WorldWideScience

Sample records for asian summer monsoon

  1. DETERMINATION OF SOUTH CHINA SEA MONSOON ONSET AND EAST ASIAN SUMMER MONSOON INDEX

    Institute of Scientific and Technical Information of China (English)

    GAO-Hui; LIANG Jian-yin

    2006-01-01

    Results of the definition of South China Sea summer monsoon onset date and East Asian summer monsoon index in recent years are summarized in this paper. And more questions to be resolved are introduced later.

  2. Asian Summer Monsoon and its Associated Rainfall Variability in Thailand

    OpenAIRE

    Atsamon Limsakul

    2010-01-01

    The Asian monsoon is an important component of the Earth's climate. Its associated rainfall variability is a crucial fac¬tor for Thailand's socio-economic development, water resources and agricultural management. An analysis shows that the Thailand rainfall annual cycle is in phase with the Indian summer monsoon (ISM) and the western North Pacific summer monsoon (WNPSM). On the basis of the Empirical Orthogonal Function (EOF) analysis, the dominant spatial-temporal interannual variability in ...

  3. Asian Summer Monsoon Intraseasonal Variability in General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K R; Annamalai, H

    2004-02-24

    The goals of this report are: (1) Analyze boreal summer Asian monsoon intraseasonal variability general circulation models--How well do the models represent the eastward and northward propagating components of the convection and how well do the models represent the interactive control that the western tropical Pacific rainfall exerts on the rainfall over India and vice-versa? (2) Role of air-sea interactions--prescribed vs. interactive ocean; and (3) Mean monsoon vs. variability.

  4. A new index to describe the tropical Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    XU ZhongFeng; FU CongBin; QIAN YongFu

    2009-01-01

    We define a new monsoon index (MV) as the product of relative vorticity and equivalent potential tem-perature using the long-term NCEP/NCAR reanalysis data.The MV index provides new insights into the intraseasonal and interannual variabilities of the broad-scale tropical Asian summer monsoon (TASM),including the South Asian summer monsoon (SASM) and the South China Sea summer monsoon (SCSSM).On the intraseasonal timescale,the pentad-to-pentad MV index bears a close relationship to the broad-scale rainfall in the TASM regions.Among 29 summers from 1979 to 2007,in 23/27 summers the correlation coefficients are higher than 0.7 in the SASM/SCSSM region.However,in fewer than 9 summers,the correlations between the broad-scale rainfall and the existing circulation indices are higher than 0.7.On the interannual timescale,various existing SASM circulation indices are moderately or well correlated with all-India summer monsoon rainfall,whereas their correlations with broad-scale SASM rainfall are weak.In contrast,the summer mean MV index correlates well with the broad-scale SASM rainfall and all-India summer monsoon rainfall (correlation of 0.73 and 0.65,respectively).In the SCSSM region,the summer mean MV index also bears a close relationship to the SCSSM rainfall,al-though some discrepancies exist during certain years.The composite strong TASM shows a stronger low-tropospheric low pressure in association with the enhanced westerly winds and moisture transfer,stronger convection,and upper-tropospheric easterly winds,which indicate that the MV index can well capture the features of TASM.

  5. A new index to describe the tropical Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We define a new monsoon index (MV) as the product of relative vorticity and equivalent potential temperature using the long-term NCEP/NCAR reanalysis data. The MV index provides new insights into the intraseasonal and interannual variabilities of the broad-scale tropical Asian summer monsoon (TASM), including the South Asian summer monsoon (SASM) and the South China Sea summer monsoon (SCSSM). On the intraseasonal timescale, the pentad-to-pentad MV index bears a close relationship to the broad-scale rainfall in the TASM regions. Among 29 summers from 1979 to 2007, in 23/27 summers the correlation coefficients are higher than 0.7 in the SASM/SCSSM region. However, in fewer than 9 summers, the correlations between the broad-scale rainfall and the existing circulation indices are higher than 0.7. On the interannual timescale, various existing SASM circulation indices are moderately or well correlated with all-India summer monsoon rainfall, whereas their correlations with broad-scale SASM rainfall are weak. In contrast, the summer mean MV index correlates well with the broad-scale SASM rainfall and all-India summer monsoon rainfall (correlation of 0.73 and 0.65, respectively). In the SCSSM region, the summer mean MV index also bears a close relationship to the SCSSM rainfall, although some discrepancies exist during certain years. The composite strong TASM shows a stronger low-tropospheric low pressure in association with the enhanced westerly winds and moisture transfer, stronger convection, and upper-tropospheric easterly winds, which indicate that the MV index can well capture the features of TASM.

  6. Asian Summer Monsoon and its Associated Rainfall Variability in Thailand

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2010-07-01

    Full Text Available The Asian monsoon is an important component of the Earth's climate. Its associated rainfall variability is a crucial fac¬tor for Thailand's socio-economic development, water resources and agricultural management. An analysis shows that the Thailand rainfall annual cycle is in phase with the Indian summer monsoon (ISM and the western North Pacific summer monsoon (WNPSM. On the basis of the Empirical Orthogonal Function (EOF analysis, the dominant spatial-temporal interannual variability in summer monsoon rainfall (Jun.-Sep. during 1975-2006 could be explained by the first two EOF modes, accounting for 34% of the total variance. The EOF1 was spatially dominated by strong positive signals in the central and east, whereas the EOF2 exhibited dipole variability. The coefficient time series of EOF1 significantly correlated posi¬tively with ISM index, but negatively with WNPSM index. The results suggest that summer monsoon rainfall in Thailand is higher (lower than normal during the strengthening (weakening of ISM. In contrast, rainfall in the north-east (central is surplus (deficit during the strengthening (weakening of WNPSM. These findings imply that, on an interannual time scale, ISM and WNPSM exert their influence to a different extent on summer monsoon rainfall in Thailand. A clear picture of linking mechanisms and interactions with another climate mode in the Indo-Pacific sector needs to be understood. This knowledge is essential for effectively adapting to climate-related hazards and rainfall extremes and for better management of water resource and agriculture in Thailand, especially under current/future warming conditions.

  7. Inter-decadal variations,causes and future projection of the Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    Ding Yihui; Si Dong; Sun Ying; Liu Yanju; Song Yafang

    2014-01-01

    The present paper presents a concise summary of our recent studies on the Asian summer monsoon, with highting decadal and inter-decadal scales. The studies on the long-term variations of the Asian summer monsoon and its impacts on the change in the summer precipitation in China are reviewed. Moreover,recent changes in the Asian summer monsoon and summer precipitation in East Asia (including Meiyu precipitation) are discussed. Finally,the future changes of the Asian summer monsoon are also pointed out in this paper.

  8. The East Asian subtropical summer monsoon: Recent progress

    Science.gov (United States)

    He, Jinhai; Liu, Boqi

    2016-04-01

    The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction.

  9. The vorticity and angular momentum budgets of Asian summer monsoon

    Indian Academy of Sciences (India)

    P L S Rao; U C Mohanty; P V S Raju; M A Arain

    2004-09-01

    The study delineates the vorticity and angular momentum balances of Asian summer monsoon during the evolution and established phases. It also elucidates the differences between these balances in the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis and the National Centre for Medium Range Weather Forecasts (NCM- RWF) analysis fields. The NCEP/NCAR reanalysis for a 40 year period (1958-97) and the NCM- RWF analysis for a three year (1994-96) period are made use of for the purpose. The time mean summer monsoon circulation is bifurcated into stable mean and transient eddy components and the mean component is elucidated. The generation of vorticity due to stretching of isobars balances most of the vorticity transported out of the monsoon domain during the evolution period. However, during the established period, the transportation by the relative and planetary vorticity components exceeds the generation due to stretching. The effective balancing mechanism is provided by vorticity generation due to sub-grid scale processes. The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger during the established period due to the increase in the strength of circulation. Both the NCMRWF and NCEP fields indicate the mean features related to vorticity and angular momentum budgets realistically. Apart from the oceanic bias (strong circulation over oceans rather than continents), the summer monsoon circulation indicated by the NCEP is feeble compared to NCMRWF. The significant terms in the large-scale budgets of vorticity and angular momentum enunciate this aspect.

  10. The onset and advance of the Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the daily outgoing longwave radiation (OLR) data from National Oceanic and Atmospheric Administration (NOAA) satellites, the Climate Prediction Center's merged analysis of precipitation (CMAP) data and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset, the mean intraseasonal variability of the Asian summer monsoon (ASM) is investigated by using power spectrum analysis, band-pass filter, and diagnostic analyses. The processes of the onset and advance of monsoon over the southern part of Indochina Peninsula, the east coast of Bay of Bengal, the South China Sea and the Indian subcontinent are explored. It is found that there is an abrupt change in OLR, precipitation and zonal wind during the onset and advance of the ASM. It is also indicated that the southern part of Indochina Peninsula and the adjacent Andaman Sea is the region where the earliest onset of the ASM occurs in the 2nd pentad of May.

  11. Arabian Peninsula-North Pacific Oscillation and its association with the Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using correlation and EOF analyses on sea level pressure from 57-year NCEP-NCAR reanalysis data, the Arabian Peninsula-North Pacific Oscillation (APNPO) is identified. The APNPO reflects the co-variability between the North Pacific high and South Asian summer monsoon low. This teleconnec- tion pattern is closely related to the Asian summer monsoon. On interannual timescale, it co-varies with both the East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM); on decadal timescale, it co-varies with the EASM: both exhibit two abrupt climate changes in the middle 1960s and the late 1970s respectively. The possible physical process for the connections between the APNPO and Asian summer monsoon is then explored by analyzing the APNPO-related atmospheric circulations. The results show that with a strong APNPO, the Somali Jet, SASM flow, EASM flow, and South Asian high are all enhanced, and an anomalous anticyclone is produced at the upper level over northeast China via a zonal wave train. Meanwhile, the moisture transportation to the Asian monsoon regions is also strengthened in a strong APNPO year, leading to a strong moisture convergence over India and northern China. All these changes of circulations and moisture conditions finally result in an anoma- lous Asian summer monsoon and monsoon rainfall over India and northern China. In addition, the APNPO has a good persistence from spring to summer. The spring APNPO is also significantly corre- lated with Asian summer monsoon variability. The spring APNPO might therefore provide valuable in- formation for the prediction of Asian summer monsoon.

  12. Impact of irrigation on the South Asian summer monsoon

    Science.gov (United States)

    Saeed, Fahad; Hagemann, Stefan; Jacob, Daniela

    2009-10-01

    The Indian subcontinent is one of the most intensely irrigated regions of the world and state of the art climate models do not account for the representation of irrigation. Sensitivity studies with the regional climate model REMO show distinct feedbacks between the simulation of the monsoon circulation with and without irrigation processes. We find that the temperature and mean sea level pressure, where the standard REMO version without irrigation shows a significant bias over the areas of Indus basin, is highly sensitive to the water used for irrigation. In our sensitivity test we find that removal of this bias has caused less differential heating between land and sea masses. This in turns reduces the westerlies entering into land from Arabian Sea, hence creating conditions favorable for currents from Bay of Bengal to intrude deep into western India and Pakistan that have been unrealistically suppressed before. We conclude that the representation of irrigated water is unavoidable for realistic simulation of south Asian summer monsoon and its response under global warming.

  13. Response of Asian Summer Monsoon to CO2 Doubling

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; LIU Qinyu; HUANG Fei

    2011-01-01

    Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models,the Asian summer monsoon (ASM) response to CO2 doubling and the different responses among models are examined.Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation.Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream,weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea,and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia,the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker monsoon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.

  14. Atmospheric Circulation Characteristics Associated with the Onset of Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer monsoon is found to occur first over the southwestern part of the South China Sea (SCS)and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25°-28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500-200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet.

  15. Simulation of South-Asian Summer Monsoon in a GCM

    Science.gov (United States)

    Ajayamohan, R. S.

    2007-10-01

    Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.

  16. Asian-Pacific Oscillation index and variation of East Asian summer monsoon over the past millennium

    Institute of Scientific and Technical Information of China (English)

    ZHOU XiuJi; ZHAO Ping; LIU Ge

    2009-01-01

    To study the long-term variation of the East Asian summer monsoon (EASM), the Asian-Pacific Oscil-lation index (I_(APO)), representing a zonal thermal contrast between Asia and the North Pacific, is recon-structed over the past millennium. During the Little Ice Age (LIA), the variability of the reconstructed IAPO is closely linked to dry-wet anomalies in eastern China on the centennial scale. This correlation pattern is consistent with the observation during the current period, which suggests that the recon-structed IAPO may generally represent the centennial-scale variation of the EASM and rainfall anomalies over eastern China during the LIA.

  17. EFFECT OF THE INDIAN PENINSULA ON THE COURSE OF THE ASIAN TROPICAL SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    徐海明; 何金海; 董敏

    2001-01-01

    In terms of the NCAR Community Climate Model (CCM3), the effect of the Indian Peninsula on the course of the Asian tropical summer monsoon is simulated in this paper, and numerical experimental results show that the Indian Peninsula plays a critical role in the establishment process of the Asian tropical summer monsoon. When the CCM3 includes the Indian Peninsula,the model successfully simulates out the course of the Asian tropical summer monsoon, i.e. the South China Sea (SCS) summer monsoon at first bursts in middle May, while the Indian monsoon just establishes until middle June. However when the Indian Peninsula topography is deleted in the model, the Indian and SCS summer monsoons almost simultaneously establish in late May.Numerical results further indicate that in the former experiment the sensible heating of the Indian Peninsula warms the air above and produces evident temperature contrast between the peninsula and its adjacent SCS and Bay of Bengal (BOB), which results in the strengthening and maintenance of the BOB trough in the low-middle layer of the troposphere in the end of spring and early summer and thus the earliest establishment of the Asian tropical summer monsoon in the SCS in middle May. However, the Indian summer monsoon just establishes until middle June when the strong west wind over the Arabian Sea shifts northwards and cancels out the influence of the northwest flow behind the BOB trough. In the latter experiment the effect of Tibetan Plateau only produces a very weak BOB trough, and thus the SCS and Indian summer monsoons almost simultaneously establish.

  18. Structure and Propagation Characteristics of Climatological Mean Kinetic Energy of Disturbance of Intraseasonal Oscillation in Asian Summer Monsoon Zone

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the structure and propagation characteristics of climatological mean kinetic energy of disturbance of intraseasonal oscillation in Asian summer monsoon zone. [Method] When South China Sea monsoon started to break out, the kinetic energy of intraseasonal oscillation disturbance in the monsoon zone was analyzed, especially the researches about the variation of South China Sea monsoon, the development of Indian monsoon and the advancement of East Asian monsoon. [Result] ...

  19. Characteristics of the Onset of the Asian Summer Monsoon and the Importance of Asian-Australian "Land Bridge"

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on summarizing previous achievements and using data as long and new as possible, the onset characteristics of Asian summer monsoon and the role of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed. Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of the latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres),and the subsequent onset of South China Sea summer monsoon are emphasized.

  20. The Summer Monsoon Onset over the Tropical Eastern Indian Ocean: The Earliest Onset Process of the Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The onset process of the tropical eastern Indian Ocean (TEIO) summer monsoon (TEIOSM) and its relationship with the cross-equatorial flows are investigated via climatological analysis. Climatologically,results indicate that the earliest onset process of the Asian summer monsoon occurs over the TEIO at pentad 22 (April 15-20). Unlike the abrupt onset of the South China Sea (SCS) summer monsoon, the TEIOSM onset process displays a stepwise advance. Moreover, a close relationship between the TEIOSM development and the northward push of the cross-equatorial flows over 80°-90°E is revealed. A difference vorticity center, together with the counterpart over the southern Indian Ocean, constitutes a pair of difference cyclonic vortices, which strengthens the southwesterly wind over the TEIO and the northerly wind to the west of the Indian Peninsula from the end of March to late May. Therefore, the occurrence of the southwesterly wind over the TEIO is earlier than its counterpart over the tropical western Indian Ocean, and the cross-equatorial flows emerge firstly over the TEIO rather than over the Somali area.The former increases in intensity during its northward propagation, which provides a precondition for the TEIOSM onset and its northward advance.

  1. Subseasonal features of the Asian summer monsoon in the NCEP climate forecast system

    Institute of Scientific and Technical Information of China (English)

    Song YANG; WEN Min; R Wayne HIGGINS

    2008-01-01

    The operational climate forecast system (CFS) of the US National Centers for Environmental Prediction provides climate predic-tions over the world, and CFS products are becoming an important source of information for regional climate predictions in many Asian countries where monsoon climate dominates. Recent studies have shown that, on monthly-to-seasonal time-scales, the CFS is highly skillful in simulating and predicting the variability of the Asian monsoon. The higher-frequency variability of the Asian summer monsoon in the CFS is analyzed, using output from a version with a spectral triangular truncation of 126 waves in horizon-tal and 64 sigma layers in vertical, focusing on synoptic, quasi-biweekly, and intraseasonal time-scales. The onset processes of different regional monsoon components were investigated within Asia. Although the CFS generally overestimates variability of mon-soon on these time-scales, it successfully captures many major features of the variance patterns, especially for the synoptic time-scale. The CFS also captures the timing of summer monsoon onsets over India and the Indo-China Peninsula. However, it encoun-ters difficulties in simulating the onset of the South China Sea monsoon. The success and failure of the CFS in simulating the onset of monsoon precipitation can also be seen from the associated features of simulated atmospheric circulation processes. Overall, the CFS is capable of simulating the synoptic-to-intraseasonal variability of the Asian summer monsoon with skills. As for seasonal-to-interannual time-scales shown previously, the model is expected to possess a potential for skillful predictions of the high-frequencyvariability of the Asian monsoon.

  2. See-saw relationship of the Holocene East Asian-Australian summer monsoon

    Science.gov (United States)

    Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F. M.; Marwan, Norbert; Kurths, Jürgen

    2016-09-01

    The East Asian-Indonesian-Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian-Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could `lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see-saw relationship over the last 9,000 years--with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime.

  3. An improved south Asian summer monsoon index with Monte Carlo test

    Institute of Scientific and Technical Information of China (English)

    Shi Neng; Gu Jun-Qiang; Yi Yan-Ming; Lin Zhen-Min

    2005-01-01

    The Indian monsoon intensity index suggested by Webster and Yang (WY index) is optimized and improved in this paper. At first, the area (40°E-110°E, 0°-20°N) for calculating the zonal wind-shear between 850hPa and 200hPa in the WY index is optimized and adjusted according to the significance test of differences of wind fields. Then the regionally averaged zonal wind is computed over the optimized area. Finally, the optimal linear combination of the zonal winds at the two levels is performed using the regression method, thus defining a new broad-scale circulation index for the interannual variability of the south Asian summer monsoon, i.e. the improved south Asian summer monsoon index. Results indicate that the improved south Asian summer monsoon index has two advantages: its correlation with the All Indian Summer Monsoon Rainfall index is higher than that of WY index, and its computational domain of circulation is also larger than that of WY index. The computational results based on the 1948-98 NCAR/NCEP wind data indicate that the correlation of the improved SASM index with the All Indian Summer Monsoon Rainfall index is higher than that of WY index by 0.27.

  4. Lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By means of monthly mean NCEP/NCAR data analyses, this note investigates the lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon through the methods of composite, correlation and statistical confident test. The results indicate clearly that winter climate variations in the equatorial western Pacific would produce significant influences on the following South Asian summer monsoon, and with the lapse of time the lag influences show clearly moving northward and extending westward features. When winter positive (negative) sea level pressure anomalies occupy the equatorial western Pacific, there is an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific. With the lapse of time, the anticyclonic (cyclonic) circulation anomaly gradually moves to northeast, and its axis in the west-east directions also stretches, therefore, easterly (westerly) anomalies in the south part of the anticyclonic (cyclonic) circulation anomaly continuously expand westward to the peninsula of India. Undoubtedly, the South Asian summer monsoon is weak (strong)

  5. A solar variability driven monsoon see-saw: switching relationships of the Holocene East Asian-Australian summer monsoons

    Science.gov (United States)

    Eroglu, Deniz; Ozken, Ibrahim; McRobie, Fiona; Stemler, Thomas; Marwan, Norbert; Wyrwoll, Karl-Heinz; Kurths, Juergen

    2016-04-01

    The East Asian-Indonesian-Australian monsoon is the predominant low latitude monsoon system, providing a major global scale heat source. Here we apply newly developed non-linear time series techniques on speleothem climate proxies, from eastern China and northwestern Australia and establish relationships between the two summer monsoon regimes over the last ˜9000 years. We identify significant variations in monsoonal activity, both dry and wet phases, at millennial to multi-centennial time scales and demonstrate for the first time the existence of a see-saw antiphase relationship between the two regional monsoon systems. Our analysis attributes this inter-hemispheric linkage to the solar variability that is effecting both monsoon systems.

  6. An East Asian Subtropical Summer Monsoon Index and Its Relationship to Summer Rainfall in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; ZHOU Zijiang

    2009-01-01

    Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961-1999, and based on major characteristics of the atmospheric circulation over East Asia and the western Pacific, a simple index for the East Asian subtropical summer monsoon (EASSM) is defined. The relationship between this index and summer rainfall in China and associated circulation features are examined. A comparison is made between this index and other monsoon indices. The results indicate that the index defined herein is reflective of variations of both the thermal low pressure centered in Siberia and the subtropical ridge over the western Pacific. It epitomizes the intensity of the EASSM and the variability of summer rainfall along the Yangtze River. Analysis shows that the Siberian low has a greater effect on the rainfall than the subtropical ridge, suggesting that the summer rainfall variability over the eastern parts of China is to a large extent affected by anomalies of the atmospheric circulation and cold air development in the midlatitudes. Taking into account of the effects of both the Siberian low and the subtropical ridge can better capture the summer rainfall anomalies of China. The index exhibits interannual and decadai variabilities, with high-index values occurring mainly in the 1960s and 1970s and low-index values in the 1980s and 1990s. When the EASSM index is low, the Siberian low and the subtropical ridge are weaker, and northerly wind anomalies appear at low levels over the midlatitudes and subtropics of East Asia, whereas southwesterly wind anomalies dominate in the upper troposphere over the tropics and subtropics of Asia and the western Pacific. The northerly wind anomalies bring about frequent cold air disturbances from the midlatitudes of East Asia, strengthening the convergence and ascending motions along the Meiyu front, and result in an increase of summer rainfall over the Yangtze River.

  7. An Index Measuring the Interannual Variation of the East Asian Summer Monsoon--The EAP Index

    Institute of Scientific and Technical Information of China (English)

    黄刚

    2004-01-01

    Based on the EAP (East Asia/Pacific) teleconnection in the summer circulation anomalies over the Northern Hemisphere,an index measuring the strength of the East Asian summer monsoon,i.e.,the socalled EAP index,is defined in this paper.From the analyses of observed data,it is clearly shown that the EAP index defined in this study can well describe the interannual variability of summer rainfall and surfaceair temperature in East Asia,especially in the Yangtze River valley and the Hualhe River valley,Korea,and Japan.Moreover,this index can also reflect the interannual variability of the East Asian summer monsoon system including the monsoon horizontal circulation and the vertical-merldional circulation cell over East Asia.From the composite analyses of climate and monsoon circulation anomalies for high EAP index and for low EAP index,respectively,it is well demonstrated that the EAP index proposed in this study can well measure the strength of the East Asian summer monsoon.

  8. Effect of precession on the Asian summer monsoon evolution: A systematic review

    Institute of Scientific and Technical Information of China (English)

    LIU XiaoDong; SHI ZhengGuo

    2009-01-01

    Geological climatic records and model simulations on the Asian summer monsoon climate change induced by insolation forcing of the Earth's precession are systematically reviewed in this paper. The presentation of the questions on the mechanism of the Asian monsoon evolution at the precession band, currently existing debates and future research directions are discussed. Since the early 1980s, more and more observed evidence and simulated results, especially the absolute-dated stalagmite re-cords and orbital-scale transient model runs in the last few years, have indicated that the quasi-20ka period in the Quaternary monsoon climate change is caused by precession. However, debates still exist on the dynamic mechanism how precession affects the Asian monsoon. The "zero phase" hypothesis says that the Asian monsoon is merely controlled by summer insolation in the Northern Hemisphere (NH) while the "latent heat" hypothesis emphasizes the dominant effect of latent heat transport from the Southern Hemisphere (SH) besides the role of the northern insolation. The two hypotheses have separately been supported by some evidence. Although we are cognizant of the importance of northern solar radiation and the remote effect of southern insolation, it has still a long way to go before com-prehensively understanding the evolutionary mechanism of the Asian monsoon. In view of the prob-lems existing in present researches of monsoon-dominated climate change at the precession scale, we propose that studies on the environmental significance of geological monsoon proxies, feedback processes in the long-term transient simulations and intercomparisons between observations and modeling results should be strengthened in the future.

  9. Reexamining the barrier effect of Tibetan Plateau on the South Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    G.-S. Chen

    2013-08-01

    Full Text Available The Tibetan Plateau has been conventionally treated as an elevated heat source driving the Asian monsoon system, especially for the South Asian monsoon. Numerous model simulations with general circulation models (GCMs support this hypothesis with the finding that the Asian monsoon system is weak or absent with all elevated topographies removed. A recent model simulation shows that the South Asian summer monsoon circulation is little affected with only the Himalayas (no Tibetan Plateau kept as a barrier, leading to a hypothesis of the barrier "blocking" mechanism of the Tibetan Plateau. In this paper, a new series of experiments are designed to reexamine this barrier effect. We find that with the barrier, the large-scale summer monsoon circulation over South Asia is simulated in general agreement with the full Tibetan Plateau, which is consistent with the previous finding. However there remains significant differences in both wind field and precipitation field elsewhere, suggesting a role of the full Tibetan Plateau as well. Moreover, the proposed barrier "blocking" mechanism is not found in our experiments. The energy of the low-level air and the convection is lower/weaker over the Indian subcontinent in the full Tibetan Plateau experiment than that in the no-Tibetan Plateau experiment or the barrier only experiment, which is opposite to the barrier "blocking" hypothesis. Instead, there is a similar candle-like latent heating in the middle troposphere along the south edge of the Tibetan Plateau in both the full Tibetan Plateau and the barrier experiments, whereas this "candle heating" disappears in the no-Tibetan Plateau experiment. We propose that this candle heating is the key to understand the mechanisms of the Tibetan Plateau on the South Asian monsoon. Future studies are needed to check the source of the "candle heating" and its effect on the Asian monsoon.

  10. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon

    Science.gov (United States)

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-12-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon.

  11. Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation

    Institute of Scientific and Technical Information of China (English)

    Lu Riyu; Buwen DONG

    2008-01-01

    Various paleocllimate records have shown that the Asian monsoon was punctuated by numerous sub-orbital time-scale events,,and these events were coeval with those that happened in the North Atlantic..This study investigates the Asian summer monsoon responses to the Atlantic 0cean forcing by applying an additional freshwater flux into the North Atlantic.The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation(THC)due to the freshwater flux lead to significantly suppressed Asian summer monsoon.The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon,and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role.Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific,and the atmosphere-ocean jinteraction in the tropical Pacific and Indian 0pcean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.

  12. Variations of the Summer Somali and Australia Cross-Equatorial Flows and the Implications for the Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    ZHU Yali

    2012-01-01

    The temporal variations during 1948-2010 and vertical structures of the summer Somali and Australia cross-equatorial flows (CEFs) and the implications for the Asian summer monsoon were explored in this study.The strongest southerly and northerly CEFs exist at 925 hPa and 150 hPa level,respectively.The low-level Somali (LLS) CEFs were significantly connected with the rainfall in most regions of India (especially the monsoon regions),except in a small area in southwest India.In comparison to the climatology,the lowlevel Australia (LLA) CEFs exhibited stronger variations at interannual time scale and are more closely connected to the East Asian summer monsoon circulation than to the LLS CEFs.The East Asian summer monsoon circulation anomalies related to stronger LLA CEFs were associated with less water vapor content and less rainfall in the region between the middle Yellow River and Yangtze River and with more water vapor and more rainfall in southern China.The sea-surface temperature anomalies east of Australia related to summer LLA CEFs emerge in spring and persist into summer,with implications for the seasonal prediction of summer rainfall in East Asia.The connection between the LLA CEFs and East Asian summer monsoon rainfall may be partly due to its linkage with El Nino-Southern Oscillation.In addition,both the LLA and LLS CEFs exhibited interdecadal shifts in the late 1970s and the late 1990s,consistent with the phase shifts of Pacific Decadal Oscillation (PDO).

  13. Impact of El Nino on Large-scale Circulation of Southeast Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    白学志; 吴爱明

    2003-01-01

    Multi year SST and NCEP/NCAR reanalyzed wind data were employed to study the impacts of El Nino on the Southeast Asian summer monsoon (SEASM). It was found that the impacts of El Nino on the SEASM differed distinctly from those on the East Asian summer monsoon (EASM) and the Indian summer monsoon (ISM). Composite analysis indicated that the "gear point" of coupling between the Indo monsoon circulation and the Pacific Walker circulation was located in the western margins of Southeast Asia when the developing stage of El Nino events covered the boreal summer. The anomalous circulations in the lower and upper troposphere and divergent circulation are all favorable for the strengthening of the SEASM during this period. Following the evolution of El Nino, the "gear point" of the two cells shifted eastward tothe central Pacific when the mature or decaying period of El Nino events covered the boreal summer. The anomalous circulations are favorable for the weakening of the SEASM. The anomalous indexes of intensity of SEASM accord well withthe above results. Additionally, the difference of SSTA patterns in the tropical Indo Pacific Ocean between the two stages of the El Nino may play an important role.

  14. Impact of biennial SST oscillation on the Southeast Asian summer monsoon

    Science.gov (United States)

    Kim, J.; Kim, K. Y.

    2014-12-01

    How the biennial oscillation of global SST, one of the main components of ENSO, affects the Southeast Asia summer monsoon is analyzed. The biennial mode is extracted from the 142-year (1871-2012) Extended Reconstruction SST version 3 data using cyclostationary EOF (CSEOF) analysis. Based on regression analysis in CSEOF space, evolutions of key atmospheric variables are obtained to be consistent with the long-term variation of the biennial mode. Atmospheric variables are derived from the twentieth century (20C) reanalysis version 2 data. The biennial oscillation, primarily in the tropical Pacific, influences the monsoons in the Indo-Pacific region. Summer monsoonal change can be explained in terms of the change in monsoon precipitation accompanied with low-level moisture convergence and large-scale atmospheric circulation. In the equatorial region, SST anomaly directly triggers the vertical motion and horizontal wind such that zonal circulation across the Pacific and Indian Oceans is set up. In the subtropical Asian region, both cyclonic or anticyclonic circulation over the northwestern Pacific and the meridional circulation over the Indo-Pacific region induced by the equatorial SST change affects the Southeast Asian monsoon, and henceforth the monsoon precipitation. When positive SST anomaly develops in the eastern tropical Pacific, precipitation decreases over the tropical Indian Ocean and the Maritime Continent (10°S-5°N, 40°-150°E) and increases over Southeast Asia (5°N-20°N, 90°-150°E). With negative SST anomaly in the eastern tropical Pacific, the situation reverses. Based on the spatio-temporal evolution patterns for key physical variables and corresponding long-term variability, physical link through atmosphere-ocean interactions is explored between the biennial mode of SST and the Southeast Asian summer monsoon.

  15. Vertical extension of the Tibetan high of the Asian summer monsoon

    OpenAIRE

    T. N. Krishnamurti; Biswas, Mrinal K.; D. V. Bhaskar Rao

    2008-01-01

    We illustrate the vast expanse and the connection of anticyclonic flows of the Tibetan high (at the 200 hPa level) to the pole centred hemispheric North Polar anticyclone at the 10 hPa level during 1988. This feature of clockwise flows appears in the form of a tilted cone that appears to connect the Asian summer monsoon to the 10 hPa high. The anticyclonic flow tapers down to the vortex of the cone near the 400 hPa level. The tropical easterly jet of the Asian summer season is found near 10°N...

  16. IMPACTS OF THE ONSET OF THE SOUTHEAST ASIAN SUMMER MONSOON ON THE BEGINNING OF THE RAINY SEASON IN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    JU Jian-hua; ZHAO Er-xu; LU Jun-mei

    2006-01-01

    @@ 1 INTRODUCTION Summer monsoon in Southeast Asia can cause large-scale precipitation in the region in early summer,which is featured by prevailing low-level southwesterly from the Bay of Bengal to South China Sea (SCS). It has characteristics of its own as well as those of Asian monsoons in general.

  17. Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate

    Science.gov (United States)

    Chen, Haishan; Zhang, Ye; Yu, Miao; Hua, Wenjian; Sun, Shanlei; Li, Xing; Gao, Chujie

    2016-07-01

    Impacts of large-scale urbanization over eastern China on East Asian summer monsoon circulation and climate are investigated by comparing three 25-year climate simulations with and without incorporating modified land cover maps reflecting two different idealized large-scale urbanization scenarios. The global atmospheric general circulation model CAM4.0 that includes an urban canopy parameterization scheme is employed in this study. The large-scale urbanization over eastern China leads to a significant warming over most of the expanded urban areas, characterized by an increase of 3 K for surface skin temperature, 2.25 K for surface air temperature, significant warming of both daily minimum and daily maximum air temperatures, and 0.4 K for the averaged urban-rural temperature difference. The urbanization is also accompanied by an increase in surface sensible heat flux, a decrease of the net surface shortwave and long-wave radiation, and an enhanced surface thermal heating to the atmosphere in most Eastern Asia areas. It is noted that the responses of the East Asian summer monsoon circulation exhibits an evident month-to-month variation. Across eastern China, the summer monsoon in early summer is strengthened by the large-scale urbanization, but weakened (intensified) over southern (northern) part of East Asia in late summer. Meanwhile, early summer precipitation is intensified in northern and northeastern China and suppressed in south of ~35°N, but late summer precipitation is evidently suppressed over northeast China, the Korean Peninsula and Japan with enhancements in southern China, the South China Sea, and the oceanic region south and southeast of the Taiwan Island. This study highlights the evidently distinct month-to-month responses of the monsoon system to the large-scale urbanization, which might be attributed to different basic states, internal feedbacks (cloud, rainfall) as well as a dynamic adjustment of the atmosphere. Further investigation is required

  18. An Analysis of Interdecadal Variations of the Asian-African Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    SONG Yan; JI Jinjun; SUN Xia

    2008-01-01

    The response of the Asian-African summer monsoon(AASM)to the fast global warming in the 1980s is studied based on several datasets,which span a long time period of nearly 100 yr,with two special periods 1980-1985 and 1990-1995 being focused on.Wavelet analyses are employed to explore the interdecadal variations of the AASM.It is found that after the mid-1980s.the global annual mean surface temperature rises more significantly and extensively over most parts of the African Continent,north of the Indian Ocean,and the Eurasian Continent excluding the Tibetan Plateau.Correspondingly,the global precipitation pattern alters with increased rainfall seen over the Sahel and North China in 1990-1995,though it is not recovered to the level of the rainy period before the mid-1960s.Changes of monsoonal circulations between the pre-and post-1980s periods display that,after the fast global warming of the 1980s,the African summer monsoon intensifies distinctly,the Indian summer monsoon weakens a little bit,and the East Asian summer monsoon remains almost unchanged.The summer precipitation over the Asian-African Monsoon Belt(AAMB)does not change in phase coherently with the variations of the monsoonal circulations.Wavelet analyses of the land-sea thermal contrast and precipitation over North China and the Sahel indicate that interdecadal signals are dominant and in positive phases in the 1960s.1eading to an overall enhanced interdecadal variation of the AASM,although the 1960s witnesses a global cooling.In the 1980s,however,in the context of a fast global warming,interdecadal signals are in opposite phases,and they counteract with each other.1cading to a weakened interdecadal variation of the AASM.After the mid-1960s.the AASM weakened remarkably,whereas after the mid-1980s,the AASM as a whole did not strengthen uniformly and synchronously,because it is found that the interannual variations of the AASM in the 1980s are stronger than those in the 1960s,and they superimposed on the

  19. Searching for a fingerprint of global warming in the Asian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, D.B.; Douville, H.; Kumar, K.R. [University of Reading, Reading (United Kingdom). Dept. of Meteorology

    2001-07-01

    This study investigates possible trends in several large-scale indices that describe the Asian summer monsoon. Results from recent atmospheric general circulating experiments are used to provide clues as to how the monsoon might be changing due to the effects of global warming. Interestingly, this study has found that the large-scale wind shear monsoon indices have been decreasing at a rate of 0.1-0.3% per year (based on NCEP/NCAR (National Centre for Atmospheric Research) analyses 1958-98) in quantitative agreement with recent results from doubled CO{sub 2} simulations made using several state-of-the-art climate models. Nevertheless, despite the weakening of the monsoon circulation, all-India rainfall shows no clear trend in either the model results or in the observation re-analyses from 1958-98. Multiple regression is used to separte out the dynamical contribution from the observed all-India rainfall index, and a clear increasing trend then emerges in the non-dynamical residual. A simple dimensionless multivariate monsoon index is proposed that could be of use in monitoring global warming changes in the monsoon. 31 refs., 2 figs., 3 tabs.

  20. A Coupled Model Study on the Intensification of the Asian Summer Monsoon in IPCC SRES Scenarios

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered.Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakicenovic et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.

  1. Simulation of the interface between the Indian summer monsoon and the East Asian summer monsoon: Intercomparison between MPI-ESM and ECHAM5/MPI-OM

    Science.gov (United States)

    Guo, Yiran; Cao, Jie; Li, Hui; Wang, Jian; Ding, Yuchao

    2016-03-01

    The time-mean and interannual variability of the interface between the Indian summer monsoon and East Asian summer monsoon (IIE) was assessed using both Max-Planck-Institute Earth System Model (MPI-ESM) and ECHAM5/MPI-OM and by calculating diagnostics and skill metrics around the IIE area. Progress has been made in modeling these aspects by moving from ECHAM5/MPI-OM to MPI-ESM. MPI-ESM is more skillful than ECHAM5/MPI-OM in modeling the time-mean state and the extreme condition of the IIE. Though simulation of the interannual variability significantly deviates to some extent in both MPI-ESM and ECHAM5/MPI-OM, MPI-ESM-LR shows better skill in reflecting the relationship among sea surface temperature anomalies over the Pacific, circulation anomalies over East Asia, and IIE variability. The temperature becomes warmer under the RCP2.6 and RCP8.5 scenarios in comparison with the historical experiments, but the position of the IIE and the key physical process in relation to the IIE variability almost remains the same, suggesting that the Indian summer monsoon tends to change in phase with the East Asian summer monsoon under each RCP scenario. The relatively realistic description of the physical processes modulated by terrain in MPI-ESM may be one of the most important reasons why MPI-ESM performs better in simulating the IIE.

  2. Analysis of Basic Features of the Onset of the Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a relatively systematic climatological research on the onset of the Asian tropical summer monsoon (ATSM) was carried out. Based on a unified index of the ATSM onset, the advance of the whole ATSM was newly made and then the view that the ATSM firstly breaks out over the tropical eastern Indian Ocean and the middle and southern Indo-China Peninsula was further documented, which was in the 26th pentad (about May 10), then over the South China Sea (SCS) in the 28th pentad. It seems that the ATSM onset over the two regions belongs to the different stages of the same monsoon system. Then, the onset mechanism of ATSM was further investigated by the comprehensive analysis on the land-sea thermodynamic contrast, intraseasonal oscillation, and so on, and the several key factors which influence the ATSM onset were put forward. Based on these results, a possible climatological schematic map that the ATSM firstly breaks out over the tropical eastern Indian Ocean, the Indo-China Peninsula, and the SCS was also presented, namely seasonal evolution of the atmospheric circulation was the background of the monsoon onset; the enhancement and northward advance of the convections, the sensible heating and latent heating over the Indo-China Peninsula and its neighboring areas, the dramatic deepening of the India-Burma trough, and the westerly warm advection over the eastern Tibetan Plateau were the major driving forces of the summer monsoon onset, which made the meridional gradient of the temperature firstly reverse over this region and ascending motion develop. Then the tropical monsoon and precipitation rapidly developed and enhanced. The phase-lock of the 30-60-day and 10-20-day low frequency oscillations originated from different sources was another triggering factor for the summer monsoon onset. It was just the common effect of these factors that induced the ATSM earliest onset over this region.

  3. Holocene weak summer East Asian monsoon intervals in subtropical Taiwan and their global synchronicity

    Directory of Open Access Journals (Sweden)

    K. Selvaraj

    2008-08-01

    Full Text Available Sedimentary total organic carbon and carbon-to-nitrogen ratio records from the subalpine Retreat Lake in NE Taiwan reveal four centennial periods (~8–8.3, 5.1–5.7, 4.5–~2.1, and 2–1.6 kyr BP of relatively reduced summer East Asian monsoon (EAM precipitation that were superimposed on the insolation-dependent, long-term decreasing monsoon trend during the middle and late Holocene while early Holocene monsoon strength was controlled by glacial boundary conditions. Strikingly, all weak monsoon events correlate with the timings of low sea surface temperature in the tropical Pacific, maxima of hematite stained-grains in the sediments of North Atlantic, reduced formation of North Atlantic Deep Water, and low concentrations of atmospheric methane over Greenland, suggesting a globally well-connected postglacial climate (from ca. 8.6 kyr BP onwards. Persistent linkage of weak summer EAM-tropical Pacific and North Atlantic cooling-reduced global wetland extent during these intervals is believed to be driven by coupled ocean-atmosphere interactions, especially reduced heat and moisture transport and enhanced El Niño-Southern Oscillation in the tropical Pacific, as well as solar activity. Overall similarity of summer EAM with diverse proxy records and their coincidence to abrupt changes witnessed in other paleorecords across the world imply that the centennial-scale reorganizations in the tropical Pacific climate dynamics may have been playing an important role, of course closely in phase with solar variations and North Atlantic climate, in the Holocene summer EAM and, by extension, low-latitude's monsoon instability.

  4. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation

    Science.gov (United States)

    Zou, Liwei; Zhou, Tianjun

    2016-02-01

    In this study, a developed regional ocean-atmosphere coupled model FROALS was applied to the CORDEX East Asia domain. The performance of FROALS in the simulation of Asian summer monsoon during 1989-2010 was assessed using the metrics developed by the CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team. The results indicated that FROALS exhibited good performance in simulating Asian summer monsoon climatology. The simulated JJA mean SST biases were weaker than those of the CMIP5 multi-model ensemble mean (MMEM). The skill of FROALS approached that of CMIP5 MMEM in terms of the annual cycle of Asian summer monsoon. The simulated monsoon duration matched the observed counterpart well (with a spatial pattern correlation coefficient of 0.59). Some biases of CMIP5 MMEM were also found in FROALS, highlighting the importance of local forcing and model physics within the Asian monsoon domain. Corresponding to a strong East Asian summer monsoon, an anomalous anticyclone was found over western North Pacific in both observation and simulation. However, the simulated strength was weaker than the observed due to the responses to incorrect sea surface anomalies over the key regions. The model also accurately captured the spatial pattern of the intraseasonal variability variance and the extreme climate indices of Asian summer monsoons, although with larger amplitude. The results suggest that FROALS could be used as a dynamical downscaling tool nested within the global climate model with coarse resolution to develop high-resolution regional climate change projections over the CORDEX East Asia domain.

  5. How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data

    Directory of Open Access Journals (Sweden)

    J. Kuhlmann

    2010-02-01

    Full Text Available The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.

  6. How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data

    Directory of Open Access Journals (Sweden)

    J. Kuhlmann

    2010-05-01

    Full Text Available The impact of aerosols above and around the Tibetan Plateau on the Asian Summer Monsoon during pre-monsoon seasons March-April-May 2007, 2008, and 2009 is investigated by means of remote sensing and radiative transfer modelling. Four source regions are found to be responsible for the high aerosol loading around the Tibetan Plateau: the Taklamakan Desert, the Ganges Plains, the Indus Plains, and the Arabian Sea. CALIPSO lidar satellite data, providing vertically resolved images of aerosols, shows aerosol concentrations to be highest in the lower 5 km of the atmosphere with only little amounts reaching the Tibetan Plateau altitude. Using a radiative transfer model we find that aerosol plumes reduce shortwave radiation throughout the Monsoon region in the seasonal average by between 20 and 30 W/m2. Peak shortwave heating in the lower troposphere reaches 0.2 K/day. In higher layers this shortwave heating is partly balanced by longwave cooling. Although high-albedo surfaces, such as deserts or the Tibetan Plateau, increase the shortwave heating by around 10%, the overall effect is strongest close to the aerosol sources. A strong elevated heating which could influence large-scale monsoonal circulations as suggested by previous studies is not found.

  7. The Earliest Onset Areas and Mechanism of the Tropical Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    QIAN Yongfu; ZHANG Yan; JIANG Jing; YAO Yonghong; XU Zhongfeng

    2005-01-01

    The multi-yearly averaged pentad meteorological fields at 850 hPa of the NCEP/NCAR reanalysis dada and the TBB fields of the Japan Meteorological Agency during 1980-1994 are analyzed. It is found that if the pentad is taken as the time unit of the monsoon onset, then the tropical Asian summer monsoon (TASM) onsets earliest, simultaneously and abruptly over the whole area in the Bay of Bengal (BOB), the Indo-China Peninsula (ICP), and the South China Sea (SCS), east of 90°E, in the 27th to 28th pentads of a year (Pentads 3 to 4 in May), while it onsets later in the India Peninsula (IP) and the Arabian Sea (AS), west of 90°E. The TASM bursts first at the south end of the IP in the 30th to 31st pentads near 10°N, and advances gradually northward to the whole area, by the end of June. Analysis of the possible mechanism depicts that the rapid changes of the surface sensible heat flux, air temperature, and pressure in spring and early summer in the middle to high latitudes of the East Asian continent between 100°E and 120°E are crucially responsible for the earliest onset of the TASM in the BOB to the SCS areas. It is their rapid changes that induce a continental depression to form and break through the high system of pressure originally located in the above continental areas. The low depression in turn introduces the southwesterly to come into the BOB to the SCS areas, east of 90°E, and thus makes the SCS summer monsoon (SCSSM)burst out earliest in Asia. In the IP to the AS areas, west of 90°E, the surface sensible heat flux almost does not experience obvious change during April and May, which makes the tropical Indian summer monsoon (TISM) onset later than the SCSSM by about a month. Therefore, it is concluded that the meridian of 90°E is the demarcation line between the South Asian summer monsoon (SASM, i.e., the TISM) and the East Asian summer monsoon (EASM, including the SCSSM).Besides, the temporal relations between the TASM onset and the seasonal variation

  8. Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon

    Science.gov (United States)

    Oh, Hyoeun; Ha, Kyung-Ja

    2016-10-01

    Intraseasonal monsoon prediction is the most imperative task, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): pre-Meiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. Here, we use stepwise regression to determine the predictors for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the sea surface temperature (SST)/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the El Niño Southern Oscillation (ENSO) and the ocean and land surface anomalous conditions. For the pre-Meiyu&Baiu mode, the SST cooling tendency over the western North Pacific (WNP), which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode is related to the WNP subtropical high, induced by the persistent SST difference between the Indian Ocean and the western Pacific. The WNPSM mode is mostly affected by the Pacific-Japan pattern, and monsoon gyre mode is primarily associated with a persistent SST cooling over the tropical Indian Ocean by the preceding ENSO signal. This study carries important implications for prediction by establishing valuable precursors of the four modes including nonlinear characteristics.

  9. Understanding the regional anthropogenic signature in weakening of the south Asian Summer Monsoon

    Science.gov (United States)

    TP, S.

    2014-12-01

    The evidence from observation shows that South Asia underwent a widespread drying from the last five to six decades during the summer. The underlying reasons are unclear, whether this trend is due to natural or anthropogenic activities. Using a state-of-the-art global variable resolution climate model with high-resolution zooming over South-Asia, we decomposed the regional factors responsible for the weakening of monsoon circulation and rainfall. To address this issue we conducted several long simulations from 1886 to 2095, with and without anthropogenic forcing. The simulation provides key information about the regional responses to changes in south Asian summer monsoon, which leads to the decline in mean monsoon, and enhancement in the occurrence of localized extreme precipitation events in a warming climate. Further the 21st century climate projection using the same high-resolution model indicates persistent decrease of monsoonal rains due to land-atmosphere feedbacks in a warming environment. This would have severe impacts on agriculture, water resources and ecosystem over South Asia.

  10. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    Science.gov (United States)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2015-12-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index for a white roof, two green roofs (grass (Poa pratensis) and sedum (Sedum sarmentosum)), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 °C and 1.3 °C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  11. Summer Asian-Pacific Oscillation and Its Relationship with Atmospheric Circulation and Monsoon Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; CHEN Junming; XIAO Dong; NAN Sulan; ZOU Yan; ZHOU Botao

    2008-01-01

    Using the ERA-40 data and numerical simulations, this study investigated the teleconnection over the extratropical Asian-Pacific region and its relationship with the Asian monsoon rainfall and the climatological characteristics of tropical cyclones over the western North Pacific, and analyzed impacts of the Tibetan Plateau (TP) heating and Pacific sea surface temperature (SST) on the teleconnection. The Asian-Pacific oscillation (APO) is defined as a zonal seesaw of the tropospheric temperature in the midlatitudes of the Asian-Pacific region. When the troposphere is cooling in the midlatitudes of the Asian continent, it is warming in the midlatitudes of the central and eastern North Pacific; and vice versa. The APO also appears in the stratosphere, but with a reversed phase. Used as an index of the thermal contrast between Asia and the North Pacific, it provides a new way to explore interactions between the Asian and Pacific atmospheric circulations. The APO index exhibits the interannual and interdecadal variability. It shows a downward trend during 1958-2001, indicating a weakening of the thermal contrast, and shows a 5.5-yr oscillation period. The formation of the APO is associated with the zonal vertical circulation caused by a difference in the solar radiative heating between the Asian continent and the North Pacific. The numerical simulations further reveal that the summer TP heating enhances the local tropospheric temperature and upward motion, and then strengthens downward motion and decreases the tropospheric temperature over the central and eastern North Pacific. This leads to the formation of the APO. The Pacific decadal oscillation and El Nino/La Nina over the tropical eastern Pacific do not exert strong influences on the APO. When there is an anomaly in the summer APO, the South Asian high, the westerly jet over Eurasia, the tropical easterly jet over South Asia, and the subtropical high over the North Pacific change significantly, with anomalous Asian

  12. The Leading Mode of Indian Ocean SST and Its Impacts on Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    YANG Mingzhu; DING Yihui; LI Weijing; MAO Hengqing; HUANG Changxing

    2008-01-01

    The Indian Ocean (IO) sea surface temperature (SST) was analyzed by using empirical orthogonal function (EOF), and the leading mode of Indian Ocean (LMIO) SST was extracted. The major spatial and temporal characters of LMIO were discussed, and the relationships between LMIO with Indian summer monsoon (ISM) and with China summer rainfalls (CSR) were investigated, then the impacts of LMIO on Asian summer monsoon (ASM) circulation were explored. Some notable results are obtained: The significant evolutional characters of LMIO are the consistent warming trend of almost the whole IO basin,the distinctive quasi-3- and quasi-ll-yr oscillations and remarkably interdecadal warming in 1976/1977 and1997/1998, respectively. The LMIO impaired the lower level circulation of ISM and was closely related with the climate trend of CSR. It was associated with the weakening of South Asian high, the easterly winds south of the Tibetan Plateau, and the cross-equatorial flows over 10°-20°N, 40°-110°E at the upper level; with the strengthening of Somali cross-equatorial jet but the weakening of the circulation of ISM in the sector of India, the strengthening of south wind over the middle and lower reaches of Yangtze River and South China but the weakening of southwesterly winds over North China at lower level and with the increasing of surface pressure over the Asian Continent. Changes in the moisture flux transports integrated vertically over the whole troposphere associated with LMIO are similar to those in the lower level circulation. To sum up, the significant SST increasing trend of IO basin was one of the important causes for weakening of the ASM circulation and the southwards shifting of China summer rainband.

  13. Slow and fast annual cycles of the Asian summer monsoon in the NCEP CFSv2

    Science.gov (United States)

    Shin, Chul-Su; Huang, Bohua

    2016-07-01

    The climatological Asian summer monsoon (ASM) is decomposed into the slow and fast annual cycles (SAC and FAC). The FAC represents the abrupt onset and breaks phase-locked to the ASM seasonal progression. This study evaluates how well the NCEP Climate Forecast System version 2 (CFSv2) simulates the SAC and FAC over the Indian and East Asia monsoon regions (IMR and EAMR). The simulated SACs are in good agreement with observations in both regions. The FAC also represents the northward propagation in both observations and CFSv2. It is further demonstrated that the FAC is associated with a thermodynamic air-sea interaction. In particular, the different roles played by the wind-evaporation-SST (WES) feedback may account for the faster propagation in the IMR than the EAMR. However, compared with observations, the simulated FAC shows earlier monsoon onset and long-lasting stronger dry and wet phases in the IMR but delayed monsoon onset with weaker and less organized FAC in the EAMR. These reversed behaviors may originate from a warm (cold) SST bias in the IMR (EAMR) in boreal spring and enhanced by an overly sensitive surface evaporation to wind changes in the CFSv2. As a result, the warm spring SST bias in the IMR initiates a strong WES feedback and changes of solar insolation during boreal summer, which leads to a cold SST bias in early fall. On the other hand, the cold spring SST bias in the EAMR accounts for a weaker air-sea coupling, which in turn results in a warm SST bias after the withdrawal of the monsoon.

  14. Upper-tropospheric CO and O3 budget during the Asian summer monsoon

    Science.gov (United States)

    Barret, Brice; Sauvage, Bastien; Bennouna, Yasmine; Le Flochmoen, Eric

    2016-07-01

    During the Asian summer monsoon, the circulation in the upper troposphere/lower stratosphere (UTLS) is dominated by the Asian monsoon anticyclone (AMA). Pollutants convectively uplifted to the upper troposphere are trapped within this anticyclonic circulation that extends from the Pacific Ocean to the Eastern Mediterranean basin. Among the uplifted pollutants are ozone (O3) and its precursors, such as carbon monoxide (CO) and nitrogen oxides (NOx). Many studies based on global modeling and satellite data have documented the source regions and transport pathways of primary pollutants (CO, HCN) into the AMA. Here, we aim to quantify the O3 budget by taking into consideration anthropogenic and natural sources. We first use CO and O3 data from the MetOp-A/IASI sensor to document their tropospheric distributions over Asia, taking advantage of the useful information they provide on the vertical dimension. These satellite data are used together with MOZAIC tropospheric profiles recorded in India to validate the distributions simulated by the global GEOS-Chem chemistry transport model. Over the Asian region, UTLS monthly CO and O3 distributions from IASI and GEOS-Chem display the same large-scale features. UTLS CO columns from GEOS-Chem are in agreement with IASI, with a low bias of 11 ± 9 % and a correlation coefficient of 0.70. For O3, the model underestimates IASI UTLS columns over Asia by 14 ± 26 % but the correlation between both is high (0.94). GEOS-Chem is further used to quantify the CO and O3 budget through sensitivity simulations. For CO, these simulations confirm that South Asian anthropogenic emissions have a more important impact on enhanced concentrations within the AMA (˜ 25 ppbv) than East Asian emissions (˜ 10 ppbv). The correlation between enhanced emissions over the Indo-Gangetic Plain and monsoon deep convection is responsible for this larger impact. Consistently, South Asian anthropogenic NOx emissions also play a larger role in producing O3 within

  15. Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies

    Science.gov (United States)

    Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu

    2016-10-01

    Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.

  16. Interdecadal variation of East Asian summer monsoon and drought/flood distribution over eastern China in the last 159 years

    Institute of Scientific and Technical Information of China (English)

    LI Qian; WEI Fengying; LI Dongliang

    2011-01-01

    Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods,the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed.The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP.The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched.The results show that there are four typical drought and flood spatial distribution patterns in eastern China,i.e.the distribution of drought/flood in southern China is contrary to the other regions,the distribution of drought/flood along the Huanghe River-Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it,the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions,the distribution of drought/flood in eastern China is contrary to the western.The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific.It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper,but the correlation is not stable and it has a significant difference in changes of interdecadal phase.When the East Asian summer monsoon was stronger (weaker),regions north of the Yangtze River Valley was more susceptible to drought (flood),the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker),the regions north of the Yangtze River Valley was prone to flood (drought),the Yangtze River

  17. Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon

    Science.gov (United States)

    Wang, Yi; Wang, Chenghai

    2016-02-01

    The statistical characteristics of the vertical structure of clouds in the Asian summer monsoon region are investigated using two CloudSat standard products (Geometrical Profiling Product (GEOPROF) and GEOPROF-lidar) during the pre- and post-onset periods of the Asian summer monsoon, from April to August in 2007-2010. The characteristics of the vertical structure of clouds are analyzed and compared for different underlying surfaces in four subregions during this period. Also analyzed are the evolution of precipitation and hydrometeors with the northward advance of the Asian summer monsoon, and different hydrometeor characteristics attributed to the underlying surface features. The results indicate that the vertical cloud amounts increase significantly after the summer monsoon onset; this increase occurs first in the upper troposphere and then at lower altitudes over tropical regions (South Asian and tropical Northwest Pacific regions). The heights of the cloud top ascend, and the vertical height between the top and the base of the whole cloud increases. Single-layer (SL) and double-layer (DL) hydrometeors contribute over half and one third of the cloudiness in these 5 months (April to August), respectively. The multilayer frequencies increase in four different regions, and cloud layer depths (CLD) increase after the summer monsoon onset. These changes are stronger in tropical regions than in subtropical regions, while the vertical distance between cloud layers (VDCL) deceases in tropical regions and increases in subtropical regions.

  18. Forced and internal modes of variability of the East Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    J. Liu

    2008-05-01

    Full Text Available The modern instrumental record (1979–2006 is analyzed in an attempt to reveal the dynamical structure and origins of the major modes of interannual variability of East Asian summer monsoon (EASM and to elucidate their fundamental differences with the major modes of seasonal variability. These differences are instrumental in understanding of the forced (say orbital and internal (say interannual modes of variability in EASM. We show that the leading mode of interannual variation, which accounts for about 39% of the total variance, is primarily associated with decaying phases of major El Nino, whereas the second mode, which accounts for 11.3% of the total variance, is associated with the developing phase of El Nino/La Nina. The EASM responds to ENSO in a nonlinear fashion with regard to the developing and decay phases of El Nino. The two modes are determined by El Nino/La Nina forcing and monsoon-warm ocean interaction, or essentially driven by internal feedback processes within the coupled climate system. For this internal mode, the intertropical convergence zone (ITCZ and subtropical EASM precipitations exhibit an out-of-phase variations; further, the Meiyu in Yangtze River Valley is also out-of-phase with the precipitation in the central North China.

    In contrast, the slow and fast annual cycles forced by the solar radiation show an in-phase correlation between the ITCZ and subtropical EASM precipitation. Further, the seasonal march of precipitation displays a continental-scale northward advance of a rain band (that tilts in a southwest-northeastward direction over the entire Indian and East Asian summer monsoon from mid-May toward the end of July. This uniformity in seasonal advance suggests that the position of the northern edge of the summer monsoon or the precipitation over the central North China may be an adequate measure of the monsoon intensity for the forced mode, while the intensity of the internal mode of EASM variability

  19. The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP/NCAR reanalyses

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, H.; Hodges, K.; Slingo, J.M.; Sperber, K.R.

    1999-04-21

    The behavior of the Asian Summer Monsoon is compared using the European Centre for Medium Range Weather Forecasts Reanalysis (ERA) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996). The goals of this paper are to identify common features between the reanalyses, to assess their robustness for model validation, and especially to use reanalyses to develop their understanding of the mean evolution of the Asian Summer Monsoon and the characteristics of its interannual and intraseasonal variability (Annamalai et al. 1999).

  20. The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations

    Directory of Open Access Journals (Sweden)

    W. Zheng

    2013-02-01

    Full Text Available Ten Coupled General Circulation Models (CGCMs participated in the third phase of Paleoclimate Modelling Intercomparison Project (PMIP3 are assessed for the East Asian Summer Monsoon (EASM in both the pre-Industrial (PI, 0 ka and mid-Holocene (MH, 6 ka simulations. Results show that the PMIP3 model median captures well the large-scale characteristics of the EASM, including the two distinct features of the Meiyu rainbelt and the stepwise meridional displacement of the monsoonal rainbelt. At mid-Holocene, the PMIP3 model median shows significant warming (cooling during boreal summer (winter over Eurasia continent that are dominated by the changes of insolation. However, the PMIP3 models fail to simulate a warmer annual mean and winter surface air temperature (TAS over eastern China as derived from proxy records. The EASM at MH are featured by the changes of large-scale circulation over Eastern China while the changes of precipitation are not significant over its sub-domains of the Southern China and the lower reaches of Yangzi River. The inter-model differences for the monsoon precipitation can be associated with different configurations of the changes in large-scale circulation and the water vapour content, of which the former determines the sign of precipitation changes. The large model spread for the TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply to those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation. Except that the PMIP3 model median captured the warming of annual mean TAS over Tibetan Plateau, no significant improvements can be concluded when compared with the PMIP2 models results.

  1. Three exceptionally strong East-Asian summer monsoon events during glacial conditions in the past 470 kyr

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2008-12-01

    Full Text Available Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4 than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts. Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 6, 10 and 12, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which

  2. Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2009-04-01

    Full Text Available Chinese loess sequences are interpreted as a reliable record of the past variation of the East Asian monsoon regime through the alternation of loess and paleosols units, dominated by the winter and summer monsoon, respectively. Different proxies have been used to describe this system, mostly geophysical, geochemical or sedimentological. Terrestrial mollusks are also a reliable proxy of past environmental conditions and are often preserved in large numbers in loess deposits. The analysis of the mollusk remains in the Luochuan sequence, comprising L5 loess to S0 soil, i.e. the last 500 ka, shows that for almost all identified species, the abundance is higher at the base of the interval (L5 to L4 than in the younger deposits. Using the present ecological requirements of the identified mollusk species in the Luochuan sequence allows the definition of two main mollusk groups varying during the last 500 kyr. The cold-aridiphilous individuals indicate the so-called Asian winter monsoon regime and predominantly occur during glacials, when dust is deposited. The thermal-humidiphilous mollusks are prevalent during interglacial or interstadial conditions of the Asian summer monsoon, when soil formation takes place. In the sequence, three events with exceptionally high abundance of the Asian summer monsoon indicators are recorded during the L5, L4 and L2 glacial intervals, i.e., at about 470, 360 and 170 kyr, respectively. The L5 and L4 events appear to be the strongest (high counts. Similar variations have also been identified in the Xifeng sequence, distant enough from Luochuan, but also in Lake Baikal further North, to suggest that this phenomenon is regional rather than local. The indicators of the summer monsoon within the glacial intervals imply a strengthened East-Asian monsoon interpreted as corresponding to marine isotope stages 12, 10 and 6, respectively. The L5 and L2 summer monsoons are coeval with Mediterranean sapropels S12 and S6, which

  3. An 8.1Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbonates in loess-red clay sequences consist mainly of calcite and dolomite. The EDTA analysis of carbonates in different size fractions and magnetic susceptibility reveal that calcite is a sensitive index of summer monsoon. The chemical analysis of carbonates and calcite from an 8.1 Ma loess-red clay sequence at Chaona on the Chinese central Loess Plateau shows that the evolution of the Asian summer monsoon experienced four stages, namely 8.1―5.5 Ma, 5.5―2.8 Ma, 2.8―1.5 Ma and 1.5―0 Ma, with increasing intensification and fluctuation, suggesting a possible combining impacts of uplift of the Tibetan Plateau and global changes on the Asian summer monsoon.

  4. Application of vegetation information on the Tibetan Plateau to improve East Asian summer monsoon prediction

    Science.gov (United States)

    Wu, L.; Zhang, J.

    2010-12-01

    The summer monsoon is the most important climate feature in East Asia. Its unusual behaviors may lead to occurrence of extensive drought/flood disasters in East Asia, which can cause serious consequences on the natural environment and the human society. It is well known that the slowly varying oceanic processes provide the primary source for East Asian summer monsoon (EASM) predictability. In addition to the ocean, land surface can also provide a critical memory function in the climate system at the monthly and longer time scales. However, the memory inherent in the land surface is less well understood or applied toward EASM prediction. Here we investigate the role of vegetation on the Tibetan Plateau for the EASM variation and prediction using observational data. We discuss the possible mechanism explaining the relationship between TP vegetation and EASM. A statistical model is further developed to predict the EASM strength by combination of El Nino-Southern Oscillation (ENSO) and the TP vegetation greenness. Hindcast for the period 1982-2006 shows that the use of the TP vegetation information can largely improve the EASM prediction skill compared to that using ENSO alone.

  5. Southern Hemisphere imprint for Indo–Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records

    OpenAIRE

    T. Caley; Zaragosi, S.; Bourget, J.; Martinez, P.; Malaizé, B.; F. Eynaud; Rossignol, L.; Garlan, T.; Ellouz-Zimmermann, N.

    2013-01-01

    The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have suggested a dominant north hemispheric (NH) control on summer monsoon dynamics at the scale of suborbital-millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the orbital scale remains a ...

  6. Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records

    OpenAIRE

    T. Caley; Zaragosi, S.; Bourget, J.; Martinez, P.; Malaizé, B.; F. Eynaud; Rossignol, L.; Garlan, T.; Ellouz-Zimmermann, N.

    2013-01-01

    The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have generally suggested a dominant northern hemispheric (NH) control on summer monsoon dynamics at the scale of suborbital–millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the ...

  7. Impact of cloud radiative heating on East Asian summer monsoon circulation

    International Nuclear Information System (INIS)

    The impacts of cloud radiative heating on the East Asian Summer Monsoon (EASM) over southeastern China (105°–125°E, 20°–35°N) are addressed by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of clouds, the EASM circulation and precipitation would be much weaker than that in normal conditions. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which consequently enhances updraft. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance. (letter)

  8. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation

    Science.gov (United States)

    Wang, Xisheng; Chu, Guoqiang; Sheng, Mei; Zhang, Shuqin; Li, Jinhua; Chen, Yun; Tang, Ling; Su, Youliang; Pei, Junling; Yang, Zhenyu

    2016-10-01

    Characterizing spatiotemporal variability of the Asian summer monsoon (ASM) is critical for full understanding of its behavior, dynamics, and future impacts. The present knowledge about ASM variations since the last glaciation in South China largely relies on several precisely-dated speleothem stable oxygen isotope (δ18 O) records. Although these speleothem δ18 O signals provide useful evidence for regional past environmental changes, their validity for denoting ASM intensity remains a great controversy. The Huguangyan Maar Lake (HML) provides one of the most complete archives of environmental and climatic changes in the tropical-subtropical South and East Asia since the last glaciation. Here we document a continuous centennial- to millennial-scale ASM record over the past 16 ky BP from the high-sedimentation-rate HML sediments. In contrast with the low-amplitude variations of Chinese speleothem-derived δ18 O signals and the Chinese loess-based monsoon precipitation proxy indexes, our multi-proxy records reveal a pattern of high-amplitude regional climatic fluctuations, including fine-scale oscillations during the Bølling-Allerød warming, the 8.2 ka cooling event, and an abrupt climate shift from 6.5-5.9 ka. The existence of Bond-like cold/dry events indicates a distinct influence of the North Atlantic circulation on low-latitude monsoon changes. The broad comparability between the HML paleo-proxies, Chinese speleothem δ18 O records, and the northern hemisphere summer insolation throughout the Holocene, suggests that solar insolation exerts a profound influence on ASM changes. These findings reinforce a model of combined insolation and glacial forcing of the ASM.

  9. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  10. AN EAST ASIAN SUBTROPICAL SUMMER MONSOON INDEX DEFINED BY MOISTURE TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    LIANG Ping; TANG Xu; HE Jin-hai; CHEN Long-xun

    2008-01-01

    Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971- 2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.

  11. Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency

    Science.gov (United States)

    Choi, Ki-Seon; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-04-01

    In the present study, the fact that strong positive correlations have existed between East Asian summer monsoons (EASMs) and western North Pacific tropical cyclone (TC) genesis frequency over the last 37 years was found. To figure out the cause of these correlations, 7 years (positive East Asian summer monsoon index (EASMI) phase) that have the highest values and 7 years (negative EASMI phase) that have the lowest values in the normalized EASM index were selected and the differences in averages between the two phases were analyzed. In the positive EASMI phase, TCs mainly occurred in the northwestern waters of the tropical and subtropical western North Pacific and showed a tendency to move from the far eastern waters of the Philippines, pass the East China Sea, and move northward toward Korea and Japan. On the 500 hPa streamline, whereas anomalous anticyclones developed in the East Asia middle-latitude region, anomalous cyclones developed in the tropical and subtropical western North Pacific. Therefore, in this phase, whereas EASMs were weakened, western North Pacific summer monsoons (WNPSMs) were strengthened so that some more TCs could occur. In addition, in the case of the East China Sea and the southern waters of Japan located between the two anomalous pressure systems, TCs could move some more toward the East Asia middle-latitude region in this phase. According to an analysis of the 850 hPa relative vorticity, negative anomalies were strengthened in the East Asia middle-latitude region while positive anomalies were strengthened in the region south to 25 N. Therefore, in the positive EASMI phase, whereas EASMs were weakened, WNPSMs were strengthened so that some more TCs could occur. According to an analysis of the 850 and 200 hPa horizontal divergence, whereas anomalous downward flows were strengthened in the East Asia middle-latitude region, anomalous upward flows were strengthened in the tropical and subtropical western North Pacific. According to an analysis

  12. Wetting and greening Tibetan Plateau in early summer since the late 1970s due to advanced Asian summer monsoon onset

    Science.gov (United States)

    Zhang, Wenxia; Zhou, Tianjun; Zhang, Lixia

    2016-04-01

    Known as the "the world water tower", the Tibetan Plateau (TP) is the origin of the ten largest rivers in Asia, breeding more than 1.4 billion people, and exerts substantial influences on water resources, agriculture, and ecosystems in downstream countries. This region is one of the most susceptible areas around the world to changing climate due to the high elevation. Observed evidence have shown significant climate changes over the TP, including surface air warming and moistening, glaciers shrinking, winds stilling, solar dimming, and atmospheric heat source weakening. However, as an essential part of the hydrological cycle, precipitation changes on the TP remain an ambiguous picture. Changes in precipitation vary largely with different seasons, time periods and climate zones considered. This study shows a robust increase in precipitation amount over the TP in May, when the rainy season starts, over the period 1979-2014 (31% relative to the climatology). The wetting trend is spatially consistent over the south-eastern TP, to which both precipitation frequency and intensity contribute. Circulation trends show that the wetting TP in May is resulted from the advanced onset of Asian summer monsoon, which onsets 1~2 pentads earlier since 1979. It intensified water vapor transport from the Bay of Bengal (BOB) to south of the TP in May and local anomalous convection. This relationship is further validated by the significant correlation coefficient (0.47) between the onset dates of Asian summer monsoon (particularly the BOB summer monsoon, 0.68) and precipitation over the south-eastern TP in May. The wetting TP in May has further exerted profound impacts on the hydrological cycle and ecosystem, such as moistening the soil and animating vegetation activities throughout early summer. Both decadal variations of soil moisture (from May to June) and Normalized Difference Vegetation Index (NDVI) (from May to July) coincide well with that of precipitation over the south

  13. Interdecadal Variability of the East Asian Summer Monsoon in an AGCM

    Institute of Scientific and Technical Information of China (English)

    HAN Jinping; WANG Huijun

    2007-01-01

    It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM)occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded.

  14. Vertical Structures of Atmospheric Properties in Southeast Tibet during the South Asian Summer Monsoon in 2013

    Institute of Scientific and Technical Information of China (English)

    周立波; 李斐; 朱金焕; 邹捍; 马舒坡; 李鹏

    2016-01-01

    In June 2013, a field experiment was conducted in Southeast Tibet in which the air temperature, moisture, and wind were measured by using a GPS sounding system. In the present study, based on these observations and ERA-Interim reanalysis data, the vertical structures of these atmospheric properties and the possible influence of the South Asian summer monsoon (SASM) were investigated. On average, the temperature had a lapse rate of 6.8℃ km−1 below the tropopause of 18.0 km. A strong moisture inversion occurred at the near-surface, with a strength of 1.7 g kg−1 (100 m)−1 for specific humidity. During the observation period, the SASM experienced a south phase and a north phase in the middle and by the end of June, respectively. The monsoon’s evolution led to large changes in convection and circulation over Southeast Tibet, which further affected the local thermal, moisture, and circulation conditions. The strong convection resulted in an elevated tropopause height over Southeast Tibet during the north phase of the SASM, and the large-scale warm and wet air masses delivered by the monsoon caused high local temperature and moisture conditions.

  15. Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; DING Yihui

    2008-01-01

    The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions.The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley.The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea(SCS)as in normal years.Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan.The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process.During this year,the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20℃N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes.The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific,which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport.also did not reach the region north of 30℃N as well.Under this circumstance,the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999.The SCS and South China were mostly affected by the alrflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones.respectively,and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions.The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation.with the rainfall maximum occurring in the SCS (South China)when the 30-60-day

  16. Impact of the North Atlantic Sea Surface Temperature Tripole on the East Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    ZUO Jinqing; LI Weijing; SUN Chenghu; XU Li; REN Hong-Li

    2013-01-01

    A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer,which has positive (negative)SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean.The mechanisms responsible for this linkage are diagnosed in the present study.It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer.This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains,which has a substantial effect on the EASM.Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing.Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO),the relationships between these two factors and the EASM are also examined.It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole,which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO.The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.

  17. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    Science.gov (United States)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  18. Impact of the Asian Summer Monsoon on the Lower Stratosphere: Results from TACTS/ESMVal 2012

    Science.gov (United States)

    Hoor, Peter; Müller, Stefan; Vogel, Bärbel; Bozem, Heiko; Fischer, Horst; Bönisch, Harald; Engel, Andreas; Keber, Timo; Krämer, Martina; Riese, Martin; Gute, Ellen; Schlager, Hans; Ziereis, Helmut; Zahn, Andreas

    2016-04-01

    We present results from the German research aircraft HALO during the TACTS/ESMVal project (Transport and Composition in the UTLS and Earth System Model Validation). We focus on the distribution of CO, N2O and ozone as well as water vapour. The measurements took place in the extratropical UTLS (upper troposphere/lower stratosphere) region over Europe from August to September 2012. Here, we focus on the northern hemispheric trace gas composition above potential temperatures of 370 K. In this region we could for the first time identify mixing lines, which indicate mixing between stratospheric air masses of different origin. Introducing a new pair of correlation species (N2O-CO) we could identify air masses, which do not involve mixing directly at the tropopause. Based on a case study we show, that the atmospheric region between the extratropical tropopause and potential temperatures up to Θ = 405 K is affected by mixing of 'young' stratospheric air from the monsoon region with aged stratospheric air. Based on the distribution of CO and N2O we show that the lower stratosphere over Europe becomes more tropospheric from August to September with enhanced CO, N2O and water vapour as well as decreasing ozone. Using comprehensive trajectory calculations our results particularly indicate that the Asian summer monoon is the main contributor to this composition change and that mixing from the tropical tropopause layer becomes weaker over time. Therefore we conclude that the monsoon significantly contributes to the flushing of the extratropical UTLS during summer and autumn.

  19. Distinguished ENSO response and moisture supply of dominant intraseasonal modes in the East Asian summer monsoon

    Science.gov (United States)

    Oh, Hyoeun; Ha, Kyung-Ja; Chu, Jung-Eun; Yun, Kyung-Sook

    2013-04-01

    On the basis of various self-organizing map (SOM) analysis, a kind of artificial neural network, the dominant modes of the East Asian summer monsoon (EASM) are identified as the Meiyu-Baiu, Changma, post-Changma, and the dry-spell modes. The SOM approach supposes that sudden phase change during summer monsoon period results from the presence of non-linear coupled features of intraseasonal phases. Thus, the origin and nature of the moisture supply in the dominant intraseasonal modes of the EASM rainfall can be identified in terms of each mode. To discuss the uniqueness of EASM major modes, the horizontal and vertical moisture supply are examined using moisture budget equation consisting of convergence, advection and transient eddy terms. Strong moisture convergence region can be found over the southern part of Meiyu-Baiu rainband. The Changma mode has zonal-oriented moisture source which confined to low-level from surface to 925-hPa over the Korean peninsula. Furthermore, convective instability deeply developed in the Changma mode. It means advection of moist, warm air by low-level wind from the south and cold, dry air from the north are fundamental for generating convective instability and sustaining convective activity. On the contrary to Changma mode, post-Changma mode has meridional-oriented moisture source with its deep vertical profile. Moisture divergence regions cover the northern China, Korea, and Japan for dry-spell mode. Besides the moisture convergence and advection, the transient eddies play a role in supplying moisture over the boundary region of mean flow. Detailed analyses for the relationship between external components such as El Niño Southern Oscillation which can be affected slowly on the inter-annual time scale have been discussed.

  20. Assessment of South Asian Summer Monsoon Simulation in CMIP5-Coupled Climate Models During the Historical Period (1850-2005)

    Science.gov (United States)

    Prasanna, Venkatraman

    2016-04-01

    This paper evaluates the performance of 29 state-of-art CMIP5-coupled atmosphere-ocean general circulation models (AOGCM) in their representation of regional characteristics of monsoon simulation over South Asia. The AOGCMs, despite their relatively coarse resolution, have shown some reasonable skill in simulating the mean monsoon and precipitation variability over the South Asian monsoon region. However, considerable biases do exist with reference to the observed precipitation and also inter-model differences. The monsoon rainfall and surface flux bias with respect to the observations from the historical run for the period nominally from 1850 to 2005 are discussed in detail. Our results show that the coupled model simulations over South Asia exhibit large uncertainties from one model to the other. The analysis clearly brings out the presence of large systematic biases in coupled simulation of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50 % of the climatological values. Many of the biases are common to many models. Overall, the coupled models need further improvement in realistically portraying boreal summer monsoon over the South Asian monsoon region.

  1. Distinct effects of anthropogenic aerosols on the East Asian summer monsoon between multidecadal strong and weak monsoon stages

    Science.gov (United States)

    Xie, Xiaoning; Wang, Hongli; Liu, Xiaodong; Li, Jiandong; Wang, Zhaosheng; Liu, Yangang

    2016-06-01

    Because industrial emissions of anthropogenic aerosols over East Asia have greatly increased in recent decades, the interactions between atmospheric aerosols and the East Asian summer monsoon (EASM) have attracted enormous attention. To further understand the aerosol-EASM interaction, we investigate the impacts of anthropogenic aerosols on the EASM during the multidecadal strong (1950-1977) and weak (1978-2000) EASM stages using the Community Atmospheric Model 5.1. Numerical experiments are conducted for the whole period, including the two different EASM stages, with present day (PD, year 2000) and preindustrial (PI, year 1850) aerosol emissions, as well as the observed time-varying aerosol emissions. A comparison of the results from PD and PI shows that, with the increase in anthropogenic aerosols, the large-scale EASM intensity is weakened to a greater degree (-9.8%) during the weak EASM stage compared with the strong EASM stage (-4.4%). The increased anthropogenic aerosols also result in a significant reduction in precipitation over North China during the weak EASM stage, as opposed to a statistically insignificant change during the strong EASM stage. Because of greater aerosol loading and the larger sensitivity of the climate system during weak EASM stages, the aerosol effects are more significant during these EASM stages. These results suggest that anthropogenic aerosols from the same aerosol emissions have distinct effects on the EASM and the associated precipitation between the multidecadal weak and strong EASM stages.

  2. Characteristics of Thermal and Geopotential Height Differences Between Continent and Ocean and Its Role in the Strength of the Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    Andrea Silverman; SUN Jilin

    2005-01-01

    The interdecadal factors affecting the summer monsoon winds over Somalia and the South China Sea were studied. Global geopotential heights and wind velocity fields of the 850-hPa and 200-hPa pressure levels, as well as sea surface temperature anomaly data and correlation coefficients were analyzed. The monsoons over Somalia and the South China Sea were found to be two different monsoon systems, operating on different mechanisms and being affected by different oceanatmosphere interactions. The intensity of the Asian subtropical summer monsoon is influenced by the intensity of the summer monsoon over Somalia in the month of June and by the intensity of the summer monsoon over the South China Sea in the months of June and July. The summer monsoon wind strength over Somalia is affected by regional factors, such as the heating of the Tibetan plateau, and by global mechanisms, such as the subtropical heat exchange with Antarctica. The summer monsoon over the South China Sea is affected by different ocean-atmosphere interactions. The Somalia and subtropical summer monsoons have wind blowing down the pressure gradient from area over ocean to that over land, like typical summer monsoons. The South China Sea summer monsoon has winds that blow down the pressure gradient from area over land to that over ocean. The South China Sea summer monsoon is affected by the Kuroshio Current off the east coast of Japan.

  3. Simulation of the Indian and East-Asian summer monsoon in the ECMWF model: Sensitivity to horizontal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K.R.; Potter, G.L.; Boyle, J.S. [Lawrence Livermore National Lab., CA (United States); Hameed, S. [State Univ. of New York, Stony Brook, NY (United States). Inst. for Terrestrial and Planetary Atmospheres

    1993-11-01

    The ability of the ECMWF model (Cycle 33) to simulate the Indian and East Asian summer monsoon is evaluated at four different horizontal resolutions: T21, T42, T63, and T106. Generally, with respect to the large scale features of the circulation, the largest differences among the simulations occur at T42 relative to T21. However, on regional scales, important differences among the high frequency temporal variabilitY serve as a further critical test of the model`s ability to simulate the monsoon. More generally, the results indicate the importance of evaluating high frequency time scales as a component of the climate system. T106 best captures both the spatial and temporal characteristics of the Indian and East Asian Monsoon, while T42 fails to correctly simulate the sequence and development of synoptic scale milestones that characterize the monsoon flow. In particular, T106 is superior at simulating the development and migration of the monsoon trough over the Bay of Bengal. In the T42 simulation, the development of the monsoon occurs one month earlier than typically observed. At this time the trough is incorrectly located adjacent to the east coast of India which results in an underestimate of precipitation over the Burma/Thailand region. This early establishment of the monsoon trough affects the evolution of the East-Asian monsoon and yields excessive preseason rainfall over the Mei-yu region. EOF analysis of precipitation over China indicates that T106 best simulates the Mei-yu mode of variability associated with an oscillation of the rainband that gives rise to periods of enhanced rainfall over the Yangize River Valley. The coarse resolution of T21 precludes simulation of the aforementioned regional scale monsoon flows.

  4. Impacts of Land Process on the Onset and Evolution of Asian Summer Monsoon in the NCEP Climate Forecast System

    Institute of Scientific and Technical Information of China (English)

    Song YANG; WEN Min; Rongqian YANG; Wayne HIGGINS; ZHANG Renhe

    2011-01-01

    Impacts of land models and initial land conditions (ICs) on the Asian summer monsoon,especially its onset,were investigated using the NCEP Climate Forecast System (CFS).Two land models,the Oregon State University (OSU) land model and the NCEP,OSU,Air Force,and Hydrologic Research Laboratory (Noah) land model,were used to get parallel experiments.The experiments also used land ICs from the NCEP/Department of Energy (DOE) Global Reanalysis 2 (GR2) and the Global Land Data Assimilation System (GLDAS).Previous studies have demonstrated that,a systematic weak bias appears in the modeled monsoon,and this bias may be related to a cold bias over the Asian land mass.Results of the current study show that replacement of the OSU land model by the Noah land model improved the model's cold bias and produced improved monsoon precipitation and circulation patterns.The CFS predicted monsoon with greater proficiency in El Ni(n)o years,compared to La Ni(n)a years,and the Noah model performed better than the OSU model in monsoon predictions for individual years.These improvements occurred not only in relation to monsoon onset in late spring but also to monsoon intensity in summer.Our analysis of the monsoon features over the India peninsula,the Indo-China peninsula,and the South Chinese Sea indicates different degrees of improvement.Furthermore,a change in the land models led to more remarkable improvement in monsoon prediction than did a change from the GR2 land ICs to the GLDAS land ICs.

  5. An ocean-atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, P.V.; Sabin, T.P. [Cochin University of Science and Technology, Department of Atmospheric Sciences, Cochin (India)

    2008-05-15

    A typical active-break cycle of the Asian summer monsoon is taken as beginning with maximum SST (pentad 0) over the north Bay of Bengal when the oceans to its west and east from longitude 40 -160 E, and between latitudes 10 and 25 N (area A) also has maximum SST. During this pentad the recently found 'Cold Pool' of the Bay of Bengal (between latitudes 3 N and 10 N) has its minimum SST. An area of convection takes genesis over the Bay of Bengal immediately after pentad 0 in the zone of large SST gradient north of the Cold Pool and it pulls the monsoon Low Level Jetstream (LLJ) through peninsular India. Convection and the LLJ westerlies then spread to the western Pacific Ocean during pentads 1-4 taken as the active phase of the monsoon during which convection and LLJ have grown in a positive feed back process. The cyclonic vorticity to the north of the LLJ axis is hypothesized to act as a flywheel maintaining the convection during the long active phase against the dissipating effect of atmospheric stabilization by each short spell of deep convection. By the end of pentad 4 the SST over area A has cooled and the convection weakens there, when the LLJ turns clockwise over the Arabian Sea and flows close to the equator in the Indian ocean. A band of convection develops at pentad 5 between the equator and latitude 10 S over the Indian ocean and it is nourished by the cyclonic vorticity of the LLJ now near the equator and the moisture supply through it. This is taken as the break monsoon phase lasting for about three to four pentads beginning from pentad 5 of a composite active-break cycle of 40 day duration. With reduced wind and convection over the area A during the break phase, solar radiation and light winds make the SST there warm rapidly and a new active-break cycle begins. SST, convection, LLJ and the net heat flux at the ocean surface have important roles in this new way of looking at the active-break cycle as a coupled ocean-atmosphere phenomenon. (orig.)

  6. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

    Science.gov (United States)

    Kong, W.; Chiang, J. C. H.

    2015-12-01

    The Holocene East Asian Summer Monsoon (EASM) was characterized by a trend to weaker monsoon intensity paced by orbital insolation. Here, we attribute the stronger EASM intensity in the early-mid Holocene to changes in the timing of the transition between the EASM seasonal stages - Spring, pre Mei- Yu, Mei-Yu, and Summer - during that time. Following the recent 'jet transition hypothesis' (Chiang et al., 2015), we explore the role of north-south displacement of the westerlies relative to the Tibetan Plateau that is hypothesized to control the downstream EASM seasonality changes across the Holocene. To this end, we analyze model simulations of the Holocene EASM, compare the simulated Holocene climate with the paleodata observations, and examine the role of atmospheric circulation and specifically the westerlies in modulating the East Asia summer climate. The PMIP3 climate model simulations suggest that, compared to the pre-industrial, the Mei-Yu onset and the transition from Mei-Yu to Summer rainfall occur earlier in the mid-Holocene. The advanced seasonal rainfall transition is accompanied by the weakened and northward-shifted upstream westerlies. In our atmospheric general circulation model (coupled to a slab ocean) simulations of various time periods across the Holocene (9ka, 6ka, 3ka, and pre-industrial), we quantitatively show that the timing and the length of each rainfall stage are closely related to the jet position over East Asia. We also show that the simulated changes in the maximum annual rainfall band and dust emission over East Asia largely agree with the paleo-proxy observations. In addition, we find that changes to the seasonal rainfall transitions, latitudinal westerly position, and stationary eddy activity over East Asia co-vary across the Holocene. In particular, we argue that the changes in the rainfall seasonal transitions are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road Pattern', riding along the

  7. Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records

    Science.gov (United States)

    Caley, T.; Zaragosi, S.; Bourget, J.; Martinez, P.; Malaizé, B.; Eynaud, F.; Rossignol, L.; Garlan, T.; Ellouz-Zimmermann, N.

    2013-11-01

    The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have generally suggested a dominant northern hemispheric (NH) control on summer monsoon dynamics at the scale of suborbital-millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the orbital scale remains a matter of debate. Here, six marine sediment cores distributed across the whole Arabian Sea are used to build a regional surface marine productivity signal. The productivity signal is driven by the intensity of Indian summer monsoon winds. Our results demonstrate the existence of an imprint of suborbital southern hemispheric (SH) temperature changes (i.e. Antarctica) on the Indian summer monsoon during the last glacial period that is generally not recognized. During the last deglaciation, the NH played a more significant role. This suggests that fluctuations in the Indian monsoon are better explained in a bipolar context. The δ18O signal recorded in the Asian monsoon speleothem records could be exported by winds from the Indian summer monsoon region, as recently proposed in modelling exercise, explaining the SH signature observed in Asian cave speleothems. Contrary to the view of a passive response of Indian and Asian monsoons to NH anomalies, the present results appear to suggest that the Indo-Asian summer monsoon plays an active role in amplifying millennial inter-hemispheric asymmetric patterns. Additionally, this study confirms previously observed differences between Indian and Asian speleothem monsoonal records at the orbital-precession scale.

  8. Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment

    Science.gov (United States)

    Preethi, B.; Mujumdar, M.; Kripalani, R. H.; Prabhu, Amita; Krishnan, R.

    2016-06-01

    Recent trends, variations and tele-connections between the two large regional sub-systems over the Asian domain, the South Asian and the East Asian monsoons are explored using data for the 1901-2014 period. Based on trend analysis a dipole-type configuration with north-drought and south-flood over South as well as East Asia is observed. Two regions over South Asia, one exhibiting a significant decreasing trend in summer monsoon rainfall over northeast India and the other significant increasing trend over the northern parts of the west coast of India are identified. Similarly two regions over East Asia, one over South Korea-southern parts of Japan and the other over South China are also identified both indicating a significant increasing trend in the summer monsoon rainfall. These trends are examined post 1970s. Possible factors associated with the recent trends are explored. Analysis of sea surface temperature (SST), mean sea level pressure and winds at lower troposphere indicates that the entire monsoon flow system appears to have shifted westwards, with the monsoon trough over South Asia indicating a westward shift by about 2-3° longitudes and the North Pacific Subtropical High over East Asia seems to have shifted by about 5-7° longitudes. These shifts are consistent with the recent rainfall trends. Furthermore, while the West Indian Ocean SSTs appear to be related with the summer monsoon rainfall over northern parts of India and over North China, the West Pacific SSTs appear to be related with the rainfall over southern parts of India and over South Korea- southern Japan sector.

  9. Interhemispheric atmospheric mass oscillation and its relation to interannual variations of the Asian monsoon in boreal summer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using NCEP/NCAR reanalysis and precipitation records of Chinese stations, we have investigated the relationship of interhemispheric oscillation of air mass (IHO) with global lower-level circulation and monsoon anomalies in boreal summer. Our results show that the summer IHO explains a greater portion of variance in the abnormal distribution of atmospheric mass over 30°S-60°N as well as the Antarctic. The IHO strongly correlates to the variations of sea level pressure (SLP) in these regions. It is shown that IHO has some influences on both atmospheric mass transports and water vapor fluxes over 30°S-60°N in association with three anomalous cyclonic circulations over land areas of the eastern hemisphere, which is in close relation to the changes in summer monsoon intensity in eastern Asia and western Africa. Composites of summer rainfall anomalies in China for high and low IHO-index years indicate that the eastern Asian summer monsoon is more intense, with positive precipitation anomaly centers in northern and northeastern parts of China, as opposed to the negative center over the mid-lower reaches of the Yangtze River (MLRYR) in stronger IHO years. In weak IHO years, a feeble summer monsoon appears in eastern Asia, leading to positive center of precipitation anomalies displaced into the MLRYR. Furthermore, a teleconnection in wind fields between the western African and eastern Asian monsoon regions was observed in the middle and higher troposphere in the scenario of IHO. The anomalous cyclonic (anticyclonic) circulations along the path of this Africa-East Asia teleconnection were found to be just over the diabatic heating (cooling) centers, suggesting that diabatic forcings are responsible for the formation of this Africa-East Asia teleconnection.

  10. Tracking millennial-scale climate change by analysis of the modern summer precipitation in the marginal regions of the Asian monsoon

    Science.gov (United States)

    Li, Yu; Wang, Nai'ang; Chen, Hongbao; Li, Zhuolun; Zhou, Xuehua; Zhang, Chengqi

    2012-09-01

    The Asian summer monsoon and the westerly winds interact in the mid-latitude regions of East Asia, so that climate change there is influenced by the combined effect of the two climate systems. The Holocene millennial-scale Asian summer monsoon change shows the out-of-phase relationship with the moisture evolution in arid Central Asia. Although much research has been devoted to the long-term climate change, little work has been done on the mechanism. Summer precipitation, in the marginal regions of the Asian monsoon, is strongly affected by the monsoon and the westerly winds. The purpose of this paper is to examine the mechanism of the millennial-scale out-of-phase relationship by modern summer precipitation analysis in the northwest margin of the Asian monsoon (95-110°E, 35-45°N). First, the method of Empirical Orthogonal Function (EOF) analysis was carried out to the 1960-2008 summer rainfall data from 64 stations in that region; then the water vapor transportation and geopotential height field data were studied, in order to explain and understand the factors that influence the summer precipitation; lastly, the East Asian Summer Monsoon Index (EASMI), South Asian Summer Monsoon Index (SASMI), Summer Westerly Winds Index (SWI) were compared with the EOF time series. The results indicate the complicated interannual-scale interaction between the Asian summer monsoon and the westerly winds, which can result in the modern out-of-phase relationship in the study area. This study demonstrates that the interaction between the two climate systems can be considered as a factor for the millennial-scale out-of-phase relationship.

  11. The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago

    OpenAIRE

    Qiuzhen Yin; Berger, A; E. Driesschaert; Goosse, H.; Loutre, M. F.; Crucifix, M.

    2008-01-01

    Deep-sea and ice-core records show that interglacial periods were overall less "warm" before about 420 000 years ago than after, with relatively higher ice volume and lower greenhouse gases concentration. This is particularly the case for the interglacial Marine Isotope Stage 13 which occurred about 500 000 years ago. However, by contrast, the loess and other proxy records from China suggest an exceptionally active East Asian summer monsoon during this interglacial. A three-dimensio...

  12. Natural interdecadal weak-ening of East Asian summer monsoon in the late 20th century

    Institute of Scientific and Technical Information of China (English)

    JIANG Dabang; WANG Huijun

    2005-01-01

    Based on the reanalysis data throughout 1948―2002 as derived from the United States National Centers for Environmental Prediction and National Center for Atmospheric Research, it is revealed that East Asian summer monsoon (EASM) intensity weakens on an interdecadal timescale since the mid-1960s, and twice interdecadal jumps are recorded in the EASM intensity index series in the late 20th century, respectively occurring in the mid-1960s and mid- to late 1970s. Six globally coupled atmosphere-ocean models' outputs under the SRES A2 greenhouse gas and aerosol emission scenario, provided by the IPCC Data Distribution Center and the Hadley Center for Climate Prediction and Research, are then systematically examined. It follows that the above EASM weakening is not closely related to synchronizing anthropogenic global warming, and, therefore, it should be qualitatively natural change process. Over the 21st century, the EASM intensity is likely increased slightly by continually intensified greenhouse effect relative to the late 20th century.

  13. Predictability experiments for the Asian summer monsoon impact of SST anomalies on interannual and intraseasonal variability

    CERN Document Server

    Molteni, F; Ferranti, L; Slingo, J M

    2003-01-01

    The effects of SST anomalies on the interannual and intraseasonal variability of the Asian summer monsoon have been studied by multivariate statistical analyses of 850-hPa wind and rainfall fields simulated in a set of ensemble integrations of the ECMWF atmospheric GCM, referred to as the PRISM experiments. The simulations used observed SSTs (PRISM-O), covering 9 years characterised by large variations of the ENSO phenomenon in the 1980's and the early 1990's. A parallel set of simulations was also performed with climatological SSTs (PRISM-C), thus enabling the influence of SST forcing on the modes of interannual and intraseasonal variability to be investigated. As in observations, the model's interannual variability is dominated by a zonally-oriented mode which describes the north-south movement of the tropical convergence zone (TCZ). This mode appears to be independent of SST forcing and its robustness between the PRISM-O and PRISM-C simulations suggests that it is driven by internal atmospheric dynamics. O...

  14. Southern Hemisphere imprint for Indo–Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records

    Directory of Open Access Journals (Sweden)

    T. Caley

    2013-06-01

    Full Text Available The monsoon is one of the most important climatic phenomena: it promotes inter-hemispheric exchange of energy and affects the economical prosperity of several countries exposed to its seasonal seesaw. Previous studies in both the Indian and Asian monsoon systems have suggested a dominant north hemispheric (NH control on summer monsoon dynamics at the scale of suborbital-millennial climatic changes, while the forcing/response of Indian and Asian monsoons at the orbital scale remains a matter of debate. Here nine marine sediment cores distributed across the whole Arabian Sea are used to build a regional surface marine productivity signal. The productivity signal is driven by the intensity of Indian summer monsoon winds. Results demonstrate the existence of an imprint of suborbital Southern Hemisphere (SH temperature changes (i.e., Antarctica on the Indian summer monsoon during the last glacial period, challenging the traditional and exclusive NH forcing hypothesis. Meanwhile, during the last deglaciation, the NH plays a more significant role. The δ18O signal recorded in the Asian monsoon speleothem records could be exported by winds from the Indian summer monsoon region, as recently proposed in modelling exercise, explaining the SH signature observed in Asian cave speleothems. Contrary to the view of a passive response of Indian and Asian monsoons to NH anomalies, the present results strongly suggest that the Indo–Asian summer monsoon plays an active role in amplifying millennial inter-hemispheric asymmetric patterns. Additionally, this study helps to decipher the observed differences between Indian and Asian-speleothem monsoonal records at the orbital-precession scale.

  15. Observations of PAN and its confinement in the Asian summer monsoon anticyclone in high spatial resolution

    Science.gov (United States)

    Ungermann, Jörn; Ern, Mandfred; Kaufmann, Martin; Müller, Rolf; Spang, Reinhold; Ploeger, Felix; Vogel, Bärbel; Riese, Martin

    2016-07-01

    This paper presents an analysis of trace gases in the Asian summer monsoon (ASM) region on the basis of observations by the CRISTA infrared limb sounder taken in low-earth orbit in August 1997. The spatially highly resolved measurements of peroxyacetyl nitrate (PAN) and O3 allow a detailed analysis of an eddy-shedding event of the ASM anticyclone. We identify enhanced PAN volume mixing ratios (VMRs) within the main anticyclone and within the eddy, which are suitable as a tracer for polluted air originating in India and China. Plotting the retrieved PAN VMRs against potential vorticity (PV) and potential temperature reveals that the PV value at which the PAN VMRs exhibit the strongest decrease with respect to PV increases with potential temperature. These PV values might be used to identify the extent of the ASM. Using temperature values also derived from CRISTA measurements, we also computed the location of the thermal tropopause according to the WMO criterion and find that it confines the PAN anomaly vertically within the main ASM anticyclone. In contrast, the shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal tropopause. Using the relationship between PAN as a tropospheric tracer and O3 as a stratospheric tracer to identify mixed air parcels, we further found the anticyclone to contain few such air parcels, whereas the region between the anticyclone and the eddy as well as the eddy itself contains many mixed air parcels. In combination, this implies that while the anticyclone confines polluted air masses well, eddy shedding provides a very rapid horizontal transport pathway of Asian pollution into the extratropical lowermost stratosphere with a timescale of only a few days.

  16. The influence of obliquity in the early Holocene Asian summer monsoon

    Science.gov (United States)

    Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.; Hsu, Huang-Hsiung

    2016-05-01

    The early Holocene climatic optimum is associated with perihelion precession and high obliquity, though most studies emphasize the former over the latter. Asian monsoon proxy records only decisively show the precessional impact. To explore the obliquity effect, four climate simulations are conducted by fixing orbital parameters of present-day (0K), early Holocene (11K), the lowest obliquity (31K), and 11K's precession and eccentricity with 31K's obliquity (11Kp31Ko). We show that high obliquity significantly augments the precessional impact by shifting the Asian monsoon farther north than present. By contrast, the present-day monsoon seasonality can still be identified in the simulations with low obliquity. We argue that the upper tropospheric (South Asian) and lower tropospheric (North Pacific) high-pressure systems are affected by the subtropical atmospheric heating changes responding to obliquity. As a consequence, associated with the changes in meridional gradients of geopotential height and temperature made by the heating, midlatitude transient eddies and monsoon-midlatitude interactions are modulated.

  17. Using a WRF simulation to examine regions where convection impacts the Asian summer monsoon anticyclone

    Directory of Open Access Journals (Sweden)

    N. K. Heath

    2013-09-01

    Full Text Available The Asian summer monsoon is a prominent feature of the global circulation that is associated with an upper-level anticyclone (ULAC that stands out vividly in satellite observations of trace gases. The ULAC also is an important region of troposphere-to-stratosphere transport. We ran the Weather Research and Forecasting (WRF model at convective-permitting scales (4 km grid spacing between 10–20 August 2012 to understand the role of convection in transporting boundary layer air into the upper-level anticyclone. Such high-resolution modeling of the Asian ULAC previously has not been documented in the literature. Comparison of our WRF simulation with reanalysis and satellite observations showed that WRF simulated the atmosphere sufficiently well to be used to study convective transport into the ULAC. A back-trajectory analysis based on hourly WRF output showed that > 90% of convectively influenced parcels reaching the ULAC came from the Tibetan Plateau (TP and the southern slope (SS of the Himalayas. A distinct diurnal cycle is seen in the convective trajectories, with their greatest impact occurring between 1600–2300 local solar time. This finding highlights the role of "everyday" diurnal convection in transporting boundary layer air into the ULAC. WRF output at 15 min intervals was produced for 16 August to examine the convection in greater detail. This high-temporal output revealed that the weakest convection in the study area occurred over the TP. However, because the TP is at 3000–5000 m a.m.s.l., its convection does not have to be as strong to reach the ULAC as in lower altitude regions. In addition, because the TP's elevated heat source is a major cause of the ULAC, we propose that convection over the TP and the neighboring SS is ideally situated geographically to impact the ULAC. The vertical mass flux of water vapor into the ULAC also was calculated. Results show that the TP and SS regions dominate other Asian regions in transporting

  18. On the robustness of relationship between ENSO and East Asian Summer Monsoon

    Science.gov (United States)

    Sun, Xuguang; Yang, Xiuqun; Greatbatch, Richard; Park, Wonsun

    2016-04-01

    In observations, the leading mode of variability of East Asian summer monsoon (EASM) features enhanced precipitation along the Yangtze River Valley, and mainly occurs in El Nino decaying summer (Sun et al. 2010). Kiel Climate Model (KCM) developed by Park et al. (2009) in GEOMAR, Germany is capable of reproducing these EASM characteristics in its 1000-year twentieth century equivalent (20C) control simulation. Moreover, consistent with the results of ERA-40 reanalysis data, the 1000-year 20C simulation of KCM also demonstrates an unstable relationship of EASM and ENSO, and the reason is particularly investigated in this study. The simulated El Nino events are selected and grouped into 4 categories according to their intensities and their relationships with EASM, i.e., Strong ENSO Strong Relation (SESR), Strong ENSO Weak Relation (SEWR), Weak ENSO Strong Relation (WESR) and Weak ENSO Weak Relation (WEWR). Their comparisons indicate that in situations of strong EASM-ENSO relationship, the suppressed precipitation in the northwest Pacific is more significant, so are the major components of EASM, such as western Pacific anticyclone (WPA) anomaly, the western Pacific subtropical high (WPSH), and the East Asian subtropical westerly jet (EASWJ) regardless of strong or weak ENSO, and vice versa. As for the strong ENSO, the robust EASM-ENSO relation mainly comes from the mid-eastern tropical Pacific where obvious large positive ENSO SST anomalies exist. However, it is primarily from the much warmer tropical Indian Ocean for the weak ENSO. Furthermore, correlation results show that EASM-ENSO relationship is getting more robust when much warmer interdecadal SST anomalies appear in the tropical Indian Ocean, tropical Atlantic Ocean and mid-western off-equatorial Pacific Ocean, which causes remarkably reduced convection and precipitation over the western Pacific, and then enhanced WPA anomaly, WPSH and EASWJ. Finally, the interdecadal changes of oceanic and atmospheric basic

  19. Different impacts of the two types of El Niño on Asian summer monsoon onset

    International Nuclear Information System (INIS)

    In this study, we investigate the features of Asian summer monsoon onset during the decaying phases of central Pacific (CP) and eastern Pacific (EP) types of El Niño. The Asian summer monsoon onset is late during the EP El Niño while it is generally normal during the CP El Niño. Compared to the CP El Niño, the EP El Niño exerts a stronger impact on the climate over the Indian Ocean and the western North Pacific. Warmer sea surface temperature (SST) develops in boreal spring in the southern Indian Ocean and thus forms a large cross-equatorial SST gradient during the EP El Niño, which induces asymmetric patterns of winds and precipitation over the Indian Ocean. The asymmetric precipitation and circulation patterns contribute to a late monsoon onset. In addition, the anomalous anticyclone over the western North Pacific during the EP El Niño also contributes to late onset of the monsoon. (letter)

  20. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, H [IPRC, University of Hawaii

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  1. Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China

    Science.gov (United States)

    Cheng, Xugeng; Zhao, Tianliang; Gong, Sunling; Xu, Xiangde; Han, Yongxiang; Yin, Yan; Tang, Lili; He, Hongchang; He, Jinhai

    2016-03-01

    Air quality change is generally driven by two factors: pollutant emissions and meteorology, which are difficult to distinguish via observations. To identify the contribution of meteorological factor to air quality change, an aerosol simulation from 1995 to 2004 with the global air quality model GEM-AQ/EC was designed without year-to-year changes in the anthropogenic aerosol (including sulfate and organic and black carbon) emissions over the 10-year span. To assess the impact of interannual variations of East Asian monsoon (EAM) on air quality change in China, this modeling study focused on the region of central-eastern China (CEC), a typical East Asian monsoon (EAM) region with high anthropogenic aerosol emissions. The simulation analysis showed that the interannual variability in surface aerosols over CEC was driven by fluctuation in meteorological factors associated with EAM changes. Large amplitudes of interannual variability in surface aerosol concentrations reaching 20-30% relative to the 10-year averages were found over southern CEC in summer and over northern CEC in winter. The weakened near-surface winds of EAMs in both summer and winter were significantly correlated with aerosol increases over most areas of CEC. The summer and winter monsoon changes enhance the surface aerosol concentrations with increasing trend rates exceeding 30% and 40% over the southern and northern CEC region, respectively, during the 10 years. The composite analyses of aerosol concentrations in weak and strong monsoon years revealed that positive anomalies in surface aerosol concentrations during weak summer monsoon years were centered over the vast CEC region from the North China Plain to the Sichuan Basin, and the anomaly pattern with "northern higher" and "southern lower" surface aerosol levels was distributed over CEC in weak winter monsoon years. Aerosol washout by summer monsoon rainfall exerted an impact on CEC aerosol distribution in summer; aerosol dry depositions in

  2. Holocene East Asian summer monsoon records in northern China and their inconsistency with Chinese stalagmite δ18O records

    Science.gov (United States)

    Liu, Jianbao; Chen, Jianhui; Zhang, Xiaojian; Chen, Fahu

    2016-04-01

    Monsoon precipitation over China exhibits large spatial differences. It has been found that a significantly enhanced East Asian summer monsoon (EASM) is characterized by increased rainfall in northern China and by reduced rainfall in southern China, and this relationship occurs on different time scales during the Holocene. This study presents results from a diverse range of proxy paleoclimatic records from northern China where precipitation variability is traditionally considered as an EASM proxy. Our aim is to evaluate the evolution of the EASM during the Holocene and to compare it with all of the published stalagmite δ18O records from the Asian Monsoon region in order to explore the potential mechanism(s) controlling the Chinese stalagmite δ18O. We found that the intensity of the EASM during the Holocene recorded by the traditional EASM proxy of moisture (or precipitation) records from northern China are significantly different from the Chinese stalagmite δ18O records. The EASM maximum occurred during the mid-Holocene, challenging the prevailing view of an early Holocene EASM maximum mainly inferred from stalagmite δ18O records in eastern China. In addition, all of the well-dated Holocene stalagmite δ18O records, covering a broad geographical region, exhibit a remarkably similar trend of variation and are statistically well-correlated on different time scales, thus indicating a common signal. However, in contrast with the clear consistency in the δ18O values in all of the cave records, both instrumental and paleoclimatic records exhibit significant spatial variations in rainfall on decadal-to- centennial time scales over eastern China. In addition, both paleoclimatic records and modeling results suggest that Holocene East Asian summer monsoon precipitation reached a maximum at different periods in different regions of China. Thus the stalagmite δ18O records from the EASM region should not be regarded as a reliable indicator of the strength of the East

  3. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years

    Science.gov (United States)

    Wen, Xinyu; Liu, Zhengyu; Wang, Shaowu; Cheng, Jun; Zhu, Jiang

    2016-06-01

    Understanding the past significant changes of the East Asia Summer Monsoon (EASM) and Winter Monsoon (EAWM) is critical for improving the projections of future climate over East Asia. One key issue that has remained outstanding from the paleo-climatic records is whether the evolution of the EASM and EAWM are correlated. Here, using a set of long-term transient simulations of the climate evolution of the last 21,000 years, we show that the EASM and EAWM are positively correlated on the orbital timescale in response to the precessional forcing, but are anti-correlated on millennial timescales in response to North Atlantic melt water forcing. The relation between EASM and EAWM can differ dramatically for different timescales because of the different response mechanisms, highlighting the complex dynamics of the East Asian monsoon system and the challenges for future projection.

  4. The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century

    Science.gov (United States)

    Sperber, K. R.; Annamalai, H.; Kang, I.-S.; Kitoh, A.; Moise, A.; Turner, A.; Wang, B.; Zhou, T.

    2013-11-01

    The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time

  5. The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago

    Directory of Open Access Journals (Sweden)

    Qiuzhen Yin

    2008-05-01

    Full Text Available Deep-sea and ice-core records show that interglacial periods were overall less "warm" before about 420 000 years ago than after, with relatively higher ice volume and lower greenhouse gases concentration. This is particularly the case for the interglacial Marine Isotope Stage 13 which occurred about 500 000 years ago. However, by contrast, the loess and other proxy records from China suggest an exceptionally active East Asian summer monsoon during this interglacial. A three-dimension Earth system Model of Intermediate complexity was used to understand this seeming paradox. The astronomical forcing and the remnant ice sheets present in Eurasia and North America were taken into account in a series of sensitivity experiments. Expectedly, the seasonal contrast is larger and the East Asian summer monsoon is reinforced compared to Pre-Industrial time when Northern Hemisphere summer is at perihelion. Surprisingly, the presence of the Eurasian ice sheet was found to reinforce monsoon, too, through a south-eastwards perturbation planetary wave. The trajectory of this wave is influenced by the Tibetan plateau.

  6. The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon

    Directory of Open Access Journals (Sweden)

    L. Guo

    2013-02-01

    Full Text Available The response of East Asian Summer Monsoon (EASM precipitation to long term changes in regional anthropogenic aerosols (sulphate and black carbon is explored in an atmospheric general circulation model, the atmospheric component of the UK High-Resolution Global Environment Model v1.2 (HiGAM. Separately, sulphur dioxide (SO2 and black carbon (BC emissions in 1950 and 2000 over East Asia are used to drive model simulations, while emissions are kept constant at year 2000 level outside this region. The response of the EASM is examined by comparing simulations driven by aerosol emissions representative of 1950 and 2000. The aerosol radiative effects are also determined using an off-line radiative transfer model. During June, July and August, the EASM was not significantly changed as either SO2 or BC emissions increased from 1950 to 2000 levels. However, in September, precipitation is significantly decreased by 26.4% for sulphate aerosol and 14.6% for black carbon when emissions are at the 2000 level. Over 80% of the decrease is attributed to changes in convective precipitation. The cooler land surface temperature over China in September (0.8 °C for sulphate and 0.5 °C for black carbon due to increased aerosols reduces the surface thermal contrast that supports the EASM circulation. However, mechanisms causing the surface temperature decrease in September are different between sulphate and BC experiments. In the sulphate experiment, the sulphate direct and the 1st indirect radiative effects contribute to the surface cooling. In the BC experiment, the BC direct effect is the main driver of the surface cooling, however, a decrease in low cloud cover due to the increased heating by BC absorption partially counteracts the direct effect. This results in a weaker land surface temperature response to BC changes than to sulphate changes. The resulting precipitation response is also weaker, and the responses of the monsoon circulation

  7. Multi-Decadal Modulations in the Variability of the East Asian Summer Monsoon

    Science.gov (United States)

    Nakamura, H.; Machimura, T.; Ogawa, S.; Kosaka, Y.; Nishii, K.; Miyasaka, T.

    2015-12-01

    The East Asian summer monsoon fluctuates from its climatological activity on monthly and interannual time scales, and the most dominant pattern of the variability is known as the Pacific-Japan (PJ) pattern. Characterized by a meridional teleconnection in anomalous activity of the Meiyu/Baiu rainband, tropical storms and a surface subtropical anticyclone (the Bonin High) in between, the PJ pattern exerts substantial influence on summertime climatic conditions over East Asia and the western North Pacific. Despite the recent warming trend observed in its background state, no assessment thus far has been made on how substantially the PJ has undergone, if any, multi-decadal modulations in its structure and/or dominance. Through an EOF analysis applied to a new dataset of global atmospheric reanalysis (JRA-55), the predominance of the PJ pattern is confirmed as being extracted in the leading EOF of lower-tropospheric monthly vorticity anomalies over 55 recent years. Both efficient barotropic/baroclinic energy conversion from the climatological-mean state and efficient generation of available potential energy through anomalous convective activity over the tropical western Pacific are shown to be essential for the maintenance of the monthly atmospheric anomalies of the PJ pattern over the entire 55-year period. At the same time, however, the same EOF analysis as above but applied separately to each of the sub-periods reveals a distinct signature of long-term modulations in amplitude and thus the dominance of the PJ pattern. While being extracted in the first EOF up to the 1980s, the PJ pattern is extracted in the second EOF in the period since the 1990s with marked reductions in both the variance fraction explained and the efficiency of energy conversion/generation. The resultant modulations of the summertime meridional teleconnection are also discussed with implications for future changes.

  8. Precisely dated multidecadally resolved Asian summer monsoon dynamics 113.5-86.6 thousand years ago

    Science.gov (United States)

    Jiang, Xiuyang; Wang, Xiaoyan; He, Yaoqi; Hu, Hsun-Ming; Li, Zhizhong; Spötl, Christoph; Shen, Chuan-Chou

    2016-07-01

    We present a new 230Th-dated absolute chronology of Asian summer monsoon (ASM) variability from 113.5 to 86.6 kyr BP (before 1950 AD). This integrated multidecadally resolved record, based on 1435 oxygen isotope data and 46 230Th dates with 2-sigma errors as low as ±0.3 kyr from three stalagmites collected in Sanxing Cave, southwestern China, can be a new reference for calibrating paleoclimate proxy sequences. The Sanxing δ18O record follows the 23 kyr precessional cycle of insolation and is punctuated by prominent millennial-scale oscillations of the Chinese Interstadials (CIS) 25 to 22, corresponding to Greenland Interstadials (GIS) 25 to 22. The onset of CIS 25, 24, 23 and 22 is dated to 113.1 ± 0.4, 108.1 ± 0.3, 103.7 ± 0.3 and 91.4 ± 0.6 kyr BP in the Sanxing record, respectively. The end of CIS 24 and CIS 22 is constrained to 105.5 ± 0.4 and 87.7 ± 0.3 kyr BP, respectively. A centennial-scale precursor event at 104.1 ± 0.3 kyr BP preceding CIS 23 is clearly registered. These events in the Sanxing record are synchronous with those identified in stalagmites from the European Alps (NALPS), except for the onset of GIS 25 and the end of GIS 22, and differ by up to 2.3 kyr from the corresponding ones in Greenland ice core records. The high degree of similarity of the δ18O records between Sanxing Cave and Greenland supports a Northern Hemisphere forcing of the ASM. The anti-phase relationship of δ18O records between Sanxing stalagmites and Antarctic ice cores suggests an additional ASM linkage to the Southern Hemisphere.

  9. South Asian summer monsoon variability during the last ˜54 kyrs inferred from surface water salinity and river runoff proxies

    Science.gov (United States)

    Gebregiorgis, D.; Hathorne, E. C.; Sijinkumar, A. V.; Nath, B. Nagender; Nürnberg, D.; Frank, M.

    2016-04-01

    The past variability of the South Asian Monsoon is mostly known from records of wind strength over the Arabian Sea while high-resolution paleorecords from regions of strong monsoon precipitation are still lacking. Here, we present records of past monsoon variability obtained from sediment core SK 168/GC-1, which was collected at the Alcock Seamount complex in the Andaman Sea. We utilize the ecological habitats of different planktic foraminiferal species to reconstruct freshwater-induced stratification based on paired Mg/Ca and δ18O analyses and to estimate seawater δ18O (δ18Osw). The difference between surface and thermocline temperatures (ΔT) and δ18Osw (Δδ18Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our Δδ18Osw time series reveals that upper ocean salinity stratification did not change significantly throughout the last glacial suggesting little influence of NH insolation changes. The strongest increase in temperature gradients between the mixed layer and the thermocline is recorded for the mid-Holocene and indicate the presence of a significantly shallower thermocline. In line with previous work, the δ18Osw and Ba/Ca records demonstrate that monsoon climate during the LGM was characterized by a significantly weaker southwest monsoon circulation and strongly reduced runoff. Based on our data the South Asian Summer Monsoon (SAM) over the Irrawaddyy strengthened gradually after the LGM beginning at ∼18 ka. This is some 3 kyrs before an increase of the Ba/Ca record from the Arabian Sea and indicates that South Asian Monsoon climate dynamics are more complex than the simple N-S displacement of the ITCZ as generally described for other regions. Minimum δ18Osw values recorded during the mid-Holocene are in phase with Ba/Ca marking a stronger monsoon precipitation

  10. A dipole pattern in the Indian and Pacific oceans and its relationship with the East Asian summer monsoon

    International Nuclear Information System (INIS)

    This study demonstrates a robust relationship between the Indo-Pacific warm pool (IPWP) and North Pacific Ocean dipole (IPOD) and the East Asian summer monsoon (EASM) using observational datasets and sensitivity tests from the Community Atmosphere Model version 3.1 of the National Center for Atmospheric Research. The IPOD, which is a significant pattern of boreal summer SSTA in the Indian and Pacific oceans characterized by positive (negative) sea-surface temperature anomalies (SSTA) in the North Pacific and negative (positive) SSTA in the IPWP, appears around May, intensifies in the following months, and weakens in September. In summers with a positive IPOD phase, the western Pacific subtropical high (WPSH) weakens and shrinks with the axis of the WPSH ridge moving northwards, which favours an intensified EASM and a decrease in summer rainfall in the Yangtze River valley, and vice versa. (letter)

  11. Role of Atmospheric Circulation and Westerly Jet Changes in the mid-Holocene East Asian Summer Monsoon

    Science.gov (United States)

    Kong, W.; Chiang, J. C. H.

    2014-12-01

    The East Asian Summer Monsoon (EASM) varies on inter-decadal to interglacial-glacial timescales. The EASM is stronger in the mid-Holocene than today, and these changes can be readily explained by orbitally-driven insolation increase during the boreal summer. However, a detailed understanding of the altered seasonal evolution of the EASM during this time is still lacking. In particular, previous work has suggested a close link between seasonal migration of the EASM and that of the mid-latitude westerlies impinging on the Tibetan Plateau. In this study, we explore, this problem in PMIP3 climate model simulations of the mid-Holocene, focusing on the role of atmospheric circulation and in particular how the westerly jet modulates the East Asia summer climate on paleoclimate timescales. Analysis of the model simulations suggests that, compared to the preindustrial simulations, the transition from Mei-Yu to deep summer rainfall occurs earlier in the mid-Holocene. This is accompanied by an earlier weakening and northward shift of westerly jet away from the Tibetan Plateau. The variation in the strength and the 3-D structure of the westerly jet in the mid-Holocene is summarized. We find that changes to the monsoonal rainfall, westerly jet and meridional circulation covary on paleoclimate timescales. Meridional wind changes in particular are tied to an altered stationary wave pattern, resembling today's the so-called 'Silk Road' teleconnection pattern, riding along the westerly jet. Diagnostic analysis also reveals changes in moist static energy and eddy energy fluxes associated with the earlier seasonal transition of the EASM. Our analyses suggest that the westerly jet is critical to the altered dynamics of the East Asian summer monsoon during the mid-Holocene.

  12. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions: Implication for precipitation variability in geological records

    Science.gov (United States)

    Shi, Zhengguo

    2016-05-01

    The responses of Asian summer monsoon and associated precipitation to orbital forcing have been intensively explored during the past 30 years, but debate still exists regarding whether or not the Asian monsoon is controlled by northern or southern summer insolation on the precessional timescale. Various modeling studies have been conducted that support the potential roles played by the insolation in both hemispheres. Among these previous studies, however, the main emphasis has been on the Asian monsoon intensity, with the response of monsoon duration having received little consideration. In the present study, the response of the rainy season duration over different monsoon areas to orbital forcing and its contribution to total annual precipitation are evaluated using an atmospheric general circulation model. The results show that the durations of the rainy seasons, especially their withdrawal, in northern East Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-like conditions. Compared to those during stronger boreal summer insolation, the Asian monsoon-associated rainy seasons at weaker insolation last longer, although the peak intensity is smaller. This longer duration of rainfall, which results from the change in land-ocean thermal contrast associated with atmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce an opposite response of total annual precipitation. However, the duration effect of Asian monsoon is limited under glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the orbital-scale variability of Asian monsoon, alongside the intensity, and it should therefore receive greater attention when attempting to explain orbital-scale monsoon change.

  13. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

    Science.gov (United States)

    Wang, Zhili; Zhang, Hua; Zhang, Xiaoye

    2016-09-01

    The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m-2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m-2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

  14. Seasonal prediction of the East Asian summer monsoon with a partial-least square model

    Science.gov (United States)

    Wu, Zhiwei; Yu, Lulu

    2016-05-01

    Seasonal prediction of the East Asian summer monsoon (EASM) strength is probably one of the most challenging and crucial issues for climate prediction over East Asia. In this paper, a statistical method called partial-least square (PLS) regression is utilized to uncover principal sea surface temperature (SST) modes in the winter preceding the EASM. Results show that the SST pattern of the first PLS mode is associated with the turnabout of warming (or cooling) phase of a mega-El Niño/Southern Oscillation (mega-ENSO) (a leading mode of interannual-to-interdecadal variations of global SST), whereas that of the second PLS mode leads the warming/cooling mega-ENSO by about 1 year, signaling precursory conditions for mega-ENSO. These indicate that mega-ENSO may provide a critical predictability source for the EASM strength. Based on a 40-year training period (1958-1997), a PLS prediction model is constructed using the two leading PLS modes and 3-month-lead hindcasts are performed for the validation period of 1998-2013. A promising skill is obtained, which is comparable to the ensemble mean of versions 3 and 4 of the Canadian Community Atmosphere Model (CanCM3/4) hindcasts from the newly developed North American Multi-model Ensemble Prediction System regarding the interannual variations of the EASM strength. How to improve dynamical model simulation of the EASM is also examined through comparing the CanCM3/4 hindcast (1982-2010) with the 106-year historical run (1900-2005) by the Second Generation Canadian Earth System Model (CanESM2). CanCM3/4 exhibits a high skill in the EASM hindcast period 1982-2010 during which it also has a better performance in capturing the relationship between the EASM and mega-ENSO. By contrast, the simulation skill of CanESM2 is quite low and it is unable to reproduce the linkage between the EASM and mega-ENSO. All these results emphasize importance of mega-ENSO in seasonal prediction and dynamical model simulation of the EASM.

  15. Dynamics of the East Asian Summer Monsoon in Present and Future Climates

    Science.gov (United States)

    Chen, Jinqiang

    This thesis aims at enhancing our fundamental understanding of the East Asian summer monsoon (EASM), and mechanisms implicated in its climatology in present-day and warmer climates. We focus on the most prominent feature of the EASM, i.e., the so-called Meiyu-Baiu (MB), which is characterized by a well-defined, southwest to northeast elongated quasi-stationary rainfall band, spanning from eastern China to Japan and into the northwestern Pacific Ocean in June and July. We begin with an observational study of the energetics of the MB front in present-day climate. Analyses of the moist static energy (MSE) budget of the MB front indicate that horizontal advection of moist enthalpy, primarily of dry enthalpy, sustains the front in a region of otherwise negative net energy input into the atmospheric column. A decomposition of the horizontal dry enthalpy advection into mean, transient, and stationary eddy fluxes identifies the longitudinal thermal gradient due to zonal asymmetries and the meridional stationary eddy velocity as the most influential factors determining the pattern of horizontal moist enthalpy advection. Numerical simulations in which the Tibetan Plateau (TP) is either retained or removed show that the TP influences the stationary enthalpy flux, and hence the MB front, primarily by changing the meridional stationary eddy velocity, with reinforced southerly wind on the northwestern flank of the north Pacific subtropical high (NPSH) over the MB region and northerly wind to its north. Changes in the longitudinal thermal gradient are mainly confined to the near downstream of the TP, with the resulting changes in zonal warm air advection having a lesser impact on the rainfall in the extended MB region. Similar mechanisms are shown to be implicated in present climate simulations in the Couple Model Intercomparison Project - Phase 5 (CMIP5) models. We find that the spatial distribution of the EASM precipitation simulated by different models is highly correlated

  16. South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, H; Hamilton, K; Sperber, K R

    2005-09-07

    In this paper we use the extensive integrations produced for the IPCC Fourth Assessment Report (AR4) to examine the relationship between ENSO and the monsoon at interannual and decadal timescales. We begin with an analysis of the monsoon simulation in the 20th century integrations. Six of the 18 models were found to have a reasonably realistic representation of monsoon precipitation climatology. For each of these six models SST and anomalous precipitation evolution along the equatorial Pacific during El Nino events display considerable differences when compared to observations. Out of these six models only four (GFDL{_}CM{_}2.0, GFDL{_}CM{_}2.1, MRI, and MPI{_}ECHAM5) exhibit a robust ENSO-monsoon contemporaneous teleconnection, including the known inverse relationship between ENSO and rainfall variations over India. Lagged correlations between the all-India rainfall (AIR) index and Nino3.4 SST reveal that three models represent the timing of the teleconnection, including the spring predictability barrier which is manifested as the transition from positive to negative correlations prior to the monsoon onset. Furthermore, only one of these three models (GFDL{_}CM{_}2.1) captures the observed phase lag with the strongest anticorrelation of SST peaking 2-3 months after the summer monsoon, which is partially attributable to the intensity of simulated El Nino itself. We find that the models that best capture the ENSO-monsoon teleconnection are those that correctly simulate the timing and location of SST and diabatic heating anomalies in the equatorial Pacific, and the associated changes to the equatorial Walker Circulation during El Nino events. The strength of the AIR-Nino3.4 SST correlation in the model runs waxes and wanes to some degree on decadal timescales. The overall magnitude and timescale for this decadal modulation in most of the models is similar to that seen in observations. However, there is little consistency in the phase among the realizations

  17. A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years

    Science.gov (United States)

    Zhao, Kan; Wang, Yongjin; Edwards, R. Lawrence; Cheng, Hai; Liu, Dianbing; Kong, Xinggong

    2015-08-01

    Two annually-laminated and 230Th-dated stalagmite oxygen isotope (δ18O) records from Dongge Cave, China, provided a high-resolution Asian Summer Monsoon (ASM) history for the past 1200 years. A close similarity between annual band thickness and stable isotope analyses (δ13C and δ18O) suggests the calcite δ18O is most likely a proxy associated with ASM precipitation. The two duplicated stalagmite δ18O records show that the ASM varies at a periodicity of ∼220 years, concordant with a dominant cycle of solar activity. A period of strong ASM activity occurred during the Spörer Minimum (1450-1550 A.D.), followed by a striking drop circa 1580 A.D., potentially consistent with the social unrest in the final decades of China's Ming Dynasty (1368-1644 A.D.). Centennial-scale changes in ASM precipitation over the last millennium match well with changes in tropical Atlantic sea surface temperatures (SSTs) and South American summer monsoon precipitation. Our findings suggest that variations in low-latitude monsoon precipitation are probably driven by shifts in the mean position of the intertropical convergence zone (ITCZ), which is further mediated by solar activity and tropical SSTs.

  18. The observed impacts of South Asian summer monsoon on the near-surface turbulent heat exchange over the Southeast Tibet

    Science.gov (United States)

    Zhou, Libo

    2016-04-01

    The Southeast Tibet is an important region of the Tibetan Plateau bearing the interaction between the Tibetan and the neighbor atmospheric systems. The South Asian summer monsoon (SASM) as a basic climate system in Asia could impact the local atmosphere and the near-surface heat exchange process in the Southeast Tibet. An observational campaign, OSEP2013, was carried out in this region during SASM in 2013. The atmospheric parameters and turbulent heat fluxes were observed and averaged over three different land surfaces of the inhomogeneous landscape during the observation campaign. Results show clear SASM impacts on the local atmosphere and near-surface heat exchange in the Southeast Tibet. The South Asian summer monsoon was onset on June 1, 2013, and experienced a south phase and north phase during OSEP2013. The convection and humidity were increased in the Southeast Tibet by SASM, especially during the north phase. The observation domain received low radiation energy due to the convective clouds brought by SASM, and the soil and air temperatures were lowered as consequence. In addition, the air humidity was increased over this region by the wet air transportation of SASM circulation. The sensible and latent heat transfers were decreased by the low land-air temperature difference and high air humidity during SASM. The latent heat transfer dominated the total heat transfer in the Southeast Tibet due to the low sensible heat transfer in the SASM situation, and the domination was increased as the sensible heat transfer was further decreased during the SASM north phase.

  19. Response of the Asian summer monsoon to changes in El Niño properties

    Science.gov (United States)

    Annamalai, H.; Liu, P.

    2005-04-01

    Diagnostics from observed precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research re-analysis products reveal that after the 1976-77 climate shift in the Pacific there was a dramatic change in the response of the Indian summer monsoon (ISM) to El Niño, particularly during the months of July and August. Based on 1950-75 (PRE76) and 1977-2001 (POST76) El Niño composites: the western North Pacific monsoon (WNPM) was stronger than normal in both periods; the ISM was weaker than normal during the entire monsoon season in PRE76, but in POST76 was weaker only during the onset and withdrawal phases. In terms of observed sea surface temperature (SST) during July-August, the major differences between the two periods are the presence of cold SST anomalies over the Indo-Pacific warm pool and the intensity of warm SST anomalies in the central Pacific in POST76. The effect of these differences on the ISM is investigated in a suite of experiments with an Atmospheric General Circulation Model (AGCM) that has a realistic monsoon precipitation climatology.Separate ten-member ensemble simulations with the AGCM were conducted for PRE76 and POST76 El Niño events with SST anomalies inserted as follows: (i) tropical Indo-Pacific (TIP), (ii) tropical Pacific only (TPO), and (iii) tropical Indian Ocean only (TIO). Qualitatively, TPO solutions reproduce the observed differences in the monsoon response in both periods. Specifically, during July-August of POST76 the cold SST anomalies in conjunction with remote subsidence suppress precipitation (3-5 mm day-1) over the maritime continent and equatorial central Indian Ocean. Inclusion of Indian Ocean SST anomalies in the TIP runs further suppresses precipitation over the entire equatorial Indian Ocean. The low-level anticyclonic circulation anomalies that develop as a Rossby-wave response to these convective anomalies increase the south-westerlies over the northern Indian Ocean, and favour a

  20. Evaluation of Forecast Performance on Asian Summer Monsoon Low Level Wind Using TIGGE Dataset

    Science.gov (United States)

    Ruoyun, Niu

    2016-04-01

    The forecast performance of EASM (East Asia summer monsoon) and SASM (South Asia summer monsoon) for six TIGGE (the THORPEX Interactive Grand Global Ensemble) centers in the summers of 2008-2013 are evaluated to reflect the current predictability of the state-of-the-art numerical weather prediction. The results show that EASM is overestimated by all the TIGGE centers (except the Canadian Meteorological Center, CMC). SASM is also over-predicted by ECMWF (the European Center for Medium-Range Weather Forecasts), CMA (the China Meteorological Administration) and CMC but conversely under-predicted by JMA (the Japan Meteorological Agency), Additionally, SASM is overestimated for the early lead times and underestimated for the longer lead times by NCEP (the National Centers for Environmental Prediction) and UKMO (the United Kingdom Meteorological Office (UKMO). Further analysis suggests such biases are likely to the associated with those in the related land-sea thermal contrasts. EASM surge is basically overestimated by NCEP and CMA and mainly underestimated by the others. The bias predictabilities for SASM surge are similar to that of SASM. The peaks of SASM and EASM including their surges are mainly underestimated while the valleys are mostly overestimated. By comparison, ECMWF and UKMO have overall the highest forecast skills in predicting SASM and EASM and both have respective advantages. All the TIGGE centers generally show higher skills in predicting SASM than EASM. The forecast skills of SASM and EASM are superior to that of their respective surges. Moreover, the bias-correction forecast skills tend to be improved with higher correlation coefficients in raw forecast verification.

  1. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition

    Science.gov (United States)

    Zhang, Hongbin; Griffiths, Michael L.; Huang, Junhua; Cai, Yanjun; Wang, Canfa; Zhang, Fan; Cheng, Hai; Ning, Youfeng; Hu, Chaoyong; Xie, Shucheng

    2016-11-01

    Previous research has shown a strong persistence for direct teleconnections between the East Asian summer monsoon (EASM) and high northern latitude climate variability during the last glacial and deglaciation, in particular between monsoon weakening and a reduced Atlantic meridional overturning circulation (AMOC). However, less attention has been paid to EASM strengthening as the AMOC was reinvigorated following peak Northern Hemisphere (NH) cooling. Moreover, climate model simulations have suggested a strong role for Antarctic meltwater discharge in modulating northward heat transport and hence NH warming, yet the degree to which Southern Hemisphere (SH) climate anomalies impacted the Asian monsoon region is still unclear. Here we present a new stalagmite oxygen-isotope record from the EASM affected region of central China, which documents two prominent stages of increased 18O-depleted moisture delivery to the region through the transition from Heinrich Stadial 1 (HS1) to the Bølling-Allerød (B-A) interstadial; this is in general agreement with the other monsoonal records from both NH and SH mid to low latitudes. Through novel comparisons with a recent iceberg-rafted debris (IRD) record from the Southern Ocean, we propose that the two-stage EASM intensification observed in our speleothem records were linked with two massive Antarctic icesheet discharge (AID) events at ∼16.0 ka and ∼14.7 ka, immediately following the peak HS1 stadial event. Notably, the large increase in EASM intensity at the beginning of the HS1/B-A transition (∼16 ka) is relatively muted in the NH higher latitudes, and better aligns with the changes observed in the SH, indicating the Antarctic and Southern Ocean perturbations could have an active role in driving the initial EASM strengthening at this time. Indeed, Antarctic freshwater input to the Southern Ocean during these AID events would have cooled the surrounding surface waters and caused an expansion of sea ice, restricting the

  2. Association of the East Asian subtropical westerly jet with the Southwest Asian summer monsoon: A diagnostic analysis on heavy rain events in Yunnan province, China

    Science.gov (United States)

    Chen, Jie

    2016-04-01

    Yunnan province, China is a typical area that is influenced by Southwest Asian summer monsoon (SASM) during boreal summer. Although the interannual variation of summer precipitation in Yunnan Province is closely related to that of the SASM, the East Asian subtropical westerly jet (EASWJ) may have an important role in heavy rainfall events in Yunnan Province during boreal summer. By using daily observations and the NACAR/NCEP data during 1960-2011, a diagnostic analysis is performed to investigate the association of the EASWJ with the SASM on heavy rain events in Yunnan Province during boreal summer. The analysis shows an anomalous divergence circulation pattern at upper level (200 hPa) over Eurasian continent that corresponds well to the negative anomaly of EASWJ during heavy rain events in boreal summer in Yunnan Province. At the same time, a low-level jet stream with abundant water vapor originated from the Arabian Sea and Bengal gulf provides necessarily dynamic and water conditions for heavy rain mechanism. The study further shows that the weakening of the EASWJ during heavy rain events in Yunnan Province is associated with the decrease in the meridional temperature gradient in northern mid-latitude (30o-40o N).

  3. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene

    NARCIS (Netherlands)

    Ao, H.; Dekkers, M.J.; Xiao, G.; Yang, X.; Qin, L.; Liu, X; Qiang, X.; Chang, H.; Zhao, H.

    2012-01-01

    Here we construct a Pleistocene astronomical timescale for the Nihewan fluvio–lacustrine sediments (North China), via tuning a stacked summer monsoon index generated from grain size and low-field magnetic susceptibility records to orbital obliquity and precession. Combining the summer monsoon record

  4. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations

    Science.gov (United States)

    Safieddine, Sarah; Boynard, Anne; Hao, Nan; Huang, Fuxiang; Wang, Lili; Ji, Dongsheng; Barret, Brice; Ghude, Sachin D.; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2016-08-01

    Satellite measurements from the thermal Infrared Atmospheric Sounding Interferometer (IASI), aircraft data from the MOZAIC/IAGOS project, as well as observations from ground-based stations, are used to assess the tropospheric ozone (O3) variability during the East Asian Summer Monsoon (EASM). Six years 2008-2013 of IASI data analysis reveals the ability of the instrument to detect the onset and the progression of the monsoon seen by a decrease in the tropospheric 0-6 km O3 column due to the EASM, and to reproduce this decrease from one year to the other. The year-to-year variability is found to be mainly dependent on meteorology. Focusing on the period of May-August 2011, taken as an example year, IASI data show clear inverse relationship between tropospheric 0-6 km O3 on one hand and meteorological parameters such as cloud cover, relative humidity and wind speed, on the other hand. Aircraft data from the MOZAIC/IAGOS project for the EASM of 2008-2013 are used to validate the IASI data and to assess the effect of the monsoon on the vertical distribution of the tropospheric O3 at different locations. Results show good agreement with a correlation coefficient of 0.73 (12 %) between the 0-6 km O3 column derived from IASI and aircraft data. IASI captures very well the inter-annual variation of tropospheric O3 observed by the aircraft data over the studied domain. Analysis of vertical profiles of the aircraft data shows a decrease in the tropospheric O3 that is more important in the free troposphere than in the boundary layer and at 10-20° N than elsewhere. Ground station data at different locations in India and China show a spatiotemporal dependence on meteorology during the monsoon, with a decrease up to 22 ppbv in Hyderabad, and up to 5 ppbv in the North China Plain.

  5. Parametric Sensitivity Analysis for the Asian Summer Monsoon Precipitation Simulation in the Beijing Climate Center AGCM Version 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Wu, Tongwen; Huang, Anning; Fang, Yongjie

    2015-07-15

    In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increased precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

  6. Relationship between Sea Level Pressures of the Winter Tropical Western Pacific and the Subsequent Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    武炳义; 王东晓; 黄荣辉

    2003-01-01

    Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in thenorthwestern Pacific and their evolution. The results show that the extreme winter circulation anomalyin the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of theNorthern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeasternPacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the north-western Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east directionis also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic)circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asiansummer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is theevolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anoma-lies originating from the tropical western Pacific gradually move towards, and finally occupy the Asiancontinent, and further influence the thermal depression over the Asian continent in the following summer.

  7. Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation

    Science.gov (United States)

    Li, Wenkai; Guo, Weidong; Xue, Yongkang; Fu, Congbin; Qiu, Bo

    2016-10-01

    Land surface processes play an important role in the East Asian Summer Monsoon (EASM) system. Parameterization schemes of land surface processes may cause uncertainties in regional climate model (RCM) studies for the EASM. In this paper, we investigate the sensitivity of a RCM to land surface parameterization (LSP) schemes for long-term simulation of the EASM. The Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim-Xiu and SSiB), hereafter referred to as Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively, have been applied for 22-summer EASM simulations. The 22-summer averaged spatial distributions and strengths of downscaled large-scale circulation, 2-m temperature and precipitation are comprehensively compared with ERA-Interim reanalysis and dense station observations in China. Results show that the downscaling ability of RCM for the EASM is sensitive to LSP schemes. Furthermore, this study confirms that RCM does add more information to the EASM compared to reanalysis that imposes the lateral boundary conditions (LBC) because it provides 2-m temperature and precipitation that are with higher resolution and more realistic compared to LBC. For 2-m temperature and monsoon precipitation, Sim-PX and Sim-SSiB simulations are more consistent with observation than simulations of Sim-Noah and Sim-CLM. To further explore the physical and dynamic mechanisms behind the RCM sensitivity to LSP schemes, differences in the surface energy budget between simulations of Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) are investigated and their subsequent impacts on the atmospheric circulation are analyzed. It is found that the intensity of simulated sensible heat flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces a higher tropospheric temperature in Ens-Noah-CLM than in Ens-PX-SSiB over land. The adaptive

  8. Asian monsoon variability, cyclicities, and forcing mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    Content-Type text/plain; charset=UTF-8 129 Asian Monsoon Variability, Cyclicities, and Forcing Mechanisms P. Divakar Naidu National Institute of Oceanography, Dona Paula, Goa-403004 divakar@nio.org Introduction The summer monsoon... is the dominant climatic feature of the Indian Ocean tropics and the adjacent continent. Boreal summer is characterized by high solar radiation that causes intense sensible and latent heating over northern India and Tibet Plateau. This pattern of heating...

  9. Mesoscale convection system and occurrence of extreme low tropopause temperatures. Observations over Asian summer monsoon region

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A.R.; Mandal, T.K.; Gautam, R. [National Physical Laboratory, New Delhi (India). Radio and Atmospheric Div.; Panwar, V. [National Physical Laboratory, New Delhi (India). Radio and Atmospheric Div.; Delhi Univ. (India). Dept. of Physics and Astrophysics; Rao, V.R. [India Meteorology Dept., New Delhi (India). Satellite Meteorology Div.; Goel, A. [Delhi Univ. (India). Dept. of Physics and Astrophysics; Das, S.S. [Vikram Sarabhai Space Center, Trivandrum (India). Space Physics Lab.; Dhaka, S.K. [Delhi Univ., New Delhi (India). Dept. of Physics and Electronics

    2010-07-01

    The present study examines the process of how tropospheric air enters the stratosphere, particularly in association with tropical mesoscale convective systems (TMCS) which are considered to be one of the causative mechanisms for the observation of extremely low tropopause temperature over the tropics. The association between the phenomena of convection and the observation of extreme low tropopause temperature events is, therefore, examined over the Asian monsoon region using data from multiple platforms. Satellite observations show that the area of low outgoing long wave radiation (OLR), which is a proxy for the enhanced convection, is embedded with high altitude clouds top temperatures ({<=}193 K). A detailed analysis of OLR and 100 hPa temperature shows that both are modulated by westward propagating Rossby waves with a period of {proportional_to}15 days, indicating a close linkage between them. The process by which the tropospheric air enters the stratosphere may, in turn, be determined by how the areas of convection and low tropopause temperature (LTT) i.e. T {<=}191K are spatially located. In this context, the relative spatial distribution of low OLR and LTT areas is examined. Though, the locations of low OLR and LTT are noticed in the same broad area, the two do not always overlap, except for partial overlap in some cases. When there are multiple low OLR areas, the LTT area generally appears in between the low OLR areas. Implications of these observations are also discussed. The present analysis also shows that the horizontal mean winds have a role in the spatial distribution of low OLR and LTT. (orig.)

  10. Probabilistic versus Deterministic Skill in Predicting the Western North Pacific- East Asian Summer Monsoon Variability with Multi-Model Ensembles

    Science.gov (United States)

    Yang, D.; Yang, X. Q.; Xie, Q.; Zhang, Y.; Ren, X.; Tang, Y.

    2015-12-01

    Based on the historical forecasts of three quasi-operational multi-model ensemble (MME) systems, this study assesses the superiorities of the coupled MME over its contributing single-model ensembles (SMEs) and over the uncoupled atmospheric MME in predicting the seasonal variability of the Western North Pacific-East Asian summer monsoon. The seasonal prediction skill of the monsoon is measured by Brier skill score (BSS) in the sense of probabilistic forecast as well as by anomaly correlation (AC) in the sense of deterministic forecast. The probabilistic forecast skill of the MME is found to be always significantly better than that of each participating SME, while the deterministic forecast skill of the MME is even worse than that of some SME. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the drastic improvement in reliability, while resolution is not always improved, similar to AC. A monotonous resolution-AC relationship is further found and qualitatively understood, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability possibly arises from an effective reduction of biases and overconfidence in forecast distributions. The coupled MME is much more skillful than the uncoupled atmospheric MME forced by persisted sea surface temperature (SST) anomalies. This advantage is mainly attributed to its better capability in capturing the evolution of the underlying seasonal SST anomaly.

  11. The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A.G.; Joshi, M.; Robertson, E.S.; Woolnough, S.J. [University of Reading, NCAS-Climate, Walker Institute for Climate System Research, Department of Meteorology, Reading (United Kingdom)

    2012-08-15

    This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea - a key signal of the semi-annual cycle of phytoplankton blooms in the region - are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST. (orig.)

  12. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    Science.gov (United States)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  13. Impacts of East Asian aerosols on the Asian monsoon

    Science.gov (United States)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  14. Formation of the Summertime Ozone Valley over the Tibetan Plateau: The Asian Summer Monsoon and Air Column Variations

    Institute of Scientific and Technical Information of China (English)

    BIAN Jianchun; YAN Renchang; CHEN Hongbin; L(U) Daren; Steven T. MASSIE

    2011-01-01

    The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon (ASM) and air column variations. Total ozone over the Tibetan Plateau in summer was ~33 Dobson units (DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009. Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere (UTLS) than over the non-ASM region. This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors (lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.

  15. Observations of Non-Methane Hydrocarbons Over India During the Asian Summer Monsoon Period: Results from CARIBIC

    Science.gov (United States)

    Baker, A. K.; Schuck, T. J.; Slemr, F.; Brenninkmeijer, C. A.

    2008-12-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from onboard a long-range commercial airliner. Since December 2004, flights for the second phase of CARIBIC have been aboard a Lufthansa Airbus A340-600 traveling between Frankfurt, Germany and destinations in Asia, North America and South America. The instrument package housed in the container (1.5 ton) is fully automated and during each monthly set of flights carries out a variety of real-time trace gas and aerosol measurements, and also collects 28 air samples, which are analyzed upon return to the laboratory. Routine measurements made from the sampling flasks include non-methane hydrocarbon (NMHC) analysis, and these measurements provide the basis for the data presented here. Between April and September of 2008, the container was deployed monthly on two sequential roundtrip flights between Frankfurt and Chennai, India. To achieve greater resolution, air samples were collected only on the first of the roundtrip flights, with 14 samples collected on the flight to Chennai and 14 collected on the return. These flights provided the opportunity to study the composition of the upper troposphere in this region during the Asian summer monsoon period (typically June-September), which is characterized by anticyclonic circulation in the upper troposphere coupled with deep convection. Samples collected during the monsoon period exhibit elevated levels of NMHCs relative to samples collected outside of the monsoon period, with enhancements in ethyne and benzene being more substantial than enhancements in the alkanes. Enhanced mixing ratios are observed between 15N and 40N, and correspond to enhancements in other trace gases, namely methane and CO. Ethyne in particular is strongly correlated with both methane and CO in this region

  16. Preferred response of the East Asian summer monsoon to local and non-local anthropogenic sulphur dioxide emissions

    Science.gov (United States)

    Dong, Buwen; Sutton, Rowan T.; Highwood, Eleanor J.; Wilcox, Laura J.

    2016-03-01

    In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1-40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol-radiation and aerosol-cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land-sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land-sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level

  17. Composition of the Asian summer monsoon anticyclone: Climatology and variability from 10 years of Aura Microwave Limb Sounder measurements

    Science.gov (United States)

    Santee, Michelle; Manney, Gloria; Livesey, Nathaniel; Neu, Jessica; Schwartz, Michael; Read, William

    2016-04-01

    Satellite measurements are invaluable for investigating the composition of the upper troposphere / lower stratosphere (UTLS) in the region of the Asian summer monsoon anticyclone, which has been sparsely sampled by other means. The Microwave Limb Sounder (MLS), launched as part of NASA's Aura mission in July 2004, makes simultaneous co-located measurements of trace gases and cloud ice water content (IWC, a proxy for deep convection) in the UTLS on a daily basis. Here we exploit the dense spatial and temporal coverage, long-term data record, and extensive measurement suite of Aura MLS to characterize the climatological composition of the ASM anticyclone and quantify its considerable spatial, seasonal, and interannual variability. We relate the observed trace gas behavior to various meteorological quantities, such as the size and strength of the ASM anticyclone, the extent and intensity of deep convection, and variations in the tropopause and the upper tropospheric jets in that region. Multiple species of both tropospheric and stratospheric origin are examined to help assess whether the observed variability arises from variations in transport processes or changes in the strength or location of surface emissions.

  18. Seasonal and Intraseasonal Variations of East Asian Summer Monsoon Precipitation Simulated by a Regional Air-Sea Coupled Model

    Institute of Scientific and Technical Information of China (English)

    FANG Yongjie; ZHANG Yaocun; HUANG Anning; LI Bo

    2013-01-01

    The performance of a regional air sea coupled model,comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM),in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated.Through comparisons of the model results among the coupled model,the uncoupled RIEMS,and observations,the impact of air sea coupling on simulating the EASM was also evaluated.Results showed that the regional air sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes.The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall,including its dominant period,intensity,and northward propagation.Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High,while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air sea coupling.

  19. Modeling efforts to improve the Asian Summer Monsoon representation in a coupled ocean-atmosphere tropical-channel model

    Science.gov (United States)

    Samson, G.; Masson, S. G.; Durand, F.; Terray, P.; Berthet, S.; Jullien, S.

    2015-12-01

    The Asian Summer Monsoon (ASM) simulated over the 1989-2009 period with a new 0.75° coupled ocean-atmosphere tropical-channel (45°S-45°N) model based on WRF and NEMO models is presented. The model biases are comparable to those commonly found in coupled global coupled models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over South-East Asia and the Maritime Continent. The ASM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ASM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation in the Bay of Bengal. To explore the origins of those biases and their relationship with the ASM, a series of sensitivity experiments is presented. First, we show that changing the land surface albedo representation in our model directly influences the ASM characteristics by reducing the cold bias in the Middle-East region. It improves the "heat low" representation, which has direct implication on the Findlater jet strength and precipitation over India. Furthermore, the ASM onset is shifted back by almost one month in agreement with observations. Second, a parameterization of the convective cloud-radiative feedback is introduced in the atmospheric model. It acts to reduce the warm bias present in convective regions such as India and favors the monsoon northward migration. As a consequence, the dry bias is reduced in this region. Finally, horizontal resolution is increased from 0.75° to 0.25° for both oceanic and atmospheric models to assess the sensitivity of the ASM biases to the model resolution. Large-scale model errors persist at higher resolution, but are significantly attenuated. Precipitation is improved in mountainous areas with strong orographic control, but also in

  20. Probabilistic versus deterministic skill in predicting the western North Pacific-East Asian summer monsoon variability with multimodel ensembles

    Science.gov (United States)

    Yang, Dejian; Yang, Xiu-Qun; Xie, Qian; Zhang, Yaocun; Ren, Xuejuan; Tang, Youmin

    2016-02-01

    Based on historical forecasts of three quasi-operational multimodel ensemble (MME) systems, this study assesses the superiority of coupled MME over contributing single-model ensembles (SMEs) and over uncoupled atmospheric MME in predicting the Western North Pacific-East Asian summer monsoon variability. The probabilistic and deterministic forecast skills are measured by Brier skill score (BSS) and anomaly correlation (AC), respectively. A forecast-format-dependent MME superiority over SMEs is found. The probabilistic forecast skill of the MME is always significantly better than that of each SME, while the deterministic forecast skill of the MME can be lower than that of some SMEs. The MME superiority arises from both the model diversity and the ensemble size increase in the tropics, and primarily from the ensemble size increase in the subtropics. The BSS is composed of reliability and resolution, two attributes characterizing probabilistic forecast skill. The probabilistic skill increase of the MME is dominated by the dramatic improvement in reliability, while resolution is not always improved, similar to AC. A monotonic resolution-AC relationship is further found and qualitatively explained, whereas little relationship can be identified between reliability and AC. It is argued that the MME's success in improving the reliability arises from an effective reduction of the overconfidence in forecast distributions. Moreover, it is examined that the seasonal predictions with coupled MME are more skillful than those with the uncoupled atmospheric MME forced by persisting sea surface temperature (SST) anomalies, since the coupled MME has better predicted the SST anomaly evolution in three key regions.

  1. Droughts in the East Asian summer monsoon margin during the last 6 kyrs: Link to the North Atlantic cooling events

    Science.gov (United States)

    Fan, Jiawei; Xiao, Jule; Wen, Ruilin; Zhang, Shengrui; Wang, Xu; Cui, Linlin; Li, He; Xue, Dingshuai; Yamagata, Hideki

    2016-11-01

    Teleconnections to the high latitudes, forcing by the tropical oceans and solar variability have all been suggested as dominant factors in the sub-millennial global climate changes, yet there is little consensus as to the relative importance of these factors for the East Asian summer monsoon (EASM) variability. This study presents the results of high-resolution analyses of Ca and Mg concentrations, Mg/Ca ratio, δ18O and δ13C values of endogenic calcites from a sediment core from Dali Lake in the EASM margin, in order to investigate the sub-millennial EASM variability and its possible driving forces during the last 6 kyrs. Increases in these chemical proxy data were interpreted as drought events in the region due to the intensive evaporation losses overwhelming the water input to the lake. The chemical proxy data in this study combined with multi-proxy indicators including grain size component and total organic carbon concentrations from the same sediment core imply that declines in the EASM intensity may have played a dominant role in triggering the drought events during the last 6 kyrs. The results indicate that the EASM intensity significantly declined at the intervals of 5.8-4.75, 3.2-2.8, 1.65-1.15 and 0.65-0.2 kyrs BP. Large declines in the EASM intensity during the last 6 kyrs correspond in time to occurrences of ice-rafted debris in the North Atlantic, indicating that millennial-to-centennial scale changes in the EASM intensity were mainly controlled by climatic processes occurring in the northern high latitudes. These data imply that persistent global warming may be favorable for the strengthening of the EASM circulation and for the transportation of more rainfall to the semi-arid regions of northern China on sub-millennial scales.

  2. Synchronicity of the East Asian Summer Monsoon variability and Northern Hemisphere climate change since the last deglaciation

    Directory of Open Access Journals (Sweden)

    T. Shinozaki

    2011-06-01

    Full Text Available Understanding of the mechanism of the East Asian Summer Monsoon (EASM is required for the prediction of climate change in East Asia in a scenario of modern global warming. In this study, we present high-resolution climate records from peat sediments in Northeast Japan to reconstruct the EASM variability based on peat bulk cellulose δ13C since the last deglaciation. We used a 8.8 m long peat sediment core collected from the Tashiro Bog, Northeast Japan. Based on 42 14C measurements, the core bottom reaches ~15.5 ka. δ13C, accumulation rate and accumulation flux time-series correlate well to Greenland ice core δ18O variability, suggesting that the climate record in Northeast Japan is linked to global climate changes. The δ13C record at Tashiro Bog and other paleo-EASM records at Northeast and Southern China consistently demonstrate that hydrological environments were spatially different in mid-high and mid-low latitude regions over the last 15.5 kyr. During global cooling (warming periods, mid-high and mid-low latitude regions were characterized by wet (dry and dry (wet environments, respectively. We suggest that these climatic patterns are related to the migration of the EASM-related rain belt during global climate changes, as a consequence of variations in intensity and location of both the Intertropical Convergence Zone (ITCZ and the Western Pacific Subtropical High (STH. The location of the rain belt largely influences the East Asian hydrological environment. Our δ13C time-series are characterized by a 1230 yr throughout the Holocene and a 680 yr periodicity during the early Holocene. The 1230 yr periodicity is in agreement with North Atlantic ice-rafted debris (IRD events, suggesting a teleconnection between the Northeast Japan and the North Atlantic during the Holocene. In addition, it is the first evidence that the Bond events were recorded in terrestrial sediment in

  3. Observed Variability of Summer Precipitation Pattern and Extreme Events in East China Associated with Variations of the East Asian Summer Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Qian, Yun; Zhang, Yaocun; Zhao, Chun; Leung, Lai-Yung R.; Huang, Anning; Xiao, Chuliang

    2016-06-30

    This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation, the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.

  4. Orbital forcing of the East Asian summer monsoon based on quantitative paleorainfall records from Chinese Loess using 10Be

    Science.gov (United States)

    Beck, W.; White, L.; Cheng, L.; Wu, Z.; zhou, W.; Kong, X.

    2013-12-01

    Here we outline a method for deriving quantitative records of paleoprecipitation using meteoric 10Be flux as recorded in Quaternary loess sediments, and apply this method to derive a ~500ka rainfall record from Chinese loess. The method involves measuring loess 10Be concentration by AMS, then applying corrections for radioactive decay, recycled 10Be in reaerosolized dust, and for variations in geomagnetic field to correct for atmospheric 10Be production rate variations. 10Be flux is calculated by multiplying the corrected 10Be concentrations with loess accumulation rate, where the later is derived from a (non-orbitally tuned) timescale determined from correlating variations in loess magnetic susceptibility with U/Th dated Chinese speleothem δ18O records. The dependence of 10Be flux on rainfall rate is determined using modern observations of 7Be flux in rainfall, and atmospheric 10Be/7Be cosmogenic nuclide production ratios. Modern rainfall on the Chinese Loess Plateau has been shown to be primarily a function of East Asian Summer Monsoon (EASM) intensity. Our 10Be rainfall proxy shows that glacial to peak interglacial rainfall rates in this region have varied by about a factor of two over the last 0.5 Ma. Our results suggests EASM intensity during interglacials MIS11, MIS 9c and MIS13 were all comparable (~850 mm/yr), but slightly less (by ~8%) than for MIS1, and about 15% less than for MIS5e, which is similar to the high latitude ice volume pattern of response except for MIS11. We note that the 10Be rainfall record of MIS13 differs from typical Chinese loess magnetic susceptibility records that suggest MIS13 was the strongest EASM of the last 6 interglacials. Our record instead indicates a relative subdued MIS13 EASM, more consistent with the Antarctic EPICA ice core deuterium or marine δ18O records. We correlate our results with orbital forced solar insolation variations at high and low latitudes as well as with interhemispheric insolation gradients. We find

  5. The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family

    Science.gov (United States)

    Martin, G. M.; Levine, R. C.

    2012-11-01

    Various studies have shown the importance of Earth System feedbacks in the climate system and the necessity of including these in models used for making climate change projections. The HadGEM2 family of Met Office Unified Model configurations combines model components which facilitate the representation of many different processes within the climate system, including atmosphere, ocean and sea ice, and Earth System components including the terrestrial and oceanic carbon cycle and tropospheric chemistry. We examine the climatology of the Asian summer monsoon in present-day simulations and in idealised climate change experiments. Members of the HadGEM2 family are used, with a common physical framework (one of which includes tropospheric chemistry and an interactive terrestrial and oceanic carbon cycle), to investigate whether such components affect the way in which the monsoon changes. We focus particularly on the role of interactive vegetation in the simulations from these model configurations. Using an atmosphere-only HadGEM2 configuration, we investigate how the changes in land cover which result from the interaction between the dynamic vegetation and the model systematic rainfall biases affect the Asian summer monsoon, both in the present-day and in future climate projections. We demonstrate that the response of the dynamic vegetation to biases in regional climate, such as lack of rainfall over tropical dust-producing regions, can affect both the present-day simulation and the response to climate change forcing scenarios.

  6. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    Science.gov (United States)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  7. Orbital control of the western North Pacific summer monsoon

    Science.gov (United States)

    Wu, Chi-Hua; Chiang, John C. H.; Hsu, Huang-Hsiung; Lee, Shih-Yu

    2016-02-01

    Orbital forcing exerts a strong influence on global monsoon systems, with higher summer insolation leading to stronger summer monsoons in the Northern Hemisphere. However, the associated regional and seasonal changes, particularly the interaction between regional monsoon systems, remain unclear. Simulations using the Community Earth System Model demonstrate that the western North Pacific (WNP) summer monsoon responds to orbital forcing opposite to that of other major Northern Hemisphere monsoon systems. Compared with its current climate state, the simulated WNP monsoon and associated lower-tropospheric trough is absent in the early Holocene when the precession-modulated Northern Hemisphere summer insolation is higher, whereas the summer monsoons in South and East Asia are stronger and shift farther northward. We attribute the weaker WNP monsoon to the stronger diabatic heating of the summer Asian monsoon—in particular over the southern Tibetan Plateau and Maritime Continent—that in turn strengthens the North Pacific subtropical high through atmospheric teleconnections. By contrast, the impact of the midlatitude circulation changes on the WNP monsoon is weaker when the solar insolation is higher. Prior to the present WNP monsoon onset, the upper-tropospheric East Asian jet stream weakens and shifts northward; the monsoon onset is highly affected by the jet-induced high potential vorticity intrusion. In the instance of the extreme perihelion-summer, the WNP monsoon is suppressed despite a stronger midlatitude precursor than present-day, and the midlatitude circulation response to the enhanced South Asian precipitation is considerable. These conditions indicate internal monsoon interactions of an orbital scale, implying a potential mechanistic control of the WNP monsoon.

  8. Transport of short-lived climate forcers/pollutants (SLCF/P) to the Himalayas during the South Asian summer monsoon onset

    International Nuclear Information System (INIS)

    Over the course of six years (2006–2011), equivalent black carbon (eqBC), coarse aerosol mass (PM1–10), and surface ozone (O3), observed during the monsoon onset period at the Nepal Climate Observatory–Pyramid WMO/GAW Global Station (NCO-P, 5079 m a.s.l.), were analyzed to investigate events characterized by a significant increase in these short-lived climate forcers/pollutants (SLCF/P). These events occurred during periods characterized by low (or nearly absent) rain precipitation in the central Himalayas, and they appeared to be related to weakening stages (or ‘breaking’) of the South Asian summer monsoon system. As revealed by the combined analysis of atmospheric circulation, air-mass three-dimensional back trajectories, and satellite measurements of atmospheric aerosol loading, surface open fire, and tropospheric NO x, the large amount of SLCF/P reaching the NCO-P appeared to be related to natural (mineral dust) and anthropogenic emissions occurring within the PBL of central Pakistan (i.e., Thar Desert), the Northwestern Indo-Gangetic plain, and the Himalayan foothills. The systematic occurrence of these events appeared to represent the most important source of SLCF/P inputs into the central Himalayas during the summer monsoon onset period, with possible important implications for the regional climate and for hydrological cycles. (letter)

  9. Impact of tropical cyclone development on the instability of South Asian High and the summer monsoon onset over Bay of Bengal

    Science.gov (United States)

    Wu, Guoxiong; Ren, Suling; Xu, Jianmin; Wang, Dongxiao; Bao, Qing; Liu, Boqi; Liu, Yimin

    2013-11-01

    This paper analyzes the evolution of the South Asian High (SAH) during and after the development of tropical cyclone Neoguri over the South China Sea (SCS) in mid-April 2008, the formation of tropical storm Nargis over the Bay of Bengal (BOB) in late April, and the Asian summer monsoon onset, as well as their interrelationships. Numerical sensitivity experiments are conducted to explore the underlying mechanism responsible for these seasonal transitions in 2008. It is demonstrated that strong latent heating related with tropical cyclone activities over the SCS can enhance the development of the SAH aloft and generate zonal asymmetric potential vorticity (PV) forcing, with positive vorticity advection to its east and negative advection to its west. Following the decay of the tropical cyclone, this asymmetric forcing leads to instability development of the SAH, presenting as a slowly westward-propagating Rossby wave accompanied by a westward shift of the high PV advection. A strong upper tropospheric divergence on the southwest of the SAH also shifts westward, while positive PV eddies are shed from the high PV advection and eventually arrives in the southern BOB. Such synoptic patterns provide favorable pumping conditions for local cyclonic vorticity to develop. The latent heating release from the cyclogenesis further intensifies the upper-layer divergence, and the lower and upper circulations become phase locked, leading to the explosive development of the tropical cyclone over the southern BOB. Consequently, a tropical storm is generated and the BOB summer monsoon commences.

  10. Impact of ice sheet induced North Atlantic oscillation on East Asian summer monsoon during an interglacial 500,000 years ago

    Science.gov (United States)

    Sundaram, S.; Yin, Q. Z.; Berger, A.; Muri, H.

    2012-09-01

    Marine Isotope Stage (MIS) 13, an interglacial about 500,000 years ago, is unique due to an exceptionally strong East Asia summer monsoon (EASM) occurring in a relatively cool climate with low greenhouse gas concentrations (GHG). This paper attempts to find one of the possible mechanisms for this seeming paradox. Simulations with an Earth System model LOVECLIM show that the presence of ice sheets over North America and Eurasia during MIS-13 induces a positive phase of the winter North Atlantic Oscillation (NAO) like feature. The ocean having a longer memory than the atmosphere, the oceanic anomalies associated with NAO persists until summer. The signals of summer NAO are transmitted to East Asia to reinforce the monsoon there through the stationary waves excited at the Asian Jet entrance. The geopotential height shows clearly a mid-latitude wave train with positive anomalies over the eastern Mediterranean/Caspian Sea and the Okhotsk Sea and a negative anomaly over Lake Baikal. This reinforces the effect of the high-latitude wave train induced independently by the Eurasian ice sheet topography as shown in previous study. These features reinforce the Meiyu front and enhance the precipitation over East Asia. The results obtained from LOVECLIM are further confirmed by an atmospheric general circulation model, ARPEGE.

  11. Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season

    Science.gov (United States)

    Bhat, G. S.; Kumar, Shailendra

    2015-03-01

    The vertical structure of radar reflectivity factor in active convective clouds that form during the South Asian monsoon season is reported using the 2A25 version 6 data product derived from the precipitation radar measurements on board the Tropical Rainfall Measuring Mission satellite. We define two types of convective cells, namely, cumulonimbus towers (CbTs) and intense convective cells (ICCs). CbT is defined referring to a reflectivity threshold of 20 dBZ at 12 km altitude and is at least 9 km thick. ICCs are constructed referring to reflectivity thresholds at 8 km and 3 km altitudes. Cloud properties reported here are based on 10 year climatology. It is observed that the frequency of occurrence of CbTs is highest over the foothills of Himalayas, plains of northern India and Bangladesh, and minimum over the Arabian Sea and equatorial Indian Ocean west of 90°E. The regional differences depend on the reference height selected, namely, small in the case of CbTs and prominent in 6-13 km height range for ICCs. Land cells are more intense than the oceanic ones for convective cells defined using the reflectivity threshold at 3 km, whereas land versus ocean contrasts are not observed in the case of CbTs. Compared to cumulonimbus clouds elsewhere in the tropics, the South Asian counterparts have higher reflectivity values above 11 km altitude.

  12. An exceptionally strensthened East Asian summer monsoon event between 19.9 and 1 7.1 ka BP recorded in a Hulu stalagmite

    Institute of Scientific and Technical Information of China (English)

    WU JiangYing; WANG YongJin; CHENG Hai; L.R.EDWARDS

    2009-01-01

    A stalagmite-based isotope record (No.H82)from Nanjing Hulu Cave,spanning from 16.5 to 10.3 ka BP,provided strong evidence for a coherence relation between the East Asian summer monsoon (EASM) and the North Atlantic climates on millennial time scales.Here we extend the high-resolution δ18O time series back to 22.1 ka BP with additional 7 230 Th dates and 573 stable isotope measurements on the lower part of that sample.The new record with a decadal resolution,piecing together with the previous data,provides a detailed,complete Last Glacial Maximum (LGM)/deglacial history of the EASM.Two centennial-scale weak monsoon events are detected within the analogue H1 event,and can be correlated to corresponding Greenland temperature shifts.This suggests a rapid re-organization of atmospheric and oceanic circulations during the ice-rafted debris (IRD) event in North Atlantic.A strengthened EASM event spanning from 19.9 to 17.1 ka BP,firstly reported here,reaches on average a half of the monsoon intensity of B(Φ)iling warming with its peak close to the full level.Taking all available evidence from continental and oceanic sediments into consideration,we suggest that a forcing mechanism behind the event would be a positive feedback of the tropical Pacific Super-ENSO cycles in response to precessional changes in solar irradiation.

  13. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite

    Institute of Scientific and Technical Information of China (English)

    L.; R.; EDWARDS

    2009-01-01

    A stalagmite-based isotope record (No. H82) from Nanjing Hulu Cave, spanning from 16.5 to 10.3 ka BP, provided strong evidence for a coherence relation between the East Asian summer monsoon (EASM) and the North Atlantic climates on millennial time scales. Here we extend the high-resolution δ 18O time series back to 22.1 ka BP with additional 7 230Th dates and 573 stable isotope measurements on the lower part of that sample. The new record with a decadal resolution, piecing together with the previous data, provides a detailed, complete Last Glacial Maximum (LGM)/deglacial history of the EASM. Two centennial-scale weak monsoon events are detected within the analogue H1 event, and can be corre- lated to corresponding Greenland temperature shifts. This suggests a rapid re-organization of atmos- pheric and oceanic circulations during the ice-rafted debris (IRD) event in North Atlantic. A strength- ened EASM event spanning from 19.9 to 17.1 ka BP, firstly reported here, reaches on average a half of the monsoon intensity of B?lling warming with its peak close to the full level. Taking all available evi- dence from continental and oceanic sediments into consideration, we suggest that a forcing mecha- nism behind the event would be a positive feedback of the tropical Pacific Super-ENSO cycles in re- sponse to precessional changes in solar irradiation.

  14. Identifying the northernmost summer monsoon location in East Asia

    Institute of Scientific and Technical Information of China (English)

    Hu Haoran; Qian Weihong

    2007-01-01

    An integrated index which can be used to indicate the advance of subtropical summer monsoon in East Asia has been proposed in this paper. The index was combined by three variables including precipitation, wind and pseudo-equivalent potential temperature. The northernmost summer monsoon location (NSML) was identified by using this index annually. It was found that the NSML experienced an interdecadal shift in the period 1977-1979 based on the annual index analysis from 1961 to 2001. A comparison of the NSML with other four summer monsoon indices has also been made. The result showed that the NSML could well represent the interannual and interdecadal variability of summer monsoon precipitation in North China (beyond 35°N), while other four indices could well indicate the precipitation anomalies of East Asian summer monsoon along the Yangtze River valley (around 30°N).

  15. The zonal movement of the Indian-East Asian summer monsoon interface in relation to the land-sea thermal contrast anomaly over East Asia

    Science.gov (United States)

    Tao, Yun; Cao, Jie; Lan, Guangdong; Su, Qin

    2016-05-01

    Based on atmospheric circulation reanalysis, global gridded precipitation, and outgoing longwave radiation datasets, this study reveals the physical process through which the land-sea thermal contrast over East Asia interrelates with the variability of the interface between the Indian summer monsoon and East Asian summer monsoon (IIE). The results indicate that the release of latent heating exerted by the low-frequency variability of anomalous land-sea thermal contrast is one of the most important physical processes correlating with the zonal movement of the IIE, in which the release of latent heating over eastern East Asia makes the greatest contribution. When a lower apparent moisture sink occurs over the South China Sea but a higher one over southern China, an anomalously positive land-sea thermal contrast is formed. An anomalous convergent zone in relation to the positive land-sea thermal contrast, located in the eastern part of the IIE, will favor the IIE to move more eastward than normal, and vice versa. An anomalous divergent zone located in the eastern part of the IIE will benefit the IIE to shift more westward than normal. Experiments using a linear baroclinic model confirm the physical processes revealed by the observational analysis.

  16. Warm Indian Ocean, Weak Asian Monsoon

    Science.gov (United States)

    Koll Roxy, Mathew; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Nath Goswami, Buphendra

    2015-04-01

    There are large uncertainties looming over the status and fate of the South Asian monsoon in a changing climate. Observations and climate models have suggested that anthropogenic warming in the past century has increased the moisture availability and the land-sea thermal contrast in the tropics, favoring an increase in monsoon rainfall. In contrast, we notice that South Asian subcontinent experienced a relatively subdued warming during this period. At the same time, the tropical Indian Ocean experienced a nearly monotonic warming, at a rate faster than the other tropical oceans. Using long-term observations and coupled model experiments, we suggest that the enhanced Indian Ocean warming along with the suppressed warming of the subcontinent weaken the land-sea thermal contrast throughout the troposphere, dampen the monsoon Hadley circulation, and reduce the rainfall over South Asia. As a result, the summer monsoon rainfall during 1901-2012 shows a significant weakening trend over South Asia, extending from Pakistan through central India to Bangladesh.

  17. A Diagnostic Study of Heavy Rainfall in Karachi Due to Merging of a Mesoscale Low and a Diffused Tropical Depression during South Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    Ghulam RASUL; Qamar-uz-Zaman CHAUDHRY; ZHAO Sixiong; ZENG Qingcun; QI Linlin; ZHANG Gaoying

    2005-01-01

    This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan's desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1)the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the Indian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay's moisture supply was cut off and the Arabian Sea became the only source of moisture to both the closely located systems. On 27July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extension of the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east,the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two

  18. Inter-comparison of deep convection over the Tibetan Plateau-Asian Monsoon Region and subtropical North America in boreal summer using CloudSat/CALIPSO data

    Science.gov (United States)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2010-12-01

    Deep convection at the Tibetan Plateau-Southern Asian Monsoon Region (TP-SAMR) is analyzed using CloudSat and CALIPSO data for the boreal summer season (June-August) from 2006 to 2009. Three sub-regions - the Tibetan Plateau (TP), southern slope of the Plateau (PSS), and southern Asian monsoon region (SAMR) - are defined and deep convection properties are compared among these sub-regions. To cast them in a broader context, we also bring in four additional regions that bear some similarity to the TP-SAMR: East Asia (EA), tropical northwestern Pacific (NWP), west and east North America (WNA, ENA). The principal findings are as follows: 1) Compared to the other two sub-regions of the TP-SAMR, deep convection at the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection at the TP are closely related to the significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context where all seven regions are brought together, deep convection at the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. Similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo, and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed. Hence, the difference between TP and SAMR is more of a general contrast between subtropical land regions and tropical oceanic regions during the boreal summer. 3) Deep convection at the PSS possesses some uniqueness of its own because of the distinctive terrain (slopes) and moist low-level monsoon flow. 4) Results from comparison between the daytime and the

  19. Temporal Variations of the Spring Persistent Rains and South China Sea Sub-high and Their Correlations to the Circulation and Precipitation of the East Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    WAN Rijin; WANG Tongmei; WU Guoxiong

    2008-01-01

    National Meteorological Information Center (NMIC) rainfall data and NCEP/NCAR dally circulation reanalysis data are employed to establish the onset-pentad time index of the spring persistent rains (SPR) and the decay-pentad time index of the South China Sea (SCS) sub-high. These indexes are used to study the relationship between the factors in SPR period and their relations to the circulation and precipitation of the East Asian summer monsoon (EASM). Results show that, the summer rainfall over southeastern China decreases when SPR onset is late. For then EASM strengthens and the cyclonic circulation around the Tibetan Plateau (TP) strengthens, which makes abnormal anti-cyclonic circulation (cyclonic convergent circulation weakens) appear over southeastern China. When the decay of SCS sub-high delays, abnormal flood prevails over the middle and lower reaches of the Yangtze River (MLYR) and to the south. That is mainly caused by EASM weakening while SCS sub-high strengthening, then the abnormal southwesterly over South China and the abnormal northerlies of anti-cyclonic circulation around the TP converge over the Yangtze Valley. The two indexes have high correlations with multivariate ENSO index (MEI) in March, indicating that the climate abnormity in East Asia is rclated to global climate abnormity tightly. The two time indexes are independent of each other, which is favorable for the prediction of the anomalies of the circulation and precipitation of EASM. From this point of view, we must take the global climate background into account when we analyze and predict the East Asian summer circulation and precipitation.

  20. Nonlinear effect on the East Asian summer monsoon due to two coexisting anthropogenic forcing factors in eastern China: an AGCM study

    Science.gov (United States)

    Deng, Jiechun; Xu, Haiming

    2016-06-01

    Two anthropogenic forcing factors dominate in eastern China: aerosols and urban land cover. Usually, aerosols induce surface cooling while urban land cover causes surface warming. It is important to explore whether or not a nonlinear effect may result from the coexistence of these two opposing effects, and to what extent such nonlinear effect may become significant in affecting the climate change in East Asia. In this study, the Community Atmosphere Model version 5.1 (CAM5.1) coupled with the Community Land Model version 4 (CLM4) is employed to investigate the nonlinear effect on the East Asian summer monsoon due to the coexistence of aerosols and urban land cover. The anthropogenic forcing can be studied by including only aerosol emissions, only urban land cover, or a combination of the two in eastern China. The nonlinear effect obtained in CAM5.1 is evident in eastern China to offset the urbanization effect. Large-scale atmospheric response produces anomalous upward motion and increases total cloud amount and precipitation. This increased total cloud amount and its associated negative shortwave cloud forcing in turn significantly decrease surface air temperature and cool the troposphere, especially in northern China, resulting in a reduced land-sea thermal contrast, which acts to weaken the prevailing southwesterly wind over the Yangtze River Valley and southwestern China and to enhance the wind over the northern South China Sea. The nonlinear effect also indirectly excites strong convection over southern China, leading to a pronounced increase in summer precipitation.

  1. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    Directory of Open Access Journals (Sweden)

    L. Jin

    2008-12-01

    Full Text Available The impacts of various scenarios of snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP–0 kyr BP are studied by using the coupled climate model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases, especially in the northern parts of Europe, Asia, and North America. At the same time, with the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP–0 kyr BP, the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. Imposed gradually increased snow and glacier cover over the Tibetan Plateau causes temperature increases in South Asia and it decreases in North Africa and Southeast Asia during 6 kyr BP to 0 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results show that the response of climate change in African-Asian monsoon region to snow and glacier cover over the Tibetan Plateau is in the way that the snow and glaciers amplify the effect of vegetation feedback and, hence, further amplify orbital forcing.

  2. An East Asian Monsoon in the Mid-Pliocene

    Institute of Scientific and Technical Information of China (English)

    YAN Qing; ZHANG Zhong-Shi; GAO Yong-Qi

    2012-01-01

    In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.

  3. Does Aerosol Weaken or Strengthen the South Asian Monsoon?

    Science.gov (United States)

    Lau, William K.

    2010-01-01

    Aerosols are known to have the ability to block off solar radiation reaching the earth surface, causing it to cool - the so-called solar dimming (SDM) effect. In the Asian monsoon region, the SDM effect by aerosol can produce differential cooling at the surface reducing the meridional thermal contrast between land and ocean, leading to a weakening of the monsoon. On the other hand, absorbing aerosols such as black carbon and dust, when forced up against the steep slopes of the southern Tibetan Plateau can produce upper tropospheric heating, and induce convection-dynamic feedback leading to an advance of the rainy season over northern India and an enhancement of the South Asian monsoon through the "Elevated Heat Pump" (EHP) effect. In this paper, we present modeling results showing that in a coupled ocean-atmosphere-land system in which concentrations of greenhouse gases are kept constant, the response of the South Asian monsoon to dust and black carbon forcing is the net result of the two opposing effects of SDM and EHP. For the South Asian monsoon, if the increasing upper tropospheric thermal contrast between the Tibetan Plateau and region to the south spurred by the EHP overwhelms the reduction in surface temperature contrast due to SDM, the monsoon strengthens. Otherwise, the monsoon weakens. Preliminary observations are consistent with the above findings. We find that the two effects are strongly scale dependent. On interannual and shorter time scales, the EHP effect appears to dominate in the early summer season (May-June). On decadal or longer time scales, the SDM dominates for the mature monsoon (July-August). Better understanding the physical mechanisms underlying the SDM and the EHP effects, the local emission and transport of aerosols from surrounding deserts and arid-regions, and their interaction with monsoon water cycle dynamics are important in providing better prediction and assessment of climate change impacts on precipitation of the Asian monsoon

  4. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river run off proxies

    Digital Repository Service at National Institute of Oceanography (India)

    Gebregiorgis, D.; Hathorne, E.C.; Sijinkumar, A; Nath, B.N.; Nurnberg, D.; Frank, M.

    >Osw) is used to investigate changes in upper ocean stratification. Additionally, Ba/Ca in G. sacculifer tests is used as a direct proxy for riverine runoff and sea surface salinity (SSS) changes related to monsoon precipitation on land. Our DELTA delta18...

  5. Impact of typhoons on the UTLS ozone and water vapor distribution within the Asian summer monsoon anticyclone during the SWOP campaign in Lhasa 2013

    Science.gov (United States)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf

    2016-04-01

    During the sounding water vapor, ozone, and particle (SWOP) campaign during the Asian Summer Monsoon (ASM) organized by the Institute of Atmospheric Physics, Chinese Academy of Sciences, ozone and water vapor profiles were measured by balloon-borne sensors in Lhasa (29.66°N, 91.14°E, elevation 3,650 m), China in August 2013. Totally, 23 soundings were launched, half of which show some deviations from the typical relationship between ozone and water vapor in the tracer-tracer correlation in the upper troposphere and lower stratosphere (UTLS). 20-day backward trajectories of each sounding were calculated using the trajectory module of the Chemical Lagrangian Model of the Stratosphere (CLaMS) to analyse these deviations. Our results demonstrate that during this period three typhoons (Jebi, Utor, and Trami) occurred over the Northwest Pacific Ocean, which have impacts on the vertical structure of ozone and water vapor by transporting the maritime airmasses from the boundary layer. These airmasses with poor ozone were transported to the UTLS by the strong uplift associated with the typhoons, and then entered the ASM anticyclone. Thereafter, air parcels arrived at the observation site through two main pathways: first rotational subsidence, during which air parcels decend slowly along a circle following the anticyclone flow with a timescale of one week, and second direct horizontal transport from the location of the typhoon to the station, where air parcels are transported directly towards the station within approximately three days.

  6. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean Sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon

    Science.gov (United States)

    Hu, Jun; Duan, Anmin

    2015-11-01

    Investigating the relationships among different factors impacting the East Asian summer monsoon (EASM) is urgent for improving its predictability. In the present study, two factors, the Tibetan Plateau (TP) atmospheric thermal forcing and the Indian Ocean sea surface temperature basin mode (IOBM), are selected to compare their relative contributions to the interannual variability of the EASM. Both statistical methods and numerical experiments are used to separate and compare their respective influences under realistic circumstances. The results indicate that the IOBM mainly drives an anticyclonic anomaly over the northwestern Pacific in the lower troposphere, which is consistent with the dominant mode of the EASM circulation system. Meanwhile, influences from the TP thermal forcing are primarily on the anticyclonic anomaly over the TP in the upper troposphere, together with the enhanced southwesterly over southern China and a northerly anomaly over northern China in the lower troposphere. Moreover, the TP thermal forcing seems to play a more important role than the IOBM in affecting the main rainfall belt of the EASM, which extends from the middle and lower reaches of the Yangtze River to Japan. Such a rainfall pattern anomaly is directly related to the anomalous northerly over northern China and the resultant stronger moisture convergence over the main rainfall belt region when a strong TP thermal forcing occurs. In addition, the IOBM can increase the precipitation over the southeastern TP during its positive phase and hence enhance the in situ atmospheric heat source to a certain degree.

  7. Comparison of East Asian winter monsoon indices

    Directory of Open Access Journals (Sweden)

    Gao Hui

    2007-01-01

    Full Text Available Four East Asian winter monsoon (EAWM indices are compared in this paper. In the research periods, all the indices show similar interannual and decadal-interdecadal variations, with predominant periods centering in 3–4 years, 6.5 years and 9–15 years, respectively. Besides, all the indices show remarkable weakening trends since the 1980s. The correlation coefficient of each two indices is positive with a significance level of 99%. Both the correlation analyses and the composites indicate that in stronger EAWM years, the Siberian high and the higher-level subtropical westerly jet are stronger, and the Aleutian low and the East Asia trough are deeper. This circulation pattern is favorable for much stronger northwesterly wind and lower air temperature in the subtropical regions of East Asia, while it is on the opposite in weaker EAWM years. Besides, EAWM can also exert a remarkable leading effect on the summer monsoon. After stronger (weaker EAWM, less (more summer precipitation is seen over the regions from the Yangtze River valley of China to southern Japan, while more (less from South China Sea to the tropical western Pacific.

  8. Intercomparison of Deep Convection over the Tibetan Plateau-Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data

    Science.gov (United States)

    Luo, Y.; Zhang, R.; Qian, W.; Luo, Z.

    2012-04-01

    Deep convection in the Tibetan Plateau-southern Asian monsoon region (TP-SAMR) is analyzed using CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (June-August) from 2006 to 2009. Three subregions are defined—the TP, the southern slope of the plateau (PSS), and the SAMR—and deep convection properties (such as occurrence frequency, internal vertical structure, system size, and local environment) are compared among these subregions. To cast them in a broader context, four additional regions that bear some similarity to the TP-SAMR are also discussed: East Asia (EA), tropical northwestern Pacific (NWP), and western and eastern North America (WNA and ENA, respectively). The principal findings are as follows: 1) Compared to the other two subregions of the TP-SAMR, deep convection over the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection over the TP are closely related to the unique local environment, namely, a significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context in which all seven regions are brought together, deep convection in the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. A similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo (e.g., 0 and 10 dBZ), and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed.Hence, the difference between the TP and SAMRismore of a general contrast between subtropical land regions and tropical oceanic regions during the

  9. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    Science.gov (United States)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  10. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model

    Science.gov (United States)

    Ma, Hongyun; Jiang, Zhihong; Song, Jie; Dai, Aiguo; Yang, Xiuqun; Huo, Fei

    2016-05-01

    The effects of urban land-use change in East China on the East Asian summer monsoon (EASM) are investigated using a Community Atmosphere Model Version 5.1. The results show that the urban land-use change in East China causes spatially-varying changes in surface net radiation and heat fluxes, atmospheric circulation, and water budgets. It results in significant surface warming (cooling) and precipitation decrease (increase) in a large region north (south) of 30°N. Urban expansion agglomerated in (29°-41°N, 110°-122°E) alters the surface energy budget and warms the surface, resulting in strengthened southwesterly airflow south of 25°N and increased convergence below the mid-troposphere between 20° and 30°N. A concomitant northward downdraft associated with the increased convection generates an anomalous high pressure north of 30°N. Meanwhile, the downdraft not only produces adiabatic warming but also inhibits the dynamic condition for precipitation formation. The anomalous high pressure formed in North China prevents the southwesterly airflow from advancing northward, leading to increase the convergence and precipitation in South China. These changes reduce the meridional temperature gradient in the mid-lower troposphere and weaken the westerly airflow near 30°N. In addition, horizontal transport of vorticity north of 35°N weakens significantly, which leads to an anomalous barotropic structure of anticyclonic there. As a result, the anomalous anticyclonic circulation and descent north of 30°N are strengthened. At the same time, the anomalous cyclonic circulation and ascent south of 30°N are enhanced. These process induced by the thermal state changes due to urbanization weakens the EASM.

  11. EVIDENCE FOR ABRUPT CLIMATIC CHANGES ON NORTHWESTERN MARGIN OF EAST ASIAN MONSOON REGION DURING LAST DEGLACIATION

    Institute of Scientific and Technical Information of China (English)

    QIANG Ming-rui; LI Sen; GAO Shang-yu

    2004-01-01

    Based on investigations of the Zhongwei Nanshan aeolian section situated in the southeastern margin of Tcngger Desert, carbon-14 and TL (thermoluminescence) dating results and paleoclimatic proxies such as magnetic susceptibility and grain size, we inferred that the northwestern margin of East Asian monsoon region experienced abrupt climatic changes during the last deglaciation. Six oscillation events were identified: Oldest Dryas, B¢lling, Older Dryas, Aller¢d, Intra-Aller¢d Cold Period (IACP) and Younger Dryas (YD). The summer monsoon was weaker during Oldest Dryas and Younger Dryas when the winter monsoon was stronger. However, during the B/A (B¢lling/Aller¢d)period, the summer monsoon strengthened, reflected by magnetic susceptibility, when the winter monsoon also became strong, which is different from the paleoclimatic pattern established in the East Asian monsoon region. Furthermore,the summer monsoon was nearly in phase with the climate changes inferred from the oxygen isotopic records of Greenland ice cores. It could be speculated that the variations of the sea ice cover in the high latitudes of the North Hemisphere affected the high pressure of Asian continent and the changes of the winter monsoon inland. On the other hand,the sea ice cover variations might have indirectly caused the occurrence of ENSO events that has tightly been related to the summer monsoon in northwest margin of East Asian monsoon region.

  12. A CHARACTERISTIC CORRELATION ANALYSIS BETWEEN THE ASIA SUMMER MONSOON MEMBERS AND THE WEST PACIFIC SUBTROPICAL HIGH

    Institute of Scientific and Technical Information of China (English)

    YU Dan-dan; ZHANG Ren; HONG Mei; MIN Jin-zhong; GUO Pin-wen

    2007-01-01

    In this paper, by using the pentad-mean NCAR/NCEP reanalysis data for the period of 1958-1997,some characteristic indices of describing the activity of Asian summer monsoon system members are defined and calculated. Based on the above works, a time-lag correlation analysis method is introduced for the correlation analysis between the Asian summer monsoon system and the west Pacific subtropical high (WPSH) area index, and some meaningful interaction processes and characteristic phenomena between them are revealed and discussed accordingly. It is shown that there exists some remarkable time-lag correlations in various degree between the Asian summer monsoon system members and the WPSH area index, and they interact and feedback with each other, which consists of the whole Asian summer monsoon system.

  13. Asian summer monsoon precipitation recorded by stalagmite oxygen isotopic composition in the western Loess Plateau during AD1875-2003 and its linkage with ocean-atmosphere system

    Institute of Scientific and Technical Information of China (English)

    LIU JingHua; SANG WenCui; Kathleen R.JOHNSON; ZHANG PingZhong; CHENG Hai; CHEN FaHu; YANG XunLin; ZHANG DeZhong; ZHOU Jing; JIA JiHong; AN ChunLei

    2008-01-01

    Based on 5 high-precision 230Th dates and 103 stable oxygen isotope ratios (δ18O) obtained from the top 16 mm of a stalagmite collected from Wanxiang Cave,Wudu,Gansu,variation of monsoonal precipita- tion in the modern Asian Monsoon (AM) marginal zone over the past 100 years was reconstructed.Comparison of the speleothem δ18O record with instrumental precipitation data at Wudu in the past 50 years indicates a high parallelism between the two curves,suggesting that the speleothem δ18O is a good proxy for the AM strength and associated precipitation,controlled by "amount effect" of the pre-cipitation.Variation of the monsoonal precipitation during the past 100 years can be divided into three stages,increasing from AD 1875 to 1900,then decreasing from AD 1901 to 1946,and increasing again thereafter.This variation is quite similar to that of the Drought/Flooding index archived from Chinese historical documents.This speleothem-derived AM record shows a close association with the Pacific Decadal Oscillation (PDO) between AD 1875 and 1977,with higher monsoonal precipitation corre-sponding to cold PDO phase and vice versa at decadal timescale.The monsoonal precipitation varia- tion is out of phase with the PDO after AD 1977,probably resulting from the decadal climate jump in the north Pacific occurring at around AD 1976/77.These results demonstrate a strong linkage between the AM and associated precipitation and the Pacific Ocean via ocean/atmosphere interaction.This rela-tionship will aid to forecast future hydrological cycle for the AM monsoon region,and to improve forecasting potential of climatic model with observation data from cave.

  14. A Study of the Teleconnections in the Asian-Pacific Monsoon Region

    Institute of Scientific and Technical Information of China (English)

    DING Yihui; LIU Yunyun

    2008-01-01

    The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, I.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is too.re than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, I.e., the "northern" teleconnection of the Asian summer monsoon

  15. THE TEMPORAL AND SPATIAL CHARACTERISTICS OF MOISTURE BUDGETS OVER ASIAN AND AUSTRALIAN MONSOON REGIONS

    Institute of Scientific and Technical Information of China (English)

    乔云亭; 罗会邦; 简茂球

    2002-01-01

    Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989. With the aid of EOF analysis method, temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied. The results show that there is apparent seasonal transition of moisture sink and water vapor transport between Asian monsoon region and Australian monsoon region. In winter, the Asian monsoon region is a moisture source, in which three cross-equatorial water vapor transport channels in the "continent bridge". at 80°E and 40°E ~ 50°E transport water vapor to the Australian monsoon region and southern Indian Ocean which are moisture sinks. In summer, Australian monsoon region and southern Indian Ocean are moisture sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink. In spring and autumn, ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.

  16. Indian summer monsoon rainfall characteristics during contrasting monsoon years.

    Digital Repository Service at National Institute of Oceanography (India)

    Varikoden, H.; RameshKumar, M.R.; Babu, C.A.

    of the Indian Summer Monsoon Rainfall (ISMR) is the year to year variation. This variation is subjected to many atmospheric and oceanic parameters in fast and slow response. India is an agrarian country and therefore its economy is mainly depends upon.... The propagation starts from about 10°S and cover the entire region within about 30 days. The slow propagation of the 30-90 day band of organized cloud bands causes the persistent rainfall over the entire regions of Indian subcontinent and fast propagation causes...

  17. Thrusts and Prospects on Understanding and Predicting Asian Monsoon Climate

    Institute of Scientific and Technical Information of China (English)

    WANG Bin

    2008-01-01

    Development of monsoon climate prediction through integrated research efforts to improve our understanding of monsoon variability and predictability is a primary goal of the Asian Monsoon Years (2007-2011) and International Monsoon Study under the leadership of the World Climate Research Programme.The present paper reviews recent progress in Asian monsoon research focusing on (1) understanding and modeling of the monsoon variability, (2) determining the sources and limits of predictability, and (3) assessing the current status of climate prediction, with emphasis on the weekly to interannual time scales. Particular attention is paid to identify scientific issues and thrust areas, as well as potential directions to move forward in an attempt to stimulate future research to advance our understanding of monsoon climate dynamics and improve our capability to forecast Asian monsoon climate variation.

  18. Was the Asian monsoon climate stable or not during the last interglacial?

    Science.gov (United States)

    Cai, Y.; An, Z.; Qin, S.; Cheng, H.; Edwards, R.; Zhang, H.

    2012-12-01

    The climate during the last interglacial was stable or not is still an open question. Here, we present an absolute-dated δ18O record during the Marin Isotope Stage 5e (Emian in Europe) from Xiaotian Cave, southeast of Chinese Loess Plateau, a region sensitive to the East Asia monsoon changes. This speleothem calcite δ18O record shows substantial centennial time-scales changes with large amplitude of ~3‰ during the last interglacial. These changes are similar to the variations found in the δ18O record from Tianmen Cave, south central Tibetan, another region sensitive to the Indian summer monsoon changes. This similarity indicates that there were significant changes occurred in the Asian summer monsoon circulations and confirms the instability of Asian summer monsoon climate during the last interglacial. Our record also indicates that the speleothem calcite δ18O values increased abruptly around 122ka BP, which is consistent with the previously reported δ18O records from Dongge, Sanbao and Tianmen caves within the quoted dating errors, demonstrating the abrupt weakening of Asian summer monsoon at the transition from MIS 5e to MIS 5d. This abrupt change of Asian summer monsoon could correlate with the temperature records from North Atlantic region. It is most likely that the decreased thermohaline circulation resulted in the cooling of the high north latitude regions and then weakened the Asian summer monsoon. In addition, the general trend of the speleothem calcite δ18O records during the last interglacial was not following the insolation changes, which is different from the scenery during the Holocene. This discrepancy may be caused by the different seasonality of insolation in the northern hemisphere and also the different lower boundary conditions, such as the ice sheet size and distribution and ocean circulations etc.

  19. The South Asian Monsoon Circulation in Moist Isentropic coordinates

    Science.gov (United States)

    Thazhe Purayil, Sabin; Pauluis, Olivier

    2016-04-01

    The atmospheric circulation and thermodynamic structure during the South Asian Summer Monsoon season is analyzed in isentropic coordinates through the mass transport represented in terms of the potential temperature and equivalent potential temperature. This approach, originally developed to analyze the global meridional circulation, makes it possible to identify the thermodynamic properties of the inflow and outflow of different air mass. To understand the thermodynamic properties of air mass in south Asian monsoon region, we have used three diagnostics; a) the joint distribution of the mass transport as a function of dry and moist entropy, b) the vertical mass flux over the monsoon domain and c) the mass transport and isentropic thickness for different moist ventilation range of tropical atmosphere. The thermodynamic properties of the various air masses, such as the inflow of warm moist air in the boundary layer, upper tropospheric outflow, and midlatitude dry air intrusion are being systematically identified. The isentropic distribution of the vertical mass flux transport in terms of equivalent potential temperature is used to explain the characteristics of ascending and descending air parcels over the Indian subcontinent. Diagnosis based on the isentropic thickness reveals that the regional monsoon circulation and associated precipitation features can be systematically explained by this method. This technique is used to study the evolution of the monsoon flow in the seasonal scale. We used the data from AMIP-type simulations carried out with prescribed Sea Surface Temperature and sea ice for a 25 year period (1981-2005) from the GFDL High-resolution atmospheric model (HiRAM) with an average grid spacing of ~25km over the globe.

  20. Interconnections between the Asian monsoon, ENSO, and high northern latitude climate during the Holocene

    Institute of Scientific and Technical Information of China (English)

    HONG Bing; LIN Qinghua; HONG Yetang

    2006-01-01

    The article emphatically reviews the research progress in interconnections between the East Asian and Indian Ocean summer monsoons, between the Asian monsoon and the El Nino-Southern Oscillation (ENSO) activity, and between the monsoon, ENSO and the changing of the North Atlantic climate during the Holocene. According to the studies of recent years, it is found that the intensity variations of the East Asian and Indian Ocean summer monsoons show an opposite relationship, which may be closely related to the phenomena of ENSO in the equatorial Pacific Ocean and the variation of the deep-water formation of the North Atlantic Ocean on the interannual to orbital time scales. The 4k and 8k events occurring at around 4200 and 8200 a BP, respectively, might be the two in a series of severe paleo-El Nino events during the Holocene, strongly reflecting the interactions and influences of the monsoons, ENSO and the North Atlantic climate. In order to better understand the relationships between these paleoclimatic phenomena, scientists need to strengthen the research work on the Asian monsoon division and the comparison between monsoon proxy records, and the study on the proxy record of sea surface temperature with high time-resolution in the equatorial Pacific Ocean and the simulation research of paleoclimate condition.

  1. Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHOU Wen; LI Chongyin; WANG Dongxiao

    2012-01-01

    Tropical cyclone (TC) genesis over the South China Sea (SCS) during 1965-2004 was analyzed.The locations of TC genesis display evident seasonal changes,with the mean position of formation situated north of 15°N in summer (June-July-August) and south of 15°N in autumn (September-October November).The TC genesis in summer underwent dramatic interdecadal variations,with more and less TC frequency during 1965-1974/1995-2004 and 1979-1993,respectively.In contrast,a significant interannual variation of TC genesis with a period of ~4 years was observed in autumn.This study investigated the relationship of SCS TC genesis to the East Asian jet stream (EAJS) and the western North Pacific subtropical high (WNPSH) on an interdecadal time scale.Analysis and comparison of the impacts of the EAJS and the WNPSH on vertical wind shear changes indicate that changes in the WNPSH and EAJS intensity rather than EAJS meridional location are responsible for changes in TC genesis on an interdecadal time scale.Corresponding to a weaker EAJS,anomalous Rossby wave energy at upper levels displays equatorward propagation at midlatitudes and poleward propagation in the subtropics.This induces anomalous convergence and divergence of wave activity fluxes in East Asia around 30°N and the SCS,respectively.The anomalous divergence of wave activity fluxes reduces easterlies at upper levels over the SCS,which is favorable to TC genesis.

  2. Inverse correlation between ancient winter and summer monsoons in East Asia?

    Institute of Scientific and Technical Information of China (English)

    ZHOU BoTao; ZHAO Ping

    2009-01-01

    There is a scientific debate on the relationship between ancient winter and summer monsoons in East Asia. Some scholars think that East Asian winter and summer monsoons are anti-correlated, and oth-ers think not. For this reason, this study is motivated to assess their linkage from the paleoclimate simulation perspective, through analyzing the Last Glacial Maximum (LGM) and mid-Holocene (MH) climate simulated by CCSM3 model. Compared to the present climate, the Aleutian low is found to be deepened and the East Asian winter monsoon (EAWM) is stronger during the LGM winter. The Pacific high in summer is noticed to be weakened and the East Asian summer monsoon (EASM) is weaker at the LGM. During the MH, the Aleutian low and the Asian high in winter are intensified, and the Asian low and the Pacific high in summer are enhanced, indicating that the EAWM and EASM are both stronger than today. Therefore, the EAWM is not always negatively correlated to the EASM. Their relationship may be different at different geological stages. It can be obtained at least from the numerical simulation results that the EAWM and the EASM is negatively correlated during the cooling period, while positively correlated during the warming period.

  3. Hydrography of the eastern Arabian Sea during summer monsoon 2002

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Shenoi, S.S.C.; Nayak, R.K.; Vinayachandran, P.N.; Nampoothiri, G.S.; Almeida, A.M.; Michael, G.S.; RameshKumar, M.R.; Sundar, D.; Sreejith, O.P.

    Hydrographic observations in the eastern Arabian Sea (EAS) during summer monsoon 2002 (during the first phase of the Arabian Sea Monsoon Experiment (ARMEX)) include two approximately fortnight-long CTD time series. A barrier layer was observed...

  4. A Review of Recent Advances in Research on Asian Monsoon in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper reviews briefly advances in recent research on monsoon by Chinese scholars,including primarily:(1)the establishment of various monsoon indices.In particular,the standardized dynamic seasonal variability index of the monsoon can delimit the geographical distribution of global monsoon systems and determine quantitatively the date of abrupt change in circularion.(2)The provision of three driving forces for the generation of monsoon.(3)The revelation of the heating-pump action of the Tibetan Plateau,which strengthens southerlies in the southern and southeastern periphery of the Plateau and results in a strong rainfall center from the northern Bay of Bengal(BOB) to the Plateau itself.(4)Clarification of the initial onset of the Asian Summer Monsoon (ASM) in the BOB east of 90°E,Indochina Peninsula(ICP) and the South China Sea,of which the rapid northward progression of tropical convection in the Sumatra and the rapid westward movement of the South Asia High to the Indochina Peninsula are the earliest signs.(5)The provision of an integrated mechanism for the onset of the East Asian Summer Monsoon (EASM),which emphasizes the integrated impact of sensible heat over Indian Peninsula.the warm advection of the Tibetan Plateau and the sensible heat and latent heat over the Indochina Peninsula on the one hand,and the seasonal phase-lock effect of the northward propagation of low frequency oscillation on the other.(6)The revelation Asian monsoon region and into the North Pacific,which is converged by several large-scale moisture transport belts in the Asian-Australian monsoon regions and whose variation influences directly the temporal and spatial distribution of summer rainfall in China.(7)Presenting the features of the sensonat advance of the that the intraseasonal oscillation of the EASM propagares in the form of a wave-train along the coast and behayes as monsoon surge propagating northward.(8)Describing the interannual and interdecadal variation of Asian monsoon

  5. Weakening of Indian Summer Monsoon in Recent Decades

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi

    2005-01-01

    The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.

  6. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    Science.gov (United States)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  7. Quaternary Indus River Terraces as Archives of Summer Monsoon Variability

    Science.gov (United States)

    Jonell, Tara N.; Clift, Peter D.

    2013-04-01

    If we are to interpret the marine stratigraphic record in terms of evolving continental environmental conditions or tectonics, it is essential to understand the transport processes that bring sediment from mountain sources to its final marine depocenter. We investigate the role that climate plays in modulating this flux by looking at the Indus River system, which is dominated by the strong forcing of the Asian monsoon and the erosion of the western Himalaya. Lake, paleoceanographic, and speleothem records offer high-resolution reconstructions of monsoon intensity over millennial timescales. These proxies suggest the monsoon reached peak intensity at ~9-10 ka in central India, followed by a steady decline after ~7 ka, with a steep decline after 4 ka. New lake core records (Tso Kar and Tso Moriri), however, suggest a more complex pattern of monsoon weakening between 7-8 ka in the Greater Himalayan region, which contrasts with a time of strong monsoon in central India. This indicates that the floodplains of the major river systems may not experience the same climatic conditions as their mountain sources, resulting in different geomorphologic responses to climate change. Earlier research has established that the northern part of the Indus floodplain adjacent to the mountains experienced incision after ~10 ka. Incision and reworking is even more intense in the Himalayas but its timing is not well-constrained. High altitude river valleys, at least north of the Greater Himalaya, appear to be sensitive to monsoon strength because they lie on the periphery of the Himalayan rain shadow. These valleys may be affected by landslide damming during periods of strong monsoonal precipitation, such as slightly after the monsoon maximum from 9-10 ka. Damming of these river valleys provides sediment storage through valley-filling and later sediment release through gradual incision or dam-bursting. Terraces of a major tributary to the Indus, the Zanskar River, indicate valley

  8. See–saw relationship of the Holocene East Asian–Australian summer monsoon

    Science.gov (United States)

    Eroglu, Deniz; McRobie, Fiona H.; Ozken, Ibrahim; Stemler, Thomas; Wyrwoll, Karl-Heinz; Breitenbach, Sebastian F. M.; Marwan, Norbert; Kurths, Jürgen

    2016-01-01

    The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth's hemispheres and provides a heat source that drives global circulation. At seasonal and inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows from the winter monsoon of the opposing hemisphere. Long-term phase relationships between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future greenhouse-triggered climate change and whether these changes could ‘lock in' possible IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we show that a newly developed nonlinear time series analysis technique allows confident identification of strong versus weak monsoon phases at millennial to sub-centennial timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak monsoons opposingly phased and triggered by solar variations. Our results provide insights into centennial- to millennial-scale relationships within the wider EAIASM regime. PMID:27666662

  9. Regionalization of Tibetan Plateau precipitation and its relation to the Asian Monsoon

    Science.gov (United States)

    Conroy, J. L.; Overpeck, J. T.

    2008-12-01

    Many paleoclimate records from the Tibetan Plateau link past changes in local precipitation to Southwest (SW, or Indian) and East (E) Asian Monsoon variability. However, few of these records are correlated with instrumental records of local or regional monsoon variability. And, although the majority of Tibetan precipitation occurs in the summer months, a dearth of station data limits the connection of instrumental precipitation variability across Tibet to the Asian Monsoon regimes. To properly interpret proxy climate records, a quantitative understanding of Asian Monsoon influences on the Tibetan Plateau is required. With this goal in mind, we investigated precipitation variability across the Tibetan Plateau using monthly gridded merged precipitation (CMAP) and outgoing longwave radiation (OLR) datasets to quantify the relationship between summer precipitation on the Tibetan Plateau and the SW and E Asian Monsoons. Average summer OLR and precipitation are significantly correlated at the 95% confidence level between southwest, northwest, southeast Tibet and the central Himalayas, but average summer OLR and precipitation in northeast Tibet is only significantly correlated with OLR and precipitation in southeastern Tibet. OLR over the central Himalayas, southwest Tibet, and northwest Tibet correlates at the 95% confidence level with the Indian Monsoon Index, and precipitation in the central Himalayas correlates at the 95% confidence level with the Webster-Yang Index of SW Monsoon variability. OLR and precipitation over the central Himalayas, southwest Tibet, and northwest Tibet also significantly correlate with OLR and precipitation over India, as well as surface wind speed, 850 mb zonal, and 850 mb meridional wind speeds over the southwest Arabian Sea. These significant correlations indicate precipitation variability over western Tibet and the central Himalayas is related to SW Asian Monsoon variability. Correlations between southeastern and northeastern Tibet OLR

  10. Grain-size records at ODP Site 1146 from the northern South China Sea: Implications on the East Asian monsoon evolution since 20 Ma

    Institute of Scientific and Technical Information of China (English)

    WAN; ShiMing; LI; AnChun; Jan-Berend; W.; STUUT; XU; FangJian

    2007-01-01

    273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian monsoon since about 20 Ma. 10-19 μm/1.3-2.4 μm, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.

  11. Regional climate model experiments to investigate the Asian monsoon in the Late Miocene

    Directory of Open Access Journals (Sweden)

    H. Tang

    2011-08-01

    Full Text Available The Late Miocene (11.6–5.3 Ma is a crucial period in the history of the Asian monsoon. Significant changes in the Asian climate regime have been documented for this period, which saw the formation of the modern Asian monsoon system. However, the spatiotemporal structure of these changes is still ambiguous, and the associated mechanisms are debated. Here, we present a simulation of the average state of the Asian monsoon climate for the Tortonian (11–7 Ma using the regional climate model CCLM3.2. We employ relatively high spatial resolution (1° × 1° and adapt the physical boundary conditions such as topography, land-sea distribution and vegetation in the regional model to represent the Late Miocene. As climatological forcing, the output of a Tortonian run with a fully-coupled atmosphere-ocean general circulation model is used. Our regional Tortonian run shows a stronger-than-present East Asian winter monsoon wind as a result of the enhanced mid-latitude westerly wind of our global forcing and the lowered present-day northern Tibetan Plateau in the regional model. The summer monsoon circulation is generally weakened in our regional Tortonian run compared to today. However, the changes of summer monsoon precipitation exhibit major regional differences. Precipitation decreases in northern China and northern India, but increases in southern China, the western coast and the southern tip of India. This can be attributed to the changes in both the regional topography (e.g. the lower northern Tibetan Plateau and the global climate conditions (e.g. the higher sea surface temperature. The spread of dry summer conditions over northern China and northern Pakistan in our Tortonian run further implies that the monsoonal climate may not have been fully established in these regions in the Tortonian. Compared with the global model, the high resolution regional model highlights the spatial differences of the Asian monsoon climate in the Tortonian, and better

  12. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei; C. Colin; A. Trentesaux; D. Blamart

    2005-01-01

    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution.The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin.Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite)and smectites/kaolinite ratios are determined as mineralogical indicators of East Asian monsoon variations. Relatively high ratios occur during interglacials and indicate strengthened summer-monsoon rainfall and weakened winter-monsoon winds; relatively lower ratios happened in glacials, indicating intensified winter monsoon and weakened summer monsoon. The evolution of the summer and winter monsoons provides an almost linear response to the summer insolation of the Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

  13. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene- comparison of different transient climate model simulations

    Science.gov (United States)

    Dallmeyer, A.; Claussen, M.; Fischer, N.; Haberkorn, K.; Wagner, S.; Pfeiffer, M.; Jin, L.; Khon, V.; Wang, Y.; Herzschuh, U.

    2015-02-01

    The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in centennial rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the

  14. Seasonal cycle of the zonal land-sea thermal contrast and East Asian subtropical monsoon circulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on analysis of the climatic temperature latitudinal deviation on middle troposphere,its seasonal cycle suggests that due to the rapid warming from eastern China continent to the east of Tibetan Plateau and the heating of Tibetan Plateeu in spring,seasonal transition of the thermal difference between East Asia continent and West Pacific first takes place in the subtropical region with greatest intensity.On the accompanying low troposphere,the prevailing wind turns from northerly in winter to southerly in summer with the convection precipitation occurring at the same time.This maybe indicates the onset of the East Asian subtropical summer monsoon.Consequently,we advice that the seasonal cycle formed by the zonal thermal contrast between Asian continent and West Pacific may be an independent driving force of East Asian SUbtropical monsoon.

  15. Regional climate model experiments to investigate the Asian monsoon in the Late Miocene

    Directory of Open Access Journals (Sweden)

    H. Tang

    2011-03-01

    Full Text Available The Late Miocene (11.6–5.3 Ma is a crucial period for the Asian monsoon evolution. However, the spatiotemporal changes of the Asian monsoon system in the Late Miocene are still ambiguous, and the mechanisms responsible for these changes are debated. Here, we present a simulation of the Asian monsoon climate (0 to 60° N and 50 to 140° E in the Tortonian (11–7 Ma using the regional climate model CCLM3.2. We employ relatively high spatial resolution (1° × 1° and adapt the physical boundary conditions such as topography, land-sea distribution and vegetation in the regional model to represent the Late Miocene. As climatological forcing, the output of a Tortonian run with a fully-coupled atmosphere-ocean general circulation model is used. Our results show a stronger-than-present E-Asian winter monsoon wind in the Tortonian, as a result of the enhanced mid-latitude westerly wind of our global forcing and the lowered northern Tibetan Plateau in the regional model. The summer monsoon circulation is generally weakened in our regional Tortonian run compared to today. However, the changes of summer monsoon precipitation exhibit major regional differences. The precipitation decreases in N-China and N-India, but increases in S-China, the western coast and the southern tip of India. This can be attributed to the combined effect of both the regional topographical changes and the other forcings related to our global model. The spread of the dry summer conditions over N-China and NW-India further implies that the monsoonal climate may not be fully established over these regions in the Tortonain. Compared with the global model, the high resolution regional model highlights the spatial differences of the Asian monsoon climate in the Tortonian, and better characterizes the convective activity and its response to topographical changes. It therefore provides a useful and compared to global models complementary tool to improve our understanding of the Asian

  16. Asian monsoons in a late Eocene greenhouse world

    Science.gov (United States)

    Licht, A.; van Cappelle, M.; Abels, H. A.; Ladant, J.-B.; Trabucho-Alexandre, J.; France-Lanord, C.; Donnadieu, Y.; Vandenberghe, J.; Rigaudier, T.; Lécuyer, C.; Terry, D., Jr.; Adriaens, R.; Boura, A.; Guo, Z.; Soe, Aung Naing; Quade, J.; Dupont-Nivet, G.; Jaeger, J.-J.

    2014-09-01

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  17. Simulation of Asian Monsoon Seasonal Variations with Climate Model R42L9/LASG

    Institute of Scientific and Technical Information of China (English)

    王在志; 吴国雄; 吴统文; 宇如聪

    2004-01-01

    The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model's performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exist in this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.

  18. Seasonal Transition Features of Large-Scale Moisture Transport in the Asian-Australian Monsoon Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern)and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.

  19. Summer monsoon rainfall prediction for India - Some new ideas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    , the predicted Indian mean summer monsoon rainfall value does not seem to be of any practical use in relation to various crops in different climatic regions. If predictions can be done for homogeneous climatobiological regions (HCBR) in which rainfall...

  20. The effect of El-Niño on South Asian Monsoon and agricultural production

    Science.gov (United States)

    Mukherjee, A.

    2015-12-01

    Mukherjee A, Wang S.Y.Abstract:The South Asian Monsoon has a prominent and significant impact on South Asian countries like India, Bangladesh, Nepal, Pakistan, Sri Lanka and it is one of the most studied phenomena in the world. The monsoon is historically known to be influenced by El Niño-Southern Oscillation (ENSO). The inter-annual and inter-decadal variability of seasonal precipitation over India strongly depends upon the ENSO phasing. The average southwest monsoon rainfall received during the years with El Niño was found to be less compared to normal years and the average rainfall during the northeast monsoon is higher in coastal Andhra Pradesh. ENSO is anti-correlated with Indian summer monsoon (ISM). The last prominent effect of ENSO on India's monsoon occurred in 2009 with 23% reduction in annual rainfall, reducing summer sown crops such as rice, sugar cane etc. and pushing up food prices. Climatic resources endowment plays a major role in planning agricultural production in tropical and sub-tropical environment especially under rain-fed agriculture, and so contingent crop planning drawn on this relationship would help to mitigate the effects of ENSO episodes in the region. The unexplored area in this domain of research is the changes in the frequency and intensity of ENSO due to global warming and its impact on ENSO prediction and agricultural management practices. We analyze the last 30 years datasets of Pacific SST, and precipitation and air temperature over Southeast Asia to examine the evolution of ENSO teleconnections with ISM, as well as making estimates of drought indices such as Palmer Drought Severity Index. This research can lead toward better crop management strategies in the South Asian monsoon region.

  1. The Indian summer monsoon as revealed by NCMRWF system

    Indian Academy of Sciences (India)

    P L S Rao; U C Mohanty; P V S Raju; Gopal Iyengar

    2003-03-01

    In this study, we present the mean seasonal features of the Indian summer monsoon circulation in the National Centre for Medium Range Weather Forecasting (NCMRWF) global data assimilation and forecast system. The large-scale budgets of heat and moisture are examined in the analyzed and model atmosphere. The daily operational analyses and forecasts (day 1 through day 5) produced for the summer seasons comprising June, July and August of 1995 and 1993 have been considered for the purpose. The principal aim of the study is two-fold. Primarily, to comprehend the influence of the systematic errors over the Indian summer monsoon, secondarily, to analyze the performance of the model in capturing the interseasonal variability. The heat and moisture balances show reduction in the influx of heat and moisture in the model forecasts compared to the analyzed atmosphere over the monsoon domain. Consequently, the diabatic heating also indicates reducing trend with increase in the forecast period. In effect, the strength of Indian summer monsoon, which essentially depends on these parameters, weakens considerably in the model forecasts. Despite producing feeble monsoon circulation, the model captures interseasonal variability realistically. Although, 1995 and 1993 are fairly normal monsoon seasons, the former received more rainfall compared to the latter in certain pockets of the monsoon domain. This is clearly indicated by the analyzed and model atmosphere in terms of energetics.

  2. Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Hiroaki; Kuroki, Harumitsu; Kamae, Youichi [University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Ibaraki (Japan); Ohba, Masamichi [Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, Abiko (Japan)

    2011-12-15

    Modulation of a monsoon under glacial forcing is examined using an atmosphere-ocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air-sea-land interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21 ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer

  3. Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth

    Science.gov (United States)

    Ao, Hong; Roberts, Andrew P.; Dekkers, Mark J.; Liu, Xiaodong; Rohling, Eelco J.; Shi, Zhengguo; An, Zhisheng; Zhao, Xiang

    2016-06-01

    Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential relationships between northern hemispheric monsoon response and major Cenozoic changes in Antarctic ice cover. Here we document long-term East Asian summer monsoon (EASM) intensification through the Late Miocene-Pliocene (∼8.2 to 2.6 Ma), and attribute this to progressive Antarctic glaciation. Our new high-resolution magnetic records of long-term EASM intensification come from the Late Miocene-Pliocene Red Clay sequence on the Chinese Loess Plateau; we identify underlying mechanisms using a numerical climate-model simulation of EASM response to an idealized stepwise increase in Antarctic ice volume. We infer that progressive Antarctic glaciation caused intensification of the cross-equatorial pressure gradient between an atmospheric high-pressure cell over Australia and a low-pressure cell over mid-latitude East Asia, as well as intensification of the cross-equatorial sea-surface temperature (SST) gradient. These combined atmospheric and oceanic adjustments led to EASM intensification. Our findings offer a new and more global perspective on the controls behind long-term Asian monsoon evolution.

  4. Inter-decadal Shift of East Asian Summer Monsoon in the Early 1990s%20世纪90年代初东亚夏季风的年代际转型

    Institute of Scientific and Technical Information of China (English)

    唐佳; 武炳义

    2012-01-01

    Using JRA-25 and NCEP/NCAR reanalysis data from 1979 to 2009, dominant modes of summer season (June-August) 850 hPa wind field variability over East Asia is revealed by means of the complex vector empirical orthogonal function method. The two reanalysis data are consistent with the description of the first East Asian summer monsoon (EASM) mode, whereas the first mode had been studied, showing that the first mode could not reflect the inter-decadal shift of Chinese summer precipitation in the early 1990s. Consequently, the inter-decadal shift feature of the second EASM mode is deeply analyzed, as well as its effect on summer precipitation in China. Moreover, the possible external forcing factors exerting effects on the inter-decadal shift of EASM are discussed. Results show that, EASM which is revealed,by two sets of reanalysis data to have undergone one inter-decadal shift in the early 1990s. The inter-decadal shift time of EASM is consistent with the inter-decadal shift time of summer precipitation in China. EASM is closely related to the mid-high latitude atmospheric circulation anomalies. Corresponding anomalous 500 hPa geopotential height fields show an anomalous quasi-zonal teleconnection pattern in northern Eurasia, whereas the distribution of summer precipitation anomalies show a meridional dipole pattern. Accompanied by the inter-decadal shift of EASM, after the early 1990s, summer precipitation decreases in the majority of northern China, especially in north of the northeast and the area between the Yangtze River and the Yellow River in the vicinity of 105° E. While summer precipitation increases significantly in South China and the Huaihe River Basin. From the perspective of dynamic, the characteristics of inter-decadal shift of summer precipitation in China are described. The difference distribution of summer 500 hPa geopotential height fields between two periods (1993-2009 and 1979-1992) show northern Eurasian quasi-zonal teleconnection pattern, then

  5. In-phase transition from the winter monsoon to the summer monsoon over East Asia: Role of the Indian Ocean

    Science.gov (United States)

    Wang, Lin; Wu, Renguang

    2012-06-01

    Analysis of observations shows that the weak East Asian winter monsoon (EAWM) to weak East Asian summer monsoon (EASM) transitions mainly occur in El Niño decaying years whereas strong EAWM (denoting stronger northerly winds along East Asian coast) to strong EASM (denoting less precipitation along the Meiyu-Baiu rainband) transitions all occur in non-El Niño-Southern Oscillation (ENSO) years during the period 1979-2009. This new finding implies that ENSO is not indispensable to the in-phase EAWM to the EASM transitions. The present study reveals an important role of the Indian Ocean in the strong EAWM to strong EASM transitions and proposes a possible mechanism for these transitions. A strong EAWM induces more precipitation over the Maritime Continent, and the associated anomalous heating excites a Gill-Matsuno type pattern in the tropics. The resultant wind and cloud changes enhance latent heat flux and reduce downward shortwave radiation over the northwestern Indian Ocean in winter, which leads to SST cooling. The cold SST anomalies persist to summer and excite an anomalous cyclone over the subtropical western North Pacific, leading to a strong EASM. The above processes also operate in the weak EAWM to weak EASM transitions during which El Niño impacts dominate but with additional contributions from the EAWM. The results of observational analysis are confirmed by numerical experiments with a coupled model.

  6. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating.

    Science.gov (United States)

    Boos, William R; Kuang, Zhiming

    2010-01-14

    The Tibetan plateau, like any landmass, emits energy into the atmosphere in the form of dry heat and water vapour, but its mean surface elevation is more than 5 km above sea level. This elevation is widely held to cause the plateau to serve as a heat source that drives the South Asian summer monsoon, potentially coupling uplift of the plateau to climate changes on geologic timescales. Observations of the present climate, however, do not clearly establish the Tibetan plateau as the dominant thermal forcing in the region: peak upper-tropospheric temperatures during boreal summer are located over continental India, south of the plateau. Here we show that, although Tibetan plateau heating locally enhances rainfall along its southern edge in an atmospheric model, the large-scale South Asian summer monsoon circulation is otherwise unaffected by removal of the plateau, provided that the narrow orography of the Himalayas and adjacent mountain ranges is preserved. Additional observational and model results suggest that these mountains produce a strong monsoon by insulating warm, moist air over continental India from the cold and dry extratropics. These results call for both a reinterpretation of how South Asian climate may have responded to orographic uplift, and a re-evaluation of how this climate may respond to modified land surface and radiative forcings in coming decades. PMID:20075917

  7. Asian Eocene monsoons as revealed by leaf architectural signatures

    Science.gov (United States)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  8. Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world

    Science.gov (United States)

    Krishnan, R.; Sabin, T. P.; Vellore, R.; Mujumdar, M.; Sanjay, J.; Goswami, B. N.; Hourdin, F.; Dufresne, J.-L.; Terray, P.

    2016-08-01

    Rising propensity of precipitation extremes and concomitant decline of summer-monsoon rains are amongst the most distinctive hydroclimatic signals that have emerged over South Asia since 1950s. A clear understanding of the underlying causes driving these monsoon hydroclimatic signals has remained elusive. Using a state-of-the-art global climate model with high-resolution zooming over South Asia, we demonstrate that a juxtaposition of regional land-use changes, anthropogenic-aerosol forcing and the rapid warming signal of the equatorial Indian Ocean is crucial to produce the observed monsoon weakening in recent decades. Our findings also show that this monsoonal weakening significantly enhances occurrence of localized intense precipitation events, as compared to the global-warming response. A 21st century climate projection using the same high-resolution model indicates persistent decrease of monsoonal rains and prolongation of soil drying. Critical value-additions from this study include (1) realistic simulation of the mean and long-term historical trends in the Indian monsoon rainfall (2) robust attributions of changes in moderate and heavy precipitation events over Central India (3) a 21st century projection of drying trend of the South Asian monsoon. The present findings have profound bearing on the regional water-security, which is already under severe hydrological-stress.

  9. Understanding land surface response to changing South Asian monsoon in a warming climate

    Directory of Open Access Journals (Sweden)

    M. V. S. Ramarao

    2015-05-01

    Full Text Available Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5 scenario of the Intergovernmental panel on Climate Change (IPCC, using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century, in response to climate change. While these monsoon hydrological changes have profound socioeconomic implications, the robustness of the high-resolution simulations provides deeper insights and enhances our understanding of the regional land surface response to the changing South Asian monsoon.

  10. Impact of Ocean-Continent Distribution over Southern Asia on the Formation of Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    JIN Qihua; HE Jinhai; CHEN Longxun; ZHU Congwen

    2006-01-01

    Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China PeninsulaSouth China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean,Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation.In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS.However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes,so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.

  11. Observational and modeling studies of impacts of the South China Sea monsoon on the monsoon rainfall in the middle-lower reaches of the Yangtze River during summer

    Science.gov (United States)

    Jin, Lijun; Zhao, Ping

    2012-04-01

    Based on the ERA-40 and NCEP/NCAR reanalysis data, the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP), and the fifth-generation PSU/NCAR Mesoscale Model version 3 (MM5v3), we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer (June-July) South China Sea (SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River (MLRYR) using both observational data analysis and numerical simulation methods. The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July. Corresponding to stronger (weaker) tropical monsoon and precipitation, the southwesterly winds are weaker (stronger) over the MLRYR, with less (more) local precipitation. The simulation results further exhibit that when changing the SCS monsoon intensity, there are significant variations of monsoon and precipitation over the MLRYR. The simulated anomalies generally consist with the observations, which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR. This impact might be supported by certain physical processes. Moreover, when the tropical summer monsoon is stronger, the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR, hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated. On the other hand, the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation, leading to the weakening of the monsoon flows and precipitation over the MLRYR.

  12. Anomalous behaviour of the Indian summer monsoon 2009

    Indian Academy of Sciences (India)

    B Preethi; J V Revadekar; R H Kripalani

    2011-10-01

    The Indian subcontinent witnessed a severe monsoon drought in the year 2009. India as a whole received 77% of its long period average during summer monsoon season (1 June to 30 September) of 2009, which is the third highest deficient all India monsoon season rainfall year during the period 1901–2009. Therefore, an attempt is made in this paper to study the characteristic features of summer monsoon rainfall of 2009 over the country and to investigate some of the possible causes behind the anomalous behaviour of the monsoon. Presence of El Niño like conditions in the Pacific and warming over the equatorial Indian Ocean altered the circulation patterns and produced an anomalous low level convergence and ascending motion over the Indian Ocean region and large scale subsidence over the Indian landmass. Furthermore, the crossequatorial flow was weak, the monsoon was dominated by the slower 30–60 day mode, and the synoptic systems, which formed over the Bay of Bengal and the Arabian Sea, did not move inland. All the above features resulted in less moisture supply over the Indian landmass, resulting in subdued rainfall activity leading to a severe monsoon drought during 2009.

  13. NUMERICAL SIMULATION OF LAG INFLUENCE OF ENSO ON EAST-ASIAN MONSOON

    Institute of Scientific and Technical Information of China (English)

    龙振夏; 李崇银

    2001-01-01

    By prescribing sea surface temperature anomalies (SSTAs) over eastern equatorial Pacific in January-March, the lag influence of ENSO (El Nino and La Nina) on monsoon over East Asia has been studied. The results suggest that, due to the excitation of atmospheric low-frequency oscillation by the SSTA, ENSO has significant lag influence on the monsoon over East Asia.During the summer after El Nino, the subtropical high over western Pacific is intensified and shows the northward and westward displacement, meanwhile, the rainfall over East China is below normal, especially in North China; during the winter after El Nino, both the Asian trough and the winter monsoon over East Asia are strengthened. During the summer after La Nina, the anomalous subtropical high prevails over the lower reaches of Yangtze (Changjiang) River, the rainfall between Yangtze and Huaihe Rivers is below normal; during the winter after La Nina,both the Asian trough and the winter monsoon over East Asia are weaker. Compared with La Nina, the effect of El Nino is stronger, but it is not always opposite to the one of La Nina.

  14. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-01-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  15. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  16. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    Directory of Open Access Journals (Sweden)

    A. Dallmeyer

    2011-02-01

    Full Text Available Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region.

    Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season.

    When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  17. Temporal derivative of Total Solar Irradiance and anomalous Indian summer monsoon: An empirical evidence for a Sun–climate connection

    Digital Repository Service at National Institute of Oceanography (India)

    Agnihotri, R.; Dutta, K.; Soon, W.

    of physically motivated measures like ‘‘temperature tendency’’ and ‘‘tropo- spheric vertical velocity tendency’’ which they argued will also reduce problems the western Pacific, and in turn nurture the East Asian and Indian summer monsoons (Wang et al., 2003...

  18. Summer monsoon moisture variability over China and Mongolia during the past four centuries

    Science.gov (United States)

    Li, Jinbao; Cook, Edward R.; Chen, Fahu; Davi, Nicole; D'Arrigo, Rosanne; Gou, Xiaohua; Wright, Wiliam E.; Fang, Keyan; Jin, Liya; Shi, Jiangfeng; Yang, Tao

    2009-11-01

    A great impediment of Asian monsoon (AM) climate studies is the general lack of long-term observations of large-scale monsoon variability. Here we present a well-verified reconstruction of temporal changes in the dominant summer moisture pattern over China and Mongolia (CM), based on a network of tree-ring chronologies (1600-1991). The reconstruction reveals significant changes in the large-scale AM over the past four centuries, which coincide with dramatic episodes in Chinese history over the period of record. These episodes include the fall of the Ming Dynasty (AD 1644) and the catastrophic famine during China's Great Leap Forward (1958-1961). Overall, the reconstructed AM strength corresponds well with Northern Hemisphere temperature proxies over the past four centuries. Yet, this relationship has broken down in recent decades, raising the possibility that the major driving force of monsoon dynamics has shifted from natural to anthropogenic in nature.

  19. A study of the dynamic effect of the South Asian high on the upper troposphere water vapor abnormal distribution over the Asian monsoon region in boreal summer%南亚高压对亚洲季风区夏季对流层上层水汽异常分布的动力效应

    Institute of Scientific and Technical Information of China (English)

    陈斌; 徐祥德; 施晓晖

    2011-01-01

    Proper recognition of the water vapor distribution and formation mechanism in the upper troposphere (UT) over the Asian monsoon region is of great significance for understanding of global climate change. Based on the latest Earth Observing System Microwave Limb Sounder (EOS-MLS) satellite retrievals product, the study firstly presented a qualitative analysis of the anomaly characteristics of the upper troposphere water vapor distribution. Then we studied the air particles horizontal transport characters in the upper troposphere layer over the Tibetan Plateau and its adjoint areas using the National Centers for Environmental Prediction (NCEP) reanalysis data of 2005 and a particle dispersion model FLEXPART. Also the dynamical effects of the south Asian high, which are able to trap the constituents in its core, in determining and maintaining the water vapor distribution are investigated quantitatively.The analysis of the EOS-MLS satellite retrieval products shows that the Asian monsoon region is an area of particular interest, as it is characterized by a persistent maximum of water vapor in the upper troposphere. The location of maximum water vapor on 215 hPa coincides with the deep convection. However, the water vapor maximum at 147 hPa does not spatially correspond to the maximum of convective activity, but is located inside the South Asian high. The distribution of carbon monoxide over this area shows the same characteristic as the water vapor. This result suggests an important role of the South Asian high in determining and maintaining the water vapor distribution. For every numerical simulation, 10000 forward parcels trajectories were calculated for the summer of 2005. The result of idealized ensemble numerical simulations (total 66 groups) indicates that the South Asian high circulation acts as a horizontal transport barrier in the upper troposphere and low stratosphere during the boreal summer. The effects of the South Asian high are mostly in the height

  20. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    Science.gov (United States)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  1. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2014-08-01

    Full Text Available The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS. We employ the global chemistry–climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide reservoir species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. The model is evaluated with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-E and aircraft campaigns during the monsoon season (June–September. There are three regions which contribute substantial pollution to the UTLS during the monsoon: the Asian summer monsoon (ASM, the North American Monsoon (NAM and the West African monsoon (WAM. However, penetration due to ASM convection is deeper into the UTLS as compared to NAM and WAM outflow. The circulation in these monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward to partly merge with the ASM plume. Strong ASM convection transports these remote and regional pollutants into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning generation and thereby the emission of NOy species. This will affect the distribution of PAN in the UTLS. The estimates of lightning produced PAN, HNO3, NOx and ozone obtained from control and lightning-off simulations shows high percentage changes over the regions of convective transport especially equatorial Africa and America and comparatively less over the ASM. This indicates higher anthropogenic pollution transport from the ASM region into the UTLS.

  2. NUMERICAL SIMULATION OF INFLUENCE OF INDIAN OCEAN SSTA ON WEATHER AND CLIMATE IN ASIAN MONSOON REGION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sea surface temperature anomaly (SSTA) exerts great influence on the generation of global weather and climate. Much progress has been made with respect to SSTA in the Pacific Ocean region in contrast to the Indian Ocean. The IAP9L model, which is developed at the Institute of Atmospheric Physics of the Chinese Academy of Science, is used to simulate the influence of the Indian Ocean SSTA on the general circulation and weather/climate anomalies in the monsoon region of Asia. It is found that the warm (cool) SSTA in the equatorial low latitudes of the Indian Ocean triggers winter (summer) teleconnection patterns in middle and higher latitudes of the Northern Hemisphere that are similar to PNA or EAP. They play a very important role in the anomaly of circulation or weather and climate in the middle and lower latitudes of the Asian summer monsoon region. With the warm (cool) SSTA forcing in the Indian Ocean, the Asian summer monsoon sets up at a late (early) date and withdraws at a early (late) date, lasting for a short (long) duration at a weak (strong) intensity. The Indian Ocean SSTA is shown to be an indicator for precipitation variation in China.

  3. Role of Anomalous States of Upper Tropospheric Circulation on Extremely Dry and Wet Summer Monsoon Events

    Science.gov (United States)

    Ahmad, S.; Koike, T.; Nishii, K.; Shrestha, M.

    2011-12-01

    Seasonal changes in wind pattern, monsoon, sometimes result in severe droughts and intense flooding in many parts of the world including South Asian countries like Pakistan. The livelihood of a vast population in Pakistan depends on agriculture and land use is strongly influenced by water-based ecosystems that depend on the monsoon rains. Furthermore, climate change studies undertaken so far reveal that action is essential in order to prevent long term damage to water cycle and thus of great concern to the community and stakeholders. Pakistan Summer Monsoon (PSM) is affected by both the disturbances from the tropical and the extratropical regions; however there is lack of understanding of physical mechanisms of PSM compared to other regional studies i.e. Indian Summer Monsoon (ISM) and South-East Asian Monsoon (SEAM). In our study, we applied heat and vorticity budgets, and wave train analysis to reveal the mechanisms of the extremely dry and wet PSM events associated with the anomalous upper tropospheric conditions. We found that the extremely dry (wet) PSM events were closely related with the anomalous cyclonic (anticyclonic) upper-tropospheric circulation around northwest of Pakistan, and mid-upper tropospheric cooling (warming) anomaly around Pakistan and to its north/northwest. We also found in addition to Rossby wave response due to the suppressed (enhanced) convective activities around monsoon regions, the midlatitude wave energy propagation emanating around cyclonic/anticyclonic anomaly around northwestern Atlantic, northeastern Atlantic, Europe or Mediterranean regions induced/reinforced/maintained the anomalous upper tropospheric cyclonic (anticyclonic) circulation around northwest of Pakistan during extremely dry (wet) PSM events. Therefore, devastating drought (flood) events over the PSM region resulting from weak (strong) convection anomalies are induced by both the tropical and extratropical processes.

  4. Instability characteristics of the East Asian Monsoon recorded by high-resolution loess sections from the last interglacial (MIS5)

    Institute of Scientific and Technical Information of China (English)

    GUAN QingYu; PAN BaoTian; GAO HongShan; LI BingYuan; WANG JunPing; SU Huai

    2007-01-01

    The selection of high-resolution loess sections is needed in order to determine the climatic variability of the East Asian Monsoon during the last interglacial. Two sequences of S1 on the eastern and western sides of the Liupan Mountain were both composed of five paleosol layers and four loess layers, indicating that there were five strong summer monsoon events and four strong winter monsoon events in MIS5. This corresponds with other records of the East Asian Monsoon, along with NGRIP and the North Atlantic records, implying that the climate of the Northern Hemisphere was very instable during the last interglacial. Two layers of paleosols and one layer of loess had developed during MIS5a and MIS5c. Compared with MIS5e, the climate in MIS5a and MIS5c fluctuated more intensively on a millennial scale, whereas the climate was relatively stable in MIS5e.

  5. Development of summer monsoon and onset of continuous rains over central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    A new interpretation of the start of summer monsoon along central west coast of India is presented in this paper. Many authors misinterpret onset of continuous rains as start of summer monsoon front, These two are different phenomena, continuous...

  6. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  7. Current Progresses in Study of Impacts of the Tibetan Plateau on Asian Summer Climate

    Institute of Scientific and Technical Information of China (English)

    WU Guoxiong; MAO Jiangyu; DUAN Anmin; ZHANG Qiong

    2006-01-01

    The current progresses in the study of impacts of the Tibetan Plateau on Asian summer climate in the last decade are reviewed. By analyzing evolution of the transitional zone between westerly to the north and easterly to the south (WEB), it is shown that due to the strong heating over the Tibetan Plateau in spring, the overturning in the prevailing wind direction from easterly in winter to westerly in summer occurs firstly over the eastern Bay of Bengal (BOB), accompanied with vigorous convective precipitation to its east. The area between eastern BOB and western Indo-China Peninsula thus becomes the area with the earliest onset of Asian monsoon, which may be referred as BOB monsoon in short. It is shown that the summertime circulations triggered by the thermal forcing of the Iranian Plateau and the Tibetan Plateau are embedded in phase with the continental-scale circulation forced by the diabatic heating over the Eurasian Continent. As a result, the East Asian summer monsoon is intensified and the drought climate over the western and central Asian areas is enhanced. Together with perturbations triggered by the Tibetan Plateau,the above scenarios and the associated heating have important influences on the climate patterns over Asia.Furthermore, the characteristics of the Tibetan mode of the summertime South Asian high are compared with those of Iranian mode. Results demonstrate that corresponding to each of the bimodality of the South Asian high, the rainfall anomaly distributions over Asia exhibit different patterns.

  8. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    Science.gov (United States)

    Zhang, Kai; Fu, Rong; Wang, Tao; Liu, Yimin

    2016-06-01

    The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS) during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS) and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The march of convection

  9. Possible Impacts of the Arctic Oscillation on the Interdecadal Variation of Summer Monsoon Rainfall in East Asia

    Institute of Scientific and Technical Information of China (English)

    JU Jianhua; L(U) Junmei; CAO Jie; REN Juzhang

    2005-01-01

    The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However,the opposite interdecadal variation was found in the rainfall anomaly in North China and South China.The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.

  10. Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO

    Science.gov (United States)

    Zhao, Ping; Wang, Bin; Liu, Jiping; Zhou, Xiuji; Chen, Junming; Nan, Sulan; Liu, Ge; Xiao, Dong

    2016-02-01

    When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the ENSO is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global warming on hydrological cycle over Asia and North America. Under the projected global warming due to the anthropogenic forcing, the prominent surface warming over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America.

  11. Summer precipitation anomalies in Asia and North America induced by Eurasian non-monsoon land heating versus ENSO.

    Science.gov (United States)

    Zhao, Ping; Wang, Bin; Liu, Jiping; Zhou, Xiuji; Chen, Junming; Nan, Sulan; Liu, Ge; Xiao, Dong

    2016-01-01

    When floods ravage Asian monsoon regions in summer, megadroughts often attack extratropical North America, which feature an intercontinental contrasting precipitation anomaly between Asia and North America. However, the characteristics of the contrasting Asian-North American (CANA) precipitation anomalies and associated mechanisms have not been investigated specifically. In this article, we firmly establish this summer CANA pattern, providing evidence for a significant effect of the land surface thermal forcing over Eurasian non-monsoon regions on the CANA precipitation anomalies by observations and numerical experiments. We show that the origin of the CANA precipitation anomalies and associated anomalous anticyclones over the subtropical North Pacific and Atlantic has a deeper root in Eurasian non-monsoon land surface heating than in North American land surface heating. The ocean forcing from the ENSO is secondary and tends to be confined in the tropics. Our results have strong implications to interpretation of the feedback of global warming on hydrological cycle over Asia and North America. Under the projected global warming due to the anthropogenic forcing, the prominent surface warming over Eurasian non-monsoon regions is a robust feature which, through the mechanism discussed here, would favor a precipitation increase over Asian monsoon regions and a precipitation decrease over extratropical North America. PMID:26916258

  12. Climate response of the South Asian monsoon system to anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

    2012-07-13

    The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

  13. Quaternary biogenic opal records in the South China Sea: Linkages to East Asian monsoon, global ice volume and orbital forcing

    Institute of Scientific and Technical Information of China (English)

    WANG RuJian; JIAN ZhiMin; XIAO WenShen; TIAN Jun; LI JianRu; CHEN RongHua; ZHENG YuLong; CHEN JianFang

    2007-01-01

    Particulate fluxes investigated in the central South China Sea (SCS) during 1993-1996 indicate that opal flux can be used to show primary productivity change, which provides a foundation for tracing the evolutionary relationship between the surface productivity and East Asian monsoon in the SCS during the late Quaternary glacial and interglacial periods. Based on the studies of opal % and their mass accumulation rates (MAR) at the six sites recovered from the SCS during the "Resolution" ODP Leg 184 and "Sonne" 95 cruise of the Sino-Germany cooperation, opal % and their MARs increased evidently in the northern sites since 470-900 ka, and they enhanced and reduced, respectively, during the glacial and interglacial periods. Whereas they increased obviously in the southern sites since 420-450 ka,and they augmented and declined, respectively, during the interglacial and glacial periods. The variability in opal % and their MARs in the late Quaternary glacial cyclicity indicate the "seesaw" pattern of surface productivity in the SCS. The winter monsoon intensified during the glacial periods, surface productivity increased and decreased, respectively, in the northern and southern SCS. The summer monsoon strengthened during the interglacial periods, surface productivity increased and decreased,respectively, in the southern and northern SCS. The cross spectral analyses between the opal % in the northern and southern SCS during the Quaternary and global ice volume (δ18O) and orbital forcing (ETP) indicate that the East Asian winter and summer monsoons could be ascribed to the different drive mechanisms. On the orbital time scale, the global ice volume change could be a dominant factor for the winter monsoon intension and temporal variations. As compared with the winter monsoon, the correlative summer solar radiation with the obliquity and precession in the Northern Hemisphere could be a mostly controlling factor for the summer monsoon intension and temporal variations.

  14. Quaternary biogenic opal records in the South China Sea: Linkages to East Asian monsoon, global ice volume and orbital forcing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Particulate fluxes investigated in the central South China Sea (SCS) during 1993―1996 indicate that opal flux can be used to show primary productivity change, which provides a foundation for tracing the evolutionary relationship between the surface productivity and East Asian monsoon in the SCS during the late Quaternary glacial and interglacial periods. Based on the studies of opal % and their mass accumulation rates (MAR) at the six sites recovered from the SCS during the “Resolution” ODP Leg 184 and “Sonne” 95 cruise of the Sino-Germany cooperation, opal % and their MARs increased evidently in the northern sites since 470―900 ka, and they enhanced and reduced, respectively, during the glacial and interglacial periods. Whereas they increased obviously in the southern sites since 420―450 ka, and they augmented and declined, respectively, during the interglacial and glacial periods. The vari- ability in opal % and their MARs in the late Quaternary glacial cyclicity indicate the “seesaw” pattern of surface productivity in the SCS. The winter monsoon intensified during the glacial periods, surface productivity increased and decreased, respectively, in the northern and southern SCS. The summer monsoon strengthened during the interglacial periods, surface productivity increased and decreased, respectively, in the southern and northern SCS. The cross spectral analyses between the opal % in the northern and southern SCS during the Quaternary and global ice volume (δ 18O) and orbital forcing (ETP) indicate that the East Asian winter and summer monsoons could be ascribed to the different drive mechanisms. On the orbital time scale, the global ice volume change could be a dominant factor for the winter monsoon intension and temporal variations. As compared with the winter monsoon, the correlative summer solar radiation with the obliquity and precession in the Northern Hemisphere could be a mostly controlling factor for the summer monsoon intension and

  15. 80a-Oscillation of Summer Rainfall over the East Part of China and East-Asian Summer Monsoon%中国东部夏季降水80年振荡与东亚夏季风的关系

    Institute of Scientific and Technical Information of China (English)

    朱锦红; 王绍武

    2001-01-01

    Relationship between summer rainfall over the east part of China and East-Asian Summer Monsoon (EASM) was studied based on the summer rainfall grade data set from 1470 to 1999 and the rain gauge data set from 1951 to 1999 over the east part of China, and sea level pressure (SLP) data for the period of 1871-2000. A distinct 80a-oscillation of summer rainfall was found over North China (NC), southern part of Northeast China, over the middle and lower reaches of the Yangtze River (YR) and South China (SC). The 80a oscillation of summer rainfall over NC was varied in phase with that over SC, and was out of phase to that along the middle and lower reaches of the Yangtze River. Summer rainfall over NC correlated negatively with the SLP averaged for the area from 105°E to 120°E, and from 30°N to 35°N, but positively to that for the area from 120°E to 130°E, and from 20°N to 25°N. Therefore, an index of EASM was de fined by the difference of averaged SLP over the two regions. The summer rainfall over NC was greater than normal when the EASM was strong, and while drought occurred along the middle and lower reaches of the Yangtze River. The drought was found over NC, and flood along the middle and lower reaches of the Yangtze River when the EASM was close to normal. Finally, the interdecadal variability of EASM was stu died by using of long term summer rainfall grade data set over NC for the past 530 years.%利用中国东部1470-1999年夏季降水级别资料和1951-1999年夏季降水观测资料,以及187l-2000年北半球海平面气压资料研究了中国东部夏季降水与东亚夏季风的关系。研究表明华北及东北南部、长江中下游地区和华南夏季降水存在明显的80年振荡,华北夏季降水的80年振荡与华南同位相,与长江中下游反位相。华北夏季降水与海平面气压在120°-130°E,20°-25°N区域内呈负相关,在120°-130°E,20°-25°N区域内呈正相关,并达到95%信度。因此,

  16. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Science.gov (United States)

    Fadnavis, S.; Semeniuk, K.; Schultz, M. G.; Kiefer, M.; Mahajan, A.; Pozzoli, L.; Sonbawane, S.

    2015-10-01

    The Asian summer monsoon involves complex transport patterns with large-scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS). We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species peroxyacetyl nitrate (PAN), NOx and HNO3 from various monsoon regions, to the UTLS over southern Asia and vice versa. Simulated long-term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E) and aircraft campaigns during the monsoon season (June-September) in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM), the North American monsoon (NAM) and the West African monsoon (WAM). However, penetration due to ASM convection reaches deeper into the UTLS compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere (UT). Remote transport also occurs in the extratropical UT where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. Sensitivity experiments with ECHAM5-HAMMOZ for simultaneous NOx and non-methane volatile organic compounds (NMVOCs) emission change (-10 %) over ASM, NAM and WAM confirm similar transport. Our analysis shows that a 10 % change in Asian emissions transports ~ 5-30 ppt of PAN in the UTLS over Asia, ~ 1-10 ppt of PAN in the UTLS of northern subtropics and mid-latitudes, ~ 7-10 ppt of HNO3 and ~ 1-2 ppb of ozone in UT over Asia. Comparison of emission change over Asia, North

  17. Himalayan River Terraces as A Landscape Response to Quaternary Summer Monsoon Variability

    Science.gov (United States)

    Jonell, T. N.; Clift, P. D.

    2013-12-01

    In order to interpret marine sedimentary archives as records of the erosional response to Asian monsoon variability, we must first recognize how transport processes affect the storage and release of sediment to the ocean. River terraces, such as found in the Greater Himalaya, provide a pivotal role in the source-to-sink story, because this is where sediment storage occurs and is likely modulated. We investigate the role that climate plays in controlling erosion and sediment flux to the Indus delta and fan by looking at the Indus River system, which is dominated by the strong forcing of the Asian monsoon, as well as winter Westerly winds. Paleoceanographic, speleothem, and lacustrine records indicate that summer monsoon intensity was strong from 29 to 37 ka, decreased after that time until ~16 ka, reached maximum intensity from 8 to 10 ka, and then weakened until ~3 ka. Some lacustrine records, however, indicate a more complex pattern of monsoon variability in the Greater Himalaya, which contrasts with monsoonal forcing in central India. This disagreement suggests that floodplains of major river systems may not experience the same climatic conditions as their mountain sources, resulting in contrasting landscape responses to climate change. High altitude river valleys, at least north ofthe Greater Himalaya, appear to be sensitive to monsoon strength because they lie on the periphery of the present rainfall maximum, in the Himalayan rain shadow. These steep river valleys may be affected by landslide damming during periods of increase moisture transport and strong monsoonal precipitation, where damming provides sediment storage through valley-filling and later sediment release through gradual incision or dam-bursting. The Zanskar River, a major tributary to the upper Indus River, provides a record of the erosional response of mountain river valleys to these extreme phases through river terracing. New OSL ages from alluvial terraces indicate reworking of sediment and

  18. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 450 ka during late Quaternary from Core MD05-2901 off Middle Vietnam in the western South China Sea are reported to reconstruct a history of East Asian monsoon evolution.Variations in Illite,chlorite,and kaolinite contents indicate a strong glacial-interglacial cyclicity,while changes in smectite content present a higher frequency cyclicity.The provenance analysis indicates a mixture of individual clay minerals from various sources surrounding the South China Sea.Smectite derived mainly from the Sunda shelf and its major source area of the Indonesian islands.Illite and chlorite originated mainly from the Mekong and Red rivers.Kaolinite was provided mainly by the Pearl River.Spectral analysis of the kaolinite/(illite+chlorite) ratio displays a strong eccentricity period of 100 ka,implying the ice sheet-forced winter monsoon evolution; whereas higher frequency changes in the smectite content show an ice sheet-forced obliquity period of 41 ka,and precession periods of 23 and 19 ka and a semi-precession period of 13 ka as well,implying the tropical-forced summer monsoon evolution.The winter monsoon evolution is generally in coherence with the glacial-interglacial cyclicity,with intensified winter monsoon winds during glacials and weakened winter monsoon winds during interglacials; whereas the summer monsoon evolution provides an almost linear response to the summer insolation of low latitude in the Northern Hemisphere,with strengthened summer monsoon during higher insolation and weakened summer monsoon during lower insolation.The result suggests that the high-latitude ice sheet and low-latitude tropical factor could drive the late Quaternary evolution of East Asian winter and summer monsoons,respectively,implying their diplex and self-contained forcing mechanism.

  19. A STUDY ON THE RELATIONSHIP BETWEEN SPRING SOIL MOISTURE OVER CHINA AND EAST ASIA SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    LE Yi-long; LUO Yong; GUO Pin-wen

    2008-01-01

    The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity; the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northem part of China.However, during the weak years, the summer rainfall belt is largely located over the mid- and lower- reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.

  20. Asian monsoon extremes and humanity's response over the past millennium

    Science.gov (United States)

    Buckley, B. M.; Lieberman, V. B.; Zottoli, B.

    2012-12-01

    The first decade of the 21st century has seen significant development in the production of paleo proxies for the Asian monsoon, exemplified by the Monsoon Asian Drought Atlas that was comprised of more than 300 tree ring chronologies. Noteworthy among them is the Vietnamese cypress tree-ring record which reveals that the two worst droughts of the past 7 centuries, each more than a decade in length, coincided with the demise of the Khmer civilization at Angkor in the early 15th century CE. The 18th century was nearly as tumultuous a period across Southeast Asia, where several polities fell against a backdrop of epic decadal-scale droughts. At this time all of the region's charter states saw rapid realignment in the face of drought, famine, disease and a raft of related and unrelated social issues. Several other droughts, some more extreme but of lesser duration, punctuate the past millennium, but appear to have had little societal impact. Historical documentation is being used not only to provide corroborative evidence of tree-ring reconstructed climate extremes, but to attempt to understand the dynamics of the coupled human-natural systems involved, and to define what kinds of thresholds need to be reached before societies respond. This paleo perspective can assist our analyses of the role of climate extremes in the collapse or disruption of regional societies, a subject of increasing concern given the uncertainties surrounding projections for future climate across the highly populated areas of Asia.

  1. Impacts of 20th century aerosol emissions on the South Asian monsoon in the CMIP5 models

    Directory of Open Access Journals (Sweden)

    L. Guo

    2014-12-01

    Full Text Available Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5 reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time-evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the twenty-five available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local

  2. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146)--Implications for oceanic current transport and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei(刘志飞); Alain Trentesaux; Steven C. Clemens; WANG Pinxian(汪品先)

    2003-01-01

    Measurement of clay mineralogy at ODP Site 1146 in the northern South China Sea (SCS) indicates that illite, chlorite, and kaolinite contents increased during glacials and smectite content increased during interglacials. The smectite/(illite+chlorite) ratio and the smectite abundance were determined as mineralogical indicators for the East Asian monsoon evolution. At a 10 ka timescale, prevailing southeasterly surface oceanic currents during interglacials transported more smectite from the south and east areas to the north, showing a strengthened summer monsoon circulation, whereas dominated counter-clockwise surface currents during glacials carried more illite and chlorite from Taiwan as well as from the Yangtze River via the Luzon Strait to the northern SCS, indicating a strongly intensified winter monsoon. Based on a 100 ka timescale, a linear correlation between the smectite/(illite+chlorite) ratio and the sedimentation rate reflects that the winter monsoon has prevailed in the northern SCS in the intervals 2000-1200 ka and 400-0 ka and the summer monsoon did the same in the interval 1200-400 ka. The evolution of the summer monsoon provides an almost linear response to the summer insolation of Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

  3. Active and break spells of the Indian summer monsoon

    Indian Academy of Sciences (India)

    M Rajeevan; Sulochana Gadgil; Jyoti Bhate

    2010-06-01

    In this paper, we suggest criteria for the identification of active and break events of the Indian summer monsoon on the basis of recently derived high resolution daily gridded rainfall dataset over India (1951–2007). Active and break events are defined as periods during the peak monsoon months of July and August, in which the normalized anomaly of the rainfall over a critical area, called the monsoon core zone exceeds 1 or is less than −1.0 respectively, provided the criterion is satisfied for at least three consecutive days. We elucidate the major features of these events. We consider very briefly the relationship of the intraseasonal fluctuations between these events and the interannual variation of the summer monsoon rainfall. We find that breaks tend to have a longer life-span than active spells. While, almost 80% of the active spells lasted 3–4 days, only 40% of the break spells were of such short duration. A small fraction (9%) of active spells and 32% of break spells lasted for a week or longer. While active events occurred almost every year, not a single break occurred in 26% of the years considered. On an average, there are 7 days of active and break events from July through August. There are no significant trends in either the days of active or break events. We have shown that there is a major difference between weak spells and long intense breaks. While weak spells are characterized by weak moist convective regimes, long intense break events have a heat trough type circulation which is similar to the circulation over the Indian subcontinent before the onset of the monsoon. The space-time evolution of the rainfall composite patterns suggests that the revival from breaks occurs primarily from northward propagations of the convective cloud zone. There are important differences between the spatial patterns of the active/break spells and those characteristic of interannual variation, particularly those associated with the link to ENSO. Hence, the

  4. Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    LIU YunYun; DING YiHui

    2008-01-01

    Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data,the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM,the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the teleconnection mode which is from the northwest of India via the Tibetan Plateau to northern China. The former mode is defined as the "south" teleconnection of the Asian summer monsoon,forming in the period of ISM onset; while the latter mode is called the "north" teleconnection,mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection's formation,the Asian monsoon circulation has experienced a series of important changes: ISM onset,the northward movement of the south Asia high (SAH),the onset vortex occurrence,the eastward extension of the stronger tropical westerly belt,and the northeastward jump of the western Pacific subtropical high(WPSH),etc. Consequently,since ISM sets up over Kerala,the whole Asian continent is covered by the upper SAH after about two weeks,while in the mid- and lower troposphere,a strong wind belt forms from the Arabian Sea via the southern India,BOB and the South China Sea (SCS),then along the western flank of WPSH,to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams,the upper westerly jet stream and the low level jet have been coupled vertically over east Asia,while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet

  5. Circulation Patterns of Summer Monsoon Corresponding to Two Kinds of Indices over the South China Sea

    Institute of Scientific and Technical Information of China (English)

    SUN Jilin; WANG Dongxiao

    2002-01-01

    The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locationsand influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.

  6. Future precipitation extremes during summer monsoon in southern Pakistan

    Science.gov (United States)

    Zahid, Maida; Lucarini, Valerio

    2016-04-01

    Extreme precipitation events are considered as a hydro-meteorological hazard resulting in colossal damage worldwide. In Pakistan, the extreme precipitation events have increased in the recent decades particularly in the southern part (Sindh province). This region did not receive substantial amount of precipitation earlier, but now experiencing urban flooding almost every year causing loss of life, property, crops and infrastructure. The region lacks the information regarding the recurrence of extreme precipitation events. Therefore, there is a strong need for a reliable information of extremes over the upcoming decades for better regional planning. Although statistical methods based on extreme value theory (EVT) are the most relevant ones to study the extremes, but they are never been applied in Pakistan. To address this shortcoming, we use the peak over threshold (POT) approach to compute the return levels (RLs) of precipitation extremes, and also identify the regions most prone to them. In this study, we analyzed the summer monsoon daily precipitation measured at nine weather stations of Pakistan Meteorological Department over the period 1980-2013. The summer monsoon (JJAS) is preferred for the analysis, because most of the extreme precipitation occurs during this period. We apply POT approach to model the daily precipitation above a selected threshold for each station. Then, we estimate return levels (RLs) of precipitation extremes during summer monsoon in southern Pakistan (Sindh) for the next 5, 25, 50 and 100-years. Lastly, we compare the 5-years with 100-years RLs to indicate the stations most vulnerable to precipitation extremes in future. This work is funded by the Climate KIC, European Institute of Innovation and Technology, Germany.

  7. A composite study of onset of the Australian summer monsoon

    Science.gov (United States)

    Hendon, Harry H.; Liebmann, Brant

    1990-01-01

    The circulation changes that accompany an onset (defined as the first occurrence of wet 850-mb westerly winds at Darwin, Australia) of the Australian summer monsoon are documented by a composite study for the years 1957-1987. Composites of atmospheric fields at stations in and about the Australian tropics are constructed relative to the onset data at Darwin. It is shown that the composite onset is dominated by a slow eastward migration of a deep-baroclinic convective circulation displaced south of the equator. This propagating anomaly exhibited many features of the so-called 40-50 day oscillation, including an upper level anticyclone that accompanies the convective anomaly.

  8. Cloud Radiative Forcing in Asian Monsoon Region Simulated by IPCC AR4 AMIP Models

    Institute of Scientific and Technical Information of China (English)

    LI Jiandong; LIU Yimin; WU Guoxiong

    2009-01-01

    This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0°-50°N,60°-150°E)simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models.During boreal winter,no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP.During boreal summer,there are larger biases for central location and intensity of simulated CRF in active convective regions.The CRF biases are closely related to the rainfall biases in the models.Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high,and that the biases and diversity in SWCF are larger than that in LWCF.The annual cycle of simulated CRF over East Asia (0°-50°N,100°-145°E) is also examined.Though many models capture the basic annual cycle in tropics,strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models.As a whole,GFDL-CM2.1,MPI-ECHAM5,UKMO-HadGAM1,and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region,and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP,and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.

  9. Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols

    Science.gov (United States)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2016-04-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India, consistent with the elevated heat pump (EHP) hypothesis (Lau et al. in Clim Dyn 26:855-864, 2006. doi: 10.1007/s00382-006-0114-z). Further analyses from sub-sampling of ENSO years, with normal (1-σ) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  10. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhu, Bin; Hou, Xuewei; Kang, Hanqing

    2016-02-01

    Seasonal variations in ozone (O3) and the impact of the East Asian summer monsoon at Mount Waliguan (WLG) in the northeastern Qinghai-Tibetan Plateau (TP) and in the surrounding regions were analyzed for 1997-2007 using a global chemical transport model coupled with O3 tagging simulations. The model-simulated O3 and its precursors agreed well with observed values. An O3 budget analysis combined with O3 tagging results implied that photochemistry over the TP and long-range transport of O3 from East Asia, Europe, and Africa were responsible for the surface O3 summer maximum at WLG. In June, the contribution of O3 from the TP was 11.8 ppbv, and the total contribution of O3 transport from eastern China, Japan, Korean Peninsula, Europe, and Africa was 22.7 ppbv. At 400 mb, the O3 exports from the stratosphere, Europe, Africa, and the Americas seemed to be the main sources of O3 at WLG. The contributions to surface O3 from deep convection process and lightning-induced photochemistry at WLG were both low in summer and are unlikely to be the key processes or contributors for the O3 peak. At several mountain sites in southeast East Asia, the increasing summer monsoon index was related to a decreasing trend for O3 from spring onward at Mount Tai and Mount Huang. At Mount Hua and WLG, regional O3 accumulated over the monsoon's northernmost marginal zone under the influence of the East Asian summer monsoon and TP thermal circulation; this is most likely a key reason for the O3 summer maxima.

  11. Multi-year simulation of the East Asian Monsoon and Precipitation in China using a Regional Climate Model and Evaluation

    Institute of Scientific and Technical Information of China (English)

    LI Qiaoping; DING Yihui

    2005-01-01

    By using the regional climate model (RegCM_NCC), East Asian monsoon and precipitation over China during 1998 to 2002 are simulated. Results show that the model can well reproduce the seasonal patterns of mean circulation as well as the intensity and seasonal march of the East Asian monsoon. The simulated onset or retreat time of the West Pacific subtropical high, and the intensity and location of the South Asian high are consistent with the fact. The spatial distribution and transport of moisture in lower layer are also well simulated. The seasonal variations of regional rainfall and temperature are reproduced in the model, with three northward shift time and intensity of the rain belts over the sub-regions (such as Mid-Lower Yangtze basins and South China) well corresponding to the observation. However, the simulated summer monsoon is stronger compared with NCEP reanalysis fields, with the location of subtropical high being further north by 2-3 degrees than normal. Error evaluation shows that there is a discernible systematic bias in the simulated mean circulation pattern, with air temperature bias being positive over the land and negative over the ocean in the lower troposphere in summer. The systematic bias exaggerates the summer temperature difference between the land and ocean, which may be a main responsible factor for the stronger simulated summer monsoon, thus resulting in the overestimated rainfall in North China and it can not reflect well the abnormal rainfall distribution in these 5 years. The deficiency may be mainly contributed to the complex topography and cloud-radiation parameterization scheme. The analyses also indicate that it is difficult to simulate the persistent abnormal precipitation pattern over China. It is necessary to improve the model's capability further.

  12. The Asian monsoon over the past 640,000 years and ice age terminations

    Science.gov (United States)

    Cheng, Hai; Edwards, R. Lawrence; Sinha, Ashish; Spötl, Christoph; Yi, Liang; Chen, Shitao; Kelly, Megan; Kathayat, Gayatri; Wang, Xianfeng; Li, Xianglei; Kong, Xinggong; Wang, Yongjin; Ning, Youfeng; Zhang, Haiwei

    2016-06-01

    Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record’s length and temporal precision allow us to test the idea that insolation changes caused by the Earth’s precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record’s timing, the terminations are separated by four or five precession cycles, supporting the idea that the ‘100,000-year’ ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’.

  13. The Asian monsoon over the past 640,000 years and ice age terminations.

    Science.gov (United States)

    Cheng, Hai; Edwards, R Lawrence; Sinha, Ashish; Spötl, Christoph; Yi, Liang; Chen, Shitao; Kelly, Megan; Kathayat, Gayatri; Wang, Xianfeng; Li, Xianglei; Kong, Xinggong; Wang, Yongjin; Ning, Youfeng; Zhang, Haiwei

    2016-06-30

    Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record's length and temporal precision allow us to test the idea that insolation changes caused by the Earth's precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record's timing, the terminations are separated by four or five precession cycles, supporting the idea that the '100,000-year' ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and 'unfinished terminations'. PMID:27357793

  14. Effects of South China Sea/western North Pacific summer monsoon on tropospheric biennial oscillation (TBO)

    Institute of Scientific and Technical Information of China (English)

    Zheng Bin; Gu De-Jun; Lin Ai-Lan; Li Chun-Hui

    2007-01-01

    Severed theories have been developed to explain tropical biennial oscillation (TBO), as an air-sea interactive system to impact Asian and global weather and climate, and some models have been established to produce a TBO. A simple 5-box model, with almost all the key processes associated with TBO, can produce a TBO by including air-sea interactions in the monsoon regions. Despite that, the South China Sea/western North Pacific summer monsoon (SCS/WNPSM), a very important monsoon subsystem, is neglected. In this paper, based on the dynamical framework of 5-box model, the term of SCS/WNPSM has been added and a 6-box model has been developed. Comparing the difference of TBO sensibilities with several key parameters, air-sea coupling coefficient α, SST-thermocline feedback coefficient γ and wind-evaporation feedback coefficient λ, between the modified model and original model, TBO is more sensible to the parameters in the new model. The results imply that the eastern Pacific and local wind-evaporation play more important roles in the TBO when including SCS/WNPSM.

  15. Precipitation variability over the South Asian monsoon heat low and associated teleconnections

    Science.gov (United States)

    Saeed, Sajjad; Müller, Wolfgang A.; Hagemann, Stefan; Jacob, Daniela; Mujumdar, M.; Krishnan, R.

    2011-04-01

    The present study examines the precipitation variability over the South Asian monsoon heat low region and associated teleconnections using high resolution (T106L31) climate simulations performed with the ECHAM5 model. It is found that an intensification of the heat low in response to enhanced precipitation/convection over northwestern India-Pakistan (NWIP) can induce large-scale circulation anomalies that resemble the northern summer circumglobal teleconnection (CGT) wave-like pattern extending well into the Asian monsoon region. Accordingly the wave-like response to rainfall increase over the heat low region is associated with anomalous ascent over northern China and descent over the South China Sea. Additionally, small but statistically significant lead-lag correlations between the heat low and precipitation over northern China further suggest that the detected signal pertains to the true features of the process. On the other hand, suppressed convection and rainfall over the heat low region do not reveal any significant large-scale circulation anomalies.

  16. CHANGES IN EAST ASIAN SUMMER MONSOON DURING THE HOLOCENE RECORDED BY STALAGMITE δ18O RECORDS FROM LIAONING PROVINCE%全新世东亚夏季风演化的辽宁暖和洞石笋δ18O记录

    Institute of Scientific and Technical Information of China (English)

    吴江滢; 汪永进; 董进国

    2011-01-01

    Nuanhe Cave(41°20'N,124°55'E)locates at Huanren county in Liaoning Province,a typical site influenced by the East Asian monsoon. The climates here are characterized by cold/dry atmospheric circulation during the winter and warm/humid air masses during the summer. The seasonal temperature ranges between -13℃ (Jan. )and 22 ℃ ( Jul. ). The mean annual precipitation at the site is between 800mm and 900mm,60% of which falls between June and September. Relative humidity in the cave is 100% (measured on Jun.,2008) and the cave temperature(61) keeps constant through a year and approximates a mean annual value.Four stalagmites(NH5 ,NH12,NH13 and NH20)were collected in the deep site of the cave. These stalagmites vary from 60mm ( NH13 ) to 157mm ( NH5 ) in length. Their vertical sections are all in candle shapes and the diameters vary between 20 ~54mm at the top and 105 ~ 150mm near the base. Each stalagmite is pure calcite,no porous on the polished surface, and composed of typical coalescent columnar-fabric crystals. Under the binocular microscope, we observed an apparent hiatus at the depth of 14mm in NH13, supported by our dating result that indicates the stalagmite ceased to growth between 3. 3kaB. P. And 1. 8kaB. P. We also found a hiatus at the depth of 20mm in NH20. We focus our oxygen analysis on the section below the depth of the hiatus. There is no evidence for hiatuses in any other stalagmites.A composite δ18O profile, pieced all data (16 230Th ages and 433 pairs of oxygen isotope data) measured from the four stalagmites, provides a continuous history of the East Asian Summer Monsoon ( EASM ) intensity for the period from 10. 5kaB. P. To 3. 36kaB. P. And 1. 9kaB. P. To 0. 3kaB. P. ( relative to 1950A. D. ). The δ18O measurements were run at Isotope Laboratory of Nanjing Normal University with on-line automated carbonate preparation system ( Kiel Carbonate Device) linked to Finnigan MAT-253 , yielding a standard deviation error of 0. 06%o. The 230Th dates

  17. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    Science.gov (United States)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  18. Mid-Holocene Climate Variations Recorded by Palaeolake in Marginal Area of East Asian Monsoon: A Multi-proxy Study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation,resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene,on the basis ora sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier.Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.

  19. The Asian Monsoon Links to Solar Changes and the Intertropical Convergence Zone and 1300 Years of Chinese Human Susceptibility

    Science.gov (United States)

    Yu, E.; Hsu, Y.; Lee, T.

    2011-12-01

    Here we present a new paleoclimatic record from a sediment core recovered in Lake Liyutan in central Taiwan over the last 1300 years. The age model is based on 2 AMS 14C dates. Adjustments of age were using the well-dated records from a near by lake sediment core. The Lake Liyutan sediments record the strength of the summer monsoon in two independent ways: (1) the magnetic parameters (ARM/χ, ARM, anhysteresis remenent magnetization; χ, Volume susceptibility) and magnetic susceptibility, and (2) total organic carbon content, organic C/N elemental ratio and δ13Corg of the sediments as a result of changes in different organic matter origins and terrigenous detritus dilution due to precipitation. All the proxy records are 10 to 30- year-resolution. Weaker summer monsoon phases reconstructed from the Lake Liyutan correlate with higher δ18O at Dongge and Hulu caves, which indicates lower summer precipitation rates. Moreover, it is interesting to find that the strong winter monsoon from the Lake Huguang Maar records show a synchronous relationship with weaker summer monsoon from the caves and the Lake Liyutan. From the coincidence in timing, these records were explained by migrations in the intertropical convergence zone. In addition, the weak Asian summer monsoon in the Lake Liyutan corresponds with lowering Northern Hemisphere summer insolation recorded at Dongge cave. Climate variations influenced the agricultural productivity, health risk, and conflict level of preindustrial societies. We note that, on the basis of our new lake record, major changes in Chinese dynasties occurred when the summer monsoon strength was weaker and rainfall was reduced. The Tang dynasty began to ebb in the eighth century, and it fully collapsed in AD907, then the dynastic transitions to the Five Dynasties and Ten Kingdoms period. The weak summer monsoon and reduced rainfall was indicated in the coincidence in timing of the sediment core LYT-3A from Lake Liyutan during 1100 - 1000BP. In

  20. Seasonal prediction of Indian summer monsoon: Sensitivity to persistent SST

    Indian Academy of Sciences (India)

    Sukanta Kumar Das; Sanjib Kumar Deb; C M Kishtawal; Pradip Kumar Pal

    2013-10-01

    In the present study, the assessment of the Community Atmosphere Model (CAM) developed at National Centre for Atmospheric Research (NCAR) for seasonal forecasting of Indian Summer Monsoon (ISM) with different persistent SST is reported. Towards achieving the objective, 30-year model climatology has been generated using observed SST. Upon successful simulation of climatological features of ISM, the model is tested for the simulation of ISM 2011 in forecast mode. Experiments have been conducted in three different time-phases, viz., April, May and June; using different sets of initial conditions (ICs) and the persistent SSTs of the previous months of the time-phases. The spatial as well as temporal distribution of model simulated rainfall suggest a below normal monsoon condition throughout the season in all the experiments. However, the rainfall anomaly shows some positive signature over north-east part of India in the month of June and August whereas the central Indian landmass had positive anomaly during August and September. The monthly accumulated All-India rainfall (AIR) over land for June to September 2011 are predicted to be 101% (17.6 cm), 86% (24.3 cm), 83% (21.0 cm) and 95% (15.5 cm) of normal AIR, respectively. This makes the seasonal accumulated AIR 78.4 cm which is 11% below the normal rainfall of 87.6 cm. The model prediction for the months of June and July is comparable with the observation; however, the simulation would not be able to capture the high rainfall during August and September. The intention behind this work is to assess the shortcomings in the CAM model prediction, which can later be improved for future monsoon forecast experiments.

  1. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: Sedimentological evidence from the Okinawa Trough

    Science.gov (United States)

    Zheng, Xufeng; Li, Anchun; Wan, Shiming; Kao, Shuhji; Kuhn, Gerhard

    2016-04-01

    Deep-sea fan sediments provide an excellent geological archive for paleoenvironment reconstruction. Grain size, clay mineral and elemental (Ti, Fe, Ca) compositions were measured for a core retrieved from a submarine fan in the Okinawa Trough. Varimax-rotated Principal Component Analysis (V-PCA) on time-evolution of grain size spectrum reveals that, since the Holocene, sediment was transported mainly by the benthic nepheloid layer (33%) and upper layers (33%) which is driven by the East Asian winter monsoon (EAWM). The intensification of the Kuroshio Current during the Holocene, masks the fluvial signal of the summer monsoon and obstructs clay minerals derived from the Yellow River, a major contributor prior to 12 ka BP. A new grain size index (GSI), which represents the EAWM well, exhibits a negative correlation with the δ18O record in Dongge Cave, China during the Holocene when sea level was relatively steady. This anticorrelation suggests the southward migration of the Intertropical Convergence Zone (ITCZ). The consistency among our records and rainfall records in Peru, Ti counts in the Cariaco Basin, monsoon records in Oman and the averaged summer insolation pattern at 30°N further support the ITCZ's impact on monsoon systems globally. Cross-Correlation Analyses for GSI and log(Ti/Ca) against δ18O record in Dongge Cave reveal a decoupling between the East Asian winter and summer monsoon during 5500-2500 cal yr BP, with greater complexity in the last 2500 years. This can be attributed to exacerbated ENSO mode fluctuations and possibly anthropogenic interference superimposed on insolation and ITCZ forcing.

  2. THE CLIMATIC CHARACTERISTICS OF SUMMER MONSOON ONSET OVER THE SOUTH CHINA SEA I.40-YEAR AVERAGE

    Institute of Scientific and Technical Information of China (English)

    冯瑞权; 王安宇; 吴池胜; 林建恒; 古志明; 林文实; 谭志文

    2002-01-01

    By using 40-year NCEP reanalysis daily data (1958-1997),we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105(E ~120(E,5(N~20(N,to be simplified as SCS in the text followed) pentad by pentad (5 days).According to our new definition,in the monsoon area of the SCS two of the following conditions should be satisfied:1) At 850hPa,the southwest winds should be greater than 2m/s.2) At 850 hPa,should be greater than 335(K.The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture.The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105(E~120(E,5(N~20(N) is controlled by the summer monsoon.The analyzed results revealed the following:1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May.2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal.3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously.4) During the summer monsoon onset in the SCS,troughs deepen and widen quickly in the lower troposphere of the India;the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere;the easterly advances northward over the SCS in the upper troposphere.

  3. Meteorological fields variability over the Indian seas in pre and summer monsoon months during extreme monsoon seasons

    Indian Academy of Sciences (India)

    U C Mohanty; R Bhatla; P V S Raju; O P Madan; A Sarkar

    2002-09-01

    In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30° E-120°E, 30°S-30°N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student's t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered

  4. Hydrography of the eastern Arabian Sea during summer monsoon 2002

    Indian Academy of Sciences (India)

    D Shankar; S S C Shenoi; R K Nayak; P N Vinayachandran; G Nampoothiri; A M Almeida; G S Michael; M R Ramesh Kumar; D Sundar; O P Sreejith

    2005-10-01

    Hydrographic observations in the eastern Arabian Sea (EAS)during summer monsoon 2002 (during the first phase of the Arabian Sea Monsoon Experiment (ARMEX))include two approximately fortnight-long CTD time series.A barrier layer was observed occasionally during the two time series. These ephemeral barrier layers were caused by in situ rainfall,and by advection of low-salinity (high-salinity)waters at the surface (below the surface mixed layer).These barrier layers were advected away from the source region by the West India Coastal Current and had no discernible effect on the sea surface temperature.The three high-salinity water masses,the Arabian Sea High Salinity Water (ASHSW),Persian Gulf Water (PGW),and Red Sea Water (RSW),and the Arabian Sea Salinity Minimum also exhibited intermittency:they appeared and disappeared during the time series.The concentration of the ASHSW,PGW,and RSWdecreased equatorward,and that of the RSW also decreased offshore.The observations suggest that the RSW is advected equatorward along the continental slope off the Indian west coast.

  5. Long range prediction of Indian summer monsoon rainfall

    Indian Academy of Sciences (India)

    A A Munot; K Krishna Kumar

    2007-02-01

    The search for new parameters for predicting the all India summer monsoon rainfall (AISMR) has been an important aspect of long range prediction of AISMR. In recent years NCEP/NCAR reanalysis has improved the geographical coverage and availability of the data and this can be easily updated. In this study using NCEP/NCAR reanalysis data on temperature, zonal and meridional wind at different pressure levels, few predictors are identified and a prediction scheme is developed for predicting AISMR. The regression coeffcients are computed by stepwise multiple regression procedure. The final equation explained 87% of the variance with multiple correlation coeffcient (MCC), 0.934. The estimated rainfall in the El-Nino year of 1997 was -1.7% as against actual of 4.4%. The estimated rainfall deficiency in both the recent deficient years of 2002 and 2004 were -19.5% and -8.5% as against observed -20.4% and -11.5% respectively.

  6. Land-Climate Feedbacks in Indian Summer Monsoon Rainfall

    Science.gov (United States)

    Asharaf, Shakeel; Ahrens, Bodo

    2016-04-01

    induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.

  7. History and variability of East Asian monsoon climate since the late Miocene

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ The variability and dynamic mechanism of the East Asian monsoon climate is a major scientific puzzle in the exploration of global change.As early as in the late 1990s,a research team led by Prof.AN Zhisheng from the CAS Institute of Earth Environment started their work in this topic,with an objective of improving the hypothesis of monsoon-controlled East Asian environment and advancing the basic studies of past global changes in eastern Asia.

  8. Impacts of intraseasonal oscillation on the onset and interannual variation of the Indian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    QI YanJun; ZHANG RenHe; LI Tim; WEN Min

    2009-01-01

    The role of the intraseasonal oscillation (ISO) on the seasonal and interannual variations of the Indian summer monsoon is investigated based on the analysis of observational data. It is shown that the ISO significantly contributes to the establishment of low-level westerlies during the monsoon onset and developing periods. The effect of the ISO on the annual cycle of the monsoon is through nonlinear eddy momentum transport. On the interannual timescale, the Indian summer monsoon rainfall exhibits a significant out-of-phase relationship with the ISO intensity over the Indian monsoon region. In strong ISO years it appears the weak monsoon when there is an abnormal high over the India subcontinent in the lower troposphere. In weak ISO years there exists an abnormal low and the strong monsoon ap-pears.

  9. Origin of summer monsoon rainfall identified by δ18O in precipitation

    Institute of Scientific and Technical Information of China (English)

    PANG Hongxi; HE Yuanqing; ZHANG Zhonglin; LU Aigang; GU Juan; ZHAO Jingdong

    2005-01-01

    A negative correlation between δ18O in monsoon precipitation and f, the ratio of precipitable water in monsoon region to that in water source area, is hypothesized.Using the Rayleigh model, a new method for identifying origin of summer monsoon rainfall is developed based on the hypothesis. In order to validate the method, the isotopic data at New Delhi, a typical station in the southwest monsoon region, and Hong Kong, a typical station in the southeast monsoon region, were collected and analyzed for case studies.The case studies indicate that the water source areas of the monsoon rainfall at the two stations identified by the method are accordant with the general atmosphere circulation patterns. The method developed in this paper is significantly important for tracing the origin of summer monsoon precipitation.

  10. South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies

    Science.gov (United States)

    Suganuma, Y.; Yamazaki, T.; Kanamatsu, T.

    2009-05-01

    A rock magnetic investigation was carried out on a sedimentary core taken from the distal portion of the Bengal Fan in order to reconstruct the South Asian monsoon variability during the past 800 kyr. The 10.2 m long piston core MR0503-PC3, recovered at a water depth of 4400 m, consists of clay to silty clay with minor amounts of nannofossils. An age model for the MR0503-PC3 core is established by correlating a relative paleointensity record of the core [Suganuma Y., Yamazaki, T., Kanamatsu, T., Hokanishi, N., 2008. Relative paleointensity record during the last 800 kyr from the equatorial Indian Ocean: implication for relationship between inclination and intensity variations. Geochemistry, Geophysics, Geosystems. 9, Q02011. doi:10.1029/2007GC001723.] to the global paleointensity stack "Sint-800" [Guyodo, Y., Valet, J.P., 1999. Global changes in intensity of the Earth's magnetic field during the past 800 kyr. Nature. 399, 249-252.]. The age model is consistent with the published ages of tephra layers intercalated in the core, and shows continuous sedimentation during the past 800 kyr. Temporal variations in rock magnetic proxies for the magnetic concentration (ARM, IRM, and HIRM), the grain size (Mrs/Ms), and the composition (S -0.3T and S -0.1T) show that the amount of fine-grained magnetite increased during interglacial stages, and then gradually decreased toward the following glacial maxima. This indicates that the supply of fine-grained magnetite probably originated from areal expansion and/or increased pedogenic activity in the Ganges and Brahmaputra Rivers catchment. Increases during warmer periods suggest intensification of the South Asian summer monsoon during interglacial stages. During marine isotope stages (MIS) 15-11, enhancement of fine-grained magnetite and increased hematite and maghemite contributions are observed. These suggest a significant intensification of the South Asian summer monsoon during this period. Our record and other paleoclimatic

  11. Possible changes in the characteristics of Indian Summer Monsoon under warmer climate

    Science.gov (United States)

    Parth Sarthi, P.; Dash, S. K.; Mamgain, Ashu

    2012-07-01

    The Indian Summer Monsoon (ISM) spans four months starting from June and ending in September and produced wide spread rainfall over Indian continents mainly due to land-sea heating contrast between Indian Ocean and large Asian land mass. ISM is controlled by semi permanent features such as heat low over northwest sector of India, cross-equatorial flow and the low level westerly jet over the Arabian Sea at 850 hPa, the tropical easterly jet over the Indian Ocean at 200 hPa, Mascarene High, and anti-cyclone over the Tibet. Any fluctuation in Indian Summer Monsoon Rainfall (ISMR) during ISM on intra seasonal to inter annual is manifestation of change in wind circulation and temperature distribution. Therefore, in order to understand the change in magnitude and pattern of ISMR under warmer climate, it is necessary to qualitatively and quantitatively assess the change in associated monsoon wind circulation and temperature distribution. The current study examines the changes in magnitude and spatial distribution of ISMR and associated change in wind circulation and temperature distribution under forced scenarios in selected climate models contributed to International Panel of Climate Change (IPCC) 4th Assessment Report (AR4). It is found that under A2, B1 and A1B emission scenarios, future projected change in spatial distribution of ISMR shows deficit and excess of over the lower part of western and eastern coast of India in simulation of HadGEM1, ECHAM5, and MIROC (Hires) model which seems to be manifestation of anomalous anticyclonic flow at 850 hPa in Arabian Sea and anomalous westerly flow at 200 hPa

  12. Model Projections of East Asian Summer Climate under the'Free Arctic'Scenario

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-Jun; ZHANG Ying

    2010-01-01

    This paper addresses the'ice-free Arctic'issue under the future global warming scenario.Four coupled climate models used in the third phase of the Coupled Model Intercomparison Project(CMIP3)were selected to project summer climate conditions over East Asia once the Arctic becomes ice-free.The models project that an ice-free Arctic summer will begin in the 2060s under the SRESA I B(according to IPCC Special Reports on Emissions Scenarios)simulations.Our results show that the East Asian summer monsoons will tend to be stronger and that the water vapor transport to central northern China will be strengthened,leading to increased summer precipitation in central northern China.The models also project an intensified Antarctic Oscillation,a condition which favors increased precipitation in South China's Yangtze River Valley.The overall precipitation in Northwest China is projected to increase under ice-free Arctic summer conditions.

  13. Recent Progresses in Impacts of Indo-Western Pacific Ocean on East Asian Monsoon

    Science.gov (United States)

    Li, Jianping

    2016-04-01

    Some progresses in impacts of Western Pacific Ocean (WPO) on East Asian monsoon and stratosphere climate are reviewed from the following aspects. (1) Impact of the IPOD (a cross-basin dipole pattern of SSTA variability between the Indo-Pacific warm pool (IPWP) and North Pacific Ocean) on the East Asian summer monsoon (EASM).The IPOD exhibits a considerable correlation with the EASM. In summers with a positive IPOD phase, the western Pacific subtropical high (WPSH) weakens and shrinks with WPSH ridge moving northwards, which favours an intensified EASM and a decrease in summer rainfall in the Yangtze River valley, and vice versa. (2) TheIndo-Western Pacific convection oscillation (IPCO),which is an out-of-phase fluctuation in convection anomalies between the north Indian Ocean and the western North Pacific region,is closely related to the EASM.Negative IPCO phases, which exhibit an enhanced convection over the north Indian Ocean and a suppressed convection over the western North Pacific, favor a weakened EASM and an increase of summer rainfall in the Yangtze River valley with the joint actions of the stronger than normal Ural and Okhotsk blocking highs and the subtropical western Pacific high, and vice versa.(3) Asymmetric influence of the two types of ENSO on summer rainfall in China. The two types of ENSO have asymmetric impacts on summer rainfall over the Yangtze River Valley. The relation between summer rainfall over this valley and the cold tongue (CT) El Niño is significantly positive, while the relation with the CT La Niña is not significant. The negative phase of the warm pool (WP) ENSO has a significant positive influence, whereas no significant relation with the positive phase. They indicated that this asymmetric response of the EASM is likely to be linked to the different spatial patterns of the two types of ENSO.(4) Linkage between recent winter precipitation increase in the middle-lower Yangtze River valley (MLY) since the late 1970s andwarming in the

  14. Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient

    Science.gov (United States)

    Yun, Kyung-Sook; Lee, June-Yi; Ha, Kyung-Ja

    2014-07-01

    Observed analysis of the 35 years of 1979-2013 reveals considerable interdecadal change and significant recent intensification in the difference of convective precipitation between the South Asian monsoon (SAM) and East Asian monsoon (EAM) systems during the major summer monsoon season (June-July). We propose that the recent strengthening of the zonal gradient of sea surface temperature (SST) between the Indian Ocean, western Pacific, and eastern Pacific is a possible cause for the intensification of the convective precipitation contrast. It is noted that the strengthening of the zonal SST gradient associated with the recent mega-La Niña trend tends to reinforce the negative connection between SAM and EAM systems by inducing enhanced convection over the maritime continent and then facilitating the northwestward emanation of Rossby waves. Consequently, a cyclonic circulation anomaly that effectively changes the local Hadley circulation has been formed over the SAM region, resulting in the noticeable difference between the SAM and EAM. The years 2013 and 1983 are further investigated as the strongest extreme years for positive and negative phases of submonsoon contrast, respectively. The result confirms that the meridional dipole height pattern along the Asian Jet stream, which is caused by the strong zonal gradient of tropical SST, serves as a key trigger in strengthening the submonsoon contrast.

  15. The abrupt onset of the modern South Asian Monsoon winds

    Science.gov (United States)

    Betzler, Christian; Eberli, Gregor P.; Kroon, Dick; Wright, James D.; Swart, Peter K.; Nath, Bejugam Nagender; Alvarez-Zarikian, Carlos A.; Alonso-García, Montserrat; Bialik, Or M.; Blättler, Clara L.; Guo, Junhua Adam; Haffen, Sébastien; Horozal, Senay; Inoue, Mayuri; Jovane, Luigi; Lanci, Luca; Laya, Juan Carlos; Mee, Anna Ling Hui; Lüdmann, Thomas; Nakakuni, Masatoshi; Niino, Kaoru; Petruny, Loren M.; Pratiwi, Santi D.; Reijmer, John J. G.; Reolid, Jesús; Slagle, Angela L.; Sloss, Craig R.; Su, Xiang; Yao, Zhengquan; Young, Jeremy R.

    2016-07-01

    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment’s content of particulate organic matter. A weaker ‘proto-monsoon’ existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system.

  16. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene

    Institute of Scientific and Technical Information of China (English)

    Wan Shiming; Li Anchun; Xu Kehui; Yin Xueming

    2008-01-01

    Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows

  17. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    Science.gov (United States)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2016-08-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  18. Catastrophic drought in East Asian monsoon region during Heinrich event 1

    Science.gov (United States)

    Zhou, Xin; Sun, Liguang; Chu, Yangxi; Xia, Zehui; Zhou, Xinying; Li, Xiangzhong; Chu, Zhuding; Liu, Xiangjun; Shao, Da; Wang, Yuhong

    2016-06-01

    Heinrich event 1 (H1) is an important millennial climate event during the last deglaciation. The substantial decreasing of monsoon strength in the East Asian monsoon region during the H1, as shown by stalagmite δ18O records, has been attributed to the southward shift of the intertropical convergence zone (ITCZ), which is caused by the slowdown/collapse of the Atlantic meridional overturning circulation (AMOC). However, records from different Asian monsoon regions show various trends in precipitation changes during the H1, and these trends cannot be solely interpreted by the southward shift of the ITCZ. In the present study, we reconstructed time-series of East Asian monsoon precipitation between 25,000 and 10,000 a BP from floodplain sediments in the Huai River Basin. A white sediment layer, distinct from other layers in the profile, contains significantly low TOC, tree pollen and fern spore contents, and more positive δ13Corg, and it is deposited during the H1 event. The determined TOC, pollen and δ13Corg time-series, together with previously reported stalagmite δ18O, indicate a catastrophic (severe) drought in Jianghuai Region, one of the East Asian monsoon regions, during the H1. The La Niña condition in tropical Pacific likely also contributes to the catastrophic drought in Jianghuai Region and the precipitation variations in the Asian monsoon region during the H1.

  19. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2008-02-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to the tropopause level inside the anticyclone.

  20. Chemical Isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2007-09-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to tropopause level inside the anticyclone.

  1. Rock magnetic records of Southeast Asian monsoon variability during the past 800 kyr

    Science.gov (United States)

    Suganuma, Y.; Yamazaki, T.; Kanamatsu, T.

    2007-12-01

    Rock magnetic investigations were carried out on a sedimentary core taken from the Ninety-east ridge, the eastern equatorial Indian Ocean in order to reconstruct the South Asia monsoon variability during the past 800 kyr. A 10.2 m long piston core ? MR0503-PC3 was recovered in August 2005 during the R/V Mirai MR0503 cruise. The core site is located in the western flank of the Ninety-east ridge (1×E 13.2'N, 88×E 26.0'E), and water depth is 4400 m. In order to develop an age model for the MR0503-PC3 core, a relative paleointensity record (NRM30mT/IRM30mT) obtained from the core is correlated with the global stack of relative paleointensity records &Sint-? (Guyodo and Valet, 1999). Based on the developed age model, the age of the bottom of the MR0503-PC3 core is ca. 800 ka and an average sedimentation rate is 1.3 cm/kyr. A suite of rock magnetic parameters (Magnetic Susceptibility, IRM, ARM, Mrs/Ms, and S-ratio) was obtained from discrete samples collected from the half-split of the core. Magnetic Susceptibility, IRM, and ARM are used as proxies for the magnetic mineral flux. Mrs/Ms and S-ratio are used as proxies for mean grain size and magnetic mineralogical parameter, respectively. The results show that a magnetic mineral flux increases during warmer periods, whereas the flux decreases during colder periods. On the other hand, magnetic grain size increases during colder periods and decreases during warmer periods. These indicate that a supply of fine-grained magnetite (or maghemite), probably originated to pedogenesis, increases during warmer periods, suggesting intense precipitation related to the South Asian summer monsoon. During MIS 15 to 11, stepwise increases of the magnetic mineral flux accompanied with sudden drops of S-ratios are recognized. The sudden drop of S-ratio is related to intense inputs of coarse-grained hematite and maghemite, probably originated to the chemical weathering of the Himalaya-Tibet plateau. This feature suggests that

  2. The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)

    Science.gov (United States)

    Lau, WIlliam K. M.

    2007-01-01

    The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Paczj?c region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of

  3. A Possible Impact of Cooling over the Tibetan Plateau on the Mid-Holocene East Asian Monsoon Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6kyr BP). With the Earth's orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer.The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.

  4. A Study on Extremely Dry and Wet Summer Monsoon in Pakistan by Focusing on the Anomalous States of the Upper Troposphere

    Science.gov (United States)

    Ahmad, S.; Koike, T.; Nishii, K.

    2012-04-01

    Seasonally-changes in wind pattern, monsoon, sometimes results in severe droughts and intense flooding in many parts of the world including South Asian countries like Pakistan. The livelihood of a vast population in Pakistan depends on agriculture and land use is strongly influenced by water-based ecosystems that depend on the monsoon rains. Furthermore, climate change studies undertaken so far reveal that action is essential in order to prevent long term damage to water cycle and thus of great concern to the community and stakeholders. Pakistan Summer Monsoon (PSM) is generally affected by both the disturbances from the tropical and the extratropical regions; however there is lack of understanding of physical mechanisms of PSM compared to other regional studies i.e. Indian Summer Monsoon (ISM) and South-East Asian Monsoon (SEAM). In our study, we applied heat and vorticity budgets and wave train analysis to reveal the mechanisms of the extremely dry and wet PSM events associated with the anomalous upper tropospheric circulation. We found that the extremely dry (wet) PSM events are closely related with the strengthening(weakening) of the upper-tropospheric central Asian high. We also found that in addition to Rossby-wave (Matsuno-Gill) type atmospheric response, the Rossby wave train along the Asian Jet originating from northwestern Europe or North Atlantic Ocean strengthened(weakened) the upper-tropospheric central Asian high. Therefore strong convection anomalies resulting in severe flooding (drought) events over the PSM region are induced by both the tropical and extratropical processes. Key Words: Pakistan, Extremes Monsoon Events, Physical Processes, Heat Budget, Vorticity, Wave Train

  5. Changes in the south Asian monsoon low level jet during recent decades and its role in the monsoon water cycle

    Science.gov (United States)

    Aneesh, S.; Sijikumar, S.

    2016-02-01

    June-September mean wind at 850 hPa from ERA-Interim, MERRA and NCEP2 reanalyses shows an increasing trend in the south Asian monsoon Low Level Jet (LLJ) during 1980-2014. In the sub-seasonal scale, the LLJ during July and September exhibits increasing trend, while August shows a decreasing trend. Lesser changes in surface pressure over heat low region and weaker Bay of Bengal convection lead to weakening of LLJ during August while an intense heat low during September results stronger LLJ. The associated moisture transport changes affect the monsoon hydrological cycle with decreasing precipitation during August and increasing precipitation during September.

  6. Impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Science.gov (United States)

    Qian, Y.; Flanner, M. G.; Leung, L.; Wang, W.

    2010-12-01

    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of Asian people, but the TP glaciers have been retreating faster than those anywhere else in the world. In this study a series of experiments with a global climate model are designed to simulate radiative forcing (RF) of black carbon (BC) in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 µg/kg. Because of high aerosol content in snow and large incident solar radiation, the TP exhibits the largest surface RF induced by BC in snow compared to other snow-covered regions in the world. The BC-induced snow albedo perturbations generate surface RF of 5-15 W/m2 during spring. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer, i.e. a trend toward earlier melt dates. The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its thermodynamical forcing. During boreal spring, aerosols are transported by

  7. Variation of Methane, Water Vapor and Clouds over Tibetan PlateauUnder the Impact of Asian Summer Monsoon%季风影响下的青藏高原上空甲烷、水汽及云的变化

    Institute of Scientific and Technical Information of China (English)

    熊效振; 张莹; 陈良富; 占瑞芬; 李建平

    2011-01-01

    In order to understand the impact of Monsoon to the transport of water vapor and trace gases, an analysis of the relationship between mid-uppertropospheric methane (CH4), water vapor, cloud amounts and cloud top height with the monsoon index was made by using the AIRS CH4 data from 2003 to 2010, and the water vapor and cloud data from MODIS on EOS/Aqua. The results indicated that, during the Asian Summer Monsoon (ASM), the variations of water vapor, cloud amounts and cloud top heights are closely correlated with the monsoon index. Due to the strong convection over the Tibetan Plateau (TP), more water vapor is transported to the TP, resulting in more cloud amounts and the elevated cloud top height. Correspondingly, the CH4 transported leads to the increase of the CH4 concentration in the mid-upper troposphere and its accumulation over the TP under the constraint by the strong Tibetan anticyclone. The occurrence of the CH4 maximum is about one month late than Monsoon Index. With the withdrawal of the ASM and the dissipation of anticyclone, the maximum of CH4 disappears rapidly. These results suggested that the strong convection over the TP is one of the major factors controlling the formation of CH4 plume. As a long life trace gas, CH4 has the potential to be used as a tracer to help the study the ASM and the dynamic of anticyclone.%为进一步了解季风对于水汽及其它大气成分的输送作用,利用美国Aqua卫星上AIRS反演的甲烷(CH4)和MODIS反演的水汽、云高和云量等卫星观测资料,分析了2003至2010年中国青藏高原上空CH4、水汽和云在季风期间的变化及其与季风指数的关系.研究发现:夏季(6月至9月)高原上空水汽、云量和云顶高度的变化与季风指数有很好的相关;在强对流影响下,输送到高原上空的水汽增多,引起云量增多,云顶高度增加,而向上输送的甲烷引起高原上空CH4浓度增加,并在青藏高压强大的反气旋的阻塞下CH4不断积累,

  8. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    Science.gov (United States)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2016-03-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  9. Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we applied the newest emission scenarios of the sulfur and greenhouse gases, i.e. Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 and B2 scenarios, to investigating the change of the East Asian climate in the last three decades of the 21st century with an atmosphere-ocean coupled general circulation model. The global warming enlarges the land-sea thermal contrast and, hence, enhances (reduces) the East Asian summer (winter) monsoon circulation. The precipitation from the Yangtze and Huaihe river valley to North China increases significantly. In particular, the strong rainfall increase over North China implies that the East Asian rainy area would expand northward. In addition, from the southeastern coastal area to North China, the rainfall would increase significantly in September, implying that the rainy period of the East Asian monsoon would be prolonged about one month. In July, August and September, the interannual variability of the precipitation enhances evidently over North China, meaning a risk of flooding in the future.

  10. Sensitivity of surface radiation budget to clouds over the Asian monsoon region

    Indian Academy of Sciences (India)

    S Balachandran; M Rajeevan

    2007-04-01

    Using the ISCCP–FD surface radiative flux data for the summer season (June to September) of the period 1992 to 1995, an analysis was done to understand the role of clouds on the surface radiation budget over the Asian monsoon region. At the top of atmosphere (TOA) of convective regions of the Asian monsoon region, the short wave radiative forcing (SWCRF) and long wave radiative forcing (LWCRF) do not cancel each other resulting in occurrence of the net cloud radiative forcing values exceeding −30W/m2. This type of imbalance between SWCRF and LWCRF at TOA is reflected down on the earth surface–atmosphere system also as an imbalance between surface netcloud radiative forcing (NETCRF) and atmospheric NETCRF. Based on the regression analysis of the cloud effects on the surface radiation budget quantities, it has been observed that generally, the variance explained by multiple type cloud data is 50% more than that of total cloud cover alone. In case of SWCRF, the total cloud cover can explain about 3% (7%) of the variance whereas the three cloud type descriptions of clouds can explain about 44% (42%) of the variance over oceanic (land) regions. This highlights the importance of cloud type information in explaining the variations of surface radiation budget. It has been observed that the clouds produce more cooling effect in short-wave band than the warming effect in long-wave band resulting in a net cooling at the surface. Over the oceanic region, variations in high cloud amount contribute more to variations in SWCRF while over land regions both middle and high cloud variations make substantial contributions to the variations in both SWCRF and NETCRF.

  11. Extratropical influences on the inter-annual variability of South-Asian monsoon

    Science.gov (United States)

    Syed, F. S.; Yoo, J. H.; Körnich, H.; Kucharski, F.

    2012-04-01

    The effects of extratropical dynamics on the interannual variations in South-Asian Monsoon (SAM) are examined. Based on NCEP/NCAR reanalysis and CRU precipitation data, a conditional maximum covariance analysis is performed on sea level pressure, 200 hPa geopotential heights and the SAM rainfall by removing the linear effects of El-Niño Southern Oscillation from the fields. It is found that two modes provide a strong connection between the upper-level circulation in the Atlantic/European region and SAM rainfall: the Circumglobal Teleconnection (CGT) and the Summer North Atlantic Oscillation (SNAO). The structures in the 200 hPa heights of both modes in the Atlantic region are similar in the Atlantic region, and their southeastward extension to South Asia (SA) also corresponds to upper-level ridges (in their positive phases) in slightly different positions. Nevertheless, the influence of both modes on SAM rainfall is distinct. Whereas a positive CGT is related to a widespread increase of rainfall in SAM, a positive SNAO is related to a precipitation dipole with its positive phase over Pakistan and the negative phase over northern India. The physical mechanisms for the influence of CGT and SNAO on SAM are related to the upper-level geopotential anomaly which affects the amplitude and position of the low-level convergence. The small displacements of the centers of these responses and the low level cold advection from the north east of SA in case of SNAO explain the differences in the corresponding SAM rainfall distributions. These findings are confirmed with the relatively high-resolution coupled climate model EC-Earth, which gives confidence in the physical basis and robustness of these extratropical variability modes and their influence on the South-Asian monsoon rainfall.

  12. Emission sources contributing to tropospheric ozone over equatorial Africa during the summer monsoon

    Directory of Open Access Journals (Sweden)

    I. Bouarar

    2011-05-01

    Full Text Available A global chemistry-climate model LMDz_INCA is used to investigate the contribution of African and Asian emissions to tropospheric ozone over central and West Africa during the summer monsoon. The model results show that ozone in this region is most sensitive to lightning NOx and to central African biomass burning emissions. However, other emission categories also contribute significantly to regional ozone. The maximum ozone changes due to lightning NOx occur in the upper troposphere between 400 hPa and 200 hPa over West Africa and downwind over the Atlantic Ocean. Biomass burning emissions mainly influence ozone in the lower and middle troposphere over central Africa, and downwind due to westward transport. Biogenic emissions of volatile organic compounds, which can be uplifted from the lower troposphere into higher altitudes by the deep convection that occurs over West Africa during the monsoon season, dominate the ozone changes in the upper troposphere and lower stratosphere region. Convective uplift of soil NOx emissions over the Sahel region also makes a significant contribution to ozone in the upper troposphere. Concerning African anthropogenic emissions, they make a lower contribution to ozone compared to the other emission categories. The model results indicate that most ozone changes due to African emissions occur downwind, especially over the Atlantic Ocean, far from the emission regions. The influence of Asian emissions should also be taken into account in studies of the ozone budget over Africa since they make a considerable contribution to ozone concentrations above 150 hPa. Using IPCC AR5 (Intergovernmental Panel on Climate Change; Fifth Assessment Report estimates of anthropogenic emissions for 2030 over Africa and Asia, the model calculations suggest largest changes in ozone due to the growth of emissions over Asia than over Africa over the next 20 years.

  13. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    needed temporal and spatial coupling and means for validation of mesoscale model simulations (Zhong et al., 2009, 2011). When these time series are integrated into energy balance analyses methods (Su, 2002, 2005) with reanalysis data, plateau scale diurnal radiative and turbulence fluxes can be generated (Oku et al., 2005; Su et al., 2010) for the study of the boundary layer atmospheric structures at plateau scale. As such regional land-atmosphere feedbacks and atmospheric boundary layer structures can be studied. The quantification of the multi-scale atmospheric boundary layer and land surface processes over the heterogeneous underlying surface of the Tibetan Plateau is a challenging problem that remains unsettled despite many years of efforts. Using field observation, truth investigation, land surface process parameterization and meso-scale simulation, the dynamical and thermal uniform function of the atmospheric boundary layer and its effect to the atmospheric boundary layer will be analyzed in this research. Results The different characteristics of the Boundary layer with Asia monsoon season exchange over TP The height of atmospheric boundary layer was higher before monsoon season than it in summer. It was around 3-4 km above the ground in spring, while it was 1-2 km during monsoon season. It due to sensible heat flux was stronger in spring than it in summer. Using wavelet analysis method, we decomposed the wind include horizontal and vertical velocity from radiosounding observational data. The reason of high boundary layer height was disclosed. Compared to the observation, the output of model was underestimation during spring, while it was reasonable in summer monsoon. The effect of the Asian Monsoon to the precipitation on the TP Numerical simulation of climate on the TP was implemented for the whole year of 2008 using WRF-Noah model. The output of the WRF model is compared to TRMM data set for precipitation and ERA-interim land product for soil moisture. Modeled

  14. Seasonal prediction of East Asian summer rainfall using a multi-model ensemble system

    Science.gov (United States)

    Ahn, Joong-Bae; Lee, Doo-Young; Yoo, Jin‑Ho

    2015-04-01

    Using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers, the prediction skills of climate models in the western tropical Pacific (WTP) and East Asian region are assessed. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP Indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index or each MPI. Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by hybrid dynamical-statistical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using a hybrid dynamical-statistical approach compared to the dynamical forecast alone. Acknowledgements This work was carried out with the support of Rural Development Administration Cooperative Research

  15. Contribution of the east-west thermal heating contrast to the South Asian Monsoon and consequences for its variability

    Energy Technology Data Exchange (ETDEWEB)

    Kucharski, Fred; Barimalala, Rondrotiana; Yoo, Jin Ho [Abdus Salam International Centre for Theoretical Physics, Earth System Physics Section, Trieste (Italy); Bracco, Annalisa [EAS, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-08-15

    The focus of this paper is to assess the relative role of the north-south and east-west contrasts in atmospheric heating for the maintenance of the South Asian summer monsoon climatology. The juxtaposition of the Eurasian land mass and the Indian Ocean is responsible for the north-south contrast, while the greater diabatic heating above the western Pacific compared to the one over the African and the tropical South Atlantic Ocean region introduces the east-west gradient. With a series of idealized atmospheric general circulation model experiments, it is found that both contrasts contribute to the maintenance of the South Asian monsoon climatology, but their impact varies at regional scales. The surface atmospheric cyclone and precipitation over northern India are mainly due to the north-south contrast. On the other hand, when the Indian Ocean sea surface temperatures are close to their climatological mean values, the low-level cyclone and consequent rainfall activity in the Bay of Bengal and southern India result from the east-west gradient. The physical mechanism relays on the southern part of the upper-level South Asian monsoon high being forced by the east-west diabatic heating contrast via Sverdrup balance. The east-west heating difference controls also the strength of the Tropical Easterly Jet. Finally, the contribution of the El Nino Southern Oscillation to the interannual variability of the Indian monsoon is interpreted as the result of a longitudinal shift of one of the centers of diabatic heating contributing to the east-west contrast. (orig.)

  16. Water vapour flux divergence over the Arabian Sea during 1987 summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; RameshKumar, M.R.

    with the mean monsoon rainfall along the west coast of India. 1. Introduction A detailed study of the heat and moisture budget over the Indian Ocean, Arabian Sea and Bay of Bengal is crucial in understanding the mechanisms through which the Asiatic summer... monsoon is maintained (Murakami et al., 1984). Knowledge of water vapour flux divergence over the AS is of vital importance from the Indian summer monsoon point of view. An exact estimate of the contribution of the moisture flux from AS is essential...

  17. Summer monsoon onset over Kerala: New definition and prediction

    Indian Academy of Sciences (India)

    D S Pai; Rajeevan M Nair

    2009-04-01

    The summer monsoon onset over Kerala (MOK)marks the beginning of the rainy season for the country.Associated with the MOK,significant transitions of large scale atmospheric and oceanic circulation patterns are observed over the Asia –Pacific region.In this study,a new method for the objective identification of MOK,based on large scale circulation features and rainfall over Kerala,is discussed.Further,a set of empirical models based on the principal component regression (PCR)technique was developed for the prediction of the date of MOK by keeping in mind the IMD ’s operational forecasting service requirements.Predictors for the models were derived using correlation analysis from the thermal,convective and circulation patterns.Only five predictors pertaining to the second half of April were used in the first model (Model-1)so that the prediction of MOK can be prepared by the end of April itself.The second model (Model-2)used four additional predictors pertaining up to the first half of May along with two predictors used in the Model-1 for update prediction at the end of the first half of May.To develop each of the PCR models, Principal Components Analysis (PCA)of the respective predictor data was carried out followed by regression analysis of first two principal components (PCs)with the date of MOK.Both these models showed good skill in predicting the date of MOK during the independent test period of 1997 –2007.The root mean square error (RMSE)of the predictions from both the models during the independent test period was about four days which was nearly half the RMSE of the predictions based on climatology.

  18. Indian summer monsoon simulations with CFSv2: a microphysics perspective

    Science.gov (United States)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Saha, Subodh K.; Dhakate, Ashish; Pokhrel, Samir

    2016-07-01

    The present study explores the impact of two different microphysical parameterization schemes (i.e. Zhao and Carr, Mon Wea Rev 125:1931-1953, 1997:called as ZC; Ferrier, Amer Meteor Soc 280-283, 2002: called as BF) of National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) on Indian summer monsoon (ISM). Critical relative humidity (RHcrit) plays a crucial role for the realistic cloud formation in a general circulation model (GCM). Hence, impact of RHcrit along with microphysical scheme on ISM is evaluated in the study. Model performance is evaluated in terms of simulation of rainfall, lower and upper tropospheric circulations, cloud fraction, cloud condensate and outgoing longwave radiation (OLR). Climatological mean features of rainfall are better represented by all the sensitivity experiments. Overall, ZC schemes show relatively better rainfall patterns as compared to BF schemes. BF schemes along with 95 % RHcrit (called as BF95) show excess precipitable water over Indian Ocean basin region, which seems to be unrealistic. Lower and upper tropospheric features are well simulated in all the sensitivity experiments; however, upper tropospheric wind patterns are underestimated as compared to observation. Spatial pattern and vertical profile of cloud condensate is relatively better represented by ZC schemes as compared to BF schemes. Relatively more (less) cloud condensate at upper level has lead to relatively better (low) high cloud fraction in ZC (BF) simulation. It is seen that OLR in ZC simulation have great proximity with observation. ZC (BF) simulations depict low (high) OLR which indicates stronger (weaker) convection during ISM period. It implies strong (weak) convection having stronger (weaker) updrafts in ZC (BF). Relatively more (less) cloud condensate at upper level of ZC (BF) may produce strong (weak) latent heating which may lead to relatively strong (weak) convection during ISM. The interaction among microphysics

  19. On the relationship between convection intensity of South China Sea summer monsoon and air-sea temperature difference in the tropical oceans

    Institute of Scientific and Technical Information of China (English)

    LIN Ailan; LIANG Jianyin; GU Dejun; WANG Dongxiao

    2004-01-01

    The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is interdecadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.

  20. Late Glacial to Holocene Indian Summer Monsoon Variability Based upon Sediment Records Taken from the Bay of Bengal

    Directory of Open Access Journals (Sweden)

    Harunur Rashid

    2011-01-01

    Full Text Available Paleoclimatic records from the Bay of Bengal are rare. We reconstruct the sea-surface temperature (SST and salinity from paired S18O and Mg/Ca measurements in planktonic foraminifera Globigerinoides ruber from the western Bay of Bengal core VM29-19. Our data suggest that SST and seawater S18O (S18Osw were ~3C colder and ~0.6 o/oo depleted, respectively, during the Last Glacial Maximum (LGM compared to the early Holocene. The most enriched S18Osw values were found between 18.2 and 15.6 ka interval. Depleted LGM S18Osw values suggest a wet climate which freshened the Bay of Bengal sea surface. Our data further indicate that the monsoon was stronger in the Bolling/Allerod and weaker in the Younger Dryas periods. The most depleted early Holocene S18Osw values suggest that the monsoon was stronger and wetter resulting in a humid climate. After ~5 ka the Indian summer monsoon weakened significantly, indicating less dilution of the sea surface by the Ganges-Brahmaputra-Meghna outflow and/or less direct rainfall. We hypothesize that the prevailing late Holocene dry climate may have caused the diminishment and subsequent abandonment of the settlements of the great Indus Valley Civilizations. Our Bay of Bengal climate records are consistent with those from the Andaman Sea, corroborating broad regional changes in the Indian summer monsoon during the last 25 ka. The general pattern and timing of monsoon variability in the Bay of Bengal and Andaman Sea seems to parallel the Arabian Sea, Africa, and Asian ice cores and speleothem records suggesting that a common tropical forcing may have induced these abrupt climate changes.

  1. MODELED IMPACT OF EAST ASIAN SUMMER MONSOON ON TEMPORAL AND SPATIAL PATTERNS OF α-HCH IN EAST OF CHINA%模拟东亚夏季风对中国东部地区大气中α-六六六(α-HCH)时空分布的影响

    Institute of Scientific and Technical Information of China (English)

    田崇国; 马万里; 徐殿斗; 马建民; 李一凡

    2009-01-01

    Air concentration of α-HCH was simulated by using CanMETOP model in regional scale in 2005. The temporal and spatial patterns of α-HCH atmospheric concentrations in eastern region of China caused by East Asian Summer Monsoon was analyzed. The simulated results showed that the mean air concentrations of the pesticide in northeast, mid-east and southeast were 260 pg · m~(-3), 74 pg · m~(-3) and 41 pg · m~(-3) from June 15 to August 15, respectively. The concentration appeared to accumulate in southeastern region since June 15, and reached the largest value in the region on June 24 (259 pg · m~(-3)) . When α-HCH was transported from southeastern to northeastern region, the highest air concentration in northeast region occurred on July 1 (1947 pg. m~(-3)). Hereafter, while air concentrations of α-HCH in southeastern region were lower than 50 pg·m~(-3), those in northeastern region were still at a higher level, ranged from 100 to 350 pg · m~(-3). It was suggested that East Asian summer monsoon can carry α-HCH from the southeast of China to the northeast of China by atmospheric transport, and accumulate the insecticide in the air of the latter.%以中国为研究区域,利用CanMETOP模型模拟了2005年大气中α-六六六(α-HCH)浓度的变化,并分析了东亚夏季风对我国东部地区大气中α-HCH浓度时空分布的影响.模拟结果表明,6月15日-8月15日期间,东北、华北和东南地区的α-HCH平均大气浓度分别为260 pg·m~(-3),74 pg·m~(-3)和41 pg·m~(-3).大气浓度具有明显的时空分布特征,从6月15日在我国东南地区开始出现了较高的大气浓度堆集,6月24日达到最大值(259 pg·m~(-3)).在向我国北部传输过程中,7月1日在东北形成的气旋区域出现最大值(1947pg·m~(-3)).此后,东南地区的大气浓度均处于较低的水平(<50 pg·m~(-3)),而东北地区的大气浓度一直处于100-350 pg·m~(-3)之间的较高水平.分析结果表明,东亚夏季风可以将东南地

  2. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    Science.gov (United States)

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  3. Eurasian Snow Conditions and Summer Monsoon Rainfall over South and Southeast Asia:Assessment and Comparison

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study reveals the complex nature of the connection between Eurasian snow and the following summer season's monsoon rainfall by using four different indicators of snow conditions and correlating each of them to summer monsoon rainfall. Using 46 years of historical records of mean winter snow depth,maximum snow depth, and snow starting dates, and 27 years of snow area coverage from remote sensing observations over Eurasia, the authors found diverse correlation patterns between snow conditions and the following warm season's rainfall over South and Southeast Asia. Some of the results contradict the well-known inverse relationships between snow and the summer monsoon. This study provides an easy comparison of results in that it shows the connections between Eurasian snow and monsoon rainfall by using different Eurasian snow indicators based on the best available historical records without discrimination of regional variations in snow conditions.

  4. A Possible Role of Solar Radiation and Ocean in the Mid-Holocene East Asian Monsoon Climate

    Institute of Scientific and Technical Information of China (English)

    魏江峰; 王会军

    2004-01-01

    An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period.The role of the solarradiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed.At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM,compared with when there is orbital forcing alone,there is more precipitation and the monsoon is stronger in the summer of East Asia,and the winter temperature increases over China.These agree better with the reconstructed data.It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet,which bring more precipitation over the south of Tibet and North and Northeast China.By analyzing the summer meridional latent heat transport,it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land,and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere.Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.

  5. A THEORETICAL STUDY ON THE MULTIPLE EQUILIBRIA OF TROPICAL ATMOSPHERE AND THEIR RELATION TO THE ONSET OF THE SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    ZHAO Nan; DING Yi-hui; Masaaki Takahashi; SHEN Xin-yong

    2006-01-01

    Multiple equilibria and their stability in tropical atmosphere are investigated through β -plane barotropic models with consideration of heating and dissipation. We have derived the solutions of the model equations corresponding to the multiple equilibria or the steady flows first, and then establish the criteria for the stability of steady flow by use of the Liapunov direct Method. When these criteria are applied to the solutions of equilibria obtained, stable flows, which are closely related to the different patterns of quasi-stationary circulation in the tropical region, are found. The configurations of these stable flows and the shift between two of them as season changes provide quite reasonable explanations to many fundamental problems of tropical circulation features such as the catastrophe mechanism of the onset and the break-active cycle of the Asian summer monsoon. It follows that the onset or the abrupt transition of the Asian summer monsoon could be attributed to the multiple equilibrium property of the tropical circulation resulted from the advective nonlinearity, which provide another explanation among others.

  6. Emission sources contributing to tropospheric ozone over Equatorial Africa during the summer monsoon

    Directory of Open Access Journals (Sweden)

    I. Bouarar

    2011-12-01

    Full Text Available A global chemistry-climate model LMDz_INCA is used to investigate the contribution of African and Asian emissions to tropospheric ozone over Central and West Africa during the summer monsoon. The model results show that ozone in this region is most sensitive to lightning NOx and to Central African biomass burning emissions. However, other emission categories also contribute significantly to regional ozone. The maximum ozone changes due to lightning NOx occur in the upper troposphere between 400 hPa and 200 hPa over West Africa and downwind over the Atlantic Ocean. Biomass burning emissions mainly influence ozone in the lower and middle troposphere over Central Africa, and downwind due to westward transport. Biogenic emissions of volatile organic compounds, which can be uplifted from the lower troposphere to higher altitudes by the deep convection that occurs over West Africa during the monsoon season, lead to maximum ozone changes in the lower stratosphere region. Soil NOx emissions over the Sahel region make a significant contribution to ozone in the lower troposphere. In addition, convective uplift of these emissions and subsequent ozone production are also an important source of ozone in the upper troposphere over West Africa. Concerning African anthropogenic emissions, they only make a small contribution to ozone compared to the other emission categories. The model results indicate that most ozone changes due to African emissions occur downwind, especially over the Atlantic Ocean, far from the emission regions. The import of Asian emissions also makes a considerable contribution to ozone concentrations above 150 hPa and has to be taken into account in studies of the ozone budget over Africa. Using IPCC AR5 (Intergovernmental Panel on Climate Change; Fifth Assessment Report estimates of anthropogenic emissions for 2030 over Africa and Asia, model calculations show larger changes in ozone over Africa due to

  7. Impacts of Urbanization on Indian Summer Monsoon Rainfall

    Science.gov (United States)

    Shastri, H. K.; Ghosh, S.; Karmakar, S.

    2013-12-01

    Rapid urbanisation all around the world is a matter of concern to the scientific community. The fast growing urban areas carries out huge anthropogenic activities that burdens natural environment and its resources like air-water quality and space, thus have different climatology to their rural surroundings. World Urbanization Prospects 2005 annual report described 20th century as witnessing a rapid urbanization of the world's population. Though urbanization is a worldwide phenomenon, it is especially prevalent in India, where urban areas have experienced an unprecedented rate of growth with level of urbanization increased from 17.23 % to 31.16% in year 1951 to 2011and the number of cities with population more than one million has grown from 5 to 53 over the same time. We take up an observational study to understand influence of urbanisation on mesoscale circulations and resulting convection, thus nature of precipitation around urban areas. The spatially distributed analysis of gridded daily precipitation data over the country is carried out to identify nature of trends in selected statistics of Indian summer monsoon precipitation and examine its association with urban land cover to have an impact on precipitation statistics. We evaluate explicit changes around urban land use in context of 40 large Indian urban areas. Further we assess local-urban climatic signals in the point level rainfall observations with model based analysis of two nearby locations under similar climatic conditions but differing largely in terms of urbanisation. The results of gridded data analysis indicate an overall tendency towards decrease in mean precipitation however, rainfall activities are enhanced around urban areas across different climate zones of the country. Though trends observed in selected climatic parameters revealed great degree of spatial inter variability in selected precipitation statistics over the country, they accounts a greater degree of inclination for occurrence under

  8. Long-term trend and abrupt events of the Holocene Asian monsoon inferred from a stalagmite δ18O record from Shennongjia in Central China

    Institute of Scientific and Technical Information of China (English)

    SHAO Xiaohua; WANG Yongjin; CHENG Hai; KONG Xinggong; WU Jiangying; EDWARDS R. Lawrence

    2006-01-01

    A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from Shanbao Cave at Shennongjia reflects variations in the amount of monsoon precipitation for the period from 11.5 to 2.1 ka (1 ka = 1000 cal aBP). Between 11.5 and 9.3 ka, a sharp decrease in δ18O indicates a rapid increase in monsoon precipitation. An interval of generally high monsoon precipitation is observed between 9.3 and 4.4 ka. An arid period has prevailed between 4.4 and 2.1 ka. The long-term trend of Shanbao record appears to follow summer insolation at 33°N latitude. An abrupt decrease in monsoon precipitation around 4.3 ka is synchronous with the collapse of Neolithic culture in central China. This abrupt change could have resulted from the amplification of the gradually decreased summer insolation by the positive vegetation-atmosphere-aerosol feedback. The weakened Asian monsoon events were in concert with decreased Greenland temperature during the early Holocene, centered at 8.2, 8.6, 9.3, 10.2 and 11.0 ka. This correlation suggests that changes in low-latitude monsoon are connected with climate change in high-latitude polar region.

  9. Long-term variations in the South Asian monsoon annual cycle: the role of regional anthropogenic aerosol forcing

    Science.gov (United States)

    Bollasina, Massimo; Ming, Yi

    2013-04-01

    Detection and attribution of long-term variations of the South Asian monsoon is of extreme importance. Indeed, even small changes in the onset and duration of the monsoon season or in the spatial distribution of the seasonal mean precipitation may severely impact agriculture, health, water availability, ecosystems, and economy for a substantial fraction of the world's population. In the past decades emissions of aerosols have dramatically increased over South Asia due to rapid urbanization and population growth. As a result, the study of the impact of anthropogenic aerosols on the monsoon has recently emerged as one of the topics of highest priority in the scientific community. This study makes use of a state-of-the-art coupled climate model, the GFDL CM3, to investigate two aspects of the aerosol influence on the 20th-century changes in the monsoon. The model has fully-interactive aerosols and a representation of both direct and indirect effects. Aerosols are responsible for the advancement of the monsoon onset over India, leading, in agreement with observations, to enhanced precipitation in June over most parts of the subcontinent. Our experiments show that the earlier onset is preceded in early spring by a strong aerosol forcing over the Bay of Bengal and Indonesia and associated atmospheric circulation anomalies. The latter triggers thermodynamical changes over the northwestern part of the Subcontinent in May and June, including enhanced surface heating, which in turn drive the movement of the monsoon to the west. We also performed historical experiments with time-evolving radiative forcings aimed at isolating the contribution of regional versus remote anthropogenic aerosol emissions on the observed 20th century widespread drying of the Indian monsoon. Indian-only aerosol sources are found to play a predominant role in generating suppressed rainfall over the subcontinent, especially during early summer. Remote aerosols contribute, although in a minor way, to

  10. Long-term change of precipitation in summer monsoon with a quasi bi-weekly (QBW) period over and around the Tibet-Himalaya region and its association to the climate change in monsoon Asia

    Science.gov (United States)

    Yasunari, T.; Fujinami, H.; Morimoto, A.

    2010-12-01

    The Asian summer monsoon has intraseasonal variability in precipitation and associated atmospheric circulations with two dominant time scales: one is 30-50 day period, and the other is 10-20 day period or quasi-biweekly (QBW) period. Some recent studies (e.g., Fujinami and Yasunari, 2004, 2009; Fujinami et al., 2010; Murata et al., 2008) have revealed that particularly the QBW oscillation is dominant over and around the Tibet-Himalaya region including the northeast India (the Assam/Meghalaya) and Bangladesh. An essential issue is that this QBW oscillation plays a key role in the maintaining the heaviest monsoon rainfall region in the world. This oscillation also plays a dominant role in determining interannual activity of monsoon precipitation over this region (Fujinami et al., 2010). The atmospheric circulation of the QBW oscillation has also proved to involve the modulation of the East Asian monsoon activitiy (Meiyu/Baiu) (Fujinami and Yasunari, 2009). However, why and how the QBW oscillation is so dominant over this particularly region, and the origin and dynamics of the QBW oscillation are still an open question. Our preliminary analysis has suggested that the dynamical effect of the Tibet-Himalayan mountain range may play a key role, including the interaction between tropical and mid-latitude circulation over and around there. This study will report our further analysis on the the dynamics of the QBW oscillation, and its association to the recent climate change in the Asian monsoon region. References: Fujinami, H. and T. Yasunari, 2004: Fujinami H. and T. Yasunari, 2004: Submonthly Variability of Convection and Circulation over and around the Tibetan Plateau during the Boreal Summer. J. Meteor. Soc. Japan, 82, 1545-1564. Fujinami, H. and T. Yasunari, 2009: H. Fujinami and T. Yasunari 2009: The Effects of Midlatitude Waves over and around the Tibetan Plateau on Submonthly Variability of the East Asian Summer Monsoon, Monthly Weather Review, 137, 2286

  11. RELATIONSHIPS BETWEEN AUTUMN INDIAN OCEAN DIPOLE MODE AND THE STRENGTH OF SCS SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    LI Dong-hui; ZHANG Gui; ZHU Yi-min; TAN Yan-ke; WANG Xue-zhong

    2007-01-01

    Based on 1948 - 2004 monthly Reynolds Sea Surface Temperature (SST) and NCEP/NCAR atmospheric reanalysis data, the relationships between autumn Indian Ocean Dipole Mode (IODM) and the strength of South China Sea (SCS) Summer Monsoon are investigated through the EOF and smooth correlation methods. The results are as the following. (1) There are two dominant modes of autumn SSTA over the tropical Indian Ocean. They are the uniformly signed basin-wide mode (USBM) and Indian Ocean dipole mode (IODM), respectively. The SSTA associated with USBM are prevailing decadal to interdecadal variability characterized by a unanimous pattern, while the IODM mainly represents interannual variability of SSTA. (2) When positive (negative) IODM exists over the tropical Indian Ocean during the preceding fall,the SCS summer monsoon will be weak (strong). The negative correlation between the interannual variability of IODM and that of SCS summer monsoon is significant during the warm phase of long-term trend but insignificant during the cool phase. (3) When the SCS summer monsoon is strong (weak), the IODM will be in its positive (negative) phase during the following fall season. The positive correlation between the interannual variability of SCS summer monsoon and that of IODM is significant during both the warm and cool phase of the long-term trend, but insignificant during the transition between the two phases.

  12. Bifurcations in a Nonlinear Dynamical Model between Western Pacific Subtropical High Ridge Line Index and Its Summer Monsoon Impact Factors

    Directory of Open Access Journals (Sweden)

    Mei Hong

    2014-01-01

    Full Text Available The western Pacific subtropical high (WPSH is closely related to Asian climate. Previous studies have shown that a precise dynamical model focusing on the interaction between WPSH and other summer monsoon factors has not been developed. Based on the concept of dynamical model reconstruction, this paper reconstructs a nonlinear dynamical model of subtropical high ridge line (SHRL and summer monsoon factors from recent 20 years data. Then, using genetic algorithm (GA, model inversion and model parameter optimization are carried out. Based on the reconstructed dynamical model, dynamical characteristics of SHRL are analyzed and an aberrance mechanism is developed, in which the external forcings resulting in the WPSH anomalies are explored. Results show that the configuration and diversification of the SHRL equilibriums have better represented the abnormal activities of the SHRL in short and medium term. Change of SHRL brought by the combination of equilibriums is more complex than that brought by mutation. The mutation behavior from high-value to low-value equilibriums of the SHRL in summer corresponds with the southward drop of the SHRL. The combination behavior of the two steady equilibriums corresponds with disappearance of the “double-ridge” phenomenon of WPSH. Dynamical mechanisms of these phenomena are explained.

  13. Low-Frequency Vortex Pair over the Tropical Eastern Indian Ocean and the South China Sea Summer Monsoon Onset

    Institute of Scientific and Technical Information of China (English)

    PAN Jing; LI Chong-Yin

    2011-01-01

    In this paper, the relationship between a pair of low-frequency vortexes over the equatorial Indian Ocean and the South China Sea (SCS) summer monsoon onset is studied based on a multi-year (1980-2003) analysis. A pair of vortexes symmetric about the equator is an important feature prior to the SCS summer monsoon onset. A composite analysis shows that the life cycle of the pair of vortexes is closely associated with the SCS summer monsoon onset. The westerly between the twin cyclones is an important factor to the SCS summer monsoon onset process.

  14. Sedimentary characteristics of terrigenous debris at site MD05-2905 in the northeastern part of the South China Sea since 36 ka and evolution of the East Asian monsoon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Sediments with high sedimentation rate at site MD05-2905 in the Northeastern slope of the South China Sea provide unique materials for a high-resolution study on the paleoenvironment.Based on precise dating of AMS 14C,grain size analysis of terrigenous debris at core MD05-2905 was conducted after organic matter,biological carbonate and biogenic opal were removed.The results show that 15.5-63.5 μm coarse grain size ingredients may indicate East Asian winter monsoon changes and that 2-9 μm fine grain size ingredients may be used as a proxy of evolution of the East Asian summer monsoon.The results of grain size analysis,which suggest East Asian monsoon intensity,reveal that a winter monsoon dominated the glacial regime and a summer monsoon dominated the Holocene regime.It was also shown that the summer monsoon increased gradually,experienced several abrupt changes and reached a culmination in the early Holocene (11200-8500 a B.P.) since 36 ka.Controlled by precession periodicity,it may be related with the amount of solar radiation at the highest stage,which needs further study.

  15. Performance of FGOALS-s2 in Simulating Intraseasonal Oscillation over the South Asian Monsoon Region

    Institute of Scientific and Technical Information of China (English)

    HU Wenting; DUAN Anmin; WU Guoxiong

    2013-01-01

    The capability of the current version of the air-sea coupled climate model,the Flexible Global Ocean-Atmosphere-Land System model,Spectral Version 2 (FGOALS-s2),in simulating the boreal summer intraseasonal oscillation (ISO) over the south Asian monsoon (SAM) region is diagnosed,in terms of dominant period,propagation direction,and vertical structure.Results show that the coupled model can reasonably simulate the main features of observed ISO propagation compared to the chosen AGCM.These features include the eastward movement of intraseasonal 850-hPa zonal wind over the Arabian Sea and Bay of Bengal,the vertical structure in active phases,and the realistic phase relationship between ISO and underlying SST.However,the eastward propagation cannot be reproduced in the uncoupled model.This suggests that airsea interaction is important in generating intraseasonal variability over the SAM region.Nevertheless,some deficiencies remain in the coupled model,which may relate to physical processes depicted by the cumulus parameterization and PBL schemes within its atmospheric component.

  16. Multi-year model simulations of mineral dust distribution and transport over the Indian subcontinent during summer monsoon seasons

    Science.gov (United States)

    Sijikumar, S.; Aneesh, S.; Rajeev, K.

    2016-08-01

    Aerosol distribution over the Arabian Sea and the Indian subcontinent during the northern hemispheric summer is dominated by mineral dust transport from the West Asian desert regions. The radiative impact of these dust plumes is expected to have a prominent role in regulating the Asian Summer Monsoon circulation. While satellite observations have provided information in the spatial distribution of aerosols over the oceanic regions during the season, their utility over the land is rather limited. This study examines the transport of mineral dust over the West Asian desert, the Indian subcontinent and the surrounding oceanic regions during the summer monsoon season with the help of a regional scale model, WRF-Chem. Geographical locations of prominent dust sources, altitude ranges of mineral dust transport and their inter-annual variations are examined in detail. Multi-year model simulations were carried out during 2007 to 2012 with a model integration from 15 May to 31 August of each year. Six-year seasonal mean (June to August) vertically integrated dust amount from 1000 to 300 hPa level shows prominent dust loading over the eastern parts of Arabian desert and the northwestern part of India which are identified as two major sources of dust production. Large latitudinal gradient in dust amount is observed over the Arabian Sea with the largest dust concentration over the northwestern part and is primarily caused by the prevailing northwesterly wind at 925 hPa level from the Arabian desert. The model simulations clearly show that most of the dust distributed over the Indo-Gangetic plane originates from the Rajasthan desert located in the northwestern part of India, whereas dust observed over the central and south peninsular India and over the Arabian Sea are mainly transported from the Arabian desert. Abnormal dust loading is observed over the north Arabian Sea during June 2008. This has been produced as a result of the low pressure system (associated with the onset of

  17. Multi-year model simulations of mineral dust distribution and transport over the Indian subcontinent during summer monsoon seasons

    Science.gov (United States)

    Sijikumar, S.; Aneesh, S.; Rajeev, K.

    2015-12-01

    Aerosol distribution over the Arabian Sea and the Indian subcontinent during the northern hemispheric summer is dominated by mineral dust transport from the West Asian desert regions. The radiative impact of these dust plumes is expected to have a prominent role in regulating the Asian Summer Monsoon circulation. While satellite observations have provided information in the spatial distribution of aerosols over the oceanic regions during the season, their utility over the land is rather limited. This study examines the transport of mineral dust over the West Asian desert, the Indian subcontinent and the surrounding oceanic regions during the summer monsoon season with the help of a regional scale model, WRF-Chem. Geographical locations of prominent dust sources, altitude ranges of mineral dust transport and their inter-annual variations are examined in detail. Multi-year model simulations were carried out during 2007 to 2012 with a model integration from 15 May to 31 August of each year. Six-year seasonal mean (June to August) vertically integrated dust amount from 1000 to 300 hPa level shows prominent dust loading over the eastern parts of Arabian desert and the northwestern part of India which are identified as two major sources of dust production. Large latitudinal gradient in dust amount is observed over the Arabian Sea with the largest dust concentration over the northwestern part and is primarily caused by the prevailing northwesterly wind at 925 hPa level from the Arabian desert. The model simulations clearly show that most of the dust distributed over the Indo-Gangetic plane originates from the Rajasthan desert located in the northwestern part of India, whereas dust observed over the central and south peninsular India and over the Arabian Sea are mainly transported from the Arabian desert. Abnormal dust loading is observed over the north Arabian Sea during June 2008. This has been produced as a result of the low pressure system (associated with the onset of

  18. The footprint of Asian monsoon dynamics in the mass and energy balance of a Tibetan glacier

    Directory of Open Access Journals (Sweden)

    T. Mölg

    2012-08-01

    Full Text Available Determinations of glacier-wide mass and energy balance are still scarce for the remote mountains of the Tibetan Plateau, where field measurements are challenging. Here we run and evaluate a physical, distributed mass balance model for Zhadang glacier (central Tibet, 30° N, based on in-situ measurements over 2009–2011 and an uncertainty estimate by Monte Carlo and ensemble strategies. The model application aims to provide the first quantification of how the Indian Summer Monsoon (ISM impacts an entire glacier over the various stages of the monsoon's annual cycle. We find a strong and systematic ISM footprint on the interannual scale. Early (late monsoon onset causes higher (lower accumulation, and reduces (increases the available energy for ablation primarily through changes in absorbed shortwave radiation. By contrast, only a weak footprint exists in the ISM cessation phase. Most striking though is the core monsoon season: local mass and energy balance variability is fully decoupled from the active/break cycle that defines large-scale atmospheric variability during the ISM. Our results demonstrate quantitatively that monsoon onset strongly affects the ablation season of glaciers in Tibet. However, we find no direct ISM impact on the glacier in the main monsoon season, which has not been acknowledged so far. This result also adds cryospheric evidence that regional modification of the large-scale monsoon flow prevails on the Tibetan Plateau in summer.

  19. Determination of summer monsoon onset and its related large-scale circulation characteristics over Pakistan

    Science.gov (United States)

    Latif, M.; Syed, F. S.

    2016-08-01

    The onset of summer monsoon over the Core Monsoon Region of Pakistan (CMRP) has been investigated in this study using observational daily rainfall and Precipitable Water (PW) data sets. An objective criterion is proposed to define monsoon onset dates by employing Precipitation Index and Normalized Precipitable Water Index techniques. The climatological mean summer monsoon onset dates over CMRP based on daily rainfall data sets are observed to be 1 July and 30 June in the station and gridded data sets, respectively. Whereas the daily PW-based climatological mean onset date is 30 June. The year-wise onset dates determined through station and gridded rainfall data sets are very similar but these dates differ in case of PW-based onsets. The evolution of large-scale circulation anomalies and thermodynamic structure leading monsoon onset over Pakistan shows that a strong positive temperature and geopotential height anomalies appear over the northwestern part of the core region in the upper atmosphere. This warm geopotential height anomaly gets strengthen as the monsoon onset approaches. The temperature anomalies are barotropic whereas the geopotential height anomalies are baroclinic with the presence of low level anticyclone over the Tibetan Plateau. A moisture convergence zone along the foothill of Himalayas and low level moisture convergence zone over the north Arabian Sea set the stage for the moisture carrying monsoon winds to blow inland towards CMRP. The moisture is mainly supplied from the Arabian Sea, as the low pressure system approaches CMRP from the Bay of Bengal.

  20. Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades

    Directory of Open Access Journals (Sweden)

    J.-Y. Yu

    2007-10-01

    Full Text Available This study examines the decadal changes in the in-phase relationship between Indian summer monsoon and the subsequent Australian summer monsoon using observational data from 1950–2005. The in-phase relationship is the tendency for a strong Indian summer monsoon to be followed by a strong Australian summer monsoon and vice versa. It is found that the in-phase relationship was weak during the late 1950s and early 1960s, strengthened to a maximum in the early 1970s just before the 1976/77 Pacific climate shift, then declined until the late 1990s. Pacific SST anomalies are noticed to have strong persistence from boreal to austral summer, providing the memory to connect the Indian and subsequent Australian summer monsoon. The simultaneous correlation between the Pacific SST anomalies and the Indian summer monsoon is always strong. It is the weakening and strengthening of the simultaneous correlation between the Australian summer monsoon and the Pacific SST anomalies that contributes to the decadal variations of the in-phase monsoon relation. This study suggests that the interaction between the Australian monsoon and the Pacific Ocean is crucial to tropical climate variability and has experienced significant changes over the past five decades.

  1. Moisture source for summer monsoon rainfall over India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.

    Southwest monsoon plays a vital role in India's economy as the major income comes from agriculture. What could be the moisture source for this copious amount of rainfall over the Indian sub-continent?. This has been studied in detail and noticed...

  2. Air sea interaction during summer monsoon period of 1979

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    with the weak monsoon activity/ rainfall over the Indian subcontinent. (3) The annual water vapour flux divergence estimated over the tropical Indian Ocean shows large scale low level convergence of moisture in the Bay of Bengal. It is further proposed to study...

  3. Seasonal forecasting of Bangladesh summer monsoon rainfall using simple multiple regression model

    Indian Academy of Sciences (India)

    Md Mizanur Rahman; M Rafiuddin; Md Mahbub Alam

    2013-04-01

    In this paper, the development of a statistical forecasting method for summer monsoon rainfall over Bangladesh is described. Predictors for Bangladesh summer monsoon (June–September) rainfall were identified from the large scale ocean–atmospheric circulation variables (i.e., sea-surface temperature, surface air temperature and sea level pressure). The predictors exhibited a significant relationship with Bangladesh summer monsoon rainfall during the period 1961–2007. After carrying out a detailed analysis of various global climate datasets; three predictors were selected. The model performance was evaluated during the period 1977–2007. The model showed better performance in their hindcast seasonal monsoon rainfall over Bangladesh. The RMSE and Heidke skill score for 31 years was 8.13 and 0.37, respectively, and the correlation between the predicted and observed rainfall was 0.74. The BIAS of the forecasts (% of long period average, LPA) was −0.85 and Hit score was 58%. The experimental forecasts for the year 2008 summer monsoon rainfall based on the model were also found to be in good agreement with the observation.

  4. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China

    Science.gov (United States)

    Huang, Wei; Wang, Yongjin; Cheng, Hai; Edwards, Richard Lawrence; Shen, Chuan-Chou; Liu, Dianbing; Shao, Qingfeng; Deng, Chao; Zhang, Zhenqiu; Wang, Quan

    2016-07-01

    We present two isotopic (δ18O and δ13C) sequences of a twin-stalagmite from Zhuliuping Cave, southwestern China, with 230Th dates from 14.6 to 4.6 ka. The stalagmite δ18O record characterizes orbital- to decadal-scale variability of Asian summer monsoon (ASM) intensity, with the Holocene optimum period (HOP) between 9.8 and 6.8 ka BP which is reinforced by its co-varying δ13C data. The large multi-decadal scale amplitude of the cave δ18O indicates its high sensitivity to climate change. Four centennial-scale weak ASM events during the early Holocene are centered at 11.2, 10.8, 9.1 and 8.2 ka. They can be correlated to cold periods in the northern high latitudes, possibly resulting from rapid dynamics of atmospheric circulation associated with North Atlantic cooling. The 8.2 ka event has an amplitude more than two-thirds that of the Younger Dryas (YD), and is significantly stronger than other cave records in the Asia monsoon region, likely indicating a more severe dry climate condition at the cave site. At the end of the YD event, the δ13C record lags the δ18O record by 300-500 yr, suggesting a multi-centennial slow response of vegetation and soil processes to monsoon enhancement.

  5. Mangrove forest degradation indicated by mangrove-derived organic matter in the Qinzhou Bay, Guangxi, China, and its response to the Asian monsoon during the Holocene climatic optimum

    Institute of Scientific and Technical Information of China (English)

    MENG Xianwei; XIA Peng; LI Zhen; LIU Lejun

    2016-01-01

    The response of mangrove ecosystems to the Asian monsoon in the future global warming can be understood by reconstructing the development of mangrove forests during the Holocene climatic optimum (HCO), using proxies preserved in coastal sediments. The total organic matter in sediments of a segmented core, with calibrated age ranges between 5.6 and 7.7 cal. ka BP and corresponding to the HCO, from the Qinzhou Bay in Guangxi, China, is quantitatively partitioned into three end-members according to their sources: mangrove-derived, terrigenous, and marine phytoplanktonic, using a three-end-member model depicted by organic carbon isotope (δ13Corg) and the molar ratio of total organic carbon to total nitrogen (C/N). The percentage of mangrove-derived organic matter (MOM) contribution is used as a proxy for mangrove development. Three visible drops in MOM contribution occurred at ca. 7.3, ca. 6.9, and ca. 6.2 cal. ka BP, respectively, are recognized against a relatively stable and higher MOM contribution level, indicating that three distinct mangrove forest degradations occurred in the Qinzhou Bay during the HCO. The three mangrove forest degradations approximately correspond to the time of the strengthened/weakened Asian winter/summer monsoon. This indicates that even during a period favorable for the mangrove development, such as the HCO, climatic extremes, such as cold and dry events driven by the strengthened/weakened Asian winter/summer monsoon, can trigger the degradation of mangrove forests.

  6. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Muraleedharan, P.M.; Prasad, T.G.; Gauns, M.; Ramaiah, N.; DeSouza, S.N.; Sardessai, S.; Madhupratap, M.

    . 1. Introduction The Bay of Bengal in the eastern part of the north Indian Ocean is a tropical basin. Like its western counterpart, the Arabian Sea, it is land locked in the north and forced by seasonally reversing monsoon winds. Accordingly... summer data of two different years, is based on the fact that though semi-annual switching of the winds may have inter-annual variability, on the whole, the summer monsoon is a highly regular phenomenon [Fieux and Stommel, 1977]. 3. Results...

  7. Indian summer monsoon rainfall variability in global coupled ocean-atmospheric models

    Energy Technology Data Exchange (ETDEWEB)

    Preethi, B.; Krishna Kumar, K. [Indian Institute of Tropical Meteorology, Pune (India); Kripalani, R.H. [Pukyong National University, Department of Environmental and Atmospheric Sciences, Busan (Korea, Republic of)

    2010-12-15

    Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean-atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959-1979) are closer to the 'perfect model' (attainable) score but, large differences are observed between 'actual' skill and 'perfect model' skill in the recent period (1980-2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so

  8. The link between interannual variation of the South China Sea summer monsoon onset and summer precipitation in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Relationship between the onset date of South China Sea (SCS) summer monsoon and the summer rainfall in Shandong Province was examined by comprehensive analysis to establish a conceptual model of the link. If the summer monsoon occurs earlier, the 500 hPa level would induce the teleconnection of Eurasian pattern in the summer (June-August), which indicates that the western Pacific subtropical high is displaced northward further than usual, the Siberian high is intensified and the Okhotsk low is deepened. Under such circumstance, Shandong, located in the west side of the subtropical high and in front of the mid-Siberia high, would be expected to have a wet summer because it is quite possible for cold and warm air to meet and interact with each other in Shandong. Statistical analysis revealed that the 500 hPa anomalies over Korea and Japan were sensitive to the SCS monsoon onset date and very important to precipitation in Shandong, and that the convective activities over the deep water basin in the SCS in 24-26 pentads significantly influenced the position of the ridge lineof the western Pacific subtropical high. These findings yielded better understanding of the causative mechanisms involved in the precipitation generation, so that the knowledge gained can possibly be applied for long-lead forecast.

  9. The impact of natural aerosols on Indian summer monsoon

    Science.gov (United States)

    Vinoj, V.; Wang, H.; Yoon, J.; Rasch, P.

    2011-12-01

    Atmospheric aerosols emitted from a variety of natural and anthropogenic sources impact the earth's radiation and water budget. Most of the studies in the recent past have been focusing on anthropogenic aerosols and their impact. However, natural aerosols like sea-salt and dust form the bulk of the aerosol mass loading in the atmosphere. For example, oceans cover about 70% of the earth's surface area and are a major source of sea-salt aerosols in the atmosphere. Sea-salt emission is the single largest contributor to natural aerosols and accounts for nearly half of the global aerosol optical depth. Dust emission, the counterpart over land, also contributes substantially to natural atmospheric aerosols. In addition to their direct effect on solar radiation, these aerosols also actively participate in cloud formation by acting as cloud condensation and ice nuclei and have indirect effects on clouds. Both sea-salt and dust particles are primarily formed by the action of winds that largely determine seasonal/annual variations in their source strength and atmospheric loading. Over the Indian Ocean region, especially the Arabian Sea is characterized by high winds during the monsoon that generate a large amount of sea-salt aerosols. Also these high winds mobilize large amount of dust aerosols in the northern Arabian Sea depending on wind direction. These natural aerosols together with anthropogenic emissions impact Indian monsoon precipitation. We use satellite observation of precipitation and column aerosol loading along with a global climate model (Community Atmosphere Model version 5, CAM5) to show that the variability of natural aerosols (i.e., sea-salt and dust) play an important role in modulating the Indian monsoon precipitation and the response of the monsoon system to anthropogenic aerosols. The effect of dust and sea-salt on precipitation is found to be opposite to each other. Our study suggests that the observed spatial and temporal trends in precipitation

  10. Circumglobal wave train and the summer monsoon over South Asia: The explicit role of the surface heat low

    Science.gov (United States)

    Saeed, Sajjad; Müller, Wolfgang A.; Hagemann, Stefan; Jacob, Daniela

    2010-05-01

    This study examines the influence of mid-latitude circulation on the surface heat low and associated monsoon rainfall over South Asia using the ERA40 data. A heat low index is defined to depict the surface heat low which forms over Pakistan and adjoining areas of India, Iran and Afghanistan during the summer season. The heat low divulges significant correlations with the upper level 200 hPa geopotential height anomalies over western central Asia and East Asian region and acts as a bridge connecting the mid-latitude wave train to the Indian summer monsoon. During the positive phase of the mid-latitude circumglobal wave train, anomalous upper level high pressure develops over western central Asia. The subsidence associated with the anomalous high reduces the surface pressure in the heat low by raising the mean air temperature and anomalous uplift in the middle and lower troposphere. The increasing middle tropospheric temperature creates an inversion between the lower and upper troposphere which consequently restricts the middle and low level cloud formation above the heat low. Further, the upper level subsidence also minimizes the high cloud cover above the heat low region and hence favors more solar radiation to this area. The accruing surface heating reduces the surface pressure, resulting in further intensification of the heat low and associated monsoon circulation. Moreover, the westward accruing surface air temperature shifts the anomalous core of the heat low to the West over Iran. The westward shift in the anomalous core of the intensified heat low with its north-south orientation provokes enormous north-south pressure gradient (lower pressure over land than over sea). This in turn enables the moist southerly flow from the Arabian Sea to penetrate farther northward over northwestern India and Pakistan, where convective heating and orographic lifting expedites the convection and hence the precipitation. Composite analysis reveals a dipole teleconnection pattern

  11. Variations in the Teleconnection of ENSO and Summer Rainfall in Northern China: A Role of the Indian Summer Monsoon(.

    Science.gov (United States)

    Feng, Song; Hu, Qi

    2004-12-01

    Observational studies have created a dilemma on how El Niño Southern Oscillation (ENSO) may have affected interannual variations of summer rainfall in northern China; some suggested a consistent effect while others showed a complete lack of effect. This dilemma is resolved in this study, which shows that ENSO has affected the summer rainfall in northern China and the effect has varied at multidecadal scales. The question of how the ENSO teleconnection with northern China rainfall variation was established is addressed, and an answer pointing to the Indian summer monsoon as a “facilitator” connecting ENSO and northern China rainfall variation is examined. The Indian monsoon circulation interacted with the regional circulations in northern China in some epochs and such interaction was interrupted in other epochs. When the interaction was active, the Indian monsoon variations originating from ENSO, during El Niño or La Niña, was extended to affect the rainfall variation in northern China, creating a teleconnection of ENSO with northern China rainfall. When the interaction weakened or was inactive, the ENSO effect languished. Additional analyses were done to address the related question of why the interactions have alternated. The alternation was suggested to result from variations of the large-scale circulation in the Eurasian continent. The circulation anomalies showed lowering (rising) 500-hPa geopotential height centered at Mongolia and western China in some epochs, enhancing cyclonic (anticyclonic) rotation in mid- and low-level winds and creating (disrupting) a moisture convoy from the Indian monsoon region to northern China and synergetic convergence/divergence anomalies in the monsoon region and in northern China. Results of this study contribute to the understanding of interannual and multidecadal variations of the summer rainfall in the semiarid region of northern China.

  12. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October-December) season

    Science.gov (United States)

    Sadhuram, Y.; Maneesha, K.

    2016-09-01

    In this study, an attempt has been made to examine the relationship between summer monsoon rainfall (June-September) and the total number of depressions, cyclones and severe cyclones (TNDC) over Bay of Bengal during the post-monsoon (October-December) season. The seasonal rainfall of the subdivisions (located in south India) (referred as rainfall index - RI), is positively and significantly correlated (r=0.59; significant at >99% level) with the TNDC during the period, 1984-2013. By using the first differences (current season minus previous season), the correlations are enhanced and a remarkably high correlation of 0.87 is observed between TNDC and RI for the recent period, 1993-2013. The average seasonal genesis potential parameter (GPP) showed a very high correlation of 0.84 with the TNDC. A very high correlation of 0.83 is observed between GPP and RI for the period, 1993-2013. The relative vorticity and mid-tropospheric relative humidity are found to be the dominant terms in GPP. The GPP was 3.5 times higher in above (below) normal RI in which TNDC was 4 (2). It is inferred that RI is playing a key role in TNDC by modulating the environmental conditions (low level vorticity and relative humidity) over Bay of Bengal during post-monsoon season which could be seen from the very high correlation of 0.87 (which explains 76% variability in TNDC). For the first time, we show that RI is a precursor for the TNDC over Bay of Bengal during post-monsoon season. Strong westerlies after the SW monsoon season transport moisture over the subdivisions towards Bay of Bengal due to cyclonic circulation. This circulation favours upward motion and hence transport moisture vertically to mid-troposphere which causes convective instability and this in turn favour more number of TNDC, under above-normal RI year.

  13. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October–December) season

    Indian Academy of Sciences (India)

    Y Sadhuram; K Maneesha

    2016-10-01

    In this study, an attempt has been made to examine the relationship between summer monsoon rainfall (June–September) and the total number of depressions, cyclones and severe cyclones (TNDC) over Bay of Bengal during the post-monsoon (October–December) season. The seasonal rainfall of the subdivisions (located in south India) (referred as rainfall index – RI), is positively and significantly correlated(r = 0.59; significant at >99% level) with the TNDC during the period, 1984–2013. By using the first differences (current season minus previous season), the correlations are enhanced and a remarkably high correlation of 0.87 is observed between TNDC and RI for the recent period, 1993–2013. The average seasonalgenesis potential parameter (GPP) showed a very high correlation of 0.84 with the TNDC. A very high correlation of 0.83 is observed between GPP and RI for the period, 1993–2013. The relative vorticity and mid-tropospheric relative humidity are found to be the dominant terms in GPP. The GPP was 3.5 times higher in above (below) normal RI in which TNDC was 4 (2). It is inferred that RI is playing a keyrole in TNDC by modulating the environmental conditions (low level vorticity and relative humidity) over Bay of Bengal during post-monsoon season which could be seen from the very high correlation of 0.87 (which explains 76% variability in TNDC). For the first time, we show that RI is a precursor for the TNDC over Bay of Bengal during post-monsoon season. Strong westerlies after the SW monsoon seasontransport moisture over the subdivisions towards Bay of Bengal due to cyclonic circulation. This circulation favours upward motion and hence transport moisture vertically to mid-troposphere which causes convective instability and this in turn favour more number of TNDC, under above-normal RI year.

  14. Zonal propagation of kinetic energy and convection in the South China Sea and Indian monsoon regions in boreal summer

    Institute of Scientific and Technical Information of China (English)

    CHEN Longxun; GAO Hui; HE Jinhai; TAO Shiyan; JIN Zuhui

    2004-01-01

    Zonal propagation of kinetic energy (KE) and convection in the South China Sea (SCS) and Indian summer monsoon areas are examined in present study. Results suggest that the SCS and Indian summer monsoon prevailed regions (5-15°N) are dominated by the southwesterly wind, however, the disturbances of KE at 850 hPa and convection are observed mainly coming from the western Pacific Ocean (140-150°E), after passing through the SCS, and westward propagated into the Bay of Bengal (90-100°E). In the Indian summer monsoon domain, where the disturbances of KE are found mainly coming from the Arabian Sea (AS) and eastward propagated into the Bay of Bengal. Therefore, the SCS and the Indian summer monsoon are quite different in zonal propagation of KE and convection. The SCS summer monsoon is mainly affected by the KE and convection coming from the tropical western Pacific. The Indian summer monsoon, however, can be partly influenced by the AS and the SCS summer monsoon. The analysis also suggests that the interaction region between the SCS and the Indian summer monsoon is around 90-95°E, rather than 105°E as proposed by earlier studies.

  15. Why is Bay of Bengal warmer than Arabian Sea during the summer monsoon?

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Shankar, D.; Shetye, S.R.

    The near-surface Bay of Bengal remains significantly warmer than the Arabian Sea during summer monsoon (June-September). Analysis of the heat budgets of the near-surface Arabian Sea and Bay of Bengal shows significant differences between them during...

  16. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; DineshKumar, P.K.; Nair, M.; Muraleedharan, K.R.

    Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance...

  17. Variations in swells along Eastern Arabian Sea during the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Johnson, G.; SanilKumar, V.; Sanjiv, P.C.; Singh, J.; Pednekar, P.S.; AshokKumar, K.; Dora, G.U.; Gowthaman, R.

    A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells in the measured waves was 75...

  18. A summer monsoon pump to keep the Bay of Bengal salty

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shankar, D.; Vernekar, S.; Sandeep, K.K.; Amol, P.; Neema, C.P.; Chatterjee, A.

    along its boundaries and inflow of saltier water occurs via the Summer Monsoon Current (SMC), which flows eastward from the Arabian Sea into the bay. This saltier water, however, slides under the lighter surface water of the bay. Maintaining the salt...

  19. Enhancement of seasonal prediction of East Asian summer rainfall related to the western tropical Pacific convection

    Science.gov (United States)

    Lee, D. Y.; Ahn, J. B.; Yoo, J. H.

    2014-12-01

    The prediction skills of climate model simulations in the western tropical Pacific (WTP) and East Asian region are assessed using the retrospective forecasts of seven state-of-the-art coupled models and their multi-model ensemble (MME) for boreal summers (June-August) during the period 1983-2005, along with corresponding observed and reanalyzed data. The prediction of summer rainfall anomalies in East Asia is difficult, while the WTP has a strong correlation between model prediction and observation. We focus on developing a new approach to further enhance the seasonal prediction skill for summer rainfall in East Asia and investigate the influence of convective activity in the WTP on East Asian summer rainfall. By analyzing the characteristics of the WTP convection, two distinct patterns associated with El Niño-Southern Oscillation (ENSO) developing and decaying modes are identified. Based on the multiple linear regression method, the East Asia Rainfall Index (EARI) is developed by using the interannual variability of the normalized Maritime continent-WTP indices (MPIs), as potentially useful predictors for rainfall prediction over East Asia, obtained from the above two main patterns. For East Asian summer rainfall, the EARI has superior performance to the East Asia summer monsoon index (EASMI) or each MP index (MPI). Therefore, the regressed rainfall from EARI also shows a strong relationship with the observed East Asian summer rainfall pattern. In addition, we evaluate the prediction skill of the East Asia reconstructed rainfall obtained by statistical-empirical approach using the cross-validated EARI from the individual models and their MME. The results show that the rainfalls reconstructed from simulations capture the general features of observed precipitation in East Asia quite well. This study convincingly demonstrates that rainfall prediction skill is considerably improved by using the statistical-empirical method compared to the dynamical models

  20. Relationships between ENSO and East Asian-western North Pacific monsoon: observations versus 18 CMIP5 models

    Science.gov (United States)

    Wu, B.

    2014-12-01

    The relationships between ENSO and the East Asian-western North Pacific monsoon during ENSO mature winter and decaying summer are studied by examining the pre-industrial control runs of 18 global climate models (GCMs) that participated in the phase five of the Coupled Model Intercomparison Project (CMIP5). In the observation, the tropical western North Pacific (WNP) is dominated by an anomalous anticyclone (cyclone) during El Niño (La Niña) mature winter, referred to as WNPAC (WNPC). WNPAC is asymmetric with WNPC. Multi-model assessments support the idea that the asymmetry results from the combined effects of the asymmetric remote forcing from the equatorial central-eastern Pacific and the asymmetric local sea surface temperature (SST) anomalies. It has been proposed that the asymmetric circulation anomalies over the tropical WNP have a contribution to the asymmetric decaying rates between El Niño and La Niña. The mechanism works in the CMIP5 models. Those models that can (cannot) simulate the asymmetry between WNPAC and WNPC tend to reproduce ENSO with asymmetric (symmetric) decaying rates. In the observation, WNPAC maintains throughout El Niño decaying summer. The maintenance of WNPAC primarily relies on the local forcing of underlying cold SST anomalies in the early summer, remaining from preceding winter and spring, whereas to remote forcing from the tropical Indian Ocean in the late summer. The two mechanisms are reproduced by the multi-model ensemble mean. The scatter diagrams for the CMIP5 models demonstrate that the response of WNPAC to the remote forcing from the tropical Indian Ocean intensifies from June to July, concurring with the establishment of the climatological WNP monsoon trough.

  1. Investigation of the "Elevated Heat Pump" hypothesis of the Asian monsoon using satellite observations

    Directory of Open Access Journals (Sweden)

    M. M. Wonsick

    2013-04-01

    Full Text Available In recent years, the "Elevated Heat Pump" (EHP hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. The finding is primarily based on results from a NASA Finite-Volume General Circulation Model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in Northern India and dust from Western China, Afghanistan, Pakistan, and Southwest Asia affected the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol-monsoon relationship has been addressed using various modeling and observational techniques. The current study takes an observational approach to detect signatures of the "Elevated Heat Pump" effect in the cloud cover and cloud type distributions as derived from Meteosat-5 observations over the Asian Monsoon region, supplemented with temperature data from the NCEP/NCAR Reanalysis and precipitation data from the Global Precipitation Climatology Project (GPCP. Cloud, convection, precipitation, and temperature features for the highest-aerosol years are compared with lower-aerosol content years during the period 2000–2005. Predicted precipitation features in China and Korea are found to be consistent with the hypothesis, but the early onset and intensification of monsoon rainfall over India are not observed. It is proposed that model inaccuracies and/or indirect aerosol effects caused the disagreement between observed and hypothesized behavior.

  2. Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability

    Energy Technology Data Exchange (ETDEWEB)

    Rajeevan, M.; Unnikrishnan, C.K. [National Atmospheric Research Laboratory, Gadanki (India); Preethi, B. [Indian Institute of Tropical Meteorology, Pune (India)

    2012-06-15

    The performance of the new multi-model seasonal prediction system developed in the frame work of the ENSEMBLES EU project for the seasonal forecasts of India summer monsoon variability is compared with the results from the previous EU project, DEMETER. We have considered the results of six participating ocean-atmosphere coupled models with 9 ensemble members each for the common period of 1960-2005 with May initial conditions. The ENSEMBLES multi-model ensemble (MME) results show systematic biases in the representation of mean monsoon seasonal rainfall over the Indian region, which are similar to that of DEMETER. The ENSEMBLES coupled models are characterized by an excessive oceanic forcing on the atmosphere over the equatorial Indian Ocean. The skill of the seasonal forecasts of Indian summer monsoon rainfall by the ENSEMBLES MME has however improved significantly compared to the DEMETER MME. Its performance in the drought years like 1972, 1974, 1982 and the excess year of 1961 was in particular better than the DEMETER MME. The ENSEMBLES MME could not capture the recent weakening of the ENSO-Indian monsoon relationship resulting in a decrease in the prediction skill compared to the ''perfect model'' skill during the recent years. The ENSEMBLES MME however correctly captures the north Atlantic-Indian monsoon teleconnections, which are independent of ENSO. (orig.)

  3. Current status of multimodel superensemble and operational NWP forecast of the Indian summer monsoon

    Indian Academy of Sciences (India)

    Akhilesh Kumar Mishra; T N Krishnamurti

    2007-10-01

    In the last thirty years great strides have been made by large-scale operational numerical weather prediction models towards improving skills for the medium range time-scale of 7 days.This paper illustrates the use of these current forecasts towards the construction of a consensus multimodel forecast product called the superensemble.This procedure utilizes 120 of the recent-past forecasts from these models to arrive at the training phase statistics. These statistics are described by roughly 107 weights.Use of these weights provides the possibility for real-time medium range forecasts with the superensemble.We show the recent status of this procedure towards real-time forecasts for the Asian summer monsoon.The member models of our suite include ECMWF,NCEP/EMC, JMA,NOGAPS (US Navy),BMRC,RPN (Canada)and an FSU global spectral forecast model. We show in this paper the skill scores for day 1 through day 6 of forecasts from standard variables such as winds,temperature,500 hPa geopotential height,sea level pressure and precipitation.In all cases we noted that the superensemble carries a higher skill compared to each of the member models and their ensemble mean.The skill matrices we use include the RMS errors,the anomaly correlations and equitable threat scores.For many of these forecasts the improvements of skill for the superensemble over the best model was found to be quite substantial.This real-time product is being provided to many interested research groups.The FSU multimodel superensemble,in real- time,stands out for providing the least errors among all of the operational large scale models.

  4. Interactive Aspects of the Indian and the African Summer Monsoon Systems

    Science.gov (United States)

    Sanjeeva Rao, P.; Sikka, D. R.

    2007-09-01

    This study addresses an understanding of the possible mutual interactions of sub-seasonal variability of the two neighboring regional monsoon systems through data analysis. The NCEP/NCAR re-analysis and OLR data for three years was used to reveal the large-scale organization of convective episodes on synoptic (~5 days) and low frequency (15 50 day) scales. It is found that synoptic scale organization over both the sectors is influenced by the eastward migration of large-scale convective episodes associated with the Madden Julian Oscillation (MJO) on the low frequency scale. The organization of convection associated with the African monsoon on the synoptic scale is influenced by the pulsatory character of lower mid-troposphere and upper troposphere wind regimes moving westward over the African sector. Over the Indian region formation of low pressure areas and depressions in the monsoon trough occur in an overlapping manner under an envelope of low frequency seasonal oscillation. We have also found some correspondence between the summer monsoon rainfall over tropical North Africa and India on a decadal basis, which would suggest a common mode of multi-decadal variability in the two monsoon systems. The study points out the need to organize simultaneous field campaigns over the Indian and the African monsoon regions so as to bring out observational features of possible interactions between the two neighboring systems, which could then be validated through modeling studies.

  5. NUMERICAL SIMULATION EXPERIMENTS OF THE IMPACTS OF LOCAL LAND-SEA THERMODYNAMIC CONTRASTS ON THE SCS SUMMER MONSOON ONSET

    Institute of Scientific and Technical Information of China (English)

    任雪娟; 钱永甫

    2003-01-01

    The important effects of local land-sea thermodynamic contrast between the South China Sea (SCS) and Indochina Peninsula on SCS summer monsoon onset are preliminarily studied by using two sets of SSTA tests and two ideal tests in regional climate model. The result shows that warm SST in the SCS in winter and spring is favorable for the formation of monsoon circulation throughout all levels of the atmosphere over the sea, which hastens the onset of SCS summer monsoon. The effects of cold SST are generally the opposite. The local land-sea contrast in the SCS is one of the possible reasons for SCS summer monsoon onset. Superposed upon large-scale land-sea thermodynamic differences, it facilitates the formation of out-breaking onset characteristics of SCS summer monsoon in the SCS area.

  6. Study on response of ecosystem to the East Asian monsoon in eastern China using LAI data derived from remote sensing information

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; YAO Fengmei; FU Congbin; YAN Xiaodong

    2004-01-01

    Based on the leaf area index (LAI) data derived from remote sensing information and eco-climate data, the responses of regional ecosystem variations in seasonal and interannual scales to the East Asian monsoon are studied. It is found that the vegetation ecosystems of eastern China are remarkably correlated with the East Asian monsoon in seasonal and interannual scales. In the seasonal timescale, the obvious variations of the vegetation ecosystems occur with the development of the East Asian monsoon from the south in the spring to the north in the autumn. In the interannual scale, high LAI appears in the strong East Asian monsoon year, whereas low LAI is related to the weak East Asian monsoon year. These further lead to the characteristic of "monsoon-driven ecosystem" in the eastern China monsoon region, which can be revealed by LAI.

  7. Multiscale characteristics of the rainy season rainfall and interdecadal decaying of summer monsoon in North China

    Institute of Scientific and Technical Information of China (English)

    DAI Xingang; WANG Ping; CHOU Jifan

    2003-01-01

    This paper focuses on the rainfall spectrum and its evolution of North China in rainy season with summer monsoon decaying in interdecadal time scale. The interannual component of the rainfall is the dominant part, accounting for 85% of the total variance, and has been changed significantly during the last 30 years. According to wavelet analysis its 5a periodic spectrum suddenly disappeared in the late 1960s, and its biennial oscillation gradually become weaker and weaker since 1970, accompanied by the summer monsoon decaying. Contrarily, the interdecadal component is principal in the summer monsoon over North China and is very similar to the counterpart of the rainfall. Their interdecadal parts are significantly correlated, and the correlation coefficient is nearly equal to the one of the original sequences. Besides, the dry and wet climate alternated with the monsoon abrupt changes in the 1960s and the 1970s over East Asia, apart from North China, climate drifted from a light drought to a severe drought during the past 30 years.

  8. Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events

    Science.gov (United States)

    Raghavan, Krishnan; Panickal, Swapna

    2010-05-01

    A majority of positive Indian Ocean Dipole (IOD) events in the last 50-years were accompanied by enhanced summer-monsoon circulation and above-normal precipitation over central-north India. Given that IODs peak during boreal-autumn following the summer-monsoon season, this study examines the role of the summer-monsoon flow on the Indian Ocean (IO) response using a suite of ocean model experiments and supplementary data-diagnostics. The present results indicate that if the summer-monsoon Hadley-type circulation strengthens during positive-IOD events, then the strong off-equatorial south-easterly winds over the northern flanks of the intensified Australian High can effectively promote upwelling in the south-eastern tropical Indian Ocean and amplify the zonal-gradient of the IO heat-content response. While it is noted that a strong-monsoon cross-equatorial flow by itself may not generate a dipole-like response, a strengthening (weakening) of monsoon easterlies to the south-of-equator during positive-IOD events tends to reinforce (hinder) the zonal-gradient of the upper-ocean heat-content response. The findings show that an intensification of monsoonal-winds during positive-IOD periods produces nonlinear amplification of easterly wind-stress anomalies to the south-of-equator due to the nonlinear dependence of wind-stress on wind-speed. It is noted that such an off-equatorial intensification of easterlies over SH enhances upwelling in the eastern IO off Sumatra-Java; and the thermocline shoaling provides a zonal pressure-gradient which drives anomalous eastward equatorial under-currents (EUC) in the sub-surface. Furthermore, the combination of positive-IOD and stronger-than-normal monsoonal flow favors intensification of shallow transient meridional-overturning circulation in the eastern IO; and enhances the feed of cold subsurface off-equatorial waters to the EUC. References: P. Swapna and R. Krishnan 2008: Geophy. Res. Lett. 35, L14S04, doi: 10.1029/ 2008GL033430 R

  9. THE CLIMATIC CHARACTERISTICS OF SUMMER MONSOON ONSET OVER THE SOUTH CHINA SEA Ⅰ40—YEAR AVERAGE

    Institute of Scientific and Technical Information of China (English)

    冯瑞权; 林建恒

    2002-01-01

    By using 40-year NCEP reanalysis daily data91958-1997),we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea(1050°E-120°E,5°N-20°N,to be simplified as SCS in the text followed) pentad y pentad(5 days),According to our new definition,in the monsoon area of the SCS two of the following conditions should be satistied:1)At 850hPa,the southwest winds should be greater than 2m/s.2)At 850 hPa.θse should e greater than 335°K.The new definition means that the summermonsoon is the southwest winds high temperature and high moisture.The onset of the SCS summer monsoon is defined to start when one half of the SCS area(105°E-120°E,5°N-20°N)is controlled by the summer monsoon.The analyzed results revealed the following:1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May.2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal.3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously.4) During the summer monsoon onset in the SCS,troughs deepen and widen quickly in the lower troposphere of the India:the subtropical high in the Western pacific moves eastward off the SCS in the middle troposphere:the easterly advances northward over the SCS in the upper troposphere.

  10. Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere Ocean GCM.

    Science.gov (United States)

    Kitoh, Akio

    2004-02-01

    To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, 100% (control run), 120%, and 140%. The land sea distribution is the same for all experiments and mountain heights are varied uniformly over the entire globe.Systematic changes in precipitation pattern and circulation fields as well as sea surface temperature (SST) appeared with progressive mountain uplift. In summertime, precipitation area moves inland on the Asian continent with mountain uplift, while the Pacific subtropical anticyclone and associated trade winds become stronger. The mountain uplift resulted in an SST increase over the western tropical Pacific and the Maritime Continent and an SST decrease over the western Indian Ocean and the central subtropical Pacific. There is a drastic change in the East Asian circulations with the threshold value at the 60% mountain height. With the mountain height below 60%, the southwesterly monsoon flow from the Indian Ocean becomes strong by uplift and transports moisture toward East Asia, forming the baiu rainband. With higher mountain heights, intensified subtropical trade winds transport moisture from the Pacific into the Asian continent.In order to investigate how the SST change affected the results presented herein, additional experiments were performed with the same experimental design but with the atmospheric GCM (AGCM). A comparison between CGCM and AGCM experiments revealed that major features such as a shift in precipitation inland and an appearance of the baiu rainband by higher orography were reproduced similarly in both the AGCM and the CGCM. However, there was a qualitatively as well as quantitatively different feature. The anticyclonic circulation anomalies in the lower troposphere, which appeared by mountain uplift in the tropical western Pacific in the CGCM

  11. A possible Younger Dryas-type event during Asian monsoonal Termination 3

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shitao; WANG; Yongjin; KONG; Xinggong; LIU; Dianbing; CHENG; Hai; R.L.; Edwards

    2006-01-01

    Seven U-Th dates, 560 δ18O data and microscopic sequences were measured for stalagmites from two high-altitude caves in Shennongjia area, Hubei Province. Variations of the decadal-resolution stalagmite δ18O record from Swan Cave (1600 m elevation) reflect large spatial changes in circulation strength and precipitation of Asian monsoon. The evidence comes from a great similarity among the stalagmite δ18O records from Nanjing, Jiangsu Province; Libo, Guizhou Province and here studied area during the last deglaciation, including a part interval of Younger-Dryas event and Bolling-Allerod. A 30-year-resolution stalagmite δ18O record from Yongxing Cave (1400 m elevation), 70 km away from Swan Cave, reveals a rapid transition of Asian monsoon climate during Termination 3 at about 245±5 kaBP. Based on 3 U-Th dates and about 5000 continuous annual bands, a millennial dry episode has been observed during Asian monsoonal Termination 3 from the Yongxing δ18O profile. With respect to its structure, duration and transition, the dry reversal, as indicated by our stalagmite δ18O record, generally agrees with the pattern of the YD event well-expressed in the Chinese stalagmite δ18O records. This YD-type event is characterized by a large decrease in δ18O value as much as 2.30‰, more than half of the δ18O excursion between glacial/interglacial periods, and lasts 1371±59 a determined by the annual counting chronology. After this event, the monsoon climate shifted abruptly into the interglacial period within 74±4 a. Our data corroborate the view that the repeated occurrence of YD-type event was not an "accident", possibly resulted from the coupling of ice-sheet and oceanic/atmospheric circulations.

  12. Role of Terrestrial Moisture Source Transport on Summer Monsoon Rainfall Variability over Ganga River Basin

    Science.gov (United States)

    A S, S.; Pathak, A.; Ghosh, S.; Kumar, P.

    2015-12-01

    Ganga river basin, which is one of the most agricultural intensified and densely populated in the world, receives moisture from different terrestrial sources, other than oceanic sources. The modeling of Indian Summer Monsoon Rainfall (ISMR) over Ganga Basin, especially its variability, is very crucial as most of the agro-economical practices depend on it. The monsoon rainfall over the core monsoon zone in India which covers the large amount of area of Ganga basin is significantly correlated with the rainfall over Ganga basin. Therefore, the atmospheric moisture transport from different terrestrial sources to the sink over Ganga basin is studied for better understanding of ISMR variability (both inter-annual, and intraseasonal timescale) over Ganga Basin and core monsoon zone. We use extended version of the dynamic recycling model, which is based on Lagrangian trajectory approach to study the impact of moisture source variability on ISMR over Ganga basin during 1979-2013. The intraseasonal variation of ISMR is also observed to be significantly associated with the moisture source variability. The regions with dense vegetation cover such as Ganga basin and south-central forest region in India, manifest substantial role of land surface feedback with high recycling ratios (15-20%). It is also observed that the peak monsoon rainfall occurs during a period when all the oceanic and terrestrial sources altogether contribute significantly to the ISMR. The novelty of present work lies in understanding the role of different terrestrial sources on ISMR variability at different timescale viz., intra-seasonal to interannual. Our findings also highlight the importance of land surface feedback through evapotranspiration, in order to accurately model ISMR variability for better planning and management of the crop calendar. Key words: Atmospheric moisture transport, Dynamic precipitation recycling, Indian summer monsoon rainfall variability, Ganga River Basin.

  13. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-10-01

    Full Text Available The Tibetan Plateau (TP, the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcing of black carbon (BC and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 μg/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust in snow compared to other snow-covered regions in the world.

    Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative forcing of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates. The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more

  14. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Science.gov (United States)

    Qian, Y.; Flanner, M. G.; Leung, L. R.; Wang, W.

    2010-10-01

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcing of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope, with concentration larger than 100 μg/kg. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative forcing induced by aerosols (e.g. BC, Dust) in snow compared to other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative forcing of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation

  15. COMPOSITE ANALYSIS OF SUMMER MONSOON ONSET PROCESS OVER SOUTH CHINA SEA

    Institute of Scientific and Technical Information of China (English)

    徐海明; 何金海; 周兵

    2001-01-01

    Based on the method of composite analysis, the onset process and preceding signs of summer monsoon over the South China Sea (SCS) is investigated. The result indicates that convection activities appear first over the Indo-China Peninsula prior to the onset of the monsoon, then around the Philippines just at the point of onset, implying that the convection activities around the Philippines serve as one of the reasons leading to the SCS monsoon onset. Before the SCS monsoon onset, the equatorial westerly over the Indian Ocean (75°E ~ 95°E ) experiences noticeable enhancement and plays an important role on the SCS monsoon onset. It propagates eastward rapidly and causes the establishment and strengthening of equatorial westerly in the southern SCS, on the one hand, it results in the migration southward of the westerly on south side of the south-China stationary front by means of shift northeastward of the westerly and convection over the Bay of Bengal, on the other. Further study also shows that the intensification of equatorial westerly in the Indian Ocean (75°E ~ 95°E) and the southern SCS is closely related to the reinforcement of the Southern-Hemisphere Mascarene high and Australian high, and cross-equatorial flow northward around Somali, at 85°E and 105°E, respectively.

  16. Simulation of Indian summer monsoon using the Japan Meteorological Agency’s seasonal ensemble prediction system

    Indian Academy of Sciences (India)

    Kailas Sonawane; O P Sreejith; D R Pattanaik; Mahendra Benke; Nitin Patil; D S Pai

    2015-03-01

    The performance of a dynamical seasonal forecast system is evaluated for the prediction of summer monsoon rainfall over the Indian region during June–September (JJAS) by using hindcast of the Japan Meteorological Agency (JMA) seasonal ensemble prediction system (EPS) model, based on five ensembles of March, April and May initial states for a period of 32 years (1979–2010). The hindcast climatology during JJAS simulates the mean monsoon circulation at lower and upper tropospheres very well in JMA model using March, April and May ensembles with a more realistic simulation of Webster and Yang’s broad scale monsoon circulation index. The JMA hindcast climatology during JJAS simulates the rainfall maxima over the west-coast of India and the head Bay of Bengal reasonably well, although, the latter is slightly shifted southwestward. Associated with better forecast skills of El Nino in the JMA model, the interannual variability of All India Summer Monsoon Rainfall (AISMR) during the 32-year period has also been very well simulated with a high significant (99% level) correlation in April ensemble followed by that of March and May ensembles. Thus, the present analysis indicates that the JMA seasonal forecast model can prove to be a useful tool for the dynamical seasonal forecast of AISMR.

  17. Indian summer monsoon and winter hydrographic variations over past millennia resolved by clay sedimentation

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Dayal, A.M.; Basavaiah, N.; Kader, U.S.A.

    Ocean. For example, a large hydrological imbalance due to precipitation – evaporation (P-E) and fluvial influx associated with hydrometeorological regimes in two adjacent basins (the Bay of Bengal, P>>E due to higher fluvial runoff and precipitation...; the Arabian Sea, excess evaporation and loss of fresh water; E>>P) leads to an inter-basin transfer. During boreal summer (June though September), Indian Monsoon Current advects high salinity Arabian Sea Waters into BOB [Vinayachandran et al., 1999]. Upon...

  18. Surface circulation off Somalia and western equatorial Indian Ocean during summer monsoon of 1988 from Geosat altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; RameshBabu, V.; Murty, V.S.N.; Rao, L.V.G.

    The sea level variability derived from repeating tracks of the Geosat altimeter data during the late phase (August-September) of the summer monsoon of 1988 revealed the presence of multiple meso-scale eddy features with clockwise and anti...

  19. Abundance and relationship of bacteria with transparent exopolymer particles during the 1996 summer monsoon in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Sarma, V.V.S.S.; Gauns, M.; DileepKumar, M.; Madhupratap, M.

    Bacterial abundance and production, numbers, sizes and concentrations of transparent exopolymer particles (TEP) and total organic carbon (TOC) were measured during the 1996 summer monsoon to understand the relationship between TEP, the most labile...

  20. Long-range forecast of monthly rainfall over India during summer monsoon season using SST in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    Long-range forecasting of summer monsoon rainfall was reported through linear models by Delsole and Shukla3. They showed that minimum number of predictors are sufficient for accurate forecasts. Recent studies4,5 reported long-range prediction...

  1. Simulated Asian-Australian monsoon with a spectral element atmospheric general circulation model

    Science.gov (United States)

    Liu, X. Y.

    2016-08-01

    A low-top version of SEMANS (Spectral Element Model with Atmospheric Near Space resolved) has been used to carry out numerical simulation on characteristics of Asian- Australian Monsoon (A-AM) in the work. The simulation results are validated with ERA- Interim reanalysis dataset and precipitation data from satellite remote sensing. It's shown that the model can reproduce the major climatic features of A-AM with stronger easterly in the tropical Eastern Pacific, and a weaker northerly component in the Northern Hemisphere.The simulated precipitation rate is larger and the double ITCZ (Inter-Tropical Convergence Zone) in the tropical Eastern Pacific in the northern spring is not reproduced. A due to the absence of variation longer than a year in the bottom boundary conditions, the model cannot reproduce the relationships between the monsoon indexes and the surface air temperature in the broad area near the equator.

  2. Relationship between East Asian winter monsoon, warm pool situation and ENSO cycle

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the observational data analyses and numerical simulations with the air-sea coupled model (CGCM), a new perspective on the occurrence mechanism of ENSO is advanced in this paper. The continuous strong (weak) East Asian winter monsoon will lead to continuous westerly (easterly) wind anomalies over the equatorial western Pacific region. The anomalous equatorial westerly (easterly) winds can cause eastward propagation of the subsurface ocean temperature anomalies (SOTA) in the warm pool region, the positive (negative) SOTA have been in the warm pool region for quite a long time. The eastward propagating of positive (negative) SOTA along the thermocline will lead to positive (negative) SSTA in the equatorial eastern Pacific and the occurrence of El Ni(n)o (La Ni(n)a) event. After the occurrence of ENSO, the winter monsoon in East Asia will be weak (strong) due to the influence of El Ni(n)o (La Ni(n)a).

  3. Detecting human impacts on the flora, fauna, and summer monsoon of Pleistocene Australia

    Directory of Open Access Journals (Sweden)

    G. H. Miller

    2007-08-01

    Full Text Available The moisture balance across northern and central Australia is dominated by changes in the strength of the Australian Summer Monsoon. Lake-level records that record changes in monsoon strength on orbital timescales are most consistent with a Northern Hemisphere insolation control on monsoon strength, a result consistent with recent modeling studies. A weak Holocene monsoon relative to monsoon strength 65–60 ka, despite stronger forcing, suggests a changed monsoon regime after 60 ka. Shortly after 60 ka humans colonized Australia and all of Australia's largest mammals became extinct. Between 60 and 40 ka Australian climate was similar to present and not changing rapidly. Consequently, attention has turned toward plausible human mechanisms for the extinction, with proponents for over-hunting, ecosystem change, and introduced disease. To differentiate between these options we utilize isotopic tracers of diet preserved in eggshells of two large, flightless birds to track the status of ecosystems before and after human colonization. More than 800 dated eggshells of the Australian emu (Dromaius novaehollandiae, an opportunistic, dominantly herbivorous feeder, provide a 140-kyr dietary reconstruction that reveals unprecedented reduction in the bird's food resources about 50 ka, coeval in three distant regions. These data suggest a tree/shrub savannah with occasionally rich grasslands was converted abruptly to the modern desert scrub. The diet of the heavier, extinct Genyornis newtoni, derived from >550 dated eggshells, was more restricted than in co-existing Dromaius, implying a more specialized feeding strategy. We suggest that generalist feeders, such as Dromaius, were able to adapt to a changed vegetation regime, whereas more specialized feeders, such as Genyornis, became extinct. We speculate that ecosystem collapse across arid and semi-arid zones was a consequence of systematic burning by early humans

  4. Detecting human impacts on the flora, fauna, and summer monsoon of Pleistocene Australia

    Science.gov (United States)

    Miller, G. H.; Magee, J. W.; Fogel, M. L.; Gagan, M. K.

    2007-08-01

    The moisture balance across northern and central Australia is dominated by changes in the strength of the Australian Summer Monsoon. Lake-level records that record changes in monsoon strength on orbital timescales are most consistent with a Northern Hemisphere insolation control on monsoon strength, a result consistent with recent modeling studies. A weak Holocene monsoon relative to monsoon strength 65-60 ka, despite stronger forcing, suggests a changed monsoon regime after 60 ka. Shortly after 60 ka humans colonized Australia and all of Australia's largest mammals became extinct. Between 60 and 40 ka Australian climate was similar to present and not changing rapidly. Consequently, attention has turned toward plausible human mechanisms for the extinction, with proponents for over-hunting, ecosystem change, and introduced disease. To differentiate between these options we utilize isotopic tracers of diet preserved in eggshells of two large, flightless birds to track the status of ecosystems before and after human colonization. More than 800 dated eggshells of the Australian emu (Dromaius novaehollandiae), an opportunistic, dominantly herbivorous feeder, provide a 140-kyr dietary reconstruction that reveals unprecedented reduction in the bird's food resources about 50 ka, coeval in three distant regions. These data suggest a tree/shrub savannah with occasionally rich grasslands was converted abruptly to the modern desert scrub. The diet of the heavier, extinct Genyornis newtoni, derived from >550 dated eggshells, was more restricted than in co-existing Dromaius, implying a more specialized feeding strategy. We suggest that generalist feeders, such as Dromaius, were able to adapt to a changed vegetation regime, whereas more specialized feeders, such as Genyornis, became extinct. We speculate that ecosystem collapse across arid and semi-arid zones was a consequence of systematic burning by early humans. We also suggest that altered climate feedbacks linked to changes

  5. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Science.gov (United States)

    Qian, Y.; Flanner, M.; Leung, R.; Wang, W.

    2012-04-01

    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5-25 W m-2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0oC averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1-4 times larger for BC-in-snow than CO2 increase during April-July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring

  6. Long-term changes in the relationship between stratospheric circulation and East Asian Winter Monsoon

    Science.gov (United States)

    Wei, K.

    2015-12-01

    Using two generations of reanalysis datasets from the NCAR, ECMWF, and JMA, we showed that on the interannual timescale the two leading modes of the East Asian winter monsoon (EAWM) are associated with tropospheric annular mode (AM) and stratospheric polar vortex (SPV), respectively. The relationship between AM and the first EAWM mode remained stable during 1958 to 2013, whereas that between SPV and the second EAWM mode increased since the late 1980s. The SPV-related circulation and planetary wave activities are intensified in the latter period. We suggested that this change might be caused by the global warming and ozone depletion.

  7. Processes and Mechanisms in Simulations of the Mid-holocene African Summer Monsoon Circulation

    Science.gov (United States)

    Tomas, R. A.; Otto-Bliesner, B.

    2006-12-01

    Proxy reconstructions indicate that the Sahel and Sahara regions were considerably wetter during the early and middle Holocene (about 12 to 5 thousand years ago) than they are presently. Kutzbach (1981) and Kutzbach and Otto-Bliesner (1982) tested whether changes in the Earth's orbital parameters could have caused these climatic changes seen in the observed records. Using a low-resolution general circulation model and orbital parameters that describe conditions 9000 years ago, they found that the increased solar radiation during the summer months caused an intensified monsoon circulation over the African-Eurasian land mass. During the past 25 years, as general circulation models and coupled climate models have evolved, these experiments have been repeated, these results have been reconfirmed and our understanding of what parts of the climate system are important for the anomalous monsoon circulation has been refined. Yet, questions remain about the details of the processes and mechanisms that are important for producing the anomalous monsoon in climate model simulations and there are still some significant discrepancies between simulations and proxy records. We examine simulations of the African summer monsoon made using the latest version of the Community Climate System Model (CCSM3) developed at the National Center for Atmospheric Research (NCAR) forced with orbital parameters and greenhouse gas concentrations appropriate for 6 ka and pre-industrial periods following the protocols established by the Paleoclimate Modeling Intercomparison Project II (PMIP-2). Results from three sets of experiments are presented. In the first, we test to determine to what extent the SST's simulated by CCSM3 influence the anomalous monsoon circulation using a stand alone atmospheric model forced with 6ka orbital parameters but prescribed SST's taken from CCSM3 simulations of the 6ka and pre-industrial periods. In the second, we explore a more fundamental question regarding what

  8. Spatio-temporal variability of summer monsoon rainfall over Orissa in relation to low pressure systems

    Indian Academy of Sciences (India)

    M Mohapatra; U C Mohanty

    2006-04-01

    The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS)developing over the Bay of Bengal and moving along the monsoon trough.A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rainfall over Orissa during the summer monsoon season (June-September).For this purpose,rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999)are analysed.The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa. The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999.The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%)during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa.Most parts of Orissa,especially the region extending from central part of coastal Orissa to western Orissa (central zone)and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa.The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay.While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay,Jharkhand and Bangladesh,that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa.There are signi

  9. Indian summer monsoon and winter hydrographic variations over past millennia resolved by clay sedimentation

    Science.gov (United States)

    Chauhan, Onkar S.; Dayal, A. M.; Basavaiah, Nathani; Kader, U. Syed Abdul

    2010-09-01

    Reconstruction of century-scale Indian monsoon and winter hydrography is made from an AMS-dated core located in the unique region of the southeast Arabian Sea which lies in the pathways of the low-salinity Bay of Bengal Waters, advecting during winter northeast monsoon (NEM). Based upon clay mineral analyses in seawaters, we identify chlorite and kaolinite as specific clays supplied by the Bay of Bengal Waters and local fluvial flux (by the southwest monsoon (SWM) precipitation from the Peninsular India), respectively, along the southwest continental margin of India. An evaluation of clay flux and δ18O in G. ruber portrays century-scale weaker SWM precipitation events during ˜450-650 yr, ˜1000 yr, and 1800-2200 cal yr BP. Kaolinite wt % and flux were found to be low during all these events, though chlorite had a persistent or enhanced flux. From the enhanced flux of chlorite and reduced kaolinite/chlorite ratio, during weaker phases of SWM, we deduce a stronger NEM (winter hydrography), implying an inverse coupling between the summer and the winter monsoon.

  10. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    Science.gov (United States)

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases. PMID:26476061

  11. The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics

    Directory of Open Access Journals (Sweden)

    P. K. Patra

    2005-05-01

    Full Text Available The Indian summer monsoon rainfall (ISMR, which has a strong connection to agricultural food production, has been less predictable by conventional models in recent times. Two distinct years 2002 and 2003 with lower and higher July rainfall, respectively, are selected to help understand the natural and anthropogenic influences on ISMR. We show that heating gradients along the meridional monsoon circulation are reduced due to aerosol radiative forcing and the Indian Ocean Dipole in 2002. An increase in the dust and biomass-burning component of the aerosols through the zonal monsoon circulation resulted in reduction of cloud droplet growth in July 2002. These conditions were opposite to those in July 2003 which led to an above average ISMR. In this study, we have utilized NCEP/NCAR reanalyses for meteorological data (e.g. sea-surface temperature, horizontal winds, and precipitable water, NOAA interpolated outgoing long-wave radiation, IITM constructed all-India rainfall amounts, aerosol parameters as observed from the TOMS and MODIS satellites, and ATSR fire count maps. Based on this analysis, we suggest that monsoon rainfall prediction models should include synoptic as well as interannual variability in both atmospheric dynamics and chemical composition.

  12. Has influence of extratropical waves in modulating Indian summer monsoon rainfall (ISMR) increased?

    Indian Academy of Sciences (India)

    A K Srivastava; Somenath Dutta; S R Kshirsagar; Kavita Srivastava

    2014-04-01

    In the paper, influence of extratropical circulation features on Indian Summer Monsoon Rainfall (ISMR) is examined. Energetics of extra tropics, north of Indian subcontinent for deficient and nondeficient ISMR years, during two periods 1951–1978 and 1979–2005, are calculated and critically analyzed. It is observed that for the period 1951–1978, only two out of the 10 energetic parameters, viz., the zonal available potential energy (high) and conversion of zonal available potential with kinetic energy to eddy kinetic energy (low) differed significantly in JJA months of the deficient years from that of the nondeficient years. However, during the 1979–2005 period, as many as six out of the 10 energetic parameters, viz., eddy available potential energy, zonal available potential energy, eddy kinetic energy, generation of zonal available potential energy, conversion of zonal available potential energy to zonal kinetic energy and conversion of zonal kinetic energy to eddy kinetic energy differed significantly in JJA months of the deficient years from that of the nondeficient years. These results confirm growing influence of the transient stationary waves in deficient years after the climate shift year, 1979. Analysis of energetic parameters of the pre-monsoon season of the two periods also reveals similar results. This suggests that forcings apparently responsible for energetics in JJA months of the deficient years of the later period were present even before the advent of Indian summer monsoon season.

  13. Direct radiative effects of anthropogenic aerosols on Indian summer monsoon circulation

    Science.gov (United States)

    Das, Sushant; Dey, Sagnik; Dash, S. K.

    2016-05-01

    The direct radiative impacts of anthropogenic aerosols on the dynamics of Indian summer monsoon circulation are examined using the regional climate model version 4.1 (RegCM4.1). High anthropogenic aerosol optical depth (AAOD >0.1) and surface shortwave cooling (0.2 °C due to the dimming effect of anthropogenic aerosols. The aerosol-induced cooling leads to an increase in surface pressure over the local hotspots in the Indian landmass, which reduces the land-sea pressure contrast resulting in weakening of summer monsoon circulation. The simulated surface pressure anomaly also inhibits moisture transport from the BoB towards Indian landmass thereby enhancing precipitation over the BoB and parts of the east coast of India. The impacts are interpreted as conservative estimates because of the underestimation of AAOD by the model due to uncertainties in emission inventory and biases in simulated meteorology. Our results demonstrate the direct radiative impacts of anthropogenic aerosols on the Indian monsoon circulation and call for future studies combining the dynamical and microphysical impacts, which are not considered in this study.

  14. EAST ASIA SUMMER MONSOON ONSET DATE CALCULATED FROM OBSERVED, REANALYZED AND COMBINED DAILY RAINFALL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reanalyzed and combined daily rainfall during 1980 ~ 1993. To make the onset date line as close as possible to the previous work, the earliest onset date limits have to be applied for the regions with different latitude and the daily mean datasets have to be smoothed by space before calculation, therefore their space-resolution is reduced to about 3° longitude ×1° latitude. The results show that the multiyear mean summer monsoon onset date lines are quite similar to each other. Compared with the one from the reanalysis, the 14-year average onset date line form combination is obviously improved in the southern Sichuan Basin and the correlation between observed and combined onset date is also slightly higher over the Huaihe valley and Northeast China. Since daily rainfall combination also improved the long term daily mean and standard deviation through the pentad CMAP, if no better daily dataset is available, such a kind of daily rainfall combination can be used to get reasonable result in the Indian monsoon region without sufficient observatories or over the North Pacific without any ground observation at all in future study.

  15. Summer monsoon intraseasonal oscillation over eastern Arabian Sea – as revealed by TRMM microwave imager products

    Indian Academy of Sciences (India)

    S H Rahman; B Simon

    2006-10-01

    The time evolution of atmospheric parameters on intraseasonal time scale in the eastern Arabian Sea (EAS) is studied during the summer monsoon seasons of 1998–2003 using Tropical Rainfall Measuring Mission Microwave Imager (TMI) data. This is done using the spectral and wavelet analysis. Analysis shows that over EAS, total precipitable water vapour (TWV) and sea surface wind speed (SWS) have a periodicity of 8–15 days, 15–30 days and 30–60 days during the monsoon season. Significant power is seen in the 8–15-day time scale in TWV during onset and retreat of the summer monsoon. Analysis indicates that the timings of the intensification of 8–15, 15–30, and 30–60 days oscillations have a profound effect on the evolution of the daily rainfall over west coast of India. The positive and negative phases of these oscillations are directly related to the active and dry spells of rainfall along the west coast of India. The spectral analysis shows interannual variation of TWV and SWS. Heavy rainfall events generally occur over the west coast of India when positive phases of both 30–60 days and 15–30 days modes of TWV and SWS are simultaneously present.

  16. Seasonality of the mean age in the UTLS region: Hemispheric differences and impact of the Asian monsoon

    Science.gov (United States)

    Konopka, Paul; Ploeger, Felix; Vogel, Bärbel; Tao, Mengchu; Müller, Rolf

    2014-05-01

    The seasonality of the composition of air in the UTLS region is determined by the seasonality of different transport processes like convection, Brewer-Dobson circulation (BDC) and two-way irreversible isentropic transport across the tropopause. Whereas during winter (seasons are related to the northern hemisphere), the subtropical jets form a strong transport barrier between the tropics and extratropics, this barrier weakens significantly in the northern hemisphere during summer. This is a result of the hemispheric asymmetry of the land-sea distribution and of the orography, which leads to hemispheric differences in the distribution and intensity of the wave drag driving the BDC. Based on a multi-annual CLaMS simulation covering the period from 2001 to 2012 with the model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the seasonality of the mean age (measuring the mean transport time of an air parcel traveling from the boundary layer) in the tropical tropopause layer (TTL) and in the extratropical lowermost stratosphere (LMS). During the considered period, the simulated trace gases (like CH4, N2O, F11, CO2, CO, H2O and O3) are in fairly good agreement with in-situ and satellite observations, especially in the lower stratosphere and around the tropopause. In the TTL, the mean age shows a pronounced annual cycle that is driven by the seasonality in tropical upwelling and horizontal transport from the extratropics (inmixing) with youngest air during late boreal winter and oldest air during late boreal summer, respectively. On the other side, strong hemispheric differences can be diagnosed in the polar high latitude LMS. Here, air in the northern hemisphere is much younger during summer than during the same season on the southern hemisphere. A regionally resolved climatology of the mean age further shows youngest air in the TTL in winter above the West Pacific warm pool, whereas in summer the Asian summer monsoon forms the key pathway for transport

  17. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales.

    Science.gov (United States)

    Chen, Shitao; Wang, Yongjin; Cheng, Hai; Edwards, R Lawrence; Wang, Xianfeng; Kong, Xinggong; Liu, Dianbing

    2016-01-01

    There is increasing evidence that millennial-scale climate variability played an active role on orbital-scale climate changes, but the mechanism for this remains unclear. A (230)Th-dated stalagmite δ(18)O record between 88 and 22 thousand years (ka) ago from Yongxing Cave in central China characterizes changes in Asian monsoon (AM) strength. After removing the 65°N insolation signal from our record, the δ(18)O residue is strongly anti-phased with Antarctic temperature variability on sub-orbital timescales during the Marine Isotope Stage (MIS) 3. Furthermore, once the ice volume signal from Antarctic ice core records were removed and extrapolated back to the last two glacial-interglacial cycles, we observe a linear relationship for both short- and long-duration events between Asian and Antarctic climate changes. This provides the robust evidence of a link between northern and southern hemisphere climates that operates through changes in atmospheric circulation. We find that the weakest monsoon closely associated with the warmest Antarctic event always occurred during the Terminations. This finding, along with similar shifts in the opal flux record, suggests that millennial-scale events play a key role in driving the deglaciation through positive feedbacks associated with enhanced upwelling and increasing CO2. PMID:27605015

  18. Strong coupling of Asian Monsoon and Antarctic climates on sub-orbital timescales

    Science.gov (United States)

    Chen, Shitao; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Wang, Xianfeng; Kong, Xinggong; Liu, Dianbing

    2016-09-01

    There is increasing evidence that millennial-scale climate variability played an active role on orbital-scale climate changes, but the mechanism for this remains unclear. A 230Th-dated stalagmite δ18O record between 88 and 22 thousand years (ka) ago from Yongxing Cave in central China characterizes changes in Asian monsoon (AM) strength. After removing the 65°N insolation signal from our record, the δ18O residue is strongly anti-phased with Antarctic temperature variability on sub-orbital timescales during the Marine Isotope Stage (MIS) 3. Furthermore, once the ice volume signal from Antarctic ice core records were removed and extrapolated back to the last two glacial-interglacial cycles, we observe a linear relationship for both short- and long-duration events between Asian and Antarctic climate changes. This provides the robust evidence of a link between northern and southern hemisphere climates that operates through changes in atmospheric circulation. We find that the weakest monsoon closely associated with the warmest Antarctic event always occurred during the Terminations. This finding, along with similar shifts in the opal flux record, suggests that millennial-scale events play a key role in driving the deglaciation through positive feedbacks associated with enhanced upwelling and increasing CO2.

  19. An East Asian land-sea atmospheric heat source difference index and its relation to general circulation and summer rainfall over China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using a monthly precipitation dataset of 160 stations over China and a daily and monthly National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset from 1961 to 2006, we here define an East Asian land-sea atmospheric heat source difference index ILSQD and investigate its relationship to summer rainfall in China and East Asian general circulation. The results show that ILSQD more closely reflects the anomalous variations in summer monsoon phenomena; in the high-index (HI) cases, the strong low-level southerlies over East China and the strong high-level westerlies over middle latitudes indicate an active summer monsoon, and vice versa in the low-index (LI) cases. This index also reflects summer rainfall anomalies over East China; in the HI (LI) cases rainfall increases (decreases) over North China and at the same time decreases (increases) over the mid-lower Yangtze River valley and the southern Yangtze River. Hence, ILSQD can be utilized as a summer monsoon index. There is also remarkable correlation between ILSQD in March and the following summer rainfall over the mid-lower Yangtze River valley. Finally, the Community Atmospheric Model Version 3.1 (CAM3.1) of NCAR is used to run numerical experiments, which verify that the anomalous summer precipitation in simulations is similar to that of diagnosis analysis based on the anomalous summer atmospheric heating forcing. Similarly, the atmospheric heating rate in March can force summer rainfall anomalies in the simulations just as observed in the data.

  20. Impact of the Desert dust on the summer monsoon system over Southwestern North America

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2012-04-01

    Full Text Available The radiative forcing of dust emitted from the Southwest United States (US deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem for 15 years (1995–2009. During the monsoon season, dust has a cooling effect (−0.90 W m−2 at the surface, a warming effect (0.40 W m−2 in the atmosphere, and a negative top-of-the-atmosphere (TOA forcing (−0.50 W m−2 over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day−1 over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to ~40 % over the eastern slope of the Mountains (Arizona-New~Mexico-Texas regions. This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the mega-drought conditions projected for the future.

  1. Impacts of the East Asian Monsoon on springtime dust concentrations over China

    Science.gov (United States)

    Lou, Sijia; Russell, Lynn M.; Yang, Yang; Xu, Li; Lamjiri, Maryam A.; DeFlorio, Michael J.; Miller, Arthur J.; Ghan, Steven J.; Liu, Ying; Singh, Balwinder

    2016-07-01

    We use 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of the East Asian Monsoon strength on interannual variations of springtime dust concentrations over China. The simulated interannual variations in March-April-May (MAM) dust column concentrations range between 20-40% and 10-60% over eastern and western China, respectively. The dust concentrations over eastern China correlate negatively with the East Asian Monsoon (EAM) index, which represents the strength of monsoon, with a regionally averaged correlation coefficient of -0.64. Relative to the strongest EAM years, MAM dust concentrations in the weakest EAM years are higher over China, with regional relative differences of 55.6%, 29.6%, and 13.9% in the run with emissions calculated interactively and of 33.8%, 10.3%, and 8.2% over eastern, central, and western China, respectively, in the run with prescribed emissions. Both interactive run and prescribed emission run show the similar pattern of climate change between the weakest and strongest EAM years. Strong anomalous northwesterly and westerly winds over the Gobi and Taklamakan deserts during the weakest EAM years result in larger transport fluxes, and thereby increase the dust concentrations over China. These differences in dust concentrations between the weakest and strongest EAM years (weakest-strongest) lead to the change in the net radiative forcing by up to -8 and -3 W m-2 at the surface, compared to -2.4 and +1.2 W m-2 at the top of the atmosphere over eastern and western China, respectively.

  2. Detailed Analysis of Indian Summer Monsoon Rainfall Processes with Modern/High-Quality Satellite Observations

    Science.gov (United States)

    Smith, Eric A.; Kuo, Kwo-Sen; Mehta, Amita V.; Yang, Song

    2007-01-01

    We examine, in detail, Indian Summer Monsoon rainfall processes using modernhigh quality satellite precipitation measurements. The focus here is on measurements derived from three NASA cloud and precipitation satellite missionslinstruments (TRMM/PR&TMI, AQUNAMSRE, and CLOUDSATICPR), and a fourth TRMM Project-generated multi-satellite precipitation measurement dataset (viz., TRMM standard algorithm 3b42) -- all from a period beginning in 1998 up to the present. It is emphasized that the 3b42 algorithm blends passive microwave (PMW) radiometer-based precipitation estimates from LEO satellites with infi-ared (IR) precipitation estimates from a world network of CEO satellites (representing -15% of the complete space-time coverage) All of these observations are first cross-calibrated to precipitation estimates taken from standard TRMM combined PR-TMI algorithm 2b31, and second adjusted at the large scale based on monthly-averaged rain-gage measurements. The blended approach takes advantage of direct estimates of precipitation from the PMW radiometerequipped LEO satellites -- but which suffer fi-om sampling limitations -- in combination with less accurate IR estimates from the optical-infrared imaging cameras on GEO satellites -- but which provide continuous diurnal sampling. The advantages of the current technologies are evident in the continuity and coverage properties inherent to the resultant precipitation datasets that have been an outgrowth of these stable measuring and retrieval technologies. There is a wealth of information contained in the current satellite measurements of precipitation regarding the salient precipitation properties of the Indian Summer Monsoon. Using different datasets obtained from the measuring systems noted above, we have analyzed the observations cast in the form of: (1) spatially distributed means and variances over the hierarchy of relevant time scales (hourly I diurnally, daily, monthly, seasonally I intra-seasonally, and inter

  3. 春季北大西洋涛动与东亚夏季风年际关系的转变及其可能成因分析%Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism

    Institute of Scientific and Technical Information of China (English)

    左金清; 李维京; 任宏利; 陈丽娟

    2012-01-01

    The relationship between East Asian Summer Monsoon (EASM) and North Atlantic Oscillation (NAO) was examined by using correlation analysis for the period from 1948 to 2009. It was showed that the EASM was well correlated with the previous spring (April-May) NAO on annual timescale. But their relationship was characterized by large decadal variations, with change of sign from positive to negative in the 1970s. Composite analysis revealed that this change was closely related to the spring and pre-winter (December-March) ocean-scale atmosphere-ocean coupling mode, I. E. The NAO-SSTA (sea surface temperature anomaly) tripolepattern, over the North Atlantic Ocean. The effect of spring NAO on the annual variability of EASM depends on the persistence of SSTA tripole pattern induced by the spring NAO itself. However, this pattern was not only controlled by the spring NAO, but also influenced by the pre-winter NAO-SSTA tripole coupling mode, the effect of which was decadal unstationary. Before the 1970s, the effect of pre-winter NAO-SSTA tripole coupling mode on the spring NAO is asymmetric, I. E. The former only has a significant weakening effect on the positive phase of the latter. After the 1970s, the effect of the former on both the positive and negative phases of the latter was negligible. Therefore, the symmetric effect of spring NAO combined with the asymmetric effect of pre-winter NAO-SSTA tripole coupling mode caused the decadal unstationary relationship between the spring NAO and SSTA tripole pattern, resulting in change of the NAO-EASM relationship in the 1970s.%本文的相关分析表明,在1948~2009年期间东亚夏季风(EASM)与前期春季(4~5月)北大西洋涛动(NAO)之间存在显著的年际相关关系,但这种关系具有明显的年代际变化特征,即在1970s发生了由正相关到负相关的转变.进一步的合成分析指出,春季NAO与EASM之间年际相关关系的转变,与春季和前期冬季(12~3月)北大西洋海盆尺度

  4. Variations in temperature and precipitation during Indian summer monsoon simulated by RegCM3

    Science.gov (United States)

    Dash, S. K.; Mamgain, A.; Pattnayak, K. C.; Giorgi, F.

    2012-04-01

    Variations in temperature and precipitation due to global changes have large societal impact in sectors such as agriculture and health. It is therefore very important to examine their temporal and spatial variations at the regional level in order to access the impact of climate change. In India, the most important quasi-periodic system to affect the weather and climate is the Indian summer monsoon. The local changes in the temperature and precipitation can be well examined by a regional model. RegCM3 is one such model best suited for the Indian region. This model has been integrated in the ensemble mode at 55km resolution over India for the summer monsoon season during the years 1982-2009. The model simulations are compared with observed values in detail. Comparison with observations shows that RegCM3 has slightly underestimated summer monsoon precipitation over the Central and Northeast India. Nevertheless, over these regions, RegCM3 simulated rainfall is closer to the observations when compared to other regions where rainfall is highly overestimated. The model simulated mid-tropospheric temperature shows a warm bias over the Himalayan and Tibetan regions that gives leads to the low pressure in the region. Thus the position of the monsoon trough as simulated by the model lies to the north of its original position. This is similar to the usual monsoon break condition leading to less rainfall over Central India. RegCM3 simulated surface maximum temperature shows large negative bias over the country while the surface minimum temperature is close to the observation. Nevertheless, there is a strong correlation between the all India weighted average surface temperature simulated by RegCM3 and IMD observations. At the regional level, in the Central India, both rainfall and temperature show the best correlation with the respective observed values. While examining the extreme condition in Central India, it is found that RegCM3 simulated frequencies of very wet and

  5. Predicting Indian Summer Monsoon onset through variations of surface air temperature and relative humidity

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Indian Summer Monsoon (ISM) rainfall has an enormous effect on Indian agriculture, economy, and, as a consequence, life and prosperity of more than one billion people. Variability of the monsoonal rainfall and its onset have a huge influence on food production, agricultural planning and GDP of the country, which on 22% is determined by agriculture. Consequently, successful forecasting of the ISM onset is a big challenge and large efforts are being put into it. Here, we propose a novel approach for predictability of the ISM onset, based on critical transition theory. The ISM onset is defined as an abrupt transition from sporadious rainfall to spatially organized and temporally sustained rainfall. Taking this into account, we consider the ISM onset as is a critical transition from pre-monsoon to monsoon, which take place in time and also in space. It allows us to suggest that before the onset of ISM on the Indian subcontinent should be areas of critical behavior where indicators of the critical transitions can be detected through an analysis of observational data. First, we identify areas with such critical behavior. Second, we use detected areas as reference points for observation locations for the ISM onset prediction. Third, we derive a precursor for the ISM onset based on the analysis of surface air temperature and relative humidity variations in these reference points. Finally, we demonstrate the performance of this precursor on two observational data sets. The proposed approach allows to determine ISM onset in advance in 67% of all considered years. Our proposed approach is less effective during the anomalous years, which are associated with weak/strong monsoons, e.g. El-Nino, La-Nina or positive Indian Ocean Dipole events. The ISM onset is predicted for 23 out of 27 normal monsoon years (85%) during the past 6 decades. In the anomalous years, we show that time series analysis in both areas during the pre-monsoon period reveals indicators whether the

  6. Abrupt Holocene changes of the Asian monsoon at millen-nial- and centennial-scales:Evidence from lake sediment document in Minqin Basin,NW China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Considerable research is now focusing on abrupt Holocene changes at millennial- and centennial-scales all over the world. This study shows that the changes in the Holocene summer monsoon can be divided into two main periods, based on climatic proxy records of lake sediments from the Sanjiaocheng section located at the NW boundary of the summer monsoon, Gansu Province. The early and middle Holocene was humid with stronger summer monsoon, while the late Holocene is dry with weak summer monsoon. Detailed results also show a series of millennial- and centennial-scale changes in the intensity of the summer monsoon, with a periodicity of 1600 years during the whole Holocene, and with a periodicity of 800 years during the early Holocene. Ten dry events during the Holocene are associated with the weakening of the summer monsoon. These rapid climatic changes may be representative of a global climatic change pattern during the Holocene.

  7. Dynamic control on 8rain-size distribution of terri-genous sediments in the western South China Sea:Implication for East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN GuoCheng; ZHENG HongBo; LI JianRu; XIE Xin; MEI Xi

    2008-01-01

    High-resolution oxygen isotope stratigraphy of Core MD05-2901, which is located off eastern Vietnam in the western South China Sea (SCS), was established and indicated that the core spans a time period of the past 450 ka. Based on the bulk density, fractional porosity and lithogenic content of the sedi-ments, terrigenous mass accumulation rate (TMAR) was obtained, which is 4.9-6.0 g cm-2 ka-1 on average during interglacial stages, higher than that during glacial stages, i.e. 1.9-5.0 g cm-2 ka-1, which is different from northern and southern SCS which show higher TMAR in glacial stages. By principle component analysis of grain size distribution of all the samples, two main control factors (F1 and F2) were obtained, which are responsible for about 80% variance of granularity. The contents of grain size population 1.26-2.66 μm% and 10.8-14.3 μm% which are sensible to F1 show high-frequency fluctuation, and correlate well with the summer insolation at 15° N. They exhibit a dis-tinct cyclicity with frequencies near 23 ka and 13 ka, in contrast to a strong frequency peak near 100 ka obtained in proxies 4.24-7.42 μm% and 30.1-43.7 μm% controlled mainly by F2. The sedimentary character of this part of the SCS was controlled by variations of input flux from two main source areas, namely the southwest and north SCS, which were transported by different circulations of surface cur-rent forced by East Asian summer monsoon and winter monsoon respectively. We believe that the East Asian summer monsoon has fluctuated with high frequency and been forced by changes in solar in-solation in low latitude associated with precession and half precession, while ice-volume forcing is probably a primary factor in determining the strength and timing of the East Asian winter monsoon but with less important insolation forcing.

  8. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    OpenAIRE

    Qian, Y.; M. G. Flanner; L. R. Leung; Wang, W

    2010-01-01

    The Tibetan Plateau (TP), the highest and largest plateau in the world, has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. The snowpack and glaciers over the TP provide fresh water to billions of people in Asian countries, but the TP glaciers have been retreating faster than those anywhere else in the world. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative forcin...

  9. Response of the South China Sea summer monsoon onset to air-sea heat fluxes over the Indian Ocean

    Institute of Scientific and Technical Information of China (English)

    CHEN Jinnian; ZUO Tao; WANG Hongna

    2012-01-01

    We objectively define the onset date of the South China Sea (SCS) summer monsoon,after having evaluated previous studies and considered various factors.Then,interannual and interdecadal characteristics of the SCS summer monsoon onset are analyzed.In addition,we calculate air-sea heat fluxes over the Indian Ocean using the advanced method of CORARE3.0,based on satellite remote sensing data.The onset variation cycle has remarkable interdecadal variability with cycles of 16 a and 28 a.Correlation analysis between air-sea heat fluxes in the Indian Ocean and the SCS summer monsoon indicates that there is a remarkable lag correlation between them.This result has important implications for prediction of the SCS summer monsoon,and provides a scientific basis for further study of the onset process of this monsoon and its prediction.Based on these results,a linear regression equation is obtained to predict the onset date of the monsoon in 2011 and 2012.The forecast is that the onset date of 2011 will be normal or 1 pentad earlier than the normal year,while the onset date in 2012 will be 1-2 pentads later.

  10. Predictability and Prediction of Early- and Peak-summer East Asian rainfall

    Science.gov (United States)

    Yim, S. Y.; Wang, B.; Xing, W.; Kim, H. K.

    2015-12-01

    East Asian summer monsoon (EASM) rainfall has a profound influence on the lives of billions of people. The seasonal prediction of the EASM rainfall, however, has long been an outstanding challenge in climate science. Traditional seasonal forecast of EASM deals with JJA mean rainfall anomalies, which may not be the best strategy because the EASM rainy season is typically from May to August and pronounced differences exist between early summer (May-June, MJ) and peak summer (July-August, JA): both climatological mean states and the principal modes of interannual variability exhibit distinct spatial and temporal structures. The present study explores the sources and limit of the predictability of the early and peak summer rainfall over the East Asian (EA) region. Since the climate models' seasonal forecasts have rather limited skills, it is important to find the causes of the low skills, to improve seasonal prediction, and to better estimate the predictability of EASM rainfall. We address this issue by applying predictable mode analysis method. Four empirical modes of variability for peak summer rainfall are identified: (a) an equatorial western Pacific-EA teleconnection mode, (b) a western Pacific subtropical high-dipole feedback mode, (c) a central Pacific-ENSO mode, and (d) a Eurasian wave train mode. These modes are named according to the major sources of predictability. Based on the understanding of predictability sources for each mode, a suite of physical-empirical (P-E) models is established to predict the four leading principal components (PCs). All four modes can be predicted with significant cross-validated correlation skills(0.59-0.65). Using the predicted PCs and the corresponding observed spatial patterns, a 35-year cross-validated hindcast over the EA yields a domain-averaged TCC skill is 0.37, which is higher than the MME hind cast skill (0.13). The estimated potential attainable pattern correlation coefficient skill averaged over the entire domain is

  11. RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (including supplement)

    Digital Repository Service at National Institute of Oceanography (India)

    McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W.

    patterns in boreal summer are radically different from those in boreal winter. 2 In Hindu mythology, Rama is an ancient king of India and the hero of the epic “Ramayana.” 461APRil 2009AMERiCAN METEOROlOGiCAl SOCiETY | Southwest monsoon winds drive...–2008, with the strongest positive (index > 0.5°C) and negative events (index is < – 0.5°C) highlighted in red and blue, respectively. The index represents the difference between SST anomalies in the western minus the eastern basin regions outlined in (a). Also shown...

  12. Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    EDWARDS; R.; Lawrence

    2010-01-01

    Based on 33 U/Th dates and 1020 oxygen isotopic data from stalagmite Y1 from Yamen Cave, Guizhou Province, China, a record of the Asian Summer Monsoon (ASM) was established. The record covers the last deglaciation and the early Holocene (from 16.2 to 7.3 ka BP) with an average oxygen isotope resolution of 9 years. The main millennial-scale deglacial events first identified in Greenland (Greenland Interstadial Events: GIS 1e through GIS 1a) and later in China are clearly present in the Y1 record. By analogy to earlier work, we refer to these as Chinese Interstadials (CIS): CIS A.1e to CIS A.1a. The onset of these events in Y1 δ18O records are nominally dated at: 14750±50, 14100±60, 13870±80, 13370±80, and 12990±80 a BP. The end of CIS A.1a or the beginning of the Younger Dryas (YD) event is nominally at 12850±50 a BP and the end of the YD dates to 11500±40 a BP. The δ18O values shift by close to 3‰ during the transition into the Bφlling-Allerφd (BA, the onset of CIS A.1e) and at the end of the YD. Comparisons of Y1 to previously published early Holocene records show no significant phase differences. Thus, the East Asia Monsoon and the Indian Monsoon do not appear to have been out of phase during this interval. The Y1 record confirms earlier work that suggested that solar insolation and North Atlantic climate both affect the Asian Monsoon.

  13. Aggregation of Euphausia sibogae during summer monsoon along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jayalakshmi, K.J.; Jasmine, P.; Muraleedharan, K.R.; Prabhakaran, M.P.; Habeebrehman, H.; Jacob, J.; Achuthankutty, C.T.

    Publishing Corporation Journal of Marine Biology Volume 2011, Article ID 945734, 12 pages doi:10.1155/2011/945734 Research Article Aggregation of Euphausia sibogae during Summer Monsoon along the Southwest Coast of India K. J. Jayalakshmi, 1, 2 P. Ja s m i n... National Centre for Antarctic & Ocean Research, Ministry of Earth Science, Vasco-da-Gama, Goa 403 804, India Correspondence should be addressed to K. J. Jayalakshmi, jayalakshmikalarikkal@gmail.com Received 28 January 2011; Revised 10 June 2011; Accepted 4...

  14. Long-range prediction of Indian summer monsoon rainfall using data mining and statistical approaches

    Science.gov (United States)

    H, Vathsala; Koolagudi, Shashidhar G.

    2016-07-01

    This paper presents a hybrid model to better predict Indian summer monsoon rainfall. The algorithm considers suitable techniques for processing dense datasets. The proposed three-step algorithm comprises closed itemset generation-based association rule mining for feature selection, cluster membership for dimensionality reduction, and simple logistic function for prediction. The application of predicting rainfall into flood, excess, normal, deficit, and drought based on 36 predictors consisting of land and ocean variables is presented. Results show good accuracy in the considered study period of 37years (1969-2005).

  15. Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

    2013-07-01

    Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

  16. An Index of East Asian Winter Monsoon Applied to the Description of China's Mainland Winter Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanfeng

    2008-01-01

    Using the NCEP/NCAR reanalysis data (Version 1.0) and the observation data of China from January 1951 to February 2007, a new index of East Asian winter monsoon circulation (IEAWM) was defined based on the comparison of previous different winter monsoon indices and circulation factors influencing the winter climate over China. Its relationships with winter temperature over China and large-scale circulation were analyzed. Results show that IEAWM can successfully describe the variation of China's mainland winter temperature and the East Asian winter monsoon (EAWM) system. This index reflects the integrated effect of the circulations over high and low latitudes and the thermal difference between the continent and the ocean. While in the previous studies, most monsoon indices only describe the single monsoon member. The IEAWM is a good indicator of the intensity of the EAWM. Positive values of IEAWM correspond to the strong EAWM, the stronger Siberian high and East Asian trough than normal, and the strengthening of the meridional shear of 500-hPa zonal wind between high and low latitudes over East Asia, and therefore, the southward cold advection becomes stronger and leads to the decrease in surface temperature over China; and vice versa. The IEAWM inter decadal change is obviously positive before the mid-1980s, but negative since the mid-1980s, in good agreement with the fact of the winter warming in China after 1985.

  17. Latitudinal distributions of activities in atmospheric aerosols, deposition fluxes, and soil inventories of 7Be in the East Asian monsoon zone

    International Nuclear Information System (INIS)

    Activities of atmospheric aerosols, bulk deposition fluxes, and undisturbed soil inventories of 7Be were investigated in China's East Asian monsoon zone at various latitudes ranging from 23.8°N to 43.5°N. The annual latitudinal distributions of 7Be concentrations in aerosols follow a distribution pattern which looks similar to a normal distribution with the maxima occurring in the mid-latitude region. Simultaneous measurements of 7Be at various latitudes suggest that atmospheric circulation may play an important role in the latitudinal distributions of 7Be in surface air. Latitude and wet precipitation are the main factors controlling the bulk 7Be depositional fluxes. Significant seasonal variations in 7Be depositional fluxes in Beijing, a mid-latitude city, were observed with the highest flux in summer and the lowest in winter, whereas less seasonality were found in the high- and the low-latitude cities. The highest 7Be inventory in undisturbed soils in summer also occurred at a mid-latitudinal area in the East Asian monsoon zone. Precipitation is the main factor controlling the 7Be soil inventory in Qingdao with the highest values occurring in autumn followed by summer. - Highlights: • 7Be in atmospheric aerosols, rainfall, and soils were measured at different latitudes. • The annual maxima of 7Be concentrations in aerosols occurred at ∼40°N. • Spring and autumn are seasons of high atmospheric 7Be with maxima at 30°N. • The annual maxima of 7Be deposition fluxes occurred at ∼40°N. • High rainfall in summer is the main cause of higher 7Be soil inventory

  18. Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Susmitha; Sahai, A.K.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Climate and Global Modeling Division, Pune (India)

    2010-09-15

    Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden-Julian Oscillation (MJO) in the equatorial region, facilitated by air-sea interaction on intraseasonal timescales. This VLB-drought-MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air-sea interaction on intraseasonal time scale and the models' inability to simulate VLB-drought relationship is shown to be linked to the models' inability to represent the air-sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction. (orig.)

  19. Indian summer monsoon rainfall: Dancing with the tunes of the sun

    Science.gov (United States)

    Hiremath, K. M.; Manjunath, Hegde; Soon, Willie

    2015-02-01

    There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.

  20. Variations in the summer monsoon rainbands across eastern China over the past 300 years

    Science.gov (United States)

    Hao, Zhixin; Zheng, Jingyun; Ge, Quansheng

    2009-07-01

    Based on reconstructions of precipitation events from the rain and snowfall archives of the Qing Dynasty (1736-1911), the drought/flood index data mainly derived from Chinese local gazettes from 1736-2000, and the observational data gathered since 1951, the spatial patterns of monsoon rainbands are analyzed at different time scales. Findings indicate that monsoon rainfall in northern China and the middle-lower reaches of the Yangtze River have significant inter-annual (e.g., 5-7-yr and 2-4-yr) as well as inter-decadal (e.g., 20-30-yr and quasi-10-yr) fluctuation signals. The spatial patterns in these areas also show significant cycles, such as on a 60-80-yr time scale, a reversal phase predominates the entire period from 1736-2000; on a quasi-30-yr time scale, a consistent phase was prevalent from 1736 to 2000; and on a 20-yr time scale, the summer monsoon rains show different spatial patterns before and after 1870.

  1. A detailed East Asian monsoon history surrounding the ‘Mystery Interval’ derived from three Chinese speleothem records

    Science.gov (United States)

    Zhang, Weihong; Wu, Jiangying; Wang, Yi; Wang, Yongjin; Cheng, Hai; Kong, Xinggong; Duan, Fucai

    2014-07-01

    The ‘Mystery Interval’ (MI, 17.5-14.5 ka) was the first stage of the last deglaciation, a key interval for understanding mechanisms of glacial-interglacial cycles. To elucidate possible causes of the MI, here we present three high-resolution, precisely dated oxygen-isotope records of stalagmites from Qingtian and Hulu Caves in China, reflecting changes in the East Asian summer monsoon (EASM) then. Based on well-established chronologies using precise 230Th dates and annual-band counting results, the two-cave δ18O profiles of ~ 7-yr resolution match well at decadal timescales. Both of the two-cave records document an abrupt weakening (2‰ of δ18O rise within 20 yr) in the EASM at ~ 16.1 ka, coinciding with the transition of the two-phased MI reconstructed from New Mexico's Lake Estancia. Our results indicate that the maximum southward displacement of the Intertropical Convergence Zone and associated southward shift of polar jet stream may generate this two-phase feature of the MI during that time. We also discover a linear relationship among decreasing EASM intensity, rising atmospheric CO2 and weakening Atlantic Meridional Overturning Circulation between the MI and Younger Dryas episodes, suggesting a strong coupling of atmospheric/oceanic circulations in response to the millennial-scale forcing, which in turn regulates global climate changes and carbon cycles.

  2. Some characteristics of very heavy rainfall over Orissa during summer monsoon season

    Indian Academy of Sciences (India)

    M Mohapatra; U C Mohanty

    2005-02-01

    Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥ 125mm) over Orissa during summer monsoon season (June-September) by analysing 20 years (1980-1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rain-fall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the

  3. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    Science.gov (United States)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  4. The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times

    Institute of Scientific and Technical Information of China (English)

    LU Ri-Yu; LI Chao-Fan; Se-Hwan YANG; Buwen DONG

    2012-01-01

    Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.

  5. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YU; Xuefeng; ZHOU; Weijian; Lars; G.Franzen; XIAN; Feng; CHENG; Peng; A.J.; Tim; Jull

    2006-01-01

    The variations of summer and winter monsoons during the Holocene in the eastern Tibetan Plateau are shown to follow two basic models based on the reliable dating and high-resolution monsoon proxies determinations, one being a synchronous model in that both summer and winter monsoons are strengthening or decreasing, and the other to form a complementary pattern. These two different patterns evenly interact with each other on different time scales and together compose a complicated monsoon climatic model in this region. The climatic condition integrated by winter and summer monsoons is synchronous to the global pattern, which also shows the instability of the Holocene climate on centennial-millennial timescale. The abrupt monsoon event in about 6.2 ka cal.BP is much more severe than that in ca. 8.0 ka cal. BP, which indicates the regional character of the Asian monsoon and that the Asian monsoon climate is indeed a window on the global climate system.

  6. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    Directory of Open Access Journals (Sweden)

    Subimal Ghosh

    Full Text Available India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  7. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    Science.gov (United States)

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  8. Mutual interaction between the West African Monsoon on the summer Mediterranean climate

    Science.gov (United States)

    Gaetani, M.; Baldi, M.; Dalu, G. A.

    2009-04-01

    Many studies have show that the West African Monsoon (WAM) is teleconnected with neighbouring regions, as the Mediterranean (Med) basin and the Tropical Atlantic, but also it is sensitive to the perturbations occurring even in remote regions, as the Indian sub-continent and the Tropical Pacific, these teleconnections being active on several time-scales, from intraseasonal to multidecadal. The WAM plays also an active role in the regional atmospheric circulation, inducing significant changes in rainfall, moisture, temperature, and wind distribution up to the North Africa. Within this framework, recent works were focused on the teleconnection between WAM and Med. WAM is strengthened by the north-easterly advection of moisture from the Med Sea, and, since the subsiding monsoonal air often invades the Med, there is a 2-way interaction between WAM and Med summer circulation. We study these interactions, applying SVD analysis to global NCEP Reanalysis and to rainfall data from CMAP, during the extended monsoonal season from May to October, on interannual and on intraseasonal time-scale. Dynamical features are explored using composite analysis, focusing on the role of this connection in the heat waves occurrence in the Med. We find that a strong WAM intensifies the Hadley meridional circulation, with a strengthening of the north Atlantic anticyclone and a weakening, even blocking, of the westerly flow in the Med. A deep inland penetration of WAM produces a northern shift of the Libyan anticyclone, with subsidence and high pressure affecting mainly the western Med. The positive feedback is due to the intensification of north-easterly flow from the eastern Med, which, reaching the Sahara desert, intensifies the intertropical front, favouring abundant monsoonal precipitation because of the added moist air.

  9. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    Science.gov (United States)

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  10. Orographic control of Cold Pool precipitation during Indian Summer Monsoon Season

    Science.gov (United States)

    PV, Arushi; Nanjundiah, Ravi S.; Chakraborty, Arindam

    2015-04-01

    Rainfall during June-September, termed as Indian Summer Monsoon (ISM) season, contributes to more than 80% of the annual precipitation over the country. Although there exists a spatial variability in the intensity of seasonal mean rainfall over India and its surroundings, most of the domain experience rainfall with intensity higher than 6 mm/day. However, a region on south Bay of Bengal along east coast of Indian peninsula (termed as Cold Pool, or CP, in this study) experience very low rain intensity during summer. The atmospheric conditions over the region are favorable for convection and sea surface temperature(SST) is maintained well above the threshold value for convection (28 degree Celsius). The mean vorticity above boundary layer is positive with magnitude comparable to that over the monsoon trough. However, even after having all favorable conditions for convection to occur, the region receives very less rainfall throughout the monsoon season. We investigate the reason of this paradox using an atmospheric general circulation model (AGCM) with perturbed simulations. We carry out simulations with varying height of western Ghat mountains (from 0 to 2 times the height of the present height) in the model and investigate its influence on the CP precipitation. We find that there is a linear relationship between the height of WG and precipitation over CP. Decrease in WG height reduces the inhibition of convection that prevails over CP. This was on account of increase in the moisture convergence in the boundary layer and reducing descend related to mountain lee wave over the region.

  11. Intraseasonal Variability of the Indian Summer Monsoon in the Regional Climate Model COSMO-CLM

    Science.gov (United States)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2015-04-01

    The regional climate model COSMO-CLM driven by ERA-Interim reanalysis data with a spatial resolution of 55km is used to simulate observed features of the intraseasonal variability of the Indian summer monsoon (ISM) during the period 1979 until 2011. One of these features is the northward propagation of the monsoon intraseasonal oscillations. We find, that the temporal evolution of this oscillation between model and observation is in good agreement, but the strength is less well simulated. Additionally, the models capability to simulate observed dry and wet events on a weekly time scale is investigated using the standardized precipitation index. In general, the model is capable to simulate these events with a similar magnitude at the same time, but we find a higher ability for dry compared to wet events. We hypothesize this is related to differences in the atmospheric circulation during dry and wet events. Analyses show, that dry events are characterized by a cyclonic vortex over India as well as an anti-cyclonic vortex over Pakistan region in 500hPa, whereas wet events are characterized by an anti-cyclonic vortex over India, only. It is found that COSMO-CLM has a higher ability to simulate the observed anomalous circulation over Pakistan region compared to observed anomalous circulation patterns over India. Overall, this study shows that the current configuration of COSMO-CLM is able to simulate key features of the intraseasonal variability of the Indian summer monsoon. Thus, under consideration of its limitations, COSMO-CLM is suitable to investigate possible changes of the intraseasonal variability of ISM under changed climate conditions.

  12. A cold pool formation in the Lakshadweep Sea during Indian summer monsoon

    Science.gov (United States)

    Zacharia, Johnson; Rajan, Chungath Kuttan; Jayaram, Chiranjivi

    2012-06-01

    In Lakshadweep Sea, the distribution of observed sea surface temperature (SST) during summer monsoon season (June-September) shows the presence of a distinct cold pool (SST Mini Cold Pool. With the progress of the season, LCP intensifies, spread radially outwards and shows a westward spread during late July. Maximum intensity and radial spread are attained during July. By the end of August, LCP extends northward along the coast up to 13° N, and by September, it gets completely dissipated. Within the LCP, the thermocline exhibits pronounced shoaling compared to the adjacent regions. The intensity, duration, and spread of LCP showed annual variations in each summer monsoon during 1998-2005 and owes its origin to upwelling produced by uplift of poleward undercurrent induced by an elevated bathymetry in the presence of a seamount. The mechanism for the intensification is thought to be due to the combined action of Ekman pumping due to positive wind stress curl, eddy-induced upwelling due to the Lakshadweep low, and the intensification of the poleward undercurrent during the season. West- and northward spreads of LCP are attributed to the westward movement of Lakshadweep Low and the northerly spreading and intensification of positive wind stress curl, respectively. The mechanisms that govern this phenomenon are thoroughly examined.

  13. Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations

    Science.gov (United States)

    Wonsick, M. M.; Pinker, R. T.; Ma, Y.

    2014-08-01

    The "elevated heat pump" (EHP) hypothesis has been a topic of intensive research and controversy. It postulates that aerosol-induced anomalous mid- and upper-tropospheric warming in the Himalayan foothills and above the Tibetan Plateau leads to an early onset and intensification of Asian monsoon rainfall. This finding is primarily based on results from a NASA finite-volume general circulation model run with and without radiative forcing from different types of aerosols. In particular, black carbon emissions from sources in northern India and dust from Western China, Afghanistan, Pakistan, the Thar Desert, and the Arabian Peninsula drive the modeled anomalous heating. Since the initial discussion of the EHP hypothesis in 2006, the aerosol-monsoon relationship has been investigated using various modeling and observational techniques. The current study takes a novel observational approach to detect signatures of the "elevated heat pump" effect on convection, precipitation, and temperature for contrasting aerosol content years during the period of 2000-2012. The analysis benefits from unique high-resolution convection information inferred from Meteosat-5 observations as available through 2005. Additional data sources include temperature data from the NCEP/NCAR Reanalysis and the European Reanalysis (ERA-Interim) precipitation data from the Global Precipitation Climatology Project (GPCP), aerosol optical depth from the Multi-angle Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol optical properties from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) aerosol reanalysis. Anomalous upper-tropospheric warming and the early onset and intensification of the Indian monsoon were not consistently observed during the years with high loads of absorbing aerosols. Possibly, model assumptions and/or unaccounted semi-direct aerosol effects caused the disagreement between observed and hypothesized

  14. East Asian Monsoon and paleoclimatic data analysis: a vegetation point of view

    Directory of Open Access Journals (Sweden)

    J. Guiot

    2008-06-01

    Full Text Available First we review several syntheses of paleodata (pollen, lake-levels showing the climate variations in China and Mongolia from the last glacial maximum to Present and in particular the precipitation increase at mid Holocene related to enhanced monsoon. All these results concur to a much enhanced monsoon on most of China during the first half of the Holocene. Second we present, in some details, a temporal study of a core (Lake Bayanchagan, Inner Mongolia located in an arid region at the edge of the present East Asian Monsoon (EAM influence and then sensitive to climatic change. This study involves pollen data together with other macro-remains and stable isotope curve to obtain a robust climate reconstruction. This study shows a long wet period between 11 000 and 5000 years BP divided in two parts, a warmer one from 11 000 and 8000 (marked by large evapotranspiration and a cooler one more favourable to forest expansion. Third, we present a spatial study based on pollen data only and covering all China and Mongolia at 6000 years BP, but using a mechanistic modelling approach, in an inverse mode. It has the advantage to take into account environmental context different from the present one (lower atmospheric CO2, different seasonality. This study shows temperature generally cooler than present one in southern China, but a significant warming was found over Mongolia, and a slightly higher in northeast China. Precipitation was generally higher than today in southern, northeast China, and northern Mongolia, but lower or similar to today in northwest China and north China. Enhanced EAM was then found in the southern half of China and in northeast China.

  15. Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    of numerous monsoon indices and General Circulation Models (GCM) show that SW monsoon was strong during interglacials (warm periods) and weak during glacials (cold periods). Spectral analysis of detailed time series of monsoon indices reveal that the intensity...

  16. Impacts of the East Asian monsoon on lower tropospheric ozone over coastal South China

    International Nuclear Information System (INIS)

    The impact of the East Asian monsoon (EAM) on climatology and interannual variability of tropospheric ozone (O3) over the coastal South China was investigated by analyzing 11 years of ozonesonde data over Hong Kong with the aid of Lagrangian dispersion modeling of carbon monoxide and calculation of an EAM index. It was found that the seasonal cycle of O3 in the lower troposphere is highly related to the EAM over the study region. Ozone enhancements in the free troposphere are associated with the monsoon-induced transport of pollutants of continental anthropogenic and biomass burning origins. Lower tropospheric O3 levels showed high interannual variability, with an annual averaged amplitude up to 61% of averaged concentrations in the boundary layer (0–1 km altitudes) and 49% below 3 km altitude. In spring and autumn, the interannual variability in boundary layer O3 levels was predominately influenced by the EAM intensity, with high O3 mixing ratios associated with northeasterly circulation anomalies. (letter)

  17. Correcting the Science Record: Direct Stratospheric Injection vs. Asian Monsoon and the Solar Escalator

    Science.gov (United States)

    Fromm, M. D.; Nedoluha, G. E.; Kablick, G. P.

    2012-12-01

    Two entries in the literature in 2012 make provocative but unsupportable claims regarding pollutant pathways from the Earth to the stratosphere. One claims the 13 June 2011 Nabro volcano (Eritrea) emitted gases and particles into the troposphere, and these constituents reached the stratosphere in great abundance via the Asian Monsoon circulation [Bourassa et al., 2012]. The other claims that smoke from the Black Saturday fire storms (Australia) was emitted into the troposphere, and was lofted ~15 km into the stratosphere by solar-induced diabatic heating [de Laat et al., 2012]. In both cases the stratospheric plumes attributed to these events spread around the globe and lasted for months. We will show that in both cases the postulated pathways are incorrect; the correct pathway is a direct convective injection by volcanic eruption and pyrocumulonimbus (pyroCb), respectively. We will present satellite data that will unambiguously reveal multiple, distinct stratospheric volcano-convection columns from Nabro connected to height-resolved volcanic SO2 and sulfate particles. In the case of Black Saturday we will characterize the pyroCb columns with ground-based radar and satellite imagery. The young pyroCb plume in the stratosphere will be characterized with a synergistic analysis of several NASA A-Train passive and active remote sensors. We will discuss the implications of our findings with respect to how satellite-based data are best used for tracking and characterizing point source injection plumes in the stratosphere. Bourassa et al. (2012), Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport, Science, 337, 78, DOI: 10:1126/Science.1219371 de Laat, et al. (2012), A solar escalator: Observational evidence of the self-lifting of smoke and aerosols by absorption of solar radiation in the February 2009 Australian Black Saturday plume, J. Geophys. Res., 117, D04204, doi:10.1029/2011JD017016.

  18. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India

    Science.gov (United States)

    Pai, D. S.; Bhate, Jyoti; Sreejith, O. P.; Hatwar, H. R.

    2011-01-01

    The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler-Hendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly

  19. The Indian Summer Monsoon onset revisited: new approach based on the analysis of historical wind observations

    Science.gov (United States)

    Ordoñez, Paulina; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; Garcia-Herrera, Ricardo; Vega, Inmaculada; Gómez, Francisco de Paula

    2016-04-01

    The Indian Summer Monsoon onset is one of the meteorological events most anticipated in the world. Due to its relevance for the population, the India Meteorological Department has dated the onset over the southern tip of the Indian Peninsula (Kerala) since 1901. The traditional method to date the onset was based in the judgment of skilled meteorologist and because of this, the method was considered subjective and not adequate for the study of long-term changes in the onset. A new method for determining the monsoon onset based solely on objective criteria has been in use since 2006. Unfortunately, the new method relies -among other variables- on OLR measurements. This requirement impedes the construction of an objective onset series before the satellite era. An alternative approach to establish the onset by objective methods is the use of the wind field. During the last decade, some works have demonstrated that the changes in the wind direction in some areas of the Indian Ocean can be used to determine the monsoon onset rather precisely. However, this method requires precise wind observations over a large oceanic area which has limited the periods covered for such kind of indices to those of the reanalysis products. In this work we present a new approach to track the Indian monsoon onset based solely on historical wind direction measurements taken onboard ships. Our new series provides an objective record of the onset since the last decade of the 19th century and perhaps more importantly, it can incorporate any new historical wind record not yet known in order to extend the series length. The new series captures quite precisely the rapid precipitation increase associated to the monsoon onset, correlates well with previous approaches and it is robust against anomalous (bogus) onsets. Although no significant trends in the onset date were detected, a tendency to later than average onsets during the 1900-1925 and 1970-1990 periods and earlier than average onsets between

  20. Variability of Moisture Sources and Moisture Transport in the East Asian Monsoon System

    Science.gov (United States)

    Fremme, Astrid; Sodemann, Harald

    2016-04-01

    The rainfall of the East Asian Monsoon is of key importance for livelihoods in the densely populated area of China, Japan and Korea. The interplay of many factors, including land surface processes, makes monsoon precipitation difficult to predict. To contribute to improved precipitation prediction we investigate the atmospheric mechanisms importing moisture to the region. In previous studies moisture transport has mainly been analysed by examining a combination of temperature, pressure, winds and water vapour content. However this has been done without linking precipitation to its moisture sources directly. In this project we use the Lagrangian particle dispersion model FLEXPART and the diagnostic tool WaterSip to analyse ERA Interim reanalysis data to obtain a link between precipitation and its moisture sources. The total atmospheric mass is subdivided into millions air parcels, which are traced backwards for 20 days for each rainfall event in the 34 year ERA-Interim period. Specific humidity changes are interpreted as evaporation and precipitation in the area beneath the parcel with the help of a sophisticated accounting method related to target precipitation. Results on the relationship between source and sink areas reflect changes in the conditions of the source regions and in moisture transport. We investigate the moisture transport mechanisms for both seasonal and inter-annual variations during the study period 1979-2013. Preliminary results show that the sources for precipitation in the Yangtze River Valley (YRV) in China have a clear seasonal cycle in terms of location and evaporation conditions. Land areas outside the YRV Region contribute most of the moisture. The second largest source is inside the YRV region itself. For monthly means the sum of all direct oceanic sources rarely exceeds 20%. Recycling of moisture from land surfaces outside the target regions therefore seems to play a pivotal role in the East Asian Monsoon's moisture budget. Contrasting

  1. Relationship of the South Asian Monsoon and Regional Drought with Distinct Equatorial Pacific SST Patterns on Interannual and Decadal Timescales

    Science.gov (United States)

    Hernandez, M.; Ummenhofer, C.; Anchukaitis, K. J.

    2014-12-01

    The Asian monsoon system influences the lives of over 60% of the planet's population, with widespread socioeconomic effects resulting from weakening or failure of monsoon rains. Spatially broad and temporally extended drought episodes have been known to dramatically influence human history, including the Strange Parallels Drought in the mid-18th century. Here, we explore the dynamics of sustained monsoon failure using the Monsoon Asia Drought Atlas - a high-resolution network of hydro-climatically sensitive tree-ring records - and a 1300-year pre-industrial control run of the Community Earth System Model (CESM). Spatial drought patterns in the instrumental and model-based Palmer Drought Severity Index (PDSI) during years with extremely weakened South Asian monsoon are similar to those reconstructed during the Strange Parallels Drought in the MADA. We further explore how the large-scale Indo-Pacific climate during weakened South Asian monsoon differs between interannual and decadal timescales. The Strange Parallels Drought pattern is observed during March-April-May primarily over Southeast Asia, with decreased precipitation and reduced moisture fluxes, while anomalies in June-July-August are confined to the Indian subcontinent during both individual and decadal events. Individual years with anomalous drying exhibit canonical El Niño conditions over the eastern equatorial Pacific and associated shifts in the Walker circulation, while decadal events appear to be related to anomalous warming around the dateline in the equatorial Pacific, typical of El Niño Modoki events. The results suggest different dynamical processes influence drought at different time scales through distinct remote ocean influences.

  2. Confronting the "Indian summer monsoon response to black carbon aerosol" with the uncertainty in its radiative forcing and beyond

    Science.gov (United States)

    Kovilakam, Mahesh; Mahajan, Salil

    2016-07-01

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. We analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. The increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.

  3. Role of low level flow on the summer monsoon rainfall over the Indian subcontinent during two contrasting monsoon years

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.; RameshKumar, M.R.

    ) monsoon conditions. The low level flow and moisture transport were studied using the surface pressure, surface winds, 850 mb winds and integrated columnar precipitable water during different periods ranging from break to very active conditions...

  4. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    Science.gov (United States)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  5. Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2

    Science.gov (United States)

    Shukla, Ravi P.; Huang, Bohua

    2016-06-01

    The capability of the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) in simulating the Indian summer monsoon (ISM) is evaluated in the context of the global monsoon in the Indo-Pacific domain and its variability. Although the CFSv2 captures the ISM spatial structure qualitatively, it demonstrates a severe dry bias over the Indian subcontinent. The weaker model monsoon may be related to an excessive surface convergence over the equatorial Indian Ocean, which reduces the moisture transport toward the Indian subcontinent. The excessively low equatorial pressure is in turn a part of a tropical-wise bias with the largest errors in the central and eastern equatorial Pacific associated with the cold sea surface temperature bias and an overly strong inter-tropical convergence zone. In this sense, the model bias in the tropical Pacific influences those in the Indian Ocean-ISM region substantially. The leading mode of the June-September averaged CFSv2 rainfall anomalies covering the ISM and its adjacent oceanic regions is qualitatively similar to that of the observations, characterized by a spatial pattern of strong anomalies over either side of the Indian peninsula as well as center of opposite sign over Myanmar. However, the model fails to reproduce the northward expansion of rainfall anomalies from Myanmar, leading to opposite anomalies over northeast India and Himalayas region. A substantial amount of the anomalous fluctuation is attributed to the El Niño and the Southern Oscillation (ENSO), although the model variability depends more strongly on ENSO. The active regional influences in the observations may contribute to its baroclinic vertical structure of the geopotential height anomalies in the ISM region, compared with the predominantly barotropic one in CFSv2. Model ENSO deficiencies also affects its ISM simulation significantly.

  6. Analysis and evaluation of Observing System Simulation Experiments (OSSEs) forecast data for Indian summer monsoon

    Science.gov (United States)

    Deshpande, Medha; Mukhopadhyay, P.; Masutani, Michiko; Ma, Zaizhong; Riishojgaard, Lars Peter; Hardesty, Michael; Emmitt, Dave; Krishnamurti, T. N.; Goswami, B. N.

    2016-05-01

    An attempt is made here to evaluate the skill of forecast during boreal summer monsoon regime over the Indian region using the Observation Simulation System Experiment (OSSE) with Doppler Wind LIDAR (DWL) onboard International Space Station (ISS), assimilated in the initial condition. Through various techniques such as pattern correlation, root mean square error etc, we found that there is some positive impact of assimilating the DWL data on the forecast particularly at the lower tropospheric level. Impact on lowering the RMSE is seen for wind fields in the 850 and 500 hPa over Indian domain but not much impact is seen over larger domain. The moisture field and cloud also show marginal impact due to assimilation of DWL. This indicates that possibly due to lower spatial resolution of DWL data and more data gap over Indian and surrounding oceanic region, the impact on forecast is less. However, it shows the promise that monsoon being a convectively coupled system; increase in spatial data by DWL may better resolve the low level wind and subsequently the low level shear which is important for convection trigger in boundary layer.

  7. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    Science.gov (United States)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  8. Lack of Dependence of Indian Summer Monsoon Rainfall Extremes on Temperature: An Observational Evidence

    Science.gov (United States)

    Vittal, H.; Ghosh, Subimal; Karmakar, Subhankar; Pathak, Amey; Murtugudde, Raghu

    2016-08-01

    The intensification of precipitation extremes in a warming world has been reported on a global scale and is traditionally explained with the Clausius-Clapeyron (C-C) relation. The relationship is observed to be valid in mid-latitudes; however, the debate persists in tropical monsoon regions, with the extremes of the Indian Summer Monsoon Rainfall (ISMR) being a prime example. Here, we present a comprehensive study on the dependence of ISMR extremes on both the 2 m surface air temperature over India and on the sea surface temperature over the tropical Indian Ocean. Remarkably, the ISMR extremes exhibit no significant association with temperature at either spatial scale: neither aggregated over the entire India/Tropical Indian Ocean area nor at the grid levels. We find that the theoretical C-C relation overestimates the positive changes in precipitation extremes, which is also reflected in the Coupled Model Intercomparison Project 5 (CMIP5) simulations. We emphasize that the changing patterns of extremes over the Indian subcontinent need a scientific re-evaluation, which is possible due to availability of the unique long-term in-situ data. This can aid bias correction of model projections of extremes whose value for climate adaptation can hardly be overemphasized, especially for the developing tropical countries.

  9. Weakening of Indian Summer Monsoon Rainfall due to Changes in Land Use Land Cover.

    Science.gov (United States)

    Paul, Supantha; Ghosh, Subimal; Oglesby, Robert; Pathak, Amey; Chandrasekharan, Anita; Ramsankaran, Raaj

    2016-08-24

    Weakening of Indian summer monsoon rainfall (ISMR) is traditionally linked with large-scale perturbations and circulations. However, the impacts of local changes in land use and land cover (LULC) on ISMR have yet to be explored. Here, we analyzed this topic using the regional Weather Research and Forecasting model with European Center for Medium range Weather Forecast (ECMWF) reanalysis data for the years 2000-2010 as a boundary condition and with LULC data from 1987 and 2005. The differences in LULC between 1987 and 2005 showed deforestation with conversion of forest land to crop land, though