer, Ernst; Pike, G Bruce

    2008-01-01

    An important aspect of functional magnetic resonance imaging (fMRI) is the study of brain hemodynamics, and MR arterial spin labeling (ASL) perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF) measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (DeltaCBF) measured using a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion method to those obtained using H(2) (15)O PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI) masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average DeltaCBF of 21.5 +/- 8.2% for FAIR versus 28.2 +/- 12.8% for PET at maximum stimulation intensity). Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL DeltaCBF for all 3 ROI types indicated no significant difference from unity (P > .05).

  19. Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

    Directory of Open Access Journals (Sweden)

    Jean J. Chen

    2008-01-01

    Full Text Available An important aspect of functional magnetic resonance imaging (fMRI is the study of brain hemodynamics, and MR arterial spin labeling (ASL perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF measured using a flow-sensitive alternating inversion recovery (FAIR ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity. Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05.

  20. Comparison of dynamic susceptibility contrast-MRI perfusion quantification methods in the presence of delay and dispersion

    NARCIS (Netherlands)

    Maan, Bianca; Lopes Simoes, Rita; Meijer, Frederick J.A; Renema, W. Klaas Jan; Slump, Cornelis H.; Weaver, John B.; Molthen, Robert C.

    2011-01-01

    The perfusion of the brain is essential to maintain brain function. Stroke is an example of a decrease in blood flow and reduced perfusion. During ischemic stroke the blood flow to tissue is hampered due to a clot inside a vessel. To investigate the recovery of stroke patients, follow up studies are

  1. Comparison of quantitative dynamic susceptibility-contrast MRI perfusion estimates obtained using different contrast-agent administration schemes at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Wirestam, Ronnie, E-mail: Ronnie.Wirestam@med.lu.s [Department of Medical Radiation Physics, Lund University, University Hospital, SE-22185 Lund (Sweden); Thilmann, Oliver; Knutsson, Linda [Department of Medical Radiation Physics, Lund University, University Hospital, SE-22185 Lund (Sweden); Bjoerkman-Burtscher, Isabella M. [Department of Diagnostic Radiology, Lund University, University Hospital, SE-22185 Lund (Sweden); Larsson, Elna-Marie [Division of Radiology, Department of Oncology, Radiology and Clinical Immunology, Uppsala University, Akademiska sjukhuset, SE-75185 Uppsala (Sweden); Stahlberg, Freddy [Department of Medical Radiation Physics, Lund University, University Hospital, SE-22185 Lund (Sweden); Department of Diagnostic Radiology, Lund University, University Hospital, SE-22185 Lund (Sweden)

    2010-07-15

    Absolute cerebral perfusion parameters were obtained by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) carried out using different contrast-agent administration protocols. Sixteen healthy volunteers underwent three separate DSC-MRI examinations each, receiving single-dose (0.1 mmol/kg b.w.) gadobutrol, double-dose gadobutrol and single-dose gadobenate-dimeglumine on different occasions. DSC-MRI was performed using single-shot gradient-echo echo-planar imaging at 3 T. The arterial input functions (AIFs) were averages (4-9 pixels) of arterial curves from middle cerebral artery branches, automatically identified according to standard criteria. Absolute estimates of cerebral blood volume (CBV), cerebral blood flow (CBF) and mean transit time (MTT) were calculated without corrections for non-linear contrast-agent (CA) response in blood or for different T2* relaxivities in tissue and artery. Perfusion estimates obtained using single and double dose of gadobutrol correlated moderately well, while the relationship between estimates obtained using gadobutrol and gadobenate-dimeglumine showed generally lower correlation. The observed degree of CBV and CBF overestimation, compared with literature values, was most likely caused by different T2* relaxivities in blood and tissue in combination with partial-volume effects. The present results showed increased absolute values of CBV and CBF at higher dose, not predicted by the assumption of a quadratic response to contrast-agent concentration in blood. This indicates that the signal components of measured AIFs were not purely of arterial origin and that arterial signal components were more effectively extinguished at higher CA dose. This study also indicates that it may not be completely straightforward to compare absolute perfusion estimates obtained with different CA administration routines.

  2. Progress of MR perfusion weighted imaging in glioma%MR灌注成像在脑胶质瘤中的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵灿灿; 翟建

    2015-01-01

    MR灌注成像主要通过测量血流动力学参数来反映组织血流灌注及微血管渗透情况。根据其成像原理不同分为动态磁敏感对比增强MRI(DSC-MRI)、动态对比增强MRI(DCE-MRI)和动脉自旋标记(ASL)灌注成像。这些方法各有优缺点,就MR灌注成像的基本原理及其在脑胶质瘤中的研究进展进行综述。%MR perfusion weighted imaging could evaluate tissue blood perfusion and microvascular permeability by measuring different parameters. According to the different imaging principles, the techniques could be classified into dynamic susceptibility contrast MRI (DSC-MRI), dynamic contrast-enhanced MRI (DCE-MRI), and arterial spin labeling perfusion weighted imaging (ASL-PWI). Each technique has its advantages and disadvantages. In this review we summarized the basic principles and applications of PWI in glioma.

  3. Quantitative perfusion imaging in magnetic resonance imaging; Quantitative Perfusionsbildgebung in der Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Zoellner, F.G.; Gaa, T.; Zimmer, F. [Universitaet Heidelberg, Computerunterstuetzte Klinische Medizin, Medizinische Fakultaet Mannheim, Mannheim (Germany); Ong, M.M.; Riffel, P.; Hausmann, D.; Schoenberg, S.O.; Weis, M. [Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Medizinische Fakultaet Mannheim, Mannheim (Germany)

    2016-02-15

    Magnetic resonance imaging (MRI) is recognized for its superior tissue contrast while being non-invasive and free of ionizing radiation. Due to the development of new scanner hardware and fast imaging techniques during the last decades, access to tissue and organ functions became possible. One of these functional imaging techniques is perfusion imaging with which tissue perfusion and capillary permeability can be determined from dynamic imaging data. Perfusion imaging by MRI can be performed by two approaches, arterial spin labeling (ASL) and dynamic contrast-enhanced (DCE) MRI. While the first method uses magnetically labelled water protons in arterial blood as an endogenous tracer, the latter involves the injection of a contrast agent, usually gadolinium (Gd), as a tracer for calculating hemodynamic parameters. Studies have demonstrated the potential of perfusion MRI for diagnostics and also for therapy monitoring. The utilization and application of perfusion MRI are still restricted to specialized centers, such as university hospitals. A broad application of the technique has not yet been implemented. The MRI perfusion technique is a valuable tool that might come broadly available after implementation of standards on European and international levels. Such efforts are being promoted by the respective professional bodies. (orig.) [German] Die Magnetresonanztomographie (MRT) zeichnet sich durch einen ueberlegenen Gewebekontrast aus, waehrend sie nichtinvasiv und frei von ionisierender Strahlung ist. Sie bietet Zugang zu Gewebe- und Organfunktion. Eine dieser funktionellen bildgebenden Verfahren ist die Perfusionsbildgebung. Mit dieser Technik koennen u. a. Gewebeperfusion und Kapillarpermeabilitaet aus dynamischen Bilddaten bestimmt werden. Perfusionsbildgebung mithilfe der MRT kann durch 2 Ansaetze, naemlich ''arterial spin labeling'' (ASL) und dynamische kontrastverstaerkte (DCE-)MRT durchgefuehrt werden. Waehrend die erste Methode magnetisch

  4. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, N; Wengler, K; Mazaheri, Y; Hunt, M; Deasy, J; Gollub, M [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm{sup 2} was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10{sup −3}×mm{sup 2}/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10{sup −3} × mm{sup 2}/s, D* 10{sup −3} × mm{sup 2}/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values.

  5. Physiological measurements using ultra-high field fMRI: a review.

    Science.gov (United States)

    Francis, Sue; Panchuelo, Rosa Sanchez

    2014-09-01

    Functional MRI (fMRI) has grown to be the neuroimaging technique of choice for investigating brain function. This topical review provides an outline of fMRI methods and applications, with a particular emphasis on the recent advances provided by ultra-high field (UHF) scanners to allow functional mapping with greater sensitivity and improved spatial specificity. A short outline of the origin of the blood oxygenation level dependent (BOLD) contrast is provided, followed by a review of BOLD fMRI methods based on gradient-echo (GE) and spin-echo (SE) contrast. Phase based fMRI measures, as well as perfusion contrast obtained with the technique of arterial spin labelling (ASL), are also discussed. An overview of 7 T based functional neuroimaging is provided, outlining the potential advances to be made and technical challenges to be addressed.

  6. Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts

    DEFF Research Database (Denmark)

    Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M

    2016-01-01

    Dissolution dynamic nuclear polarization (DNP) enables the acquisition of (13) C magnetic resonance data with a high sensitivity. Recently, metabolically inactive hyperpolarized (13) C-labeled compounds have shown to be potentially useful for perfusion imaging. The purpose of this study was to va...

  7. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment

    Science.gov (United States)

    Böttger, T.; Grunewald, K.; Schöbinger, M.; Fink, C.; Risse, F.; Kauczor, H. U.; Meinzer, H. P.; Wolf, Ivo

    2007-03-01

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  8. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    Directory of Open Access Journals (Sweden)

    Laura K. Teune, MD, PhD

    2014-01-01

    Conclusion: We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients.

  9. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Grzegorz, E-mail: g.bauman@dkfz.de [German Cancer Research Center, Division of Medical Physics in Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Puderbach, Michael, E-mail: m.puderbach@dkfz.de [Chest Clinics at the University of Heidelberg, Clinics for Interventional and Diagnostic Radiology, Amalienstr. 5, 69126 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); Heimann, Tobias, E-mail: t.heimann@dkfz.de [German Cancer Research Center, Division of Medical and Biological Informatics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Kopp-Schneider, Annette, E-mail: kopp@dkfz.de [German Cancer Research Center, Division of Biostatistics, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany); Fritzsching, Eva, E-mail: eva.fritzsching@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Mall, Marcus A., E-mail: marcus.mall@med.uni-heidelberg.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); University Hospital Heidelberg, Department of Translational Pulmonology and Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Im Neuenheimer Feld 430, Heidelberg (Germany); Eichinger, Monika, E-mail: m.eichinger@dkfz.de [Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (Germany); German Cancer Research Center, Division of Radiology, Im Neuenheimer Feld 223, 69120 Heidelberg (Germany)

    2013-12-01

    Purpose: To validate Fourier decomposition (FD) magnetic resonance (MR) imaging in cystic fibrosis (CF) patients with dynamic contrast-enhanced (DCE) MR imaging. Materials and methods: Thirty-four CF patients (median age 4.08 years; range 0.16–30) were examined on a 1.5-T MR imager. For FD MR imaging, sets of lung images were acquired using an untriggered two-dimensional balanced steady-state free precession sequence. Perfusion-weighted images were obtained after correction of the breathing displacement and Fourier analysis of the cardiac frequency from the time-resolved data sets. DCE data sets were acquired with a three-dimensional gradient echo sequence. The FD and DCE images were visually assessed for perfusion defects by two readers independently (R1, R2) using a field based scoring system (0–12). Software was used for perfusion impairment evaluation (R3) of segmented lung images using an automated threshold. Both imaging and evaluation methods were compared for agreement and tested for concordance between FD and DCE imaging. Results: Good or acceptable intra-reader agreement was found between FD and DCE for visual and automated scoring: R1 upper and lower limits of agreement (ULA, LLA): 2.72, −2.5; R2: ULA, LLA: ±2.5; R3: ULA: 1.5, LLA: −2. A high concordance was found between visual and automated scoring (FD: 70–80%, DCE: 73–84%). Conclusions: FD MR imaging provides equivalent diagnostic information to DCE MR imaging in CF patients. Automated assessment of regional perfusion defects using FD and DCE MR imaging is comparable to visual scoring but allows for percentage-based analysis.

  10. Early-stage differentiation between presenile Alzheimer's disease and frontotemporal dementia using arterial spin labeling MRI

    Energy Technology Data Exchange (ETDEWEB)

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Lugt, Aad van der; Smits, Marion [Erasmus MC - University Medical Center, Department of Radiology, PO Box 2040, Rotterdam (Netherlands); Bron, Esther E.; Klein, Stefan [Erasmus MC - University Medical Center, Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, PO Box 2040, Rotterdam (Netherlands); Houston, Gavin C. [GE Healthcare, Hatfield (United Kingdom); Mutsaerts, Henri J.M.M. [Academic Medical Center, Department of Radiology, PO Box 22660, Amsterdam (Netherlands); Mendez Orellana, Carolina P. [Erasmus MC - University Medical Center, Department of Radiology, PO Box 2040, Rotterdam (Netherlands); Erasmus MC - University Medical Center, Department of Neurology, PO Box 2040, Rotterdam (Netherlands); Jong, Frank Jan de; Swieten, John C. van [Erasmus MC - University Medical Center, Department of Neurology, PO Box 2040, Rotterdam (Netherlands)

    2016-01-15

    To investigate arterial spin labeling (ASL)-MRI for the early diagnosis of and differentiation between the two most common types of presenile dementia: Alzheimer's disease (AD) and frontotemporal dementia (FTD), and for distinguishing age-related from pathological perfusion changes. Thirteen AD and 19 FTD patients, and 25 age-matched older and 22 younger controls underwent 3D pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) volume and cerebral blood flow (CBF), corrected for partial volume effects, were quantified in the entire supratentorial cortex and in 10 GM regions. Sensitivity, specificity and diagnostic performance were evaluated in regions showing significant CBF differences between patient groups or between patients and older controls. AD compared with FTD patients had hypoperfusion in the posterior cingulate cortex, differentiating these with a diagnostic performance of 74 %. Compared to older controls, FTD patients showed hypoperfusion in the anterior cingulate cortex, whereas AD patients showed a more widespread regional hypoperfusion as well as atrophy. Regional atrophy was not different between AD and FTD. Diagnostic performance of ASL to differentiate AD or FTD from controls was good (78-85 %). Older controls showed global hypoperfusion compared to young controls. ASL-MRI contributes to early diagnosis of and differentiation between presenile AD and FTD. (orig.)

  11. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma

    DEFF Research Database (Denmark)

    Tietze, Anna; Mouridsen, Kim; Lassen-Ramshad, Yasmin

    2015-01-01

    of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival......Objectives: Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI) based indices of microvascular flow control provide more information on tumor grade and patient outcome...... than does the established PWI angiogenesis marker, cerebral blood volume (CBV). Material and Methods: Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas) were included. Capillary transit time heterogeneity (CTH) and COV, its ratio to blood mean transit time, provide indices...

  12. A hybrid breath hold and continued respiration-triggered technique for time-resolved 3D MRI perfusion studies in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hintze, C. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Radiologie; Stemmer, A. [Siemens AG (Germany). Healthcare Sector; Bock, M. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (DE). Medizinische Physik in der Radiologie] (and others)

    2010-01-15

    Assessment of lung cancer perfusion is impaired by respiratory motion. Imaging times for contrast agent wash-out studies often exceed breath hold capabilities, and respiration triggering reduces temporal resolution. Temporally resolved volume acquisition of entire tumors is required to assess heterogeneity. Therefore, we developed and evaluated an MR measurement technique that exceeds a single breath hold, and provides a variable temporal resolution during acquisition while suspending breath-dependent motion. 20 patients with suspected lung cancer were subjected to perfusion studies using a spoiled 3D gradient echo sequence after bolus injection of 0.07 mmol/kg body weight of Gd-DTPA. 10 acquisitions in expiratory breath hold were followed by 50 navigator-triggered acquisitions under free breathing. Post-processing allowed for co-registration of the 3D data sets. An ROI-based visualization of the signal-time curves was performed. In all cases motion-suspended, time-resolved volume data sets (40 x 33 x 10 cm{sup 3}, voxel size: 2.1 x 2.1 x 5.0 mm{sup 3}) were generated with a variable, initially high temporal resolution (2.25 sec) that was synchronized with the breath pattern and covered up to 8(1)/(2) min. In 7 / 20 cases a remaining offset could be reduced by rigid co-registration. The tumors showed fast wash-in, followed by rapid signal decay (8 / 20) or a plateau. The feasibility of a perfusion study with hybrid breath hold and navigator-triggered time-resolved 3D MRI which combines high initial temporal resolution during breath hold with a long wash-out period under free breathing was demonstrated. (orig.)

  13. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals.

  14. Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion

    Directory of Open Access Journals (Sweden)

    Regine Schmidt

    2013-01-01

    Full Text Available Contrast-enhanced first-pass magnetic resonance imaging (MRI in combination with a tracer kinetic model, for example, MMID4, can be used to determine myocardial blood flow (MBF and myocardial perfusion reserve (MPR. Typically, the arterial input function (AIF required for this methodology is estimated from the left ventricle (LV. Dispersion of the contrast agent bolus might occur between the LV and the myocardial tissue. Negligence of bolus dispersion could cause an error in MBF determination. The aim of this study was to investigate the influence of bolus dispersion in a simplified coronary bifurcation geometry including one healthy and one stenotic branch on the quantification of MBF and MPR. Computational fluid dynamics (CFD simulations were combined with MMID4. Different inlet boundary conditions describing pulsatile and constant flows for rest and hyperemia and differing outflow conditions have been investigated. In the bifurcation region, the increase of the dispersion was smaller than inside the straight vessels. A systematic underestimation of MBF values up to −16.1% for pulsatile flow and an overestimation of MPR up to 7.5% were found. It was shown that, under the conditions considered in this study, bolus dispersion can significantly influence the results of quantitative myocardial MR-perfusion measurements.

  15. A multimodal imaging study on spatial pattern of cerebral perfusion change caused by symptomatic unilateral carotid artery stenosis

    Directory of Open Access Journals (Sweden)

    Jian-rui LI

    2015-03-01

    Full Text Available Objective To investigate the spatial pattern of cerebral perfusion decrease resulting from symptomatic unilateral carotid artery stenosis and to assess the relationship between degrees of stenosis and cerebral blood flow (CBF.  Methods CT angiography (CTA and arterial spin labeling (ASL MRI cerebral perfusion were performed in 22 patients with symptomatic unilateral carotid artery stenosis. Diagnosis of carotid artery stenosis and measurement of stenosis degrees was performed by using CTA; cerebral perfusion was determined by ASL. Voxel-based analysis (VBA were applied to observe perfusion changes in patients with mild stenosis and moderate to severe stenosis, and spatial pattern of cerebral perfusion changes caused by carotid artery stenosis. Analysis based on region of interest (ROI was used to explore the relationship between degrees of stenosis and CBF. Results Twenty-two patients with symptomatic unilateral carotid artery stenosis (13 in the left side and 9 in the right included 13 cases with mild stenosis and 9 cases with moderate to severe stenosis. Compared to those with mild stenosis, patients with moderate to severe stenosis showed reduced CBF in bilateral (especially in the affected side parietal lobes (t = - 2.382, P = 0.014, frontal lobes (t = - 2.354, P = 0.015 and centrum semiovale (t = - 2.283, P = 0.017, and was basically located in bilateral cerebral watershed area. Furthermore, perfusion in these areas was negatively correlated with the degree of stenosis (r = - 0.479, P = 0.024.  Conclusions Symptomatic unilateral carotid artery stenosis may result in cerebral perfusion decreases in bilateral (particularly in the affected side watershed area and cerebral blood flow is negatively correlated with the degree of stenosis. DOI: 10.3969/j.issn.1672-6731.2015.02.006

  16. Facing Contrast-Enhancing Gliomas: Perfusion MRI in Grade III and Grade IV Gliomas according to Tumor Area

    Directory of Open Access Journals (Sweden)

    Anna Luisa Di Stefano

    2014-01-01

    Full Text Available Tumoral neoangiogenesis characterizes high grade gliomas. Relative Cerebral Blood Volume (rCBV, calculated with Dynamic Susceptibility Contrast (DSC Perfusion-Weighted Imaging (PWI, allows for the estimation of vascular density over the tumor bed. The aim of the study was to characterize putative tumoral neoangiogenesis via the study of maximal rCBV with a Region of Interest (ROI approach in three tumor areas—the contrast-enhancing area, the nonenhancing tumor, and the high perfusion area on CBV map—in patients affected by contrast-enhancing glioma (grades III and IV. Twenty-one patients were included: 15 were affected by grade IV and 6 by grade III glioma. Maximal rCBV values for each patient were averaged according to glioma grade. Although rCBV from contrast-enhancement and from nonenhancing tumor areas was higher in grade IV glioma than in grade III (5.58 and 2.68; 3.01 and 2.2, resp., the differences were not significant. Instead, rCBV recorded in the high perfusion area on CBV map, independently of tumor compartment, was significantly higher in grade IV glioma than in grade III (7.51 versus 3.78, P=0.036. In conclusion, neoangiogenesis encompasses different tumor compartments and CBV maps appear capable of best characterizing the degree of neovascularization. Facing contrast-enhancing brain tumors, areas of high perfusion on CBV maps should be considered as the reference areas to be targeted for glioma grading.

  17. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Cicone, Francesco; Papa, Annalisa; Scopinaro, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; ' ' Sapienza' ' Univ., Rome (Italy). Dept. of Surgical and Medicine Sciences and Translational Medicine; Minniti, Giuseppe; Scaringi, Claudia; Maurizi Enrici, Riccardo [' ' Sapienza' ' Univ., Rome (Italy). Dept. of Surgical and Medicine Sciences and Translational Medicine; Sant' Andrea Hospital, Rome (Italy). Unit of Radiotherapy; Romano, Andrea; Tavanti, Francesca; Bozzao, Alessandro [Sant' Andrea Hospital, Rome (Italy). Unit of Neuroradiology; Rome Univ. (Italy). Dept. of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.)

    2015-01-15

    We assessed the performance of 6-[{sup 18}F]-fluoro-l-3,4-dihydroxyphenylalanine (F-DOPA) PET for differentiating radionecrosis (RN) from tumour progression (PD) in a population of patients with brain metastases, treated with stereotactic radiosurgery. The accuracy of F-DOPA PET was compared with that of perfusion-weighted magnetic resonance (perfusion-MR). In 42 patients with a total of 50 brain metastases from various primaries F-DOPA PET/CT was performed because of suspected radiological progression at the site of previously irradiated brain metastasis. Several semiquantitative PET parameters were recorded, and their diagnostic accuracy was compared by receiver operating characteristic curve analyses. The diagnosis was established by either surgery or follow-up. A comparison was made between F-DOPA PET and perfusion-MR sequences acquired no more than 3 weeks apart. Definitive outcome was available in 46 of the 50 lesions (20 PD, 26 RN). Of the 46 lesions, 11 were surgically excised while in the remaining 35 lesions the diagnosis was established by radiological and clinical criteria. The best diagnostic performance was obtained using the semiquantitative PET parameter maximum lesion to maximum background uptake ratio (SUVL{sub max}/Bkgr{sub max}). With a cut-off value of 1.59, a sensitivity of 90 % and a specificity of 92.3 % were achieved in differentiating RN from PD lesions (accuracy 91.3 %). Relative cerebral blood volume (rCBV) derived from perfusion-MR was available for comparison in 37 of the 46 metastases. Overall accuracy of rCBV was lower than that of all semiquantitative PET parameters under study. The best differentiating rCBV cut-off value was 2.14; this yielded a sensitivity of 86.7 % and a specificity of 68.2 % (accuracy 75.6 %). F-DOPA PET is a highly accurate tool for differentiating RN from PD brain metastases after stereotactic radiosurgery. In this specific setting, F-DOPA PET seems to perform better than perfusion-MR. (orig.)

  18. MRI

    Science.gov (United States)

    MRI does not use ionizing radiation. No side effects from the magnetic fields and radio waves have been reported. The most common type of contrast (dye) used is gadolinium. It is very safe. Allergic reactions rarely ...

  19. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E;

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...... subjects using three different MRI techniques: arterial spin labeling (ASL), dynamic contrast enhanced T1 weighted perfusion MRI (DCE) and phase contrast mapping (PCM). All MRI measurements were performed within the same session. In 10 of the subjects repeated CBF measurements by (15) O labeled water PET......L/100 g/min, 16.2% and 4.8%, for DCE 43.0 mL/100 g/min, 20.0%, 15.1% and for PET 41.9 mL/100 g/min, 16.5% and 11.9%, respectively. Only for DCE and PCM a significant positive correlation between measurements was demonstrated. CONCLUSION: These findings confirm large between subject variability in CBF...

  20. High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients.

    Science.gov (United States)

    Liu, Jing; Pedoia, Valentina; Heilmeier, Ursula; Ku, Eric; Su, Favian; Khanna, Sameer; Imboden, John; Graf, Jonathan; Link, Thomas; Li, Xiaojuan

    2016-01-01

    This study is to evaluate highly accelerated three-dimensional (3D) dynamic contrast-enhanced (DCE) wrist MRI for assessment of perfusion in rheumatoid arthritis (RA) patients. A pseudo-random variable-density undersampling strategy, circular Cartesian undersampling (CIRCUS), was combined with k-t SPARSE-SENSE reconstruction to achieve a highly accelerated 3D DCE wrist MRI. Two healthy volunteers and 10 RA patients were studied. Two patients were on methotrexate (MTX) only (Group I) and the other eight were treated with a combination therapy of MTX and anti-tumor necrosis factor (TNF) therapy (Group II). Patients were scanned at baseline and 3 month follow-up. DCE MR images were used to evaluate perfusion in synovitis and bone marrow edema pattern in the RA wrist joints. A series of perfusion parameters was derived and compared with clinical disease activity scores of 28 joints (DAS28). 3D DCE wrist MR images were obtained with a spatial resolution of 0.3 × 0.3 × 1.5 mm(3) and temporal resolution of 5 s (with an acceleration factor of 20). The derived perfusion parameters, most notably transition time (dT) of synovitis, showed significant negative correlations with DAS28-ESR (r = -0.80, p perfusion in RA joints, showing promise as a potential tool for evaluating treatment responses.

  1. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging

    DEFF Research Database (Denmark)

    Fritz-Hansen, T; Rostrup, Egill; Larsson, H B;

    1996-01-01

    accordance between the two input functions was found, indicating that it is possible to measure the input function to the myocardium using MRI. A variation between the two concentration curves of 5% at upslope, 2.7% at peak point, and 7% at downslope was found. The study also indicates that a short...

  2. Feasibility of 3D Partially Parallel Acquisition DCE MRI in Pulmonary Parenchyma Perfusion%三维并行采集动态增强MRI在肺实质局部灌注中的应用研究

    Institute of Scientific and Technical Information of China (English)

    夏艺; 范丽; 刘士远; 管宇; 徐雪原; 于红; 肖湘生

    2012-01-01

    目的 评价3D并行采集动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)技术对肺实质局部灌注成像的可行性.资料与方法 采用GE 1.5 T MRI系统,对10名健康志愿者及47例肺部疾病患者行灌注成像;评价肺灌注图像的均匀度,若存在灌注异常区域则计算其与正常肺组织的信号强度之比( RSI).结果 DCE-MRI可以清楚地显示肺实质灌注情况:10名健康志愿者的灌注图像较均匀,未见灌注缺损区.10例肺动脉栓塞( pulmonary embolism,PE)共出现12个楔形灌注缺损区,其中1例双侧PE出现3个灌注缺损区;12例侵犯邻近肺动脉的肺癌,在相应供血区均出现灌注缺损;RSI经单样本t检验差异具有明显的统计学意义(t=-24.74,P<0.05);另25例(20例未侵犯邻近肺动脉的肺癌和5例炎性病变)在对比剂首过肺实质强化达峰值时,病灶局部均呈低信号改变.结论 3D并行采集DCE-MRI技术可在单次屏气状态下完成动态多期扫描,获得全肺的容积灌注成像数据,对MR肺灌注图像采用半量化分析可明显区分出灌注异常区与灌注正常区.%Objective To assess the feasibility of 3 D partially parallel acquisition dynamic contrast enhanced (DCE) MRI in pulmonary parenchyma perfusion. Materials and Methods Ten healthy volunteers and 47 patients with lung disease performed perfusion imaging on a clinical 1. 5-T GE Excite HD whole body system. The homogeneity of perfusion images were assessed. In case of perfusion abnormality, the signal intensity ratio ( RSI) of perfusion abnormality and normal lung were calculated. Results Pulmonary parenchyma perfusion was well depicted with DCE-MRI. The perfusion images of healthy volunteers were homogeneous. 12 wedge shaped perfusion defects were visualized in 10 patients with pulmonary embolisms. 12 perfusion defects were also showed in 12 patients with lung cancer infiltrating the pulmonary artery. There was significant difference in RSI (t = - 24

  3. Tumor metabolism and perfusion ratio assessed by 18F-FDG PET/CT and DCE-MRI in breast cancer patients: Correlation with tumor subtype and histologic prognostic factors

    Energy Technology Data Exchange (ETDEWEB)

    An, Young-Sil [Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine (Korea, Republic of); Kang, Doo Kyoung [Department of Radiology, Ajou University School of Medicine (Korea, Republic of); Jung, Yong Sik; Han, Sehwan [Department of Surgery, Ajou University School of Medicine (Korea, Republic of); Kim, Tae Hee, E-mail: medhand@ajou.ac.kr [Department of Radiology, Ajou University School of Medicine (Korea, Republic of)

    2015-07-15

    Highlights: • In non-triple negative breast cancer, metabolic parameter (SUVmax) was significantly correlated with perfusion parameters (Kep and Ve). • In triple negative cancers, any perfusion parameters did not correlated with metabolic parameters. • Higher SUVmax, higher SUVmax/Ktrans, higher MTV50/Ktrans, higher TLG50/Ktrans, higher TLG50/Ve ratios were significantly correlated with TNBC. • In triple negative breast cancer, perfusion and metabolic parameters are not significantly correlated. • Triple negative breast cancer showed higher metabolic–perfusion ratios compared to non-triple negative breast cancer. - Abstract: Objective: Our purpose was to evaluate whether breast cancer with high metabolic–perfusion ratio would be associated with poor histopathologic prognostic factors and whether triple negative breast cancer (TNBC) would show high metabolic–perfusion ratio compared to non-triple negative breast cancer (non-TNBC). Methods: From March 2011 to November 2011, 67 females with invasive ductal carcinoma of breast who underwent both MRI and 18F-FDG PET/CT were included. Perfusion parameters including Ktrans, Kep and Ve were acquired from Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Metabolic parameters including the standardized uptake value (SUV) and volumetric metabolic parameters including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were obtained from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Results: In non-TNBC, SUVmax was significantly correlated with Kep (ρ = 0.298, p = 0.036) and Ve (ρ = −0.286, p = 0.044). In TNBC, there was no significant correlation between all perfusion and metabolic parameters. Compared to non-TNBC, higher SUVmax (10.2 vs 5.3, p < 0.001), higher SUVmax/Ktrans (56.02 vs 20.3, p < 0.001), higher MTV50/Ktrans (7.8 vs 16.54, p < 0.001), higher TLG50/Ktrans (36.49 vs 12.3, p < 0.001), higher TLG50/Ve (91.34 vs 27.1 p = 0.022) were

  4. Blood Pressure is Associated With Cerebral Blood Flow Alterations in Patients With T2DM as Revealed by Perfusion Functional MRI.

    Science.gov (United States)

    Xia, Wenqing; Rao, Hengyi; Spaeth, Andrea M; Huang, Rong; Tian, Sai; Cai, Rongrong; Sun, Jie; Wang, Shaohua

    2015-12-01

    Type 2 diabetes mellitus (T2DM) and hypertension are both associated with cognitive impairment and brain function abnormalities. We investigated whether abnormal cerebral blood flow (CBF) patterns exists in T2DM patients and possible relationships between aberrant CBF and cognitive performance. Furthermore, we examined the influence of hypertension on CBF alterations in T2DM patients. T2DM patients (n = 38) and non-T2DM subjects (n = 40) were recruited from clinics, hospitals, and normal community health screenings. Cerebral blood flow images were collected and analyzed using arterial spin labeling perfusion functional magnetic resonance imaging (fMRI). Regions with major CBF differences between T2DM patients and non-T2DM controls were detected via 1-way ANOVA. The interaction effects between hypertension and T2DM for CBF alterations were also examined. Correlation analyses illustrated the association between CBF values and cognitive performance and between CBF and blood pressure. Compared with non-T2DM controls, T2DM patients exhibited decreased CBF, primarily in the visual area and the default mode network (DMN); decreased CBF in these regions was correlated with cognitive performance. There was a significant interaction effect between hypertension and diabetes for CBF in the precuneus and the middle occipital gyrus. Additionally, blood pressure correlated negatively with CBF in T2DM patients.T2DM patients exhibited reduced CBF in the visual area and DMN. Hypertension may facilitate a CBF decrease in the setting of diabetes. T2DM patients may benefit from blood pressure control to maintain their brain perfusion through CBF preservation.

  5. Serum HSP27 is associated with medullary perfusion in kidney allografts

    Science.gov (United States)

    Marquez, Eva; Sadowski, Elizabeth; Reese, Shannon; Vidyasagar, Aparna; Artz, Nathan; Fain, Sean; Jacobson, Lynn; Swain, William; Djamali, Arjang

    2015-01-01

    Background Heat shock protein 27 (HSP27) is a small HSP up-regulated in response to stress in the kidney. The relationship between HSP27 and intrarenal oxygenation in patients with native and transplant kidney disease is unknown. Methods We compared HSP27 levels, intrarenal oxygenation measured by blood oxygen-level dependent (BOLD) imaging using R2* values, and perfusion determined by arterial spin labeling (ASL) magnetic resonance imaging (MRI), between patients with native and transplant kidney disease (n=28). Results There were no statistical differences in mean age (53.9 vs. 47.1 years), kidney function (63.6 vs. 50.7 ml/min per 1.73 m2), mean arterial blood pressure (91.6 vs. 91.1 mm Hg), hematocrit (40.6% vs. 39.3%), diuretic or angiotensin-converting enzyme inhibitor use, serum or urine levels of hydrogen peroxide, nitric oxide, F2 isoprostanes and HSP27 between native and transplant kidneys. BOLD-MRI studies demonstrated comparable patterns in intrarenal oxygen bioavailability (medullary R2* 18.1 vs. 18.3/s and cortical R2* 12 vs. 11.7/s, respectively). However, medullary perfusion was significantly lower in transplant kidneys (36.4 vs. 78.7 ml/100 g per minute, p=0.0002). There was a linear relationship between serum HSP27 concentrations and medullary perfusion in kidney allografts (HSP27 concentration [ng/mL] = 0.78 + 0.09 medullary perfusion, R2=0.43, p=0.01). Conclusions Our study demonstrates that medullary perfusion is significantly lower in kidney allografts compared with native kidneys with comparable renal function. We further noted a direct association between serum HSP27 levels and medullary perfusion after transplantation. Additional studies are needed to examine the role of HSP27 as a biomarker of kidney disease progression. PMID:22383348

  6. Salicylic acid analogues as chemical exchange saturation transfer MRI contrast agents for the assessment of brain perfusion territory and blood-brain barrier opening after intra-arterial infusion.

    Science.gov (United States)

    Song, Xiaolei; Walczak, Piotr; He, Xiaowei; Yang, Xing; Pearl, Monica; Bulte, Jeff Wm; Pomper, Martin G; McMahon, Michael T; Janowski, Mirosław

    2016-07-01

    The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Predicted, focal opening of the BBB through intra-arterial infusion of hyperosmolar mannitol is feasible, but there is a need to facilitate imaging techniques (e.g. MRI) to guide interventional procedures and assess the outcomes. Here, we show that salicylic acid analogues (SAA) can depict the brain territory supplied by the catheter and detect the BBB opening, through chemical exchange saturation transfer (CEST) MRI. Hyperosmolar SAA solutions themselves are also capable of opening the BBB, and, when multiple SAA agents were co-injected, their locoregional perfusion could be differentiated.

  7. MSCT and MRI Findings of Transient Hepatic Perfusion Disorders in Patients with Hepatic Abscess%肝脓肿邻近肝实质一过性灌注异常的CT和MRI表现

    Institute of Scientific and Technical Information of China (English)

    沈文东; 李惠民

    2012-01-01

    目的:探讨肝脓肿伴发的一过性肝灌注异常(THPD)的影像表现及其主要机制.方法:回顾性分析CT上明确显示THPD的19例肝脓肿患者的CT和MRI资料,男9例,女10例,年龄35~82岁,平均62.8±13.8岁.全部完成16层CT与MRI的平扫和增强.结果:CT增强显示16例高灌注THPD,3例低灌注THPD,MRI增强T1WI显示14例高灌注THPD,4例低灌注THPD,1例未见灌注异常.常规T2WI显示灌注异常区高信号16例(84.2%).CT和MRI灌注表现一致15例(78.9%),不一致4例,其低或等灌注的检查均先于高灌注的检查.结论:脓肿伴发的一过性肝灌注异常的CT和MRI表现一致,较早期可以表现为低灌注,后期均为高灌注.MR T2WI可以很好显示THPD,有助于诊断.%Purpose: To evaluate the CT and MRI findings of transient hepatic perfusion disorders (THPD) in patients with hepatic abscess and explore their main mechanism. Methods: Nineteen hepatic abscess patients (9 male, 10 female, age ranging from 35 to 82, mean 62.8± 13.8 years) with THPD diagnosed on CT images were enrolled in our study. All patients were undergone non-contrasted and contrasted scanning with a 16-slice CT scanner and 1.5T MRI scanner. Results: Hyper-perfusion THPD in 16 patients and hypo-perfusion THPD in 3 patients were shown on CT scans. Hyper-perfusion THPD in 14 patients and hypo-perfusion THPD in 4 patients were shown on MRI scans. The THPD region was hyper-intensity in 16 patients(84.2%). Fifteen THPD shown on MRI were consistent with that on CT (78.9%). The other 4 THPD lesions were first shown with hypo- or iso-perfusion and lastly shown with hyper-perfusion. Conclusion: The THPD in patients with hepatic abscess have the same perfusion findings on CT and MRI. There may be hypo-perfusion during early phase and hyper-perfusion during late phase of hepatic abscess. T2-weighed imaging could reveal the THPD correctly and may be helpful for the diagnosis.

  8. Diffusion and perfusion MRI in patients with ruptured and unruptured intracranial aneurysms treated by endovascular coiling: complications, procedural results, MR findings and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Cronqvist, M.; Ramgren, B.; Holtaas, S.; Larsson, E.-M. [Lund University Hospital, Department of Neuroradiology, Lund (Sweden); Wirestam, R. [Lund University Hospital, Department of Radiation Physics, Lund (Sweden); Brandt, L.; Nilsson, O.; Saeveland, H. [Lund University Hospital, Department of Neurosurgery, Lund (Sweden)

    2005-11-01

    Our purpose was to evaluate treatment safety as well as complications frequency and management in endovascular coiling of intracerebral aneurysms using MR diffusion and perfusion imaging. In this prospective study, 77 MR examinations were performed in conjunction with 43 procedures in 40 patients, 14 patients presented with ruptured and 26 with unruptured aneurysms. Mean time interval between treatment and post-procedure MRI was 29 and 25 h for the ruptured and unruptured aneurysm group, respectively. Peri-procedural complications, including five major events and five minor transient events, occurred in 10/43 procedures (23%), necessitating thrombolytic therapy in two patients and angioplasty in one, all three within the unruptured aneurysm group. Fifty-one new lesions were found on post-treatment DWI and 47 of them were regarded as of ischemic origin. Most lesions were small (<3 mm), ipsilateral to the treated aneurysm and asymptomatic (37/40 patients). Sixty-seven percent of the lesions were found in the ruptured and 33% in the unruptured aneurysm group. The ischemic lesions did occur more frequently in patients treated for aneurysm of large neck size and according to the remodelling technique. The overall morbidity and mortality rates were 14.6 and 7.3% whereas morbidity and mortality rates related to the technique were only 2.6 and 0%, respectively. (orig.)

  9. Reduction in cerebral perfusion after heroin administration: a resting state arterial spin labeling study.

    Directory of Open Access Journals (Sweden)

    Niklaus Denier

    Full Text Available Heroin dependence is a chronic relapsing brain disorder, characterized by the compulsion to seek and use heroin. Heroin itself has a strong potential to produce subjective experiences characterized by intense euphoria, relaxation and release from craving. The neurofunctional foundations of these perceived effects are not well known. In this study, we have used pharmacological magnetic resonance imaging (phMRI in 15 heroin-dependent patients from a stable heroin-assisted treatment program to observe the steady state effects of heroin (60 min after administration. Patients were scanned in a cross-over and placebo controlled design. They received an injection of their regular dose of heroin or saline (placebo before or after the scan. As phMRI method, we used a pulsed arterial spin labeling (ASL sequence based on a flow-sensitive alternating inversion recovery (FAIR spin labeling scheme combined with a single-shot 3D GRASE (gradient-spin echo readout on a 3 Tesla scanner. Analysis was performed with Statistical Parametric Mapping (SPM 8, using a general linear model for whole brain comparison between the heroin and placebo conditions. We found that compared to placebo, heroin was associated with reduced perfusion in the left anterior cingulate cortex (ACC, the left medial prefrontal cortex (mPFC and in the insula (both hemispheres. Analysis of extracted perfusion values indicate strong effect sizes and no gender related differences. Reduced perfusion in these brain areas may indicate self- and emotional regulation effects of heroin in maintenance treatment.

  10. A description of ASL features in writing

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wolbers

    2014-01-01

    Full Text Available Similar to second language students who embed features of their primary languages in the writing of their second languages, deaf and hard of hearing (d/hh writers utilize features of American Sign Language (ASL in their writing of English. The purpose of this study is to identify categories of language transfer, provide the prevalence of these transfer tendencies in the writings of 29 d/hh adolescents and describe whether language features are equally or differently responsive to instruction. Findings indicate six categories of language transfer in order of prevalence: unique glossing & substitution, adjectives, plurality & adverbs, topicalization, and conjunctions. ASL features, of both lexical and syntactical nature, appear to respond similarly to instruction.

  11. Theoretical considerations in measurement of time discrepancies between input and myocardial time-signal intensity curves in estimates of regional myocardial perfusion with first-pass contrast-enhanced MRI.

    Science.gov (United States)

    Natsume, Takahiro; Ishida, Masaki; Kitagawa, Kakuya; Nagata, Motonori; Sakuma, Hajime; Ichihara, Takashi

    2015-11-01

    The purpose of this study was to develop a method to determine time discrepancies between input and myocardial time-signal intensity (TSI) curves for accurate estimation of myocardial perfusion with first-pass contrast-enhanced MRI. Estimation of myocardial perfusion with contrast-enhanced MRI using kinetic models requires faithful recording of contrast content in the blood and myocardium. Typically, the arterial input function (AIF) is obtained by setting a region of interest in the left ventricular cavity. However, there is a small delay between the AIF and the myocardial curves, and such time discrepancies can lead to errors in flow estimation using Patlak plot analysis. In this study, the time discrepancies between the arterial TSI curve and the myocardial tissue TSI curve were estimated based on the compartment model. In the early phase after the arrival of the contrast agent in the myocardium, the relationship between rate constant K1 and the concentrations of Gd-DTPA contrast agent in the myocardium and arterial blood (LV blood) can be described by the equation K1={dCmyo(tpeak)/dt}/Ca(tpeak), where Cmyo(t) and Ca(t) are the relative concentrations of Gd-DTPA contrast agent in the myocardium and in the LV blood, respectively, and tpeak is the time corresponding to the peak of Ca(t). In the ideal case, the time corresponding to the maximum upslope of Cmyo(t), tmax, is equal to tpeak. In practice, however, there is a small difference in the arrival times of the contrast agent into the LV and into the myocardium. This difference was estimated to correspond to the difference between tpeak and tmax. The magnitudes of such time discrepancies and the effectiveness of the correction for these time discrepancies were measured in 18 subjects who underwent myocardial perfusion MRI under rest and stress conditions. The effects of the time discrepancies could be corrected effectively in the myocardial perfusion estimates.

  12. Can SEE-2 Children Understand ASL-Using Adults?

    Science.gov (United States)

    Luetke-Stahlman, Barbara

    1990-01-01

    The study compared comprehension of American Sign Language (ASL) between 12 deaf subjects in a program using Signing Exact English (SEE-2) and 14 deaf subjects in a residential program using Signed English, Pidgin Signed English, and ASL. Students exposed to SEE-2 could comprehend ASL as well as residential school peers. (Author/DB)

  13. MR Diagnosis of a Pulmonary Embolism: Comparison of P792 and Gd-DOTA for First-Pass Perfusion MRI and Contrast-Enhanced 3D MRA in a Rabbit Model

    Energy Technology Data Exchange (ETDEWEB)

    Keilholz, Shella D. [Emory University and Georgia Institute of Technology, Atlanta (United States); Bozlar, Ugur; Fujiwara, Naomi; Mata, Jaime F.; Berr, Stuart S.; Hagspiel, Klaus D. [Gulhane Military Medical Academy, Ankara (Turkmenistan); Corot, Claire [Guerbet Research, Aulnay-sous-Bois (France)

    2009-10-15

    To compare P792 (gadomelitol, a rapid clearance blood pool MR contrast agent) with gadolinium-tetraazacyclododecanetetraacetic acid (Gd- DOTA), a standard extracellular agent, for their suitability to diagnose a pulmonary embolism (PE) during a first-pass perfusion MRI and 3D contrastenhanced (CE) MR angiography (MRA). A perfusion MRI or CE-MRA was performed in a rabbit PE model following the intravenous injection of a single dose of contrast agent. The time course of the pulmonary vascular and parenchymal enhancement was assessed by measuring the signal in the aorta, pulmonary artery, and lung parenchyma as a function of time to determine whether there is a significant difference between the techniques. CE-MRA studies were evaluated by their ability to depict the pulmonary vasculature and following defects between 3 seconds and 15 minutes after a triple dose intravenous injection of the contrast agents. The P792 and Gd-DOTA were equivalent in their ability to demonstrate PE as perfusion defects on first pass imaging. The signal from P792 was significantly higher in vasculature than that from Gd-DOTA between the first and the tenth minutes after injection. The results suggest that a CE-MRA PE could be reliably diagnosed up to 15 minutes after injection. P792 is superior to Gd-DOTA for the MR diagnosis of PE.

  14. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Cicone, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Filss, Christian P.; Langen, Karl-Josef [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; RWTH Aachen Univ. Hospital (Germany). Dept. of Nuclear Medicine; Minniti, Giuseppe; Scaringi, Claudia [Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Sant' Andrea Hospital, Rome (Italy). Unit of Radiotherapy; Rossi-Espagnet, Camilla; Bozzao, Alessandro [Sant' Andrea Hospital, Rome (Italy). Unit of Neuroradiology; Rome Sapienza Univ. (Italy). Dept. of Neurosciences, Mental Health and Sensory Organs (Ne.S.M.O.S.); Papa, Annalisa; Scopinaro, Francesco [Sant' Andrea Hospital, Rome (Italy). Unit of Nuclear Medicine; Rome Sapienza Univ. (Italy). Dept. of Surgical and Medical Sciences and tranlational Medicine; Galldiks, Norbert [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine; Cologne Univ. (Germany). Dept. of Neurology; Shah, N. Jon [Research Centre Juelich (Germany). Inst. of Neureoscience and Medicine

    2015-05-01

    To compare the diagnostic information obtained with 6-[{sup 18}F]-fluoro-l-3,4-dihydroxyphenylalanine (F-DOPA) PET and relative cerebral blood volume (rCBV) maps in recurrent or progressive glioma. All patients with recurrent or progressive glioma referred for F-DOPA imaging at our institution between May 2010 and May 2014 were retrospectively included, provided that macroscopic disease was visible on conventional MRI images and that rCBV maps were available for comparison. The final analysis included 50 paired studies (44 patients). After image registration, automatic tumour segmentation of both sets of images was performed using the average signal in a large reference VOI including grey and white matter multiplied by 1.6. Tumour volumes identified by both modalities were compared and their spatial congruence calculated. The distances between F-DOPA uptake and rCBV hot spots, tumour-to-brain ratios (TBRs) and normalized histograms were also computed. On visual inspection, 49 of the 50 F-DOPA and 45 of the 50 rCBV studies were classified as positive. The tumour volume delineated using F-DOPA (F-DOPA{sub vol} {sub 1.6}) greatly exceeded that of rCBV maps (rCBV{sub vol} {sub 1.6}). The median F-DOPA{sub vol} {sub 1.6} and rCBV{sub vol} {sub 1.6} were 11.44 ml (range 0 - 220.95 ml) and 1.04 ml (range 0 - 26.30 ml), respectively (p < 0.00001). Overall, the median overlapping volume was 0.27 ml, resulting in a spatial congruence of 1.38 % (range 0 - 39.22 %). The mean hot spot distance was 27.17 mm (±16.92 mm). F-DOPA uptake TBR was significantly higher than rCBV TBR (1.76 ± 0.60 vs. 1.15 ± 0.52, respectively; p < 0.0001). The histogram analysis showed that F-DOPA provided better separation of tumour from background. In 6 of the 50 studies (12 %), however, physiological uptake in the striatum interfered with tumour delineation. The information provided by F-DOPA PET and rCBV maps are substantially different. Image interpretation is easier and a larger tumour extent

  15. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma.

    Directory of Open Access Journals (Sweden)

    Anna Tietze

    Full Text Available Deficient microvascular blood flow control is thought to cause tumor hypoxia and increase resistance to therapy. In glioma patients, we tested whether perfusion-weighted MRI (PWI based indices of microvascular flow control provide more information on tumor grade and patient outcome than does the established PWI angiogenesis marker, cerebral blood volume (CBV.Seventy-two glioma patients (sixty high-grade, twelve low-grade gliomas were included. Capillary transit time heterogeneity (CTH and the coefficient of variation (COV, its ratio to blood mean transit time, provide indices of microvascular flow control and the extent to which oxygen can be extracted by tumor tissue. The ability of these parameters and CBV to differentiate tumor grade were assessed by receiver operating characteristic curves and logistic regression. Their ability to predict time to progression and overall survival was examined by the Cox proportional-hazards regression model, and by survival curves using log-rank tests.The best prediction of grade (AUC = 0.876; p < 0.05 was achieved by combining knowledge of CBV and CTH in the enhancing tumor and peri-focal edema, and patients with glioblastoma multiforme were identified best by CTH (AUC = 0.763; p<0.001. CTH outperformed CBV and COV in predicting time to progression and survival in all gliomas and in a subgroup consisting of only high-grade gliomas.Our study confirms the importance of microvascular flow control in tumor growth by demonstrating that determining CTH improves tumor grading and outcome prediction in glioma patients compared to CBV alone.

  16. Application of MRS and ASL in the diagnosis of pseudoprogression in high-grade glioma%MRS联合ASL在高级别脑胶质瘤假性进展诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    王季华; 张在云; 李晓梅; 程健; 姜玉华

    2016-01-01

    目的:探讨磁共振波谱分析技术( magnetic resonance spectroscopy, MRS)联合动脉自旋标记技术( arterial spin labeling, ASL)在高级别脑胶质瘤假性进展诊断中的应用。方法回顾性分析我院2013年1月~2015年12月高级别脑胶质瘤行手术及术后联合替莫唑胺放化疗1月后MRI上出现水肿及增强范围扩大者36例,应用MRS分析病灶局部代谢产物及其比值情况,ASL分析病灶局部血流情况。评价2种方法在高级别脑胶质瘤假性进展诊断中的意义。结果36例患者中,经二次手术病理或随访10月以上证实28例为假性进展,8例为肿瘤复发。单纯应用MRS、ASL及二者联合正确诊断假性进展者分别为19例、23例及26例。假性进展表现:MRS图像Cho/Cr下降及NAA/Cr下降, ASL出现病变区低灌注;肿瘤复发表现:MRS图像Cho/Cr升高及NAA/Cr下降,ASL出现病变区高灌注。结论联合应用MRS及ASL分析可较好地诊断胶质瘤假性进展,具有良好的临床应用前景。%Objective To investigate magnetic resonance spectroscopy ( MRS) and arterial spin labeling ( ASL) in the diag-nosis of pseudoprogression in high-grade glioma.Methods 36 high-grade glioma patients who had presented with enlarged con-trast-enhanced lesions on magnetic resonance imaging ( MRI) one month after completing concurrent chemoradiotherapy were en-rolled in the second hospital of shandong university from Jan 2013 to Dec 2015.Metabolites and their ratio were analyzed with MRS, blood flow was measured with ASL, both of MRS and ASL were applied to determine whether there was pseudoprogression or tumor recurrence in the lesion area.Results In 36 cases, 28 cases were confirmed as pseudoprogression, 8 cases as recur-rence, by re-surgery or with follow-up for 10 months.Pseudoprogression diagnosed by MRS, ASL and combination were 19 cases, 23 cases and 26 cases respectively.Decreased Cho/Cr and NAA/Cr were shown in MRS

  17. Advances in functional and structural imaging of the human lung using proton MRI.

    Science.gov (United States)

    Miller, G Wilson; Mugler, John P; Sá, Rui C; Altes, Talissa A; Prisk, G Kim; Hopkins, Susan R

    2014-12-01

    The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed

  18. Assessment of PET & ASL metabolism in the hippocampal subfields of MCI and AD using simultaneous PET-MR

    Energy Technology Data Exchange (ETDEWEB)

    Goubran, Maged; Douglas, David; Chao, Steven; Quon, Andrew; Tripathi, Pragya; Holley, Dawn; Vasanawala, Minal; Zaharchuk, Greg; Zeineh, Michael [Stanford University (United States)

    2015-05-18

    Alzheimer’s disease (AD) has been reported to show decreased metabolic activity in the hippocampus using FDG PET-MR. Histological data suggests that the hippocampal subfields are selectively affected in AD. Given the simultaneous imaging nature of integrated PET-MR scanners and the multimodal capabilities of PET-MR, our purpose here is to assess FDG activity, as well as ASL perfusion in the subfields of MCI and AD patients. 10 consecutive subjects were recruited for this study 3 MCI, 3 AD patients and 4 age-matched controls. The scanning was performed on a simultaneous 3T PET/MR scanner. To delineate the hippocampal subfields, automatic segmentation of hippocampal subfields (ASHS) was employed. Static FDG-PET series were reconstructed for analysis at 45-75 min for all subjects. All imaging sequences were automatically registered to the oblique coronal T2-weighted images (segmentation space). PET standardized uptake values (SUV) in the hippocampal subfields were normalized by the pons. FDG PET metabolism was reduced significantly in AD, as well as MCI patients as compared to controls, with the highest effect demonstrated in the CA3/DG and CA1/2 (p = 0.047, subfields. Patients (MCI and AD combined) had decreased metabolism as compared to controls in CA1/2 and significantly smaller volumes the Subiculum. When assessing CBF across groups, a significant decrease in CBF was found in the Subiculum. Our preliminary results demonstrate that PET-MRI may potentially be a sensitive biomarker and tool for early diagnosis of AD. They also confirm the importance of assessing metabolic and structural changes of neurodegenerative diseases at the subfield level.

  19. Beyond A-Z stories : studying ASL literature genres

    OpenAIRE

    Parker, Erica Tara Lily

    2012-01-01

    All languages as well as all cultures have literature to pass down stories to generations. Literature gives the capability to play with language. In this curriculum, students learn specific skills in American Sign Language [ASL] Literature genres. After creating their ASL stories in all genres through brainstorming, peer/teacher feedback, filming, revising, and editing, they write in English version their ASL stories going through the first, second and final drafts. The students proudly show ...

  20. Myocardial perfusion modeling using MRI

    DEFF Research Database (Denmark)

    Larsson, H B; Fritz-Hansen, T; Rostrup, Egill;

    1996-01-01

    turbo-FLASH (fast low-angle shot) sequence and Gd-DTPA has been presented. Here, an extension of the model is presented taking into account fast and slow water exchange between the compartments, enabling the calculation of the unidirectional influx constant (Ki) for Gd-DTPA, the distribution volume...

  1. ASL TALK. An Investigation of Authentic Spiritual Leadership (ASL): A Discursive Study

    OpenAIRE

    Bünger, Y.

    2011-01-01

    This study explores how a global network of people construct an idea(l) of leadership, by combining authenticity, spirituality and leadership in (con-)text of current socio-cultural movements, CSR, 'ethical profit', and stages of leadership history. The concept of a unity of authenticity, spirituality and leadership is highly controversial and has attracted considerable critical scrutiny, which makes it interesting to examine how members of this community manage their accounts of ASL. With mu...

  2. Perfusion magnetic resonance imaging of the liver

    Institute of Scientific and Technical Information of China (English)

    Choon; Hua; Thng; Tong; San; Koh; David; J; Collins; Dow; Mu; Koh

    2010-01-01

    Perfusion magnetic resonance imaging (MRI) studies quantify the microcirculatory status of liver parenchyma and liver lesions, and can be used for the detection of liver metastases, assessing the effectiveness of antiangiogenic therapy, evaluating tumor viability after anticancer therapy or ablation, and diagnosis of liver cirrhosis and its severity. In this review, we discuss the basic concepts of perfusion MRI using tracer kinetic modeling, the common kinetic models applied for analyses, the MR scanning t...

  3. ASL-LEX: A lexical database of American Sign Language.

    Science.gov (United States)

    Caselli, Naomi K; Sehyr, Zed Sevcikova; Cohen-Goldberg, Ariel M; Emmorey, Karen

    2016-05-18

    ASL-LEX is a lexical database that catalogues information about nearly 1,000 signs in American Sign Language (ASL). It includes the following information: subjective frequency ratings from 25-31 deaf signers, iconicity ratings from 21-37 hearing non-signers, videoclip duration, sign length (onset and offset), grammatical class, and whether the sign is initialized, a fingerspelled loan sign, or a compound. Information about English translations is available for a subset of signs (e.g., alternate translations, translation consistency). In addition, phonological properties (sign type, selected fingers, flexion, major and minor location, and movement) were coded and used to generate sub-lexical frequency and neighborhood density estimates. ASL-LEX is intended for use by researchers, educators, and students who are interested in the properties of the ASL lexicon. An interactive website where the database can be browsed and downloaded is available at http://asl-lex.org .

  4. The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia

    NARCIS (Netherlands)

    Lubbers, Daniel D.; Janssen, Caroline H. C.; Kuijpers, Dirkjan; Van Dijkman, Paul R. M.; Overbosch, Jelle; Willems, Tineke P.; Oudkerk, Matthijs

    2008-01-01

    Purpose of this study was to assess the additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress Cardiac-MR (CMR). Dobutamine Stress CMR was performed in 115 patients with an inconclusive diagnosis of myocardial ischemia on a 1.5 T system (Magnetom Avanto, Si

  5. Measurement of brain perfusion, blood volume, and blood-brain barrier permeability, using dynamic contrast-enhanced T(1)-weighted MRI at 3 tesla

    DEFF Research Database (Denmark)

    Larsson, Henrik B W; Courivaud, Frédéric; Rostrup, Egill;

    2009-01-01

    Assessment of vascular properties is essential to diagnosis and follow-up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood-brain permeability from dynamic T(1)-weighted...

  6. Diagnostic accuracy of unenhanced, contrast-enhanced perfusion and angiographic MRI sequences for pulmonary embolism diagnosis: results of independent sequence readings

    Energy Technology Data Exchange (ETDEWEB)

    Revel, Marie Pierre [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Hotel-Dieu, Service de Radiologie, Paris (France); Sanchez, Olivier; Meyer, Guy [Hopital Europeen Georges Pompidou, APHP, Respiratory and intensive care and, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM Unite 765, Paris (France); Lefort, Catherine; Couchon, Sophie; Hernigou, Anne; Frija, Guy [Hopital Europeen Georges Pompidou, APHP, Departments of Radiology, Paris (France); Niarra, Ralph [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); Chatellier, Gilles [Hopital Europeen Georges Pompidou, APHP, Clinical Epidemiology, Paris (France); Universite Paris Descartes Sorbonne Paris Cite, Paris (France); INSERM CIC-EC E4, Paris (France)

    2013-09-15

    To independently evaluate unenhanced, contrast-enhanced perfusion and angiographic MR sequences for pulmonary embolism (PE) diagnosis. Prospective investigation, including 274 patients who underwent perfusion, unenhanced 2D steady-state-free-precession (SSFP) and contrast-enhanced 3D angiographic MR sequences on a 1.5-T unit, in addition to CTA (CT angiography). Two independent readers evaluated each sequence independently in random order. Sensitivity, specificity, predictive values and inter-reader agreement were calculated for each sequence, excluding sequences judged inconclusive. Sensitivity was also calculated according to PE location. Contrast-enhanced angiographic sequences showed the highest sensitivity (82.9 and 89.7 %, reader 1 and reader 2, respectively), specificity (98.5 and 100 %) and agreement (kappa value 0.77). Unenhanced angiographic sequences, although less sensitive overall (68.7 and 76.4 %), were sensitive for the detection of proximal PE (92.7 and 100 %) and showed high specificity (96.1 and 99.1 %) and good agreement (kappa value 0.62). Perfusion sequences showed lower sensitivity (75.0 and 79.3 %), specificity (84.8 and 89.7 %) and agreement (kappa value 0.51), and a negative predictive value of 84.8 % at best. Compared with contrast-enhanced angiographic sequences, unenhanced sequences demonstrate lower sensitivity, except for proximal PE, but high specificity and agreement. The negative predictive value of perfusion sequences was insufficient to safely rule out PE. (orig.)

  7. Cerebral perfusion and glucose metabolism in Alzheimer's disease and frontotemporal dementia: two sides of the same coin?

    Energy Technology Data Exchange (ETDEWEB)

    Verfaillie, Sander C.J.; Adriaanse, Sofie M.; Binnewijzend, Maja A.A.; Benedictus, Marije R.; Ossenkoppele, Rik [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); Wattjes, Mike P.; Lammertsma, Adriaan A.; Boellaard, Ronald; Berckel, Bart N.M. van; Barkhof, Frederik [VU University Medical Centre, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Pijnenburg, Yolande A.L.; Scheltens, Philip [VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); Flier, Wiesje M. van der [VU University Medical Centre, Alzheimer Centre and Department of Neurology, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Centre, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); Kuijer, Joost P.A. [VU University Medical Centre, Department of Physics and Medical Technology, Amsterdam (Netherlands)

    2015-10-15

    Alzheimer's disease (AD) and frontotemporal (FTD) dementia can be differentiated using [{sup 18}F]-2-deoxy-2-fluoro-D-glucose (FDG)-PET. Since cerebral blood flow (CBF) is related to glucose metabolism, our aim was to investigate the extent of overlap of abnormalities between AD and FTD. Normalized FDG-PET and arterial spin labelling (ASL-MRI)-derived CBF was measured in 18 AD patients (age, 64 ± 8), 12 FTD patients (age, 61 ± 8), and 10 controls (age, 56 ± 10). Voxel-wise comparisons, region-of-interest (ROI), correlation, and ROC curve analyses were performed. Voxel-wise comparisons showed decreased CBF and FDG uptake in AD compared with controls and FTD in both precuneus and inferior parietal lobule (IPL). Compared with controls and AD, FTD patients showed both hypometabolism and hypoperfusion in medial prefrontal cortex (mPFC). ASL and FDG were related in precuneus (r = 0.62, p < 0.001), IPL (r = 0.61, p < 0.001), and mPFC across groups (r = 0.74, p < 001). ROC analyses indicated comparable performance of perfusion and metabolism in the precuneus (AUC, 0.72 and 0.74), IPL (0.85 and 0.94) for AD relative to FTD, and in the mPFC in FTD relative to AD (both 0.68). Similar patterns of hypoperfusion and hypometabolism were observed in regions typically associated with AD and FTD, suggesting that ASL-MRI provides information comparable to FDG-PET. (orig.)

  8. High accuracy of arterial spin labeling perfusion imaging in differentiation of pilomyxoid from pilocytic astrocytoma

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, S.A.; Assadsangabi, R.; Hajmomenian, M.; Vossough, A. [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Santi, M. [Perelman School of Medicine of the University of Pennsylvania, Department of Pathology, Children' s Hospital of Philadelphia, Philadelphia, PA (United States)

    2015-05-01

    Pilomyxoid astrocytoma (PMA) is a relatively new tumor entity which has been added to the 2007 WHO Classification of tumors of the central nervous system. The goal of this study is to utilize arterial spin labeling (ASL) perfusion imaging to differentiate PMA from pilocytic astrocytoma (PA). Pulsed ASL and conventional MRI sequences of patients with PMA and PA in the past 5 years were retrospectively evaluated. Patients with history of radiation or treatment with anti-angiogenic drugs were excluded. A total of 24 patients (9 PMA, 15 PA) were included. There were statistically significant differences between PMA and PA in mean tumor/gray matter (GM) cerebral blood flow (CBF) ratios (1.3 vs 0.4, p < 0.001) and maximum tumor/GM CBF ratio (2.3 vs 1, p < 0.001). Area under the receiver operating characteristic (ROC) curves for differentiation of PMA from PA was 0.91 using mean tumor CBF, 0.95 using mean tumor/GM CBF ratios, and 0.89 using maximum tumor/GM CBF. Using a threshold value of 0.91, the mean tumor/GM CBF ratio was able to diagnose PMA with 77 % sensitivity, 100 % specificity, and a threshold value of 0.7, provided 88 % sensitivity and 86 % specificity. There was no statistically significant difference between the two tumors in enhancement pattern (p = 0.33), internal architecture (p = 0.15), or apparent diffusion coefficient (ADC) values (p = 0.07). ASL imaging has high accuracy in differentiating PMA from PA. The result of this study may have important applications in prognostication and treatment planning especially in patients with less accessible tumors such as hypothalamic-chiasmatic gliomas. (orig.)

  9. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients?

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Boram; Kang, Doo Kyoung; Kim, Tae Hee [Ajou University School of Medicine, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Yoon, Dukyong [Ajou University School of Medicine, Department of Biomedical Informatics, Suwon (Korea, Republic of); Jung, Yong Sik; Kim, Ku Sang [Ajou University School of Medicine, Department of Surgery, Suwon (Korea, Republic of); Yim, Hyunee [Ajou University School of Medicine, Department of Pathology, Suwon (Korea, Republic of)

    2014-05-15

    To find out any correlation between dynamic contrast-enhanced (DCE) model-based parameters and model-free parameters, and evaluate correlations between perfusion parameters with histologic prognostic factors. Model-based parameters (Ktrans, Kep and Ve) of 102 invasive ductal carcinomas were obtained using DCE-MRI and post-processing software. Correlations between model-based and model-free parameters and between perfusion parameters and histologic prognostic factors were analysed. Mean Kep was significantly higher in cancers showing initial rapid enhancement (P = 0.002) and a delayed washout pattern (P = 0.001). Ve was significantly lower in cancers showing a delayed washout pattern (P = 0.015). Kep significantly correlated with time to peak enhancement (TTP) (ρ = -0.33, P < 0.001) and washout slope (ρ = 0.39, P = 0.002). Ve was significantly correlated with TTP (ρ = 0.33, P = 0.002). Mean Kep was higher in tumours with high nuclear grade (P = 0.017). Mean Ve was lower in tumours with high histologic grade (P = 0.005) and in tumours with negative oestrogen receptor status (P = 0.047). TTP was shorter in tumours with negative oestrogen receptor status (P = 0.037). We could acquire general information about the tumour vascular physiology, interstitial space volume and pathologic prognostic factors by analyzing time-signal intensity curve without a complicated acquisition process for the model-based parameters. (orig.)

  10. Perfusion Quantification Using Gaussian Process Deconvolution

    DEFF Research Database (Denmark)

    Andersen, Irene Klærke; Have, Anna Szynkowiak; Rasmussen, Carl Edward;

    2002-01-01

    The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated...

  11. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults.

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    Full Text Available PURPOSE: Despite the generally accepted view that aerobic exercise can have positive effects on brain health, few studies have measured brain responses to exercise over a short time span. The purpose of this study was to examine the impact within one hour of a single bout of exercise on brain perfusion and neuronal activation. METHODS: Healthy adults (n = 16; age range: 20-35 yrs were scanned using Magnetic Resonance Imaging (MRI before and after 20 minutes of exercise at 70% of their age-predicted maximal heart rate. Pseudo-continuous arterial spin labeling (pcASL was used to measure absolute cerebral blood flow (CBF prior to exercise (pre and at 10 min (post-10 and 40 min (post-40 post-exercise. Blood oxygenation level dependent (BOLD functional MRI (fMRI was performed pre and post-exercise to characterize activation differences related to a go/no-go reaction time task. RESULTS: Compared to pre-exercise levels, grey matter CBF was 11% (±9% lower at post-10 (P<0.0004 and not different at post-40 (P = 0.12, while global WM CBF was increased at both time points post-exercise (P<0.0006. Regionally, the hippocampus and insula showed a decrease in perfusion in ROI-analysis at post-10 (P<0.005, FDR corrected, whereas voxel-wise analysis identified elevated perfusion in the left medial postcentral gyrus at post-40 compared to pre (pcorrected = 0.05. BOLD activations were consistent between sessions, however, the left parietal operculum showed reduced BOLD activation after exercise. CONCLUSION: This study provides preliminary evidence of regionalized brain effects associated with a single bout of aerobic exercise. The observed acute cerebrovascular responses may provide some insight into the brain's ability to change in relation to chronic interventions.

  12. Magnetic resonance perfusion imaging evaluation in perfusion abnormalities of the cerebellum after supratentorial unilateral hyperacute cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Pan Liang; Yunjun Yang; Weijian Chen; Yuxia Duan; Hongqing Wang; Xiaotong Wang

    2012-01-01

    Magnetic resonance imaging (MRI) data of 10 patients with hyperacute cerebral infarction (≤ 6 hours) were retrospectively analyzed. Six patients exhibited perfusion defects on negative enhancement integral maps, four patients exhibited perfusion differences in pseudo-color on mean time to enhance maps, and three patients exhibited perfusion differences in pseudo-color on time to minimum maps. Dynamic susceptibility contrast-enhanced perfusion weighted imaging revealed a significant increase in region negative enhancement integral in the affected hemisphere of patients with cerebral infarction. The results suggest that dynamic susceptibility contrast-enhanced perfusion weighted imaging can clearly detect perfusion abnormalities in the cerebellum after unilateral hyperacute cerebral infarction.

  13. Measuring myocardial perfusion

    DEFF Research Database (Denmark)

    Qayyum, A A; Kastrup, J

    2015-01-01

    -pass of non-ionic and ionic contrast agents, respectively. Absolute quantification with CMR has yet to be established in routine clinical practice, while CT has yet to prove its diagnostic and prognostic value. The upcoming years may change the way we diagnose and treat patients suspected of having CAD......Recently, focus has changed from anatomical assessment of coronary arteries towards functional testing to evaluate the effect of stenosis on the myocardium before intervention. Besides positron-emission tomography (PET), cardiac MRI (CMR), and cardiac CT are able to measure myocardial perfusion...

  14. Measurement of myocardial perfusion using magnetic resonance

    DEFF Research Database (Denmark)

    Fritz-Hansen, T.; Jensen, L.T.; Larsson, H.B.;

    2008-01-01

    Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper review...... myocardial perfusion imaging with MR contrast agents: methods, validation and experiences from clinical studies. Unresolved issues still restrict the use of these techniques to research although clinical applications are within reach Udgivelsesdato: 2008/12/8......Cardiac magnetic resonance imaging (MRI) has evolved rapidly. Recent developments have made non-invasive quantitative myocardial perfusion measurements possible. MRI is particularly attractive due to its high spatial resolution and because it does not involve ionising radiation. This paper reviews...

  15. CT perfusion imaging for patients of posterior circulation ischemia without responsible lesions on MRI scanning%MRI检查无责任病灶脑后循环缺血患者的CT灌注成像研究

    Institute of Scientific and Technical Information of China (English)

    戚观树; 侯群; 曹志坚; 李冉冉; 许茂盛

    2013-01-01

    Objective To assess the diagnostic value of CT perfusion imaging in patients of posterior circulation ischemia (PCI) without responsible lesions on MRI scanning. Methods Twenty four patients with clinical diagnosis of PCI underwent MRI DWI examination, for the patients without responsible lesions on MRI, CTPI was then performed. The region of interest (ROI ) was hand-painted and the perfusion parameters of abnormal regions and normal regions were recorded, including regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV),mean transmit time (MTT) and time to peak (TTP). Results Out of 24 cases positive CTPI was detected in 18 with a positive rate of 75%. There were 26 ischemic focuses detected, including 10 in cerebel um (38.5%), 7 in occipital lobe (26.9%), 3 in temporal lobe (11.5%) and 6 in brainstem (23.1%). Abnormal regions were detected on the diagram of TTP in 15 cases and the findings were corresponded to clinical symptoms;those were detected by rCBF in 13 cases and those detected by rCBC in 8 cases. The stages of cerebral infarction prophase included I-1 in 4 cases, I-2 in 1 case, II-1 in 5 cased and II-2 in 8 cases. Conclusion CTPI can objectively evaluate cerebral blood flow perfusion and is of value in detection of ischemic focuses that are not found by MRI scanning.%  目的探讨MRI检查显示无责任病灶的脑后循环缺血(PCI)患者的局部脑血流灌注情况,探索PCI患者早期诊断的有效方法.方法选取符合PCI临床诊断的24例患者行头颅MRI检查,对未发现责任病灶的患者进一步行CT灌注成像(CTPI)检查.在CTPI图像上手绘感兴趣区域(ROI),记录病灶区与对照区的灌注参数,包括局部脑血流量(rCBF)、局部脑血容量(rCBV)、平均通过时间(MTT)和达峰时间(TTP).结果 CTPI检查发现异常灌注18例(阳性率75%),缺血灶共26处,其中小脑10处(38.5%),枕叶7处(26.9%),颞叶3处(11.5%),脑干6处(23.1%).TTP发现异常15例,且均与临床

  16. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends.

    Science.gov (United States)

    Weisberg, Jill; McCullough, Stephen; Emmorey, Karen

    2015-08-01

    Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration.

  17. Renal perfusion scintiscan

    Science.gov (United States)

    Renal perfusion scintigraphy; Radionuclide renal perfusion scan; Perfusion scintiscan - renal; Scintiscan - renal perfusion ... supply the kidneys. This is a condition called renal artery stenosis. Significant renal artery stenosis may be ...

  18. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zonari, Paolo [Ospedale ' ' B. Ramazzini' ' , AUSL Modena, Neuroradiologia, Dipartimento Integrato di Neuroscienze, Carpi, Modena (Italy); Baraldi, Patrizia [Universita degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Modena (Italy); Crisi, Girolamo [Azienda Ospedaliero-Universitaria di Parma, Dipartimento ad Attivita Integrata di Neuroscienze, Parma (Italy)

    2007-10-15

    Diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and MR spectroscopy (MRS) provide useful data for tumor evaluation. To assess the contribution of these multimodal techniques in grading glial neoplasms, we compared the value of DWI, PWI and MRS in the evaluation of histologically proven high- and low-grade gliomas in a population of 105 patients. Independently for each modality, the following variables were used to compare the tumors: minimum apparent diffusion coefficient (ADC) and maximum relative cerebral blood volume (rCBV) normalized values between tumor and healthy tissue, maximum Cho/Cr ratio and minimum NAA/Cr ratio in tumor, and scored lactate and lipid values in tumor. The Mann-Whitney and Wilcoxon tests were employed to compare DWI, PWI and MRS between tumor types. Logistic regression analysis was used to determine which parameters best increased the diagnostic accuracy in terms of sensitivity, specificity, and positive and negative predictive values. ROC curves were determined for parameters with high sensitivity and specificity to identify threshold values to separate high- from low-grade lesions. Statistically significant differences were found for rCBV tumor/normal tissue ratio, and NAA/Cr ratio in tumor and Cho/Cr ratio in tumor between low- and high-grade tumors. The best performing single parameter for group classification was the normalized rCBV value; including all parameters, statistical significance was reached by rCBV tumor/normal tissue ratio, NAA/Cr tumor ratio and lactate. From the ROC curves, a high probability for a neoplasm to be a high-grade lesion was associated with a rCBV tumor/normal tissue ratio of >1.16 and NAA/Cr tumor ratio of <0.44. Combining PWI and MRS with conventional MR imaging increases the accuracy of the attribution of malignancy to glial neoplasms. The best performing parameter was found to be the perfusion level. (orig.)

  19. New Directions in ASL-English Bilingual Ebooks

    Science.gov (United States)

    Stone, Adam

    2014-01-01

    The widespread adoption of smartphones and tablet computers have enabled the rapid creation and distribution of innovative American Sign Language (ASL) and written English bilingual ebooks, aimed primarily at deaf and hard-of-hearing children. These sign-print bilingual ebooks are unique in how they take advantage of digital platforms to display…

  20. Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jahng, Geon Ho [Dept. of Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Li, Ka Loh [Wolfson Molecular Imaging Center, The University of Manchester, Manchester (United Kingdom); Ostergaard, Leif [Center for Functionally Integrative Neuroscience, Dept. of Neuroradiology, Aarhus University Hospital, Aarhus (Denmark); Calamante, Femando [Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria (Austria)

    2014-10-15

    Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.

  1. MELAS综合征患者脑灌注异常的MRI特征%MRI evaluation of cerebral perfusion changes in patients with MELAS syndrome

    Institute of Scientific and Technical Information of China (English)

    谢晟; 齐朝月; 肖江喜; 杨艳玲; 蒋学祥

    2008-01-01

    Objective To detect the changes of cerebral perfusion in patients with MELAs syndrome by using MR perfusion technique.Methods Thirteen patients with MELAS syndrome and 13 controls with normal neurological conditions were scanned with the sequence of flow-sensitive alternating inversion recovery exempting separate T1 measurement(FAIREST).Their rCBF values were obtained in regions of bilateral basilar nuclei and thalami,as well as bilateral temporal lobes and occipital lobes.Regression analysis was carried out to determine the effect of location and side on the measurement of rCBF in controls.One-way ANOVA was conducted to compare rCBF values among the control group.the lesion ROIs and normal ROIs of the MELAS syndrome group.Results The values of rCBF were 0.83±0.23,1.17±0.30.0.93±0.28,and 1.11±0.25 for the left basilar ganglia,thalamus,temporal lobe,and occipital lobe respectively,while they were 0.77±0.15,1.03±0.34,1.06±0.23,and 1.09±0.23 for the right basilar ganglia,thalamus,temporal lobe.and occipital lobe respectively.Regression analysis revealed no effect of location and side on the rCBF (P>0.05).The rCBF value for control group was 1.00±0.28,while it was 1.01±0.31 for the normal ROIs and 1.95±0.43 for the lesion ROIs in the MELAS syndrome group(F=54.99.P<0.01).The rCBF of the lesion ROIs in the MELAS syndrome group was significantly higher than the normal ROIs and the control group.Conclusion CBF maps can reveal changes of cerebral blood flow in patients with ietal MELAS,which suggests increased perfusion in the stroke-like lesions.%目的 探讨MELAS综合征患者的MR脑血流灌注异常特征.方法 对13例确诊的MELAS综合征患者和13名对照组受试者行流速敏感交替反转恢复免除独立T1测量(FAIREST)序列扫描,通过后处理生成脑血流量(CBF)图,分别测量他们的双侧基底节区、丘脑、颢叶和枕叶的相对脑血流量(rCBF)值,采用多元回归法分析对照组中测量部位和侧别对rCBF

  2. Improved ASL based Gesture Recognition using HMM for System Application

    Directory of Open Access Journals (Sweden)

    Shalini Anand

    2014-03-01

    Full Text Available Gesture recognition is a growing field of research and among various human computer interactions; hand gesture recognition is very popular for interacting between human and machines. It is non verbal way of communication and this research area is full of innovative approaches. This project aims at recognizing 34 basic static hand gestures based on American Sign Language (ASL including alphabets as well as numbers (0 to 9. In this project we have not considered two alphabets i.e J and Z as our project aims as recognizing static hand gesture but according to ASL they are considered as dynamic. The main features used are optimization of the database using neural network and Hidden Markov Model (HMM. That is the algorithm is based on shape based features by keeping in the mind that shape of human hand is same for all human beings except in some situations

  3. Diffusion and perfusion imaging of bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Biffar, Andreas; Dietrich, Olaf [Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology, LMU University Hospitals, Grosshadern-Munich (Germany); Sourbron, Steven [Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology, LMU University Hospitals, Grosshadern-Munich (Germany); Division of Medical Physics, University of Leeds, Leeds (United Kingdom); Duerr, Hans-Roland [Department of Orthopedic Surgery, LMU University Hospitals, Grosshadern-Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology, LMU University Hospitals, Grosshadern-Munich (Germany); Department of Clinical Radiology, LMU University Hospitals, Grosshadern-Munich (Germany); Baur-Melnyk, Andrea, E-mail: andrea.baur@med.uni-muenchen.de [Department of Clinical Radiology, LMU University Hospitals, Grosshadern-Munich (Germany)

    2010-12-15

    In diffusion-weighted magnetic resonance imaging (DWI), the observed MRI signal intensity is attenuated by the self-diffusion of water molecules. DWI provides information about the microscopic structure and organization of a biological tissue, since the extent and orientation of molecular motion is influenced by these tissue properties. The most common method to measure perfusion in the body using MRI is T1-weighted dynamic contrast enhancement (DCE-MRI). The analysis of DCE-MRI data allows determining the perfusion and permeability of a biological tissue. DWI as well as DCE-MRI are established techniques in MRI of the brain, while significantly fewer studies have been published in body imaging. In recent years, both techniques have been applied successfully in healthy bone marrow as well as for the characterization of bone marrow alterations or lesions; e.g., DWI has been used in particular for the differentiation of benign and malignant vertebral compression fractures. In this review article, firstly a short introduction to diffusion-weighted and dynamic contrast-enhanced MRI is given. Non-quantitative and quantitative approaches for the analysis of DWI and semiquantitative and quantitative approaches for the analysis of DCE-MRI are introduced. Afterwards a detailed overview of the results of both techniques in healthy bone marrow and their applications for the diagnosis of various bone-marrow pathologies, like osteoporosis, bone tumors, and vertebral compression fractures are described.

  4. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    Purpose: To demonstrate simultaneous hyperpolarization and imaging of three 13C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t-butanol) and correspondingly variable chemical shifts and physiological characteristic...

  5. Phonological Substitution Errors in L2 ASL Sentence Processing by Hearing M2L2 Learners

    Science.gov (United States)

    Williams, Joshua; Newman, Sharlene

    2016-01-01

    In the present study we aimed to investigate phonological substitution errors made by hearing second language (M2L2) learners of American Sign Language (ASL) during a sentence translation task. Learners saw sentences in ASL that were signed by either a native signer or a M2L2 learner. Learners were to simply translate the sentence from ASL to…

  6. Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Kimura, Hirohiko; Matsuda, Tsuyoshi; Fujiwara, Yasuhiro; Isozaki, Makoto; Kikuta, Ken-Ichiro; Okazawa, Hidehiko

    2016-01-01

    Arterial transit time (ATT) is most crucial for measuring absolute cerebral blood flow (CBF) by arterial spin labeling (ASL), a noninvasive magnetic resonance (MR) perfusion assessment technique, in patients with chronic occlusive cerebrovascular disease. We validated ASL-CBF and ASL-ATT maps calculated by pulsed continuous ASL (pCASL) with multiple post-label delay acquisitions in patients with occlusive cerebrovascular disease. Fifteen patients underwent MR scans, including pCASL, and positron emission tomography (PET) scans with 15O-water to obtain PET-CBF. MR acquisitions with different post-label delays (1.0, 1.5, 2.0, 2.5 and 3.0 sec) were also obtained for ATT correction. The theoretical framework of 2-compartmental model (2CM) was also used for the delay compensation. ASL-CBF and ASL-ATT were calculated based on the proposed 2CM, and the effect on the CBF values and the ATT correction characteristics were discussed. Linear regression analyses were performed both on pixel-by-pixel and region-of-interest bases in the middle cerebral artery (MCA) territory. There were significant correlations between ASL-CBF and PET-CBF both for voxel values (r = 0.74 ± 0.08, slope: 0.87 ± 0.22, intercept: 6.1 ± 4.9) and for the MCA territorial comparison in both affected (R2 = 0.67, y = 0.83x + 6.3) and contralateral sides (R2 = 0.66, y = 0.74x + 6.3). ASL-ATTs in the affected side were significantly longer than those in the contralateral side (1.51 ± 0.41 sec and 1.12 ± 0.30 sec, respectively, p <0.0005). CBF measurement using pCASL with delay compensation was feasible and fairly accurate even in altered hemodynamic states.

  7. Evaluation of tumor blood flow after feeder embolization in meningiomas by arterial spin-labeling perfusion magnetic resonance imaging.

    Science.gov (United States)

    Kawaji, Hiroshi; Koizumi, Shinichiro; Sakai, Naoto; Yamasaki, Tomohiro; Hiramatsu, Hisaya; Kanoko, Yusuke; Kamiya, Mika; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi; Namba, Hiroki

    2013-10-01

    Preoperative embolization changes the amount of blood flow and pattern of flow distribution in meningioma. Tumor blood flow was investigated in eight meningioma patients before and after embolization using arterial spin-labeling (ASL) perfusion imaging. Although blood flow was significantly reduced in the whole tumor after embolization, changes in flow distribution patterns varied from one case to another. The findings suggest that evaluation of post-embolization tumor blood flow by ASL perfusion imaging would be useful in the surgical planning of meningioma.

  8. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term-born neon......Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...

  9. Automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, Marcel; Spreeuwers, Luuk; Quist, Marcel

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the

  10. Improving perfusion quantification in arterial spin labeling for delayed arrival times by using optimized acquisition schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kramme, Johanna [Fraunhofer MEVIS-Institute for Medical Image Computing, Bremen (Germany); Univ. Bremen (Germany). Faculty of Physics and Electronics; Gregori, Johannes [mediri GmbH, Heidelberg (Germany); Diehl, Volker [Fraunhofer MEVIS-Institute for Medical Image Computing, Bremen (Germany); ZEMODI (Zentrum fuer morderne Diagnostik), Bremen (Germany); Madai, Vince I.; Sobesky, Jan [Charite-Universitaetsmedizin Berlin (Germany). Center for Stroke Research Berlin (CSB); Charite-Universitaetsmedizin Berlin (Germany). Dept. of Neurology; Samson-Himmelstjerna, Frederico C. von [Fraunhofer MEVIS-Institute for Medical Image Computing, Bremen (Germany); Charite-Universitaetsmedizin Berlin (Germany). Center for Stroke Research Berlin (CSB); Charite-Universitaetsmedizin Berlin (Germany). Dept. of Neurology; Lentschig, Markus [ZEMODI (Zentrum fuer morderne Diagnostik), Bremen (Germany); Guenther, Matthias [Fraunhofer MEVIS-Institute for Medical Image Computing, Bremen (Germany); Univ. Bremen (Germany). Faculty of Physics and Electronics; mediri GmbH, Heidelberg (Germany)

    2015-07-01

    The improvement in Arterial Spin Labeling (ASL) perfusion quantification, especially for delayed bolus arrival times (BAT), with an acquisition redistribution scheme mitigating the T1 decay of the label in multi-TI ASL measurements is investigated. A multi inflow time (TI) 3D-GRASE sequence is presented which adapts the distribution of acquisitions accordingly, by keeping the scan time constant. The MR sequence increases the number of averages at long TIs and decreases their number at short TIs and thus compensating the T1 decay of the label. The improvement of perfusion quantification is evaluated in simulations as well as in-vivo in healthy volunteers and patients with prolonged BATs due to age or steno-occlusive disease. The improvement in perfusion quantification depends on BAT. At healthy BATs the differences are small, but become larger for longer BATs typically found in certain diseases. The relative error of perfusion is improved up to 30% at BATs > 1500 ms in comparison to the standard acquisition scheme. This adapted acquisition scheme improves the perfusion measurement in comparison to standard multi-TI ASL implementations. It provides relevant benefit in clinical conditions that cause prolonged BATs and is therefore of high clinical relevance for neuroimaging of steno-occlusive diseases.

  11. Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect.

    Directory of Open Access Journals (Sweden)

    Garth Coombs

    Full Text Available BACKGROUND: Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect. It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1 amygdala over-activity and 2 reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. METHODS: Here we used resting-state arterial spin labeling (ASL and blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF and functional connectivity (correlated fluctuations in the BOLD signal of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA, and subsyndromal anxiety levels in 38 healthy subjects. RESULTS: BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. CONCLUSIONS: These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.

  12. Magnetic resonance imaging of luxury perfusion of the optic nerve head in anterior ischemic optic neuropathy.

    Science.gov (United States)

    Yovel, Oren S; Katz, Miriam; Leiba, Hana

    2012-09-01

    A 49-year-old woman with painless reduction in visual acuity in her left eye was found to have nonarteritic anterior ischemic optic neuropathy (NAION). Fluorescein angiography revealed optic disc capillary leakage consistent with "luxury perfusion." Contrast-enhanced FLAIR magnetic resonance imaging (MRI) showed marked enhancement of the left optic disc. Resolution of the optic disc edema and the MRI abnormalities followed a similar time course. This report appears unique in documenting the MRI findings of luxury perfusion in NAION.

  13. 'And' or 'or': General use coordination in ASL

    Directory of Open Access Journals (Sweden)

    Kathryn Davidson

    2013-08-01

    Full Text Available In American Sign Language (ASL, conjunction (‘and’ and disjunction (‘or’ are often conveyed by the same general use coordinator (transcribed as “COORD”. So the sequence of signs MARY WANT TEA COORD COFFEE can be interpreted as ‘Mary wants tea or coffee’ or ‘Mary wants tea and coffee’ depending on contextual, prosodic, or other lexical cues. This paper takes the first steps in describing the syntax and semantics of two general use coordinators in ASL, finding that they have a similar syntactic distribution to English coordinators and and or. Semantically, arguments are made against an ambiguity approach to account for the conjunctive and disjunctive readings; instead, I propose a Hamblin-style alternative semantics where the disjunctive and conjunctive force comes from external quantification over a set of alternatives. The pragmatic consequences of using only a prosodic distinction between disjunction from conjunction is examined via a felicity judgement study of scalar implicatures. Results indicate decreased scalar implicatures when COORD is used as disjunction, supporting the semantic analysis and suggesting that the contrast of lexical items in the scale plays an important role in its pragmatics. Extensions to other languages with potential general use coordination are discussed. http://dx.doi.org/10.3765/sp.6.4 BibTeX info

  14. State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications.

    Science.gov (United States)

    Viallon, Magalie; Cuvinciuc, Victor; Delattre, Benedicte; Merlini, Laura; Barnaure-Nachbar, Isabelle; Toso-Patel, Seema; Becker, Minerva; Lovblad, Karl-Olof; Haller, Sven

    2015-05-01

    This article reviews the most relevant state-of-the-art magnetic resonance (MR) techniques, which are clinically available to investigate brain diseases. MR acquisition techniques addressed include notably diffusion imaging (diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI)) as well as perfusion imaging (dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast enhanced (DCE)). The underlying models used to process these images are described, as well as the theoretic underpinnings of quantitative diffusion and perfusion MR imaging-based methods. The technical requirements and how they may help to understand, classify, or follow-up neurological pathologies are briefly summarized. Techniques, principles, advantages but also intrinsic limitations, typical artifacts, and alternative solutions developed to overcome them are discussed. In this article, we also review routinely available three-dimensional (3D) techniques in neuro MRI, including state-of-the-art and emerging angiography sequences, and briefly introduce more recently proposed 3D quantitative neuro-anatomy sequences, and new technology, such as multi-slice and multi-transmit imaging.

  15. State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Viallon, Magalie [Universite de Lyon, CREATIS, UMR CNRS 5220 - INSERM U1044, INSA de Lyon, Lyon (France); Universite de Lyon-Saint-Etienne, Department of Radiology, Centre Hospitalier Universitaire de Saint-Etienne, Saint Etienne (France); Cuvinciuc, Victor; Barnaure-Nachbar, Isabelle; Lovblad, Karl-Olof; Haller, Sven [University Hospital of Geneva, Department of Neuroradiology, Geneva (Switzerland); Delattre, Benedicte; Toso-Patel, Seema; Becker, Minerva [University Hospital of Geneva, Department of Radiology, Geneva (Switzerland); Merlini, Laura [University Hospital of Geneva, Department of Pediatric Radiology, Geneva (Switzerland)

    2015-05-01

    This article reviews the most relevant state-of-the-art magnetic resonance (MR) techniques, which are clinically available to investigate brain diseases. MR acquisition techniques addressed include notably diffusion imaging (diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI)) as well as perfusion imaging (dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast enhanced (DCE)). The underlying models used to process these images are described, as well as the theoretic underpinnings of quantitative diffusion and perfusion MR imaging-based methods. The technical requirements and how they may help to understand, classify, or follow-up neurological pathologies are briefly summarized. Techniques, principles, advantages but also intrinsic limitations, typical artifacts, and alternative solutions developed to overcome them are discussed. In this article, we also review routinely available three-dimensional (3D) techniques in neuro MRI, including state-of-the-art and emerging angiography sequences, and briefly introduce more recently proposed 3D quantitative neuro-anatomy sequences, and new technology, such as multi-slice and multi-transmit imaging. (orig.)

  16. Utility of susceptibility-weighted imaging and arterial spin perfusion imaging in pediatric brain arteriovenous shunting

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Seyed Ali; Edgar, J.C.; Vossough, Arastoo [University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)

    2014-10-15

    The objectives of the study are to investigate the application of susceptibility-weighted imaging (SWI) and arterial spin labeling (ASL) imaging in the assessment of shunting and the draining veins in pediatric patients with arteriovenous shunting and compare the utility of SWI and ASL with conventional MR and digital subtraction angiography (DSA). This study is a retrospective study of 19 pediatric patients with arteriovenous shunting on brain MRI who were also evaluated with DSA. We assessed the ability of conventional MRI sequences, susceptibility magnitude images, phase-filtered SWI images, and pulsed ASL images in the detection of arteriovenous (AV) shunting, number of draining veins and drainage pathways in comparison to DSA. The mean number of detected draining veins on DSA (3.63) was significantly higher compared to SWI phase-filtered image (mean = 2.72), susceptibility magnitude image (mean = 2.92), ASL (mean = 1.76) and conventional MRI (2.47) (p < 0.05). Pairwise comparison of DSA difference scores (i.e., difference between MR modalities in the number of missed draining veins) revealed no difference between the MR modalities (p > 0.05). ASL was the only method that correctly identified superficial and deep venous drainage in all patients. Regarding detection of shunting, ASL, SWI phase-filtered, and magnitude images demonstrated shunting in 100, 83, and 84 % of patients, respectively. SWI depicts a higher number of draining vein compared to conventional MR pulse sequences. ASL is a sensitive approach in showing 100 % sensitivity in the detection of AV shunting and in the diagnosis of the pattern of venous drainage. The present findings suggest the added utility of both SWI and ASL in the assessment of AV shunting. (orig.)

  17. Prenatal MRI diagnosis of twin reverse arterial perfusion syndrome:a report of 4 cases and review of literature%双胎反向动脉灌注序列征的 MRI 产前诊断(附4例报告及文献复习)

    Institute of Scientific and Technical Information of China (English)

    庞颖; 夏黎明; 杨小红

    2014-01-01

    Objective:To investigate the characteristics and diagnostic value of MRI for twin reverse arterial perfusion (TRAP)syndrome.Methods:A retrospective study was performed in 83 pregnant women with various fetal malformations. Single-shot fast spin-echo T2-weighted sequences (SSFSE),thick-slab heavy T2 WI with SSFSE and three-dimensional fast imaging employing steady state acquisition were performed.Among the 83 cases,TRAP were confirmed in 4 cases by autop-sy after induced abortion and follow-up records.The MRI images,clinical data and pregnancy outcomes were all analyzed, and MRI characteristics of the TRAP were summarized.Results:4 cases with TRAP were initially diagnosed during 12~31 weeks'gestation.Each acardiac recipient twin of the 4 cases had none or abnormal heart,with various severe malformations. One of 4 cases was born prematurely at 28 weeks and 5 days'gestation and the twins both died.Induced labor was performed in 2 cases.The acardiac recipient twin in one case was detected as stillbirth by ultrasound examination at 24 week'gestation and this case was delivered at 37 weeks'gestation with the pump twin delivered alive.Conclusion:MRI as a complementary method of ultrasound has great applicative value for TRAP syndrome in early diagnosis,prognosis assessment,decisions of optimal treatment and selection of deliver time.%目的:探讨双胎反向动脉灌注序列征(TRAP)的 MRI表现及其诊断价值。方法:回顾性分析本院83例不同的胎儿畸形的 MRI资料,MRI扫描均采集单次激发快速自旋回波序列(SSFSE)、厚层重T2加权成像 SSFSE 序列、三维稳态进动快速成像(3D-FIESTA)序列,其中胎儿引产尸检及随访证实其中的TRAP有4例。分析其 MRI图像、临床资料及妊娠结局,总结TRAP的 MRI影像学特征。结果:4例TRAP 初次确诊的孕周为12~31周。4例TRAP 中每例无心胎儿均缺乏或无正常的心脏,且伴发各种不同的严重畸形。4例TRAP中1

  18. Quantitative Cerebral Blood Flow Measurements Using MRI

    OpenAIRE

    Muir, Eric R; Watts, Lora Talley; Tiwari, Yash Vardhan; Bresnen, Andrew; Timothy Q Duong

    2014-01-01

    Magnetic resonance imaging utilized as a quantitative and noninvasive method to image cerebral blood flow. The two most common techniques used to detect cerebral blood flow are dynamic susceptibility contrast (DSC) perfusion MRI and arterial spin labeling perfusion MRI. Herein we describe the use of these two techniques to measure cerebral blood flow in rodents, including methods, analysis, and important considerations when utilizing these techniques.

  19. Perfusion harmonic imaging of the human brain

    Science.gov (United States)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  20. Associations between muscle perfusion and symptoms in knee osteoarthritis

    DEFF Research Database (Denmark)

    Bandak, E; Boesen, M; Bliddal, H

    2015-01-01

    OBJECTIVE: To investigate the association between muscle perfusion in the peri-articular knee muscles assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and symptoms in patients with knee osteoarthritis (KOA). DESIGN: In a cross-sectional setting, muscle perfusion was quan......OBJECTIVE: To investigate the association between muscle perfusion in the peri-articular knee muscles assessed by dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and symptoms in patients with knee osteoarthritis (KOA). DESIGN: In a cross-sectional setting, muscle perfusion......-MRI and clinical data were analyzed in 94 patients. The typical participant was a woman with a mean age of 65 years, and a body mass index (BMI) of 32 kg/m(2). Reduced multiple regression models analyzing the association between KOOS and DCE-MRI perfusion variables of Total Muscle Volume showed a statistically...... a relatively rapid decline (washout pattern) relative to the total number of voxels within the muscle VOI. CONCLUSIONS: More widespread perfusion in the peri-articular knee muscles was associated with less pain in patients with KOA. These results give rise to investigations of the effects of exercise on muscle...

  1. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    V/Q scan; Ventilation/perfusion scan; Lung ventilation/perfusion scan ... A pulmonary ventilation/perfusion scan is actually two tests. They may be done separately or together. During the perfusion scan, a health care provider injects ...

  2. Whole-brain perfusion imaging with balanced steady-state free precession arterial spin labeling.

    Science.gov (United States)

    Han, Paul Kyu; Ye, Jong Chul; Kim, Eung Yeop; Choi, Seung Hong; Park, Sung-Hong

    2016-03-01

    Recently, balanced steady-state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal-to-noise ratio (SNR). However, the main limitation of bSSFP-ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP-ASL are proposed for distortion-free, high-resolution, whole-brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo-continuous ASL (pCASL) with three-dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole-brain perfusion imaging for pCASL-bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL-bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP-based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Perfusion CT in childhood stroke—Initial observations and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Zebedin, D., E-mail: doris.zebedin@medunigraz.at [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria); Sorantin, E.; Riccabona, M. [Division of Pediatric Radiology, Department of Radiology, University Hospital LKH Graz (Austria)

    2013-07-15

    Introduction: To report the preliminary results of contrast-enhanced perfusion multi-detector CT for diagnoses of perfusion disturbances in children with clinical suspicion of stroke. Patients and methods: Within the last two years emergency perfusion CT was performed in ten children (age: 8–17 years, male:female = 3:7) for assessment of suspected childhood stroke. These intracranial perfusion CT, intracranial CT-digital subtraction angiography (CT-DSA) and extracranial CT-angiography (CTA) studies were retrospectively reviewed and compared with MRI, follow-up CT, catheter angiography and final clinical diagnosis. The total dose length product (DLP) for the entire examination was recorded. The image quality of perfusion CT-maps, CT-DSA and CTA were evaluated with a subjective three-point scale ranging from very good to non-diagnostic image quality rating perfusion disturbance, intracranial peripheral vessel depiction, and motion- or streak artifacts. Results: In nine of ten children perfusion CT showed no false positive or false negative results. In one of ten children suffering from migraine focal hypo-perfusion was read as perfusion impairment potentially indicating early stroke, but MRI and MRA follow-up were negative. Overall, perfusion-CT with CT-DSA was rated very good in 80% of cases for the detection of perfusion disturbances and vessel anatomy. Conclusions: In comparison to standard CT, contrast-enhanced perfusion CT improves CTs’ diagnostic capability in the emergency examination of children with a strong suspicion of ischemic cerebral infarction.

  4. Application of multi modal magnetic resonance perfusion technique in acute ischemic stroke pateints with blood perfusion in the diagnosis%多模式磁共振灌注技术在急性缺血性脑梗死患者脑血流灌注状态诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    郝敬波; 鹿彩銮; 时宏娟; 杨荣礼; 徐凯; 董瑞国

    2015-01-01

    Objective To analyze the cerebral blood flow perfusion status diagnosis in ischemic stroke patients by three-dimension arterial spin labeling imaging ( 3D-ASL ) and dynamic susceptibility contrast enhanced perfusion(DSC-PWI ).Methods Routine MRI with DWI, MRA,3D-ASL and DSC-PWI scan were performed in 22 patients with ischemic stroke.Observation of patients with cerebral infarction 3DA-SL and DSC-PWI perfusion image processing and score ( showed hyperperfusion is denoted by +1, no vision recorded as 0, hypoperfusion denoted as-1) , and a comparative analysis of the differences between ASL -CBF and PWI in measurement of CBF,CBV, MTT andTmax.Results 22patientsofASLperfusionabnormalin19cases(86.3%),PWI-CBF,PWI-CBV,andPWI-Tmax PWI-MTT abnormal respectively for 14 patients (63.6%), 12 patients (54.5%), 14 patients (63.6%) and 16 patients (72.7%).The MC nemar test results showed that ASL and PWI-CBF, PWI-CBV parameters in patients showed perfusion differences had statistical significance (P=0.025, 0.008, respectively).Remove display cases of hypererfusion, ASL-CBF and PWI parameters P were 0.125 ,0.031, 0.125, 0.250, where differences in CBF, MTT and Tmax no statistical significance ( P<0.05) .Con clusion As a noninvasive technique, ASL can basically in clinical application is reliable to reflect the hypoperfusion in patients with ischemic cerebral infarction.%目的:分析磁共振三维动脉自旋标记成像(3D-ASL )与动态磁敏感对比增强灌注成像(DSC-PWI)在急性缺血性脑梗死患者脑血流灌注状态诊断中的应用。方法22例缺血性脑梗死患者行常规MRI序列、DWI、MRA、3D-ASL及DSC-PWI检查。观察脑梗死患者的3D-ASL、DSC-PWI灌注后处理图像并进行评分(显示有高灌注记为+1,未见明显灌注异常记为0,低灌注记为-1),并比较分析ASL-CBF 与PWI测量的CBF、CBV、MTT及Tmax之间的差异。结果22例中ASL显示灌注异常者有19例(86.3

  5. Evaluation of stenosis degree of the middle cerebral artery with high-resolution MRI and brian blood supply with MR perfusion weighted imaging%高分辨率MRI评价大脑中动脉狭窄程度与灌注加权成像评估脑供血的研究

    Institute of Scientific and Technical Information of China (English)

    崔恒; 程敬亮; 张勇

    2012-01-01

    Objective To study the value of high-resolution MRI(HRMRI) and MR perfusion weighted imaging(PWI) in evaluating the middle cerebral artery (MCA) stenosis degree and the brian blood supply. Methods PWI was performed in 30 patients with unilateral stenosis of MCA was diagnosed by HRMRI. The cerebral perfusion parameters including regional cerebral blood volume (rCBV) .regional cerebral blood flow(rCBF) .regional mean transit time(rMTT) and regional time to peak(rTTP) of the both cerebral hemispheres were quantitatively analysed. Results Among 30 patients, the MCA stenosis diagnosed by HRMRI as mild in 7, moderate in 9 and severe or acclusion in 14,respectively. Abnormal perfusion presented in all cases. The perfusion parameters (rCBF, rMTT and rTTP) had statistical significance. Between the rate of MCA moderate stenosis, severe stenosis or occlusion and the increase rate of rMTT showed a positive correlation(r=0. 897 and 0. 829 respectively,P<0. 01). Conclusion There is significantly value in evaluation of the MCA stenosis degree by HRMRI, which in combination with PWI to assess brain blood supply is of important value for clinic.%目的 探讨高分辨率MRI(high-resolution MRI,HRMRI)判定大脑中动脉(middle cerebral artery,MCA)狭窄程度与脑MRI灌注加权成像(perfusion weighted imaging,PWI)评价脑供血的价值.方法 对30例短暂性脑缺血(TIA)患者行HRMRI以判定单侧MCA狭窄程度,并行MRI PWI检查,得出患侧和镜像侧灌注参数,包括相对脑血容量(relative cerebral blood volume,rCBV)、相对脑血流量(relative cerebral blood flow,rBCF)、相对平均通过时间(relative mean transit time,rMTT)、相对达峰时间(relative time to peak,rTTP),并对其进行定量分析.结果 30例患者中,HRMRI判定MCA轻度狭窄7例,中度狭窄9例,重度狭窄或闭塞14例;30例灌注均出现异常,rCBF、rMTT、rTTP灌注参数均具有统计学意义,其中MCA中度、重度狭窄或闭塞组狭窄率与r

  6. Serial investigation of perfusion disturbances and vasogenic oedema in hypertensive encephalopathy by diffusion and perfusion weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sundgren, P.C.; Holtaas, S. [Department of Diagnostic Radiology, University Hospital of Lund (Sweden); Edvardsson, B. [Department of Neurology, University Hospital of Lund (Sweden)

    2002-04-01

    Serial MRI including diffusion and perfusion imaging was performed in a patient with hypertensive encephalopathy. At admission, the patient was disorientated and presented with seizures and cortical blindness. Perfusion imaging showed a marked reduction in blood volume and flow, with corresponding vasogenic oedema in the occipital, posterior temporal, and, to a lesser extent, frontal lobes. The clinical symptoms disappeared rapidly following treatment, whereas the disturbed circulation pattern and vasogenic oedema resolved more slowly. A complete normalisation was seen after 1 year. (orig.)

  7. Perfusion-weighted MR imaging in persistent hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Mourand, Isabelle; Menjot de Champfleur, Nicolas; Carra-Dalliere, Clarisse; Le Bars, Emmanuelle; Bonafe, Alain; Thouvenot, Eric [Hopital Gui de Chauliac, Service de Neuroradiologie, Montpellier (France); Roubertie, Agathe [Hopital Gui de Chauliac, Service de Neuropediatrie, Montpellier (France)

    2012-03-15

    Hemiplegic migraine is a rare type of migraine that has an aura characterized by the presence of motor weakness, which may occasionally last up to several days, and then resolve without sequela. Pathogenesis of migraine remains unclear and, recently, perfusion-weighted imaging (PWI) has provided a non-invasive method to study hemodynamic changes during acute attacks. Two female patients were admitted in our hospital suffering from prolonged hemiparesis. In both cases, they underwent MRI examination using a 1.5 T magnet including axial diffusion-weighted and perfusion sequences. From each perfusion MRI acquisition two regions of interest were delineated on each hemisphere and, the index of flow, cerebral blood volume, mean transit time, and time to peak were recorded and asymmetry indices from each perfusion parameter were calculated. Perfusion alterations were detected during the attacks. In one case, we observed, after 3 h of left hemiparesia, hypoperfusion of the right hemisphere. In the other case, who presented a familial hemiplegic migraine attack, on the third day of a persistent aura consisting of right hemiplegia and aphasia, PWI revealed hyperperfusion of the left hemisphere. Asymmetry indices for temporal parameters (mean transit time and time to peak) were the most sensitive. These findings resolved spontaneously after the attacks without any permanent sequel or signs of cerebral ischemia on follow-up MRI. PWI should be indicated for patients with migraine attacks accompanied by auras to assess the sequential changes in cerebral perfusion and to better understand its pathogenesis. (orig.)

  8. Perfusion CT in acute stroke; Stellenwert der CT-Perfusion fuer die Therapie des Schlaganfalls

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Bernd [Asklepios Klinik Altona (Germany). Radiologie und Neuroradiologie; Roether, Joachim [Asklepios Klinik Altona (Germany). Neurologische Abt.; Fiehler, Jens [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Neuroradiologische Diagnostik und Intervention; Thomalla, Goetz [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Neurologie, Kopf- und Neurozentrum

    2015-06-15

    Modern multislice CT scanners enable multimodal protocols including non-enhanced CT, CT angiography, and CT perfusion. A 64-slice CT scanner provides 4-cm coverage. To cover the whole brain, a 128 - 256-slice scanner is needed. The use of perfusion CT requires an optimized scan protocol in order to reduce exposure to radiation. As compared to non-enhanced CT and CT angiography, the use of CT perfusion increases detection rates of cerebral ischemia, especially small cortical ischemic lesions, while the detection of lacunar and infratentorial stroke lesions remains limited. Perfusion CT enables estimation of collateral flow in acute occlusion of large intra- or extracranial arteries. Currently, no established reliable thresholds are available for determining infarct core and penumbral tissue by CT perfusion. Moreover, perfusion parameters depend on the processing algorithms and the software used for calculation. However, a number of studies point towards a reduction of cerebral blood volume (CBV) below 2 ml/100 g as a critical threshold that identifies infarct core. Large CBV lesions are associated with poor outcome even in the context of recanalization. The extent of early ischemic signs on non-enhanced CT remains the main parameter from CT imaging to guide acute reperfusion treatment. Nevertheless, perfusion CT increases diagnostic and therapeutic certainty in the acute setting. Similar to stroke MRI, perfusion CT enables the identification of tissue at risk of infarction by the mismatch between infarct core and the larger area of critical hypoperfusion. Further insights into the validity of perfusion parameters are expected from ongoing trials of mechanical thrombectomy in stroke.

  9. First experiences with contrast-enhanced first-pass MR perfusion imaging in patients with primary, benign cardiac masses and tumour-like lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mohrs, Oliver K. [Darmstadt Radiology, Department of Cardiovascular Imaging at Alice-Hospital, Darmstadt (Germany); German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany); Voigtlaender, Thomas [Cardiovascular Center Bethanien (CCB), Frankfurt/Main (Germany); Petersen, Steffen E. [John Radcliffe Hospital, University of Oxford, OCMR, Oxford (United Kingdom); Zander, Matthias [Darmstadt Center of Cardiology, Darmstadt (Germany); Schulze, Thomas [Siemens Medical Solutions, Frankfurt/Main (Germany); Pottmeyer, Anselm [Darmstadt Radiology, Department of Cardiovascular Imaging at Alice-Hospital, Darmstadt (Germany); Kauczor, Hans-Ulrich [German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany)

    2008-08-15

    The aim of this study was to evaluate the diagnostic value of contrast-enhanced first-pass perfusion MRI in patients with suspected cardiac masses and tumour-like lesions. Twenty patients underwent contrast-enhanced first-pass saturation-recovery steady-state-free-precession perfusion MRI in addition to clinical MRI. Eleven diagnostic parameters were analysed blinded in consensus by three observers: localisation (paracardiac/mural/intracavitary), malignancy (benign/malignant) and first-pass enhancement pattern (homogeneous/heterogeneous as well as non-perfused/hypoperfused/iso-perfused/ hyperperfused). The results were compared to combined references comprising histology, cytology, medical and surgical reports, echocardiography, chest X-ray, coronary angiography and regular MRI. Also, we analysed if additional first-pass perfusion confirmed, changed or reduced the number of differential diagnoses compared to clinical MRI. All cardiac masses or tumour-like lesions were correctly localised and scored as benign lesions. For homogeneous perfused lesions the sensitivity, specificity, positive and negative predictive value was 94/100/100/67%, 100/94/67/100% for heterogeneous perfused lesions, 92/100/100/88% for non-perfused, 100/94/75/100 for hypoperfused, 100/100/100/100% for hyperperfused and for isoperfused lesions. In 17/2/1 cases perfusion MRI confirmed, reduced or increased the number of potential differentials. First-pass perfusion MRI provides valuable information in patients with benign cardiac masses or tumour-like lesions. Further experience is needed to underline these preliminary observations. (orig.)

  10. Evaluation of Cervical Cancer Microcirculation with Duantitative Parameters and Perfusion parameters of MRI Quantitative Dynamic Contrast Enhanced Imaging%定量MRI动态增强成像定量参数和灌注参数在宫颈癌微循环评价的价值

    Institute of Scientific and Technical Information of China (English)

    孙俊旗; 吴光耀; 单菲菲; 杨昊; 王科

    2016-01-01

    Objective To evaluate cervical microcirculation with quantitative parameters and perfusion parameters of quantita -tive dynamic contrast-enhanced MRI imaging .Methods Routine MRI sequences and quantitative dynamic contrast -enhanced MRI imaging were made in 30 cases of cervical cancer ,20 cases of uterine fibroids group ,22 cases of normal cervical group .MRI image is processed using third-party software to obtain quantitative parameters ( Ktrans、Ve、Vp) and perfusion parameters ( BV、BF、MTT) .Be-tween groups and within the group of statistical analysis were performed ,ROC curve was drawn ,the threshold value and the diagnostic efficacy were determined .Results Ktrans ,Kep ,BF and BV values of quantitative dynamic contrast -enhanced MRI imaging were statis-tical difference between cervical cancer ,uterine fibroids group,normal cervical group( P<0.05).Ktrans and Kep values were significantly statistical difference between cervical cancer group and uterine fibroids group ( P<0.01).Ktrans,Kep,BF and BV values were statistical difference between cervical cancer group and normal cervical group ( P<0.05).Vp value was statistical different between normal cer-vical and uterine fibroids group ( P<0.05).No significant difference in Ve and MTT between and within group .ROC curve showed that Ktrans value was the maximum under ROC curve and its threshold value was the highest diagnostic efficacy .Conclusion Quanti-tative dynamic contrast -enhanced of MRI imaging can be quantitative diagnosis and differential diagnosis of benign and malignant le -sions of the cervix ,and show the tumor microcirculation and perfusion information .%目的:探讨MRI定量动态增强成像的定量参数及灌注参数评价宫颈癌微循环变化的价值。方法30例宫颈癌组、20例子宫肌瘤组、22例正常宫颈组进行MRI常规序列及定量动态增强成像序列成像,通过第三方软件后处理得到定量参数(Ktrans、Kep、Ve)和灌注参数(BV、BF、MTT

  11. Calibrated MRI to evaluate cerebral hemodynamics in patients with an internal carotid artery occlusion

    NARCIS (Netherlands)

    De Vis, Jill B.; Petersen, Esben T.; Bhogal, Alex; Hartkamp, Nolan S.; Klijn, Catharina J. M.; Kappelle, L. J.; Hendrikse, J.

    2015-01-01

    The purpose of this study was to assess whether calibrated magnetic resonance imaging (MRI) can identify regional variances in cerebral hemodynamics caused by vascular disease. For this, arterial spin labeling (ASL)/blood oxygen level-dependent (BOLD) MRI was performed in 11 patients (65 +/- 7 years

  12. Non-contrast-enhanced preoperative assessment of lung perfusion in patients with non-small-cell lung cancer using Fourier decomposition magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregor, E-mail: gregor.sommer@usb.ch [Department of Radiology (E010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg (Germany); Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); Bauman, Grzegorz, E-mail: gbauman@wisc.edu [Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg (Germany); Department of Medical Physics in Radiology (E020), German Cancer Research Center (DKFZ), Heidelberg (Germany); Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, 53705 WI (United States); Koenigkam-Santos, Marcel, E-mail: marcelk46@yahoo.com.br [Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg (Germany); Department of Radiology, University Hospital of the School of Medicine of Ribeirao Preto – University of Sao Paulo, Ribeirao Preto (Brazil); Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik Heidelberg gGmbH, Amalienstr. 5, 69126 Heidelberg (Germany); Draenkow, Christopher, E-mail: c.draenkow@thoraxklinik-heidelberg.de [Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg (Germany); Department of Surgery, Thoraxklinik Heidelberg gGmbH, Amalienstr. 5, 69126 Heidelberg (Germany); Heussel, Claus Peter, E-mail: heussel@uni-heidelberg.de [Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research, Heidelberg (Germany); Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik Heidelberg gGmbH, Amalienstr. 5, 69126 Heidelberg (Germany); and others

    2013-12-01

    Objective: To investigate non-contrast-enhanced Fourier decomposition MRI (FD MRI) for assessment of regional lung perfusion in patients with Non-Small-Cell Lung Cancer (NSCLC) in comparison to dynamic contrast-enhanced MRI (DCE MRI). Methods: Time-resolved non-contrast-enhanced images of the lungs were acquired prospectively in 15 patients using a 2D balanced steady-state free precession (b-SSFP) sequence. After non-rigid registration of the native image data, perfusion-weighted images were calculated by separating periodic changes of lung proton density at the cardiac frequency using FD. DCE MRI subtraction datasets were acquired as standard of reference. Both datasets were analyzed visually for perfusion defects. Then segmentation analyses were performed to describe perfusion of pulmonary lobes semi-quantitatively as percentages of total lung perfusion. Overall FD MRI perfusion signal was compared to velocity-encoded flow measurements in the pulmonary trunk as an additional fully quantitative reference. Results: Image quality ratings of FD MRI were significantly inferior to those of DCE MRI (P < 0.0001). Sensitivity, specificity, and accuracy of FD MRI for visual detection of perfusion defects were 84%, 92%, and 91%. Semi-quantitative evaluation of lobar perfusion provided high agreement between FD MRI and DCE MRI for both entire lungs and upper lobes, but less agreement in the lower parts of both lungs. FD perfusion signal showed high linear correlation with pulmonary arterial blood flow. Conclusion: FD MRI is a promising technique that allows for assessing regional lung perfusion in NSCLC patients without contrast media or ionizing radiation. However, for being applied in clinical routine, image quality and robustness of the technique need to be further improved.

  13. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Markus [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Ramachandra, Ashok [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Rowe, Garrett W.; Costello, Philip [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Henzler, Thomas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-12-15

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  14. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yue, E-mail: yuecao@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Wang Hesheng [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Johnson, Timothy D. [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Pan, Charlie [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Hussain, Hero [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  15. Academic Achievement of Deaf and Hard-of-Hearing Students in an ASL/English Bilingual Program

    Science.gov (United States)

    Hrastinski, Iva; Wilbur, Ronnie B.

    2016-01-01

    There has been a scarcity of studies exploring the influence of students' American Sign Language (ASL) proficiency on their academic achievement in ASL/English bilingual programs. The aim of this study was to determine the effects of ASL proficiency on reading comprehension skills and academic achievement of 85 deaf or hard-of-hearing signing…

  16. The efficacy of ASL/ENGLISH bilingual education: considering public schools.

    Science.gov (United States)

    DeLana, Melissa; Gentry, Mary Anne; Andrews, Jean

    2007-01-01

    The study investigated the efficacy and viability of American Sign Language (ASL)/English bilingual education for public schools serving deaf and hard of hearing children. Prior research related to ASL/English bilingual education is reviewed. Quantitative data related to the reading comprehension achievement of 25 deaf and hard of hearing students that were collected for the study are analyzed. The subjects' school program is described in depth. Overall performance of the sample is discussed. A description of high and low gainers is included. A statistically significant correlation between years of ASL usage and reading achievement is identified. Implications for the implementation of ASL/English bilingual methodology are reviewed, and suggestions for future research are offered.

  17. 基于动态增强磁共振测定大鼠股骨近端骨髓血流灌注功能及稳定性%Perfusion function of rat proximal femur bone marrow and its stability determined using dynamic contrast-enhanced MRI

    Institute of Scientific and Technical Information of China (English)

    张亚峰; 程琼; 祝勇; 刘璠

    2011-01-01

    背景:随着磁共振成像线圈的改进和新对比剂的使用,利用动态增强磁共振测定大鼠骨髓血流灌注功能已成为可能.目的:建立基于动态增强磁共振测定大鼠股骨近端骨髓血流灌注功能的方法,并观察其稳定性.方法:Wistar大鼠尾静脉注射对比剂,基于动态增强磁共振,利用1.5T全身磁共振系统采集股骨近端骨髓的时间-信号强度数据.1周后重复测量1次.通过时间-信号强度曲线计算最大增强率和增强系数.结果与结论:前后两次测量的最大增强率分别为(140.42±17.17)%和(136.57±13.87)%,增强系数分别为(3.81±0.17)%/s和(3.71±0.20)%/s,两次检测的最大增强率和增强系数差异无显著性意义.说明基于动态增强磁共振的大鼠股骨近端骨髓血流灌注功能测定方法稳定可靠.%BACKGROUND: Due to improvement of MRI surface coil and new-type contrasts, it is possible to use dynamiccontrast-enhanced MRI to measure bone marrow blood perfusion function in rats.OBJECTIVE: To explore the methodology using dynamic contrast -enhanced MRI to measure the perfusion function of ratproximal femur bone marrow and explore its reliability.METHODS: Contrast agents were injected from tail vein into Wistar rats. Dynamic contrast -enhanced MRI was measured using1.5T whole body MRI scanner. One week later, the measurement was repeated. Then, time-signal intensity curve was explored.Maximum enhancement (ME) and enhancement slope (ES) were calculated.RESULTS AND CONCLUSION: ME of test 1 and test 2 were (140.42±17.17)% and (136.57±13.87)%, respectively. ES of test 1and test 2 were (3.81±0.17)%/s and (3.71±0.20)%/sec, respectively. There was no statistically significant difference in ME andES between the two tests. The methodology explored in this study which used dynamic contrast enhanced MRI to measure theperfusion function of rat proximal femur bone marrow were reliable and repeatable.

  18. Chest MRI

    Science.gov (United States)

    Nuclear magnetic resonance - chest; Magnetic resonance imaging - chest; NMR - chest; MRI of the thorax; Thoracic MRI ... healthy enough to filter the contrast. During the MRI, the person who operates the machine will watch ...

  19. MRI of the lung

    Energy Technology Data Exchange (ETDEWEB)

    Kauczor, Hans-Ulrich (ed.) [University Clinic Heidelberg (Germany). Diagnostic and Interventional Radiology

    2009-07-01

    For a long time, only chest X-ray and CT were used to image lung structure, while nuclear medicine was employed to assess lung function. During the past decade significant developments have been achieved in the field of magnetic resonance imaging (MRI), enabling MRI to enter the clinical arena of chest imaging. Standard protocols can now be implemented on up-to-date scanners, allowing MRI to be used as a first-line imaging modality for various lung diseases, including cystic fibrosis, pulmonary hypertension and even lung cancer. The diagnostic benefits stem from the ability of MRI to visualize changes in lung structure while simultaneously imaging different aspects of lung function, such as perfusion, respiratory motion, ventilation and gas exchange. On this basis, novel quantitative surrogates for lung function can be obtained. This book provides a comprehensive overview of how to use MRI for imaging of lung disease. Special emphasis is placed on benign diseases requiring regular monitoring, given that it is patients with these diseases who derive the greatest benefit from the avoidance of ionizing radiation. (orig.)

  20. Abdominal perfusion computed tomography.

    Science.gov (United States)

    Ogul, Hayri; Bayraktutan, Ummugulsum; Kizrak, Yesim; Pirimoglu, Berhan; Yuceler, Zeynep; Sagsoz, M Erdem; Yilmaz, Omer; Aydinli, Bulent; Ozturk, Gurkan; Kantarci, Mecit

    2013-02-01

    The purpose of this article is to provide an up to date review on the spectrum of applications of perfusion computed tomography (CT) in the abdomen. New imaging techniques have been developed with the objective of obtaining a structural and functional analysis of different organs. Recently, perfusion CT has aroused the interest of many researchers who are studying the applicability of imaging modalities in the evaluation of abdominal organs and diseases. Per-fusion CT enables fast, non-invasive imaging of the tumor vascular physiology. Moreover, it can act as an in vivo biomarker of tumor-related angiogenesis.

  1. MRI and low back pain

    Science.gov (United States)

    Backache - MRI; Low back pain - MRI; Lumbar pain - MRI; Back strain - MRI; Lumbar radiculopathy - MRI; Herniated intervertebral disk - MRI; Prolapsed intervertebral disk - MRI; Slipped disk - MRI; Ruptured ...

  2. Perfusion Linearity and Its Applications

    CERN Document Server

    Pianykh, Oleg

    2010-01-01

    Perfusion analysis computes blood flow parameters (blood volume, blood flow, mean transit time) from the observed flow of contrast agent, passing through the patient's vascular system. Perfusion deconvolution has been widely accepted as the principal numerical tool for perfusion analysis, and is used routinely in clinical applications. This extensive use of perfusion in clinical decision-making makes numerical stability and robustness of perfusion computations vital for accurate diagnostics and patient safety. The main goal of this paper is to propose a novel approach for validating numerical properties of perfusion algorithms. The approach is based on Perfusion Linearity Property (PLP), which we find in perfusion deconvolution, as well as in many other perfusion techniques. PLP allows one to study perfusion values as weighted averages of the original imaging data. This, in turn, uncovers hidden problems with the existing deconvolution techniques, and may be used to suggest more reliable computational approac...

  3. Staging of moyamoya disease by perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, Yasuo [Kyushu Univ., Fukuoka (Japan). Hospital; Matsushima, Toshio; Fukui, Masashi

    2001-04-01

    Staging of moyamoya disease, based on angiography and PET have already been established. The authors have established staging of moyamoya disease based on perfusion SPECT, that can be summarized as follows: Stage I, no abnormality is seen at rest or after acetazolamide loading; Stage II, no abnormality is seen at rest, however, a decreased response (blood flow increase rate: <15%) is seen to acetazolamide loading (a, a decreased response is seen only in the frontal lobe; b, a decreased response is seen in regions other than the frontal lobe; and c, a decreased response is seen throughout the cerebrum); Stage III, localized decrease in blood flow (blood flow decrease compared with peripheral tissue: {>=}15%) and marked decrease in response to acetazolamide (blood flow increase rate: <5%) are seen at rest. In Stage III, CT and MRI show no abnormal findings or only mild lesions of the white matter; and Stage IV, multiple decreases in blood flow are seen at rest, and CT and MRI reveal infarctions and severe atrophy at the same sites. The above staging does not require determination of cerebral blood flow, and thus it can be used in children, in whom cerebral blood flow determination is difficult. The authors performed 99m-Tc ECD perfusion SPECT in 25 patients with moyamoya disease for the staging, and compared staging based on angiography with staging based on perfusion SPECT. The results did not show a correlation between the 2 staging methods. A problem inherent in the staging of moyamoya disease based on perfusion SPECT is that the relationship between cerebral blood flow and cerebral radioactivity concentrations may differ depending on the drug used to determine cerebral blood flow. Thus, although the present staging system does not depend on any specific radioactive drug to determine cerebral blood flow, further investigation is necessary to identify a more appropriate drug than those in current use. (K.H.)

  4. Prognostic indices for cerebral venous thrombosis on CT perfusion: A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Rakesh Kumar, E-mail: rakrakgupta@gmail.com [Department of Radiodiagnosis and Imaging, MMIMSR, Mullana, Ambala (India); Bapuraj, J.R., E-mail: jrajiv@med.umich.edu [Department of Radiology, Division of Neuroradiology, University Hospital, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, MI 48109 (United States); Khandelwal, N. [Department of Radiodiagnosis and Imaging, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh (India); Khurana, Dheeraj [Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh (India)

    2014-01-15

    Purpose: We determined the prognostic significance of CT perfusion characteristics of patients with cerebral venous sinus thrombosis (CVST) and assessed the change in perfusion parameters following anticoagulation therapy. Materials and methods: 20 patients with CVST diagnosed on non-contrast computed tomography (NCCT), magnetic resonance imaging (MRI), and magnetic resonance venography (MRV) were included in this study. The initial CT perfusion study was performed at the time of admission. The following perfusion parameters: relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) were calculated in the core and periphery of the affected area of the brain. Follow-up CT perfusion studies were performed at 1 month following anticoagulation therapy and the perfusion parameters thus obtained were compared with pre-treatment results. Receiver operating characteristic (ROC) curve analysis was performed to determine the prognostic significance of perfusion parameters. Results: All patients in this study showed areas of hypoperfusion on CT perfusion. To determine the favorable clinical outcome on basis of perfusion parameters, ROC curve analysis was performed which showed that the optimal threshold for rCBF > 60.5%, rCBV > 75.5%, and rMTT < 148.5% correlated with better clinical outcomes. Post treatment perfusion parameters showed significant correlation in core of the lesion (p < 0.05) than in the periphery. Conclusion: CT perfusion studies in CVST are a good prognostic tool and yield valuable information regarding clinical outcome.

  5. Childhood moyamoya disease: hemodynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Robertson, R.L. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Barnes, P.D. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Vajapeyam, S. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Burrows, P.E. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Treves, S.T. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Scott, R.M. l [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States)

    1997-09-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2{sup *} weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs.

  6. Assessment of the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level in patients with emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Zaporozhan, Julia [Department of Radiology, Johannes Gutenberg University, Mainz (Germany) and Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany)]. E-mail: juliazapo@web.de; Ley, Sebastian [Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany); Department of Pediatric Radiology, Ruprecht-Karls-University, Heidelberg (Germany); Eberhardt, Ralf [Department of Pulmology, Thoraxklinik, Heidelberg (Germany); Weinheimer, Oliver [Department of Radiology, Johannes Gutenberg University, Mainz (Germany); Fink, Christian [Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany); Department of Clinical Radiology, University Hospital of Munich (Germany); Puderbach, Michael [Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany); Eichinger, Monika [Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany); Herth, Felix [Department of Pulmology, Thoraxklinik, Heidelberg (Germany); Kauczor, Hans-Ulrich [Department of Radiology (E 010), German Cancer Research Center, Heidelberg (Germany)

    2007-07-15

    Purpose: To assess the relationship between lung parenchymal destruction and impaired pulmonary perfusion on a lobar level using CT and MRI in patients with emphysema. Material and methods: Forty-five patients with severe emphysema (GOLD III and IV) underwent inspiratory 3D-HRCT and contrast-enhanced MR-perfusion (1.5T; 3.5 mm x 1.9 mm x 4 mm). 3D-HRCT data was analyzed using a software for detection and visualization of emphysema. Emphysema was categorized in four clusters with different volumes and presented as overlay on the CT. CT and lung perfusion were visually analyzed for three lobes on each side using a four-point-score to grade the abnormalities on CT (1: predominantly small emphysema-clusters to 4: >75% large emphysema-clusters) and MRI (1: normal perfusion to 4: no perfusion). Results: A total of 270 lobes were evaluated. At CT, the score was 1 for 9 lobes, 2 for 43, 3 for 77, and 4 for 141 lobes. At MRI, the score was 1 for 13 lobes, 2 for 45, 3 for 92, and 4 for 120 lobes. Matching of lung parenchymal destruction and reduced perfusion was found in 213 lobes (weighted kappa = 0.8). The score was higher on CT in 44, and higher on MRI in 13 lobes. Conclusion: 3D-HRCT and 3D MR-perfusion show a high lobar agreement between parenchymal destruction and reduction of perfusion in patients with severe emphysema.

  7. Pediatric hemiplegic migraine: susceptibility weighted and MR perfusion imaging abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Deniz; Agarwal, Ajay [Children' s Hospital of Michigan, Department of Radiology, Detroit, MI (United States); Ascadi, Gyula; Luat, Aimee; Tapos, Daniela [Children' s Hospital of Michigan, Department of Neurology, Detroit, MI (United States)

    2010-12-15

    We report on an 11-year-old girl suffering from a typical attack of hemiplegic migraine with characteristic abnormalities in perfusion MR and susceptibility-weighted MR imaging findings. The imaging abnormalities were resolved 48 h after the attack. Susceptibility-weighted MR imaging findings correlated well with the MR perfusion, thus it can be used along with conventional MRI for evaluation of children with complex migraine attacks. Susceptibility-weighted MR imaging might have a diagnostic role in assessing the vascular events in hemiplegic migraine. (orig.)

  8. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    Science.gov (United States)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  9. Non-invasive perfusion imaging by modified STAR using asymmetric inversion slabs (ASTAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tokunori [Toshiba Nasu Works, Otawara, Tochigi (Japan)

    2000-12-01

    Arterial spin labeling (ASL) such as STAR, EPISTAR, and FAIR have been used as imaging techniques of tissue perfusion and blood vessels (in MRA). We have developed 'ASTAR', a modified version of STAR by using asymmetric inversion slabs. ASTAR solves the problems of suppression of venous inflow and subtraction error of stationary tissue signal caused by the imbalance of signal variations. The signal variations are dependent on MT effects. In order to avoid overlapping the control slab to the tissue (including large veins), the control and tag slabs are arranged asymmetrically to preserve the same offset of modulation frequency. We evaluated both the subtraction error caused by the MT effects, and the imperfection of an IR slab using a stationary phantom. We then measured the vessel signal on the brain of a volunteer, using the above methods. Two indexes were used for the evaluation: ASL signal to control signal ratio (ASLR [%]=100*deltaS/S{sub cont}) and ASL signal to noise ratio (ASLNR=delatS/Noise) where deltaS=|S{sub cont}-S{sub tag}|. Phantom study: each ASLR and ASLNR between ASTAR and EPISTAR was comparable and showed a decrease in noise signal level. This means that the ASL signal from the stationary tissue with an imbalance in MT effects and the imperfection in inversion slab profiles were cancelled out almost perfectly. When calculating CBF, ASLR for zero perfusion stationary tissue should be below 0.1%. We were able to satisfy this requirement in our ASTAR experiment. ASLR and ASLNR in FAIR were 40% larger than in EPISTAR and ASTAR. Volunteer brain study: compared with each ASL image, the MT effects were cancelled out in EPISTAR and ASTAR. Veins (sagittal sinus etc) disappeared in STAR and ASTAR, but were visible in EPISTAR and FAIR. Perfusion signals were similar in ASTAR and EPISTAR, indicating that both cancellation of MT effects and venous inflow from the opposite side of the tag were suppressed in ASTAR. In conclusion, ASTAR is a practical

  10. Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging.

    Science.gov (United States)

    Jahng, Geon-Ho; Song, Enmin; Zhu, Xiao-Ping; Matson, Gerald B; Weiner, Michael W; Schuff, Norbert

    2005-03-01

    The Committee of Human Research of the University of California San Francisco approved this study, and all volunteers provided written informed consent. The goal of this study was to prospectively determine the global and regional reliability and reproducibility of noninvasive brain perfusion measurements obtained with different pulsed arterial spin-labeling (ASL) magnetic resonance (MR) imaging methods and to determine the extent to which within-subject variability and random noise limit reliability and reproducibility. Thirteen healthy volunteers were examined twice within 2 hours. The pulsed ASL methods compared in this study differ mainly with regard to magnetization transfer and eddy current effects. There were two main results: (a) Pulsed ASL MR imaging consistently had high measurement reliability (intraclass correlation coefficients greater than 0.75) and reproducibility (coefficients of variation less than 8.5%), and (b) random noise rather than within-subject variability limited reliability and reproducibility. It was concluded that low signal-to-noise ratios substantially limit the reliability and reproducibility of perfusion measurements.

  11. Myocardial perfusion imaging with dual energy CT.

    Science.gov (United States)

    Jin, Kwang Nam; De Cecco, Carlo N; Caruso, Damiano; Tesche, Christian; Spandorfer, Adam; Varga-Szemes, Akos; Schoepf, U Joseph

    2016-10-01

    Dual-energy CT (DECT) enables simultaneous use of two different tube voltages, thus different x-ray absorption characteristics are acquired in the same anatomic location with two different X-ray spectra. The various DECT techniques allow material decomposition and mapping of the iodine distribution within the myocardium. Static dual-energy myocardial perfusion imaging (sCTMPI) using pharmacological stress agents demonstrate myocardial ischemia by single snapshot images of myocardial iodine distribution. sCTMPI gives incremental values to coronary artery stenosis detected on coronary CT angiography (CCTA) by showing consequent reversible or fixed myocardial perfusion defects. The comprehensive acquisition of CCTA and sCTMPI offers extensive morphological and functional evaluation of coronary artery disease. Recent studies have revealed that dual-energy sCTMPI shows promising diagnostic accuracy for the detection of hemodynamically significant coronary artery disease compared to single-photon emission computed tomography, invasive coronary angiography, and cardiac MRI. The aim of this review is to present currently available DECT techniques for static myocardial perfusion imaging and recent clinical applications and ongoing investigations.

  12. MRI Scans

    Science.gov (United States)

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from ...

  13. Shoulder MRI

    Science.gov (United States)

    ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  14. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    DEFF Research Database (Denmark)

    Falk, Anna; Fahlström, Markus; Rostrup, Egill;

    2014-01-01

    INTRODUCTION: Perfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging...... that could best discriminate between grade II and III gliomas. METHODS: MRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after...

  15. The Gestures ASL Signers Use Tell Us when They Are Ready to Learn Math

    Science.gov (United States)

    Goldin-Meadow, Susan; Shield, Aaron; Lenzen, Daniel; Herzig, Melissa; Padden, Carol

    2012-01-01

    The manual gestures that hearing children produce when explaining their answers to math problems predict whether they will profit from instruction in those problems. We ask here whether gesture plays a similar role in deaf children, whose primary communication system is in the manual modality. Forty ASL-signing deaf children explained their…

  16. Black Deaf Individuals' Reading Skills: Influence of ASL, Culture, Family Characteristics, Reading Experience, and Education

    Science.gov (United States)

    Myers, Candace; Clark, M. Diane; Musyoka, Millicent M.; Anderson, Melissa L.; Gilbert, Gizelle L.; Agyen, Selina; Hauser, Peter C.

    2010-01-01

    Previous research on the reading abilities of Deaf individuals from various cultural groups suggests that Black Deaf and Hispanic Deaf individuals lag behind their White Deaf peers. The present study compared the reading skills of Black Deaf and White Deaf individuals, investigating the influence of American Sign Language (ASL), culture, family…

  17. Cardiopulmonary fitness correlates with regional cerebral grey matter perfusion and density in men with coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    Full Text Available PURPOSE: Physical activity is associated with positive effects on the brain but there is a paucity of clinical neuroimaging data in patients with coronary artery disease (CAD, a cardiovascular condition associated with grey matter loss. The purpose of this study was to determine which brain regions are impacted by cardiopulmonary fitness and with the change in fitness after 6 months of exercise-based cardiac rehabilitation. METHODS: CAD patients underwent magnetic resonance imaging at baseline, and peak volume of oxygen uptake during exercise testing (VO2Peak was measured at baseline and after 6 months of training. T1-weighted structural images were used to perform grey matter (GM voxel-based morphometry (VBM. Pseudo-continuous arterial spin labeling (pcASL was used to produce cerebral blood flow (CBF images. VBM and CBF data were tested voxel-wise using VO2Peak and age as explanatory variables. RESULTS: In 30 men with CAD (mean age 65±7 years, VBM and CBF identified 7 and 5 respective regions positively associated with baseline VO2Peak. These included the pre- and post-central, paracingulate, caudate, hippocampal regions and converging findings in the putamen. VO2Peak increased by 20% at follow-up in 29 patients (t = 9.6, df = 28, p<0.0001. Baseline CBF in the left post-central gyrus and baseline GM density in the right putamen predicted greater change in VO2Peak. CONCLUSION: Perfusion and GM density were associated with fitness at baseline and with greater fitness gains with exercise. This study identifies new neurobiological correlates of fitness and demonstrates the utility of multi-modal MRI to evaluate the effects of exercise in CAD patients.

  18. Extremity perfusion for sarcoma

    NARCIS (Netherlands)

    Hoekstra, Harald Joan

    2008-01-01

    For more than 50 years, the technique of extremity perfusion has been explored in the limb salvage treatment of local, recurrent, and multifocal sarcomas. The "discovery" of tumor necrosis factor-or. in combination with melphalan was a real breakthrough in the treatment of primarily irresectable ext

  19. CT perfusion imaging in the management of posterior reversible encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Casey, S.O.; McKinney, A.; Teksam, M.; Liu, H.; Truwit, C.L. [Department of Radiology, University of Minnesota Medical School, 420 Delaware Street SE, Box 292, MN 55455, Minneapolis (United States)

    2004-04-01

    A 13-year-old girl with a renal transplant presented with hypertension and seizures. CT and MRI demonstrated typical bilateral parietal, occipital and posterior frontal cortical and subcortical edema, thought to represent posterior reversible encephalopathy syndrome. The cause was presumed to be hypertension. Antihypertensive therapy was started, lowering of the blood pressure in the range of 110-120 mmHg systolic. However, stable xenon (Xe) CT perfusion imaging revealed ischemia within the left parietal occipital region. The antihypertensive was adjusted which increased both the systolic and diastolic blood pressure by 31 mm Hg. The patient was re-imaged with Xe CT and was found to have resolution of the ischemic changes within the left parietal occipital region. In this report, we present a case in which stable Xe CT was used to monitor the degree of cerebral perfusion and guide titration of antihypertensive therapy. Such brain perfusion monitoring may have helped to prevent infarction of our patient. (orig.)

  20. When Is a Pidgin Not a Pidgin? An Alternate Analysis of the ASL-English Contact Situation.

    Science.gov (United States)

    Cokely, Dennis

    1983-01-01

    Recent sociolinguistic research is used to show that the American Sign Language (ASL)-English contact situation does not result in the emergence of a pidgin as supposed. Variation along the ASL-English continuum can be accounted for by interplay of foreigner talk, judgments of proficiency, and learners' attempts to master the target language.…

  1. Academic Achievement of Deaf and Hard-of-Hearing Students in an ASL/English Bilingual Program.

    Science.gov (United States)

    Hrastinski, Iva; Wilbur, Ronnie B

    2016-04-01

    There has been a scarcity of studies exploring the influence of students' American Sign Language (ASL) proficiency on their academic achievement in ASL/English bilingual programs. The aim of this study was to determine the effects of ASL proficiency on reading comprehension skills and academic achievement of 85 deaf or hard-of-hearing signing students. Two subgroups, differing in ASL proficiency, were compared on the Northwest Evaluation Association Measures of Academic Progress and the reading comprehension subtest of the Stanford Achievement Test, 10th edition. Findings suggested that students highly proficient in ASL outperformed their less proficient peers in nationally standardized measures of reading comprehension, English language use, and mathematics. Moreover, a regression model consisting of 5 predictors including variables regarding education, hearing devices, and secondary disabilities as well as ASL proficiency and home language showed that ASL proficiency was the single variable significantly predicting results on all outcome measures. This study calls for a paradigm shift in thinking about deaf education by focusing on characteristics shared among successful deaf signing readers, specifically ASL fluency.

  2. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  3. Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Schalkx, Hanke J.; Bosch, Maurice A.A.J. van den; Veldhuis, Wouter B.; Leeuwen, Maarten S. van [University Medical Center Utrecht, Department of Radiology, PO Box 58800, Utrecht (Netherlands); Stralen, Marijn van; Pluim, Josien P.W. [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Coenegrachts, Kenneth [Department of Radiology, Bruges (Belgium); Kessel, Charlotte S. van; Hillegersberg, Richard van [University Medical Center Utrecht, Department of Surgery, Utrecht (Netherlands); Erpecum, Karel J. van [University Medical Center Utrecht, Department of Gastroenterology, Utrecht (Netherlands); Verkooijen, Helena M. [University Medical Center Utrecht, Clinical epidemiologist, Department of Radiology, Utrecht (Netherlands)

    2014-09-15

    Within-patient comparison of the enhancement patterns of normal liver parenchyma after gadobutrol and gadoxetate disodium, with emphasis on the start of hepatocytic uptake of gadoxetate disodium. Twenty-one patients (12 female, 9 male) without chronic liver disease underwent 1.5-T contrast-enhanced MRI twice, once with an extracellular contrast agent (gadobutrol) and once with a hepatospecific agent (gadoxetate disodium), using a T1-weighted keyhole sequence. Fifteen whole-liver datasets were acquired up to 5 min for both contrast agents and two additional datasets, up to 20 min, for gadoxetate. Signal intensities (SI) of the parenchyma, aorta and portal vein were measured and analysed relative to pre-contrast parenchymal SI. After gadoxetate, in 29 % of the patients the parenchymal SI decreased by ≥5 % after the initial vascular-phase-induced peak, while in the other 71 % the parenchymal SI remained stable or gradually increased until up to 20 min after the initial peak. The hepatocytic gadoxetate uptake started at a mean of 37.8 s (SD 14.7 s) and not later than 76 s after left ventricle enhancement. Parenchymal enhancement due to hepatocytic uptake of gadoxetate can start as early as in the late arterial phase. This may confound the assessment of lesion appearance as compared to extracellular contrast such as gadobutrol. (orig.)

  4. The Analysis of Correlation between DCE-MRI Perfusion Index and MR DWI ADC in Prostate Cancer Patients%DCE-MRI灌注指标与 MR DWI ADC 值在前列腺癌患者中的关系分析

    Institute of Scientific and Technical Information of China (English)

    崔凌; 庄伟雄; 文海忠

    2014-01-01

    Objective To explore the correlation between dynamic contrast-enhanced MRI ( DCE-MRI) and MR DWI ADC of prostate cancer .Methods 53 prostate cancer patients confirmed with pathology underwent DCE-MRI using 3.0 T MR liver acquisition with volume acceleration ( LAVA) and DWI.Signal intensity-time( SI-T) of cancerous and non-cancerous regions in peripheral prostate zone were acquired ,and the time to minimum(Tmax),the whole enhancement degree (Simax) and the max-imum slope(Rmax) were calculated.ADC in DWI was assessed,and the correlation with perfusion indexes in DCE-MRI was ana-lyzed statistically .Results The value of Tmax ,Simax and Rmax in cancerous and non-cancerous regions were statistical signifi-cantly (P<0.05).The ADC value in cancerous and non-cancerous regions were (1.59 ±0.11) ×10 -3 mm2/s and (0.88 ± 0.16) ×10 -3mm2/s,it was statistical significantly (P<0.05).There was positive correlation between Tmax and ADC ,and nega-tive correlation between Rmax and Simax in cancerous regions of prostate cancer .Conclusion Perfusion indexes of DCE-MRI are correlated with ADC in prostate cancer .DCE-MRI combined with DWI might improve the accuracy of detection ,localization and staging of prostate cancer .%目的:探讨DCE-MRI灌注指标与MR DWI ADC值在前列腺癌患者中的相关性。方法选取前列腺癌患者53例,且均经病理组织切片活检确诊,进行DWI检查以及肝脏快速容积采集序列( LAVA)动态增强扫描,从而得到前列腺两侧外周带非癌区和癌区信号强度-时间( SI-T)曲线,并计算得到最快强化率( Rmax )、达峰时间( Tmax )和最大强化程度(SImax)。最终分析得到DCE-MRI灌注指标与MRD WI ADC值之间的相关性。结果在DCE-MRI中,癌灶在早期即有快速和明显的强化,在Tmax、SImax和Rmax等指标上同非癌区相比,差异显著,具有统计学意义(P<0.05)。前列腺非癌区和癌区ADC值分别为(1.59±0.11)×10

  5. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Hansen, Thomas Fritz; Dirks, Christina G; Jensen, Gorm B;

    2004-01-01

    PURPOSE: To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. MATERIALS AND METHODS: Seven patients...... slices, each having 60 sectors, provided an estimation of the severity and extent of the perfusion deficiency. Reperfusion was assessed both by noninvasive criteria and by coronary angiography (CAG). RESULTS: The Ki maps clearly delineated the infarction in all patients. Thrombolytic treatment...... was clearly beneficial in one case, but had no effect in the two other cases. Over the time-course of the study, normal perfusion values were not reestablished following thrombolytic treatment in all cases investigated. CONCLUSION: This study shows that quantitative MRI perfusion values can be obtained from...

  6. Reproducibility of magnetic resonance perfusion imaging.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    Full Text Available Dynamic MR biomarkers (T2*-weighted or susceptibility-based and T1-weighted or relaxivity-enhanced have been applied to assess tumor perfusion and its response to therapies. A significant challenge in the development of reliable biomarkers is a rigorous assessment and optimization of reproducibility. The purpose of this study was to determine the measurement reproducibility of T1-weighted dynamic contrast-enhanced (DCE-MRI and T2*-weighted dynamic susceptibility contrast (DSC-MRI with two contrast agents (CA of different molecular weight (MW: gadopentetate (Gd-DTPA, 0.5 kDa and Gadomelitol (P792, 6.5 kDa. Each contrast agent was tested with eight mice that had subcutaneous MDA-MB-231 breast xenograft tumors. Each mouse was imaged with a combined DSC-DCE protocol three times within one week to achieve measures of reproducibility. DSC-MRI results were evaluated with a contrast to noise ratio (CNR efficiency threshold. There was a clear signal drop (>95% probability threshold in the DSC of normal tissue, while signal changes were minimal or non-existent (<95% probability threshold in tumors. Mean within-subject coefficient of variation (wCV of relative blood volume (rBV in normal tissue was 11.78% for Gd-DTPA and 6.64% for P792. The intra-class correlation coefficient (ICC of rBV in normal tissue was 0.940 for Gd-DTPA and 0.978 for P792. The inter-subject correlation coefficient was 0.092. Calculated K(trans from DCE-MRI showed comparable reproducibility (mean wCV, 5.13% for Gd-DTPA, 8.06% for P792. ICC of K(trans showed high intra-subject reproducibility (ICC = 0.999/0.995 and inter-subject heterogeneity (ICC = 0.774. Histograms of K(trans distributions for three measurements had high degrees of overlap (sum of difference of the normalized histograms <0.01. These results represent homogeneous intra-subject measurement and heterogeneous inter-subject character of biological population, suggesting that perfusion MRI could be an imaging biomarker to

  7. Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic contrast-enhanced magnetic resonance imaging

    DEFF Research Database (Denmark)

    Nielsen, Gitte; Fritz-Hansen, Thomas; Dirks, Christina G;

    2004-01-01

    with acute transmural myocardial infarction were studied using a Turbo-fast low angle shot (FLASH) MRI sequence to monitor the first pass of an extravascular contrast agent (CA), gadolinium diethylene triamine pentaacetic acid (Gd-DTPA). Quantitation of perfusion, expressed as Ki (mL/100 g/minute), in five......PURPOSE: To investigate the diagnostic ability of quantitative magnetic resonance imaging (MRI) heart perfusion in acute heart patients, a fast, multislice dynamic contrast-enhanced MRI sequence was applied to patients with acute myocardial infarction. MATERIALS AND METHODS: Seven patients...

  8. Establishment of a Swine Model for Validation of Perfusion Measurement by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    OpenAIRE

    Anika Sauerbrey; Stefan Hindel; Marc Maaß; Christine Krüger; Andreas Wissmann; Martin Kramer; Benno Nafz; Lutz Lüdemann

    2014-01-01

    The aim of the study was to develop a suitable animal model for validating dynamic contrast-enhanced magnetic resonance imaging perfusion measurements. A total of 8 pigs were investigated by DCE-MRI. Perfusion was determined on the hind leg musculature. An ultrasound flow probe placed around the femoral artery provided flow measurements independent of MRI and served as the standard of reference. Images were acquired on a 1.5 T MRI scanner using a 3D T1-weighted gradient-echo sequence. An arte...

  9. A brief report on MRI investigation of experimental traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Timothy Q.Duong; Lora T.Watts

    2016-01-01

    Traumatic brain injury is a major cause of death and disability. This is a brief report based on a symposium presentation to the2014 Chinese Neurotrauma Association Meeting in San Francisco, USA. It covers the work from our laboratory in applying multimodal MRI to study experimental traumatic brain injury in rats with comparisons made to behavioral tests and histology. MRI protocols include structural, perfusion, manganese-enhanced, diffusion-tensor MRI, and MRI of blood-brain barrier integrity and cerebrovascular reactivity.

  10. Codeswitching techniques: evidence-based instructional practices for the ASL/English bilingual classroom.

    Science.gov (United States)

    Andrews, Jean F; Rusher, Melissa

    2010-01-01

    The authors present a perspective on emerging bilingual deaf students who are exposed to, learning, and developing two languages--American Sign Language (ASL) and English (spoken English, manually coded English, and English reading and writing). The authors suggest that though deaf children may lack proficiency or fluency in either language during early language-learning development, they still engage in codeswitching activities, in which they go back and forth between signing and English to communicate. The authors then provide a second meaning of codeswitching--as a purpose-driven instructional technique in which the teacher strategically changes from ASL to English print for purposes of vocabulary and reading comprehension. The results of four studies are examined that suggest that certain codeswitching strategies support English vocabulary learning and reading comprehension. These instructional strategies are couched in a five-pronged approach to furthering the development of bilingual education for deaf students.

  11. Toward an example-based machine translation from written text to ASL using virtual agent animation

    CERN Document Server

    Boulares, Mehrez

    2012-01-01

    Modern computational linguistic software cannot produce important aspects of sign language translation. Using some researches we deduce that the majority of automatic sign language translation systems ignore many aspects when they generate animation; therefore the interpretation lost the truth information meaning. Our goals are: to translate written text from any language to ASL animation; to model maximum raw information using machine learning and computational techniques; and to produce a more adapted and expressive form to natural looking and understandable ASL animations. Our methods include linguistic annotation of initial text and semantic orientation to generate the facial expression. We use the genetic algorithms coupled to learning/recognized systems to produce the most natural form. To detect emotion we are based on fuzzy logic to produce the degree of interpolation between facial expressions. Roughly, we present a new expressive language Text Adapted Sign Modeling Language TASML that describes all ...

  12. The gestures ASL signers use tell us when they are ready to learn math

    OpenAIRE

    Goldin-Meadow, Susan; Shield, Aaron; Lenzen, Daniel; Herzig, Melissa; Padden, Carol

    2012-01-01

    The manual gestures that hearing children produce when explaining their answers to math problems predict whether they will profit from instruction in those problems. We ask here whether gesture plays a similar role in deaf children, whose primary communication system is in the manual modality. Forty ASL-signing deaf children explained their solutions to math problems and were then given instruction in those problems. Children who produced many gestures conveying different information from the...

  13. Quantitative Measurement of Cerebral Perfusion with Intravoxel Incoherent Motion in Acute Ischemia Stroke: Initial Clinical Experience

    Institute of Scientific and Technical Information of China (English)

    Li-Bao Hu; Nan Hong; Wen-Zhen Zhu

    2015-01-01

    Background:Intravoxel incoherent motion (IVIM) has the potential to provide both diffusion and perfusion information without an exogenous contrast agent,its application for the brain is promising,however,feasibility studies on this are relatively scarce.The aim of this study is to assess the feasibility of IVIM perfusion in patients with acute ischemic stroke (AIS).Methods:Patients with suspected AIS were examined by magnetic resonance imaging within 24 h of symptom onset.Fifteen patients (mean age was 68.7 ± 8.0 years) who underwent arterial spin labeling (ASL) and diffusion-weighted imaging (DWI) were identified as having AIS with ischemic penumbra were enrolled,where ischemic penumbra referred to the mismatch areas of ASL and DWI.Eleven different b-values were applied in the biexponential model.Regions of interest were selected in ischemic penumbras and contralateral normal brain regions.Fast apparent diffusion coefficients (ADCs) and ASL cerebral blood flow (CBF) were measured.The paired t-test was applied to compare ASL CBF,fast ADC,and slow ADC measurements between ischemic penumbras and contralateral normal brain regions.Linear regression and Pearson's correlation were used to evaluate the correlations among quantitative results.Results:The fast ADCs and ASL CBFs of ischemic penumbras were significantly lower than those of the contralateral normal brain regions (1.93 ± 0.78 μm2/ms vs.3.97 ± 2.49 μm2/ms,P =0.007;13.5 ± 4.5 ml· 100 g-1 ·min-1 vs.29.1 ± 12.7 ml·100 g-1 ·min-1,P < 0.001,respectively).No significant difference was observed in slow ADCs between ischemic penumbras and contralateral normal brain regions (0.203 ± 0.090 μm2/ms vs.0.198 ± 0.100 μm2/ms,P =0.451).Compared with contralateral normal brain regions,both CBFs and fast ADCs decreased in ischemic penumbras while slow ADCs remained the same.A significant correlation was detected between fast ADCs and ASL CBFs (r =0.416,P < 0.05).No statistically significant correlation was

  14. Perfusion based cell culture chips

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Emnéus, Jenny; Dufva, Martin

    2010-01-01

    Performing cell culture in miniaturized perfusion chambers gives possibilities to experiment with cells under near in vivo like conditions. In contrast to traditional batch cultures, miniaturized perfusion systems provide precise control of medium composition, long term unattended cultures...... and tissue like structuring of the cultures. However, as this chapter illustrates, many issues remain to be identified regarding perfusion cell culture such as design, material choice and how to use these systems before they will be widespread amongst biomedical researchers....

  15. Simultaneous PET/MR imaging of the brain: feasibility of cerebral blood flow measurements with FAIR-TrueFISP arterial spin labeling MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stegger, Lars [Dept. of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Dept. of Nuclear Medicine and European Inst. for Molecular Imaging, Univ. of Munster, Munster (Germany)], E-mail: stegger@uni-muenster.de; Martirosian, Petros; Schick, Fritz [Dept. of Radiology, Section of Experimental Radiology, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Schwenzer, Nina; Pfannenberg, Christina; Claussen, Claus D. [Dept. of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Bisdas, Sotirios [Dept. of Radiology, Diagnostic and Interventional Neuroradiology, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Kolb, Armin; Pichler, Bernd [Dept. of Preclinical Imaging and Radiopharmacy, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Boss, Andreas [Dept. of Radiology, Diagnostic and Interventional Radiology, Eberhard Karls Univ. Tuebingen, Tuebingen (Germany); Inst. of Diagnostic and Interventional Radiology, Univ. Hospital Zurich, Zurich (Switzerland)

    2012-11-15

    Background Hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) with simultaneous data acquisition promises a comprehensive evaluation of cerebral pathophysiology on a molecular, anatomical, and functional level. Considering the necessary changes to the MR scanner design the feasibility of arterial spin labeling (ASL) is unclear. Purpose To evaluate whether cerebral blood flow imaging with ASL is feasible using a prototype PET/MRI device. Material and Methods ASL imaging of the brain with Flow-sensitive Alternating Inversion Recovery (FAIR) spin preparation and true fast imaging in steady precession (TrueFISP) data readout was performed in eight healthy volunteers sequentially on a prototype PET/MRI and a stand-alone MR scanner with 128 x 128 and 192 x 192 matrix sizes. Cerebral blood flow values for gray matter, signal-to-noise and contrast-to-noise ratios, and relative signal change were compared. Additionally, the feasibility of ASL as part of a clinical hybrid PET/MRI protocol was demonstrated in five patients with intracerebral tumors. Results Blood flow maps showed good delineation of gray and white matter with no discernible artifacts. The mean blood flow values of the eight volunteers on the PET/MR system were 51 {+-} 9 and 51 {+-} 7 mL/100 g/min for the 128 x 128 and 192 x 192 matrices (stand-alone MR, 57 {+-} 2 and 55 {+-} 5, not significant). The value for signal-to-noise (SNR) was significantly higher for the PET/MRI system using the 192 x 192 matrix size (P < 0.01), the relative signal change (dS) was significantly lower for the 192 x 192 matrix size (P = 0.02). ASL imaging as part of a clinical hybrid PET/MRI protocol could successfully be accomplished in all patients in diagnostic image quality. Conclusion ASL brain imaging is feasible with a prototype hybrid PET/MRI scanner, thus adding to the value of this novel imaging technique.

  16. Tumor Vessel Compression Hinders Perfusion of Ultrasonographic Contrast Agents

    Directory of Open Access Journals (Sweden)

    Mirco Galiè

    2005-05-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is an advanced approach to in vivo assessment of tumor vascularity and is being increasingly adopted in clinical oncology. It is based on 1- to 10 μm-sized gas microbubbles, which can cross the capillary beds of the lungs and are effective echo enhancers. It is known that high cell density, high transendothelial fluid exchange, and poorly functioning lymphatic circulation all provoke solid stress, which compresses vessels and drastically reduces tumor blood flow. Given their size, we supposed that the perfusion of microbubbles is affected by anatomic features of tumor vessels more than are contrast agents traditionally used in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI. Here, we compared dynamic information obtained from CEUS and DCE-MRI on two experimental tumor models exhibiting notable differences in vessel anatomy. We found that tumors with small, flattened vessels show a much higher resistance to microbubble perfusion than to MRI contrast agents, and appear scarcely vascularized at CEUS examination, despite vessel volume adequate for normal function. Thus, whereas CEUS alone could induce incorrect diagnosis when tumors have small or collapsed vessels, integrated analysis using CEUS and DCE-MRI allows in vivo identification of tumors with a vascular profile frequently associated with malignant phenotypes.

  17. Aslı Erdoğan'ın Anlatılarında Ontolojik Sorunlar Ontological Problems in Aslı Erdoğan's Narratives

    Directory of Open Access Journals (Sweden)

    Mehmet ÖZGER

    2012-12-01

    Full Text Available The issue of existence in Aslı Erdoğan's narratives will be examined in this article. Aslı Erdoğan is one of the leading female autor in the last term Turkish Literature. Having written sort stories, novelsand essays the autor became famous with her artistic creativity. It canbe talked about two interwoven adventures in Aslı Erdoğan’s Works.The adventures in the outside world are accompanied by the heroes’adventures of an inner worlds. Heroes appear to be almost all alone, nothold, competing with backgrounds and themselves, living in a constantfeeling of emptiness and nothingness, who are looking to a meaningtoward lack and devastation in their lives. In this context, it seems thatexistential concepts and trajectory are in the forefront rather than plotin which speeches and interviews gained density. The circumstancesand details which shape human existence and attitude toward life areemphasized. The main problem of the narrative heroes is the alienationand the other existential problems that we see in narrative areconditions that become visible with other existential alienationproblems. It is seen that heroes are alienated particularly againstthemselves, environment and society. In this respect in the alienation ofnarrative, as a type of alienation themes like individual anomie andaccordingly, solitude, nothingness / space, escape / exile, death andsuicide and so on stand out. This narrative themes are important inrevealing the psychological world of the heroes as well as to reveal thepsychology of the author. Bu yazıda Aslı Erdoğan’ın anlatılarında varoluş sorunsalı incelenecektir. Aslı Erdoğan son dönem Türk edebiyatının önemli kadın yazarlarından biridir. Öykü, roman, deneme türlerinde eserler kaleme alan sanatçı, sanatsal yaratıcılık yeteneğiyle adından söz ettirmeyi başarmıştır. Aslı Erdoğan’ın eserlerinde iç içe geçmiş iki serüvenden bahsedilebilir. Kahramanların dış dünyadaki ser

  18. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis

    DEFF Research Database (Denmark)

    Enzinger, Christian; Barkhof, Frederik; Ciccarelli, Olga;

    2015-01-01

    in the acquisition and analysis of such imaging data, and numerous studies have used these tools to probe tissue alterations associated with MS. Other MRI-based techniques-such as myelin-water imaging, (23)Na imaging, magnetic resonance elastography and magnetic resonance perfusion imaging-might also shed new light...... on disease-associated changes. This Review summarizes the rapid technical progress in the use of MRI in patients with MS, with a focus on nonconventional structural MRI. We critically discuss the present utility of nonconventional MRI in MS, and provide an outlook on future applications, including clinical...

  19. Establishment of a Swine Model for Validation of Perfusion Measurement by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Anika Sauerbrey

    2014-01-01

    Full Text Available The aim of the study was to develop a suitable animal model for validating dynamic contrast-enhanced magnetic resonance imaging perfusion measurements. A total of 8 pigs were investigated by DCE-MRI. Perfusion was determined on the hind leg musculature. An ultrasound flow probe placed around the femoral artery provided flow measurements independent of MRI and served as the standard of reference. Images were acquired on a 1.5 T MRI scanner using a 3D T1-weighted gradient-echo sequence. An arterial catheter for local injection was implanted in the femoral artery. Continuous injection of adenosine for vasodilation resulted in steady blood flow levels up to four times the baseline level. In this way, three different stable perfusion levels were induced and measured. A central venous catheter was used for injection of two different types of contrast media. A low-molecular weight contrast medium and a blood pool contrast medium were used. A total of 6 perfusion measurements were performed with a time interval of about 20–25 min without significant differences in the arterial input functions. In conclusion the accuracy of DCE-MRI-based perfusion measurement can be validated by comparison of the integrated perfusion signal of the hind leg musculature with the blood flow values measured with the ultrasound flow probe around the femoral artery.

  20. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47 mm at a clinical 1.5 T scanner.

    Science.gov (United States)

    Ulmer, Stephan; Reeh, Matthias; Krause, Joerg; Herdegen, Thomas; Heldt-Feindt, Janka; Jansen, Olav; Rohr, Axel

    2008-07-30

    Magnetic resonance (MR) imaging in animal models is usually performed in expensive dedicated small bore animal scanners of limited availability. In the present study a standard clinical 1.5 T MR scanner was used for morphometric and dynamic contrast-enhanced susceptibility-weighted MR imaging (DSC-MRI) of a glioma model of the rat brain. Ten male Wistar rats were examined with coronal T2-weighted, and T1-weighted images (matrix 128 x 128, FOV 64 mm) after implantation of an intracerebral tumor xenografts (C6) using a conventional surface coil. For DSC-MRI a T2*-weighted sequence (TR/TE=30/14 ms, matrix 64 x 64, FOV 90 mm; slice thickness of 1.5mm) was performed. Regions of interest were defined within the tumor and the non-affected contralateral hemisphere and the mean transit time (MTT) was determined. Tumor dimensions in MR predicted well its real size as proven by histology. The MTT of contrast agent passing through the brain was significantly decelerated in the tumor compared to the unaffected hemisphere (pscanners or dedicated custom-made coils.

  1. MRI of the Prostate

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Prostate Magnetic resonance imaging (MRI) of the prostate ... limitations of MRI of the Prostate? What is MRI of the Prostate? Magnetic resonance imaging (MRI) is ...

  2. MRI zoo

    DEFF Research Database (Denmark)

    Laustsen, Christoffer

    The basic idea was to use MRI to produce a sequence of 3D gray scale image slices of various animals, subsequentlyimaged with a clinical CT system. For this purpose, these animals were used: toad, lungfish, python snake and a horseshoe crab. Each animal was sacrificed according to standard....... MRI was done using a Philips Achieva 1.5 T system and CT was performed using a Siemens Somatom system. Axial and sagittal slices were acquired using standard T1w and T2w MRI sequences, and visualization was made using the Mistar software (Apollo Imaging Technology, Melbourne, Australia). Images were...

  3. Toward an example-based machine translation from written text to ASL using virtual agent animation

    Directory of Open Access Journals (Sweden)

    Mehrez Boulares

    2012-01-01

    Full Text Available Modern computational linguistic software cannot produce important aspects of sign language translation. Using some researches we deduce that the majority of automatic sign language translation systems ignore many aspects when they generate animation; therefore the interpretation lost the truth information meaning. This problem is due to sign language consideration as a derivative language, but it is a complete language with its own unique grammar. This grammar is related to semantic-cognitive models of spatially, time, action and facial expression to represent complex information to make sign interpretation more efficiently, smooth, expressive and natural-looking human gestures. All this aspects give us useful insights into the design principles that have evolved in natural communication between people. In this work we are interested in American Sign Language, because it is the simplest and most standardized sign language. Our goals are: to translate written text from any language to ASL animation; to model maximum raw information using machine learning and computational techniques; and to produce a more adapted and expressive form to natural looking and understandable ASL animations. Our methods include linguistic annotation of initial text and semantic orientation to generate the facial expression. We use genetic algorithms coupled to learning/recognized systems to produce the most natural form. To detect emotion we based on fuzzy logic to produce the degree of interpolation between facial expressions. Roughly, we present a new expressive language Text Adapted Sign Modeling Language TASML that describes all maximum aspects related to a good sign language interpretation. This paper is organized as follow: the next section is devoted to present the comprehension effect of using Space/Time/SVO form in ASL animation based on experimentation. In section 3, we describe our technical considerations. We present the general approach we adopted to

  4. Validation of CT brain perfusion methods using a realistic dynamic head phantom

    NARCIS (Netherlands)

    Riordan, A.J.; Prokop, M.; Viergever, M.A.; Dankbaar, J.W.; Smit, E.J.; Jong, H.W. de

    2011-01-01

    PURPOSE: Development and evaluation of a realistic hybrid head phantom for the validation of quantitative CT brain perfusion methods. METHODS: A combination, or hybrid, of CT images of an anthropomorphic head phantom together with clinically acquired MRI brain images was used to construct a dynamic

  5. Pediatric MRI

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIH Study of Normal Brain Development is a longitudinal study using anatomical MRI, diffusion tensor imaging (DTI), and MR spectroscopy (MRS) to map pediatric...

  6. Knee MRI

    Science.gov (United States)

    ... air-conditioned and well-lit. Some scanners have music to help you pass the time. When the ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  7. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    Directory of Open Access Journals (Sweden)

    Xiufeng Li

    2014-01-01

    Full Text Available To facilitate quantification of cerebellum cerebral blood flow (CBF, studies were performed to systematically optimize arterial spin labeling (ASL parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM and white matter (WM, and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  8. Modelling Brain Temperature and Perfusion for Cerebral Cooling

    Science.gov (United States)

    Blowers, Stephen; Valluri, Prashant; Marshall, Ian; Andrews, Peter; Harris, Bridget; Thrippleton, Michael

    2015-11-01

    Brain temperature relies heavily on two aspects: i) blood perfusion and porous heat transport through tissue and ii) blood flow and heat transfer through embedded arterial and venous vasculature. Moreover brain temperature cannot be measured directly unless highly invasive surgical procedures are used. A 3D two-phase fluid-porous model for mapping flow and temperature in brain is presented with arterial and venous vessels extracted from MRI scans. Heat generation through metabolism is also included. The model is robust and reveals flow and temperature maps in unprecedented 3D detail. However, the Karmen-Kozeny parameters of the porous (tissue) phase need to be optimised for expected perfusion profiles. In order to optimise the K-K parameters a reduced order two-phase model is developed where 1D vessels are created with a tree generation algorithm embedded inside a 3D porous domain. Results reveal that blood perfusion is a strong function of the porosity distribution in the tissue. We present a qualitative comparison between the simulated perfusion maps and those obtained clinically. We also present results studying the effect of scalp cooling on core brain temperature and preliminary results agree with those observed clinically.

  9. Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and frontotemporal dementia using structural and advanced MRI

    NARCIS (Netherlands)

    E.E. Bron (Esther); M. Smits (Marion); J.M. Papma (Janne); R.M.E. Steketee (Rebecca); R. Meijboom (Rozanna); M. de Groot (Mirthe); J.C. van Swieten (John); W.J. Niessen (Wiro); S.K. Klein (Stefan)

    2016-01-01

    textabstractObjectives: To investigate the added diagnostic value of arterial spin labelling (ASL) and diffusion tensor imaging (DTI) to structural MRI for computer-aided classification of Alzheimer's disease (AD), frontotemporal dementia (FTD), and controls. Methods: This retrospective study used M

  10. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi [Tohoku Univ., Sendai (Japan). Inst. of Development, Aging and Cancer; Ishii, Kiyoshi; Onuma, Takehide

    1997-05-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  11. Sola ASL in Spectralite strikes the perfect balance between cosmetics and optics

    Science.gov (United States)

    Machol, Steven; Modglin, Luan

    1991-12-01

    The most rapidly growing segment of the ophthalmic lens market is the 'thin and light' segment. A major force for this growth has been the consumer, who wants thinner, lighter and better looking eyewear. In fact, the consumer demand for thin and light lenses increased by over 44% last year. There are essentially three options that allow thinner, lighter and flatter (more cosmetically appealing) lenses. These include: (1) a higher index material (higher than standard CR-39 registered or glass), (2) an aspheric design, or (3) a combination of both. However, current high index materials have certain properties that can affect the optical performance and ease of processing of spectacle lenses. Also, most current aspheric designs benefit only hyperopes, which represent about 30% of the spectacle lens wearers. Sola's ASL aspheric single vision lens in Spectralite combines a patented new high-index material with a specially flattened and aspheric design. This unique combination optimizes the traditional thin, light, and cosmetic benefits of high index while achieving optical performance comparable to CR-39. And, unlike other aspheric lenses, ASL in Spectralite is available in both plus and minus prescriptions, allowing you to meet the needs of more patients than ever before.

  12. Recognition of American Sign Language (ASL) Classifiers in a Planetarium Using a Head-Mounted Display

    Science.gov (United States)

    Hintz, Eric G.; Jones, Michael; Lawler, Jeannette; Bench, Nathan

    2015-01-01

    A traditional accommodation for the deaf or hard-of-hearing in a planetarium show is some type of captioning system or a signer on the floor. Both of these have significant drawbacks given the nature of a planetarium show. Young audience members who are deaf likely don't have the reading skills needed to make a captioning system effective. A signer on the floor requires light which can then splash onto the dome. We have examined the potential of using a Head-Mounted Display (HMD) to provide an American Sign Language (ASL) translation. Our preliminary test used a canned planetarium show with a pre-recorded sound track. Since many astronomical objects don't have official ASL signs, the signer had to use classifiers to describe the different objects. Since these are not official signs, these classifiers provided a way to test to see if students were picking up the information using the HMD.We will present results that demonstrate that the use of HMDs is at least as effective as projecting a signer on the dome. This also showed that the HMD could provide the necessary accommodation for students for whom captioning was ineffective. We will also discuss the current effort to provide a live signer without the light splash effect and our early results on teaching effectiveness with HMDs.This work is partially supported by funding from the National Science Foundation grant IIS-1124548 and the Sorenson Foundation.

  13. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  14. Functional MRI of CO2 induced increase in cerebral perfusion

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B;

    1994-01-01

    The sensitivity of MR gradient echo imaging towards CO2 induced changes in cerebral blood flow was investigated in 10 normal subjects. The subjects were inhaling 5% and 7% CO2 and the experiments were carried out at 1.5 T (n = 6) and 2.0 T (n = 5), allowing a comparison of field strengths...

  15. Functional MRI of CO2 induced increase in cerebral perfusion

    DEFF Research Database (Denmark)

    Rostrup, Egill; Larsson, H B; Toft, P B

    1994-01-01

    . Additional experiments were carried out using a higher spatial resolution. The largest signal increases were noted in areas corresponding to larger vessels, but significant changes were also conspicuous in deeper cortical and central grey matter. The changes appeared linearly related to the arterial CO2...... tension, within the range of PaCO2 studied. In white matter, the changes were not statistically significant....

  16. Magnetic resonance imaging of pulmonary perfusion. Technical requirements and diagnostic impact; MRT der Lungenperfusion. Technische Voraussetzungen und diagnostischer Stellenwert

    Energy Technology Data Exchange (ETDEWEB)

    Attenberger, U.I.; Buesing, K.; Schoenberg, S.O.; Fink, C. [Klinikum Mannheim der Universitaet Heidelberg, Institut fuer Klinische Radiologie und Nuklearmedizin, Universitaetsmedizin Mannheim, Mannheim (Germany); Ingrisch, M.; Reiser, M. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Institut fuer Klinische Radiologie, Campus Grosshadern, Muenchen (Germany)

    2009-08-15

    With technical improvements in gradient hardware and the implementation of innovative k-space sampling techniques, such as parallel imaging, the feasibility of pulmonary perfusion MRI could be demonstrated in several studies. Dynamic contrast-enhanced 3D gradient echo sequences as used for time-resolved MR angiography have been established as the preferred pulse sequences for lung perfusion MRI. With these techniques perfusion of the entire lung can be visualized with a sufficiently high temporal and spatial resolution. In several trials in patients with acute pulmonary embolism, pulmonary hypertension and airway diseases, the clinical benefit and good correlation with perfusion scintigraphy have been demonstrated. The following review article describes the technical prerequisites, current post-processing techniques and the clinical indications for MR pulmonary perfusion imaging using MRI. (orig.) [German] Mit der Verfuegbarkeit leistungsfaehiger Gradientensysteme und schneller k-Raum-Akquisitionstechniken wie der parallelen Bildgebung konnten verschiedene Studien die Machbarkeit der Lungenperfusionsbildgebung in der MRT zeigen. In der Praxis haben sich dynamische kontrastverstaerkte 3D-Gradientenechosequenzen, wie sie fuer zeitaufgeloeste MR-Angiographien verwendet werden, fuer die Bildgebung der Lungenperfusion etabliert. Hiermit ist es moeglich, die Perfusion der gesamten Lunge mit ausreichend hoher zeitlicher und raeumlicher Aufloesung zu visualisieren. In mehren klinischen Studien konnte bei Patienten mit Lungenembolie, pulmonaler Hypertonie sowie Erkrankungen der Atemwege und des Lungenparenchyms der klinische Nutzen der Lungenperfusions-MRT und die gute Uebereinstimmung mit der Lungenperfusionsszintigraphie nachgewiesen werden. Der folgende Uebersichtsartikel beschreibt die technische Durchfuehrung, Bildnachverarbeitung und die klinischen Anwendungsgebiete der MRT zur Untersuchung der Lungenperfusion. (orig.)

  17. Ocular perfusion pressure in glaucoma.

    Science.gov (United States)

    Costa, Vital P; Harris, Alon; Anderson, Douglas; Stodtmeister, Richard; Cremasco, Fernanda; Kergoat, Helene; Lovasik, John; Stalmans, Ingborg; Zeitz, Oliver; Lanzl, Ines; Gugleta, Konstantin; Schmetterer, Leopold

    2014-06-01

    This review article discusses the relationship between ocular perfusion pressure and glaucoma, including its definition, factors that influence its calculation and epidemiological studies investigating the influence of ocular perfusion pressure on the prevalence, incidence and progression of glaucoma. We also list the possible mechanisms behind this association, and discuss whether it is secondary to changes in intraocular pressure, blood pressure or both. Finally, we describe the circadian variation of ocular perfusion pressure and the effects of systemic and topical medications on it. We believe that the balance between IOP and BP, influenced by the autoregulatory capacity of the eye, is part of what determines whether an individual will develop optic nerve damage. However, prospective, longitudinal studies are needed to better define the role of ocular perfusion pressure in the development and progression of glaucoma.

  18. Multi-detector CT perfusion

    Directory of Open Access Journals (Sweden)

    Ashraf M. Enite

    2016-09-01

    Conclusion: CTP is a promising non-invasive technique assessing the efficacy, predicting early response to local treatment therapies and monitoring tumor recurrence. It assesses the degree of post therapy tumor perfusion especially the degree of arterialization.

  19. Portable MRI

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A. [Los Alamos National Laboratory

    2012-06-29

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection, chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.

  20. MRI Artifacts

    Directory of Open Access Journals (Sweden)

    Abed Al Nasser Assi

    2009-12-01

    Full Text Available   "nMagnetic resonance imaging (MRI has become more and more frequently used in medical imaging diagnostic in recent years. Radiologists and technicians working at these systems are relatively often confronted with image artifacts related to the radiowave with strong magnetic in the scanner. Many artifacts may be corrected or modulated through an understanding of their cause. This requires familiarity with scanner design; theory of operation; and image acquisition. The purpose of this review article is to present the most relevant artifacts that arise in MRI scanner, to provide some physical background on the formation of artifacts, and to suggest strategies to reduce or avoid these artifacts. The most frequent artifacts that can occur during MRI scanning are Motion related artifacts; Para-magnetic artifacts; Phase Wrap artifacts; Frequency artifacts; Susceptibility artifacts; Clipping artefact; Chemical Shift artifact and "Zebra" artefact .    "n  

  1. Breast MRI scan

    Science.gov (United States)

    MRI - breast; Magnetic resonance imaging - breast; Breast cancer - MRI; Breast cancer screening - MRI ... radiologist) see some areas more clearly. During the MRI, the person who operates the machine will watch ...

  2. MRI Safety during Pregnancy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z MRI Safety During Pregnancy Magnetic resonance imaging (MRI) Illness ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor ...

  3. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... and Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options ... usually given through an IV in the arm. MRI Research Programs at FDA Magnetic Resonance Imaging (MRI) ...

  4. Teachers' perceptions of promoting sign language phonological awareness in an ASL/English bilingual program.

    Science.gov (United States)

    Crume, Peter K

    2013-10-01

    The National Reading Panel emphasizes that spoken language phonological awareness (PA) developed at home and school can lead to improvements in reading performance in young children. However, research indicates that many deaf children are good readers even though they have limited spoken language PA. Is it possible that some deaf students benefit from teachers who promote sign language PA instead? The purpose of this qualitative study is to examine teachers' beliefs and instructional practices related to sign language PA. A thematic analysis is conducted on 10 participant interviews at an ASL/English bilingual school for the deaf to understand their views and instructional practices. The findings reveal that the participants had strong beliefs in developing students' structural knowledge of signs and used a variety of instructional strategies to build students' knowledge of sign structures in order to promote their language and literacy skills.

  5. Valutazione epidemiologica dello screening mammografico 'Per te donna' nell'ASL della provincia di Varese

    Directory of Open Access Journals (Sweden)

    S. Pisani

    2003-05-01

    Full Text Available

    Nel corso del 2000 è stato avviato, nell’ASL della Provincia di Varese, lo screening mammografico per tutte le donne residenti, di età compresa tra i 50 - 69 anni. In questo lavoro si valuta sinteticamente l’andamento dello screening dal 1° di gennaio 2001 fino al 31 dicembre 2002.
    L’avvio dello screening è stato graduale, iniziando con alcuni comuni della Provincia, fino ad arrivare al coinvolgimento di tutti i 141 comuni.
    La popolazione bersaglio è risultata essere di 109.607 donne. Nel primo anno sono state invitate 35.161 donne, nel secondo 49.709, con un aumento degli inviti pari al 41,4%.

    La popolazione rispondente, nel corso del 2001, è stata di 12.992 donne, nel 2002 di 22.590 donne, con un aumento della risposta pari al 73,9 %.
    L’adesione corretta al programma di screening è passata
    dal 41,2 % nel 2001 al 54,7 % nel 2002 e il tasso di identificazione (Detection Rate dal 4,8 ‰ al 5,3 ‰.

    Sta per iniziare il secondo round del programma di screening. In previsione di questa fase, sulla base dell’esperienza maturata nel primo round, dovranno essere aggiornati le linee guida, il piano di fattibilità e implementato il sistema di controllo di qualità di tutte le componenti del programma (ruolo di gestione e di coordinamento dell’ASL, esecuzione delle prestazioni da parte degli enti erogatori, flussi informativi, comunicazione e formazione di tutto il personale dedicato.

  6. Evaluation of cerebral perfusion imaging with N-isopropyl-p-[{sup 123}I]iodoamphetamine (IMP) in the cases of antiphospholipid syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Toru; Nanbu, Ichiro; Tohyama, Junko; Ohba, Satoru [Nagoya City Univ. (Japan). Faculty of Medicine

    1995-01-01

    Five cases of antiphospholipid syndrome with mild headache, but without any neurological deficits and abnormal findings by CT and MRI, were examined by cerebral blood perfusion SPECT using N-isopropyl-p-[{sup 123}I] iodoamphetamine (IMP). Although three cases were performed quantification of cerebral blood flow with a microsphere method simultaneously, their values were within normal limits. Two of them showed focal low perfusion areas. One case had relatively low perfusion areas in the bilateral occipital lobes and the right temporal lobe, which improved after treatment. One of two had low perfusion in the bilateral occipital lobes. Other three cases only showed ununiformity of radioisotope uptake on the cerebral blood perfusion SPECT. Low perfusion areas in antiphospholipid syndrome might be caused by microarterial thrombosis, microvenous thrombosis or spasms, although they could be reversible. As early irreversible progress of cerebral blood flow, cerebral blood flow SPECT should be performed in cases of antiphospholipid syndrome with neurological complainments. (author).

  7. Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy.

    Science.gov (United States)

    Mizoguchi, Shunta; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Kuwabara, Takayuki; Fujiwara-Igarashi, Aki; Fujita, Michio

    2017-03-01

    OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.

  8. Arterial spin-labeling MR imaging of cerebral hemorrhages

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Tomoyuki [Department of Radiology, National Center for Global Health and Medicine, Tokyo (Japan); Saga University, Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga (Japan); Nishihara, Masashi; Egashira, Yoshiaki; Azama, Shinya; Hirai, Tetsuyoshi; Kitano, Isao; Irie, Hiroyuki [Saga University, Department of Radiology, Faculty of Medicine and Graduate School of Medicine, Saga (Japan); Yakushiji, Yusuke [Saga University, Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Saga (Japan); Kawashima, Masatou [Saga University, Department of Neurosurgery, Faculty of Medicine and Graduate School of Medicine, Saga (Japan)

    2015-11-15

    The purpose of this study is to identify the characteristics of brain perfusion measured by arterial spin-labeling magnetic resonance imaging (ASL-MRI) in cerebral hemorrhages. Brain blood flow values (CBF-ASL values) for cerebral and cerebellar hemispheres and segmented cerebral regions were measured by ASL-MRI in 19 putaminal hemorrhage patients and 20 thalamic hemorrhage patients in acute or subacute stages. We assessed the lateralities of CBF-ASL values and the relationships between CBF-ASL values and other imaging findings and clinical manifestations. Both the 19 putaminal hemorrhage patients and the 20 thalamic hemorrhage patients had significantly low CBF-ASL values of the contralateral cerebellum in subacute stage, suggesting that ASL-MRI might delineate crossed cerebellar diaschisis (CCD). Ipsilateral low CBF-ASL values were observed in frontal lobes and thalami with a putaminal hemorrhage and lentiform nuclei, temporal lobes, and parietal lobes with a thalamic hemorrhage, suggesting that ASL-MRI showed the ipsilateral cerebral diaschisis (ICD). In the putaminal hemorrhage patients, the hematoma volume negatively affected both the bilateral cerebellar and cerebral hemispheric CBF-ASL values. In the thalamic hemorrhage patients, a concomitant intraventricular hemorrhage caused low cerebral hemispheric CBF-ASL values. The use of ASL-MRI is sensitive to the perfusion abnormalities and could thus be helpful to estimate functional abnormalities in cerebral hemorrhage patients. (orig.)

  9. Functional and perfusion magnetic resonance imaging at 3 tesla

    CERN Document Server

    Klarhoefer, M

    2001-01-01

    This thesis deals with the development and optimization of fast magnetic resonance imaging (MRI) methods for non-invasive functional studies of the human brain and perfusion imaging on a 3 Tesla (T) whole body NMR system. The functional MRI (fMRI) experiments performed showed that single-shot multi-echo EPI and spiral imaging techniques provide fast tools to obtain information about T2* distributions during functional activation in the human brain. Both sequences were found to be useful in the separation of different sources contributing to the functional MR signal like inflow or susceptibility effects in the various vascular environments. An fMRI study dealing with the involvement of prefrontal brain regions in movement preparation lead to inconsistent results. It could not be clarified if these were caused by problems during a spatial normalization process of the individual brains or if the functional paradigm, using very short inter-stimulus intervals, was not suited for the problem investigated. Blood flo...

  10. Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeo Eun [Dept. of Radiology, Seoul Medical Center, Seoul (Korea, Republic of); Lim, Joon Seok; Kim, Myeong Jin; Kim, Ki Whang; Choi, Jun Jeong [Yonsei University Health System, Seoul (Korea, Republic of); Kim, Dae Hong [Molecular Imaging and Therapy Branch, National Cancer Center, Goyang (Korea, Republic of); Myoung, Sung Min [Dept. of Medical Information, Jungwon University, Goesan (Korea, Republic of)

    2013-12-15

    To determine whether quantitative perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) correlate with immunohistochemical markers of angiogenesis in rectal cancer. Preoperative DCE-MRI was performed in 63 patients with rectal adenocarcinoma. Transendothelial volume transfer (K{sup trans}) and fractional volume of the extravascular-extracellular space (Ve) were measured by Interactive Data Language software in rectal cancer. After surgery, microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression scores were determined using immunohistochemical staining of rectal cancer specimens. Perfusion parameters (K{sup trans}, Ve) of DCE-MRI in rectal cancer were found to be correlated with MVD and VEGF expression scores by Spearman's rank coefficient analysis. T stage and N stage (negative or positive) were correlated with perfusion parameters and MVD. Significant correlation was not found between any DCE-MRI perfusion parameters and MVD (rs = -0.056 and p 0.662 for K{sup trans}; rs = -0.103 and p = 0.416 for Ve), or between any DCE-MRI perfusion parameters and the VEGF expression score (rs = -0.042, p 0.741 for K{sup trans}; r = 0.086, p = 0.497 for Ve) in rectal cancer. TN stage showed no significant correlation with perfusion parameters or MVD (p > 0.05 for all). DCE-MRI perfusion parameters, K{sup trans} and Ve, correlated poorly with MVD and VEGF expression scores in rectal cancer, suggesting that these parameters do not simply denote static histological vascular properties.

  11. Battlefield MRI

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-01

    Magnetic Resonance Imaging is the best method for non-invasive imaging of soft tissue anatomy, saving countless lives each year. It is regarded as the gold standard for diagnosis of mild to moderate traumatic brain injuries. Furthermore, conventional MRI relies on very high, fixed strength magnetic fields (> 1.5 T) with parts-per-million homogeneity, which requires very large and expensive magnets.

  12. The Development of Antonym Knowledge in American Sign Language (ASL) and Its Relationship to Reading Comprehension in English

    Science.gov (United States)

    Novogrodsky, Rama; Caldwell-Harris, Catherine; Fish, Sarah; Hoffmeister, Robert J.

    2014-01-01

    It is unknown if the developmental path of antonym knowledge in deaf children increases continuously with age and correlates with reading comprehension, as it does in hearing children. In the current study we tested 564 students aged 4-18 on a receptive multiple-choice American Sign Language (ASL) antonym test. A subgroup of 138 students aged 7-18…

  13. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    Energy Technology Data Exchange (ETDEWEB)

    Abd Ellah, Mohamed, E-mail: dr_m_hamdy2006@hotmail.co [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Kremser, Christian, E-mail: christian.kremser@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pallwein, Leo, E-mail: leo.pallwein-prettner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Aigner, Friedrich, E-mail: friedrich.Aigner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Schocke, Michael, E-mail: michael.schocke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Peschel, Reinhard, E-mail: reinhard.peschel@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pedross, Florian, E-mail: florian.pedross@i-med.ac.a [Innsbruck Medical University, Medical Statistics Dept., Anich St. 35, 6020 Innsbruck (Austria); Pinggera, Germar-Michael, E-mail: germar.pinggera@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Wolf, Christian, E-mail: christian.wolf@bkh-reutte.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Alsharkawy, Mostafa A.M., E-mail: drmostafamri@yahoo.co [Assiut University, Radiology Dept., Assiut (Egypt); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Frauscher, Ferdinand, E-mail: ferdinand.frauscher@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria)

    2010-10-15

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  14. Where to Look for American Sign Language (ASL) Sublexical Structure in the Visual World: Reply to Salverda (2016)

    Science.gov (United States)

    Lieberman, Amy M.; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I.

    2016-01-01

    In this reply to Salverda (2016), we address a critique of the claims made in our recent study of real-time processing of American Sign Language (ASL) signs using a novel visual world eye-tracking paradigm (Lieberman, Borovsky, Hatrak, & Mayberry, 2015). Salverda asserts that our data do not support our conclusion that native signers and…

  15. Injury and repair in perinatal brain injury: Insights from non-invasive MR perfusion imaging.

    Science.gov (United States)

    Wintermark, Pia

    2015-03-01

    Injury to the developing brain remains an important complication in critically ill newborns, placing them at risk for future neurodevelopment impairments. Abnormal brain perfusion is often a key mechanism underlying neonatal brain injury. A better understanding of how alternations in brain perfusion can affect normal brain development will permit the development of therapeutic strategies that prevent and/or minimize brain injury and improve the neurodevelopmental outcome of these high-risk newborns. Recently, non-invasive MR perfusion imaging of the brain has been successfully applied to the neonatal brain, which is known to be smaller and have lower brain perfusion compared to older children and adults. This article will present an overview of the potential role of non-invasive perfusion imaging by MRI to study maturation, injury, and repair in perinatal brain injury and demonstrate why this perfusion sequence is an important addition to current neonatal imaging protocols, which already include different sequences to assess the anatomy and metabolism of the neonatal brain.

  16. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    Science.gov (United States)

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  17. Fractal analysis in radiological and nuclear medicine perfusion imaging: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Michallek, Florian; Dewey, Marc [Humboldt-Universitaet zu Berlin, Freie Universitaet Berlin, Charite - Universitaetsmedizin Berlin, Medical School, Department of Radiology, Berlin (Germany)

    2014-01-15

    To provide an overview of recent research in fractal analysis of tissue perfusion imaging, using standard radiological and nuclear medicine imaging techniques including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and to discuss implications for different fields of application. A systematic review of fractal analysis for tissue perfusion imaging was performed by searching the databases MEDLINE (via PubMed), EMBASE (via Ovid) and ISI Web of Science. Thirty-seven eligible studies were identified. Fractal analysis was performed on perfusion imaging of tumours, lung, myocardium, kidney, skeletal muscle and cerebral diseases. Clinically, different aspects of tumour perfusion and cerebral diseases were successfully evaluated including detection and classification. In physiological settings, it was shown that perfusion under different conditions and in various organs can be properly described using fractal analysis. Fractal analysis is a suitable method for quantifying heterogeneity from radiological and nuclear medicine perfusion images under a variety of conditions and in different organs. Further research is required to exploit physiologically proven fractal behaviour in the clinical setting. (orig.)

  18. Dynamic CT myocardial perfusion imaging.

    Science.gov (United States)

    Caruso, Damiano; Eid, Marwen; Schoepf, U Joseph; Jin, Kwang Nam; Varga-Szemes, Akos; Tesche, Christian; Mangold, Stefanie; Spandorfer, Adam; Laghi, Andrea; De Cecco, Carlo N

    2016-10-01

    Non-invasive cardiac imaging has rapidly evolved during the last decade due to advancements in CT based technologies. Coronary CT angiography has been shown to reliably assess coronary anatomy and detect high risk coronary artery disease. However, this technique is limited to anatomical assessment, thus non-invasive techniques for functional assessment of the heart are necessary. CT myocardial perfusion is a new CT based technique that provides functional assessment of the myocardium and allows for a comprehensive assessment of coronary artery disease with a single modality when combined with CTA. This review aims to discuss dynamic CT myocardial perfusion as a new technique in the assessment of CAD.

  19. Quantitative evaluation of muscle perfusion with CEUS and with MR

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Marc-Andre; Delorme, Stefan [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Krix, Martin [German Cancer Research Centre, Department of Radiology, Heidelberg (Germany); Bracco ALTANA Pharma GmbH, Konstanz (Germany)

    2007-10-15

    Functional imaging might increase the role of imaging in muscular diseases, since alterations of muscle morphology alone are not specific for a particular disease. Perfusion, i.e., the blood flow per tissue and time unit including capillary flow, is an important functional parameter. Pathological changes of skeletal muscle perfusion can be found in various clinical conditions, such as degenerative or inflammatory myopathies or peripheral arterial occlusive disease. This article reviews the theoretical basics of functional radiological techniques for assessing skeletal muscle perfusion and focuses on contrast-enhanced ultrasound (CEUS) and magnetic resonance imaging (MRI) techniques. Also, the applications of microvascular imaging, such as in detection of myositis and for discriminating myositis from other myopathies or evaluating peripheral arterial occlusive disease, are presented, and possible clinical indications are discussed. In conclusion, dedicated MR and CEUS methods are now available that visualize and quantify (patho-)physiologic information about microcirculation within skeletal muscles in vivo and hence establish a useful diagnostic tool for muscular diseases. (orig.)

  20. Noninvasive methods of measuring bone blood perfusion

    OpenAIRE

    Dyke, J. P.; Aaron, R.K.

    2010-01-01

    Measurement of bone blood flow and perfusion characteristics in a noninvasive and serial manner would be advantageous in assessing revascularization after trauma and the possible risk of avascular necrosis. Many disease states, including osteoporosis, osteoarthritis, and bone neoplasms, result in disturbed bone perfusion. A causal link between bone perfusion and remodeling has shown its importance in sustained healing and regrowth following injury. Measurement of perfusion and permeability wi...

  1. MRI of the Chest

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Chest Magnetic resonance imaging (MRI) of the chest ... limitations of MRI of the Chest? What is MRI of the Chest? Magnetic resonance imaging (MRI) is ...

  2. Technetium-99m-ECD SPECT in antiphospholipid antibody syndrome: a drastic improvement in brain perfusion by antiplatelet therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tokumaru, Sunao; Yoshikai, Tomonori; Uchino, Akira; Kudo, Sho [Dept. of Radiology, Saga Medical School (Japan); Matsui, Makoto; Kuroda, Yasuo [Dept. of Neurology, Saga Medical School (Japan)

    2001-12-01

    We present a case of antiphospholipid antibody syndrome (APS) with repeated transient ischemic attacks (TIAs). Magnetic resonance imaging showed multiple cerebral infarcts and ischemic changes in the cerebral white matter. Cerebral angiographies showed no abnormalities. Technetium-99m-ethyl cysteinate dimer (Tc-99m-ECD) brain SPECT showed multiple decreased perfusion areas, which were more extensive than the lesions demonstrated on MRI. After treatment with an antiplatelet agent, the patient subsequently recovered from the TIAs. Although no interval changes were observed by MRI after therapy, follow-up Tc-99m-ECD SPECT revealed a marked improvement in brain perfusion. This is the first imaging report of remarkable post-therapy improvement in brain perfusion in APS cases. (orig.)

  3. Local cortical hypoperfusion imaged with CT perfusion during postictal Todd's paresis

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Marlon S.; Binder, Devin K. [University of California, Department of Neurological Surgery, Irvine, CA (United States); Smith, Wade S. [University of California, Department of Neurology, San Francisco, CA (United States); Wintermark, Max; Dillon, William P. [University of California, Department of Radiology, San Francisco, CA (United States)

    2008-05-15

    Postictal ('Todd's') paralysis, or 'epileptic hemiplegia,' is a well-known complication of focal or generalized epileptic seizures. However, it is unclear whether the pathophysiology of Todd's paralysis is related to alterations in cerebral perfusion. We report CT perfusion findings in a patient presenting with postictal aphasia and right hemiparesis. A 62-year-old woman with a history of alcohol abuse, closed head injury and posttraumatic epilepsy, presented with acute onset aphasia and right hemiparesis. A non-contrast head CT scan demonstrated no acute hemorrhage. Left hemispheric ischemia was suspected, and the patient was considered for acute thrombolytic therapy. MRI revealed a subtle increase in signal intensity involving the left medial temporal, hippocampal and parahippocampal regions on both T2-weighted FLAIR and diffusion-weighted sequences. CT angiography and CT perfusion study were performed. The CT perfusion study and CT angiography demonstrated a dramatic reduction in cerebral blood flow and blood volume involving the entire left hemisphere, but with relative symmetry of mean transit time, ruling out a large vessel occlusion. Clinical resolution of the aphasia and hemiparesis occurred within a few hours, and correlated with normalization of perfusion to the left hemisphere (detected by MR perfusion). This unique case is the first in which clinical evidence of Todd's paralysis has been correlated with reversible postictal hemispheric changes on CT and MR perfusion studies. This is important because CT perfusion study is being used more and more in the diagnosis of acute stroke, and one needs to be careful to not misinterpret the data. (orig.)

  4. DIFFERENCES BETWEEN AMERICAN SIGN LANGUAGE (ASL AND BRITISH SIGN LANGUAGE (BSL

    Directory of Open Access Journals (Sweden)

    Zora JACHOVA

    2008-06-01

    Full Text Available In the communication of deaf people between them­selves and hearing people there are three ba­sic as­pects of interaction: gesture, finger signs and writing. The gesture is a conditionally agreed manner of communication with the help of the hands followed by face and body mimic. The ges­ture and the move­ments pre-exist the speech and they had the purpose to mark something, and later to emphasize the speech expression.Stokoe was the first linguist that realised that the signs are not a whole that can not be analysed. He analysed signs in insignificant parts that he called “chemeres”, and many linguists today call them pho­nemes. He created three main phoneme catego­ries: hand position, location and movement.Sign languages as spoken languages have back­ground from the distant past. They developed par­allel with the development of spoken language and undertook many historical changes. Therefore, to­day they do not represent a replacement of the spoken language, but are languages themselves in the real sense of the word.Although the structures of the English language used in USA and in Great Britain is the same, still their sign languages-ASL and BSL are different.

  5. Perfusion MR imaging for differentiation of benign and malignant meningiomas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China); Roediger, Lars A.; Oudkerk, Matthijs [University of Groningen, Department of Radiology, University Medical Center Groningen, Groningen (Netherlands); Shen, Tianzhen [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Miao, Jingtao [Shanghai Jiaotong University, Department of Radiology, First People' s Hospital, Shanghai (China)

    2008-06-15

    Our purpose was to determine whether perfusion MR imaging can be used to differentiate benign and malignant meningiomas on the basis of the differences in perfusion of tumor parenchyma and/or peritumoral edema. A total of 33 patients with preoperative meningiomas (25 benign and 8 malignant) underwent conventional and dynamic susceptibility contrast perfusion MR imaging. Maximal relative cerebral blood volume (rCBV) and the corresponding relative mean time to enhance (rMTE) (relative to the contralateral normal white matter) in both tumor parenchyma and peritumoral edema were measured. The independent samples t-test was used to determine whether there was a statistically significant difference in the mean rCBV and rMTE ratios between benign and malignant meningiomas. The mean maximal rCBV values of benign and malignant meningiomas were 7.16{+-}4.08 (mean{+-}SD) and 5.89{+-}3.86, respectively, in the parenchyma, and 1.05{+-}0.96 and 3.82{+-}1.39, respectively, in the peritumoral edema. The mean rMTE values were 1.16{+-}0.24 and 1.30{+-}0.32, respectively, in the parenchyma, and 0.91{+-}0.25 and 1.24{+-}0.35, respectively, in the peritumoral edema. The differences in rCBV and rMTE values between benign and malignant meningiomas were not statistically significant (P>0.05) in the parenchyma, but both were statistically significant (P<0.05) in the peritumoral edema. Perfusion MR imaging can provide useful information on meningioma vascularity which is not available from conventional MRI. Measurement of maximal rCBV and corresponding rMTE values in the peritumoral edema is useful in the preoperative differentiation between benign and malignant meningiomas. (orig.)

  6. Knee MRI scan

    Science.gov (United States)

    MRI - knee ... radiologist see certain areas more clearly. During the MRI, the person who operates the machine will watch ... less anxious. Your provider may suggest an "open" MRI, in which the machine is not as close ...

  7. MRI of the Chest

    Medline Plus

    Full Text Available ... MRI of the Chest? What is MRI of the Chest? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the chest is performed ...

  8. Decomposing cerebral blood flow MRI into functional and structural components: a non-local approach based on prediction.

    Science.gov (United States)

    Kandel, Benjamin M; Wang, Danny J J; Detre, John A; Gee, James C; Avants, Brian B

    2015-01-15

    We present RIPMMARC (Rotation Invariant Patch-based Multi-Modality Analysis aRChitecture), a flexible and widely applicable method for extracting information unique to a given modality from a multi-modal data set. We use RIPMMARC to improve the interpretation of arterial spin labeling (ASL) perfusion images by removing the component of perfusion that is predicted by the underlying anatomy. Using patch-based, rotation invariant descriptors derived from the anatomical image, we learn a predictive relationship between local neuroanatomical structure and the corresponding perfusion image. This relation allows us to produce an image of perfusion that would be predicted given only the underlying anatomy and a residual image that represents perfusion information that cannot be predicted by anatomical features. Our learned structural features are significantly better at predicting brain perfusion than tissue probability maps, which are the input to standard partial volume correction techniques. Studies in test-retest data show that both the anatomically predicted and residual perfusion signals are highly replicable for a given subject. In a pediatric population, both the raw perfusion and structurally predicted images are tightly linked to age throughout adolescence throughout the brain. Interestingly, the residual perfusion also shows a strong correlation with age in selected regions including the hippocampi (corr = 0.38, p-value <10(-6)), precuneus (corr = -0.44, p < 10(-5)), and combined default mode network regions (corr = -0.45, p < 10(-8)) that is independent of global anatomy-perfusion trends. This finding suggests that there is a regionally heterogeneous pattern of functional specialization that is distinct from that of cortical structural development.

  9. Ftmction expansion of stimulus presentation and data collected of ASL-D6 Eye-tracking%ASL-D6眼动仪刺激呈现与数据收集的功能扩展研究

    Institute of Scientific and Technical Information of China (English)

    何立国; 高秋凤

    2012-01-01

    Eye-tracking is a high-end equipment used in educational and psychological research. Based on ASL-D6 Eye-tracking, the bottleneck of stimulus presentation and data collection is analyzed, and the principle and method using E-Prime software to solve the problem is described.%眼动仪是教育与心理研究中开展眼动实验所常用的一种高端设备。以ASL-D6眼动仪为例,分析了眼动实验在刺激呈现和数据收集中遇到的瓶颈问题,阐述了利用E-Prime实验程序开发软件解决该问题的原理和方法。

  10. Does machine perfusion decrease ischemia reperfusion injury?

    Science.gov (United States)

    Bon, D; Delpech, P-O; Chatauret, N; Hauet, T; Badet, L; Barrou, B

    2014-06-01

    In 1990's, use of machine perfusion for organ preservation has been abandoned because of improvement of preservation solutions, efficient without perfusion, easy to use and cheaper. Since the last 15 years, a renewed interest for machine perfusion emerged based on studies performed on preclinical model and seems to make consensus in case of expanded criteria donors or deceased after cardiac death donations. We present relevant studies highlighted the efficiency of preservation with hypothermic machine perfusion compared to static cold storage. Machines for organ preservation being in constant evolution, we also summarized recent developments included direct oxygenation of the perfusat. Machine perfusion technology also enables organ reconditioning during the last hours of preservation through a short period of perfusion on hypothermia, subnormothermia or normothermia. We present significant or low advantages for machine perfusion against ischemia reperfusion injuries regarding at least one primary parameter: risk of DFG, organ function or graft survival.

  11. Animal MRI Core

    Data.gov (United States)

    Federal Laboratory Consortium — The Animal Magnetic Resonance Imaging (MRI) Core develops and optimizes MRI methods for cardiovascular imaging of mice and rats. The Core provides imaging expertise,...

  12. Computed Tomography Perfusion Usefulness in Early Imaging Diagnosis of Herpes Simplex Virus Encephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Marco de Lucas, E.; Mandly, Gonzalez A.; Gutierrez, A.; Sanchez, E.; Arnaiz, J.; Piedra, T.; Rodriguez, E.; Diez, C. [Hospital Univ. Marques de Valdecilla, Santander (Spain). Depts. of Radiology and Neurology

    2006-10-15

    An early diagnosis is crucial in herpes simplex virus encephalitis patients in order to institute acyclovir therapy and reduce mortality rates. Magnetic resonance imaging (MRI) is considered the gold standard for evaluation of these patients, but is frequently not available in the emergency setting. We report the first case of a computed tomography (CT) perfusion study that helped to establish a prompt diagnosis revealing abnormal increase of blood flow in the affected temporoparietal cortex at an early stage.

  13. Tall gastrodis tuber combined with antiepileptic drugs repairs abnormal perfusion foci in focal epilepsy

    Institute of Scientific and Technical Information of China (English)

    Weimin Wang; Zhenyu Fan; Yongqin Zhang; Yuxia Yang; Yaqing Liu; Xiaoli Dang; Wenjun Song; Yinping Wu; Jiang Ye

    2013-01-01

    One hundred patients with focal epilepsy were recruited for the present study and their seizures controlled with antiepileptic drugs. The patients then orally received a capsule of tall gastrodis tuber powder, a traditional Chinese drug, and underwent single photon emission computed tomography, long-term electroencephalogram, and CT/MRI. Blood drug levels were monitored throughout the study. Before treatment with tall gastrodis tuber, 35 of the 100 cases had abnormal CT/MRI scans; 79 cases had abnormal single photon emission computed tomography images; 86 cases had abnormal electroencephalogram; and a total of 146 abnormal perfusion foci were observed across the 100 subjects. After treatment, the number of patients with normal single photon emission computed tomography images increased by 12; normal electroencephalogram was observed in an additional 27 cases and the number of patients with epileptiform discharge decreased by 29 (34% of 86); the total number of abnormal perfusion foci decreased by 52 (36%) and changes in abnormal foci were visible in 65 patients. These changes indicate that the administration of tall gastrodis tuber in combination with antiepileptic drugs repairs abnormal perfusion foci in patients with focal epilepsy. Our results demonstrate that traditional Chinese drugs can repair abnormal perfusion foci and, as such, are a promising new pathway in the treatment of focal epilepsy.

  14. Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Chau [National Taiwan University, Graduate Institute of Oncology, Taipei (China); National Taiwan University, Graduate Institute of Clinical Medicine, Taipei (China); National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei (China); National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Chen, Ya-Fang; Yang, Shun-Chung; My, Pei-Chi [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); Tseng, Han-Min [National Taiwan University Hospital, Department of Neurology, Taipei (China)

    2015-08-15

    To numerically and experimentally investigate the robustness of intravoxel incoherent motion (IVIM) magnetic resonance imaging in measuring perfusion indexes in the human brain. Eighteen healthy volunteers were imaged on a 3 T clinical system. Data of IVIM imaging (12 b-values ranging from 0 to 1000 s/mm{sup 2}, 12 repetitions) were fitted with a bi-exponential model to extract blood volume fraction (f) and pseudo-diffusion coefficient (D*). The robustness of measurement was assessed by bootstrapping. Dynamic susceptibility contrast (DSC) imaging and arterial spin-labelling (ASL) imaging were performed for cross-modal comparison. Numerical simulations were performed to assess the accuracy and precision of f and D* estimates at varied signal-to-noise ratio (SNR{sub b1000}). Based on our experimental setting (SNR{sub b1000} ∝ 30), the average error/variability is ∝ 5 %/25 % for f and ∝ 100 %/30 % for D* in gray matter, and ∝ 10 %/50 % for f and ∝ 300 %/60 % for D* in white matter. Correlation was found between f and DSC-derived cerebral blood volume in gray matter (r = 0.29 - 0.48 across subjects, p < 10{sup -5}), but not in white matter. No correlation was found between f-D* product and ASL-derived cerebral blood flow. f may provide noninvasive measurement of cerebral blood volume, particularly in gray matter. D* has limited robustness and should be interpreted with caution. (orig.)

  15. Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI

    Science.gov (United States)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2016-10-01

    Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7  ±  1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n  =  9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were  -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and  -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p  =  0.0085) and HA fraction (p  liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.

  16. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does it ... and MRI Breast-feeding and MRI What is MRI and how does it work? Magnetic resonance imaging, ...

  17. Incentivi ai farmaci generici a livello di ASL: l’osservatorio I.H.A.G.O.

    Directory of Open Access Journals (Sweden)

    Silvia Martina

    2002-06-01

    Full Text Available Generic drugs are pharmaceutical products that contain an active substance whose patent-covered period expired and are marketed with the name of the molecule. The public health authorities of most EU countries agree on the importance of generic drugs in rationalising the pharmaceutical market, particularly by favouring reasonable pricing of “mature” products. In contrast with this wide consensus, the market share of generic drugs remains quite poor in Italy, despite recent regulatory incentives for the promotion of their use. The longlasting lack of specific laws - reference-price politics were introduced only in 2001- and the unusually long patent-covered period fixed by the past legislation are among the main reasons for the scarce utilisation of generics in Italy. The awareness of the importance of promoting initiatives conducted on a local (ASL, and not only national (SSN scale conducted to the I.H.A.G.O. project, an observatory on the diffusion of generics in several local health districts. The project analyses the impact, in terms of market share, of local promoting activities (investigated by means of questionnaires conducted during the year 2001 in 11 ASLs (local health districts, deliberately selected among the most active in terms of promotion of the use of generics. The I.H.A.G.O. observation revealed several praiseworthy promotional efforts, particularly of informative and cultural kind, conducted by some of the considered ASLs. Unfortunately, these measures seem not to have had a practical impact on the generics market in the observed districts: the market share increase was superior to the one observed on national scale only in 4 of the considered ASLs, in other 4 it was similar, and in the remaining 3 it resulted even inferior. It appears useful to plan further measures to support the diffusion of generics, maybe by motivating health operators to their prescription with the introduction of “prize/punishment” mechanisms.

  18. Cerebral Blood Flow Measured by Arterial Spin Labeling MRI as a Preclinical Marker of Alzheimer’s Disease

    Science.gov (United States)

    Wierenga, Christina E.; Hays, Chelsea C.; Zlatar, Zvinka Z.

    2017-01-01

    There is growing recognition that cerebral hypoperfusion is related to the pathogenesis of Alzheimer’s disease (AD), implicating the measurement of cerebral blood flow (CBF) as a possible biomarker of AD. The ability to identify the earliest and most reliable markers of incipient cognitive decline and clinical symptoms is critical to develop effective preventive strategies and interventions for AD. Arterial spin labeling (ASL) magnetic resonance imaging (MRI) measures CBF by magnetically labeling arterial water and using it as an endogenous tracer. Studies using ASL MRI in humans indicate that CBF changes are present several years before the development of the clinical symptoms of AD. Moreover, ASL-measured CBF has been shown to distinguish between cognitively normal individuals, adults at risk for AD, and persons diagnosed with AD. Some studies indicate that CBF may even be sensitive for predicting cognitive decline and conversion to mild cognitive impairment and AD over time. Taken together, evidence suggests that the current staging models of AD biomarker pathology should incorporate early changes in CBF as a useful biomarker, possibly present even earlier than amyloid β accumulation. Though still a research tool, ASL imaging is a promising non-invasive and reliable method with the potential to serve as a future clinical tool for the measurement of CBF in preclinical AD. PMID:25159672

  19. Feasibility study of CT perfusion imaging for prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cullu, Nesat [Mugla Sitki Kocman University, School of Medicine, Department of Radiology, Mugla (Turkey); Atatuerk University, School of Medicine, Department of Radiology, Erzurum (Turkey); Kantarci, Mecit; Ogul, Hayri; Pirimoglu, Berhan; Karaca, Leyla; Kizrak, Yesim [Atatuerk University, School of Medicine, Department of Radiology, Erzurum (Turkey); Adanur, Senol; Koc, Erdem; Polat, Ozkan [Atatuerk University, School of Medicine, Department of Urology, Erzurum (Turkey); Okur, Aylin [Atatuerk University, School of Medicine, Department of Radiology, Erzurum (Turkey); Bozok University, School of Medicine, Department of Radiology, Yozgat (Turkey)

    2014-09-15

    The aim of this feasibility study was to obtain initial data with which to assess the efficiency of perfusion CT imaging (CTpI) and to compare this with magnetic resonance imaging (MRI) in the diagnosis of prostate carcinoma. This prospective study involved 25 patients with prostate carcinoma undergoing MRI and CTpI. All analyses were performed on T2-weighted images (T2WI), apparent diffusion coefficient (ADC) maps, diffusion-weighted images (DWI) and CTp images. We compared the performance of T2WI combined with DWI and CTp alone. The study was approved by the local ethics committee, and written informed consent was obtained from all patients. Tumours were present in 87 areas according to the histopathological results. The diagnostic performance of the T2WI+DWI+CTpI combination was significantly better than that of T2WI alone for prostate carcinoma (P < 0.001). The diagnostic value of CTpI was similar to that of T2WI+DWI in combination. There were statistically significant differences in the blood flow and permeability surface values between prostate carcinoma and background prostate on CTp images. CTp may be a valuable tool for detecting prostate carcinoma and may be preferred in cases where MRI is contraindicated. If this technique is combined with T2WI and DWI, its diagnostic value is enhanced. (orig.)

  20. Automatic quantitative analysis of cardiac MR perfusion images

    Science.gov (United States)

    Breeuwer, Marcel M.; Spreeuwers, Luuk J.; Quist, Marcel J.

    2001-07-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and accurate image analysis methods. This paper focuses on the evaluation of blood perfusion in the myocardium (the heart muscle) from MR images, using contrast-enhanced ECG-triggered MRI. We have developed an automatic quantitative analysis method, which works as follows. First, image registration is used to compensate for translation and rotation of the myocardium over time. Next, the boundaries of the myocardium are detected and for each position within the myocardium a time-intensity profile is constructed. The time interval during which the contrast agent passes for the first time through the left ventricle and the myocardium is detected and various parameters are measured from the time-intensity profiles in this interval. The measured parameters are visualized as color overlays on the original images. Analysis results are stored, so that they can later on be compared for different stress levels of the heart. The method is described in detail in this paper and preliminary validation results are presented.

  1. Differentiation of breast cancer from fibroadenoma with dual-echo dynamic contrast-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Shiwei Wang

    Full Text Available Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI of the breast is a routinely used imaging method which is highly sensitive for detecting breast malignancy. Specificity, though, remains suboptimal. Dynamic susceptibility contrast magnetic resonance imaging (DSC MRI, an alternative dynamic contrast imaging technique, evaluates perfusion-related parameters unique from DCE MRI. Previous work has shown that the combination of DSC MRI with DCE MRI can improve diagnostic specificity, though an additional administration of intravenous contrast is required. Dual-echo MRI can measure both T1W DCE MRI and T2*W DSC MRI parameters with a single contrast bolus, but has not been previously implemented in breast imaging. We have developed a dual-echo gradient-echo sequence to perform such simultaneous measurements in the breast, and use it to calculate the semi-quantitative T1W and T2*W related parameters such as peak enhancement ratio, time of maximal enhancement, regional blood flow, and regional blood volume in 20 malignant lesions and 10 benign fibroadenomas in 38 patients. Imaging parameters were compared to surgical or biopsy obtained tissue samples. Receiver operating characteristic (ROC curves and area under the ROC curves were calculated for each parameter and combination of parameters. The time of maximal enhancement derived from DCE MRI had a 90% sensitivity and 69% specificity for predicting malignancy. When combined with DSC MRI derived regional blood flow and volume parameters, sensitivity remained unchanged at 90% but specificity increased to 80%. In conclusion, we show that dual-echo MRI with a single administration of contrast agent can simultaneously measure both T1W and T2*W related perfusion and kinetic parameters in the breast and the combination of DCE MRI and DSC MRI parameters improves the diagnostic performance of breast MRI to differentiate breast cancer from benign fibroadenomas.

  2. Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon.

    Science.gov (United States)

    Lieberman, Amy M; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I

    2015-07-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf adults who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native signers demonstrated early and robust activation of sublexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received.

  3. The effective connectivity of the seizure onset zone and ictal perfusion changes in amygdala kindled rhesus monkeys.

    Science.gov (United States)

    Cleeren, Evy; Premereur, Elsie; Casteels, Cindy; Goffin, Karolien; Janssen, Peter; Van Paesschen, Wim

    2016-01-01

    Epileptic seizures are network-level phenomena. Hence, epilepsy may be regarded as a circuit-level disorder that cannot be understood outside this context. Better insight into the effective connectivity of the seizure onset zone and the manner in which seizure activity spreads could lead to specifically-tailored therapies for epilepsy. We applied the electrical amygdala kindling model in two rhesus monkeys until these animals displayed consistent stage IV seizures. At this stage, we investigated the effective connectivity of the amygdala by means of electrical microstimulation during fMRI (EM-fMRI). In addition, we imaged changes in perfusion during a seizure using ictal SPECT perfusion imaging. The spatial overlap between the connectivity network and the ictal perfusion network was assessed both at the regional level, by calculating Dice coefficients using anatomically defined regions of interest, and at the voxel level. The kindled amygdala was extensively connected to bilateral cortical and subcortical structures, which in many cases were connected multisynaptically to the amygdala. At the regional level, the spatial extents of many of these fMRI activations and deactivations corresponded to the respective increases and decreases in perfusion imaged during a stage IV seizure. At the voxel level, however, some regions showed residual seizure-specific activity (not overlapping with the EM-fMRI activations) or fMRI-specific activation (not overlapping with the ictal SPECT activations), indicating that frequently, only a part of a region anatomically connected to the seizure onset zone participated in seizure propagation. Thus, EM-fMRI in the amygdala of electrically-kindled monkeys reveals widespread areas that are often connected multisynaptically to the seizure focus. Seizure activity appears to spread, to a large extent, via these connected areas.

  4. Dosimetry in myocardial perfusion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Janine M.; Trindade, Bruno; Ribeiro, Tarcisio P.C. [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear. Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares

    2011-07-01

    This paper conducts a dosimetric investigation on the myocardial perfusion image protocol, together with a literature reviewing, motivated by the significant statistic increasing on mortality, morbidity and disability associated with cardiovascular disease, surpassing infectious diseases. Nuclear Cardiology plays a role n the diagnostic functional evaluation of the heart and in the prognostic of patients with suspected or known cardiac ischemia. In the context of unstable myocardial ischemic syndrome, myocardial perfusion scintigraphy is a non-invasive procedure performed by administering a radiopharmaceutical targeted to the heart. As tool for this study are that the images obtained by thoracic angiotomography and abdominal aorta as a anatomic and functional information for model reproduction in SISCODES - System of Codes for Absorbed Dose Calculations based on Stochastic Methods. Data were manipulated in order to create a voxel computational model of the heart to be running in MCNP - Monte Carlo Neutron Particle Code. . It was assumed a homogeneous distribution of Tl-201 in cardiac muscle. Simulations of the transport of particles through the voxel and the interaction with the heart tissue were performed. As a result, the isodose curves in the heart model are displayed as well as the dose versus volume histogram of the heart muscle. We conclude that the present computational tools can generate doses distributed in myocardial perfusion. (author)

  5. Intestinal perfusion monitoring using photoplethysmography

    Science.gov (United States)

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Coté, Gerard L.

    2013-08-01

    In abdominal trauma patients, monitoring intestinal perfusion and oxygen consumption is essential during the resuscitation period. Photoplethysmography is an optical technique potentially capable of monitoring these changes in real time to provide the medical staff with a timely and quantitative measure of the adequacy of resuscitation. The challenges for using optical techniques in monitoring hemodynamics in intestinal tissue are discussed, and the solutions to these challenges are presented using a combination of Monte Carlo modeling and theoretical analysis of light propagation in tissue. In particular, it is shown that by using visible wavelengths (i.e., 470 and 525 nm), the perfusion signal is enhanced and the background contribution is decreased compared with using traditional near-infrared wavelengths leading to an order of magnitude enhancement in the signal-to-background ratio. It was further shown that, using the visible wavelengths, similar sensitivity to oxygenation changes could be obtained (over 50% compared with that of near-infrared wavelengths). This is mainly due to the increased contrast between tissue and blood in that spectral region and the confinement of the photons to the thickness of the small intestine. Moreover, the modeling results show that the source to detector separation should be limited to roughly 6 mm while using traditional near-infrared light, with a few centimeters source to detector separation leads to poor signal-to-background ratio. Finally, a visible wavelength system is tested in an in vivo porcine study, and the possibility of monitoring intestinal perfusion changes is showed.

  6. Application of Arterial Spin Labeling (ASL) Technique in the Pre Operative Evaluation of Brain Tumors%动脉自旋标记技术在脑肿瘤术前评估中的应用研究

    Institute of Scientific and Technical Information of China (English)

    朱记超; 娄明武; 张方璟; 赖文娟; 胡卫东; 范义; 陈燕萍

    2012-01-01

    histologically. The primitive data were sent to ADW 4. 3 workstation for post-processing. The mean rCBFmax ratio of tumor solid region, 1 cm peri tumor region and 2 cm peri tumor region ere obtained. The mean rCBFmax ratio of ASL and DSC were compared. Linear Regression analysis was performed to detect the correlation between the two maximal rCBF ratios obtained by DSC and ASL. Results In tumor solid region, the mean rCBFmax ratio obtained by DSC and ASL had statistically significant difference (P 0.05). The mean rCBFmax ratio obtained by DSC and ASL had statistically significant differences (P<0.05) between the solid region and peri tumor regions. The mean rCBFmax ratios obtained by DSC and ASL had significant correlation in tumor solid region, correlation coefficient r =0. 907. Conclusion ASL is a kind of MR perfusion imaging method to evaluate the hemodynamic information of brain tumors without injection of contrast medium. It can be a suitable candidate as a conventional sequence for the pre-operative assessment of brain tumors.

  7. Quantification of perfusion and risk stratification by myocardial perfusion SPECT; Quantifizierung der Perfusion und Risikostratifizierung durch die Myokardperfusions-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Bernd [Ueberoertliche Gemeinschaft (GbR) fuer diagnostische und interventionelle Radiologie und Nuklearmedizin (DIRANUK), Bielefeld (Germany); Klinikum Bielefeld-Mitte (Germany). Klinik fuer Nuklearmedizin; Schaefer, W.M. [Kliniken Maria Hilf GmbH, Krankenhaus St. Franziskus, Moenchengladbach (Germany). Klinik fuer Nuklearmedizin

    2010-06-15

    Myocardial perfusion SPECT detects flow-limiting coronary artery disease with high sensitivity and specificity, enables semiquantification of severity and extensiveness of myocardial ischemia, and furthermore enables reliable assessment of future cardiac events independently of other clinical and diagnostic parameters. A normal myocardial perfusion SPECT is associated with a favorable prognosis and warrants restrictive patient management. Cardiac risk increases in relation to the severity of perfusion abnormalities. Differentiated analysis of quantitative parameters derived from myocardial perfusion SPECT provides effective risk stratification of patients with a large variety of risk factors. (orig.)

  8. Ultrasound perfusion signal processing for tumor detection

    Science.gov (United States)

    Kim, MinWoo; Abbey, Craig K.; Insana, Michael F.

    2016-04-01

    Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity and a sign of a potential malignancy. Ultrasonic pulsed-Doppler imaging is a preferred modality for noninvasive monitoring of blood flow. However, the weak blood echoes and disorganized slow flow make it difficult to detect perfusion using standard methods without the expense and risk of contrast enhancement. Our research measures the efficiency of conventional power-Doppler (PD) methods at discriminating flow states by comparing measurement performance to that of an ideal discriminator. ROC analysis applied to the experimental results shows that power Doppler methods are just 30-50 % efficient at perfusion flows less than 1ml/min, suggesting an opportunity to improve perfusion assessment through signal processing. A new perfusion estimator is proposed by extending the statistical discriminator approach. We show that 2-D perfusion color imaging may be enhanced using this approach.

  9. Computed Tomography (CT) Perfusion in Abdominal Cancer

    DEFF Research Database (Denmark)

    Hansen, Martin Lundsgaard; Norling, Rikke; Lauridsen, Carsten;

    2013-01-01

    on the market today based on different perfusion algorithms. However, there is no consensus on which protocol and algorithm to use for specific organs. In this article, the authors give an introduction to CT perfusion in abdominal imaging introducing technical aspects for calculation of perfusion parameters......Computed Tomography (CT) Perfusion is an evolving method to visualize perfusion in organs and tissue. With the introduction of multidetector CT scanners, it is now possible to cover up to 16 cm in one rotation, and thereby making it possible to scan entire organs such as the liver with a fixed...... table position. Advances in reconstruction algorithms make it possible to reduce the radiation dose for each examination to acceptable levels. Regarding abdominal imaging, CT perfusion is still considered a research tool, but several studies have proven it as a reliable non-invasive technique...

  10. La ristorazione nelle case di cura convenzionate di una ASL romana. Verifica dell'adeguatezza nutrizionale

    Directory of Open Access Journals (Sweden)

    G. Cairella

    2003-05-01

    Full Text Available

    Obiettivi: valutazione dell’adeguatezza nutrizionale dei menù di case di cura convenzionate e formulazione di raccomandazioni finalizzate al raggiungimento della sicurezza nutrizionale dell’utente ricoverato.

    Metodi: alle Direzioni Sanitarie delle case di cura convenzionate sono stati richiesti i menu invernali ed estivi del vitto comune e speciale. La valutazione giornaliera media dell’energia totale, l’apporto giornaliero medio di macronutrienti, la ripartizione % fra i nutrienti e fra proteine e lipidi di origine animale e vegetale sono stati effettuati utilizzando come banca dati le tabelle di composizione degli alimenti INRAN; i valori ottenuti sono stati classificati adeguati o non adeguati, in accordo con i LARN e le Linee Guida delle specifiche patologie. Per quanto riguarda il parametro variabilità della dieta, il giudizio di adeguatezza è stato formulato considerando la presenza di opzioni di scelta nel menu, la presenza di menu estivo ed invernale e la frequenza settimanale degli alimenti, secondo le Linee Guida per una Sana Alimentazione.

    Risultati: I risultati, relativi all’85% (n. 7 delle case di cura convenzionate presenti nella ASL, evidenziano: 1 quota energetica giornaliera media adeguata nell’85% delle strutture; ripartizione in macronutrienti inadeguata nel 50% dei casi; inadeguata ripartizione % tra proteine di origine animale e vegetale nella totalità delle strutture 2 Relativamente al vitto comune, l’opzione di scelta è presente nel 65% delle Case di Cura ed il menu non è coerente con le Linee Guida per una Sana Alimentazione nel 30%. 3 Le diete speciali sono presenti nel 65% delle strutture: la tipologia è adeguata alle caratteristiche dell’utenza, ma l’adeguatezza nutrizionale si riscontra solo nel 25% dei casi. I risultati di tali valutazioni, integrati da proposte operative, sono stati comunicati alle Direzioni Sanitarie delle

  11. Incidenza di meningiti nell'ASL di Brescia nei primi mesi del 2003

    Directory of Open Access Journals (Sweden)

    M. Magoni

    2003-05-01

    Full Text Available

    Obiettivi: nell’ASLdi Brescia durante i mesi di gennaiomaggio 2003 si è verificato un consistente aumento di casi di meningite che ha allarmato oltre agli operatori sanitari anche l’opinione pubblica locale.

    Metodi: i dati riguardanti i casi di meningite verificatisi dal gennaio 1999 al maggio 2003 sono stati raccolti dal Servizio Igiene Pubblica dell’ASLdi Brescia.

    Tenuto conto della omogeneità dei dati nel quadriennio 1999- 2002 e della stagionalità che le meningiti possono avere, sono stati calcolati i tassi di incidenza per i primi cinque mesi dell’anno per tutte le meningiti in generale e per agente eziologico, durante il quadriennio 1999-2002. Tali tassi sono stati confrontati con i tassi corrispondenti nei primi mesi del 2003.

    Risultati: nel primi 5 mesi del 2003 si sono registrati in tutto 48 casi, di cui 9 da meningocco, 13 da pneumococco, 14 virali, 3 da altri agenti batterici e 8 senza agente microbico identificato. Nei 4 anni precedenti erano stati notificati 66 casi di meningite nei primi 5 mesi dell’anno, con una media annua di 16.5. Il tasso di incidenza di meningite in gennaio-maggio è stato quindi il triplo nel 2003 (rischio relativo = 2.9 rispetto ai 4 anni precedenti (p=0.0001. L’eccesso di incidenza si è riscontrato per tutti i tipi di meningite considerati in base all’agente eziologico.

    L’analisi per diverse età ha mostrato un aumento di incidenza sia nei bambini che nei giovani adulti e negli anziani. Non si è riscontrata alcuna differenza statisticamente significativa tra l’incidenza nel comune di Brescia (area urbana rispetto all’intera ASL nel periodo in studio.

    Conclusioni: l’aumento di incidenza per meningiti
    osservato nel 2003 non sembra spiegabile in termini di variabilità casuale del fenomeno da un anno all’altro e riguarda tutti i tipi di meningite e tutte le categorie d

  12. User friendly analysis of MR investigations of the cerebral perfusion: Windows {sup trademark} -based image processing; Benutzerfreundliche Auswertung von MR-Untersuchungen der zerebralen Perfusion: Windows {sup trademark} -basierte Bildverarbeitung

    Energy Technology Data Exchange (ETDEWEB)

    Wittsack, H.J.; Moedder, U. [Inst. fuer Diagnostische Radiologie, Univ. Duesseldorf (Germany); Ritzl, A. [Inst. fuer Medizin, Forschungszentrum Juelich (Germany)

    2002-06-01

    Purpose: Quick and user-friendly analysis of perfusion and diffusion weighted MRI by means of interactive computer software. Method: A Windows {sup trademark} -based software was developed for analysis of perfusion (PWI) and diffusion (DWI) MR imaging. The computer program was developed in the programming language C++ using optimized algorithms, so that a high computing speed on Win95/98/NT systems is achieved. The established SVD algorithms of Oestergaard et al. for quantitative perfusion analysis were implemented. Results: Perfusion parameter maps of the cerebral blood flow (rCBF), the mean transit time (MTT) and the cerebral blood volume (rCBV) in consideration of the arterial input function (AIF) can be calculated and visualized using color tables. Additionally, the calculation of ''time-to-peak'' maps (TTP) and of maps of the percentage change in signal intensity (PC) is possible. The analysis of n = 10 normal persons shows perfusion values that agree with those found in the literature. Discussion: With the computer program developed here color-coded perfusion parameter maps can be calculated easily. Because of the high computing speed it is possible to get information about tissue perfusion on the basis of the large MR data sets even in acute investigations. (orig.) [German] Ziel: Schnelle und bedienerfreundliche Auswertung von perfusions- und diffusions-gewichteten MRT-Daten mittels interaktiver Auswertesoftware. Methoden: Eine Windows {sup trademark} -basierte Software zur Auswertung von Perfusions- (PWI) und Diffusions-MRT (DWI) wurde entwickelt. Das Computerprogramm wurde in der Programmiersprache C++ unter Verwendung optimierter Algorithmen entwickelt, so dass eine hohe Rechengeschwindigkeit auf Win95/98/NT-Systemen erreicht wird. Die etablierten SVD-Algorithmen von Oestergaard zur quantitativen Perfusions-Auswertung wurden implementiert. Ergebnisse: Perfusions-Parameterbilder des zerebralen Blutflusses (rCBF), der mittleren

  13. Quality assessment of a placental perfusion protocol

    DEFF Research Database (Denmark)

    Mathiesen, Line; Mose, Tina; Mørck, Thit Juul;

    2010-01-01

    the placental perfusion model in Copenhagen including control substances. The positive control substance antipyrine shows no difference in transport regardless of perfusion media used or of terms of delivery (n=59, pmarked dextran correspond with leakage criteria (...mlh(-1) from the fetal reservoir) when adding 2 (n=7) and 20mg (n=9) FITC-dextran/100ml fetal perfusion media. Success rate of the Copenhagen placental perfusions is provided in this study, including considerations and quality control parameters. Three checkpoints suggested to determine success rate...

  14. Myocardial perfusion reserve compared with peripheral perfusion reserve : A [13N]ammonia PET study

    NARCIS (Netherlands)

    Scholtens, A. M.; Tio, R. A.; Willemsen, A.; Dierckx, R. A. J. O.; Boersma, Hendrikus; Zeebregts, C. J.; Glaudemans, A. W. J. M.; Slart, R. H. J. A.

    2011-01-01

    INTRODUCTION: [13N]ammonia PET allows quantification of myocardial perfusion. The similarity between peripheral flow and myocardial perfusion is unclear. We compared perfusion flow in the myocardium with the upper limb during rest and adenosine stress [13N]ammonia PET to establish whether peripheral

  15. MRI findings in aphasic status epilepticus.

    Science.gov (United States)

    Toledo, Manuel; Munuera, Josep; Sueiras, Maria; Rovira, Rosa; Alvarez-Sabín, José; Rovira, Alex

    2008-08-01

    Ictal-MRI studies including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and MR-angiography (MRA) in patients with aphasic status epilepticus (ASE) are lacking. In this report, we aim to describe the consequences of the ASE on DWIs and its impact on cerebral circulation. We retrospectively studied eight patients with ASE confirmed by ictal-EEG, who underwent ictal-MRI shortly after well-documented onset (mean time delay 3 h). ASE consisted in fluctuating aphasia, mostly associated with other subtle contralateral neurological signs such as hemiparesia, hemianopia, or slight clonic jerks. In MRI, six patients showed cortical temporoparietal hyperintensity in DWI and four of them had also ipsilateral pulvinar lesions. Five patients showed close spatial hyperperfusion areas matching the DWI lesions and an enhanced blow flow in the middle cerebral artery. Parenchymal lesions and hemodynamic abnormalities were not associated with seizure duration or severity in any case. The resolution of DWI lesions at follow-up MRI depended on the length of the MRIs interval. In patients with ASE, lesions on DWI in the temporo-parietal cortex and pulvinar nucleus combined with local hyperperfusion can be observed, even when they appear distant from the epileptic focus or the language areas.

  16. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Jiji Ronny S

    2013-01-01

    Full Text Available Abstract Background The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR measures by contrast-enhanced (CE calf perfusion magnetic resonance imaging (MRI of the calf in normal subjects (NL and patients with peripheral arterial disease (PAD. Methods Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14 and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA. Tissue function (TF and arterial input function (AIF measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI = TF/AIF. Perfusion reserve (PR = exercise TF/ rest TF. Intraclass correlation coefficient (ICC was calculated from 11 NL and 10 PAD with repeated MRI on a different day. Results Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59 but reproducible (ICC 0.76. Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04. Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26. Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively. Conclusion Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.

  17. Placental perfusion - a human alternative

    DEFF Research Database (Denmark)

    Mose, Tina; Knudsen, Lisbeth E

    2006-01-01

    Foetal exposures to environmental and medicinal products have impact on the growth of the foetus (e.g. cigarette smoke) and development of organs (e.g. methylmercury and Thalidomide). Perfusion studies of the human term placenta enable investigation of placental transport of chemical substances...... and represents a supplement and alternative to animal testing, bypassing the animal to human extrapolation. Placentas are readily obtainable from most births upon informed consent from the mothers and are considered a promising tissue alternative/supplement to animal experiments. The system is validated...

  18. Perfusion-diffusion mismatch: does it identify who will benefit from reperfusion therapy?

    Science.gov (United States)

    Powers, William J

    2012-06-01

    A method to determine which patients would benefit from reperfusion therapies after 4.5 h would greatly add to our ability to reduce the disability caused by stroke. The goal of magnetic resonance perfusion-diffusion imaging in hyperacute ischemic stroke is to identify regions of the brain that will die if untreated and will live and regain function if quickly reperfused. The clinical value of perfusion-diffusion imaging in hyperacute ischemic stroke can be proven only by demonstrating empirically in a randomized controlled trial (RCT) that there is an improvement in patient outcome that depends on the use of the neuroimaging modality to guide therapy. To date, there have been only a few RCTs that have evaluated whether perfusion-diffusion imaging can identify a subgroup of patients with ischemic stroke more than 4.5 h from onset in whom the overall benefit from reperfusion therapy outweighs the risk. None have met the rigorous design requirements of the three-group study necessary to adequately test this hypothesis, and none have even met their own criteria for demonstrating a clinical benefit. While studies are not sufficient to conclusively disprove the hypothesis there are no RCT data to support it, and thus, the clinical value of MRI perfusion-diffusion imaging in this setting remains unproven. It is worthy of further investigation in rigorously designed RCTs. However, the risks of symptomatic intracerebral hemorrhage with reperfusion therapies in acute ischemic stroke are proven. Unless RCT data are forthcoming to demonstrate that MRI perfusion-diffusion mismatch improves clinical outcome, it should not be used to guide delayed reperfusion therapy.

  19. MRI characterization of brown adipose tissue in obese and normal-weight children

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Shore, Richard M. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, 225 E. Chicago Ave., Box 9, Chicago, IL (United States); Zhang, Huiyuan [John H. Stroger, Jr. Hospital of Cook County, Collaborative Research Unit, Chicago, IL (United States); Kwon, Soyang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Stanley Manne Children' s Research Institute, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States); Josefson, Jami L. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Endocrinology, Chicago, IL (United States); Northwestern University, Department of Pediatrics, Feinberg School of Medicine, Chicago, IL (United States)

    2015-10-15

    Brown adipose tissue (BAT) is identified in mammals as an adaptive thermogenic organ for modulation of energy expenditure and heat generation. Human BAT may be primarily composed of brown-in-white (BRITE) adipocytes and stimulation of BRITE may serve as a potential target for obesity interventions. Current imaging studies of BAT detection and characterization have been mainly limited to PET/CT. MRI is an emerging application for BAT characterization in healthy children. To exploit Dixon and diffusion-weighted MRI methods to characterize cervical-supraclavicular BAT/BRITE properties in normal-weight and obese children while accounting for pubertal status. Twenty-eight healthy children (9-15 years old) with a normal or obese body mass index participated. MRI exams were performed to characterize supraclavicular adipose tissues by measuring tissue fat percentage, T2*, tissue water mobility, and microvasculature properties. We used multivariate linear regression models to compare tissue properties between normal-weight and obese groups while accounting for pubertal status. MRI measurements of BAT/BRITE tissues in obese children showed higher fat percentage (P < 0.0001), higher T2* (P < 0.0001), and lower diffusion coefficient (P = 0.015) compared with normal-weight children. Pubertal status was a significant covariate for the T2* measurement, with higher T2* (P = 0.0087) in pubertal children compared to prepubertal children. Perfusion measurements varied by pubertal status. Compared to normal-weight children, obese prepubertal children had lower perfusion fraction (P = 0.003) and pseudo-perfusion coefficient (P = 0.048); however, obese pubertal children had higher perfusion fraction (P = 0.02) and pseudo-perfusion coefficient (P = 0.028). This study utilized chemical-shift Dixon MRI and diffusion-weighted MRI methods to characterize supraclavicular BAT/BRITE tissue properties. The multi-parametric evaluation revealed evidence of morphological differences in brown

  20. 20 years of surface ozone measurements at El Tololo, Chile (2200 m asl)

    Science.gov (United States)

    Gérard Anet, Julien; Steinbacher, Martin; Emmenegger, Lukas; Buchmann, Brigitte

    2016-04-01

    Globally consistent in situ-observations of high precision and known quality are one key element in understanding global climate change and effects of human activity on the Earth's atmosphere. The spatial coverage of available data strongly depends on the species of interest and varies highly around the globe. In case of surface ozone (O3), the observational network is particularly sparse in Africa, Asia, and South America. The southern hemispheric pristine GAW-regional station "El Tololo", located in the foothills of the Chilean Andes (30.17° S, 70.80° W, 2220 m asl), has been equipped with an ozone photometer in 1995 and has since then been measuring tropospheric ozone permanently. However, these measurements were neither entirely systematically processed nor quality-controlled until recently. This situation was drastically improved in 2015 the framework of the Capacity Building and Twinning for Climate Observing Systems (CATCOS) project (www.meteoswiss.ch/catcos). Empa, in coordination with the local operator, Dirección Meteorológica de Chile (DMC), and the University of Santiago, revised the entire surface ozone measurements. The unique 20-year-long ozone data-set has been made publicly available on the World Data Centre for Greenhouse Gases (WDCGG, Japan) in mid-2015 and represents an exceptional piece of information on the southern hemispheric surface ozone distribution. In contrary to northern hemispheric stations, the positive trend in the measurements of tropospheric ozone at "El Tololo" did not level off in the recent past. More specifically, "El Tololo" shows a steady positive trend of 0.7 ppb/decade in agreement with other stations on the Southern hemisphere. However, the seasonal cycle differs strongly in behaviour, as maximum values in ozone do not peak in austral winter, but in austral spring - most probably due to stratospheric influence. We also find that the spring maximum has a retrograding tendency of around 5 days per decade. A combined

  1. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  2. Sumatriptan and cerebral perfusion in healthy volunteers.

    Science.gov (United States)

    Scott, A K; Grimes, S; Ng, K; Critchley, M; Breckenridge, A M; Thomson, C; Pilgrim, A J

    1992-04-01

    1. The effect of sumatriptan on regional cerebral perfusion was studied in healthy volunteers. 2. Intravenous sumatriptan (2 mg) had no detectable effect on regional cerebral perfusion as measured using a SPECT system with 99technetiumm labelled hexemethylpropyleneamineoxime. 3. Sumatriptan had no effect on pulse, blood pressure or ECG indices. 4. All six volunteers experienced minor adverse effects during the intravenous infusion.

  3. Long term perfusion system supporting adipogenesis.

    Science.gov (United States)

    Abbott, Rosalyn D; Raja, Waseem K; Wang, Rebecca Y; Stinson, Jordan A; Glettig, Dean L; Burke, Kelly A; Kaplan, David L

    2015-08-01

    Adipose tissue engineered models are needed to enhance our understanding of disease mechanisms and for soft tissue regenerative strategies. Perfusion systems generate more physiologically relevant and sustainable adipose tissue models, however adipocytes have unique properties that make culturing them in a perfusion environment challenging. In this paper we describe the methods involved in the development of two perfusion culture systems (2D and 3D) to test their applicability for long term in vitro adipogenic cultures. It was hypothesized that a silk protein biomaterial scaffold would provide a 3D framework, in combination with perfusion flow, to generate a more physiologically relevant sustainable adipose tissue engineered model than 2D cell culture. Consistent with other studies evaluating 2D and 3D culture systems for adipogenesis we found that both systems successfully model adipogenesis, however 3D culture systems were more robust, providing the mechanical structure required to contain the large, fragile adipocytes that were lost in 2D perfused culture systems. 3D perfusion also stimulated greater lipogenesis and lipolysis and resulted in decreased secretion of LDH compared to 2D perfusion. Regardless of culture configuration (2D or 3D) greater glycerol was secreted with the increased nutritional supply provided by perfusion of fresh media. These results are promising for adipose tissue engineering applications including long term cultures for studying disease mechanisms and regenerative approaches, where both acute (days to weeks) and chronic (weeks to months) cultivation are critical for useful insight.

  4. Personality factors correlate with regional cerebral perfusion.

    Science.gov (United States)

    O'Gorman, R L; Kumari, V; Williams, S C R; Zelaya, F O; Connor, S E J; Alsop, D C; Gray, J A

    2006-06-01

    There is an increasing body of evidence pointing to a neurobiological basis of personality. The purpose of this study was to investigate the biological bases of the major dimensions of Eysenck's and Cloninger's models of personality using a noninvasive magnetic resonance perfusion imaging technique in 30 young, healthy subjects. An unbiased voxel-based analysis was used to identify regions where the regional perfusion demonstrated significant correlation with any of the personality dimensions. Highly significant positive correlations emerged between extraversion and perfusion in the basal ganglia, thalamus, inferior frontal gyrus and cerebellum and between novelty seeking and perfusion in the cerebellum, cuneus and thalamus. Strong negative correlations emerged between psychoticism and perfusion in the basal ganglia and thalamus and between harm avoidance and perfusion in the cerebellar vermis, cuneus and inferior frontal gyrus. These observations suggest that personality traits are strongly associated with resting cerebral perfusion in a variety of cortical and subcortical regions and provide further evidence for the hypothesized neurobiological basis of personality. These results may also have important implications for functional neuroimaging studies, which typically rely on the modulation of cerebral hemodynamics for detection of task-induced activation since personality effects may influence the intersubject variability for both task-related activity and resting cerebral perfusion. This technique also offers a novel approach for the exploration of the neurobiological correlates of human personality.

  5. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo;

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  6. Cerebral perfusion SPECT in transient ischemic attack

    Energy Technology Data Exchange (ETDEWEB)

    You, D.-L. E-mail: dlyou@mail.kfcc.org.tw; Shieh, F.-Y.; Tzen, K.-Y.; Tsai, M.-F.; Kao, P.-F

    2000-04-01

    Purpose: The purpose of our study is to evaluate the efficacy of cerebral perfusion single photon emission computerized tomography (SPECT) in patients with transient ischemic attack (TIA). Methods: Thirty-seven patients with TIA were collected for study. All patients had transient focal neurological symptoms or signs with complete recovery within 24 h after onset. The patients underwent cerebral perfusion SPECT between 6 h and 11 days after onset, with 10 cases performed within 24 h (group A), nine cases performed between 1 and 3 days (group B), 11 cases performed between 3 and 5 days (group C), and seven cases performed after more than 5 days (group D). A semi-quantitative method was used for analyzing the SPECT data, and the difference ratios between lesion side and contralateral normal side were calculated on each pair of regions of interest. Results: In total, 78.4% (29/37) of patients had reduced perfusion in the cerebral cortical regions or deep nuclei, and the regions with reduced perfusion corresponded with clinical presentations of the patients. The abnormal rate with reduced perfusion was 90.0% in group A, 77.8% in group B, 72.7% in group C and 71.4% in group D. Cross cerebellar diaschisis (CCD) was present in seven patients, and all of the primary cerebral perfusion defects of these patients were located at the territory of left or right middle cerebral artery. Conclusion: Cerebral perfusion SPECT is a potential tool to detect cerebral perfusion defects and CCD in patients with TIA. Although the perfusion defect may persist more than 5 days after onset, we suggest cerebral perfusion SPECT should be performed as soon as possible.

  7. MRI of the Chest

    Medline Plus

    Full Text Available ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ... MRI an invaluable tool in early diagnosis and evaluation of cardiovascular conditions. MRI has proven valuable in ...

  8. MRI of the Chest

    Medline Plus

    Full Text Available ... MRI. If you have claustrophobia (fear of enclosed spaces) or anxiety, you may want to ask your ... or headphones during the exam. MRI scanners are air-conditioned and well-lit. Music may be played ...

  9. Abdominal MRI scan

    Science.gov (United States)

    Nuclear magnetic resonance - abdomen; NMR - abdomen; Magnetic resonance imaging - abdomen; MRI of the abdomen ... radiologist see certain areas more clearly. During the MRI, the person who operates the machine will watch ...

  10. MRI of the Chest

    Medline Plus

    Full Text Available ... have this exam in the first trimester of pregnancy unless the potential benefit from the MRI exam ... See the Safety page for more information about pregnancy and MRI. If you have claustrophobia (fear of ...

  11. MRI of the Chest

    Medline Plus

    Full Text Available ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  12. MRI of the Chest

    Science.gov (United States)

    ... MRI scanners are air-conditioned and well-lit. Music may be played through the headphones to help ... that magnetic resonance imaging harms the fetus, pregnant women usually are advised not to have an MRI ...

  13. Perfusion impairments in children with reactive attachment disorder (RAD) on {sup 99m}Tc-ECD brain SPECT: comparison with MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Y. H.; Sin, E. J.; Cheon, K. A.; Yoon, M. J.; Lee, J. D. [Yonsei University College of Medicine, Seoul (Korea, Republic of); Jeon, T. J. [Pochon CHA University College of Medicine, Pochon (Korea, Republic of)

    2002-07-01

    This study aimed to reveal that severe disturbance of attachment relationship with primary care-giver can affect functional and anatomical brain development by measuring cerebral perfusion on {sup 99m}Tc-ECD brain SPECT and correlative MRI. We included 18 children aged 31 to 76 months who met the diagnostic criteria of RAD as defined in DSM-IV and ICD-10 and SSP and CARS. {sup 99m}Tc-ECD SPECT was performed using CERASPECT. MRI was performed in all patients. SPECT data were visually assessed. 15 of 18 children had abnormal perfusion on SPECT, revealing decreased perfusion of Lt.thalamus (7/15) and Rt.thalamus (3/15), and bilateral thalami (5/15). Perfusion of basal ganglia was decreased in 8 children. Decreased perfusion of Lt. parietal area was seen in 2. Whereas, all patients had normal MR findings. Perfusion abnormalities involving thalamus, BG in most children with RAD were found in this study. These results suggest that brain development of infant could be impeded by severe pathologic care and early nurturing environment would be important for normal development.

  14. Quantitative evaluation of MR perfusion imaging using blood pool contrast agent in subjects without pulmonary diseases and in patients with pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Hansch, Andreas; Hinneburg, Uta [University Hospital Jena, Institute of Diagnostic and Interventional Radiology II, Jena (Germany); University Hospital Jena, Institute of Diagnostic and Interventional Radiology II, Gera (Germany); Kohlmann, Peter; Laue, Hendrik [Fraunhofer MEVIS - Institute for Medical Image Computing, Bremen (Germany); Boettcher, Joachim [SRH Klinikum Gera, Institute of Diagnostic and Interventional Radiology, Gera (Germany); Malich, Ansgar [Suedharzkrankenhaus Nordhausen, Institute of Diagnostic and Interventional Radiology, Nordhausen (Germany); Wolf, Gunter [University Hospital Jena, Department of Internal Medicine III, Jena (Germany); Pfeil, Alexander [University Hospital Jena, Institute of Diagnostic and Interventional Radiology II, Jena (Germany); University Hospital Jena, Institute of Diagnostic and Interventional Radiology II, Gera (Germany); University Hospital Jena, Department of Internal Medicine III, Jena (Germany)

    2012-08-15

    To assess the feasibility of time-resolved parallel three-dimensional magnetic resonance imaging (MRI) for quantitative analysis of pulmonary perfusion using a blood pool contrast agent. Quantitative perfusion analysis was performed using novel software to assess pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) in a quantitative manner. The evaluation of lung perfusion in the normal subjects showed an increase of PBF, PBV ventrally to dorsally (gravitational direction), and the highest values at the upper lobe, with a decrease to the middle and lower lobe (isogravitational direction). MTT showed no relevant changes in either the gravitational or isogravitational directions. In comparison with normally perfused lung areas (in diseased patients), the pulmonary embolism (PE) regions showed a significantly lower mean PBF (20 {+-} 0.6 ml/100 ml/min, normal region 94 {+-} 1 ml/100 ml/min; P < 0.001), mean PBV (2 {+-} 0.1 ml/100 ml, normal region 9.8 {+-} 0.1 ml/100 ml; P < 0.001) and mean MTT (3.8 {+-} 0.1 s; normal region 6.3 {+-} 0.1; P < 0.001). Our results demonstrate the feasibility of using time-resolved dynamic contrast-enhanced MRI to determine normal range and regional variation of pulmonary perfusion and perfusion deficits in patients with PE. (orig.)

  15. Brain perfusion SPECT and FDG PET findings in a patient with ballism associated with hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sang Kyun; Kim, Sang Jin [Pusan Paik Hospital, Pusan (Korea, Republic of)

    2007-07-01

    Ballism is a very rare presentation in association with hyperthyroidism. We describe a 22-year-old lady with episodes of recurrent ballism and hyperthyroidism. A 22-year-old lady was admitted to Neurology department because of sudden development of vigorous involuntary movement and dysarthria. She was diagnosed as hyperthyroidism at the age 12 and treated irregularly. She arrived at the emergency room because of sudden onset of involuntary movement. Computed tomography (CT) scan and Magnetic Resonance Imaging (MRI) of brain was normal. Serum levels of thyroid hormone were increased (Free T4 3.15 ng/dl; normal range 0.93-1.71 ng/dl), whereas thyroid-stimulating hormone (TSH) was undetectable. The thyroid gland was diffusely enlarged and exophthalmos was found. She had been given antithyroid medication from local clinic but medicated irregularly. Technetium thyroid scan reveals diffusely enlarged thyroid with increased radioactivity. Radioiodine uptake in 24 hours was 71 %. Brain perfusion SPECT using Tc-99m ECD reveals asymmetrical perfusion pattern in basal ganglia. Brain PET using F-18 FDG reveals increased metabolism at both caudate nucleus and putamen. She was treated with radioiodine and involuntary movement was improved. There is only few report on ballism associated with hyperthyroidism and no report on functional brain imaging. Brain perfusion SPECT and FDG PET may give useful information about functional status of brain in patients with ballism associated with hyperthyroidism in case of normal anatomical finding on CT/MRI.

  16. Arterial spin labelling in imaging of renal diseases and renal allograft pathology; MRT-Perfusionsmessung mit Arterial Spin Labelling. Anwendung fuer die Niere und Transplantatniere

    Energy Technology Data Exchange (ETDEWEB)

    Hueper, Katja; Gutberlet, Marcel [Medizinische Hochschule Hannover (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie; Kuehn, Bernd [Siemens AG/Siemens Healthcare GmbH, Erlangen (Germany)

    2016-06-15

    Arterial Spin Labelling (ASL) is a technique for non-invasive and contrast-free assessment of perfusion with MRI. Renal ASL allows examination of renal pathophysiology, evaluation of the course of renal disease and therapy effects by longitudinal measurements as well as characterization of renal tumors. In this article, techniques of ASL will be explained and challenges of renal ASL will be emphasized. In addition, examples for clinical application of ASL for diagnosis of renal disease and renal allograft pathology will be given.

  17. Crossed cerebellar diaschisis after stroke identified noninvasively with cerebral blood flow-weighted arterial spin labeling MRI

    Science.gov (United States)

    Strother, Megan K.; Buckingham, Cari; Faraco, Carlos C.; Arteaga, Daniel; Lu, Pengcheng; Xu, Yaomin; Donahue, Manus J.

    2015-01-01

    Background and Purpose Crossed cerebellar diaschisis (CCD) is most commonly investigated using hemodynamic PET and SPECT imaging. However, noninvasive MRI offers advantages of improved spatial resolution, allowing hemodynamic changes to be compared directly with structural findings and without concerns related to ionizing radiation exposure. The aim of this study was to evaluate relationships between CCD identified from cerebral blood flow (CBF)-weighted arterial spin labeling (ASL) MRI with cerebrovascular reactivity (CVR)-weighted blood oxygenation level dependent (BOLD) MRI, Wallerian degeneration, clinical motor impairment, and corticospinal tract involvement. Methods Subjects (n=74) enrolled in an ongoing observational stroke trial underwent CBF-weighted ASL and hypercapnic CVR-weighted BOLD MRI. Hemispheric asymmetry indices for basal cerebellar CBF, cerebellar CVR, and cerebral peduncular area were compared between subjects with unilateral supratentorial infarcts (n=18) and control subjects without infarcts (n=16). CCD required (1) supratentorial infarct and (2) asymmetric cerebellar CBF (>95% confidence interval relative to controls). Results In CCD subjects (n=9), CVR (p=0.04) and cerebral peduncular area (p < 0.01) were significantly asymmetric compared to controls. Compared to infarct subjects not meeting CCD criteria (n=9), CCD subjects had no difference in corticospinal tract location for infarct (p=1.0) or motor impairment (p=0.08). Conclusions CCD correlated with cerebellar CVR asymmetry and Wallerian degeneration. These findings suggest that noninvasive MRI may be a useful alternative to PET or SPECT to study structural correlates and clinical consequences of CCD following supratentorial stroke. PMID:26724658

  18. Dissociative part-dependent resting-state activity in dissociative identity disorder: a controlled FMRI perfusion study.

    Directory of Open Access Journals (Sweden)

    Yolanda R Schlumpf

    Full Text Available In accordance with the Theory of Structural Dissociation of the Personality (TSDP, studies of dissociative identity disorder (DID have documented that two prototypical dissociative subsystems of the personality, the "Emotional Part" (EP and the "Apparently Normal Part" (ANP, have different biopsychosocial reactions to supraliminal and subliminal trauma-related cues and that these reactions cannot be mimicked by fantasy prone healthy controls nor by actors.Arterial spin labeling perfusion MRI was used to test the hypotheses that ANP and EP in DID have different perfusion patterns in response to rest instructions, and that perfusion is different in actors who were instructed to simulate ANP and EP. In a follow-up study, regional cerebral blood flow of DID patients was compared with the activation pattern of healthy non-simulating controls.Compared to EP, ANP showed elevated perfusion in bilateral thalamus. Compared to ANP, EP had increased perfusion in the dorsomedial prefrontal cortex, primary somatosensory cortex, and motor-related areas. Perfusion patterns for simulated ANP and EP were different. Fitting their reported role-play strategies, the actors activated brain structures involved in visual mental imagery and empathizing feelings. The follow-up study demonstrated elevated perfusion in the left temporal lobe in DID patients, whereas non-simulating healthy controls had increased activity in areas which mediate the mental construction of past and future episodic events.DID involves dissociative part-dependent resting-state differences. Compared to ANP, EP activated brain structures involved in self-referencing and sensorimotor actions more. Actors had different perfusion patterns compared to genuine ANP and EP. Comparisons of neural activity for individuals with DID and non-DID simulating controls suggest that the resting-state features of ANP and EP in DID are not due to imagination. The findings are consistent with TSDP and inconsistent

  19. fMRI Neuroinformatics

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Christensen, Mark Schram; Madsen, Kristoffer M.

    2006-01-01

    Functional magnetic resonance imaging (fMRI) generates vast amounts of data. The handling, processing, and analysis of fMRI data would be inconceivable without computer-based methods. fMRI neuroinformatics is concerned with research, development, and operation of these methods. Reconstruction...

  20. MRI in acute poliomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, L. [Imaging Department, The Schneider Children`s Medical Centre of Israel, Kaplan Street, Petah Tiqva 49202 (Israel)]|[Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Dagan, O. [The Intensive Care Unit, The Schneider Children`s Medical Centre of Israel, Beilinson Medical Campus, Petah Tiqva (Israel)]|[Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Grunebaum, M. [Imaging Department, The Schneider Children`s Medical Centre of Israel, Kaplan Street, Petah Tiqva 49202 (Israel)]|[Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    1996-05-01

    MRI can be used in the diagnosis of anterior horn infection and for assessing the extent of disease. There are no specific MRI signs to differentiate between the various possible pathogens. This is demonstrated in the present case of poliomyelitis, in which MRI of the spine played an important role in establishing the diagnosis. (orig.). With 1 fig.

  1. Brain Perfusion in Corticobasal Syndrome with Progressive Aphasia

    Directory of Open Access Journals (Sweden)

    Yoshitake Abe

    2016-04-01

    Full Text Available Background: Brain perfusion may differ between patients with corticobasal syndrome (CBS with and without aphasia. Methods: Twenty-six (9 males and 17 females; mean age 76 ± 5.3 years patients with CBS were enrolled in the study. Brain MRI and single-photon emission computed tomography were performed in all subjects. Language was evaluated using the Standard Language Test of Aphasia. The patients were divided into two subgroups according to the presence or absence of progressive aphasia. Differences in the regional cerebral blood flow (rCBF between the two groups were detected based on voxel-by-voxel group analysis using Statistical Parametric Mapping 8. Results: All patients exhibited asymmetric motor symptoms and signs, including limb apraxia, bradykinesia, and akinetic rigidity. Of 26 patients, 9 had a clinically obvious language disturbance, characterized as nonfluent aphasia. Almost all CBS patients with aphasia exhibited cortical atrophy predominantly in the left frontal and temporal lobes with widening of the Sylvian fissure on MRI. The rCBF in the left middle frontal gyrus differed significantly between CBS patients with and without aphasia. Conclusion: CBS patients with aphasia exhibit motor symptoms predominantly on the right side and cortical atrophy mainly in the left perisylvian cortices. In particular, left frontal dysfunction might be related to nonfluent aphasia in CBS.

  2. Arterial spin-labeling MR imaging in moyamoya disease compared with clinical assessments and other MR imaging finings

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Tomoyuki, E-mail: tnogucci@radiol.med.kyushu-u.ac.jp [Department of Radiology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Kawashima, Masatou [Department of Neurosurgery, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Nishihara, Masashi; Hirai, Tetsuyoshi [Department of Radiology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Matsushima, Toshio [Department of Neurosurgery, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Irie, Hiroyuki [Department of Radiology, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501 (Japan)

    2013-12-01

    Purpose: Our purpose was to identify the causal factors for the perfusion distribution obtained with ASL-MRI by comparing ASL-MRI with clinical information and other MRI findings in moyamoya disease. Methods: Seventy-one patients with moyamoya disease underwent ASL-MRI and other MRI, including fluid-attenuated inversion recovery imaging (FLAIR) and three-dimensional time-of-flight magnetic resonance angiography (MRA) on 3.0-Tesla MRI system. Cerebral blood flow (CBF) values (ASL values) for the cerebral hemispheres (142 sides) were measured on CBF maps generated by ASL-MRI. Relationships between the ASL values and the following 9 factors were assessed: sex, family history, revascularization surgery, age at MR exam, age at onset, the steno-occlusive severity on MRA (MRA score), degree of basal collaterals, degree of leptomeningeal high signal intensity seen on FLAIR, and size of ischemic or hemorrhagic cerebrovascular accident lesion (CVA score). Results: Patients with a family history had significantly higher ASL values than those without such a history. There were significant negative correlations between ASL values and age at MR exam, MRA score, and CVA score. Conclusions: ASL-MRI may have cause-and-effect or mutual associations with family history, current patient age, size of CVA lesion, and intracranial arterial steno-occlusive severity in Moyamoya disease.

  3. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Perani, D.; Di Piero, V.; Vallar, G.; Cappa, S.; Messa, C.; Bottini, G.; Berti, A.; Passafiume, D.; Scarlato, G.; Gerundini, P.

    1988-09-01

    Regional cerebral perfusion was evaluated by single photon emission computed tomography (SPECT) using technetium-99m hexamethylpropyleneamine oxime ((/sup 99m/Tc)HM-PAO) in sixteen patients with Alzheimer's disease (AD) in early clinical phase and in 16 healthy elderly controls. In all patients transmission computed tomography (TCT) and/or magnetic resonance imaging (MRI) did not show focal brain abnormalities. Relative to normal subjects, AD patients showed significant reductions in cortical/cerebellar activity ratio: cortical perfusion was globally depressed with the largest reductions in frontal and posterior temporo-parietal cortices. Asymmetries of relative perfusion between cerebral hemispheres were also demonstrated when language was affected or visuospatial functions were unevenly impaired. In patients with early AD, SPECT provides functional information to be compared with clinical and psychometric data.

  4. Cochlear perfusion with a viscous fluid.

    Science.gov (United States)

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  5. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment.

    Science.gov (United States)

    Tiddens, Harm A W M; Stick, Stephen M; Wild, Jim M; Ciet, Pierluigi; Parker, Geoffrey J M; Koch, Armin; Vogel-Claussen, Jens

    2015-10-01

    For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE.

  6. Rapid identification of a major diffusion/perfusion mismatch in distal internal carotid artery or middle cerebral artery ischemic stroke

    Directory of Open Access Journals (Sweden)

    Hakimelahi Reza

    2012-11-01

    Full Text Available Abstract Background We tested the hypothesis that in patients with occlusion of the terminal internal carotid artery and/or the proximal middle cerebral artery, a diffusion abnormality of 70 ml or less is accompanied by a diffusion/perfusion mismatch of at least 100%. Methods Sixty-eight consecutive patients with terminal ICA and/or proximal MCA occlusions and who underwent diffusion/perfusion MRI within 24 hours of stroke onset were retrospectively identified. DWI and mean transit time (MTT volumes were measured. Prospectively, 48 consecutive patients were identified with the same inclusion criteria. DWI and time to peak (TTP lesion volumes were measured. A large mismatch volume was defined as an MTT or TTP abnormality at least twice the DWI lesion volume. Results In the retrospective study, 49 of 68 patients had a DWI lesion volume ≤ 70 ml (mean 20.2 ml; SEM 2.9 ml. A DWI/MTT mismatch of > 100% was observed in all 49 patients (P  100% was present in all 35 (P  Conclusions Acute stroke patients with major anterior circulation artery occlusion are exceedingly likely to have a major diffusion/perfusion mismatch if the diffusion lesion volume is 70 ml or less. This suggests that physiology-based patient assessments may be made using only vessel imaging and diffusion MRI as a simple alternative to perfusion imaging.

  7. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer's disease?

    Directory of Open Access Journals (Sweden)

    María Lacalle-Aurioles

    Full Text Available The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI in Alzheimer's disease (AD studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF parametric maps by comparing patients with stable mild cognitive impairment (MCI, patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization.

  8. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    Energy Technology Data Exchange (ETDEWEB)

    Slapa, Rafal Z., E-mail: rz.slapa@gmail.com [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Kasperlik–Zaluska, Anna A. [Endocrinology Department, Center for Postgraduate Medical Education, Bielanski Hospital, Warsaw (Poland); Migda, Bartosz [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Otto, Maciej [Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, First Faculty of Medicine, Warsaw (Poland); Jakubowski, Wiesław S. [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland)

    2015-08-15

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients.

  9. Is the Cerebellum the Optimal Reference Region for Intensity Normalization of Perfusion MR Studies in Early Alzheimer’s Disease?

    Science.gov (United States)

    Lacalle-Aurioles, María; Alemán-Gómez, Yasser; Guzmán-De-Villoria, Juan Adán; Cruz-Orduña, Isabel; Olazarán, Javier; Mateos-Pérez, José María; Martino, María Elena; Desco, Manuel

    2013-01-01

    The cerebellum is the region most commonly used as a reference when normalizing the intensity of perfusion images acquired using magnetic resonance imaging (MRI) in Alzheimer’s disease (AD) studies. In addition, the cerebellum provides unbiased estimations with nuclear medicine techniques. However, no reports confirm the cerebellum as an optimal reference region in MRI studies or evaluate the consequences of using different normalization regions. In this study, we address the effect of using the cerebellum, whole-brain white matter, and whole-brain cortical gray matter in the normalization of cerebral blood flow (CBF) parametric maps by comparing patients with stable mild cognitive impairment (MCI), patients with AD and healthy controls. According to our results, normalization by whole-brain cortical gray matter enables more sensitive detection of perfusion abnormalities in AD patients and reveals a larger number of affected regions than data normalized by the cerebellum or whole-brain white matter. Therefore, the cerebellum is not the most valid reference region in MRI studies for early stages of AD. After normalization by whole-brain cortical gray matter, we found a significant decrease in CBF in both parietal lobes and an increase in CBF in the right medial temporal lobe. We found no differences in perfusion between patients with stable MCI and healthy controls either before or after normalization. PMID:24386081

  10. Bubble dynamics in perfused tissue undergoing decompression.

    Science.gov (United States)

    Meisel, S; Nir, A; Kerem, D

    1981-02-01

    A mathematical model describing bubble dynamics in a perfused tissue undergoing decompression is presented, taking into account physical expansion and inward diffusion from surrounding supersaturated tissue as growth promoting factors and tissue gas elimination by perfusion, tissue elasticity, surface tension and inherent unsaturation as resolving driving forces. The expected behavior after a step reduction of pressure of a bubble initially existing in the tissue, displaying both growth and resolution has been demonstrated. A strong perfusion-dependence of bubble resolution time at low perfusion rates is apparent. The model can account for various exposure pressures and saturation fractions of any inert gas-tissue combination for which a set of physical and physiological parameters is available.

  11. Toward microtesla MRI of hyperpolarized carbon-13 for real-time metabolic imaging

    CERN Document Server

    Zotev, V S; Savukov, I M; Matlashov, A N; Gómez, J J; Espy, M A

    2009-01-01

    Hyperpolarization of carbon-13 is a promising technique that has enabled MR angiography, perfusion mapping, and real-time metabolic imaging of C-13 labeled organic substances with unprecedented signal-to-noise levels. Because the hyperpolarization is performed outside an MRI scanner (using a special NMR-style hyperpolarizer), high magnetic fields of conventional MRI systems offer little advantage in terms of achievable C-13 polarization. Here we propose an ultimate low-field MRI scanner for imaging hyperpolarized C-13. It uses only microtesla-range magnetic fields and employs SQUID (superconducting quantum interference device) sensors for broadband reception of MRI signals. We present the first images acquired by SQUID-based microtesla MRI with dynamic nuclear polarization (Overhauser enhancement). We also report the first NMR spectra of C-13 at microtesla fields, including spectra of metabolically relevant sodium pyruvate, bicarbonate, and alanine. Our results demonstrate feasibility and potential of the pro...

  12. Selection of Surviving Primary Protons at 4300 m a.s.l. with the ARGO-YBJ experiment

    CERN Document Server

    Di Sciascio, G

    2007-01-01

    The primary proton spectrum up to 100 TeV has been investigated by balloon- and satellite-borne instruments. Above this energy range only ground-based air shower arrays can measure the cosmic ray spectrum with a technique moderately sensitive to nuclear composition. An array which exploits the full coverage approach at very high altitude can achieve an energy threshold well below the TeV region, thus allowing, in principle, the inter-calibration of the measured proton content in the primary cosmic ray flux with the existing direct measurements from balloons/satellites. The capability of the ARGO-YBJ experiment, located at the YangBaJing Cosmic Ray Laboratory (4300 m a.s.l., Tibet, P.R. China), in selecting the surviving primary cosmic ray protons is discussed. A procedure looking for quasi-unaccompanied events with a very steep lateral distribution is also presented.

  13. CT and MR perfusion can discriminate severe cerebral hypoperfusion from perfusion absence: evaluation of different commercial software packages by using digital phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Uwano, Ikuko; Kudo, Kohsuke; Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Christensen, Soren [University of Melbourne, Royal Melbourne Hospital, Departments of Neurology and Radiology, Victoria (Australia); Oestergaard, Leif [Aarhus University Hospital, Department of Neuroradiology, Center for Functionally Integrative Neuroscience, DK, Aarhus C (Denmark); Ogasawara, Kuniaki; Ogawa, Akira [Iwate Medical University, Department of Neurosurgery, Morioka (Japan)

    2012-05-15

    Computed tomography perfusion (CTP) and magnetic resonance perfusion (MRP) are expected to be usable for ancillary tests of brain death by detection of complete absence of cerebral perfusion; however, the detection limit of hypoperfusion has not been determined. Hence, we examined whether commercial software can visualize very low cerebral blood flow (CBF) and cerebral blood volume (CBV) by creating and using digital phantoms. Digital phantoms simulating 0-4% of normal CBF (60 mL/100 g/min) and CBV (4 mL/100 g/min) were analyzed by ten software packages of CT and MRI manufacturers. Region-of-interest measurements were performed to determine whether there was a significant difference between areas of 0% and areas of 1-4% of normal flow. The CTP software detected hypoperfusion down to 2-3% in CBF and 2% in CBV, while the MRP software detected that of 1-3% in CBF and 1-4% in CBV, although the lower limits varied among software packages. CTP and MRP can detect the difference between profound hypoperfusion of <5% from that of 0% in digital phantoms, suggesting their potential efficacy for assessing brain death. (orig.)

  14. Perfusion magnetic resonance imaging characteristics of intracerebral tuberculomas and its role in differentiating tuberculomas from metastases

    Energy Technology Data Exchange (ETDEWEB)

    Sankhe, Shilpa; Baheti, Akshay [Dept. of Radiology, Seth GS Medical Coll. and KEM Hospital, Thane (India)], e-mail: akshaybaheti@gmail.com; Ihare, Ashish; Mathur, Shobhit; Dabhade, Poonam; Sarode, Ashish [Dept. of Radiology, Seth GS Medical Coll. and KEM Hospital, Thane (India)

    2013-04-15

    Background: Intracerebral tuberculomas usually manifest as ring-enhancing of nodular lesions on magnetic resonance imaging (MRI). These imaging findings are also observed in other lesions like metastases and toxoplasmosis. Purpose: To study the MRI perfusion characteristics of tuberculomas and its potential role in their definitive diagnosis. Material and Methods: Thirty-four tuberculomas were evaluated by conventional and perfusion MRI. The relative cerebral blood volume (rCBV) values of the center, peripheral wall, and perilesional neuroparenchymal tissue were calculated using rCBV maps. Ten ring-enhancing metastases were similarly evaluated and rCBV values of their peripheral walls were calculated. Results: Thirty-one of the 34 tuberculomas were ring-enhancing or conglomerate lesions and revealed hypoperfused centers with hyperperfused peripheral walls, with the mean rCBV {+-} SD being 0.42 {+-} 0.25 and 2.04 {+-} 0.61, respectively. Three nodular enhancing lesions showed predominantly homogenous hyperperfusion, with the mean rCBV measuring 2.96 {+-} 0.39 (mean {+-} SD). The perilesional neuroparenchyma was hypoperfused in both cases. The metastases revealed mean rCBV ratio of the peripheral wall to be 5.43 {+-} 2.1 (mean {+-} SD). Analysis of the values by ROC curve method revealed a cut-off value of {>=}3.745 for differentiating ring-enhancing metastases from ring-enhancing tuberculomas. Conclusion: Perfusion MR is a useful tool for the assessment of tuberculomas and can help differentiate them from neoplasms like metastases. It also has a potential role in monitoring therapy and for early detection of drug resistance.

  15. Feasibility of test-bolus DCE-MRI using CAIPIRINHA-VIBE for the evaluation of pancreatic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jimi; Seo, Nieun; Kim, Bohyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul (Korea, Republic of); Choi, Yoonseok; Woo, Dong-Cheol; Lee, Chang Kyung [Asan Medical Center, Bioimaging Center, Asan Institute for Life Sciences, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare, Seoul (Korea, Republic of); Nickel, Dominik [Siemens Healthcare, Erlangen (Germany); Kim, Kyung Won [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul (Korea, Republic of); Asan Medical Center, Bioimaging Center, Asan Institute for Life Sciences, Seoul (Korea, Republic of)

    2016-11-15

    To evaluate the feasibility of test-bolus dynamic contrast-enhanced (DCE) MRI with CAIPIRINHA-VIBE for pancreatic malignancies. Thirty-two patients underwent DCE-MRI with CAIPIRINHA-VIBE after injection of 2 mL gadolinium. From the resulting time-intensity curve (TIC), we estimated the arterial (AP) and portal venous phase (PVP) scan timing for subsequent multiphasic MRI. DCE-MRI perfusion maps were generated, and perfusion parameters were calculated. The image quality was rated on a 5-point scale (1: poor, 5: excellent). Goodness-of-fit of the TIC was evaluated by Pearson's χ{sup 2} test. Test-bolus DCE-MRIs with high temporal (3 s) and spatial resolution (1 x 1 x 4 mm{sup 3}) were acquired with good-quality perfusion maps of Ktrans and iAUC (mean score 4.313 ± 0.535 and 4.125 ± 0.554, respectively). The mean χ{sup 2} values for fitted TICs were 0.115 ± 0.082 for the pancreatic parenchyma and 0.784 ± 0.074 for pancreatic malignancies, indicating an acceptable goodness-of-fit. Test-bolus DCE-MRI was highly accurate in estimating the proper timing of AP (90.6 %) and PVP (100 %) of subsequent multiphasic MRI. Between pancreatic adenocarcinomas and neuroendocrine tumours, there were significant differences in the Ktrans (0.073 ± 0.058 vs. 0.308 ± 0.062, respectively; p = 0.007) and iAUC (1.501 ± 0.828 vs. 3.378 ± 0.378, respectively; p = 0.045). Test-bolus DCE-MRI using CAIPIRINHA-VIBE is feasible for incorporating perfusion analysis of pancreatic tumours into routine multiphasic MRI. (orig.)

  16. Perfusion visualization and analysis for pulmonary embolism

    Science.gov (United States)

    Vaz, Michael S.; Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Given the nature of pulmonary embolism (PE), timely and accurate diagnosis is critical. Contrast enhanced high-resolution CT images allow physicians to accurately identify segmental and sub-segmental emboli. However, it is also important to assess the effect of such emboli on the blood flow in the lungs. Expanding upon previous research, we propose a method for 3D visualization of lung perfusion. The proposed method allows users to examine perfusion throughout the entire lung volume at a single glance, with areas of diminished perfusion highlighted so that they are visible independent of the viewing location. This may be particularly valuable for better accuracy in assessing the extent of hemodynamic alterations resulting from pulmonary emboli. The method also facilitates user interaction and may help identify small peripheral sub-segmental emboli otherwise overlooked. 19 patients referred for possible PE were evaluated by CT following the administration of IV contrast media. An experienced thoracic radiologist assessed the 19 datasets with 17 diagnosed as being positive for PE with multiple emboli. Since anomalies in lung perfusion due to PE can alter the distribution of parenchymal densities, we analyzed features collected from histograms of the computed perfusion maps and demonstrate their potential usefulness as a preliminary test to suggest the presence of PE. These histogram features also offer the possibility of distinguishing distinct patterns associated with chronic PE and may even be useful for further characterization of changes in perfusion or overall density resulting from associated conditions such as pneumonia or diffuse lung disease.

  17. Pharmacoeconomic aspects related to the 13-valent pneumococcal conjugate vaccine: preliminary analysis of the data from the ASL of Viterbo

    Directory of Open Access Journals (Sweden)

    Dari Silvia

    2014-12-01

    Full Text Available INTRODUCTION: Streptococcus pneumoniae is a pathogen of considerable importance to public health because it causes morbidity and mortality on the world population. It has more than 90 serotypes with different epidemiological characteristics and pathogenicity. Some categories of the population are particularly vulnerable to infection. The Regional Plan for the Prevention of Lazio for vaccination, based on the national plan for the prevention for vaccination involves the active offer of vaccination no 13-valent PCV, with a target of at least 90% in children 24 months of age.OBJECTIVE: To begin to assess the real economic impact of disease attributable to Pneumococcus, starting from the analysis of hospital discharge records (SDO of the Viterbo's ASL.METHODS: The model is structured follows the observational approach of 33 months, from January 2012 to September 2014, selecting the SDO with a principal diagnosis of Streptococcus Pneumoniae diseases and those with a principal diagnosis of respiratory diseases without etiological diagnosis, which, with good approximation, it can be considered responsible for Streptococcus pneumoniae 40%.RESULTS: From the preliminary analysis of the data, evaluating only patients diagnosed due to Pneumococcus, is known as the only pediatric cases hospitalized are between 0 and 1 year. Therefore one might assume that vaccination disbursed to the child population with 13-valent PCV, has ensured effective protection to persons of the age group 2-18 years.CONCLUSIONS: The importance of this study is the observation conducted on an ASL, (similar in size and catchment area to many Italian realty of the vaccination coverage effects, as provided by PRPV Lazio Region, on hospitalizations by Pneumococcus. The study offers a moment of reflection for decision makers, as it would be interesting to conduct pharmacoeconomic’s analysis in the presence of vaccination strategies extended to adults, especially for those at risk

  18. New literacies, multiple literacies, unlimited literacies: what now, what next, where to? A response to blue listerine, parochialism and ASL literacy.

    Science.gov (United States)

    Paul, Peter V

    2006-01-01

    This article is a response to Blue Listerine, Parochialism, and ASL Literacy (Czubek, 2006). The author presents his views on the concepts of literacy and the new and multiple literacies. In addition, the merits of print literacy and other types of literacies are discussed. Although the author agrees that there is an American Sign Language (ASL) literacy, he maintains that there should be a distinction between conversational "literacy" forms (speech and sign) and secondary literacy forms (reading and writing). It might be that cognitive skills associated with print literacy and, possibly, other captured literacy forms, are necessary for a technological, scientific-driven society such as that which exists in the United States.

  19. MRI in psychiatry

    Energy Technology Data Exchange (ETDEWEB)

    Mulert, Christoph [UKE, Hamburg (Germany). Psychiatry Neuroimaging Branch; Shenton, Martha E. (ed.) [Harvard Medical School, Boston, MA (United States). Dept. of Psychiatry and Radiology

    2014-07-01

    This is the first comprehensive textbook on the use of MRI in psychiatry covering imaging techniques, brain systems and a review of findings in different psychiatric disorders. The book is divided into three sections, the first of which covers in detail all the major MRI-based methodological approaches available today, including fMRI, EEG-fMRI, DTI, and MR spectroscopy. In addition, the role of MRI in imaging genetics and combined brain stimulation and imaging is carefully explained. The second section provides an overview of the different brain systems that are relevant for psychiatric disorders, including the systems for perception, emotion, cognition, and reward. The final part of the book presents the MRI findings that are obtained in all the major psychiatric disorders using the previously discussed techniques. Numerous carefully chosen images support the informative text, making this an ideal reference work for all practitioners and trainees with an interest in this flourishing field.

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head ... limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is ...

  1. MRI brain imaging.

    Science.gov (United States)

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  2. Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging

    NARCIS (Netherlands)

    M. Draijer; E. Hondebrink; T. van Leeuwen; W. Steenbergen

    2009-01-01

    We present the Twente Optical Perfusion Camera (TOPCam), a novel laser Doppler Perfusion Imager based on CMOS technology. The tissue under investigation is illuminated and the resulting dynamic speckle pattern is recorded with a high speed CMOS camera. Based on an overall analysis of the signal-to-n

  3. Regional cortical hyper perfusion on perfusion CT during postical motor deficit: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Hye Jin [Dept. of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2013-08-15

    Postictal neurologic deficit is a well-known complication mimicking the manifestation of a stroke. We present a case of a patient with clinical evidence of Todd's paralysis correlating with reversible postictal parenchymal changes on perfusion CT and magnetic resonance (MR) imaging. In this case, perfusion CT and MR imaging were helpful in the differential diagnosis of stroke-mimicking conditions.

  4. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Science.gov (United States)

    Ghisleni, Carmen; Bollmann, Steffen; Biason-Lauber, Anna; Poil, Simon-Shlomo; Brandeis, Daniel; Martin, Ernst; Michels, Lars; Hersberger, Martin; Suckling, John; Klaver, Peter; O'Gorman, Ruth L

    2015-01-01

    Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS) as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women). Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  5. Effects of Steroid Hormones on Sex Differences in Cerebral Perfusion.

    Directory of Open Access Journals (Sweden)

    Carmen Ghisleni

    Full Text Available Sex differences in the brain appear to play an important role in the prevalence and progression of various neuropsychiatric disorders, but to date little is known about the cerebral mechanisms underlying these differences. One widely reported finding is that women demonstrate higher cerebral perfusion than men, but the underlying cause of this difference in perfusion is not known. This study investigated the putative role of steroid hormones such as oestradiol, testosterone, and dehydroepiandrosterone sulphate (DHEAS as underlying factors influencing cerebral perfusion. We acquired arterial spin labelling perfusion images of 36 healthy adult subjects (16 men, 20 women. Analyses on average whole brain perfusion levels included a multiple regression analysis to test for the relative impact of each hormone on the global perfusion. Additionally, voxel-based analyses were performed to investigate the sex difference in regional perfusion as well as the correlations between local perfusion and serum oestradiol, testosterone, and DHEAS concentrations. Our results replicated the known sex difference in perfusion, with women showing significantly higher global and regional perfusion. For the global perfusion, DHEAS was the only significant predictor amongst the steroid hormones, showing a strong negative correlation with cerebral perfusion. The voxel-based analyses revealed modest sex-dependent correlations between local perfusion and testosterone, in addition to a strong modulatory effect of DHEAS in cortical, subcortical, and cerebellar regions. We conclude that DHEAS in particular may play an important role as an underlying factor driving the difference in cerebral perfusion between men and women.

  6. GPU-accelerated voxelwise hepatic perfusion quantification.

    Science.gov (United States)

    Wang, H; Cao, Y

    2012-09-07

    Voxelwise quantification of hepatic perfusion parameters from dynamic contrast enhanced (DCE) imaging greatly contributes to assessment of liver function in response to radiation therapy. However, the efficiency of the estimation of hepatic perfusion parameters voxel-by-voxel in the whole liver using a dual-input single-compartment model requires substantial improvement for routine clinical applications. In this paper, we utilize the parallel computation power of a graphics processing unit (GPU) to accelerate the computation, while maintaining the same accuracy as the conventional method. Using compute unified device architecture-GPU, the hepatic perfusion computations over multiple voxels are run across the GPU blocks concurrently but independently. At each voxel, nonlinear least-squares fitting the time series of the liver DCE data to the compartmental model is distributed to multiple threads in a block, and the computations of different time points are performed simultaneously and synchronically. An efficient fast Fourier transform in a block is also developed for the convolution computation in the model. The GPU computations of the voxel-by-voxel hepatic perfusion images are compared with ones by the CPU using the simulated DCE data and the experimental DCE MR images from patients. The computation speed is improved by 30 times using a NVIDIA Tesla C2050 GPU compared to a 2.67 GHz Intel Xeon CPU processor. To obtain liver perfusion maps with 626 400 voxels in a patient's liver, it takes 0.9 min with the GPU-accelerated voxelwise computation, compared to 110 min with the CPU, while both methods result in perfusion parameters differences less than 10(-6). The method will be useful for generating liver perfusion images in clinical settings.

  7. SU-E-I-36: A KWIC and Dirty Look at Dose Savings and Perfusion Metrics in Simulated CT Neuro Perfusion Exams

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J; Martin, T; Young, S; McNitt-Gray, M; Wang, D [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: CT neuro perfusion scans are one of the highest dose exams. Methods to reduce dose include decreasing the number of projections acquired per gantry rotation, however conventional reconstruction of such scans leads to sampling artifacts. In this study we investigated a projection view-sharing reconstruction algorithm used in dynamic MRI – “K-space Weighted Image Contrast” (KWIC) – applied to simulated perfusion exams and evaluated dose savings and impacts on perfusion metrics. Methods: A FORBILD head phantom containing simulated time-varying objects was developed and a set of parallel-beam CT projection data was created. The simulated scans were 60 seconds long, 1152 projections per turn, with a rotation time of one second. No noise was simulated. 5mm, 10mm, and 50mm objects were modeled in the brain. A baseline, “full dose” simulation used all projections and reduced dose cases were simulated by downsampling the number of projections per turn from 1152 to 576 (50% dose), 288 (25% dose), and 144 (12.5% dose). KWIC was further evaluated at 72 projections per rotation (6.25%). One image per second was reconstructed using filtered backprojection (FBP) and KWIC. KWIC reconstructions utilized view cores of 36, 72, 144, and 288 views and 16, 8, 4, and 2 subapertures respectively. From the reconstructed images, time-to-peak (TTP), cerebral blood flow (CBF) and the FWHM of the perfusion curve were calculated and compared against reference values from the full-dose FBP data. Results: TTP, CBF, and the FWHM were unaffected by dose reduction (to 12.5%) and reconstruction method, however image quality was improved when using KWIC. Conclusion: This pilot study suggests that KWIC preserves image quality and perfusion metrics when under-sampling projections and that the unique contrast weighting of KWIC could provided substantial dose-savings for perfusion CT scans. Evaluation of KWIC in clinical CT data will be performed in the near future. R01 EB014922, NCI

  8. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... information on the chemicals present in the body's cells, may also be performed during the MRI exam ... medically necessary. MRI may not always distinguish between cancer tissue and fluid, known as edema . MRI typically ...

  9. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI of the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive ... of page What are some common uses of the procedure? MR imaging of the head is performed ...

  10. Voxel-based evidence of perfusion normalization in glioblastoma patients included in a phase I-II trial of radiotherapy/tipifarnib combination.

    Science.gov (United States)

    Ken, Soléakhéna; Deviers, Alexandra; Filleron, Thomas; Catalaa, Isabelle; Lotterie, Jean-Albert; Khalifa, Jonathan; Lubrano, Vincent; Berry, Isabelle; Péran, Patrice; Celsis, Pierre; Moyal, Elizabeth Cohen-Jonathan; Laprie, Anne

    2015-09-01

    We previously showed that the farnesyl transferase inihibitor, Tipifarnib induced vascularization normalization, oxygenation and radiosensitization in a pre-clinical glioblastoma (GBM) model. The aim of this study was to assess by dynamic-susceptibility-contrast MRI (DSC-MRI) the effect of radiotherapy (RT) and Tipifarnib combination on tumor perfusion in GBM patients. Eighteen patients with newly diagnosed GBM, enrolled in a phase I-II clinical trial associating RT with Tipifarnib, underwent anatomical MR imaging and DSC-MRI before (M0) and two months after treatment (M2). Anatomic volumes of interest (VOIs) were delineated according to contrast-enhanced and hyper-intense signal areas on T1-Gd and T2 images, respectively. Perfusion variations between M0 and M2 were assessed with median relative cerebral blood volume (rCBV) inside these VOIs. Another voxel by voxel analysis of CBV values classified 405,117 tumor voxels into High_, Normal_ and Low_CBVTUMOR according to the distribution of CBV in the contralateral normal tissue. These three categories of CBVTUMOR voxels were color-coded over anatomical MRI. Variations of median rCBV were significantly different for two groups of patients (P  1) and rCBV increased when initial rCBV was color-coded voxels provided additional spatial and quantitative information about tumor perfusion: Group_rCBV_M0 > 1 presented a significant decrease of High_CBVTUMOR volume (P = 0.015) simultaneously with a significant increase of Normal_CBVTUMOR volume (P = 0.009) after treatment. Group_rCBV_M0 perfusion evolution in GBM patients treated with RT combined to Tipifarnib; showing variations in favour of tumor perfusion normalization in agreement with our pre-clinical results of vascular normalization.

  11. The Relation Between Perfusion Pattern of Hepatic Artery Perfusion Scintigraphy and Response to Y-90 Microsphere Therapy

    Directory of Open Access Journals (Sweden)

    Bilge Volkan-Salancı

    2013-12-01

    Full Text Available Objective: Hepatic artery perfusion scintigraphy is a routine procedure for patient evaluation before Y-90 radiomicrosphere therapy and mostly used for prediction of extrahepatic leakage. Moreover, it also displays perfusion pattern of tumours, which is an important parameter on success of the therapy. The aim of this study is to assess the relation between the perfusion pattern on hepatic artery perfusion scintigraphy and radiomicrosphere therapy response. Methods: A total of 99 radiomicrosphere therapy applications were carried out in 80 patients (M/F: 55/25. Results: Heterogeneous and diffuse perfusion patterns were observed in 47 patients and 52 patients, respectively. The patients with diffuse perfusion pattern had better therapy response both on FDG PET/CT (p= 0.04 and CT (p=0.008 when compared to those with heterogenous perfusion pattern. Conclusion: Perfusion pattern observed on hepatic artery perfusion scintigraphy may be a successful predictor of early response to radiomicrosphere therapy

  12. Partially independent component analysis of tumor heterogeneities by DCE-MRI

    Science.gov (United States)

    Zhang, JunYing; Srikanchana, Rujirutana; Xuan, Jianhua; Choyke, Peter; Li, King; Wang, Yue J.

    2003-05-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has emerged as an effective tool to access tumor vascular characteristics. DCE-MRI can be used to characterize noninvasively, microvasculature providing information about tumor microvessel structure and function (e.g., tumor blood volume, vascular permeability, tumor perfusion). However, pixels of DCE-MRI represent a composite of more than one distinct functional biomarker (e.g., microvessels with fast or slow perfusion) whose spatial distributions are often heterogeneous. Complementary to various existing methods (e.g., compartment modeling, factor analysis), this paper proposes a blind source separation method which allows for a computed simultaneous imaging of multiple biomarkers from composite DCE-MRI sequences. The algorithm is based on a partially-independent component analysis, whose parameters are estimated using a subset of informative pixels defining the independent portion of the observations. We demonstrate the principle of the approach on simulated image data set, and we then apply the method to the tissue heterogeneity characterization of breast tumors where spatial distribution of tumor blood volume, vascular permeability, and tumor perfusion, as well as their time activity curves (TACs) are simultaneously estimated.

  13. Pollen and plant macrofossils at Lac de Fully (2135 m a.s.l.): Holocene forest dynamics on a highland plateau in the Valais, Switzerland

    NARCIS (Netherlands)

    Finsinger, W.; Tinner, W.

    2007-01-01

    We use pollen, stomata and plant-macrofossil records to infer Holocene timberline fluctuations and changes in forest composition at Lac Supérieur de Fully (2135 m a.s.l.), a small lake located near the modern regional timberline on a highland plateau in the Central Alps. Our records suggest that dur

  14. MRI and ultrasound in children with juvenile chronic arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Lamer, S.; Sebag, G.H

    2000-02-01

    In this era of advancing imaging technology, a knowledge of the relative values of available imaging techniques is necessary to optimize the management of children with juvenile chronic arthritis (JCA). After clinical examination, plain films remain the initial investigation. The need for radiation protection must be a priority in children with JCA. Conventional radiographs allow grouping of the various arthritides (on the base of the distribution and pattern of joint space changes) and staging of disease progression. Ultrasound (US) is very sensitive in the detection of joint effusions, especially in the hip, and guides fluid aspiration. US and Doppler can be used for the evaluation of synovial hypertrophy and activity. Arthrography and to a certain extent nuclear studies have been replaced by magnetic resonance imaging (MRI). MRI can demonstrate articular cartilage, joint effusion, synovial hypertrophy, cortical and medullary bone, cartilage and bone perfusion, and fibrocartilaginous structures (menisci and ligaments). Contrast enhanced MRI is the most sensitive modality to determine whether an arthritic condition is present. However, it does not assist in establishing a specific diagnosis. MRI determines accurately the activity and the extent of the disease and is particularly useful in the early detection of articular damage. Finally, MRI is of major importance in the evaluation of response to local therapy (especially steroids) and the detection of complications.

  15. Standardized perfusion value of the esophageal carcinoma and its correlation with quantitative CT perfusion parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Djuric-Stefanovic, A., E-mail: avstefan@eunet.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Saranovic, Dj., E-mail: crvzve4@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Sobic-Saranovic, D., E-mail: dsobic2@gmail.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia); Masulovic, D., E-mail: draganmasulovic@yahoo.com [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Unit of Digestive Radiology (First University Surgical Clinic), Center of Radiology and MR, Clinical Center of Serbia, Belgrade (Serbia); Artiko, V., E-mail: veraart@beotel.rs [Faculty of Medicine, University of Belgrade, Belgrade (Serbia); Center of Nuclear Medicine, Clinical Center of Serbia, Belgrade (Serbia)

    2015-03-15

    Purpose: Standardized perfusion value (SPV) is a universal indicator of tissue perfusion, normalized to the whole-body perfusion, which was proposed to simplify, unify and allow the interchangeability among the perfusion measurements and comparison between the tumor perfusion and metabolism. The aims of our study were to assess the standardized perfusion value (SPV) of the esophageal carcinoma, and its correlation with quantitative CT perfusion measurements: blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) of the same tumor volume samples, which were obtained by deconvolution-based CT perfusion analysis. Methods: Forty CT perfusion studies of the esophageal cancer were analyzed, using the commercial deconvolution-based CT perfusion software (Perfusion 3.0, GE Healthcare). The SPV of the esophageal tumor and neighboring skeletal muscle were correlated with the corresponding mean tumor and muscle quantitative CT perfusion parameter values, using Spearman's rank correlation coefficient (r{sub S}). Results: Median SPV of the esophageal carcinoma (7.1; range: 2.8–13.4) significantly differed from the SPV of the skeletal muscle (median: 1.0; range: 0.4–2.4), (Z = −5.511, p < 0.001). The cut-off value of the SPV of 2.5 enabled discrimination of esophageal cancer from the skeletal muscle with sensitivity and specificity of 100%. SPV of the esophageal carcinoma significantly correlated with corresponding tumor BF (r{sub S} = 0.484, p = 0.002), BV (r{sub S} = 0.637, p < 0.001) and PS (r{sub S} = 0.432, p = 0.005), and SPV of the skeletal muscle significantly correlated with corresponding muscle BF (r{sub S} = 0.573, p < 0.001), BV (r{sub S} = 0.849, p < 0.001) and PS (r{sub S} = 0.761, p < 0.001). Conclusions: We presented a database of the SPV for the esophageal cancer and proved that SPV of the esophageal neoplasm significantly differs from the SPV of the skeletal muscle, which represented a sample of healthy

  16. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    Science.gov (United States)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  17. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T. [Clinic for Orthopaedics and Sports Traumatology, Dreifaltigkeits-Krankenhaus GmbH, Aachener Str. 445-449, 50933 Koeln (Germany); Drescher, W. [Department of Orthopaedics, Christian Albrechts University, Kiel (Germany); Becker, C. [Department of Orthopaedics, Heinrich Heine University, Duesseldorf (Germany); Sangill, R.; Stoedkilde-Joergensen, H. [Institute for Magnetic Resonance Imaging Tomography, University of Aarhus, Skejby Hospital, Aarhus (Denmark); Heydthausen, M. [Computing Center, Heinrich Heine University, Duesseldorf (Germany); Hansen, E.S.; Buenger, C. [Spine Section, Department of Orthopaedics, University of Aarhus (Denmark)

    2003-02-01

    To examine the potential of gadolinium (Gd)-enhanced dynamic MRI in the detection of early femoral head ischemia. Furthermore, to apply a three-compartment model to achieve a clinically applicable MR index for femoral head perfusion during the steady state and arterial hip joint tamponade.Design and materials In a porcine model femoral head perfusion was measured by radioactive tracer microspheres and by using a dynamic Gd-enhanced MRI protocol. Femoral head perfusion measurements and MRI tests were performed unilaterally before, during and after the experimentally induced ischemia of one of the hip joints. Ischemia was induced by increasing intra-articular pressure to 250 mmHg. All pigs showed ischemia of the femoral head epiphysis under hip joint tamponade followed by reperfusion to the same level as before joint tamponade. In two cases perfusion after removal of tamponade continued to be low. In dynamic MRI measurements increases in signal intensity were seen after intravenous infusion of Gd-DTPA, followed by a slow decrease in signal intensity. The signal-intensity curve during femoral head ischemia had a minor increase. Also the coefficient determined was a helpful indicator of femoral head ischemia. Femoral head blood flow as measured by microspheres fell significantly under joint tamponade. Early detection of this disturbed regional blood flow was possible using a dynamic MRI procedure. A biomathematical model resulted from the evaluation of the intervals of signal intensity over time which allows detection of bone blood flow changes at a very early stage. Using this new method earlier detection of femoral head necrosis may be possible. (orig.)

  18. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  19. Perfusion computed tomography for diffuse liver diseases; Perfusions-CT bei diffusen Lebererkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, S.A.; Juchems, M.S. [Universitaetsklinikum Ulm, Klinik fuer Diagnostische und Interventionelle Radiologie, Ulm (Germany)

    2012-08-15

    Perfusion computed tomography (CT) has its main application in the clinical routine diagnosis of neuroradiological problems. Polyphase multi-detector spiral computed tomography is primarily used in liver diagnostics. The use of perfusion CT is also possible for the diagnostics and differentiation of diffuse hepatic diseases. The differentiation between cirrhosis and cirrhosis-like parenchymal changes is possible. It also helps to detect early stages of malignant tumors. However, there are some negative aspects, particularly that of radiation exposure. This paper summarizes the technical basics and possible applications of perfusion CT in cases of diffuse liver disease and weighs up the advantages and disadvantages of the examinations. (orig.) [German] Die Perfusions-CT hat ihren hauptsaechlichen Stellenwert bislang in der klinischen Routinediagnostik bei neuroradiologische Fragestellungen. In der Leberdiagnostik kommt v. a. die mehrphasige Multidetektor-Spiral-CT-Untersuchung zum Einsatz. Die Anwendung der Perfusions-CT ist auch bei der Diagnostik und Differenzierung diffuser Lebererkrankungen moeglich. Die Unterscheidung zwischen einer Leberzirrhose und zirrhoseaehnlichen Parenchymveraenderungen ist mit der Perfusions-CT moeglich. Ebenso liefert sie einen wertvollen Beitrag zur Diagnostik bei der Frueherkennung entstehender maligner Herdbefunde. Diesen Vorteilen stehen jedoch auch einige negative Aspekte gegenueber, insbesondere die relativ hohe Strahlenexposition. Die vorliegende Arbeit soll einen Ueberblick ueber die technischen Grundlagen und die Anwendungsmoeglichkeiten der Perfusions-CT bei diffusen Lebererkrankungen geben sowie die Vor- und Nachteile der Untersuchung gegeneinander abwaegen. (orig.)

  20. Schizophrenia patients differentiation based on MR vascular perfusion and volumetric imaging

    Science.gov (United States)

    Spanier, A. B.; Joskowicz, L.; Moshel, S.; Israeli, D.

    2015-03-01

    Candecomp/Parafac Decomposition (CPD) has emerged as a framework for modeling N-way arrays (higher-order matrices). CPD is naturally well suited for the analysis of data sets comprised of observations of a function of multiple discrete indices. In this study we evaluate the prospects of using CPD for modeling MRI brain properties (i.e. brain volume and gray-level) for schizophrenia diagnosis. Taking into account that 3D imaging data consists of millions of pixels per patient, the diagnosis of a schizophrenia patient based on pixel analysis constitutes a methodological challenge (e.g. multiple comparison problem). We show that the CPD could potentially be used as a dimensionality redaction method and as a discriminator between schizophrenia patients and match control, using the gradient of pre- and post Gd-T1-weighted MRI data, which is strongly correlated with cerebral blood perfusion. Our approach was tested on 68 MRI scans: 40 first-episode schizophrenia patients and 28 matched controls. The CPD subject's scores exhibit statistically significant result (P schizophrenia with MRI, the results suggest that the CPD could potentially be used to discriminate between schizophrenia patients and matched control. In addition, the CPD model suggests for brain regions that might exhibit abnormalities in schizophrenia patients for future research.

  1. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Ultrasound- and MRI-Guided Prostate Biopsy Ultrasound- and MRI-guided prostate ... MRI-guided Prostate Biopsy? What is Ultrasound- and MRI-guided Prostate Biopsy? Ultrasound- and MRI-guided prostate ...

  2. Ultrasound- and MRI-Guided Prostate Biopsy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound- and MRI-Guided Prostate Biopsy Ultrasound- and MRI- ... Ultrasound-and MRI-guided Prostate Biopsy? What is Ultrasound- and MRI-guided Prostate Biopsy? Ultrasound- and MRI- ...

  3. Hepatic abnormal perfusion visible by magnetic resonance imaging in acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Wei; tang; Xiao-Ming; Zhang; Zhao-Hua; Zhai; Nan-Lin; Zeng

    2013-01-01

    AIM:to study the prevalence and patterns of hepatic abnormal perfusion(HAP)visible by magnetic resonance imaging(MRI)in acute pancreatitis(AP).METHODS:Enhanced abdominal MRI was performed on 51 patients with AP.these patients were divided into two groups according to the MRI results:those with signs of gallstones,cholecystitis,common bile duct(CBD)stones or dilatation of the CBD on MRI and those without.the prevalence,shape and distribution of HAP in the two groups were analyzed and compared.the severity of AP was graded using the MR severity index(MRSI).the correlation between the MRSI and HAP was then analyzed.RESULTS:Of the 51 patients with AP,32(63%)showed at least one sign of gallbladder and CBD abnormalities on the MR images,while 19(37%)showed no sign of gallbladder or CBD abnormalities.Nineteen patients(37%)had HAP visible in the enhanced images,including strip-,wedge-or patch-shaped HAP distributed in the hepatic tissue adjacent to the gallbladder and left and right liver lobes.there were no significant differences in the prevalence of HAP(χ2=0.305,P=0.581>0.05)or HAP distribution in the liver(χ2=2.181,P=0.536>0.05)between patients with and without gallbladder and CBD abnormalities.there were no significant differences in the MRSI score between patients with and without HAP(t=0.559,P=0.552>0.05).HAP was not correlated with the MRSI score.CONCLUSION:HAP is common in patients with AP and appears strip-,patch-or wedge-shaped on MRI.HAP on MRI cannot be used to indicate the severity of AP.

  4. MR imaging in the evaluation of isolated limb perfusion: a prospective study of 18 cases

    Energy Technology Data Exchange (ETDEWEB)

    Vanel, Daniel; Petrow, Peter; Dromain, Clarisse; Caillet, Hubert [Department of Radiology, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex (France); Bonvalot, Sylvie [Department of Surgery, Institut Gustave-Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex (France); Guinebretiere, Jean Marc [Department of Pathology, Centre Rene-Huguenin, 35 rue Dailly, 92210, Saint-Cloud (France)

    2004-03-01

    To prospectively evaluate the use of MRI with dynamic sequences during isolated limb perfusion (ILP) for soft tissue sarcomas, an aggressive local treatment using very high-dose chemotherapy and tumor necrosis factor aimed at avoiding limb amputation. Twenty-six patients were referred for ILP over one and a half years; eight were excluded as the lesions were either too proximal or suspicious inflammatory changes without tumor were found on the initial MRI, or the vascular status was poor. The indications for ILP were: vessel nerve involvement (13), multiple lesions (8), tumor size (4) or the presence of pulmonary metastases (2). MRI was performed 1 and 2 months after ILP, immediately prior to surgery and histological analysis. The MR examinations included T1-weighted SE and fast SE T2-weighted fat-saturated sequences, as well as dynamic sequences (T1-weighted SE repeated six times every 40 s), displaying the maximum intensity slope in each pixel. The tumor had disappeared in three patients. One patient still had histologically proven isolated widespread tumor cells without a mass. The tumor size had increased in two patients. In six patients, the size of the tumor had not changed but it had become completely necrotic, with a thin wall.In three patients, after an initially good result MRI demonstrated that the tumor wall had become thickened from 1 to 2 months after ILP. Dynamic MRI was mainly useful during the initial examination, demonstrating two patients with inflammatory changes without tumor. Three amputations and a second ILP were proposed based on poor results. Conservative limb-sparing surgery was successful in the other cases. MRI proved valuable in demonstrating the variable responses to ILP. (orig.)

  5. Quantitative multiparametric MRI in uveal melanoma: increased tumor permeability may predict monosomy 3

    Energy Technology Data Exchange (ETDEWEB)

    Kamrava, Mitchell; Wang, Pin-Chieh; Roberts, Kristofer; Demanes, D.J. [University of California Los Angeles, Department of Radiation Oncology, Los Angeles, CA (United States); Sepahdari, Ali R.; Leu, Kevin; Ellingson, Benjamin M. [University of California Los Angeles, Department of Radiological Sciences, Los Angeles, CA (United States); McCannel, Tara [University of California Los Angeles, Department of Ophthalmology, Los Angeles, CA (United States)

    2015-08-15

    Uveal melanoma is a rare intraocular tumor with heterogeneous biological behavior, and additional noninvasive markers that may predict outcome are needed. Diffusion- and perfusion-weighted imaging may prove useful but have previously been limited in their ability to evaluate ocular tumors. Our purpose was to show the feasibility and potential value of a multiparametric (mp-) MRI protocol employing state of the art diffusion- and perfusion-weighted imaging techniques. Sixteen patients with uveal melanoma were imaged with mp-MRI. Multishot readout-segmented echoplanar diffusion-weighted imaging, quantitative dynamic contrast-enhanced (DCE) MR perfusion imaging, and anatomic sequences were obtained. Regions of interest (ROIs) were drawn around tumors for calculation of apparent diffusion coefficient (ADC) and perfusion metrics (K{sup trans}, v{sub e}, k{sub ep}, and v{sub p}). A generalized linear fit model was used to compare various MRI values with the American Joint Commission on Cancer (AJCC) tumor group and monosomy 3 status with significance set at P < 0.05. mp-MRI was performed successfully in all cases. MRI tumor height (mean [standard deviation]) was 6.5 mm (3.0). ROI volume was 278 mm{sup 3} (222). ADC was 1.07 (0.27) x 10-3 mm{sup 2}/s. DCE metrics were K{sup trans} 0.085/min (0.063), v{sub e} 0.060 (0.052), k{sub ep} 1.20/min (0.32), and v{sub p} 1.48 % (0.82). Patients with >33 % monosomy 3 had higher K{sup trans} and higher v{sub e} values than