WorldWideScience

Sample records for asian h5n1 highly

  1. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    Science.gov (United States)

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  2. Avian influenza A (H5N1)

    NARCIS (Netherlands)

    de Jong, Menno D.; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited

  3. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    Science.gov (United States)

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  4. Migration of waterfowl in the east asian flyway and spatial relationship to HPAI H5N1 outbreaks

    Science.gov (United States)

    Takekawa, John Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; Douglas, David C.; Muzaffar, S.B.; Ji, W.

    2010-01-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  5. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    Science.gov (United States)

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  6. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian H5N1 high pathogenicity avian influenza.

    Science.gov (United States)

    Swayne, David E

    2006-10-01

    The H5N1 highly pathogenic (HP) avian influenza (AI) epizootic began with reports of mortality from China in 1996 and, by June 2005, caused outbreaks of disease in nine additional Asian countries, affecting or resulting in culling of over 200 million birds. Vaccines can be used in programs to prevent, manage, or eradicate AI. However, vaccines should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance and diagnostics, education, and elimination of infected poultry. Potent AI vaccines, when properly used, can prevent disease and death, increase resistance to infection, reduce field virus replication and shedding, and reduce virus transmission, but do not provide "sterilizing immunity" in the field; i.e., vaccination does not completely prevent AI virus replication. Inactivated AI vaccines and a recombinant fowlpox-H5-AI vaccine are licensed and used in various countries. Vaccines have been shown to protect chickens, geese, and ducks from H5 HPAI. The inactivated vaccines prevented disease and mortality in chickens and geese, and reduced the ability of the field virus to replicate in gastrointestinal and respiratory tracts. Although the Asian H5N1 HPAI virus did not cause disease or mortality in ducks, the use of inactivated vaccine did reduce field virus replication in the respiratory and intestinal tracts. The inactivated vaccine protected geese from morbidity and mortality, and reduced challenge virus replication. The recombinant fowlpox-H5-AI vaccine has provided similar protection, but the vaccine is used only in chickens and with the advantage of application at 1 day of age in the hatchery.

  7. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    Directory of Open Access Journals (Sweden)

    Scott H. Newman

    2013-09-01

    Full Text Available Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea, a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  8. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  9. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    Science.gov (United States)

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Efficacy of two H5N9-inactivated vaccines against challenge with a recent H5N1 highly pathogenic avian influenza isolate from a chicken in Thailand.

    Science.gov (United States)

    Bublot, Michel; Le Gros, François-Xavier; Nieddu, Daniela; Pritchard, Nikki; Mickle, Thomas R; Swayne, David E

    2007-03-01

    The objective of this study was to compare the efficacy of two avian influenza (AI) H5-inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9; H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9; H5N9-It). Three-week-old specific pathogen-free chickens were vaccinated once and challenged 3 wk later with a H5N1 highly pathogenic AI (HPAI) virus isolated from a chicken in Thailand in 2004. All unvaccinated challenged birds died within 2 days, whereas 90% and 100% of chickens vaccinated with H5N9-WI and H5N9-It, respectively, were protected against morbidity and mortality. Both vaccines prevented cloacal shedding and significantly reduced oral shedding of the challenge HPAI virus. Additional chickens (vaccinated or unvaccinated) were placed in contact with the directly challenged birds 18 hr after challenge. All unvaccinated chickens in contact with unvaccinated challenged birds died within 3 days after contact, whereas unvaccinated chickens in contact with vaccinated challenged birds either showed a significantly delayed mortality or did not become infected. All vaccinated contacts were protected against clinical signs, and most chickens did not shed detectable amount of HPAI virus. Altogether, these data indicate that both vaccines protected very well against morbidity and mortality and reduced or prevented shedding induced by direct or contact exposure to Asian H5N1 HPAI virus.

  11. Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns

    Directory of Open Access Journals (Sweden)

    Yali Si

    2009-11-01

    Full Text Available The global spread of highly pathogenic avian influenza H5N1 in poultry, wild birds and humans, poses a significant pandemic threat and a serious public health risk. An efficient surveillance and disease control system relies on the understanding of the dispersion patterns and spreading mechanisms of the virus. A space-time cluster analysis of H5N1 outbreaks was used to identify spatio-temporal patterns at a global scale and over an extended period of time. Potential mechanisms explaining the spread of the H5N1 virus, and the role of wild birds, were analyzed. Between December 2003 and December 2006, three global epidemic phases of H5N1 influenza were identified. These H5N1 outbreaks showed a clear seasonal pattern, with a high density of outbreaks in winter and early spring (i.e., October to March. In phase I and II only the East Asia Australian flyway was affected. During phase III, the H5N1 viruses started to appear in four other flyways: the Central Asian flyway, the Black Sea Mediterranean flyway, the East Atlantic flyway and the East Africa West Asian flyway. Six disease cluster patterns along these flyways were found to be associated with the seasonal migration of wild birds. The spread of the H5N1 virus, as demonstrated by the space-time clusters, was associated with the patterns of migration of wild birds. Wild birds may therefore play an important role in the spread of H5N1 over long distances. Disease clusters were also detected at sites where wild birds are known to overwinter and at times when migratory birds were present. This leads to the suggestion that wild birds may also be involved in spreading the H5N1 virus over short distances.

  12. Overview of incursions of Asian H5N1 subtype highly pathogenic avian influenza virus into Great Britain, 2005-2008.

    Science.gov (United States)

    Alexander, Dennis J; Manvell, Ruth J; Irvine, Richard; Londt, Brandon Z; Cox, Bill; Ceeraz, Vanessa; Banks, Jill; Browna, Ian H

    2010-03-01

    Since 2005 there have been five incursions into Great Britain of highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 related to the ongoing global epizootic. The first incursion occurred in October 2005 in birds held in quarantine after importation from Taiwan. Two incursions related to wild birds: one involved a single dead whooper swan found in March 2006 in the sea off the east coast of Scotland, and the other involved 10 mute swans and a Canada goose found dead over the period extending from late December 2007 to late February 2008 on or close to a swannery on the south coast of England. The other two outbreaks occurred in commercial poultry in January 2007 and November 2007, both in the county of Suffolk. The first of these poultry outbreaks occurred on a large turkey farm, and there was no further spread. The second outbreak occurred on a free-range farm rearing turkeys, ducks, and geese and spread to birds on a second turkey farm that was culled as a dangerous contact. Viruses isolated from these five outbreaks were confirmed to be Asian H5N1 HPAI viruses; the quarantine outbreak was attributed to a clade 2.3 virus and the other four to clade 2.2 viruses. This article describes the outbreaks, their control, and the possible origins of the responsible viruses.

  13. Pathogenesis of Highly Pathogenic Avian Influenza (HPAI) A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    Löndt , Brandon Z.; Nunez , Alejandro; Banks , Jill; Nili , Hassan; Johnson , Linda K; Alexander , Dennis

    2008-01-01

    Abstract Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about the dissemination of this H5N1 within the organs and the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks...

  14. Protection against H5N1 Highly Pathogenic Avian and Pandemic (H1N1) 2009 Influenza Virus Infection in Cynomolgus Monkeys by an Inactivated H5N1 Whole Particle Vaccine

    Science.gov (United States)

    Nakayama, Misako; Shichinohe, Shintaro; Itoh, Yasushi; Ishigaki, Hirohito; Kitano, Mitsutaka; Arikata, Masahiko; Pham, Van Loi; Ishida, Hideaki; Kitagawa, Naoko; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Ichikawa, Takaya; Tsuchiya, Hideaki; Nakamura, Shinichiro; Le, Quynh Mai; Ito, Mutsumi; Kawaoka, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2013-01-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3), in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1) 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3. PMID:24376571

  15. Protection against H5N1 highly pathogenic avian and pandemic (H1N1 2009 influenza virus infection in cynomolgus monkeys by an inactivated H5N1 whole particle vaccine.

    Directory of Open Access Journals (Sweden)

    Misako Nakayama

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV infection has been reported in poultry and humans with expanding clade designations. Therefore, a vaccine that induces immunity against a broad spectrum of H5N1 viruses is preferable for pandemic preparedness. We established a second H5N1 vaccine candidate, A/duck/Hokkaido/Vac-3/2007 (Vac-3, in our virus library and examined the efficacy of inactivated whole particles of this strain against two clades of H5N1 HPAIV strains that caused severe morbidity in cynomolgus macaques. Virus propagation in vaccinated macaques infected with either of the H5N1 HPAIV strains was prevented compared with that in unvaccinated macaques. This vaccine also prevented propagation of a pandemic (H1N1 2009 virus in macaques. In the vaccinated macaques, neutralization activity, which was mainly shown by anti-hemagglutinin antibody, against H5N1 HPAIVs in plasma was detected, but that against H1N1 virus was not detected. However, neuraminidase inhibition activity in plasma and T-lymphocyte responses in lymph nodes against H1N1 virus were detected. Therefore, cross-clade and heterosubtypic protective immunity in macaques consisted of humoral and cellular immunity induced by vaccination with Vac-3.

  16. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Science.gov (United States)

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  17. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    Directory of Open Access Journals (Sweden)

    Charles Nfon

    Full Text Available There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI. In addition, heterologous cell mediated immunity (CMI was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  18. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    Science.gov (United States)

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  19. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  20. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    Science.gov (United States)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  1. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    Science.gov (United States)

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  2. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Science.gov (United States)

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  3. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    Science.gov (United States)

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  4. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.

  5. Avian Influenza A (H5N1)

    Centers for Disease Control (CDC) Podcasts

    2009-05-27

    In this podcast, CDC's Dr. Tim Uyeki discusses H5N1, a subtype of influenza A virus. This highly pathogenic H5N1 virus doesn't usually infect people, although some rare infections with H5N1 viruses have occurred in humans. We need to use a comprehensive strategy to prevent the spread of H5N1 virus among birds, including having human health and animal health work closely together.  Created: 5/27/2009 by Emerging Infectious Diseases.   Date Released: 5/27/2009.

  6. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    Directory of Open Access Journals (Sweden)

    Scott H Newman

    Full Text Available Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1 requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp. has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer and in habitats (areas of natural vegetation where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks at or near their breeding grounds.

  7. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    Science.gov (United States)

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  8. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    Science.gov (United States)

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  9. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    Science.gov (United States)

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  10. Psychosocial effects assocPsychosocial effects associated with highly pathogenic avian influenza (H5N1 in Nigeriaiated with highly pathogenic avian influenza (H5N1 in Nigeria

    Directory of Open Access Journals (Sweden)

    Chiara Rafanelli

    2010-12-01

    Full Text Available Highly pathogenic avian influenza H5N1 (HPAI H5N1 infected poultry in Nigeria in 2006. The outbreaks caused significant economic losses and had serious zoonotic repercussions. The outbreaks have also had psychosocial effects on Nigerian farmers. To date, empirical data on the effect of outbreaks on humans are scarce. In this study, field data on HPAI H5N1 in Nigeria were analysed. Although only one human case leading to death was reported in Nigeria, the fact that HPAI H5N1 caused a human death created a disruption in social order and in the well-being of farmers (stress, altered livelihood and trauma and affected the rural economy. The implication of the above on health communication, the importance of successful control measures in poultry and policy implementation are stressed. Further studies are encouraged.

  11. Rapid and highly informative diagnostic assay for H5N1 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Nader Pourmand

    Full Text Available A highly discriminative and information-rich diagnostic assay for H5N1 avian influenza would meet immediate patient care needs and provide valuable information for public health interventions, e.g., tracking of new and more dangerous variants by geographic area as well as avian-to-human or human-to-human transmission. In the present study, we have designed a rapid assay based on multilocus nucleic acid sequencing that focuses on the biologically significant regions of the H5N1 hemagglutinin gene. This allows the prediction of viral strain, clade, receptor binding properties, low- or high-pathogenicity cleavage site and glycosylation status. H5 HA genes were selected from nine known high-pathogenicity avian influenza subtype H5N1 viruses, based on their diversity in biologically significant regions of hemagglutinin and/or their ability to cause infection in humans. We devised a consensus pre-programmed pyrosequencing strategy, which may be used as a faster, more accurate alternative to de novo sequencing. The available data suggest that the assay described here is a reliable, rapid, information-rich and cost-effective approach for definitive diagnosis of H5N1 avian influenza. Knowledge of the predicted functional sequences of the HA will enhance H5N1 avian influenza surveillance efforts.

  12. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    Science.gov (United States)

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P study demonstrates the suboptimal protection with the rHVT-H5/2.2 vaccine given alone in Pekin ducks against H5N1 HPAI viruses and only a minor additive effect on virus shedding reduction when used with an inactivated vaccine in a

  13. Evolution of highly pathogenic avian H5N1 influenza viruses

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Catherine A [Los Alamos National Laboratory; Green, Margaret A [Los Alamos National Laboratory

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data sets used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging

  14. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Nicholas J Negovetich

    2011-04-01

    Full Text Available Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94% were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%, and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.

  15. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    Science.gov (United States)

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  16. Oligomeric recombinant H5 HA1 vaccine produced in bacteria protects ferrets from homologous and heterologous wild-type H5N1 influenza challenge and controls viral loads better than subunit H5N1 vaccine by eliciting high-affinity antibodies.

    Science.gov (United States)

    Verma, Swati; Dimitrova, Milena; Munjal, Ashok; Fontana, Juan; Crevar, Corey J; Carter, Donald M; Ross, Ted M; Khurana, Surender; Golding, Hana

    2012-11-01

    Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.

  17. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    Science.gov (United States)

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  18. Comparison of temporal and spatial dynamics of seasonal H3N2, pandemic H1N1 and highly pathogenic avian influenza H5N1 virus infections in ferrets.

    Directory of Open Access Journals (Sweden)

    Judith M A van den Brand

    Full Text Available Humans may be infected by different influenza A viruses--seasonal, pandemic, and zoonotic--which differ in presentation from mild upper respiratory tract disease to severe and sometimes fatal pneumonia with extra-respiratory spread. Differences in spatial and temporal dynamics of these infections are poorly understood. Therefore, we inoculated ferrets with seasonal H3N2, pandemic H1N1 (pH1N1, and highly pathogenic avian H5N1 influenza virus and performed detailed virological and pathological analyses at time points from 0.5 to 14 days post inoculation (dpi, as well as describing clinical signs and hematological parameters. H3N2 infection was restricted to the nose and peaked at 1 dpi. pH1N1 infection also peaked at 1 dpi, but occurred at similar levels throughout the respiratory tract. H5N1 infection occurred predominantly in the alveoli, where it peaked for a longer period, from 1 to 3 dpi. The associated lesions followed the same spatial distribution as virus infection, but their severity peaked between 1 and 6 days later. Neutrophil and monocyte counts in peripheral blood correlated with inflammatory cell influx in the alveoli. Of the different parameters used to measure lower respiratory tract disease, relative lung weight and affected lung tissue allowed the best quantitative distinction between the virus groups. There was extra-respiratory spread to more tissues--including the central nervous system--for H5N1 infection than for pH1N1 infection, and to none for H3N2 infection. This study shows that seasonal, pandemic, and zoonotic influenza viruses differ strongly in the spatial and temporal dynamics of infection in the respiratory tract and extra-respiratory tissues of ferrets.

  19. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  20. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005

    NARCIS (Netherlands)

    Adlhoch, C.; Gossner, C.; Koch, G.; Brown, I.; Bouwstra, R.J.; Verdonck, F.; Penttinen, P.; Harder, T.

    2014-01-01

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are

  1. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    Science.gov (United States)

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  2. Human infection with highly pathogenic H5N1 influenza virus

    NARCIS (Netherlands)

    Gambotto, Andrea; Barratt-Boyes, Simon M.; de Jong, Menno D.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-01-01

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of

  3. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    Science.gov (United States)

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    Science.gov (United States)

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  5. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude; Wang, Yue; Liao, Guoyang

    2012-01-01

    Highlights: ► Vero cell-based HPAI H5N1 vaccine with stable high yield. ► Stable high yield derived from the YNVa H3N2 backbone. ► H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  6. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fangye; Zhou, Jian; Ma, Lei; Song, Shaohui; Zhang, Xinwen; Li, Weidong; Jiang, Shude [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China); Wang, Yue [National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Yingxin Lane 100, Xicheng District, Beijing 100052, People' s Republic of China (China); Liao, Guoyang [No. 5, Department of Bioproducts, Institute of Medical Biology, Chinese Academy of Medical Science and Pecking Union Medical College, Jiaoling Avenue 935, Kunming, Yunnan Province 650102, People' s Republic of China (China)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.

  7. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    Science.gov (United States)

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  8. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    Science.gov (United States)

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  9. Pathogenesis of highly pathogenic avian influenza A/turkey/Turkey/1/2005 H5N1 in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Nunez, Alejandro; Banks, Jill; Nili, Hassan; Johnson, Linda K; Alexander, Dennis J

    2008-12-01

    Asian H5N1 (hereafter referred to as panzootic H5N1) highly pathogenic avian influenza (HPAI) virus has caused large numbers of deaths in both poultry and wild-bird populations. Recent isolates of this virus have been reported to cause disease and death in commercial ducks, which has not been seen with other HPAI viruses. However, little is known about either the dissemination of this H5N1 within the organs or the cause of death in infected ducks. Nineteen 4-week-old Pekin ducks were infected with 10(6.7) median egg infectious doses of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2) in 0.1ml via the intranasal and intraocular routes. Cloacal and oropharyngeal swabs were taken daily before three animals were selected randomly and killed humanely for postmortem examination, when samples of tissues were taken for real-time reverse transcriptase-polymerase chain reaction, histopathological examination and immunohistochemistry. Clinical signs were first observed 4 days post infection (d.p.i.) and included depression, reluctance to feed, in-coordination and torticollis resulting in the death of all the birds remaining on 5d.p.i. Higher levels of virus shedding were detected from oropharyngeal swabs than from cloacal swabs. Real-time reverse transcriptase-polymerase chain reaction and immunohistochemistry identified peak levels of virus at 2d.p.i. in several organs. In the spleen, lung, kidney, caecal tonsils, breast muscle and thigh muscle the levels were greatly reduced at 3d.p.i. However, the highest viral loads were detected in the heart and brain from 3d.p.i. and coincided with the appearance of clinical signs and death. Our experimental results demonstrate the systemic spread of this HPAI H5N1 virus in Pekin ducks, and the localization of virus in the brain and heart tissue preceding death.

  10. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    Science.gov (United States)

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  11. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh.

    Science.gov (United States)

    Barman, Subrata; Marinova-Petkova, Atanaska; Hasan, M Kamrul; Akhtar, Sharmin; El-Shesheny, Rabeh; Turner, Jasmine Cm; Franks, John; Walker, David; Seiler, Jon; Friedman, Kimberly; Kercher, Lisa; Jeevan, Trushar; Darnell, Daniel; Kayali, Ghazi; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G; Feeroz, Mohammed M

    2017-08-09

    Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses.

  12. Highly pathogenic avian influenza H5N1 in Mainland China

    NARCIS (Netherlands)

    X.-L. Li (Xin-Lou); K. Liu (Kun); H.-W. Yao (Hong-Wu); Y. Sun (Ye); W.-J. Chen (Wan-Jun); R.-X. Sun (Ruo-Xi); S.J. de Vlas (Sake); L.Q. Fang (Lily); W.-C. Cao (Wu-Chun)

    2015-01-01

    textabstractHighly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of

  13. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    Science.gov (United States)

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  14. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    Science.gov (United States)

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  15. Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens.

    Science.gov (United States)

    Das, Amaresh; Spackman, Erica; Thomas, Colleen; Swayne, David E; Suarez, David L

    2008-03-01

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus has been transmitted to chickens through the consumption of raw infected meat. In this study, we investigated virus replication in cardiac and skeletal muscle and in the trachea of chickens after experimental intranasal inoculation with the H5N1 HPAI virus. The virus was detected in tissues by real-time reverse transcription-polymerase chain reaction (RRT-PCR) and virus isolation, and in the trachea by RRT-PCR and a commercial avian influenza (AI) viral antigen detection test. A modified RNA extraction protocol was developed for rapid detection of the virus in tissues by RRT-PCR. The H5N1 HPAI virus was sporadically detected in meat and the tracheas of infected birds without any clinical sign of disease as early as 6 hr postinfection (PI), and was detected in all samples tested at 24 hr PI and later. No differences in sensitivity were seen between virus isolation and RRT-PCR in meat samples. The AI viral antigen detection test on tracheal swabs was a useful method for identifying infected chickens when they were sick or dead, but was less sensitive in detecting infected birds when they were preclinical. This study provides data indicating that preslaughter tracheal swab testing can identify birds infected with HPAI among the daily mortality and prevent infected flocks from being sent to processing plants. In addition, the modified RNA extraction and RRT-PCR test on meat samples provide a rapid and sensitive method of identifying HPAI virus in illegal contraband or domestic meat samples.

  16. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    Science.gov (United States)

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  17. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Science.gov (United States)

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  18. New Orf virus (Parapoxvirus recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jörg Rohde

    Full Text Available Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA or nucleoprotein (NP of the highly pathogenic avian influenza virus (HPAIV H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m. injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8 influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  19. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    Science.gov (United States)

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  20. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI H5N1 in China.

    Directory of Open Access Journals (Sweden)

    Vincent Martin

    2011-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 was first encountered in 1996 in Guangdong province (China and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967. The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds and found that provinces with either outbreaks or HPAIV H5N1

  1. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Science.gov (United States)

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  2. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  3. Prophylactic and therapeutic efficacy of avian antibodies against influenza virus H5N1 and H1N1 in mice.

    Directory of Open Access Journals (Sweden)

    Huan H Nguyen

    Full Text Available BACKGROUND: Pandemic influenza poses a serious threat to global health and the world economy. While vaccines are currently under development, passive immunization could offer an alternative strategy to prevent and treat influenza virus infection. Attempts to develop monoclonal antibodies (mAbs have been made. However, passive immunization based on mAbs may require a cocktail of mAbs with broader specificity in order to provide full protection since mAbs are generally specific for single epitopes. Chicken immunoglobulins (IgY found in egg yolk have been used mainly for treatment of infectious diseases of the gastrointestinal tract. Because the recent epidemic of highly pathogenic avian influenza virus (HPAIV strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We reasoned that IgY from consumable eggs available in supermarkets in Vietnam could provide protection against infections with HPAIV H5N1. METHODS AND FINDINGS: We found that H5N1-specific IgY that are prepared from eggs available in supermarkets in Vietnam by a rapid and simple water dilution method cross-protect against infections with HPAIV H5N1 and related H5N2 strains in mice. When administered intranasally before or after lethal infection, the IgY prevent the infection or significantly reduce viral replication resulting in complete recovery from the disease, respectively. We further generated H1N1 virus-specific IgY by immunization of hens with inactivated H1N1 A/PR/8/34 as a model virus for the current pandemic H1N1/09 and found that such H1N1-specific IgY protect mice from lethal influenza virus infection. CONCLUSIONS: The findings suggest that readily available H5N1-specific IgY offer an enormous source of valuable biological material to combat a potential H5N1 pandemic. In addition, our study provides a proof-of-concept for the approach using virus

  4. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    Directory of Open Access Journals (Sweden)

    Abdel-Ghany Ahmad E

    2010-04-01

    Full Text Available Abstract Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE. Reverse transcriptase polymerase chain reaction (RT-PCR and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas.

  5. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    Science.gov (United States)

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  6. Serosurvey of antibody to highly pathogenic avian influenza (H5N1 ...

    African Journals Online (AJOL)

    Avian influenza is a disease of economic and public health importance that has been described in most domestic animals and humans. Highly pathogenic avian influenza H5N1 epidemic in Nigeria was observed in agro-ecological zones where pigs and chickens are raised in shared environment with chances of ...

  7. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    Science.gov (United States)

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  8. Adaptation of high-growth influenza H5N1 vaccine virus in Vero cells: implications for pandemic preparedness.

    Directory of Open Access Journals (Sweden)

    Yu-Fen Tseng

    Full Text Available Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14, a reassortant virus between A/Vietnam/1194/2004 (H5N1 virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15 was generated and can grow over 10(8 TCID(50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes.

  9. Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning.

    OpenAIRE

    Cai, Zhipeng; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C; Webby, Richard J; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin (HA) gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1's antigenic profiles would help resolve these problems. In this study, a novel sparse learning meth...

  10. Distinct Pathogenesis of Hong Kong-Origin H5N1 Viruses in Mice Compared to That of Other Highly Pathogenic H5 Avian Influenza Viruses

    OpenAIRE

    Dybing, Jody K.; Schultz-Cherry, Stacey; Swayne, David E.; Suarez, David L.; Perdue, Michael L.

    2000-01-01

    In 1997, an outbreak of virulent H5N1 avian influenza virus occurred in poultry in Hong Kong (HK) and was linked to a direct transmission to humans. The factors associated with transmission of avian influenza virus to mammals are not fully understood, and the potential risk of other highly virulent avian influenza A viruses infecting and causing disease in mammals is not known. In this study, two avian and one human HK-origin H5N1 virus along with four additional highly pathogenic H5 avian in...

  11. Identifying antigenicity associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning

    OpenAIRE

    Cai, Zhipeng; Ducatez, Mariette F.; Yang, Jialiang; Zhang, Tong; Long, Li-Ping; Boon, Adrianus C.; Webby, Richard J.; Wan, Xiu-Feng

    2012-01-01

    Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China, highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection. Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel sparse learning method wa...

  12. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Science.gov (United States)

    2010-11-10

    ... Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  13. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Science.gov (United States)

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  14. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    OpenAIRE

    Carrel, Margaret A.; Emch, Michael; Jobe, R. Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and...

  15. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    Science.gov (United States)

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  16. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    Science.gov (United States)

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  17. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    OpenAIRE

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-01-01

    Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same a...

  18. Highly pathogenic influenza A(H5N1 virus survival in complex artificial aquatic biotopes.

    Directory of Open Access Journals (Sweden)

    Viseth Srey Horm

    Full Text Available BACKGROUND: Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. METHODOLOGY/PRINCIPAL FINDINGS: The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. CONCLUSIONS/SIGNIFICANCE: Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  19. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    Science.gov (United States)

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  20. Highly pathogenic avian influenza (H5N1: pathways of exposure at the animal-human interface, a systematic review.

    Directory of Open Access Journals (Sweden)

    Maria D Van Kerkhove

    Full Text Available BACKGROUND: The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given the continued occurrence of sporadic human cases (499 human cases in 15 countries with a high case fatality rate (approximately 60%, the endemicity in poultry populations in several countries, and the potential for reassortment with the newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans. METHODS AND FINDINGS: Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1 infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; [corrected] exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to H5N1 at live bird markets. CONCLUSIONS: Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with infection including close direct contact with poultry and transmission via the environment. However, several important data gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1 remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may lead to more efficient spread among humans and other mammalian species

  1. A study of analysis PB1-F2 protein of Influenza Viruses A/H1N1pdm09, A/ H3N2, and A/H5N1

    Directory of Open Access Journals (Sweden)

    Hana Apsari Pawestri

    2016-07-01

    Full Text Available Abstrak Tujuan. Protein PB1-F2 (polymerase basic 1-frame 2 adalah protein terbaru yang ditemukan pada virus Influenza dan telah terbukti berperan dalam induksi kematian sel dan patogenitas. Tujuan dari tulisan ini adalah untuk menganalisis protein PB1-F2 pada virus Influenza A/H5N1 dan A/H1N1pdm09. Metode. Kami melakukan pencarian data yang relevan yaitu sekuens gen virus Influenza A/H5N1 dan A/H1N1pdm09 dari Gen Bank National Center for Biotechnology Information (NCBI selama tahun 1997-2015. Data yang digunakan adalah data sekuens nukleotida gen PB1 (polymerase basic1 virus influenza A/H5N1 dan A/H1N1pdm09. Kemudian dilakukan analisis alignment untuk mengetahui variasi protein dan mutasi yang berhubungan dengan patogenitas dan virulensi. Hasil. Kami melakukan penelitian terhadap sekuens PB1-F2 sebanyak 3262 influenza A/H5N1 dan 2472 Influenza A/H1N1pdm09. Hasil analisis menunjukkan bahwa semua sekuens A/H5N1 memiliki panjang yang penuh sebanyak 90 asam amino, kecuali influenza pandemi 2009 hanya memiliki panjang 87 asam amino. Kemudian, ditemukan mutasi yang berhubungan dengan virulensi yang ditunjukan dengan perubahan asam amino Asparagin (N menjadi Serin (S. Mutasi tersebut terjadi pada Influenza A/H5N1 sebanyak 8.5% dan Influenza A/H1N1pdm09 sebanyak 0.5%. Kesimpulan. Ditemukan beberapa variasi panjang asam amino dan mutasi penting pada sekuens PB1-F2 dari subtipe yang berbeda yaitu influenza A/H5N1 dan A/H1N1pdm09  yang mengindikasikan seleksi spesifik karena introduksi dan adaptasi terhadap inang yang berbeda. Diperlukan penelitian lanjutan untuk lebih memahami variasi dan kontribusi protein PB1-F2 tersebut terhadap virulensi dan patogenitas virus Influenza. Kata kunci : Patogenesis, Virus Influenza, Protein  PB1-F2 Abstract Aim. Influenza virus PB1-F2 (polymerase basic 1-frame 2 protein is a novel protein previously shown to be involved in cell death induction and pathogenesis. Here we analysis the PB1-F2 protein of Influenza virus A/H

  2. A study of analysis PB1-F2 protein of Influenza Viruses A/H1N1pdm09, A/ H3N2, and A/H5N1

    Directory of Open Access Journals (Sweden)

    Hana Apsari Pawestri

    2016-07-01

    Full Text Available Abstrak Tujuan. Protein PB1-F2 (polymerase basic 1-frame 2 adalah protein terbaru yang ditemukan pada virus Influenza dan telah terbukti berperan dalam induksi kematian sel dan patogenitas. Tujuan dari tulisan ini adalah untuk menganalisis protein PB1-F2 pada virus Influenza A/H5N1 dan A/H1N1pdm09. Metode. Kami melakukan pencarian data yang relevan yaitu sekuens gen virus Influenza A/H5N1 dan A/H1N1pdm09 dari Gen Bank National Center for Biotechnology Information (NCBI selama tahun 1997-2015. Data yang digunakan adalah data sekuens nukleotida gen PB1 (polymerase basic1 virus influenza A/H5N1 dan A/H1N1pdm09. Kemudian dilakukan analisis alignment untuk mengetahui variasi protein dan mutasi yang berhubungan dengan patogenitas dan virulensi. Hasil. Kami melakukan penelitian terhadap sekuens PB1-F2 sebanyak 3262 influenza A/H5N1 dan 2472 Influenza A/H1N1pdm09. Hasil analisis menunjukkan bahwa semua sekuens A/H5N1 memiliki panjang yang penuh sebanyak 90 asam amino, kecuali influenza pandemi 2009 hanya memiliki panjang 87 asam amino. Kemudian, ditemukan mutasi yang berhubungan dengan virulensi yang ditunjukan dengan perubahan asam amino Asparagin (N menjadi Serin (S. Mutasi tersebut terjadi pada Influenza A/H5N1 sebanyak 8.5% dan Influenza A/H1N1pdm09 sebanyak 0.5%. Kesimpulan. Ditemukan beberapa variasi panjang asam amino dan mutasi penting pada sekuens PB1-F2 dari subtipe yang berbeda yaitu influenza A/H5N1 dan A/H1N1pdm09  yang mengindikasikan seleksi spesifik karena introduksi dan adaptasi terhadap inang yang berbeda. Diperlukan penelitian lanjutan untuk lebih memahami variasi dan kontribusi protein PB1-F2 tersebut terhadap virulensi dan patogenitas virus Influenza. Kata kunci : Patogenesis, Virus Influenza, Protein  PB1-F2 Abstract Aim. Influenza virus PB1-F2 (polymerase basic 1-frame 2 protein is a novel protein previously shown to be involved in cell death induction and pathogenesis. Here we analysis the PB1-F2 protein of Influenza virus A/H

  3. Biosecurity and Circulation of Influenza A (H5N1) Virus in Live-Bird Markets in Bangladesh, 2012.

    Science.gov (United States)

    Biswas, P K; Giasuddin, M; Nath, B K; Islam, M Z; Debnath, N C; Yamage, M

    2017-06-01

    Bangladesh has been considered as one of the five countries endemic with highly pathogenic avian influenza A subtype H5N1 (HPAI H5N1). Live-bird markets (LBMs) in south Asian countries are believed to play important roles in the transmission of HPAI H5N1 and others due to its central location as a hub of the poultry trading. Food and Agriculture Organization (FAO) of the United Nations has been promoting improved biosecurity in LBMs in Bangladesh. In 2012, by enrolling 32 large LBMs: 10 with FAO interventions and 22 without assistance, we assessed the virus circulation in the selected LBMs by applying standard procedures to investigate market floors, poultry stall floors, poultry-holding cases and slaughter areas and the overall biosecurity using a questionnaire-based survey. Relative risk (RR) was examined to compare the prevalence of HPAI H5N1 in the intervened and non-intervened LBMs. The measures practised in significantly more of the FAO-intervened LBMs included keeping of slaughter remnants in a closed container; decontamination of poultry vehicles at market place; prevention of crows' access to LBM, market/floor cleaning by market committee; wet cleaning; disinfection of floor/poultry stall after cleaning; and good supply of clean water at market (P Bangladesh regardless of interventions, albeit at lower levels than in other endemic countries. © 2015 Blackwell Verlag GmbH.

  4. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    Directory of Open Access Journals (Sweden)

    José Esteban Muñoz-Medina

    2015-01-01

    Full Text Available The unpredictable, evolutionary nature of the influenza A virus (IAV is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2 in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2 and in one of the main aviary subtypes responsible for zoonosis (H5N1. For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques.

  5. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Wan

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA, continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  6. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa

    Directory of Open Access Journals (Sweden)

    Olubunmi Gabriel Fasanmi

    2017-10-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346 globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Cote d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.

  7. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    Directory of Open Access Journals (Sweden)

    Margaret A Carrel

    2010-01-01

    Full Text Available Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10: e3462 demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear.In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City.The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic

  8. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  9. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    Science.gov (United States)

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  10. Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic - China, October 1, 2016-August 7, 2017.

    Science.gov (United States)

    Kile, James C; Ren, Ruiqi; Liu, Liqi; Greene, Carolyn M; Roguski, Katherine; Iuliano, A Danielle; Jang, Yunho; Jones, Joyce; Thor, Sharmi; Song, Ying; Zhou, Suizan; Trock, Susan C; Dugan, Vivien; Wentworth, David E; Levine, Min Z; Uyeki, Timothy M; Katz, Jacqueline M; Jernigan, Daniel B; Olsen, Sonja J; Fry, Alicia M; Azziz-Baumgartner, Eduardo; Davis, C Todd

    2017-09-08

    Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses

  11. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  12. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NARCIS (Netherlands)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-01-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration

  13. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Qin E-de

    2010-06-01

    Full Text Available Abstract A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009 influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  14. Protection level of AI H5N1 vaccine clade 2.1.3 commercial against AI H5N1 clade 2.3.2 virus from Ducks to SPF chicken in laboratory conditions

    Directory of Open Access Journals (Sweden)

    Indriani R

    2015-03-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI subtype H5N1 clade 2.3.2 has infected chickens in farms, causing mortality and a decrease in egg production. Vaccination is one of the strategies to control disease of AI subtype H5N1. AI H5N1 clade 2.1.3 vaccine is available commercially. The effectiveness of two vaccines of AI H5N1 clade 2.1.3 (product A and B, and AI H5N1 clade 2.3.2 (Sukoharjo against AI H5N1 clade 2.3.2 (Sukoharjo virus SPF chickens was tested in laboratory. Four groups of SPF chickens were used in this study, there were (1 vaccinated with H5N1 clade 2.1.3 (product A, (2 vaccinated with H5N1 clade 2.1.3 (product B, (3 vaccinated with AI H5N1 clade 2.3.2 and (4 unvaccinated (as a control. Each vaccinated group consisted of 10 chicken except 8 chicken for control group. SPF chicken were vaccinated with 1 dose of vaccine at 3 weeks olds, and then after 3 weeks post vaccination (at 6 weeks olds. All group of chicken were challenged with 106 EID50 per 0.1 ml via intranasal. The results showed, chicken vaccinated with H5N1 clade 2.1.3 product A and B gave 100 and 80% protection respectively, but showed challenged virus shedding, whereas vaccine of H5N1 clade 2.3.2 gave 100% protection from mortality and without virus shedding. Vaccines of AI H5N1 clade 2.1.3 product A was better than vaccine product B, and when chicken vaccinated against H5N1 clade 2.3.2, H5N1 clade 2.3.2 vaccine was the best to be used. In order to protect chicken from AI subtype H5N1 clade 2.1.3 and 2.3.2 in the field, a bivalent vaccine of H5N1 clade 2.1.3 and 2.3.2 subtypes should be developed.

  15. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis.

    Directory of Open Access Journals (Sweden)

    Christina M Carlson

    2010-10-01

    Full Text Available Transforming growth factor-beta (TGF-β, a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β. We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3 except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.

  16. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation.

    Directory of Open Access Journals (Sweden)

    Renee W Y Chan

    Full Text Available Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004 and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998, the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of alpha2-6-linked sialic acid receptors and human airway trypsin-like (HAT protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the

  17. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    Science.gov (United States)

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  18. Exposure to a low pathogenic A/H7N2 virus in chickens protects against highly pathogenic A/H7N1 virus but not against subsequent infection with A/H5N1.

    Directory of Open Access Journals (Sweden)

    Júlia Vergara-Alert

    Full Text Available Recent evidences have demonstrated that the presence of low pathogenic avian influenza viruses (LPAIV may play an important role in host ecology and transmission of avian influenza viruses (AIV. While some authors have clearly demonstrated that LPAIV can mutate to render highly pathogenic avian influenza viruses (HPAIV, others have shown that their presence could provide the host with enough immunological memory to resist re-infections with HPAIV. In order to experimentally study the role of pre-existing host immunity, chickens previously infected with H7N2 LPAIV were subsequently challenged with H7N1 HPAIV. Pre-infection of chickens with H7N2 LAPIV conferred protection against the lethal challenge with H7N1 HPAIV, dramatically reducing the viral shedding, the clinical signs and the pathological outcome. Correlating with the protection afforded, sera from chickens primed with H7N2 LPAIV reacted with the H7-AIV subtype in hemagglutination inhibition assay and specifically with the N2-neuraminidase antigen. Conversely, subsequent exposure to H5N1 HPAIV resulted in a two days-delay on the onset of disease but all chickens died by 7 days post-challenge. Lack of protection correlated with the absence of H5-hemagglutining inhibitory antibodies prior to H5N1 HPAIV challenge. Our data suggest that in naturally occurring outbreaks of HPAIV, birds with pre-existing immunity to LPAIV could survive lethal infections with HA-homologous HPAIV but not subsequent re-infections with HA-heterologous HPAIV. These results could be useful to better understand the dynamics of AIV in chickens and might help in future vaccine formulations.

  19. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    Science.gov (United States)

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  20. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    Science.gov (United States)

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  1. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    DEFF Research Database (Denmark)

    Haider, Najmul; Sturm-Ramirez, K.; Khan, S. U.

    2017-01-01

    a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize...... and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5......Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify...

  2. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus.

    Science.gov (United States)

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5N x viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines have been demonstrated to be efficacious and safe in poultry. Herein, we developed an NDV-based H5 vaccine (NDV-H5) that expresses a codon-optimized ectodomain of the hemagglutinin from the A/chicken/Iowa/04-20/2015 (H5N2) virus and evaluated its efficacy in chickens. Results showed that both live and inactivated NDV-H5 vaccines induced hemagglutinin inhibition antibody titers against the H5N2 virus in immunized chickens after prime and booster, and both NDV-H5 vaccines completely protected chickens from lethal challenge with the highly pathogenic H5N2 A/turkey/Minnesota/9845-4/2015 virus. No clinical signs and only minimal virus shedding was observed in both vaccinated groups. In contrast, all mock-vaccinated, H5N2-infected chickens shed virus and died within 5 days post challenge. Furthermore, one dose of the live NDV-H5 vaccine also provided protection of 90% chickens immunized by coarse spraying; after exposure to H5N2 challenge, sera from vaccinated surviving chickens neutralized both highly pathogenic H5N1 and H5N8 viruses. Taken together, our results suggest that the NDV-based H5 vaccine is able to protect chickens against intercontinental highly pathogenic H5N x viruses and can be used by mass application to protect the poultry industry.

  3. Seroprevalence of antibodies against highly pathogenic avian influenza A (H5N1 virus among poultry workers in Bangladesh, 2009.

    Directory of Open Access Journals (Sweden)

    Sharifa Nasreen

    Full Text Available We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1 [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2 virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48% culled poultry. One hundred and ninety-three farm workers (91% and 178 market workers (85% reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0-1%.

  4. Newcastle disease virus-based H5 influenza vaccine protects chickens from lethal challenge with a highly pathogenic H5N2 avian influenza virus

    OpenAIRE

    Ma, Jingjiao; Lee, Jinhwa; Liu, Haixia; Mena, Ignacio; Davis, A. Sally; Sunwoo, Sun Young; Lang, Yuekun; Duff, Michael; Morozov, Igor; Li, Yuhao; Yang, Jianmei; García-Sastre, Adolfo; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Since December 2014, Eurasian-origin, highly pathogenic avian influenza H5 viruses including H5N1, H5N2, and H5N8 subtypes (called H5Nx viruses), which belong to the H5 clade 2.3.4.4, have been detected in U.S. wild birds. Subsequently, highly pathogenic H5N2 and H5N8 viruses have caused outbreaks in U.S. domestic poultry. Vaccination is one of the most effective ways to control influenza outbreaks and protect animal and public health. Newcastle disease virus (NDV)-based influenza vaccines ha...

  5. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    Science.gov (United States)

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  6. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    Science.gov (United States)

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Features of pathology in mice experimentally infected with highly pathogenic H5N1 influenza virus

    International Nuclear Information System (INIS)

    Ryabchikova, E. I.; Taranov, O. S.; Malkova, E. M.; Gritsyk, O. B.; Demina, O. K.

    2009-01-01

    Avian influenza became a new threat and has set people thinking about possibility of new influenza pandemic which may be caused by highly pathogenic H5N1 influenza virus. The virus could acquire ability of fast spreading between the humans and new pandemics could kill millions. Influenza virus H5N1 exhibited its deadly essence by taking out many millions of birds in nature and aviculture; other millions of chicks and ducks were killed to prevent spread of the epizootic. The strains isolated in Russia belong to Qinghai group of H5N1 influenza virus, and were imported to Russia by migratory birds. We examined time-course changes in mice blood and lungs after intranasal infection with strains A /Chicken/ Kurgan/ 05/2005, A/ Duck/ Kurgan/08/ 2005 and A/ Chicken/ Suzdalka/ Nov-11/2005 differing in virulence for this animal species. Development of leucopenia and severe damage of hemopoiesis were found in mice infected with all H5N1 influenza virus strains. Pathological changes in mice lungs during the infection with above mentioned strains, and strain-specific features have been examined. Main characteristics of lung pathology in all mice were focal nature of the alterations, severe damage of bronchial epithelium and pronounced alteration of lung vasculature. Strain A/Chicken/Suzdalka/Nov-11/2005 induced massive apoptosis of infected bronchial cells which may be a part of mechanism responsible for avirulent properties of this strain. The most interesting finding was absence of serious direct virus damage of the lung evidencing for principal role of the host humoral mechanisms in pathogenesis of H5N1 influenza in mice.(author)

  8. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Directory of Open Access Journals (Sweden)

    Joost H C M Kreijtz

    Full Text Available Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.

  9. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian Influenza virus (H5N1, H7N7 and swine-origin H1N1 (S-OIV

    Directory of Open Access Journals (Sweden)

    Schoop Roland

    2009-11-01

    Full Text Available Abstract Background Influenza virus (IV infections are a major threat to human welfare and animal health worldwide. Anti-viral therapy includes vaccines and a few anti-viral drugs. However vaccines are not always available in time, as demonstrated by the emergence of the new 2009 H1N1-type pandemic strain of swine origin (S-OIV in April 2009, and the acquisition of resistance to neuraminidase inhibitors such as Tamiflu® (oseltamivir is a potential problem. Therefore the prospects for the control of IV by existing anti-viral drugs are limited. As an alternative approach to the common anti-virals we studied in more detail a commercial standardized extract of the widely used herb Echinacea purpurea (Echinaforce®, EF in order to elucidate the nature of its anti-IV activity. Results Human H1N1-type IV, highly pathogenic avian IV (HPAIV of the H5- and H7-types, as well as swine origin IV (S-OIV, H1N1, were all inactivated in cell culture assays by the EF preparation at concentrations ranging from the recommended dose for oral consumption to several orders of magnitude lower. Detailed studies with the H5N1 HPAIV strain indicated that direct contact between EF and virus was required, prior to infection, in order to obtain maximum inhibition in virus replication. Hemagglutination assays showed that the extract inhibited the receptor binding activity of the virus, suggesting that the extract interferes with the viral entry into cells. In sequential passage studies under treatment in cell culture with the H5N1 virus no EF-resistant variants emerged, in contrast to Tamiflu®, which produced resistant viruses upon passaging. Furthermore, the Tamiflu®-resistant virus was just as susceptible to EF as the wild type virus. Conclusion As a result of these investigations, we believe that this standard Echinacea preparation, used at the recommended dose for oral consumption, could be a useful, readily available and affordable addition to existing control options

  10. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan.

    Science.gov (United States)

    Uchida, Yuko; Mase, Masaji; Yoneda, Kumiko; Kimura, Atsumu; Obara, Tsuyoshi; Kumagai, Seikou; Saito, Takehiko; Yamamoto, Yu; Nakamura, Kikuyasu; Tsukamoto, Kenji; Yamaguchi, Shigeo

    2008-09-01

    On April 21, 2008, four whooper swans were found dead at Lake Towada, Akita prefecture, Japan. Highly pathogenic avian influenza virus of the H5N1 subtype was isolated from specimens of the affected birds. The hemagglutinin (HA) gene of the isolate belongs to clade 2.3.2 in the HA phylogenetic tree.

  11. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1 Virus Infection on Migrating Whooper Swans Fecal Microbiota

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2018-02-01

    Full Text Available The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  12. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota.

    Science.gov (United States)

    Zhao, Na; Wang, Supen; Li, Hongyi; Liu, Shelan; Li, Meng; Luo, Jing; Su, Wen; He, Hongxuan

    2018-01-01

    The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus . We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  13. A Meta-Analysis of the Prevalence of Influenza A H5N1 and H7N9 Infection in Birds.

    Science.gov (United States)

    Bui, C; Rahman, B; Heywood, A E; MacIntyre, C R

    2017-06-01

    Despite a much higher rate of human influenza A (H7N9) infection compared to influenza A (H5N1), and the assumption that birds are the source of human infection, detection rates of H7N9 in birds are lower than those of H5N1. This raises a question about the role of birds in the spread and transmission of H7N9 to humans. We conducted a meta-analysis of overall prevalence of H5N1 and H7N9 in different bird populations (domestic poultry, wild birds) and different environments (live bird markets, commercial poultry farms, wild habitats). The electronic database, Scopus, was searched for published papers, and Google was searched for country surveillance reports. A random effect meta-analysis model was used to produce pooled estimates of the prevalence of H5N1 and H7N9 for various subcategories. A random effects logistic regression model was used to compare prevalence rates between H5N1 and H7N9. Both viruses have low prevalence across all bird populations. Significant differences in prevalence rates were observed in domestic birds, farm settings, for pathogen and antibody testing, and during routine surveillance. Random effects logistic regression analyses show that among domestic birds, the prevalence of H5N1 is 47.48 (95% CI: 17.15-133.13, P bird outbreaks), the prevalence of H5N1 is still higher than H7N9 with an OR of 43.02 (95% CI: 16.60-111.53, P birds are postulated to be the source. Much lower rates of H7N9 in birds compared to H5N1 raise doubts about birds as the sole source of high rates of human H7N9 infection. Other sources of transmission of H7N9 need to be considered and explored. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  14. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    Science.gov (United States)

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  15. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    Science.gov (United States)

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  16. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    Science.gov (United States)

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J.C.; Meteyer, C.; Nashold, Sean W.; Teslaa, Joshua L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  17. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    OpenAIRE

    Ramis , Antonio; van Amerongen , Geert; van de Bildt , Marco; Leijten , Loneke; Vanderstichel , Raphael; Osterhaus , Albert; Kuiken , Thijs

    2014-01-01

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes a...

  18. TEST KIT FOR THE DETECTION AND GENOTYPING OF HIGHLY PATHOGENIC INFLUENZA VIRUS A H5N1 BY REAL-TIME POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    S. V. Stepaniuk

    2014-06-01

    Full Text Available Results of the annual monitoring of epizooties indicate that highly pathogenic HPAI/H5N1 avian influenza widely circulated in Eurasian region. Over a period of 2010–2013 years more than 165 cases of outbreaks in 14 countries were found out. Ukraine became one of the first countries in Europe where in Autonomous Republic of Crimea in October 2005 outbreak of avian epizootic with HPAI/H5N1 was documented and until February 2008 more than 236,000 poultry were killed. Since then the question of monitoring of infected both migrating birds and poultry in places of cross contact in Ukraine remains of high priority. The test system is developed for identification and genotyping A H5N1 on three genes (M, H5 and N1 HPAI/H5N1 in real-time mode for polymerase chain reaction. Test kit capacity to detect HPAI/h5n1avian influenza virus and differentiate it from the other viral infection agents of birds and animals were studied by testing of HPAI/H5N1 virus isolated during mass infection outbreak in Crimea in 2005 and cultural specimens of other viral pathogens. It was established that the «DIA Real Avian Influenza» test kit was capable to detect RNA influenza A virus of high pathogenic H5N1 strains having high sensitivity (100% while RNA of the Crimean HPAI/H5N1 isolate studying and specificity (100% while RNA viruses of Newcastle birds disease, fowl powershift, syndrome of drop in egg production and horse influenza studying.

  19. Endothelial cell tropism is a determinant of H5N1 pathogenesis in mammalian species.

    Directory of Open Access Journals (Sweden)

    Smanla Tundup

    2017-03-01

    Full Text Available The cellular and molecular mechanisms underpinning the unusually high virulence of highly pathogenic avian influenza H5N1 viruses in mammalian species remains unknown. Here, we investigated if the cell tropism of H5N1 virus is a determinant of enhanced virulence in mammalian species. We engineered H5N1 viruses with restricted cell tropism through the exploitation of cell type-specific microRNA expression by incorporating microRNA target sites into the viral genome. Restriction of H5N1 replication in endothelial cells via miR-126 ameliorated disease symptoms, prevented systemic viral spread and limited mortality, despite showing similar levels of peak viral replication in the lungs as compared to control virus-infected mice. Similarly, restriction of H5N1 replication in endothelial cells resulted in ameliorated disease symptoms and decreased viral spread in ferrets. Our studies demonstrate that H5N1 infection of endothelial cells results in excessive production of cytokines and reduces endothelial barrier integrity in the lungs, which culminates in vascular leakage and viral pneumonia. Importantly, our studies suggest a need for a combinational therapy that targets viral components, suppresses host immune responses, and improves endothelial barrier integrity for the treatment of highly pathogenic H5N1 virus infections.

  20. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    Directory of Open Access Journals (Sweden)

    Hafez M. Hafez

    2012-11-01

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.

  1. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    Science.gov (United States)

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  2. Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van M.; Stegeman, A.; Water, van de S.G.P.; Jong, de M.C.M.; Koch, G.

    2008-01-01

    Domestic ducks play an important role in the epidemiology of H5N1 avian influenza. Although it is known that vaccines that have a high homology with the challenge virus are able to prevent infection in ducks, little is yet known about the ability of genetically more distant vaccines in preventing

  3. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    Science.gov (United States)

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  4. Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza A viruses in experimental mouse models.

    Science.gov (United States)

    Otte, Anna; Sauter, Martina; Alleva, Lisa; Baumgarte, Sigrid; Klingel, Karin; Gabriel, Gülsah

    2011-07-01

    Influenza viruses are responsible for high morbidities in humans and may, eventually, cause pandemics. Herein, we compared the pathogenesis and host innate immune responses of a seasonal H1N1, two 2009 pandemic H1N1, and a human H5N1 influenza virus in experimental BALB/c and C57BL/6J mouse models. We found that both 2009 pandemic H1N1 isolates studied (A/Hamburg/05/09 and A/Hamburg/NY1580/09) were low pathogenic in BALB/c mice [log mouse lethal dose 50 (MLD(50)) >6 plaque-forming units (PFU)] but displayed remarkable differences in virulence in C57BL/6J mice. A/Hamburg/NY1580/09 was more virulent (logMLD(50) = 3.5 PFU) than A/Hamburg/05/09 (logMLD(50) = 5.2 PFU) in C57BL/6J mice. In contrast, the H5N1 influenza virus was more virulent in BALB/c mice (logMLD(50) = 0.3 PFU) than in C57BL/6J mice (logMLD(50) = 1.8 PFU). Seasonal H1N1 influenza revealed marginal pathogenicity in BALB/c or C57BL/6J mice (logMLD(50) >6 PFU). Enhanced susceptibility of C57BL/6J mice to pandemic H1N1 correlated with a depressed cytokine response. In contrast, enhanced H5N1 virulence in BALB/c mice correlated with an elevated proinflammatory cytokine response. These findings highlight that host determinants responsible for the pathogenesis of 2009 pandemic H1N1 influenza viruses are different from those contributing to H5N1 pathogenesis. Our results show, for the first time to our knowledge, that the C57BL/6J mouse strain is more appropriate for the evaluation and identification of intrinsic pathogenicity markers of 2009 pandemic H1N1 influenza viruses that are "masked" in BALB/c mice. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Avian Influenza Virus (H5N1): a Threat to Human Health

    OpenAIRE

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, ...

  6. Experimental infection of a North American raptor, American Kestrel (Falco sparverius, with highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Hall

    2009-10-01

    Full Text Available Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV subtype H5N1. Should HPAIV (H5N1 reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1 infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1. All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1 is introduced into North America.

  7. Induction of long-term protective immune responses by influenza H5N1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Sang-Moo Kang

    Full Text Available Recurrent outbreaks of highly pathogenic H5N1 avian influenza virus pose a threat of eventually causing a pandemic. Early vaccination of the population would be the single most effective measure for the control of an emerging influenza pandemic.Influenza virus-like particles (VLPs produced in insect cell-culture substrates do not depend on the availability of fertile eggs for vaccine manufacturing. We produced VLPs containing influenza A/Viet Nam1203/04 (H5N1 hemagglutinin, neuraminidase, and matrix proteins, and investigated their preclinical immunogenicity and protective efficacy. Mice immunized intranasally with H5N1 VLPs developed high levels of H5N1 specific antibodies and were 100% protected against a high dose of homologous H5N1 virus infection at 30 weeks after immunization. Protection is likely to be correlated with humoral and cellular immunologic memory at systemic and mucosal sites as evidenced by rapid anamnestic responses to re-stimulation with viral antigen in vivo and in vitro.These results provide support for clinical evaluation of H5N1 VLP vaccination as a public health intervention to mitigate a possible pandemic of H5N1 influenza.

  8. Estimation of transmission parameters of H5N1 avian influenza virus in chickens.

    Directory of Open Access Journals (Sweden)

    Annemarie Bouma

    2009-01-01

    Full Text Available Despite considerable research efforts, little is yet known about key epidemiological parameters of H5N1 highly pathogenic influenza viruses in their avian hosts. Here we show how these parameters can be estimated using a limited number of birds in experimental transmission studies. Our quantitative estimates, based on Bayesian methods of inference, reveal that (i the period of latency of H5N1 influenza virus in unvaccinated chickens is short (mean: 0.24 days; 95% credible interval: 0.099-0.48 days; (ii the infectious period of H5N1 virus in unvaccinated chickens is approximately 2 days (mean: 2.1 days; 95%CI: 1.8-2.3 days; (iii the reproduction number of H5N1 virus in unvaccinated chickens need not be high (mean: 1.6; 95%CI: 0.90-2.5, although the virus is expected to spread rapidly because it has a short generation interval in unvaccinated chickens (mean: 1.3 days; 95%CI: 1.0-1.5 days; and (iv vaccination with genetically and antigenically distant H5N2 vaccines can effectively halt transmission. Simulations based on the estimated parameters indicate that herd immunity may be obtained if at least 80% of chickens in a flock are vaccinated. We discuss the implications for the control of H5N1 avian influenza virus in areas where it is endemic.

  9. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    Science.gov (United States)

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.

  10. Rapid detection of the avian influenza virus H5N1 subtype in Egypt

    African Journals Online (AJOL)

    Dr

    highly pathogenic avian influenza virus subtype H5N1 in Egypt is threatening poultry and ... Key words: Avian influenza virus, H5N1, fluorescent antibody enzyme-linked immunosorbent assay (ELISA) ..... poultry and is potentially zoonotic.

  11. Multiplex Reverse Transcription-Polymerase Chain Reaction untuk Deteksi Cepat Virus Flu Burung H5N1 (MULTIPLEX REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION FOR RAPID DETECTION OF H5N1 AVIAN INFLUENZA VIRUS

    Directory of Open Access Journals (Sweden)

    Raden Wasito

    2015-05-01

    Full Text Available Avian influenza virus subtype H5N1 (AIV H5N1 is highly pathogenic and fatal in poultry. The virusis still endemic with low virulence rate, although it may play a critical role in causing high morbidity andmortality rates in poultry in Indonesia. In general, diagnostic approach for AIV H5N1 is based onconventional serological and viral isolation methods that have the potential to produce consumings oftime and relatively expensive cost within the laboratory without compromising test utility. Thus, amolecular approach of multiplex reverse transcription-polymerase chain reaction (mRT-PCR was developedand applied for the detection of matrix gene type A influenza viruses, AIV subtype subtype H5hemagglutinin gene with simultaneous detection of N1 nucleoprotein gene. Thirty sera specimens fromthe diseased commercial chickens that were specifically amplified positive-RT-PCR for AIV H5N1 wereselected for mRT-PCR. The mRT-PCR products were visualized by agarose gel electrophoresis and consistedof DNA fragments of AIV of 245 bp, 545 bp and 343 bp for M, H5 and N1 genes, respectively. Thus, themRT-PCR that can rapidly differentiate simultaneously between these genes is very important for thecontrol and even eradication of AIV transmission in poultry in Indonesia.

  12. Highly (H5N1 and low (H7N2 pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Directory of Open Access Journals (Sweden)

    Kateri Bertran

    Full Text Available An experimental infection with highly pathogenic avian influenza (HPAI and low pathogenic avian influenza (LPAI viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006 or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009, both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR, which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds

  13. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    Science.gov (United States)

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  14. Virulence of H5N1 Influenza Virus in Cattle Egrets (Bubulcus Ibis)

    DEFF Research Database (Denmark)

    Phuong, Do Quy; Dung, Nguyen Tien; Jørgensen, Poul Henrik

    2011-01-01

    for insect control in households. In this study, six Cattle Egrets were experimentally infected intranasally with highly pathogenic avian influenza (AI) A/duck/Vietnam/40D/04 (H5N1) to investigate a possible epidemiologic role for Cattle Egrets in outbreaks of H5N1 AI in Vietnam. The Cattle Egrets were...

  15. Antigenic Variation in H5N1 clade 2.1 Viruses in Indonesia from 2005 to 2011

    Directory of Open Access Journals (Sweden)

    Vivi Setiawaty

    2013-01-01

    Full Text Available Influenza A (H5N1 virus, has spread to several countries in the world and has a high mortality rate. Meanwhile, the virus has evolved into several clades. The human influenza A (H5N1 virus circulating in Indonesia is a member of clade 2.1, which is different in antigenicity from other clades of influenza A (H5N1. An analysis of the antigenic variation in the H5 hemagglutinin gene (HA of the influenza A (H5N1 virus strains circulating in Indonesia has been undertaken. Several position of amino acid mutations, including mutations at positions 35, 53, 141, 145, 163, 174, 183, 184, 189, and 231, have been identified. The mutation Val-174-Iso appears to play an important role in immunogenicity and cross-reactivity with rabbit antisera. This study shows that the evolution of the H5HA antigenic variation of the influenza A (H5N1 virus circulating in Indonesia from 2005 to 2011 may affect the immunogenicity of the virus.

  16. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    Science.gov (United States)

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  18. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  19. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    Directory of Open Access Journals (Sweden)

    Ibrahim Thabet Hagag

    Full Text Available Highly pathogenic avian influenza virus (HPAIV H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA and nonstructural proteins (NS among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF in the cleavage site in HA and glutamate at position 92 (D92E in NS1. This is the first report of the pathogenicity

  20. Influenza A H5N1 immigration is filtered out at some international borders.

    Directory of Open Access Journals (Sweden)

    Robert G Wallace

    2008-02-01

    Full Text Available Geographic spread of highly pathogenic influenza A H5N1, the bird flu strain, appears a necessary condition for accelerating the evolution of a related human-to-human infection. As H5N1 spreads the virus diversifies in response to the variety of socioecological environments encountered, increasing the chance a human infection emerges. Genetic phylogenies have for the most part provided only qualitative evidence that localities differ in H5N1 diversity. For the first time H5N1 variation is quantified across geographic space.We constructed a statistical phylogeography of 481 H5N1 hemagglutinin genetic sequences from samples collected across 28 Eurasian and African localities through 2006. The MigraPhyla protocol showed southern China was a source of multiple H5N1 strains. Nested clade analysis indicated H5N1 was widely dispersed across southern China by both limited dispersal and long distance colonization. The UniFrac metric, a measure of shared phylogenetic history, grouped H5N1 from Indonesia, Japan, Thailand and Vietnam with those from southeastern Chinese provinces engaged in intensive international trade. Finally, H5N1's accumulative phylogenetic diversity was greatest in southern China and declined beyond. The gradient was interrupted by areas of greater and lesser phylogenetic dispersion, indicating H5N1 migration was restricted at some geopolitical borders. Thailand and Vietnam, just south of China, showed significant phylogenetic clustering, suggesting newly invasive H5N1 strains have been repeatedly filtered out at their northern borders even as both countries suffered recurring outbreaks of endemic strains. In contrast, Japan, while successful in controlling outbreaks, has been subjected to multiple introductions of the virus.The analysis demonstrates phylogenies can provide local health officials with more than hypotheses about relatedness. Pathogen dispersal, the functional relationships among disease ecologies across localities, and

  1. Effect of Vaccination on Transmission of HPAI H5N1: The Effect of a Single Vaccination Dose on Transmission of Highly Pathogenic Avian Influanza H5N1 in Peking Ducks

    NARCIS (Netherlands)

    Goot, van der J.A.; Boven, van R.M.; Jong, de M.C.M.; Koch, G.

    2007-01-01

    The highly pathogenic H5N1 avian influenza virus is widespread among domestic ducks throughout Southeast Asia. Many aspects of the poultry industry and social habits hinder the containment and eradication of AI. Vaccination is often put forward as a tool for the control of AI. However, vaccination

  2. Viremia associated with fatal outcomes in ferrets infected with avian H5N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Xue Wang

    Full Text Available Avian H5N1 influenza viruses cause severe disease and high mortality in infected humans. However, tissue tropism and underlying pathogenesis of H5N1 virus infection in humans needs further investigation. The objective of this work was to study viremia, tissue tropism and disease pathogenesis of H5N1 virus infection in the susceptible ferret animal model. To evaluate the relationship of morbidity and mortality with virus loads, we performed studies in ferrets infected with the H5N1 strain A/VN/1203/04 to assess clinical signs after infection and virus load in lung, brain, ileum, nasal turbinate, nasal wash, and blood. We observed that H5N1 infection in ferrets is characterized by high virus load in the brain and and low levels in the ileum using real-time PCR. In addition, viral RNA was frequently detected in blood one or two days before death and associated with symptoms of diarrhea. Our observations further substantiate pathogenicity of H5N1 and further indicate that viremia may be a bio-marker for fatal outcomes in H5N1 infection.

  3. The Landscape Epidemiology of Seasonal Clustering of Highly Pathogenic Avian Influenza (H5N1) in Domestic Poultry in Africa, Europe and Asia.

    Science.gov (United States)

    Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A

    2017-10-01

    Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features

  4. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Rebecca M.; Zaraket, Hassan; Reddivari, Muralidhar; Heath, Richard J.; White, Stephen W.; Russell, Charles J. (Tennessee-HSC); (SJCH)

    2012-12-10

    Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 {angstrom} resolution and two structures of HP HA at 2.95 and 3.10 {angstrom} resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

  5. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    Science.gov (United States)

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  6. Highly pathogenic H5N1 influenza A virus strains provoke heterogeneous IFN-α/β responses that distinctively affect viral propagation in human cells.

    Directory of Open Access Journals (Sweden)

    Markus Matthaei

    Full Text Available The fatal transmissions of highly pathogenic avian influenza A viruses (IAV of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to

  7. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  8. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers

    NARCIS (Netherlands)

    Poetri, O.N.; Boven, M.; Claassen, I.J.T.M.; Koch, G.; Wibawan, I.W.; Stegeman, A.; Broek, van den J.; Bouma, A.

    2014-01-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the

  9. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    Science.gov (United States)

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Highly pathogenic avian influenza A (H5N1) virus in wildlife: diagnostics, epidemiology and molecular characteristics

    NARCIS (Netherlands)

    Keawcharoen, J.

    2010-01-01

    Since 2003, highly pathogenic avian influenza virus subtype H5N1 outbreaks have been reported in Southeast Asia causing high mortality in poultry and have also been found to cross the species barrier infecting human and other mammalian species. Thailand is one of the countries severely affected by

  11. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  12. Research of H5N6 Treatment by Comparing with H6N1 and H10N8 by Using Decision Tree and Apriori Algorithm

    Directory of Open Access Journals (Sweden)

    Kim Sunghyun

    2016-01-01

    Full Text Available Since 2003, 608 people in 15 countries have infected with human-infectious AI viruses and 359 of them died. Especially, in China, H6N1 and H10N8 viruses were wide-spread and a lot of people were infected and died. Recently, H5N6 virus emerged in China and the number of patients has been increasing gradually. Therefore, this research compared amino acid strain of Matrix Protein, Hemagglutinin, Neuraminidase and Nucleoprotein of H5N6, H6N1 and H10N8, by using Decision tree and Apriori Algorithm, to figure out their similarity and devise the treatment. In result, Matrix protein and Nucleoprotein sequences of H5N6 were similar with those of H6N1 and H10N8. Therefore, this research concluded that the treatment targeting those proteins of H6N1 and H10N8 will be also effective to H5N6.

  13. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis.

    OpenAIRE

    Nefkens , Isabelle; Garcia , Jean-Michel; Ling , Chu Shui; Lagarde , Nadège; Nicholls , John; Tang , Dong Jiang; Peiris , Malik; Buchy , Philippe; Altmeyer , Ralf

    2007-01-01

    BACKGROUND: Highly pathogenic avian influenza (HPAI) H5N1 has spread globally in birds and infected over 270 humans with an apparently high mortality rate. Serologic studies to determine the extent of asymptomatic H5N1 infection in humans and other mammals and to investigate the immunogenicity of current H5N1 vaccine candidates have been hampered by the biosafety requirements needed for H5N1 micro-neutralization tests. OBJECTIVE: Development of a serodiagnostic tool for highly pathogenic infl...

  14. Non-Attenuation Of Highly Pathogenic Avian Influenza H5N1 By ...

    African Journals Online (AJOL)

    Avian influenza H5N1 represents one of the most researched viruses in laboratories world-wide in recent times with regards to its epidemiology, ecology, biology and geography. The virus has caused 409 human cases and 256 human fatalities to date. Some laboratory activities and other lab related works predispose ...

  15. Avian influenza H5N1 viral and bird migration networks in Asia

    Science.gov (United States)

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  16. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus.

    Science.gov (United States)

    Bertran, Kateri; Balzli, Charles; Lee, Dong-Hun; Suarez, David L; Kapczynski, Darrell R; Swayne, David E

    2017-11-01

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens. Published by Elsevier Ltd.

  17. Identifikasi Flu Burung H5N1 pada Unggas di Sekitar Kasus Flu Burung pada Manusia Tahun 2011 di Bekasi (AVIAN INFLUENZA H5N1 IDENTIFICATION IN AVIAN SPECIES SURROUNDING AVIAN INFLUENZA H5N1 HUMAN CASES IN BEKASI, WEST JAVA, 2011

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2014-05-01

    Full Text Available H5N1 subtype Avian Influenza (AI virus is the causal agent  of AI disease in humans. In Indonesia,the first human AI occurred in Tangerang 2005.  Human AI in Indonesia has now spread into 12 provinces,including West Java, Jakarta, Banten, North Sumatra, East Java, Central Java, Lampung, South Sulawesi,West Sumatra, South Sumatra, Riau, and Bali. Until 2011, the total human AI cases were 182 cases  with150 deaths. This study was conducted to identify of H5N1 AI virus in birds in area surrounding a humanAI human case  in Bekasi city  in March 2011 and to investigate its role in the spread of AI to humans usingmethods of Hemaglutination Inhibition (HI , and Reverse Transcriptase-Polymerase Chain Reaction(RT-PCR. The result showed that 80% of birds in the area surrounding AI  surrounding H5N1 AI humancase in Bekasi 2011 were antibody negative  against  H5N1-AI virus. Antibody against H5N1-AI viruswith the titer less than 4 log 2 was detected in 4.4%  of birds and  with antibody titer 04 4-7 log 2 in 15%of birds. By RT-PCR, H5N1 AI virus was not detected in 47.6% of bird samples. H5 positive and N1negative  AI virus was detected in  30.2% samples.  Only 11.2% samples showed positive for H5N1 AI virus.The results suggest that H5N1-AI virus affecting birds may have a positive role in transmitting to thevirus to human in Bekasi 2011.

  18. Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway

    Science.gov (United States)

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations. PMID:22347393

  19. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the central Asian flyway

    Science.gov (United States)

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.

  20. Prophylactic and therapeutic efficacy of human monoclonal antibodies against H5N1 influenza.

    Directory of Open Access Journals (Sweden)

    Cameron P Simmons

    2007-05-01

    Full Text Available New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs and tested their efficacy for prophylaxis and therapy in a murine model of infection.Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1 in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1. mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1.These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1

  1. Chelate-size effects on the structures, chemical behavior, properties, and catalytic activity of the new palladium(II)-allyl complexes [Pd(eta(3)-1-R-1-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), n=2 or 1, and R-1 = h or ph}

    NARCIS (Netherlands)

    Pérez, S.; López, C.; Bosque, R.; Solans, X.; Font-Bardía, M.; Roig, A.; Molins, E.; van Leeuwen, P.W.N.M.; van Strijdonck, G.P.F.; Freixa, Z.

    2008-01-01

    The synthesis, X-ray crystal structures, and the study of the solution behavior of the palladium(II) allyl complexes [Pd(eta(3)-1R(1)-C3H4){FcCH=N-CH2-(CH2)(n)-NMe2}][PF6] {with Fc = (eta(5)-C5H5)Fe(eta(5)-C5H4), R-1 = H, and n = 2 (4) or 1 (5) or R-1 = Ph and n = 2 (6) or 1 (7)} are described. The

  2. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    Science.gov (United States)

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  3. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    Science.gov (United States)

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  4. Genetic drift evolution under vaccination pressure among H5N1 Egyptian isolates

    Directory of Open Access Journals (Sweden)

    Afifi Manal A

    2011-06-01

    Full Text Available Background The highly pathogenic H5N1 is a major avian pathogen that intensively affects the poultry industry in Egypt even in spite of the adoption of vaccination strategy. Antigenic drift is among the strategies the influenza virus uses to escape the immune system that might develop due to the pressure of extensive vaccination. H5N1 mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences such an eventuality will entail. Methods H5N1 was isolated from the pooled organ samples of four different affected flocks in specific pathogen free embryonated chicken eggs (SPF-ECE. A reverse transcriptase polymerase chain reaction (RT-PCR was performed to the haemagglutingin and neuraminidase. Sequencing of the full length haemagglutingin was performed. Sequence analyses of the isolated strains were performed and compared to all available H5N1 from Egyptian human and avian strains in the flu database. Changes in the different amino acid that may be related to virus virulence, receptor affinity and epitope configuration were assigned and matched with all available Egyptian strains in the flu database. Results One out of the four strains was found to be related to the B2 Egyptian lineage, 2 were related to A1 lineage and the 4th was related to A2 lineage. Comparing data obtained from the current study by other available Egyptian H5N1 sequences remarkably demonstrates that amino acid changes in the immune escape variants are remarkably restricted to a limited number of locations on the HA molecule during antigenic drift. Molecular diversity in the HA gene, in relevance to different epitopes, were not found to follow a regular trend, suggesting abrupt cumulative sequence mutations. However a number of amino acids were found to be subjected to high mutation pressure. Conclusion The current data provides a comprehensive view of HA gene evolution among H5N1 subtype viruses in

  5. Mucosal immunity induced by adenovirus-based H5N1 HPAI vaccine confers protection against a lethal H5N2 avian influenza virus challenge

    International Nuclear Information System (INIS)

    Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin; Byun, Young-Ho; Seong, Baik Lin; Baek, Yun Hee; Song, Min-Suk; Choi, Young Ki; Na, Yun Jeong; Hwang, Inhwan; Sung, Young Chul; Lee, Chang Geun

    2009-01-01

    Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasal prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8 + T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.

  6. Understanding the cross-resistance of oseltamivir to H1N1 and H5N1 influenza A neuraminidase mutations using multidimensional computational analyses

    Directory of Open Access Journals (Sweden)

    Singh A

    2015-07-01

    Full Text Available Ashona Singh, Mahmoud E Soliman School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa Abstract: This study embarks on a comprehensive description of the conformational contributions to resistance of neuraminidase (N1 in H1N1 and H5N1 to oseltamivir, using comparative multiple molecular dynamic simulations. The available data with regard to elucidation of the mechanism of resistance as a result of mutations in H1N1 and H5N1 neuraminidases is not well established. Enhanced post-dynamic analysis, such as principal component analysis, solvent accessible surface area, free binding energy calculations, and radius of gyration were performed to gain a precise insight into the binding mode and origin of resistance of oseltamivir in H1N1 and H5N1 mutants. Three significant features reflecting resistance in the presence of mutations H274Y and I222K, of the protein complexed with the inhibitor are: reduced flexibility of the a-carbon backbone; an improved ΔEele of ~15 (kcal/mol for H1N1 coupled with an increase in ΔGsol­ (~13 kcal/mol from wild-type to mutation; a low binding affinity in comparison with the wild-type of ~2 (kcal/mol and ~7 (kcal/mol with respect to each mutation for the H5N1 systems; and reduced hydrophobicity of the overall surface structure due to an impaired hydrogen bonding network. We believe the results of this study will ultimately provide a useful insight into the structural landscape of neuraminidase-associated binding of oseltamivir. Furthermore, the results can be used in the design and development of potent inhibitors of neuraminidases. Keywords: neuraminidase, molecular dynamics, resistance, mutation, binding free energy

  7. H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data.

    Science.gov (United States)

    Artois, Jean; Lai, Shengjie; Feng, Luzhao; Jiang, Hui; Zhou, Hang; Li, Xiangping; Dhingra, Madhur S; Linard, Catherine; Nicolas, Gaëlle; Xiao, Xiangming; Robinson, Timothy P; Yu, Hongjie; Gilbert, Marius

    2017-01-01

    In the last two decades, two important avian influenza viruses infecting humans emerged in China, the highly pathogenic avian influenza (HPAI) H5N1 virus in the late nineties, and the low pathogenic avian influenza (LPAI) H7N9 virus in 2013. China is home to the largest population of chickens (4.83 billion) and ducks (0.694 billion), representing, respectively 23.1 and 58.6% of the 2013 world stock, with a significant part of poultry sold through live-poultry markets potentially contributing to the spread of avian influenza viruses. Previous models have looked at factors associated with HPAI H5N1 in poultry and LPAI H7N9 in markets. However, these have not been studied and compared with a consistent set of predictor variables. Significant progress was recently made in the collection of poultry census and live-poultry market data, which are key potential factors in the distribution of both diseases. Here we compiled and reprocessed a new set of poultry census data and used these to analyse HPAI H5N1 and LPAI H7N9 distributions with boosted regression trees models. We found a limited impact of the improved poultry layers compared to models based on previous poultry census data, and a positive and previously unreported association between HPAI H5N1 outbreaks and the density of live-poultry markets. In addition, the models fitted for the HPAI H5N1 and LPAI H7N9 viruses predict a high risk of disease presence for the area around Shanghai and Hong Kong. The main difference in prediction between the two viruses concerned the suitability of HPAI H5N1 in north-China around the Yellow sea (outlined with Tianjin, Beijing, and Shenyang city) where LPAI H7N9 has not spread intensely.

  8. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    Directory of Open Access Journals (Sweden)

    Erjia Ge

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  9. Using knowledge fusion to analyze avian influenza H5N1 in East and Southeast Asia.

    Science.gov (United States)

    Ge, Erjia; Haining, Robert; Li, Chi Pang; Yu, Zuguo; Waye, Miu Yee; Chu, Ka Hou; Leung, Yee

    2012-01-01

    Highly pathogenic avian influenza (HPAI) H5N1, a disease associated with high rates of mortality in infected human populations, poses a serious threat to public health in many parts of the world. This article reports findings from a study aimed at improving our understanding of the spatial pattern of the highly pathogenic avian influenza, H5N1, risk in East-Southeast Asia where the disease is both persistent and devastating. Though many disciplines have made important contributions to our understanding of H5N1, it remains a challenge to integrate knowledge from different disciplines. This study applies genetic analysis that identifies the evolution of the H5N1 virus in space and time, epidemiological analysis that determines socio-ecological factors associated with H5N1 occurrence, and statistical analysis that identifies outbreak clusters, and then applies a methodology to formally integrate the findings of the three sets of methodologies. The present study is novel in two respects. First it makes the initiative attempt to use genetic sequences and space-time data to create a space-time phylogenetic tree to estimate and map the virus' ability to spread. Second, by integrating the results we are able to generate insights into the space-time occurrence and spread of H5N1 that we believe have a higher level of corroboration than is possible when analysis is based on only one methodology. Our research identifies links between the occurrence of H5N1 by area and a set of socio-ecological factors including altitude, population density, poultry density, and the shortest path distances to inland water, coastlines, migrating routes, railways, and roads. This study seeks to lay a solid foundation for the interdisciplinary study of this and other influenza outbreaks. It will provide substantive information for containing H5N1 outbreaks.

  10. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016.

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/ Pavo Cristatus /Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~10 4.3 TCID 50 . A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the "gene pool" circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.

  11. Spatio-temporal magnitude and direction of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.

    2011-01-01

    The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over spac...

  12. No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans.

    Science.gov (United States)

    Wallensten, A; Salter, M; Bennett, S; Brown, I; Hoschler, K; Oliver, I

    2010-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains a public health threat as long as it circulates in wild and domestic birds. Information on the transmissibility of H5N1 HPAI from wild birds is needed for evidence-based public health advice. We investigated if transmission of H5N1 HPAI had taken place in people that had unprotected contact with infected wild mute swans during an incident at the Abbotsbury Swannery in Dorset, England. Thirteen people who had been exposed to infected swans were contacted and actively followed up for symptoms. Serology was taken after 30 days. We did not find evidence of transmission of H5N1 HPAI to humans during the incident. The incident provided a rare opportunity to study the transmissibility of the virus from wild birds to humans.

  13. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    Directory of Open Access Journals (Sweden)

    Sean G. Young

    2016-09-01

    Full Text Available Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC curve (AUC 0.991.

  14. H5N1 surveillance in migratory birds in Java, Indonesia.

    Science.gov (United States)

    Stoops, Arthur C; Barbara, Katie A; Indrawan, Mochamad; Ibrahim, Ima N; Petrus, Wicaksana B; Wijaya, Susan; Farzeli, Arik; Antonjaya, Ungke; Sin, Lim W; Hidayatullah, N; Kristanto, Ige; Tampubolon, A M; Purnama, S; Supriatna, Adam; Burgess, Timothy H; Williams, Maya; Putnam, Shannon D; Tobias, Steve; Blair, Patrick J

    2009-12-01

    We sought to elucidate the role of migratory birds in transmission of H5N1 in an enzoonotic area. Resident, captive, and migratory birds were sampled at five sites in Java, Indonesia. Mist nets were used to trap birds. Birds were identified to species. RNA was extracted from swabs and reverse transcriptase polymerase chain reaction (RT-PCR) conducted for the HA and M genes of H5N1. Antibodies were detected by enzyme-linked immunosorbent assay and hemagglutination inhibition test. Between October 2006 and September 2007, a total of 4,067 captive, resident, and migratory birds comprising 98 species in 23 genera were sampled. The most commonly collected birds were the common sandpiper (6% of total), striated heron (3%), and the domestic chicken (14%). The overall prevalence of H5N1 antibodies was 5.3%. A significantly higher percentage of captive birds (16.1%) showed antibody evidence of H5N1 exposure when compared to migratory or resident birds. The greatest number of seropositive birds in each category were Muschovy duck (captive), striated heron (resident), and the Pacific golden plover (migratory). Seven apparently well captive birds yielded molecular evidence of H5N1 infection. Following amplification, the HA, NA, and M genes were analyzed. Phylogenetic analysis of the HA gene showed that the isolates were 97% similar to EU124153.1 A/chicken/West Java/Garut May 2006, an isolate obtained in a similar region of West Java. While no known markers of neuraminidase inhibitor resistance were found within the NA gene, M segment analysis revealed the V27A mutation known to confer resistance to adamantanes. Our results demonstrate moderate serologic evidence of H5N1 infection in captive birds, sampled in five sites in Java, Indonesia, but only occasional infection in resident and migratory birds. These data imply that in an enzoonotic region of Indonesia the role of migratory birds in transmission of H5N1 is limited.

  15. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    Directory of Open Access Journals (Sweden)

    Paritosh K Biswas

    Full Text Available The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1 is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA and multiplicative seasonal autoregressive integrated moving average (SARIMA to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s as inputs did not improve the performance of any multivariable models, but relative humidity (RH was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA order at lag 1 month is considered.

  16. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1 virus infection: CART analysis of international cases.

    Directory of Open Access Journals (Sweden)

    Rita B Patel

    Full Text Available Human infections with highly pathogenic avian influenza (HPAI A (H5N1 viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions.We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar, including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality.We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC curve of 0.81 (95% CI: 0.76-0.86.A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  17. Immunomodulatory Activity and Protective Effects of Polysaccharide from Eupatorium adenophorum Leaf Extract on Highly Pathogenic H5N1 Influenza Infection

    Directory of Open Access Journals (Sweden)

    Yi Jin

    2013-01-01

    Full Text Available The development of novel broad-spectrum, antiviral agents against H5N1 infection is urgently needed. In this study, we evaluated the immunomodulatory activities and protective effect of Eupatorium adenophorum polysaccharide (EAP against the highly pathogenic H5N1 subtype influenza virus. EAP treatment significantly increased the production of IL-6, TNF-α, and IFN-γ both in vivo and in vitro as measured by qPCR and ELISA. In a mouse infection model, intranasal administration of EAP at a dose of 25 mg/kg body weight prior to H5N1 viral challenge efficiently inhibited viral replication, decreased lung lesions, and increased survival rate. We further evaluated the innate immune recognition of EAP, as this process is regulated primarily Dectin-1 and mannose receptor (MR. These results indicate that EAP may have immunomodulatory properties and a potential prophylactic effect against H5N1 influenza infection. Our investigation suggests an alternative strategy for the development of novel antiinfluenza agents and benefits of E. adenophorum products.

  18. Cross-protection against lethal H5N1 challenge ferrets with an adjuvanted pandemic influenza vaccine

    NARCIS (Netherlands)

    B. Baras (Benoît); K.J. Stittelaar (Koert); J.H. Simon (James); R.J.M.M. Thoolen (Robert); S.P. Mossman (Sally); F.H. Pistoor (Frank); G. van Amerongen (Geert); M.A. Wettendorff (Martine); E. Hanon (Emmanuel); A.D.M.E. Osterhaus (Albert)

    2008-01-01

    textabstractBackground. Unprecedented spread between birds and mammals of highly pathogenic avian influenza viruses (HPAI) of the H5N1 subtype has resulted in hundreds of human infections with a high fatality rate. This has highlighted the urgent need for the development of H5N1 vaccines that can be

  19. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species.

    Science.gov (United States)

    Hall, Jeffrey S; Franson, J Christian; Gill, Robert E; Meteyer, Carol U; TeSlaa, Joshua L; Nashold, Sean; Dusek, Robert J; Ip, Hon S

    2011-09-01

    Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. The infectious dose of HPAIV H5N1 in dunlin was determined to be 10(1.7) EID(50)/100 μl and that the lethal dose was 10(1.83) EID(50)/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (10(4) EID(50)) and smaller amounts cloacally. Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  20. Recognizing true H5N1 infections in humans during confirmed outbreaks.

    Science.gov (United States)

    Zaman, Mukhtiar; Gasimov, Viktor; Oner, Ahmet Faik; Dogan, Nazim; Adisasmito, Wiku; Coker, Richard; Bamgboye, Ebun L; Chan, Paul K S; Hanshaoworakul, Wanna; Lee, Nelson; Phommasack, Bounlay; Touch, Sok; Tsang, Owen; Swenson, Anna; Toovey, Stephen; Dreyer, Nancy Ann

    2014-02-13

    The goal of this study was to evaluate whether any characteristics that are evident at presentation for urgent medical attention could be used to differentiate cases of H5N1 in the absence of viral testing. Information about exposure to poultry, clinical signs and symptoms, treatments, and outcomes was abstracted from existing data in the global avian influenza registry (www.avianfluregistry.org) using standardized data collection tools for documented and possible cases of H5N1 infection who presented for medical attention between 2005-2011 during known H5N1 outbreaks in Azerbaijan, Indonesia, Pakistan and Turkey. Demography, exposure to poultry, and presenting symptoms were compared, with only the common symptoms of fever and headache presenting significantly more frequently in confirmed H5N1 cases than in possible cases. Reported exposure to  infected humans was also more common in confirmed cases. In contrast, unexplained respiratory illness, sore throat, excess sputum production, and rhinorrhea were more frequent in possible cases. Overall, oseltamivir treatment showed a survival benefit, with the greatest benefit shown in H5N1 cases who were treated within two days of symptom onset (51% reduction in case fatality). Since prompt treatment with antivirals conferred a strong survival benefit for H5N1 cases, presumptive antiviral treatment should be considered for all possible cases presenting during an outbreak of H5N1 as a potentially life-saving measure.

  1. Design and syntheses of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione and N-(benzothiazol-5-yl)isoindoline-1,3-dione as potent protoporphyrinogen oxidase inhibitors.

    Science.gov (United States)

    Jiang, Li-Li; Zuo, Yang; Wang, Zhi-Fang; Tan, Yin; Wu, Qiong-You; Xi, Zhen; Yang, Guang-Fu

    2011-06-08

    Discovery of protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors has been one of the hottest research areas in the field of herbicide development for many years. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-diones (1a-p) and N-(benzothiazol-5-yl)isoindoline-1,3-diones (2a-h) were designed and synthesized according to the ring-closing strategy of two ortho-substituents. The bioassay results indicated that some newly synthesized compounds exhibited higher PPO inhibition activity than the control of sulfentrazone. Compound 1a, S-(5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl) O-methyl carbonothioate, was identified as the most potent inhibitor with k(i) value of 0.08 μM, about 9 times higher than that of sulfentrazone (k(i) = 0.72 μM). Further green house assay showed that compound 1b, methyl 2-((5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl)thio)acetate, exhibited herbicidal activity comparable to that of sulfentrazone even at a concentration of 37.5 g ai/ha. In addition, among six tested crops, wheat exhibited high tolerance to compound 1b even at a dosage of 300 g ai/ha. These results indicated that compound 1b might have the potential to be developed as a new herbicide for weed control of wheat field.

  2. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); O. Krone (Oliver); P.U. Wolf (Peter U.); M.W.G. van de Bildt (Marco); G. van Amerongen (Geert); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2015-01-01

    textabstractRaptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania,

  3. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    Science.gov (United States)

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  4. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    Science.gov (United States)

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  5. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    Science.gov (United States)

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  6. Rapid detection of the avian influenza virus H5N1 subtype in Egypt ...

    African Journals Online (AJOL)

    The unprecedented spread of highly pathogenic avian influenza virus subtype H5N1 in Egypt ... Effective diagnosis and control management are needed to control the disease. ... Reconstituted clinical samples consisting of H5 AIVs mixed with ...

  7. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    Science.gov (United States)

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    International Nuclear Information System (INIS)

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2017-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  9. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    Energy Technology Data Exchange (ETDEWEB)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Tretyakova, Irina; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Zsak, Aniko; Chrzastek, Klaudia [USDA SEPRL, 934 College Station Rd, Athens, GA (United States); Tumpey, Terrence M. [Influenza Division, CDC,1600 Clifton Road N.E., Atlanta, GA (United States); Kapczynski, Darrell R. [USDA SEPRL, 934 College Station Rd, Athens, GA (United States)

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.

  10. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    Science.gov (United States)

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  11. Protective efficacy of Newcastle disease virus expressing soluble trimeric hemagglutinin against highly pathogenic H5N1 influenza in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Lisette A H M Cornelissen

    Full Text Available BACKGROUND: Highly pathogenic avian influenza virus (HPAIV causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV that express influenza hemagglutinin (HA have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5 or a soluble trimeric form thereof (NDV-sH5(3. A single intramuscular immunization with NDV-sH5(3 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH5(3 was less protective than NDV-H5 (50% vs 80% protection when administered via the respiratory tract. The NDV-sH5(3 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. CONCLUSIONS/SIGNIFICANCE: Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant

  12. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  13. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    NARCIS (Netherlands)

    A. Ramis (Antonio); G. van Amerongen (Geert); M.W.G. van de Bildt (Marco); L.M.E. Leijten (Lonneke); R. Vanderstichel (R.); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractHistorically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental

  14. Ecological determinants of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Ersbøll, Annette Kjær; Biswas, Paritosh K.

    2012-01-01

    between Bangladesh and e. g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling...... approaches for unmeasured spatially correlated variation. Methodology/Principal Findings: An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007-2008, and 326 subdistricts with no outbreaks. The association between ecological...... derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance: The study identified a new set of ecological determinants related...

  15. Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012–2016

    Science.gov (United States)

    Li, Meng; Zhao, Na; Luo, Jing; Li, Yuan; Chen, Lin; Ma, Jiajun; Zhao, Lin; Yuan, Guohui; Wang, Chengmin; Wang, Yutian; Liu, Yanhua; He, Hongxuan

    2017-01-01

    H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the “gene pool” circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic. PMID:28293218

  16. Aquachloridobis[5-(2-pyridyl-1H-tetrazolato-κN1]iron(III

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-08-01

    Full Text Available The title compound, [Fe(C6H4N52Cl(H2O], was synthesized by hydrothermal reaction of FeCl3 with 2-(1H-tetrazol-5-ylpyridine. The iron(III metal centre exhibits a distorted octahedral coordination geometry provided by four N atoms from two bidentate organic ligands, one water O atom and one chloride anion. The pyridine and tetrazole rings are nearly coplanar [dihedral angles = 4.32 (15 and 5.04 (14°]. In the crystal structure, intermolecular O—H...N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (100.

  17. The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhou

    Full Text Available The variation of highly pathogenic avian influenza H5N1 virus results in gradually increased virulence in poultry, and human cases continue to accumulate. The neuraminidase (NA stalk region of influenza virus varies considerably and may associate with its virulence. The NA stalk region of all N1 subtype influenza A viruses can be divided into six different stalk-motifs, H5N1/2004-like (NA-wt, WSN-like, H5N1/97-like, PR/8-like, H7N1/99-like and H5N1/96-like. The NA-wt is a special NA stalk-motif which was first observed in H5N1 influenza virus in 2000, with a 20-amino acid deletion in the 49(th to 68(th positions of the stalk region. Here we show that there is a gradual increase of the special NA stalk-motif in H5N1 isolates from 2000 to 2007, and notably, the special stalk-motif is observed in all 173 H5N1 human isolates from 2004 to 2007. The recombinant H5N1 virus with the special stalk-motif possesses the highest virulence and pathogenicity in chicken and mice, while the recombinant viruses with the other stalk-motifs display attenuated phenotype. This indicates that the special stalk-motif has contributed to the high virulence and pathogenicity of H5N1 isolates since 2000. The gradually increasing emergence of the special NA stalk-motif in H5N1 isolates, especially in human isolates, deserves attention by all.

  18. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  19. In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity

    DEFF Research Database (Denmark)

    Chen, Li-Mei; Blixt, Klas Ola; Stevens, James

    2012-01-01

    Acquisition of a2-6 sialoside receptor specificity by a2-3 specific highly-pathogenic avian influenza viruses (H5N1) is thought to be a prerequisite for efficient transmission in humans. By in vitro selection for binding a2-6 sialosides, we identified four variant viruses with amino acid....... Unlike the wild type H5N1, this mutant virus was transmitted by direct contact in the ferret model although not by airborne respiratory droplets. However, a reassortant virus with the mutant hemagglutinin, a human N2 neuraminidase and internal genes from an H5N1 virus was partially transmitted via...... respiratory droplets. The complex changes required for airborne transmissibility in ferrets suggest that extensive evolution is needed for H5N1 transmissibility in humans....

  20. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds

    NARCIS (Netherlands)

    Si, Y.; Boer, de W.F.; Gong, P.

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating.

  1. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates.

    Directory of Open Access Journals (Sweden)

    Giovanni Cattoli

    Full Text Available Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level.

  2. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

    Science.gov (United States)

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2010-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the "second wave" of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. INRA, EDP Sciences, 2010.

  3. Synthesis of N-(5-(Substitutedphenyl-4,5-dihydro-1H-pyrazol-3-yl-4H-1,2,4-triazol-4-amine from 4-Amino-4H-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Ashvin D. Panchal

    2011-01-01

    Full Text Available N-(4H-1,2,4-Triazol-4-ylacetamide (2 were prepared by reaction of 4-amino-4H-1,2,4-triazole (1 with acetyl chloride in dry benzene. It has been reacted with various aromatic aldehyde to afford 3-(substitutedphenyl-N-(4H-1,2,4-triazol-4-ylacrylamide (3a-e. The synthesis of N-(5-substitutedphenyl-4,5-dihydro-1H-pyrazol-3-yl-4H-1,2,4-triazol-4-amine (4a-e is achieved by the cyclisation of 3a-e with hydrazine hydrate in ethanol. The structures of synthesized compounds were characterized by 1H NMR and IR spectroscopic studies. The purity of the compounds was checked by thin layer chromatography.

  4. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed H. Salaheldin

    2018-03-01

    Full Text Available Highly pathogenic H5N1 avian influenza virus (A/H5N1 of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed, biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.

  5. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    Science.gov (United States)

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  6. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    Science.gov (United States)

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  7. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt

    Directory of Open Access Journals (Sweden)

    El-Zoghby Elham F

    2012-11-01

    Full Text Available Abstract Background Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main genetic clusters. The 2.2.1/C group where all recent human and majority of backyard origin viruses clustered together, meanwhile the majority of viruses derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade. Findings In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7 and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and wattle, decrease in egg production and up to 27% mortality. Examined serum samples showed low antibody titer in HI test (Log2 3.2± 4.2. The hemagglutinin (HA and neuraminidase (NA genes of the isolated virus were closely related to viruses in 2.2.1/C group isolated from poultry in live bird market (LBM and backyards or from infected people. Conspicuous mutations in the HA and NA genes including a deletion within the receptor binding domain in the HA globular head region were observed. Conclusions Despite repeated vaccination of layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1 resulted in significant morbidity and mortality. In endemic countries like Egypt, rigorous control measures including enforcement of biosecurity, culling of infected birds and constant update of vaccine virus strains are highly required to prevent circulation of HPAIV H5N1 between backyard birds, commercial poultry, LBM and humans.

  8. Seasonal patterns in human A (H5N1 virus infection: analysis of global cases.

    Directory of Open Access Journals (Sweden)

    Maya B Mathur

    Full Text Available Human cases of highly pathogenic avian influenza (HPAI A (H5N1 have high mortality. Despite abundant data on seasonal patterns in influenza epidemics, it is unknown whether similar patterns exist for human HPAI H5N1 cases worldwide. Such knowledge could help decrease avian-to-human transmission through increased prevention and control activities during peak periods.We performed a systematic search of published human HPAI H5N1 cases to date, collecting month, year, country, season, hemisphere, and climate data. We used negative binomial regression to predict changes in case incidence as a function of season. To investigate hemisphere as a potential moderator, we used AIC and the likelihood-ratio test to compare the season-only model to nested models including a main effect or interaction with hemisphere. Finally, we visually assessed replication of seasonal patterns across climate groups based on the Köppen-Geiger climate classification.We identified 617 human cases (611 with complete seasonal data occurring in 15 countries in Southeast Asia, Africa, and the Middle East. Case occurrence was much higher in winter (n = 285, p = 0.03 than summer (n = 64, and the winter peak occurred across diverse climate groups. There was no significant interaction between hemisphere and season.Across diverse climates, HPAI H5N1 virus infection in humans increases significantly in winter. This is consistent with increased poultry outbreaks and HPAI H5N1 virus transmission during cold and dry conditions. Prioritizing prevention and control activities among poultry and focusing public health messaging to reduce poultry exposures during winter months may help to reduce zoonotic transmission of HPAI H5N1 virus in resource-limited settings.

  9. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    Science.gov (United States)

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Identification of Two novel reassortant avian influenza a (H5N6) viruses in whooper swans in Korea, 2016.

    Science.gov (United States)

    Jeong, Jipseol; Woo, Chanjin; Ip, Hon S; An, Injung; Kim, Youngsik; Lee, Kwanghee; Jo, Seong-Deok; Son, Kidong; Lee, Saemi; Oem, Jae-Ku; Wang, Seung-Jun; Kim, Yongkwan; Shin, Jeonghwa; Sleeman, Jonathan; Jheong, Weonhwa

    2017-03-21

    On November 20, 2016 two novel strains of H5N6 highly pathogenic avian influenza virus (HPAIVs) were isolated from three whooper swans (Cygnus cygnus) at Gangjin Bay in South Jeolla province, South Korea. Identification of HPAIVs in wild birds is significant as there is a potential risk of transmission of these viruses to poultry and humans. Phylogenetic analysis revealed that Gangjin H5N6 viruses classified into Asian H5 clade 2.3.4.4 lineage and were distinguishable from H5N8 and H5N1 HPAIVs previously isolated in Korea. With the exception of the polymerase acidic (PA) gene, the viruses were most closely related to A/duck/Guangdong/01.01SZSGXJK005-Y/2016 (H5N6) (98.90 ~ 99.74%). The PA genes of the two novel Gangjin H5N6 viruses were most closely related to AIV isolates previously characterized from Korea, A/hooded crane/Korea/1176/2016 (H1N1) (99.16%) and A/environment/Korea/W133/2006 (H7N7) (98.65%). The lack of more recent viruses to A/environment/Korea/W133/2006 (H7N7) indicates the need for analysis of recent wild bird AIVs isolated in Korea because they might provide further clues as to the origin of these novel reassortant H5N6 viruses. Although research on the origins and epidemiology of these infections is ongoing, the most likely route of infection for the whooper swans was through direct or indirect contact with reassortant viruses shed by migratory wild birds in Korea. As H5N6 HPAIVs can potentially be transmitted to poultry and humans, continuous monitoring of AIVs among wild birds will help to mitigate this risk.

  11. Passive immunotherapy for influenza A H5N1 virus infection with equine hyperimmune globulin F(ab'2 in mice

    Directory of Open Access Journals (Sweden)

    Li Yanbin

    2006-03-01

    Full Text Available Abstract Background Avian influenza virus H5N1 has demonstrated considerable pandemic potential. Currently, no effective vaccines for H5N1 infection are available, so passive immunotherapy may be an alternative strategy. To investigate the possible therapeutic effect of antibody against highly pathogenic H5N1 virus on a mammal host, we prepared specific equine anti-H5N1 IgGs from horses vaccinated with inactivated H5N1 virus, and then obtained the F(ab'2 fragments by pepsin digestion of IgGs. Methods The horses were vaccinated with inactivated H5N1 vaccine to prepare anti-H5N1 IgGs. The F(ab'2 fragments were purified from anti-H5N1 hyperimmune sera by a protocol for 'enhanced pepsin digestion'. The protective effect of the F(ab'2 fragments against H5N1 virus infection was determined in cultured MDCK cells by cytopathic effect (CPE assay and in a BALB/c mouse model by survival rate assay. Results By the protocol for 'enhanced pepsin digestion', total 16 g F(ab'2 fragments were finally obtained from one liter equine antisera with the purity of over 90%. The H5N1-specific F(ab'2 fragments had a HI titer of 1:1024, and the neutralization titre of F(ab'2 reached 1: 2048. The in vivo assay showed that 100 μg of the F(ab'2 fragments could protect BALB/c mice infected with a lethal dose of influenza H5N1 virus. Conclusion The availability of highly purified H5N1-specific F(ab'2 fragments may be promising for treatment of influenza H5N1 infection. Our work has provided experimental support for the application of the therapeutic equine immunoglobulin in future large primate or human trials.

  12. Risk of influenza A (H5N1) infection among poultry workers, Hong Kong, 1997-1998.

    Science.gov (United States)

    Bridges, Carolyn Buxton; Lim, Wilina; Hu-Primmer, Jean; Sims, Les; Fukuda, Keiji; Mak, K H; Rowe, Thomas; Thompson, William W; Conn, Laura; Lu, Xiuhua; Cox, Nancy J; Katz, Jacqueline M

    2002-04-15

    In 1997, outbreaks of highly pathogenic influenza A (H5N1) among poultry coincided with 18 documented human cases of H5N1 illness. Although exposure to live poultry was associated with human illness, no cases were documented among poultry workers (PWs). To evaluate the potential for avian-to-human transmission of H5N1, a cohort study was conducted among 293 Hong Kong government workers (GWs) who participated in a poultry culling operation and among 1525 PWs. Paired serum samples collected from GWs and single serum samples collected from PWs were considered to be anti-H5 antibody positive if they were positive by both microneutralization and Western blot testing. Among GWs, 3% were seropositive, and 1 seroconversion was documented. Among PWs, approximately 10% had anti-H5 antibody. More-intensive poultry exposure, such as butchering and exposure to ill poultry, was associated with having anti-H5 antibody. These findings suggest an increased risk for avian influenza infection from occupational exposure.

  13. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    Science.gov (United States)

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2017-06-01

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.

  14. Structural and antigenic variation among diverse clade 2 H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    David A Shore

    Full Text Available Antigenic variation among circulating H5N1 highly pathogenic avian influenza A viruses mandates the continuous production of strain-specific pre-pandemic vaccine candidates and represents a significant challenge for pandemic preparedness. Here we assessed the structural, antigenic and receptor-binding properties of three H5N1 HPAI virus hemagglutinins, which were recently selected by the WHO as vaccine candidates [A/Egypt/N03072/2010 (Egypt10, clade 2.2.1, A/Hubei/1/2010 (Hubei10, clade 2.3.2.1 and A/Anhui/1/2005 (Anhui05, clade 2.3.4]. These analyses revealed that antigenic diversity among these three isolates was restricted to changes in the size and charge of amino acid side chains at a handful of positions, spatially equivalent to the antigenic sites identified in H1 subtype viruses circulating among humans. All three of the H5N1 viruses analyzed in this study were responsible for fatal human infections, with the most recently-isolated strains, Hubei10 and Egypt10, containing multiple residues in the receptor-binding site of the HA, which were suspected to enhance mammalian transmission. However, glycan-binding analyses demonstrated a lack of binding to human α2-6-linked sialic acid receptor analogs for all three HAs, reinforcing the notion that receptor-binding specificity contributes only partially to transmissibility and pathogenesis of HPAI viruses and suggesting that changes in host specificity must be interpreted in the context of the host and environmental factors, as well as the virus as a whole. Together, our data reveal structural linkages with phylogenetic and antigenic analyses of recently emerged H5N1 virus clades and should assist in interpreting the significance of future changes in antigenic and receptor-binding properties.

  15. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  16. Hydrazinium(1+) hexafluorotitanate(IV), 2N2H5+.TiF62-

    International Nuclear Information System (INIS)

    Leban, I.

    1994-01-01

    The crystals exhibit racemic twinning. The structure consists of hydrazinium(1+), N 2 H 5 + , cations and usual octahedral hexafluorotitanate(IV) anions. They are linked together via hydrogen bonds of the types N-H..F and N-H..N. (orig.)

  17. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    Science.gov (United States)

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  18. Histopathological evaluation of the diversity of cells susceptible to H5N1 virulent avian influenza virus.

    Science.gov (United States)

    Ogiwara, Haru; Yasui, Fumihiko; Munekata, Keisuke; Takagi-Kamiya, Asako; Munakata, Tsubasa; Nomura, Namiko; Shibasaki, Futoshi; Kuwahara, Kazuhiko; Sakaguchi, Nobuo; Sakoda, Yoshihiro; Kida, Hiroshi; Kohara, Michinori

    2014-01-01

    Patients infected with highly pathogenic avian influenza A H5N1 viruses (H5N1 HPAIV) show diffuse alveolar damage. However, the temporal progression of tissue damage and repair after viral infection remains poorly defined. Therefore, we assessed the sequential histopathological characteristics of mouse lung after intranasal infection with H5N1 HPAIV or H1N1 2009 pandemic influenza virus (H1N1 pdm). We determined the amount and localization of virus in the lung through IHC staining and in situ hybridization. IHC used antibodies raised against the virus protein and antibodies specific for macrophages, type II pneumocytes, or proliferating cell nuclear antigen. In situ hybridization used RNA probes against both viral RNA and mRNA encoding the nucleoprotein and the hemagglutinin protein. H5N1 HPAIV infection and replication were observed in multiple lung cell types and might result in rapid progression of lung injury. Both type II pneumocytes and macrophages proliferated after H5N1 HPAIV infection. However, the abundant macrophages failed to block the viral attack, and proliferation of type II pneumocytes failed to restore the damaged alveoli. In contrast, mice infected with H1N1 pdm exhibited modest proliferation of type II pneumocytes and macrophages and slight alveolar damage. These results suggest that the virulence of H5N1 HPAIV results from the wide range of cell tropism of the virus, excessive virus replication, and rapid development of diffuse alveolar damage. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    Science.gov (United States)

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  20. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    2018-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1 altering amino acids in hemagglutinin (HA that enable binding affinity to human-type receptors, (2 loss of the glycosylation site and 130 loop in the HA protein and (3 mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  1. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally

    OpenAIRE

    L?ndt, Brandon Z.; N??ez, Alejandro.; Banks, Jill; Alexander, Dennis J.; Russell, Christine; Richard? L?ndt, Angela C.; Brown, Ian H.

    2009-01-01

    Background? Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives? To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods? Pekin ducks in two age?matched groups (n?=?18), 8 and 12?weeks old (wo) were each infected with 106 EID50/0?1?ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2?2). Each day for 5?days, birds were monitored clinically, and cloacal ...

  2. Caring from Afar: Asian H1B Migrant Workers and Aging Parents.

    Science.gov (United States)

    Lee, Yeon-Shim; Chaudhuri, Anoshua; Yoo, Grace J

    2015-09-01

    With the growth in engineering/technology industries, the United States has seen an increase in the arrival of highly skilled temporary migrant workers on H1B visas from various Asian countries. Limited research exists on how these groups maintain family ties from afar including caring for aging parents. This study explores the experiences and challenges that Asian H1B workers face when providing care from a distance. A total of 21 Chinese/Taiwanese, Korean, and Indian H1B workers participated in in-depth qualitative interviews. Key findings indicate that despite distance, caring relationships still continue through regular communications, financial remittances, and return visits, at the same time creating emotional, psychological, and financial challenges for the workers. Findings highlight the need for further research in understanding how the decline of aging parent's health impacts the migrants' adjustment and health in the United States.

  3. Avian influenza virus (H5N1; effects of physico-chemical factors on its survival

    Directory of Open Access Journals (Sweden)

    Hameed Sajid

    2009-03-01

    Full Text Available Abstract Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI H5N1 (local strain virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda agents. Harvested amnio-allantoic fluid (AAF from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg was subjected to haemagglutination (HA and haemagglutination inhibition (HI tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3 and basic pH (11, 13 were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h, 7 and 9 (more than 24 h. UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®, detergent (surf excel® and alkali (caustic soda destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV outbreak.

  4. Purification of neuraminidase from Influenza virus subtype H5N1

    Directory of Open Access Journals (Sweden)

    Simson Tariga

    2009-03-01

    Full Text Available Influenza-virus neuraminidase plays vital role in the survival of the organisms. Vaccination of animals with this glycoprotein confers immune responses so that enable it to protect the animals from incoming infection. Supplementation of conventional vaccines with this glycoprotein increases the protection and longevity of the vaccine. Purified neuraminidase can also be used to develop serological tests for differentiation of serologically positive animals due to infection or to vaccination. In this study purification of neuraminidase from influenza virus subtype H5N1 was described. Triton x-100 and Octyl β-D-glucopyranoside were used to extract and diluted the glycoprotein membrane. The enzymatic activity of the neuraminidase was assayed using a fluorochrome substrate, 4-methylumbelliferyl-a-D-N-acetyl neuraminic acid, which was found to be simple, sensitive and suitable for the purification purpose. The neuraminidase was absorbed selectively on an oxamic-acid agarose column. The purity of neuraminidase eluted from this affinity column was high. A higher purity of the neuraminidase was obtained by further separation with gel filtration on Superdex-200. The purified neuraminidase was enzymatically active and did not contain any detectable haemagglutinin, either by haemagglutination assay or by monospecific antibodies raised against H5N1 hemagglutinin. The purified neuraminidase was recognized strongly by antibodies raised against an internal but only weakly by that against C-terminal regions of the neuraminidase protein of H5N1-influenza virus. The purified neuraminidase was in tetrameric forms but dissociated into monomeric form on reducing condition, or mostly dimeric form on non-reducing SDS-PAGE.

  5. Avian influenza virus (H5N1): a threat to human health

    NARCIS (Netherlands)

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes.

  6. Molecular epidemiology of circulating highly pathogenic avian influenza (H5N1) virus in chickens, in Bangladesh, 2007-2010

    DEFF Research Database (Denmark)

    Ahmed, Syed Sayeem Uddin; Themudo, Goncalo Espregueira Cruz; Christensen, Jens Peter

    2012-01-01

    Bangladesh has been severely hit by highly pathogenic avian influenza H5N1 (HPAI-H5N1). However, little is known about the genetic diversity and the evolution of the circulating viruses in Bangladesh. In the present study, we analyzed the hemagglutinin gene of 30 Bangladeshi chicken isolates from...... several amino acid substitutions, but they are not indicative of adaptation toward human infection. The Mantel correlation test confirmed significant correlation between genetic distances and temporal distances between the viruses. The Bayesian tree shows that isolates from waves 3 and 4 derived from...... virus in Bangladesh. Furthermore, the formation of a subclade capable of transmission to humans cannot be ruled out. The findings of this study might provide valuable information for future surveillance, prevention and control programme....

  7. In silico approach towards H5N1 virus protein and transcriptomics ...

    African Journals Online (AJOL)

    H5N1 influenza A virus is a serious threat to human population. With a considerable mortality rate, strategies for coping with the infection are being developed. Our research group and some others investigated the potential therapeutic and preventive measures for tackling H5N1 infections. Protein based and transcriptomics ...

  8. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Munir Iqbal

    2009-06-01

    Full Text Available The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked alpha2-6 to galactose. The neuraminidase (NA of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84, a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP, and matrix (M genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.

  9. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    International Nuclear Information System (INIS)

    Guo, Di; Zhuo, Ming; Zhang, Xiaoai; Xu, Cheng; Jiang, Jie; Gao, Fu; Wan, Qing; Li, Qiuhong; Wang, Taihong

    2013-01-01

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V T ) and field-effect mobility. The changes of I D –V G curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10 −9 g mL −1 to 5 × 10 −6 g mL −1 with a detection limit of 0.8 × 10 −10 g mL −1 . Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs can be promising candidates for the

  10. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  11. Molecular characteristic and pathogenicity of Indonesian H5N1 clade 2.3.2 viruses

    Directory of Open Access Journals (Sweden)

    Dharmayanti NLPI

    2013-06-01

    Full Text Available The outbreak of disease in late 2012 in Indonesia caused high duck mortality. The agent of the disease was identified as H5N1 clade 2.3.2. The disease caused economic loss to the Indonesian duck farmer. The clade 2.3.2 of H5N1 virus has not previously been identified, so this study was conducted to characterize 4 of H5N1 clade 2.3.2 viruses by DNA sequencing in eight genes segment virus namely HA, NA, NS, M, PB1, PB2, PA and NP. The pathogenicity test of clade 2.3.2 viruses in ducks was compared to clade 2.1.3 viruses which predominat circulating in Indonesia. Results of phylogenetic tree analysis showed that the four of clade 2.3.2 viruses isolated in 2012 was the new introduced virus from abroad. Further analysis showed eight genes were in one group with the clade 2.3.2 viruses, especially those from VietNam and did not belong to Indonesia viruses group. The pathogenicity test in ducks showed that virus H5N1 clade 2.3.2 and clade 2.1.3 have similar clinical symptoms and pathogenicity and cause death in 75% of ducks on days 3-6 after infection.

  12. Associations between attributes of live poultry trade and HPAI H5N1 outbreaks: a descriptive and network analysis study in northern Vietnam.

    Science.gov (United States)

    Soares Magalhães, Ricardo J; Ortiz-Pelaez, Angel; Thi, Kim Lan Lai; Dinh, Quoc Hoang; Otte, Joachim; Pfeiffer, Dirk U

    2010-02-22

    The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006. Our results indicate that LPT's trading for less than a year and operating at retail markets are more likely to source poultry from flocks located in communes with a past history of HPAI H5N1 outbreaks during 2003 to 2006 than LPT's trading longer than a year and operating at wholesale markets. The results of the network analysis indicate that LPT's tend to link communes of similar infection status. Our study provides evidence which can be used for informing policies aimed at encouraging more biosecure practices of LPT's operating at authorised LBM's. The results suggest that LPT's play a role in HPAI H5N1 transmission and may contribute to perpetuating HPAI H5N1 virus circulation amongst certain groups of communes. The impact of current disease prevention and control interventions could be enhanced by disseminating information about outbreak risk and the implementation of a formal data recording scheme at LBM's for all incoming and outgoing LPT's.

  13. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  14. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    Science.gov (United States)

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  15. Military and Military Medical Support in Highly Pathogenic Avian Influenza (HPAI/H5N1) Pandemic Scenario

    International Nuclear Information System (INIS)

    Taleski, V.

    2007-01-01

    Avian influenza (Bird flu) is a highly contagious viral disease affecting mainly chickens, turkeys, ducks, other birds and mammals. Reservoirs for HPAI /H5N1 virus are shore birds and waterfowl (asymptomatic, excrete virus in feces for a long periods of time), live bird markets and commercial swine facilities. Virus tends to cycle between pigs and birds. HPAI (H5N1) virus is on every 'top ten' list available for potential agricultural bio-weapon agents. The threat of a HPAI/H5N1 pandemic is a definitively global phenomenon and the response must be global. A number of National plans led to various measures of preventing and dealing with epidemics/pandemics. Lessons learned form the pandemic history indicated essential role of military and military medical support to civil authorities in a crisis situation. Based on International Military Medical Avian Influenza Pandemic workshop (Vienna 2006), an expected scenario would involve 30-50% outpatients, 20-30% hospital admission, 2-3% deaths, 10-20% complicated cases. Activities of civil hospital may be reduced by 50%. Benefits of military support could be in: Transportation of patients (primarily by air); Mass vaccination and provision of all other preventive measures (masks, Tamiflu); Restriction of movements; Infection control of health care facilities; Field hospitals for triage and quarantine, military barracks to treat milder cases and military hospitals for severe cases; Deal with corpses; Stockpiling (vaccines, antiviral, antibiotics, protective equipment, supplies); Training; Laboratories; Ensure public safety, etc. With the aim of minimizing the risk of a pandemic spread by means of rapid and uncomplicated cooperation, an early warning system has to be established to improve surveillance, improve international contacts (WHO, ECDC, CDC), establish Platform for sharing information, close contacts of national and international military and civilian surveillance networks and databases, cooperation between military

  16. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China.

    Directory of Open Access Journals (Sweden)

    Guoying Dong

    Full Text Available H9N2 influenza A viruses have become endemic in different types of terrestrial poultry and wild birds in Asia, and are occasionally transmitted to humans and pigs. To evaluate the role of black-billed magpies (Pica pica in the evolution of influenza A virus, we conducted two epidemic surveys on avian influenza viruses in wild black-billed magpies in Guangxi, China in 2005 and characterized three isolated black-billed magpie H9N2 viruses (BbM viruses. Phylogenetic analysis indicated that three BbM viruses were almost identical with 99.7 to 100% nucleotide homology in their whole genomes, and were reassortants containing BJ94-like (Ck/BJ/1/94 HA, NA, M, and NS genes, SH/F/98-like (Ck/SH/F/98 PB2, PA, and NP genes, and H5N1-like (Ck/YN/1252/03, clade 1 PB1 genes. Genetic analysis showed that BbM viruses were most likely the result of multiple reassortments between co-circulating H9N2-like and H5N1-like viruses, and were genetically different from other H9N2 viruses because of the existence of H5N1-like PB1 genes. Genotypical analysis revealed that BbM viruses evolved from diverse sources and belonged to a novel genotype (B46 discovered in our recent study. Molecular analysis suggested that BbM viruses were likely low pathogenic reassortants. However, results of our pathogenicity study demonstrated that BbM viruses replicated efficiently in chickens and a mammalian mouse model but were not lethal for infected chickens and mice. Antigenic analysis showed that BbM viruses were antigenic heterologous with the H9N2 vaccine strain. Our study is probably the first report to document and characterize H9N2 influenza viruses isolated from black-billed magpies in southern China. Our results suggest that black-billed magpies were susceptible to H9N2 influenza viruses, which raise concerns over possible transmissions of reassortant H9N2 viruses among poultry and wild birds.

  17. Characterization of avian influenza H5N1 virosome

    Directory of Open Access Journals (Sweden)

    Chatchai Sarachai

    2014-04-01

    Full Text Available The purpose of this study was to prepare and characterize virosome containing envelope proteins of the avian influenza (H5N1 virus. The virosome was prepared by the solubilization of virus with octaethyleneglycol mono (n-dodecyl ether (C12E8 followed by detergent removal with SM2 Bio-Beads. Biochemical analysis by SDS-PAGE and western blotting, indicated that avian influenza H5N1 virosome had similar characteristics to the parent virus and contained both the hemagglutinin (HA, 60-75 kDa and neuraminidase (NA, 220 kDa protein, with preserved biological activity, such as hemagglutination activity. The virosome structure was analyzed by negative stained transmission electron microscope (TEM demonstrated that the spherical shapes of vesicles with surface glycoprotein spikes were harbored. In conclusion, the biophysical properties of the virosome were similar to the parent virus, and the use of octaethyleneglycol mono (n-dodecyl ether to solubilize viral membrane, followed by removal of detergent using polymer beads adsorption (Bio-Beads SM2 was the preferable method for obtaining avian influenza virosome. The outcome of this study might be useful for further development veterinary virus vaccines.

  18. Spatio-Temporal Occurrence Modeling of Highly Pathogenic Avian Influenza Subtype H5N1: A Case Study in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Chinh C. Tran

    2013-11-01

    Full Text Available Highly Pathogenic Avian Influenza (HPAI subtype H5N1 poses severe threats to both animals and humans. Investigating where, when and why the disease occurs is important to help animal health authorities develop effective control policies. This study takes into account spatial and temporal occurrence of HPAI H5N1 in the Red River Delta of Vietnam. A two-stage procedure was used: (1 logistic regression modeling to identify and quantify factors influencing the occurrence of HPAI H5N1; and (2 a geostatistical approach to develop monthly predictive maps. The results demonstrated that higher average monthly temperatures and poultry density in combination with lower average monthly precipitation, humidity in low elevation areas, roughly from November to January and April to June, contribute to the higher occurrence of HPAI H5N1. Provinces near the Gulf of Tonkin, including Hai Phong, Hai Duong, Thai Binh, Nam Dinh and Ninh Binh are areas with higher probability of occurrence of HPAI H5N1.

  19. Efficacy of gamma irradiation on H5N1 for the preparation of hemagglutination Inhibition test antigen

    International Nuclear Information System (INIS)

    Chaisingh, Arunee; Thammasart, Suree; Kamolsiripichaiporn, Somjai; Piadang Nattayana

    2006-09-01

    The result of the efficiencies of gamma irradiation at the dose of 10-60 kGy on highly pathogenic avian influenza virus, H5N1 (Thai isolate) revealed that gamma irradiation at the dose of 10 and 20 kGy could reduce the infectivity of Hanna but gamma irradiation at 30-60 kGy could inactivate H5N1 virus completely. All doses of gamma irradiation used in this experiment had no effect on antigenicity of hemagglutinin protein. Thus, gamma irradiation at the dose of 30- 60 kGy could be use safely for the antigen preparation to detect the antibody against H5N1 virus.

  20. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Di; Zhuo, Ming [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zhang, Xiaoai [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Xu, Cheng; Jiang, Jie [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Gao, Fu [State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing (China); Wan, Qing, E-mail: wanqing7686@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Li, Qiuhong, E-mail: liqiuhong2004@hotmail.com [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Wang, Taihong, E-mail: thwang@hnu.cn [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2013-04-22

    Highlights: ► A highly selective label-free biosensor is established based on indium-tin-oxide thin-film transistors (ITO TFTs). ► AI H5N1 virus was successfully detected through shift in threshold voltage and field-effect mobility of ITO TFT. ► The ITO TFT is applied in biosensor for the first time and shows good reusability and stability. ► Fabrication of the platform is simple with low cost, which is suitable for mass commercial production. -- Abstract: As continuous outbreak of avian influenza (AI) has become a threat to human health, economic development and social stability, it is urgently necessary to detect the highly pathogenic avian influenza H5N1 virus quickly. In this study, we fabricated indium-tin-oxide thin-film transistors (ITO TFTs) on a glass substrate for the detecting of AI H5N1. The ITO TFT is fabricated by a one-shadow-mask process in which a channel layer can be simultaneously self-assembled between ITO source/drain electrodes during magnetron sputtering deposition. Monoclonal anti-H5N1 antibodies specific for AI H5N1 virus were covalently immobilized on the ITO channel by (3-glycidoxypropyl)trimethoxysilane. The introduction of target AI H5N1 virus affected the electronic properties of the ITO TFT, which caused a change in the resultant threshold voltage (V{sub T}) and field-effect mobility. The changes of I{sub D}–V{sub G} curves were consistent with an n-type field effect transistor behavior affected by nearby negatively charged AI H5N1 viruses. The transistor based sensor demonstrated high selectivity and stability for AI H5N1 virus sensing. The sensor showed linear response to AI H5N1 in the concentrations range from 5 × 10{sup −9} g mL{sup −1} to 5 × 10{sup −6} g mL{sup −1} with a detection limit of 0.8 × 10{sup −10} g mL{sup −1}. Moreover, the ITO TFT biosensors can be repeatedly used through the washing processes. With its excellent electric properties and the potential for mass commercial production, ITO TFTs

  1. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1.

    Science.gov (United States)

    Zhu, Min; Gong, Xue; Hu, Yonghong; Ou, Weijun; Wan, Yakun

    2014-12-20

    Influenza H5N1 is one subtype of the influenza A virus which can infect human bodies and lead to death. Timely diagnosis before its breakout is vital to the human health. The current clinical biochemical diagnosis for influenza virus are still flawed, and the diagnostic kits of H5N1 are mainly based on traditional monoclonal antibodies that hardly meet the requirements for clinical applications. Nanobody is a promising tool for diagnostics and treatment due to its smallest size, high specificity and stability. In this study, a novel Nanobody-based bioassay was developed for rapid, low-cost and sensitive detection of the influenza H5N1 virus. Nanobodies specific to H5N1 virus were selected from a VHH library by phage display technology. In this system, the biotinylated Nanobody was directionally captured by streptavidin coated on ELISA plate, which can specifically capture the H5N1 virus. Another Nanobody conjugated with HRP was used as a detector. A novel directional enzyme-linked immunosorbent assay for H5N1 using specific Nanobodies was established and compared to the conventional undirected ELISA assay. We have successfully constructed a high quality phage display Nanobody library and isolated two Nanobodies against H5N1 with high affinity and specificity. These two Nanobodies were further used to prepare the biosensor detection system. This streptavidin-biotin-based directional double Nanobodies sandwich ELISA for H5N1 detection showed superiority over the commonly undirectional ELISA protocol. The linear range of detection for standards in this immunoassay was approximately 50-1000 ng/mL and the detection limit was 14.1 ng/mL. The average recoveries of H5N1 virus from human serum samples were in the range from 94.58% to 114.51%, with a coefficient of variation less than 6.5%. Collectively, these results demonstrated that the proposed detection system is an alternative diagnostic tool that enables a rapid, inexpensive, sensitive and specific detection of the

  2. The chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection (a report of 1 final diagnosis case and 1 borderline case)

    International Nuclear Information System (INIS)

    Jin Ke; Chen Hua; Tan Lihua; Yuan Youhong; Xiao Enhua; Luo Ruping; Li Wanging; Xu Heping

    2006-01-01

    Objective: To describe the chest X-ray manifestations of children with highly pathogenic H5N1 avian influenza virus infection. Methods: The pulmonary X-ray findings in 1 patient was confirmed by the World Health Organization infected H5N1 avian influenza vires and 1 borderline patient was retrospectively analyzed. Results: Both sides of lung field showed the cloudy and massive infiltration in chest X-ray film. The lesions of lung distributed extensively and symmetrically. Radiological dynamic changes showed the variation of the lesions of lung was quick in a short time. It had a characteristic of roving around. The lesions of lung appeared fibrosis at the period of the end. Conclusion: There are some radiographic characteristics in children with H5N1 avian influenza vires infection. It will be helpful for its diagnosis when getting familiar with its X-ray manifestations, but the final diagnosis is dependent on the epidemiology history and laboratory results. (authors)

  3. Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China.

    Science.gov (United States)

    Du, Yingying; Chen, Mingyue; Yang, Jiayun; Jia, Yane; Han, Shufang; Holmes, Edward C; Cui, Jie

    2017-06-15

    H5N6 avian influenza virus (AIV) has posed a potential threat to public health since its emergence in China in 2013. To understand the evolution and emergence of H5N6 AIV in the avian population, we performed molecular surveillance of live poultry markets (LPMs) in Wugang Prefecture, Hunan Province, in central China, during 2014 and 2015. Wugang Prefecture is located on the Eastern Asian-Australian migratory bird flyway, and a human death due to an H5N6 virus was reported in the prefecture on 21 November 2016. In total, we sampled and sequenced the complete genomes of 175 H5N6 AIVs. Notably, our analysis revealed that H5N6 AIVs contain at least six genotypes arising from segment reassortment, including a rare variant that possesses an HA gene derived from H5N1 clade 2.3.2 and a novel NP gene that has its origins with H7N3 viruses. In addition, phylogenetic analysis revealed that genetically similar H5N6 AIVs tend to cluster according to their geographic regions of origin. These results help to reveal the evolutionary behavior of influenza viruses prior to their emergence in humans. IMPORTANCE The newly emerged H5N6 influenza A virus has caused more than 10 human deaths in China since 2013. In November 2016, a human death due to an H5N6 virus, in Wugang Prefecture, Hunan Province, was confirmed by the WHO. To better understand the evolution and emergence of H5N6 viruses, we surveyed live poultry markets (LPMs) in Wugang Prefecture before the reported human death, with a focus on revealing the diversity and genomic origins of H5N6 in birds during 2014 and 2015. In general, H5N6 viruses in this region were most closely related to H5N1 clade 2.3.4.4, with the exception of one virus with an HA gene derived from clade 2.3.2 such that it represents a novel reassortant. Clearly, the ongoing surveillance of LPMs is central to monitoring the emergence of pathogenic influenza viruses. Copyright © 2017 American Society for Microbiology.

  4. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  5. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  6. Influenza A aviária (H5N1: a gripe do frango Avian influenza A (H5N1: the bird flu

    Directory of Open Access Journals (Sweden)

    Cássio da Cunha Ibiapina

    2005-10-01

    Full Text Available Este estudo tem como objetivo rever a literatura sobre o vírus influenza A aviária (H5N1. O levantamento bibliográfico foi realizado nos bancos de dados eletrônicos Medline, MD Consult, HighWire, Medscape e Literatura Latinoamericana y del Caribe en Ciencias de la Salud (LILACS, Literatura Latinoamericana e do Caribe em Ciências da Saúde, e por pesquisa direta, referentes aos últimos dez anos. Foram selecionados 32 artigos originais abordando os surtos recentes de infecção por um subtipo de vírus influenza A aviária, o H5N1, em criações de aves domésticas na Ásia, que resultaram em importantes prejuízos econômicos e repercussões em saúde pública, além de casos de infecção humana de alta letalidade. A maioria dos casos está associada com a exposição direta a aves infectadas ou superfícies contaminadas com excrementos dessas aves, porém foi confirmada a transmissão entre humanos. O período de incubação foi de dois a quatro dias. As manifestações clínicas variaram de infecção assintomática e doença leve do trato respiratório superior a pneumonia grave e falência múltipla de órgãos. A radiografia de tórax pode apresentar infiltrado intersticial bilateral, colapso lobar, consolidação focal e broncograma aéreo sem derrame pleural. A presença de linfopenia indica pior prognóstico. O tratamento de suporte parece ser o único tratamento aceitável. Os fatores de risco para mau prognóstico incluem idade avançada, demora na hospitalização, envolvimento do trato respiratório inferior, baixa contagem de leucócitos totais e linfopenia à admissão. Controlar os surtos em aves domésticas e o contato entre seres humanos e tais aves deve ser a prioridade no manejo da doença em nível de saúde pública, e medidas e conhecimentos acerca da doença devem ser amplamente divulgados.The objective of this study was to review the literature related to avian influenza A (H5N1. The bibliographic research was

  7. Influenza A H5N1 and HIV co-infection: case report

    Directory of Open Access Journals (Sweden)

    Simmons Cameron

    2010-06-01

    Full Text Available Abstract Background The role of adaptive immunity in severe influenza is poorly understood. The occurrence of influenza A/H5N1 in a patient with HIV provided a rare opportunity to investigate this. Case Presentation A 30-year-old male was admitted on day 4 of influenza-like-illness with tachycardia, tachypnea, hypoxemia and bilateral pulmonary infiltrates. Influenza A/H5N1 and HIV tests were positive and the patient was treated with Oseltamivir and broad-spectrum antibiotics. Initially his condition improved coinciding with virus clearance by day 6. He clinically deteriorated as of day 10 with fever recrudescence and increasing neutrophil counts and died on day 16. His admission CD4 count was 100/μl and decreased until virus was cleared. CD8 T cells shifted to a CD27+CD28- phenotype. Plasma chemokine and cytokine levels were similar to those found previously in fatal H5N1. Conclusions The course of H5N1 infection was not notably different from other cases. Virus was cleared despite profound CD4 T cell depletion and aberrant CD8 T cell activation but this may have increased susceptibility to a fatal secondary infection.

  8. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam

    NARCIS (Netherlands)

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D.; Jeeninga, Rienk E.; Rogier van Doorn, H.; Farrar, Jeremy; Wertheim, Heiman F. L.

    2013-01-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern

  9. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Menachery, Vineet D.; Schafer, Alexandra; Burnum-Johnson, Kristin E.; Mitchell, Hugh D.; Eisfeld-Fenney, Amie J.; Walters, Kevin B.; Nicora, Carrie D.; Purvine, Samuel O.; Casey, Cameron P.; Monroe, Matthew E.; Weitz, Karl K.; Stratton, Kelly G.; Webb-Robertson, Bobbie-Jo M.; Gralinski, Lisa; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Sims, Amy C.; Kawaoka, Yoshihiro; Baric, Ralph

    2018-01-16

    Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways in order to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems based approach, we examined differential regulation of IFNγ dependent genes following infection with highly pathogenic viruses including influenza (H5N1-VN1203, H1N1-CA04) and coronaviruses (SARS-CoV, MERS-CoV). Categorizing by function, we observed down regulation of genes associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down regulation of antigen presentation genes and was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation rather than histone modification plays a crucial role in MERS-CoV mediated antagonism of antigen presentation genes; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common approach utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.

  10. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species

    Science.gov (United States)

    Hall, Jeffrey S.; Franson, J. Christian; Gill, Robert E.; Meteyer, Carol U.; TeSlaa, Joshua L.; Nashold, Sean W.; Dusek, Robert J.; Ip, Hon S.

    2011-01-01

    Background Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds.

  11. Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses.

    Directory of Open Access Journals (Sweden)

    Lina Sun

    Full Text Available BACKGROUND: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs, AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. CONCLUSIONS/SIGNIFICANCE: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

  12. Pathobiology of highly pathogenic avian influenza virus (H5N1) infection in mute swans (Cygnus olor).

    Science.gov (United States)

    Pálmai, Nimród; Erdélyi, Károly; Bálint, Adám; Márton, Lázár; Dán, Adám; Deim, Zoltán; Ursu, Krisztina; Löndt, Brandon Z; Brown, Ian H; Glávits, Róbert

    2007-06-01

    The results of pathological, virological and polymerase chain reaction examinations carried out on 35 mute swans (Cygnus olor) that succumbed to a highly pathogenic avian influenza virus (H5N1) infection during an outbreak in Southern Hungary are reported. The most frequently observed macroscopic lesions included: haemorrhages under the epicardium, in the proventricular and duodenal mucosa and pancreas; focal necrosis in the pancreas; myocardial degeneration; acute mucous enteritis; congestion of the spleen and lung, and the accumulation of sero-mucinous exudate in the body cavity. Histopathological lesions comprised: lymphocytic meningo-encephalomyelitis accompanied by gliosis and occasional perivascular haemorrhages; multi-focal myocardial necrosis with lympho-histiocytic infiltration; pancreatitis with focal necrosis; acute desquamative mucous enteritis; lung congestion and oedema; oedema of the tracheal mucosa and, in young birds, the atrophy of the bursa of Fabricius as a result of lymphocyte depletion and apoptosis. The observed lesions and the moderate to good body conditions were compatible with findings in acute highly pathogenic avian influenza infections of other bird species reported in the literature. Skin lesions and lesions typical for infections caused by strains of lower pathogenicity (low pathogenic avian influenza virus) such as emaciation or fibrinous changes in the reproductive and respiratory organs, sinuses and airsacs were not observed. The H5N1 subtype avian influenza virus was isolated in embryonated fowl eggs from all cases and it was identified by classical and molecular virological methods.

  13. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    NARCIS (Netherlands)

    Cornelissen, A.H.M.; Leeuw, de O.S.; Tacken, M.G.J.; Klos, H.C.; Vries, de R.P.; Boer-Luijtze, de E.A.; Zoelen-Bos, van D.J.; Rigter, A.; Rottier, P.J.M.; Moormann, R.J.M.; Haan, de C.A.M.

    2012-01-01

    Background: Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to

  14. Associations between attributes of live poultry trade and HPAI H5N1 outbreaks: a descriptive and network analysis study in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Otte Joachim

    2010-02-01

    Full Text Available Abstract Background The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006. Results Our results indicate that LPT's trading for less than a year and operating at retail markets are more likely to source poultry from flocks located in communes with a past history of HPAI H5N1 outbreaks during 2003 to 2006 than LPT's trading longer than a year and operating at wholesale markets. The results of the network analysis indicate that LPT's tend to link communes of similar infection status. Conclusions Our study provides evidence which can be used for informing policies aimed at encouraging more biosecure practices of LPT's operating at authorised LBM's. The results suggest that LPT's play a role in HPAI H5N1 transmission and may contribute to perpetuating HPAI H5N1 virus circulation amongst certain groups of communes. The impact of current disease prevention and control interventions could be enhanced by disseminating information about outbreak risk and the implementation of a formal data recording scheme at LBM's for all incoming and outgoing LPT's.

  15. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    Science.gov (United States)

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  16. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells.

    Science.gov (United States)

    Mazel-Sanchez, B; Boal-Carvalho, I; Silva, F; Dijkman, R; Schmolke, M

    2018-06-01

    Highly pathogenic influenza A viruses (IAV) from avian hosts were first reported to directly infect humans 20 years ago. However, such infections are rare events, and our understanding of factors promoting or restricting zoonotic transmission is still limited. One accessory protein of IAV, PB1-F2, was associated with pathogenicity of pandemic and zoonotic IAV. This short (90-amino-acid) peptide does not harbor an enzymatic function. We thus identified host factors interacting with H5N1 PB1-F2, which could explain its importance for virulence. PB1-F2 binds to HCLS1-associated protein X1 (HAX-1), a recently identified host restriction factor of the PA subunit of IAV polymerase complexes. We demonstrate that the PA of a mammal-adapted H1N1 IAV is resistant to HAX-1 imposed restriction, while the PA of an avian-origin H5N1 IAV remains sensitive. We also showed HAX-1 sensitivity for PAs of A/Brevig Mission/1/1918 (H1N1) and A/Shanghai/1/2013 (H7N9), two avian-origin zoonotic IAV. Inhibition of H5N1 polymerase by HAX-1 can be alleviated by its PB1-F2 through direct competition. Accordingly, replication of PB1-F2-deficient H5N1 IAV is attenuated in the presence of large amounts of HAX-1. Mammal-adapted H1N1 and H3N2 viruses do not display this dependence on PB1-F2 for efficient replication in the presence of HAX-1. We propose that PB1-F2 plays a key role in zoonotic transmission of avian H5N1 IAV into humans. IMPORTANCE Aquatic and shore birds are the natural reservoir of influenza A viruses from which the virus can jump into a variety of bird and mammal host species, including humans. H5N1 influenza viruses are a good model for this process. They pose an ongoing threat to human and animal health due to their high mortality rates. However, it is currently unclear what restricts these interspecies jumps on the host side or what promotes them on the virus side. Here we show that a short viral peptide, PB1-F2, helps H5N1 bird influenza viruses to overcome a human restriction

  17. Novel H5N8 clade 2.3.4.4 highly pathogenic avian influenza virus in wild awuatic birds, Russia, 2016

    Science.gov (United States)

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (Gs/GD) and has evolved into multiple genetic clades. Since 2008, HPAIV H5 clade 2.3.4 with N2, N5 and N8 neuraminidase subtypes have been identified in mainland China and outbreak of HPAIV H5N8 clade 2.3.4.4 ou...

  18. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    Science.gov (United States)

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  19. Fluorescence biosensor based on CdTe quantum dots for specific detection of H5N1 avian influenza virus

    Science.gov (United States)

    Hoa Nguyen, Thi; Dieu Thuy Ung, Thi; Hien Vu, Thi; Tran, Thi Kim Chi; Quyen Dong, Van; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-09-01

    This report highlights the fabrication of fluorescence biosensors based on CdTe quantum dots (QDs) for specific detection of H5N1 avian influenza virus. The core biosensor was composed of (i) the highly luminescent CdTe/CdS QDs, (ii) chromatophores extracted from bacteria Rhodospirillum rubrum, and (iii) the antibody of β-subunit. This core part was linked to the peripheral part of the biosensor via a biotin-streptavidin-biotin bridge and finally connected to the H5N1 antibody to make it ready for detecting H5N1 avian influenza virus. Detailed studies of each constituent were performed showing the image of QDs-labeled chromatophores under optical microscope, proper photoluminescence (PL) spectra of CdTe/CdS QDs, chromatophores and the H5N1 avian influenza viruses.

  20. Treatment and Prevention of Pandemic H1N1 Influenza.

    Science.gov (United States)

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    Science.gov (United States)

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  2. Hydrazinium(1+) hexafluorotitanate(IV), 2N[sub 2]H[sub 5][sup +]. TiF[sub 6][sup 2-]. [N[sub 2]H[sub 5]TiF[sub 6

    Energy Technology Data Exchange (ETDEWEB)

    Leban, I. (Dept. of Chemistry and Chemical Technology, Univ. Ljubljana (Slovenia))

    1994-06-15

    The crystals exhibit racemic twinning. The structure consists of hydrazinium(1+), N[sub 2]H[sub 5][sup +], cations and usual octahedral hexafluorotitanate(IV) anions. They are linked together via hydrogen bonds of the types N-H..F and N-H..N. (orig.).

  3. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  4. Avian influenza A H5N1 infections in Bali Province, Indonesia: a behavioral, virological and seroepidemiological study.

    Science.gov (United States)

    Santhia, Ketut; Ramy, Ayu; Jayaningsih, Putri; Samaan, Gina; Putra, Anak Agung Gde; Dibia, Nyoman; Sulaimin, Cynthia; Joni, Gusti; Leung, Connie Y H; Sriyal, Joseph; Peiris, Malik; Wandra, Toni; Kandun, Nyoman

    2009-05-01

    Bali Province was affected by avian influenza H5N1 outbreaks in birds in October 2003. Despite ongoing circulation of the virus, no human infection had been identified by December 2005. To assess behavioral patterns associated with poultry rearing in Bali, and to identify potential risk factors for H5N1 infection in humans and in household chickens, ducks and pigs. A behavioral, virological and seroepidemiologic survey in 38 villages and three live bird markets was completed in December 2005. A multi-stage cluster design was used to select 291 households with 841 participants from all nine districts in Bali. Specimens were collected from participants as well as a maximum of three pigs, chickens and ducks from each household. Eighty-seven market vendors participated, where specimens were collected from participants as well as chickens and ducks. Twenty out of the 38 villages sampled had H5N1 outbreaks. Despite exposure to H5N1 outbreaks, none of the participants from villages or markets were seropositive for H5N1. None of the pigs tested were positive for H5N1. Virus isolation rate in ducks and chicken in markets was higher than in households. Transport of poultry in or out of villages was a risk factor for outbreaks in household chickens and ducks. The study highlighted that the market chain and associated behaviors may play a role in maintaining the virus in household flocks. The study adds evidence that transmission of H5N1 to humans remains a rare event despite high level handling of both healthy and sick birds.

  5. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  6. Immunomorphologic Manifestations in Mice Liver Infected with Influenza A/H5N1, A/Goose/Krasnoozerskoye/627/05 Strain

    Directory of Open Access Journals (Sweden)

    Oxana V. Potapova

    2013-01-01

    Full Text Available Highly pathogenic avian influenza H5N1 (HPAI H5N1 viruses can infect mammals, including humans, causing severe systemic disease with the inhibition of the immune system and a high mortality rate. In conditions of lymphoid tissue depletion, the liver plays an important role in host defence against viruses. The changes in mice liver infected with HPAI H5N1 virus A/goose/Krasnoozerskoye/627/05 have been studied. It has been shown that the virus persistence in the liver leads to the expression of proinflammatory cytokines (TNF-α, IL-6 and intracellular proteases (lysozyme, cathepsin D, and myeloperoxidase by Kupffer cells. Defective antiviral response exacerbates destructive processes in the liver accelerating the development of liver failure.

  7. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    Science.gov (United States)

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  8. Seroprevalence survey of avian influenza A(H5N1) among live poultry market workers in northern Viet Nam, 2011.

    Science.gov (United States)

    Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi; Mai, Le Quynh

    2014-01-01

    Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. The overall seroprevalence was 6.1% (95% confidence interval: 4.6-8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian-human transmission of influenza A(H5N1) in Viet Nam.

  9. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Directory of Open Access Journals (Sweden)

    Chan Chris CS

    2010-01-01

    Full Text Available Abstract Background A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses. Results Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses. Conclusions These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

  10. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    Directory of Open Access Journals (Sweden)

    Weerapong Thanapongtharm

    2013-11-01

    Full Text Available Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7- Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3 geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  11. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    Science.gov (United States)

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    Science.gov (United States)

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  13. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia

    OpenAIRE

    Mangiri, Amalya; Iuliano, A. Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y.; Lafond, Kathryn E.; Storms, Aaron D.; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M.; Storey, J. Douglas; Uyeki, Timothy M.

    2016-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 vir...

  14. Epidemiology of avian influenza H5N1 virus in Egypt and its zoonotic potential

    Directory of Open Access Journals (Sweden)

    Nahed Hamed Ghoneim

    2014-09-01

    Full Text Available Objective: To investigate the epidemiology of avian influenza H5N1 virus in domestic poultry and its zoonotic potential in Egypt. Methods: Tracheal swabs were collected from two hundred and forty three domestic poultry (chickens, ducks and geese from commercial farms and backyards, and thirty two blood samples from unvaccinated chickens. Fifty two throat swabs and twenty blood samples were collected from persons who are in contact with diseased and/or infected birds. Tracheal and throat swabs were examined for the presence of avian influenza virus H5N1 genome by real-time RT-PCR whereas blood samples were tested by competitive ELISA for the presence of avian influenza virus H5 antibodies. Results: The overall prevalence of H5N1 in the examined birds was 5.3% while the prevalence rates among different poultry species were 9%, 4.7% and 0% for ducks, chicken and geese respectively. Moreover, we detected H5 antibodies in 12.5% of the examined backyard chickens. All examined humans were negative for both viral RNA and antibodies. Conclusions: Our findings highlight the broad circulation of H5N1 virus among poultry in Egypt whereas it still has a limited zoonotic potential so far.

  15. Seroprevalence survey of avian influenza A(H5N1 among live poultry market workers in northern Viet Nam, 2011

    Directory of Open Access Journals (Sweden)

    Tham Chi Dung

    2014-11-01

    Full Text Available Objective: Highly pathogenic avian influenza A(H5N1 is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1 in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1 specific antibodies in 4% of poultry market workers (PMWs. We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1 among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. Methods: We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1 viruses that have circulated in Viet Nam since 2004. Results: The overall seroprevalence was 6.1% (95% confidence interval: 4.6–8.3. The highest proportion (7.2% was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3% were slaughterers or sellers of poultry. Discussion: The continued circulation and evolution of influenza A(H5N1 requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian–human transmission of influenza A(H5N1 in Viet Nam.

  16. Photolabeling of Tonoplast from Sugar Beet Cell Suspensions by [3H]5-(N-Methyl-N-Isobutyl)-Amiloride, an Inhibitor of the Vacuolar Na+/H+ Antiport 1

    Science.gov (United States)

    Barkla, Bronwyn J.; Charuk, Jeffrey H. M.; Cragoe, Edward J.; Blumwald, Eduardo

    1990-01-01

    The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog. Images Figure 7 PMID:16667602

  17. Detection and Characterization of Clade 1 Reassortant H5N1 Viruses Isolated from Human Cases in Vietnam during 2013.

    Directory of Open Access Journals (Sweden)

    Sharmi W Thor

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 is endemic in Vietnamese poultry and has caused sporadic human infection in Vietnam since 2003. Human infections with HPAI H5N1 are of concern due to a high mortality rate and the potential for the emergence of pandemic viruses with sustained human-to-human transmission. Viruses isolated from humans in southern Vietnam have been classified as clade 1 with a single genome constellation (VN3 since their earliest detection in 2003. This is consistent with detection of this clade/genotype in poultry viruses endemic to the Mekong River Delta and surrounding regions. Comparison of H5N1 viruses detected in humans from southern Vietnamese provinces during 2012 and 2013 revealed the emergence of a 2013 reassortant virus with clade 1.1.2 hemagglutinin (HA and neuraminidase (NA surface protein genes but internal genes derived from clade 2.3.2.1a viruses (A/Hubei/1/2010-like; VN12. Closer analysis revealed mutations in multiple genes of this novel genotype (referred to as VN49 previously associated with increased virulence in animal models and other markers of adaptation to mammalian hosts. Despite the changes identified between the 2012 and 2013 genotypes analyzed, their virulence in a ferret model was similar. Antigenically, the 2013 viruses were less cross-reactive with ferret antiserum produced to the clade 1 progenitor virus, A/Vietnam/1203/2004, but reacted with antiserum produced against a new clade 1.1.2 WHO candidate vaccine virus (A/Cambodia/W0526301/2012 with comparable hemagglutination inhibition titers as the homologous antigen. Together, these results indicate changes to both surface and internal protein genes of H5N1 viruses circulating in southern Vietnam compared to 2012 and earlier viruses.

  18. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    Science.gov (United States)

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  19. Highly pathogenic avian influenza virus H5N1 controls type I IFN induction in chicken macrophage HD-11 cells: a polygenic trait that involves NS1 and the polymerase complex

    Science.gov (United States)

    2012-01-01

    Background Influenza A viruses are well characterized to antagonize type I IFN induction in infected mammalian cells. However, limited information is available for avian cells. It was hypothesised that avian influenza viruses (AIV) with distinct virulence may interact differently with the avian innate immune system. Therefore, the type I IFN responses induced by highly virulent and low virulent H5N1 AIV and reassortants thereof were analysed in chicken cells. Results The highly pathogenic (HP) AIV A/chicken/Yamaguchi/7/04 (H5N1) (Yama) did not induce type I IFN in infected chicken HD-11 macrophage-like cells. This contrasted with an NS1 mutant Yama virus (Yama-NS1A144V) and with the attenuated H5N1 AIV A/duck/Hokkaido/Vac-1/04 (Vac) carrying the haemagglutinin (HA) of the Yama virus (Vac-Yama/HA), that both induced type I IFN in these cells. The substitution of the NS segment from Yama with that from Vac in the Yama backbone resulted in induction of type I IFN secretion in HD-11 cells. However, vice versa, the Yama NS segment did not prevent type I IFN induction by the Vac-Yama/HA virus. This was different with the PB1/PB2/PA segment reassortant Yama and Vac-Yama/HA viruses. Whereas the Yama virus with the Vac PB1/PB2/PA segments induced type I IFN in HD-11 cells, the Vac-Yama/HA virus with the Yama PB1/PB2/PA segments did not. As reported for mammalian cells, the expression of H5N1 PB2 inhibited the activation of the IFN-β promoter in chicken DF-1 fibroblast cells. Importantly, the Yama PB2 was more potent at inhibiting the IFN-β promoter than the Vac PB2. Conclusions The present study demonstrates that the NS1 protein and the polymerase complex of the HPAIV Yama act in concert to antagonize chicken type I IFN secretion in HD-11 cells. PB2 alone can also exert a partial inhibitory effect on type I IFN induction. In conclusion, the control of type I IFN induction by H5N1 HPAIV represents a complex phenotype that involves a particular viral gene constellation

  20. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    Science.gov (United States)

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  1. Tautomerism of N-(3,4-dichlorophenyl)-1H-indazole-5-carboxamide - A new selective, highly potent and reversible MAO-B inhibitor

    Science.gov (United States)

    Tzvetkov, Nikolay T.; Stammler, Hans-Georg; Antonov, Liudmil

    2017-12-01

    The tautomeric properties of an N-(3,4-dichlorophenyl)-1H-indazole-5-carboxamide (NTZ-1006, 2) derivative, developed as highly potent, reversible and selective MAO-B inhibitor useful for the treatment of Parkinson's disease (PD) and other neurological disorders, have been studied both experimentally and theoretically. The theoretical data (M06-2X, B3LYP and MP2-4 quantum chemical calculations) have shown that due to aromaticity reasons the 1H tautomer strongly dominates over the 2H form. There are no substantial spectral changes by changing the solvent and the concentration, which leads to a conclusion that compound 2 exists in solution as 1H tautomer and its tautomerism is not influenced by the solvents and the concentration. The results are in line with the understanding for the tautomerism of 1H-indazole and shows that substitution at the C5 position in the indazole unit does not influence the tautomeric state. The isolated crystal structure of 2 is in an excellent agreement with the computation in respect of the most stable tautomer. Combined single X-ray/molecular modeling studies including HYdrogen-DEsolvation (HYDE) analysis provided not only insights into the enzyme-inhibitor interaction within the binding site of the human MAO-B isoform, but also a valuable information regarding the most stable 1H-indazole tautomeric form of NTZ-1006 that contributes to its high potency against hMAO-B enzyme (IC50 0.586 nm) and selectivity (>17000-fold) over the hMAO-A isoenzyme.

  2. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  3. Isoxazolium N-ylides and 1-oxa-5-azahexa-1,3,5-trienes on the way from isoxazoles to 2H-1,3-oxazines

    Directory of Open Access Journals (Sweden)

    Alexander F. Khlebnikov

    2014-08-01

    Full Text Available Theoretical and experimental studies of the reaction of isoxazoles with diazo compounds show that the formation of 2H-1,3-oxazines proceeds via the formation of (3Z-1-oxa-5-azahexa-1,3,5-trienes which undergo a 6π-cyclization. The stationary points corresponding to the probable reaction intermediates, isoxazolium N-ylides, were located by DFT calculations at the B3LYP/6-31G(d level only for derivatives without a substituent in position 3 of the isoxazole ring. These isoxazolium N-ylides are thermodynamically and kinetically very unstable. According to the calculations and experimental results 2H-1,3-oxazines are usually more thermodynamically stable than the corresponding open-chain isomers, (3Z-1-oxa-5-azahexa-1,3,5-trienes. The exception are oxaazahexatrienes derived from 5-alkoxyisoxazoles, which are thermodynamically more stable than the corresponding 2H-1,3-oxazines. Therefore, the reaction of diazo esters with 5-alkoxyisoxazoles is a good approach to 1,4-di(alkoxycarbonyl-2-azabuta-1,3-dienes. The reaction conditions for the preparation of aryl- and halogen-substituted 2H-1,3-oxazines and 1,4-di(alkoxycarbonyl-2-azabuta-1,3-dienes from isoxazoles were investigated.

  4. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans.

    Science.gov (United States)

    Teifke, J P; Klopfleisch, R; Globig, A; Starick, E; Hoffmann, B; Wolf, P U; Beer, M; Mettenleiter, T C; Harder, T C

    2007-03-01

    Mortality in wild aquatic birds due to infection with highly pathogenic avian influenza viruses (HPAIV) is a rare event. During the recent outbreak of highly pathogenic avian influenza in Germany, mortality due to H5N1 HPAIV was observed among mute and whooper swans as part of a rapid spread of this virus. In contrast to earlier reports, swans appeared to be highly susceptible and represented the mainly affected species. We report gross and histopathology and distribution of influenza virus antigen in mute and whooper swans that died after natural infection with H5N1 HPAIV. At necropsy, the most reliable lesions were multifocal hemorrhagic necrosis in the pancreas, pulmonary congestion and edema, and subepicardial hemorrhages. Major histologic lesions were acute pancreatic necrosis, multifocal necrotizing hepatitis, and lymphoplasmacytic encephalitis with neuronal necrosis. Adrenals displayed consistently scattered cortical and medullary necrosis. In spleen and Peyer's patches, mild lymphocyte necrosis was present. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas, adrenals, liver, and brain was strongly consistent with histologic lesions. In the brain, a large number of neurons and glial cells, especially Purkinje cells, showed immunostaining. Occasionally, ependymal cells of the spinal cord were also positive. In the lungs, influenza virus antigen was identified in a few endothelial cells but not within pneumocytes. The infection of the central nervous system supports the view that the neurotropism of H5N1 HPAIV leads to nervous disturbances with loss of orientation. More investigations are necessary to clarify the mechanisms of the final circulatory failure, lung edema, and rapid death of the swans.

  5. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    Science.gov (United States)

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  6. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    Directory of Open Access Journals (Sweden)

    Xueyong Zhu

    2015-11-01

    Full Text Available Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA mutants from ferret-transmissible H5N1 viruses of A/Vietnam/1203/2004 and A/Indonesia/5/2005 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6-linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3-linked sialosides. Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogs reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.

  7. The Length of N-Glycans of Recombinant H5N1 Hemagglutinin Influences the Oligomerization and Immunogenicity of Vaccine Antigen

    Directory of Open Access Journals (Sweden)

    Edyta Kopera

    2017-04-01

    Full Text Available Hemagglutinin glycoprotein (HA is a principle influenza vaccine antigen. Recombinant HA-based vaccines become a potential alternative for traditional approach. Complexity and variation of HA N-glycosylation are considered as the important factors for the vaccine design. The number and location of glycan moieties in the HA molecule are also crucial. Therefore, we decided to study the effect of N-glycosylation pattern on the H5 antigen structure and its ability to induce immunological response. We also decided to change neither the number nor the position of the HA glycosylation sites but only the glycan length. Two variants of the H5 antigen with high mannose glycosylation (H5hm and with low-mannose glycosylation (H5Man5 were prepared utilizing different Pichia strains. Our structural studies demonstrated that only the highly glycosylated H5 antigen formed high molecular weight oligomers similar to viral particles. Further, the H5hm was much more immunogenic for mice than H5Man5. In summary, our results suggest that high mannose glycosylation of vaccine antigen is superior to the low glycosylation pattern. Our findings have strong implications for the recombinant HA-based influenza vaccine design.

  8. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases.

    Science.gov (United States)

    Cowling, Benjamin J; Jin, Lianmei; Lau, Eric H Y; Liao, Qiaohong; Wu, Peng; Jiang, Hui; Tsang, Tim K; Zheng, Jiandong; Fang, Vicky J; Chang, Zhaorui; Ni, Michael Y; Zhang, Qian; Ip, Dennis K M; Yu, Jianxing; Li, Yu; Wang, Liping; Tu, Wenxiao; Meng, Ling; Wu, Joseph T; Luo, Huiming; Li, Qun; Shu, Yuelong; Li, Zhongjie; Feng, Zijian; Yang, Weizhong; Wang, Yu; Leung, Gabriel M; Yu, Hongjie

    2013-07-13

    The novel influenza A H7N9 virus emerged recently in mainland China, whereas the influenza A H5N1 virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China so far. An integrated database was constructed with information about demographic, epidemiological, and clinical variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the Chinese Centre for Disease Control and Prevention until May 24, 2013. We described disease occurrence by age, sex, and geography, and estimated key epidemiological variables. We used survival analysis techniques to estimate the following distributions: infection to onset, onset to admission, onset to laboratory confirmation, admission to death, and admission to discharge. The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the 43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and 71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 3·1 days and of H5N1 was 3·3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas, compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36% (95% CI 26-45) for H7N9 and 70% (56-83%) for H5N1. The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the risk of infection--a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk for men was of a similar magnitude for H7N9 and H5N1. However, the difference in susceptibility to serious illness with the two different viruses

  9. Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics

    International Nuclear Information System (INIS)

    Liu Ming; Wood, John M.; Ellis, Trevor; Krauss, Scott; Seiler, Patrick; Johnson, Christie; Hoffmann, Erich; Humberd, Jennifer; Hulse, Diane; Zhang Yun; Webster, Robert G.; Perez, Daniel R.

    2003-01-01

    Options for the control of emerging and reemerging H5N1 influenza viruses include improvements in biosecurity and the use of inactivated vaccines. Commercially available H5N2 influenza vaccine prevents disease signs and reduces virus load but does not completely prevent virus shedding after challenge with H5N1 virus. By using reverse genetics, we prepared an H5N3 vaccine whose hemagglutinin is 99.6% homologous to that of A/CK/HK/86.3/02 (H5N1). We used the internal genes of A/PR/8/34 and the H5 of A/Goose/HK/437.4/99 (H5N1) after deletion of basic amino acids from its connecting peptide region. The resulting virus was not lethal to chicken embryos and grew to high HA titers in eggs, allowing preparation of HA protein-standardized vaccine in unconcentrated allantoic fluid. The N3 neuraminidase, derived from A/Duck/Germany/1215/73 (H2N3), permitted discrimination between vaccinated and naturally infected birds. The virus construct failed to replicate in quail and chickens. Similar to parental A/PR/8/34 (H1N1), it replicated in mice and ferrets and spread to the brains of mice; therefore, it should not be used as a live-attenuated vaccine. The H5N3 vaccine, at doses of 1.2 μg HA, induced HI antibodies in chickens and prevented death, signs of disease, and markedly reduced virus shedding after challenge with A/CK/HK/86.3/02 (H5N1) but did not provide sterilizing immunity. Thus, reverse genetics allows the inexpensive preparation of standardized, efficacious H5N3 poultry vaccines that may also reduce the reemergence of H5N1 genotypes

  10. N,N',N"-Tris[(5-methoxy-1H-indol-3-ylethyl]benzene-1,3,5-tricarboxamide

    Directory of Open Access Journals (Sweden)

    Ute Schmidt

    2015-03-01

    Full Text Available The title indole-based compound that enforces tripodal topology and is potential applicable for the use as artificial receptor, was prepared by a simple reaction of 1,3,5-benzenetricarbonyl trichloride with 5-methoxytryptamine. The compound was characterized by elemental analysis, 1H-NMR, 13C-NMR and mass spectrometry.

  11. Purification and production of monospecific antibody to the hemagglutinin from Subtype H5N1 influenza virus

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    2010-12-01

    Full Text Available The purpose of this study was to purify the hemagglutinin from H5N1 virus and to generate monospecific antibody appropriate for production of sensitive and specific immunoassay for H5N1 avian influenza. For this purpose, a local isolate H5N1 virus (A/Ck/West Java/Hamd/2006 was propagated in chicken embryos. The viral pellet was dissolved in a Triton-X-100 solution, undissolved viral particles were pelleted by ultracentrifuge, and the supernatant containing viral surface glycoproteins (Hemagglutinin and neuraminidase was collected. The neuraminidase in the supernatant was absorbed by passing the supernatant through an Oxamic-acid-superose column. After dialyzing extensively, the filtrate was further fractionated with an anion exchange chromatography (Q-sepharose column. Proteins adsorbed by the column were eluted stepwisely with 0.10, 0.25, 0.25 and 0.75 M NaCl in 20 mM Tris, ph 8. Hemagglutinin (H5 was found to be eluted from the column with the 0.5 M NaCl elution buffer. The purified H5 was free from other viral proteins based on immunoassays using commercial antibodies to H5N1 nucleoprotein and neuraminidase. When used as ELISA’s coating antigen, the purified H5 proved to be sensitive and specific for hemagglutinin H5. Cross reactions with other type-A-influenza virus, H6, H7 dan H9, were negligibly low. For the production of monospecific antiserum, the purified H5 was separated with SDS-PAGE, the band containing the H5 monomer was cut out , homogenised and injected into rabbits. The antiserum was capable of detecting the presence of inactivated H5N1 virus in a very dilute suspension, with a detection limit of 0.04 heagglutination (HA unit. The purified hemagglutinin and the serum raised against it should be useful for developing specific, sensitive and affordable immunoassay for H5N1 avian influenza.

  12. The effect of age on the pathogenesis of a highly pathogenic avian influenza (HPAI) H5N1 virus in Pekin ducks (Anas platyrhynchos) infected experimentally.

    Science.gov (United States)

    Löndt, Brandon Z; Núñez, Alejandro; Banks, Jill; Alexander, Dennis J; Russell, Christine; Richard-Löndt, Angela C; Brown, Ian H

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Pekin ducks in two age-matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 10(6) EID(50)/0.1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2.2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post-mortem examination. Tissue samples were collected for examination by real-time RT-PCR, histopathology and immunohistochemistry (IHC). Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real-time RT-PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age-related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus.

  13. High-Density Energetic Metal–Organic Frameworks Based on the 5,5′-Dinitro-2H,2′H-3,3′-bi-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Yalu Dong

    2017-06-01

    Full Text Available High-energy metal–organic frameworks (MOFs based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II with the rigid polynitro heterocyclic ligands 5,5′-dinitro-2H,2′H-3,3′-bi-1,2,4-triazole (DNBT and 5,5′-dinitro-3,3′-bis-1,2,4-triazole-1-diol (DNBTO gave two high-density MOFs: [Cu(DNBT(ATRZ3]n (1 and [Cu(DNBTO(ATRZ2(H2O2]n (2, where ATRZ represents 4,4′-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC. The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane, whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm−3 for complex 1 and ρ = 1.96 g cm−3 for complex 2 and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2, especially because of the introduction of an N–O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials.

  14. Unique Infectious Strategy of H5N1 Avian Influenza Virus Is Governed by the Acid-Destabilized Property of Hemagglutinin.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Arai, Yasuha; Kajikawa, Junichi; Hirose, Ryohei; Nakaya, Takaaki

    Highly pathogenic avian influenza (HPAI) H5N1 virus emerged in 1997 as a zoonotic disease in Hong Kong. It has since spread to Asia and Europe and is a serious threat to both the poultry industry and human health. For effective surveillance and possible prevention/control of HPAI H5N1 viruses, it is necessary to understand the molecular mechanism underlying HPAI H5N1 pathogenesis. The hemagglutinin (HA) protein of influenza A viruses (IAVs) is one of the major determinants of host adaptation, transmissibility, and viral virulence. The main function of the HA protein is to facilitate viral entry and viral genome release within host cells before infection. To achieve viral infection, IAVs belonging to different subtypes or strains induce viral-cell membrane fusion at different endosomal pH levels after internalization through endocytosis. However, host-specific endosomal pH also affects induction of membrane fusion followed by infection. The HA protein of HPAI H5N1 has a higher pH threshold for membrane fusion than the HA protein of classical avian influenza viruses. Although this particular property of HA (which governs viral infection) is prone to deactivation in the avian intestine or in an ambient environment, it facilitates efficient infection of host cells, resulting in a broad host tropism, regardless of the pH in the host endosome. Accumulated knowledge, together with further research, about the HA-governed mechanism underlying HPAI H5N1 virulence (i.e., receptor tropism and pH-dependent viral-cell membrane fusion) will be helpful for developing effective surveillance strategies and for prevention/control of HPAI H5N1 infection.

  15. High mortality from respiratory failure secondary to swine-origin influenza A (H1N1) in South Africa.

    Science.gov (United States)

    Koegelenberg, C F N; Irusen, E M; Cooper, R; Diacon, A H; Taljaard, J J; Mowlana, A; von Groote-Bidlingmaier, F; Bolliger, C T

    2010-05-01

    The novel influenza A (H1N1) pandemic affected South Africa late during the 2009 Southern hemisphere winter and placed an extra burden on a health care system already dealing with a high prevalence of chronic lung diseases and human immunodeficiency virus (HIV) infection. The aim of this study was to describe the epidemiological characteristics, clinical features, management and outcomes of patients with confirmed influenza A (H1N1) infection complicated by respiratory failure. We included all adult patients with confirmed influenza A (H1N1) infection that were referred to the medical intensive care unit of a large academic hospital in Cape Town for ventilatory support in this prospective observational study. A total of 19 patients (39.5 +/- 14.8 years) needed ventilatory support over a 6-week period. Of these, 15 were female and 16 had identifiable risk factors for severe disease, including pregnancy (n = 6), type 2 diabetes mellitus (n = 6), obesity (n = 4), HIV infection (n = 3), immunosuppressive therapy (n = 3) and active pulmonary tuberculosis (n = 2). The most frequent complications were acute renal failure (n = 13), acute respiratory distress syndrome (n = 12) and ventilator associated pneumonia (n = 10). Thirteen patients died (mortality: 68.4%). Fatal cases were significantly associated with an APACHE II score >or=20 (P = 0.034), but not with a P(a)O(2)/F(I)O(2) or=12 (P = 0.134). The majority of patients with respiratory failure secondary to influenza A (H1N1) infection were young females and had an underlying risk factor for severe disease. The condition had a high mortality, particularly amongst patients with an APACHE II score >or=20.

  16. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam.

    Directory of Open Access Journals (Sweden)

    Mai T Q Le

    2008-10-01

    Full Text Available Prior to 2007, highly pathogenic avian influenza (HPAI H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses.Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found.In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.

  17. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza.

    Science.gov (United States)

    Fournié, G; Guitian, F J; Mangtani, P; Ghani, A C

    2011-08-07

    Live bird markets (LBMs) act as a network 'hub' and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days-periods during which markets are emptied and disinfected-to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.

  18. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam

    NARCIS (Netherlands)

    Le, Mai T. Q.; Wertheim, Heiman F. L.; Nguyen, Hien D.; Taylor, Walter; Hoang, Phuong V. M.; Vuong, Cuong D.; Nguyen, Hang L. K.; Nguyen, Ha H.; Nguyen, Thai Q.; Nguyen, Trung V.; van, Trang D.; Ngoc, Bich T.; Bui, Thinh N.; Nguyen, Binh G.; Nguyen, Liem T.; Luong, San T.; Phan, Phuc H.; Pham, Hung V.; Nguyen, Tung; Fox, Annette; Nguyen, Cam V.; Do, Ha Q.; Crusat, Martin; Farrar, Jeremy; Nguyen, Hien T.; de Jong, Menno D.; Horby, Peter

    2008-01-01

    BACKGROUND: Prior to 2007, highly pathogenic avian influenza (HPAI) H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections

  19. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    Science.gov (United States)

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Full-Genome Analysis of Avian Influenza A(H5N1) Virus from a Human, North America, 2013

    Science.gov (United States)

    Pabbaraju, Kanti; Tellier, Raymond; Wong, Sallene; Li, Yan; Bastien, Nathalie; Tang, Julian W.; Drews, Steven J.; Jang, Yunho; Davis, C. Todd; Tipples, Graham A.

    2014-01-01

    Full-genome analysis was conducted on the first isolate of a highly pathogenic avian influenza A(H5N1) virus from a human in North America. The virus has a hemagglutinin gene of clade 2.3.2.1c and is a reassortant with an H9N2 subtype lineage polymerase basic 2 gene. No mutations conferring resistance to adamantanes or neuraminidase inhibitors were found. PMID:24755439

  1. Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.

    Science.gov (United States)

    Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P

    2018-05-15

    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret

  2. An Impedance Aptasensor with Microfluidic Chips for Specific Detection of H5N1 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Jacob Lum

    2015-07-01

    Full Text Available In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment to be specific against the H5N1 subtype of the avian influenza virus (AIV, was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin–streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU. Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2. The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity.

  3. A convenient method for 14C-labeling of 2-methylthio-1-[4-N-α-ethoxycarbonylbenzyl)-amino-benzyl] -5-hydroxymethyl-2-[14C]-1H-imidazole and 1-[4-N-α-ethoxy-carbonylbenzyl)-aminobenzyl]-5-hydroxymethyl-2-[14C] -1H-imidazole as potential antihypertensives

    International Nuclear Information System (INIS)

    Nader Saemian; Gholamhossein Shirvani; Mohsen Javaheri; Sayed Sajad Oliyaee

    2012-01-01

    The key synthetic intermediate, (2-mercapto-1-(4-nitrobenzyl)-1H-imidazol-5-yl)methanol-[2- 14 C], has been synthesized by using one pot procedure from potassium[ 14 C]-thiocyanate. It was converted to two nonpeptide angiotensin II receptor antagonists, 2-methylthio-1-[4-N-α-ethoxycarbonyl benzyl)-aminobenzyl]-5-hydroxymethyl-1H-imidazole-[2- 14 C] and 1-[4-N-α-ethoxy-carbonylbenzyl)-aminobenzyl] -5-hydroxymethyl-1H-imidazole-[2- 14 C] via a 3-step sequence synthetic pathway. (author)

  4. Isolation and genetic characterization of a novel 2.2.1.2a H5N1 virus from a vaccinated meat-turkeys flock in Egypt.

    Science.gov (United States)

    Salaheldin, Ahmed H; Veits, Jutta; Abd El-Hamid, Hatem S; Harder, Timm C; Devrishov, Davud; Mettenleiter, Thomas C; Hafez, Hafez M; Abdelwhab, Elsayed M

    2017-03-09

    Vaccination of poultry to control highly pathogenic avian influenza virus (HPAIV) H5N1 is used in several countries. HPAIV H5N1 of clade 2.2.1 which is endemic in Egypt has diversified into two genetic clades. Clade 2.2.1.1 represents antigenic drift variants in vaccinated commercial poultry while clade 2.2.1.2 variants are detected in humans and backyard poultry. Little is known about H5N1 infection in vaccinated turkeys under field conditions. Here, we describe an HPAI H5N1 outbreak in a vaccinated meat-turkey flock in Egypt. Birds were vaccinated with inactivated H5N2 and H5N1 vaccines at 8 and 34 days of age, respectively. At 72 nd day of age (38 days post last vaccination), turkeys exhibited mild respiratory signs, cyanosis of snood and severe congestion of the internal organs. Survivors had a reduction in feed consumption and body gain. A mortality of ~29% cumulated within 10 days after the onset of clinical signs. Laboratory diagnosis using RT-qPCRs revealed presence of H5N1 but was negative for H7 and H9 subtypes. A substantial antigenic drift against different serum samples from clade 2.2.1.1 and clade 2.3.4.4 was observed. Based on full genome sequence analysis the virus belonged to clade 2.2.1.2 but clustered with recent H5N1 viruses from 2015 in poultry in Israel, Gaza and Egypt in a novel subclade designated here 2.2.1.2a which is distinct from 2014/2015 2.2.1.2 viruses. These viruses possess 2.2.1.2 clade-specific genetic signatures and also mutations in the HA similar to those in clade 2.2.1.1 that enabled evasion from humoral immune response. Taken together, this manuscript describes a recent HPAI H5N1 outbreak in vaccinated meat-turkeys in Egypt after infection with a virus representing novel distinct 2.2.1.2a subclade. Infection with HPAIV H5N1 in commercial turkeys resulted in significant morbidity and mortality despite of vaccination using H5 vaccines. The isolated virus showed antigenic drift and clustered in a novel cluster designated here

  5. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    Science.gov (United States)

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  6. Inefficient Transmission of H5N1 Influenza Viruses in a Ferret Contact Model▿

    OpenAIRE

    Yen, Hui-Ling; Lipatov, Aleksandr S.; Ilyushina, Natalia A.; Govorkova, Elena A.; Franks, John; Yilmaz, Neziha; Douglas, Alan; Hay, Alan; Krauss, Scott; Rehg, Jerold E.; Hoffmann, Erich; Webster, Robert G.

    2007-01-01

    The abilities to infect and transmit efficiently among humans are essential for a novel influenza A virus to cause a pandemic. To evaluate the pandemic potential of widely disseminated H5N1 influenza viruses, a ferret contact model using experimental groups comprised of one inoculated ferret and two contact ferrets was used to study the transmissibility of four human H5N1 viruses isolated from 2003 to 2006. The effects of viral pathogenicity and receptor binding specificity (affinity to synth...

  7. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008

    Directory of Open Access Journals (Sweden)

    Junaidi Akhmad

    2011-09-01

    Full Text Available Abstract Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1, clade 2.1.3 (80, and IDN/6/05-like viruses (3 that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA and neuraminidase (NA sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to

  8. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.

    Science.gov (United States)

    Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne

    2011-09-07

    Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are

  9. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1 influenza virus in ferrets.

    Directory of Open Access Journals (Sweden)

    Natalia A Ilyushina

    2010-05-01

    Full Text Available The acquisition of neuraminidase (NA inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1 influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H. NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC(50s increased 5- to 940-fold. Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (V(max, K(m and K(i of the avian-like N1 NA glycoproteins were highly consistent with their IC(50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 10(6 EID(50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01 and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased

  10. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study

    Directory of Open Access Journals (Sweden)

    Teng Zhao

    2016-11-01

    Full Text Available In 2014, surveillance of sentinel chicken for avian influenza virus was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering in the hemagglutinin (HA gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only in the H5N6 virus. A deletion of three and eleven amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  11. The influence of social-cognitive factors on personal hygiene practices to protect against influenzas: using modelling to compare avian A/H5N1 and 2009 pandemic A/H1N1 influenzas in Hong Kong.

    Science.gov (United States)

    Liao, Qiuyan; Cowling, Benjamin J; Lam, Wendy Wing Tak; Fielding, Richard

    2011-06-01

    Understanding population responses to influenza helps optimize public health interventions. Relevant theoretical frameworks remain nascent. To model associations between trust in information, perceived hygiene effectiveness, knowledge about the causes of influenza, perceived susceptibility and worry, and personal hygiene practices (PHPs) associated with influenza. Cross-sectional household telephone surveys on avian influenza A/H5N1 (2006) and pandemic influenza A/H1N1 (2009) gathered comparable data on trust in formal and informal sources of influenza information, influenza-related knowledge, perceived hygiene effectiveness, worry, perceived susceptibility, and PHPs. Exploratory factor analysis confirmed domain content while confirmatory factor analysis was used to evaluate the extracted factors. The hypothesized model, compiled from different theoretical frameworks, was optimized with structural equation modelling using the A/H5N1 data. The optimized model was then tested against the A/H1N1 dataset. The model was robust across datasets though corresponding path weights differed. Trust in formal information was positively associated with perceived hygiene effectiveness which was positively associated with PHPs in both datasets. Trust in formal information was positively associated with influenza worry in A/H5N1 data, and with knowledge of influenza cause in A/H1N1 data, both variables being positively associated with PHPs. Trust in informal information was positively associated with influenza worry in both datasets. Independent of information trust, perceived influenza susceptibility associated with influenza worry. Worry associated with PHPs in A/H5N1 data only. Knowledge of influenza cause and perceived PHP effectiveness were associated with PHPs. Improving trust in formal information should increase PHPs. Worry was significantly associated with PHPs in A/H5N1.

  12. Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets.

    Science.gov (United States)

    Ilyushina, Natalia A; Seiler, Jon P; Rehg, Jerold E; Webster, Robert G; Govorkova, Elena A

    2010-05-27

    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC(50)s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (V(max), K(m) and K(i)) of the avian-like N1 NA glycoproteins were highly consistent with their IC(50) values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 10(6) EID(50) dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (Pinfluenza drugs that target different virus/host factors and can limit the emergence of resistance.

  13. Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt.

    Directory of Open Access Journals (Sweden)

    Yohei Watanabe

    2011-05-01

    Full Text Available Highly pathogenic avian influenza A virus subtype H5N1 is currently widespread in Asia, Europe, and Africa, with 60% mortality in humans. In particular, since 2009 Egypt has unexpectedly had the highest number of human cases of H5N1 virus infection, with more than 50% of the cases worldwide, but the basis for this high incidence has not been elucidated. A change in receptor binding affinity of the viral hemagglutinin (HA from α2,3- to α2,6-linked sialic acid (SA is thought to be necessary for H5N1 virus to become pandemic. In this study, we conducted a phylogenetic analysis of H5N1 viruses isolated between 2006 and 2009 in Egypt. The phylogenetic results showed that recent human isolates clustered disproportionally into several new H5 sublineages suggesting that their HAs have changed their receptor specificity. Using reverse genetics, we found that these H5 sublineages have acquired an enhanced binding affinity for α2,6 SA in combination with residual affinity for α2,3 SA, and identified the amino acid mutations that produced this new receptor specificity. Recombinant H5N1 viruses with a single mutation at HA residue 192 or a double mutation at HA residues 129 and 151 had increased attachment to and infectivity in the human lower respiratory tract but not in the larynx. These findings correlated with enhanced virulence of the mutant viruses in mice. Interestingly, these H5 viruses, with increased affinity to α2,6 SA, emerged during viral diversification in bird populations and subsequently spread to humans. Our findings suggested that emergence of new H5 sublineages with α2,6 SA specificity caused a subsequent increase in human H5N1 influenza virus infections in Egypt, and provided data for understanding the virus's pandemic potential.

  14. Modelling H5N1 in Bangladesh across spatial scales: Model complexity and zoonotic transmission risk

    Directory of Open Access Journals (Sweden)

    Edward M. Hill

    2017-09-01

    Full Text Available Highly pathogenic avian influenza H5N1 remains a persistent public health threat, capable of causing infection in humans with a high mortality rate while simultaneously negatively impacting the livestock industry. A central question is to determine regions that are likely sources of newly emerging influenza strains with pandemic causing potential. A suitable candidate is Bangladesh, being one of the most densely populated countries in the world and having an intensifying farming system. It is therefore vital to establish the key factors, specific to Bangladesh, that enable both continued transmission within poultry and spillover across the human–animal interface. We apply a modelling framework to H5N1 epidemics in the Dhaka region of Bangladesh, occurring from 2007 onwards, that resulted in large outbreaks in the poultry sector and a limited number of confirmed human cases. This model consisted of separate poultry transmission and zoonotic transmission components. Utilising poultry farm spatial and population information a set of competing nested models of varying complexity were fitted to the observed case data, with parameter inference carried out using Bayesian methodology and goodness-of-fit verified by stochastic simulations. For the poultry transmission component, successfully identifying a model of minimal complexity, which enabled the accurate prediction of the size and spatial distribution of cases in H5N1 outbreaks, was found to be dependent on the administration level being analysed. A consistent outcome of non-optimal reporting of infected premises materialised in each poultry epidemic of interest, though across the outbreaks analysed there were substantial differences in the estimated transmission parameters. The zoonotic transmission component found the main contributor to spillover transmission of H5N1 in Bangladesh was found to differ from one poultry epidemic to another. We conclude by discussing possible explanations for

  15. The synthesis of 7-chloro-5-pentadeuteriophenyl-1-methyl-1H-1, 5-benzodiazepine-2,4(3H, 5H)dione ([2H5]clobazam)

    International Nuclear Information System (INIS)

    Borel, A.G.; Abbott, F.S.

    1990-01-01

    Pentadeuteriophenyl clobazam was synthesized in essentially quantitative isotopic purity, and characterized by 1 H-NMR and mass spectroscopy. The title compound was found to be >98% pure by HPLC, and its retention time (t R 6.17 min) was less than that of an authentic clobazam standard (t R 6.32 min). Of the five steps in the synthesis of clobazam, the most susceptible to deuterium exchange was the nucleophilic substitution of 2,4-dichloronitrobenzene by aniline-d 7 to form N-(5-chloro-2-nitrophenyl)penta-deuteriophenylamine. In this step, the isotopic impurity aniline-2,3,4,5-d 5 introduced protons from nitrogen into the ortho and para positions of the deuteriophenyl ring of N-(5-chloro-2-nitrophenyl)pentadeuteriophenylamine. (author)

  16. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  17. Comparison of ARIMA and Random Forest time series models for prediction of avian influenza H5N1 outbreaks.

    Science.gov (United States)

    Kane, Michael J; Price, Natalie; Scotch, Matthew; Rabinowitz, Peter

    2014-08-13

    Time series models can play an important role in disease prediction. Incidence data can be used to predict the future occurrence of disease events. Developments in modeling approaches provide an opportunity to compare different time series models for predictive power. We applied ARIMA and Random Forest time series models to incidence data of outbreaks of highly pathogenic avian influenza (H5N1) in Egypt, available through the online EMPRES-I system. We found that the Random Forest model outperformed the ARIMA model in predictive ability. Furthermore, we found that the Random Forest model is effective for predicting outbreaks of H5N1 in Egypt. Random Forest time series modeling provides enhanced predictive ability over existing time series models for the prediction of infectious disease outbreaks. This result, along with those showing the concordance between bird and human outbreaks (Rabinowitz et al. 2012), provides a new approach to predicting these dangerous outbreaks in bird populations based on existing, freely available data. Our analysis uncovers the time-series structure of outbreak severity for highly pathogenic avain influenza (H5N1) in Egypt.

  18. Human influenza A (H5N1): a brief review and recommendations for travelers.

    Science.gov (United States)

    Hurtado, Timothy R

    2006-01-01

    Although avian influenza A (H5N1) is common in birds worldwide, it has only recently led to disease in humans. Humans who are infected with the disease (referred to as human influenza A [H5N1]) have a greater than 50% mortality rate. Currently there has not been documented sustained human-to-human transmission; however, should the virus mutate and make this possible, the world could experience an influenza pandemic. Probable risk factors for infection include slaughtering, defeathering, and butchering fowl; close contact with wild birds or caged poultry; ingestion of undercooked poultry products; direct contact with surfaces contaminated with poultry feces; and close contact with infected humans. Possible risk factors include swimming in or ingesting water contaminated with bird feces or dead birds and the use of unprocessed poultry feces as fertilizer. Clinically, early human influenza A (H5N1) resembles typical influenza illnesses, with fever and a preponderance of lower respiratory tract symptoms. Often, patients develop rapidly progressive respiratory failure and require ventilatory support. Treatment is primarily supportive care with the addition of antiviral medications. Currently, travelers to countries with both human and avian influenza A (H5N1) have a low risk of developing the disease. There are no current recommended travel restrictions. Travelers are advised to avoid contact with all birds, especially poultry; avoid surfaces contaminated with poultry feces; and avoid undercooked poultry products. The use of prophylactic antiviral medications is not recommended.

  19. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  20. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  1. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    Science.gov (United States)

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  2. Extra-corporeal membrane oxygenation in the management of 2009 influenza A (H1N1) refractory respiratory failure.

    LENUS (Irish Health Repository)

    Das, J P

    2012-02-01

    Rapidly progressive acute respiratory failure attributed to 2009 H1N1 influenza A infection has been reported worldwide-3. Refractory hypoxaemia despite conventional mechanical ventilation and lung protective strategies has resulted in the use a combination of rescue therapies, such as conservative fluid management, prone positioning, inhaled nitric oxide, high frequency oscillatory ventilation and extracorporeal membrane oxygenation (ECMO)4. ECMO allows for pulmonary or cardiopulmonary support as an adjunct to respiratory and cardiac failure, minimising ventilator-associated lung injury (VALI). This permits treatment of the underlying disease process, while concurrently allowing for recovery of the acute lung injury. This case documents a previously healthy twenty-two year old Asian male patient with confirmed pandemic (H 1N1) 2009 influenza A who was successfully managed with ECMO in the setting of severe refractory hypoxaemia and progressive hypercapnia.

  3. Extra-corporeal membrane oxygenation in the management of 2009 influenza A (H1N1) refractory respiratory failure.

    LENUS (Irish Health Repository)

    Das, J P

    2011-03-01

    Rapidly progressive acute respiratory failure attributed to 2009 H1N1 influenza A infection has been reported worldwide-3. Refractory hypoxaemia despite conventional mechanical ventilation and lung protective strategies has resulted in the use a combination of rescue therapies, such as conservative fluid management, prone positioning, inhaled nitric oxide, high frequency oscillatory ventilation and extracorporeal membrane oxygenation (ECMO)4. ECMO allows for pulmonary or cardiopulmonary support as an adjunct to respiratory and cardiac failure, minimising ventilator-associated lung injury (VALI). This permits treatment of the underlying disease process, while concurrently allowing for recovery of the acute lung injury. This case documents a previously healthy twenty-two year old Asian male patient with confirmed pandemic (H 1N1) 2009 influenza A who was successfully managed with ECMO in the setting of severe refractory hypoxaemia and progressive hypercapnia.

  4. 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-ylmethyl]-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H-dione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available 5-[(3-Fluorophenyl(2-hydroxy-6-oxocyclohex-1-en-1-yl-methyl]-6-hydroxy-1,3-di-methylpyrimidine-2,4(1H,3H-dione 3 was synthesized via a multicomponent reaction. The Aldol–Michael addition reactions of N,N-dimethylbarbituric acid, cyclohexane-1,3-dione, and 3-fluorobenzaldehyde in aqueous solution gave the product in high yield. The molecular structure of the compound was confirmed by spectroscopic methods and X-ray crystallography. The title compound (C19H19FN2O5·H2O crystallizes in the Monoclinic form, P21/c, a = 7.8630 (5 Å, b = 20.0308 (13 Å, c = 11.3987 (8 Å, β = 104.274 (3°, V = 1739.9 (2° Å3, Z = 4, Rint = 0.117, wR(F2 = 0.124, T = 100 K.

  5. Avian Influenza H5N1 and the Wild Bird Trade in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    F. Brooks-Moizer

    2009-06-01

    Full Text Available Wildlife trade and emerging infectious diseases pose significant threats to human and animal health and global biodiversity. Legal and illegal trade in domestic and wild birds has played a significant role in the global spread of highly pathogenic avian influenza H5N1, which has killed more than 240 people, many millions of poultry, and an unknown number of wild birds and mammals, including endangered species, since 2003. This 2007 study provides evidence for a significant decline in the scale of the wild bird trade in Hanoi since previous surveys in 2000 (39.7% decline and 2003 (74.1% decline. We attribute this to the enforcement of Vietnam's Law 169/2005/QD UBND, introduced in 2005, which prohibits the movement and sale of wild and ornamental birds in cities. Nevertheless, 91.3% (21/23 of bird vendors perceived no risk of H5N1 infection from their birds, and the trade continues, albeit at reduced levels, in open market shops. These findings highlight the importance of continued law enforcement to maintain this trade reduction and the associated benefits to human and animal health and biodiversity conservation.

  6. Comparative analyses of pandemic H1N1 and seasonal H1N1, H3N2, and influenza B infections depict distinct clinical pictures in ferrets.

    Directory of Open Access Journals (Sweden)

    Stephen S H Huang

    Full Text Available Influenza A and B infections are a worldwide health concern to both humans and animals. High genetic evolution rates of the influenza virus allow the constant emergence of new strains and cause illness variation. Since human influenza infections are often complicated by secondary factors such as age and underlying medical conditions, strain or subtype specific clinical features are difficult to assess. Here we infected ferrets with 13 currently circulating influenza strains (including strains of pandemic 2009 H1N1 [H1N1pdm] and seasonal A/H1N1, A/H3N2, and B viruses. The clinical parameters were measured daily for 14 days in stable environmental conditions to compare clinical characteristics. We found that H1N1pdm strains had a more severe physiological impact than all season strains where pandemic A/California/07/2009 was the most clinically pathogenic pandemic strain. The most serious illness among seasonal A/H1N1 and A/H3N2 groups was caused by A/Solomon Islands/03/2006 and A/Perth/16/2009, respectively. Among the 13 studied strains, B/Hubei-Wujiagang/158/2009 presented the mildest clinical symptoms. We have also discovered that disease severity (by clinical illness and histopathology correlated with influenza specific antibody response but not viral replication in the upper respiratory tract. H1N1pdm induced the highest and most rapid antibody response followed by seasonal A/H3N2, seasonal A/H1N1 and seasonal influenza B (with B/Hubei-Wujiagang/158/2009 inducing the weakest response. Our study is the first to compare the clinical features of multiple circulating influenza strains in ferrets. These findings will help to characterize the clinical pictures of specific influenza strains as well as give insights into the development and administration of appropriate influenza therapeutics.

  7. Contact variables for exposure to avian influenza H5N1 virus at the human-animal interface.

    Science.gov (United States)

    Rabinowitz, P; Perdue, M; Mumford, E

    2010-06-01

    Although the highly pathogenic avian influenza H5N1 virus continues to cause infections in both avian and human populations, the specific zoonotic risk factors remain poorly understood. This review summarizes available evidence regarding types of contact associated with transmission of H5N1 virus at the human-animal interface. A systematic search of the published literature revealed five analytical studies and 15 case reports describing avian influenza transmission from animals to humans for further review. Risk factors identified in analytical studies were compared, and World Health Organization-confirmed cases, identified in case reports, were classified according to type of contact reported using a standardized algorithm. Although cases were primarily associated with direct contact with sick/unexpectedly dead birds, some cases reported only indirect contact with birds or contaminated environments or contact with apparently healthy birds. Specific types of contacts or activities leading to exposure could not be determined from data available in the publications reviewed. These results support previous reports that direct contact with sick birds is not the only means of human exposure to avian influenza H5N1 virus. To target public health measures and disease awareness messaging for reducing the risk of zoonotic infection with avian influenza H5N1 virus, the specific types of contacts and activities leading to transmission need to be further understood. The role of environmental virus persistence, shedding of virus by asymptomatic poultry and disease pathophysiology in different avian species relative to human zoonotic risk, as well as specific modes of zoonotic transmission, should be determined.

  8. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    Science.gov (United States)

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  9. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  10. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    Science.gov (United States)

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  11. Migratory Whooper Swans Cygnus cygnus Transmit H5N1 Virus between China and Mongolia: Combination Evidence from Satellite Tracking and Phylogenetics Analysis.

    Science.gov (United States)

    Li, Shuhong; Meng, Weiyue; Liu, Dongping; Yang, Qiqi; Chen, Lixia; Dai, Qiang; Ma, Tian; Gao, Ruyi; Ru, Wendong; Li, Yunfeng; Yu, Pengbo; Lu, Jun; Zhang, Guogang; Tian, Huaiyu; Chai, Hongliang; Li, Yanbing

    2018-05-04

    In late 2014, a highly pathogenic avian influenza (hereafter HPAI) H5N1 outbreak infected whooper swans Cygnus cygnus wintering at the Sanmenxia Reservoir area, China, and raised concerns about migratory linkages between wintering and breeding grounds of whooper swans. In this study, 61 swans were satellite tracked from 2013 to 2016 to determine the spatial association of their migration routes and H5N1 outbreaks, and 3596 fecal samples were collected along the migration routes for virology testing. Swans departed the wintering grounds and migrated along the Yellow River, and flew over the Yin Mountains in China. The Brownian bridge movement model showed there was a high degree of spatiotemporal overlap between the core use area along the spring migration pathway and historical H5N1 events in China and Mongolia from 2005 to 2015. The H5N1 strain was isolated and phylogenetic analyses confirmed that the HA gene sequence generated is genetically similar to that of the epidemic strain at a previous wintering site (the Sanmenxia Reservoir area) along its flyway. Our results identified a previously unknown migratory link of whooper swans in central China with Mongolia and confirmed that the swans could carry the HPAI H5N1 virus during migration, resulting in long-distance transmission.

  12. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    Science.gov (United States)

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs

    Directory of Open Access Journals (Sweden)

    Peirong eJiao

    2014-11-01

    Full Text Available H5N1 highly pathogenic avian influenza virus (HPAIV of clade 2.3.2 has been circulating in waterfowl in Southern China since 2003. Our previous studies showed that certain H5N1 HPAIV isolates within clade 2.3.2 from Southern China had high pathogenicity in different birds. Guinea pigs have been successfully used as models to evaluate the transmissibility of AIVs and other species of influenza viruses in mammalian hosts. However, few studies have reported pathogenicity and transmissibility of H5N1 HPAIVs of this clade in guinea pigs. In this study, we selected an H5N1 HPAIV isolate, A/duck/Guangdong/357/2008, to investigate the pathogenicity and transmissibility of the virus in guinea pigs. The virus had high pathogenicity in mice; additionally, it only replicated in some tissues of the guinea pigs without production of clinical signs, but was transmissible among guinea pigs. Interestingly, virus isolates from co-caged guinea pigs had the D701N mutation in the PB2 protein. These mutant viruses showed higher pathogenicity in mice and higher replication capability in guinea pigs but did not demonstrate enhanced the transmissibility among guinea pigs. These findings indicate the transmission of the H5N1 virus between mammals could induce virus mutations, and the mutant viruses might have higher pathogenicity in mammals without higher transmissibility. Therefore, the continued evaluation of the pathogenicity and transmissibility of avian influenza virus (AIVs in mammals is critical to the understanding of the evolutionary characteristics of AIVs and the emergence of potential pandemic strains.

  14. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  15. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017.

    Science.gov (United States)

    Tsunekuni, Ryota; Yaguchi, Yuji; Kashima, Yuki; Yamashita, Kaoru; Takemae, Nobuhiro; Mine, Junki; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2018-05-01

    From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.

  16. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.

    Science.gov (United States)

    He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping

    2015-01-01

    In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  18. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  19. Neuraminidase and hemagglutinin matching patterns of a highly pathogenic avian and two pandemic H1N1 influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available BACKGROUND: Influenza A virus displays strong reassortment characteristics, which enable it to achieve adaptation in human infection. Surveying the reassortment and virulence of novel viruses is important in the prevention and control of an influenza pandemic. Meanwhile, studying the mechanism of reassortment may accelerate the development of anti-influenza strategies. METHODOLOGY/PRINCIPAL FINDINGS: The hemagglutinin (HA and neuraminidase (NA matching patterns of two pandemic H1N1 viruses (the 1918 and current 2009 strains and a highly pathogenic avian influenza A virus (H5N1 were studied using a pseudotyped particle (pp system. Our data showed that four of the six chimeric HA/NA combinations could produce infectious pps, and that some of the chimeric pps had greater infectivity than did their ancestors, raising the possibility of reassortment among these viruses. The NA of H5N1 (A/Anhui/1/2005 could hardly reassort with the HAs of the two H1N1 viruses. Many biological characteristics of HA and NA, including infectivity, hemagglutinating ability, and NA activity, are dependent on their matching pattern. CONCLUSIONS/SIGNIFICANCE: Our data suggest the existence of an interaction between HA and NA, and the HA NA matching pattern is critical for valid viral reassortment.

  20. Spatio-temporal dynamics of global H5N1 outbreaks match bird migration patterns

    CSIR Research Space (South Africa)

    Si, Y

    2009-11-01

    Full Text Available , Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W, Buranathai C, Parakamawongsa T, Premashthira S, Amonsin A, Gilbert M, Nielen M, Stegeman A, 2005. Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg Infect Dis 11, 1664-1672. Ward MP, Maftei... (Fig. 4IIIa-b), eight clusters were located in western Russia and Kazakhstan. In southeast Asia, clusters were identified in Thailand between July and September (Fig. 4IIIa-c), reappearing in south Y. Si et al. - Geospatial Health 4(1), 2009, pp. 65...

  1. Genetic divergence of influenza A NS1 gene in pandemic 2009 H1N1 isolates with respect to H1N1 and H3N2 isolates from previous seasonal epidemics

    Directory of Open Access Journals (Sweden)

    Campanini Giulia

    2010-09-01

    Full Text Available Abstract Background The Influenza A pandemic sustained by a new H1N1 variant (H1N1v started in Mexico and the USA at the end of April 2009 spreading worldwide in a few weeks. In this study we investigate the variability of the NS1 gene of the pandemic H1N1v strain with respect to previous seasonal strains circulating in humans and the potential selection of virus variants through isolation in cell culture. Methods During the period April 27th 2009-Jan 15th 2010, 1633 potential 2009 H1N1v cases have been screened at our center using the CDC detection and typing realtime RT-PCR assays. Virus isolation on MDCK cells was systematically performed in 1/10 positive cases. A subset of 51 H1N1v strains isolated in the period May-September 2009 was selected for NS1 gene sequencing. In addition, 15 H1N1 and 47 H3N2 virus isolates from three previous seasonal epidemics (2006-2009 were analyzed in parallel. Results A low variability in the NS1 amino acid (aa sequence among H1N1v isolates was shown (aa identity 99.5%. A slightly higher NS1 variability was observed among H1N1 and H3N2 strains from previous epidemics (aa identity 98.6% and 98.9%, respectively. The H1N1v strains were closely related (aa identity 92.1% to swine reference strain (A/swine/Oklahoma/042169/2008. In contrast, substantial divergence (aa identity 83.4% with respect to human reference strain A/Brevig Mission/1/1918 and previous epidemic strains H1N1 and H3N2 (aa identity 78.9% and 77.6%, respectively was shown. Specific sequence signatures of uncertain significance in the new virus variant were a C-terminus deletion and a T215P substitution. Conclusions The H1N1v NS1 gene was more conserved than that of previous epidemic strains. In addition, a closer genetic identity of H1N1v with the swine than the human reference strains was shown. Hot-spots were shown in the H1N1v NS1 aa sequence whose biologic relevance remains to be investigated.

  2. Comparative pathogenesis of an avian H5N2 and a swine H1N1 influenza virus in pigs.

    Directory of Open Access Journals (Sweden)

    Annebel De Vleeschauwer

    2009-08-01

    Full Text Available Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal to compare the pathogenesis of a low pathogenic (LP H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals.

  3. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Science.gov (United States)

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  4. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  5. High-resolution Computed Tomography Findings of H1N1 Influenza-Associated Pneumonia in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chan; Choi, Song; Kim, Jin Woong; Lim, Hyo Soon [Dept. of Radiology, Chonnam National University Hospital, Chonnam National University School of Medicine, Kwangju (Korea, Republic of); Seon, Hyung Joo; Shin, Sang Soo [Dept. of Radiology, Chonnam National University Hospital, Chonnam National University School of Medicine, Kwangju (Korea, Republic of); Kim, Yun Hyeon; Park, Kyung Hwa [Dept. of Internal Medicine, Chonnam National University Hospital, Chonnam National University School of Medicine, Kwangju (Korea, Republic of)

    2011-04-15

    To evaluate and compare the high-resolution computed tomography (HRCT) findings of patients with H1N1 influenza-associated pneumonia compared usual community acquired pneumonia (CAP), to determine whether there were any useful common HRCT findings predicting their prognosis. HRCT findings of 31 patients (M:F = 16:15, mean age 42 yrs) with Influenza A (H1N1) infection were retrospectively reviewed for abnormal HRCT findings and compared to HRCT findings of CAP in matched patients. Patients were matched according to age and sex, from 2009 to January 2010. The predominant HRCT findings of pneumonia consisted of areas of consolidation and/or groundglass opacity (GGO) which showed no statistically significant differences when comparing the two groups. However, the abnormalities of H1N1-related pneumonia showed higher bilaterality and multilobar or multisegmental involvement compared with CAP (p < 0.05). Internal low attenuation or air-densities in pulmonary infiltration /or lymphadenopathy was observed only in patients with CAP (p < 0.05). HRCT findings in 8 patients with poor clinical outcome had bilaterality (p=0.015), multilobar, and multisegmental involvement. The predominant HRCT findings of H1N1-related pneumonia were areas of consolidation and/or GGO. In addition, H1N1-related pneumonia showed higher bilaterality or multilobar/multisegmental involvement compared with CAP. The patients who presented bilaterality had a worse clinical outcome.

  6. N-(4-Bromobenzyl-2-(5,6-dimethyl-1H-benzo[d]imid-azol-2-ylbenzeneamine

    Directory of Open Access Journals (Sweden)

    Monika Dziełak

    2018-01-01

    Full Text Available N-(4-Bromobenzyl-2-(5,6-dimethyl-1H-benzo[d]imidazol-2-ylbenzeneamine was obtained by condensation of N-(4-bromobenzyl-3,1-benzoxazine-2,4-dione (N-(4-bromobenzylisatoic anhydride with 4,5-dimethyl-1,2-phenylenediamine in refluxing acetic acid. This is a rare example of condensation of N-substituted 3,1-benzoxazine-2,4-dione with 1,2-phenylenediamine, which resulted in the formation of a benzimidazole derivative with a moderate yield. Crystallographic studies and initial biological screening were performed for the obtained product.

  7. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    Directory of Open Access Journals (Sweden)

    Helena Grgić

    Full Text Available The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1pdm09. One H1N2 isolate had hemagglutinin (HA, polymerase A (PA and non-structural (NS genes closely related to A(H1N1pdm09, and neuraminidase (NA, matrix (M, polymerase B1 (PB1, polymerase B2 (PB2, and nucleoprotein (NP genes originating from a triple-reassortant H3N2 virus (tr H3N2. The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  8. Structural, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Jun, Liu; Fu-Sheng, Liu, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu (China); Zheng-Tang, Liu [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, (China)

    2015-08-15

    Structural, elastic, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} at zero and high pressure have been investigated using the plane-wave ultrasoft pseudopotential method within the density-functional theory (DFT). The pressure dependences of structural parameters, elastic constants, mechanical properties, band gaps, and density of states of monoclinic N{sub 2}H{sub 5}N{sub 3} have been calculated and discussed. The obtained results show that monoclinic N{sub 2}H{sub 5}N{sub 3} is unstable at pressures exceeding the value 126.1 GPa. The ratio of B/G and the Cauchy’s pressure indicate that monoclinic N{sub 2}H{sub 5}N{sub 3} behaves in ductile nature with pressure ranging from 0 to 200 GPa. (author)

  9. Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

    OpenAIRE

    Ilyushina, Natalia A.; Seiler, Jon P.; Rehg, Jerold E.; Webster, Robert G.; Govorkova, Elena A.

    2010-01-01

    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N...

  10. Preparasi Imunoglobulin G Kelinci sebagai Antigen Penginduksi Antibodi Spesifik Terhadap Virus Avian Influenza H5N1 Strain Legok

    Directory of Open Access Journals (Sweden)

    Ketut Karuni Nyanakumari Natih

    2010-06-01

    Full Text Available The aim of this research was to prepare rabbit Immunoglobulin G as anti-idiotype antibody (Ab2 ofAvian Influenza Virus (AIV H5N1. A polyclonal antibody was collected from guinea pigs immunized withinactivated AI vaccine H5N1of Legok strain. Antibody of H5N1 AI in serum was detected by Agar gelprecipitation test (AGPT and an Inhibition Hemmaglutination test (IHT. The highest titre of antibodywas obtained one week after the third immunization. Serum of guinea pigs containing IgG was purifiedusing the Montage Antibody purification kit & spin column with Prosep A media (Millipore. The AI H5N1IgG concentration was 8 mg/ml. AI H5N1 IgG, was then digested with pepsin to obtain F(ab2 fraction andwas called Ab1. The concentration of IgG and F(ab2 and purity of IgG were determined by UVspectrophotometer which showed Ab1 concentration 1 mg/ml. Molecular weight was estimated by sodiumdodecyl sulfate- polyacrilamide gel electrophoresis (SDS-PAGE. Ab2 was produced by immunization ofrabbit with Ab1. The first immunization was carried out by subcutaneous injection w